[PATCH] bcm43xx: Fix array overrun in bcm43xx_geo_init
[deliverable/linux.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 *
12 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 * Gianfar: AKA Lambda Draconis, "Dragon"
20 * RA 11 31 24.2
21 * Dec +69 19 52
22 * V 3.84
23 * B-V +1.62
24 *
25 * Theory of operation
26 *
27 * The driver is initialized through platform_device. Structures which
28 * define the configuration needed by the board are defined in a
29 * board structure in arch/ppc/platforms (though I do not
30 * discount the possibility that other architectures could one
31 * day be supported.
32 *
33 * The Gianfar Ethernet Controller uses a ring of buffer
34 * descriptors. The beginning is indicated by a register
35 * pointing to the physical address of the start of the ring.
36 * The end is determined by a "wrap" bit being set in the
37 * last descriptor of the ring.
38 *
39 * When a packet is received, the RXF bit in the
40 * IEVENT register is set, triggering an interrupt when the
41 * corresponding bit in the IMASK register is also set (if
42 * interrupt coalescing is active, then the interrupt may not
43 * happen immediately, but will wait until either a set number
44 * of frames or amount of time have passed). In NAPI, the
45 * interrupt handler will signal there is work to be done, and
46 * exit. Without NAPI, the packet(s) will be handled
47 * immediately. Both methods will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
55 * skb.
56 *
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
65 */
66
67 #include <linux/config.h>
68 #include <linux/kernel.h>
69 #include <linux/sched.h>
70 #include <linux/string.h>
71 #include <linux/errno.h>
72 #include <linux/unistd.h>
73 #include <linux/slab.h>
74 #include <linux/interrupt.h>
75 #include <linux/init.h>
76 #include <linux/delay.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/if_vlan.h>
81 #include <linux/spinlock.h>
82 #include <linux/mm.h>
83 #include <linux/platform_device.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88
89 #include <asm/io.h>
90 #include <asm/irq.h>
91 #include <asm/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97
98 #include "gianfar.h"
99 #include "gianfar_mii.h"
100
101 #define TX_TIMEOUT (1*HZ)
102 #define SKB_ALLOC_TIMEOUT 1000000
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
105
106 #ifdef CONFIG_GFAR_NAPI
107 #define RECEIVE(x) netif_receive_skb(x)
108 #else
109 #define RECEIVE(x) netif_rx(x)
110 #endif
111
112 const char gfar_driver_name[] = "Gianfar Ethernet";
113 const char gfar_driver_version[] = "1.3";
114
115 static int gfar_enet_open(struct net_device *dev);
116 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
120 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
126 static void adjust_link(struct net_device *dev);
127 static void init_registers(struct net_device *dev);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *pdev);
130 static int gfar_remove(struct platform_device *pdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 #ifdef CONFIG_GFAR_NAPI
135 static int gfar_poll(struct net_device *dev, int *budget);
136 #endif
137 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
139 static void gfar_vlan_rx_register(struct net_device *netdev,
140 struct vlan_group *grp);
141 static void gfar_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
142 void gfar_halt(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
146
147 extern struct ethtool_ops gfar_ethtool_ops;
148
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152
153 /* Returns 1 if incoming frames use an FCB */
154 static inline int gfar_uses_fcb(struct gfar_private *priv)
155 {
156 return (priv->vlan_enable || priv->rx_csum_enable);
157 }
158
159 /* Set up the ethernet device structure, private data,
160 * and anything else we need before we start */
161 static int gfar_probe(struct platform_device *pdev)
162 {
163 u32 tempval;
164 struct net_device *dev = NULL;
165 struct gfar_private *priv = NULL;
166 struct gianfar_platform_data *einfo;
167 struct resource *r;
168 int idx;
169 int err = 0;
170
171 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
172
173 if (NULL == einfo) {
174 printk(KERN_ERR "gfar %d: Missing additional data!\n",
175 pdev->id);
176
177 return -ENODEV;
178 }
179
180 /* Create an ethernet device instance */
181 dev = alloc_etherdev(sizeof (*priv));
182
183 if (NULL == dev)
184 return -ENOMEM;
185
186 priv = netdev_priv(dev);
187
188 /* Set the info in the priv to the current info */
189 priv->einfo = einfo;
190
191 /* fill out IRQ fields */
192 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
193 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
194 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
195 priv->interruptError = platform_get_irq_byname(pdev, "error");
196 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
197 goto regs_fail;
198 } else {
199 priv->interruptTransmit = platform_get_irq(pdev, 0);
200 if (priv->interruptTransmit < 0)
201 goto regs_fail;
202 }
203
204 /* get a pointer to the register memory */
205 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
206 priv->regs = ioremap(r->start, sizeof (struct gfar));
207
208 if (NULL == priv->regs) {
209 err = -ENOMEM;
210 goto regs_fail;
211 }
212
213 spin_lock_init(&priv->txlock);
214 spin_lock_init(&priv->rxlock);
215
216 platform_set_drvdata(pdev, dev);
217
218 /* Stop the DMA engine now, in case it was running before */
219 /* (The firmware could have used it, and left it running). */
220 /* To do this, we write Graceful Receive Stop and Graceful */
221 /* Transmit Stop, and then wait until the corresponding bits */
222 /* in IEVENT indicate the stops have completed. */
223 tempval = gfar_read(&priv->regs->dmactrl);
224 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
225 gfar_write(&priv->regs->dmactrl, tempval);
226
227 tempval = gfar_read(&priv->regs->dmactrl);
228 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
229 gfar_write(&priv->regs->dmactrl, tempval);
230
231 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
232 cpu_relax();
233
234 /* Reset MAC layer */
235 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
236
237 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
238 gfar_write(&priv->regs->maccfg1, tempval);
239
240 /* Initialize MACCFG2. */
241 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
242
243 /* Initialize ECNTRL */
244 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
245
246 /* Copy the station address into the dev structure, */
247 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
248
249 /* Set the dev->base_addr to the gfar reg region */
250 dev->base_addr = (unsigned long) (priv->regs);
251
252 SET_MODULE_OWNER(dev);
253 SET_NETDEV_DEV(dev, &pdev->dev);
254
255 /* Fill in the dev structure */
256 dev->open = gfar_enet_open;
257 dev->hard_start_xmit = gfar_start_xmit;
258 dev->tx_timeout = gfar_timeout;
259 dev->watchdog_timeo = TX_TIMEOUT;
260 #ifdef CONFIG_GFAR_NAPI
261 dev->poll = gfar_poll;
262 dev->weight = GFAR_DEV_WEIGHT;
263 #endif
264 dev->stop = gfar_close;
265 dev->get_stats = gfar_get_stats;
266 dev->change_mtu = gfar_change_mtu;
267 dev->mtu = 1500;
268 dev->set_multicast_list = gfar_set_multi;
269
270 dev->ethtool_ops = &gfar_ethtool_ops;
271
272 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
273 priv->rx_csum_enable = 1;
274 dev->features |= NETIF_F_IP_CSUM;
275 } else
276 priv->rx_csum_enable = 0;
277
278 priv->vlgrp = NULL;
279
280 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
281 dev->vlan_rx_register = gfar_vlan_rx_register;
282 dev->vlan_rx_kill_vid = gfar_vlan_rx_kill_vid;
283
284 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
285
286 priv->vlan_enable = 1;
287 }
288
289 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
290 priv->extended_hash = 1;
291 priv->hash_width = 9;
292
293 priv->hash_regs[0] = &priv->regs->igaddr0;
294 priv->hash_regs[1] = &priv->regs->igaddr1;
295 priv->hash_regs[2] = &priv->regs->igaddr2;
296 priv->hash_regs[3] = &priv->regs->igaddr3;
297 priv->hash_regs[4] = &priv->regs->igaddr4;
298 priv->hash_regs[5] = &priv->regs->igaddr5;
299 priv->hash_regs[6] = &priv->regs->igaddr6;
300 priv->hash_regs[7] = &priv->regs->igaddr7;
301 priv->hash_regs[8] = &priv->regs->gaddr0;
302 priv->hash_regs[9] = &priv->regs->gaddr1;
303 priv->hash_regs[10] = &priv->regs->gaddr2;
304 priv->hash_regs[11] = &priv->regs->gaddr3;
305 priv->hash_regs[12] = &priv->regs->gaddr4;
306 priv->hash_regs[13] = &priv->regs->gaddr5;
307 priv->hash_regs[14] = &priv->regs->gaddr6;
308 priv->hash_regs[15] = &priv->regs->gaddr7;
309
310 } else {
311 priv->extended_hash = 0;
312 priv->hash_width = 8;
313
314 priv->hash_regs[0] = &priv->regs->gaddr0;
315 priv->hash_regs[1] = &priv->regs->gaddr1;
316 priv->hash_regs[2] = &priv->regs->gaddr2;
317 priv->hash_regs[3] = &priv->regs->gaddr3;
318 priv->hash_regs[4] = &priv->regs->gaddr4;
319 priv->hash_regs[5] = &priv->regs->gaddr5;
320 priv->hash_regs[6] = &priv->regs->gaddr6;
321 priv->hash_regs[7] = &priv->regs->gaddr7;
322 }
323
324 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
325 priv->padding = DEFAULT_PADDING;
326 else
327 priv->padding = 0;
328
329 if (dev->features & NETIF_F_IP_CSUM)
330 dev->hard_header_len += GMAC_FCB_LEN;
331
332 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
333 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
334 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
335
336 priv->txcoalescing = DEFAULT_TX_COALESCE;
337 priv->txcount = DEFAULT_TXCOUNT;
338 priv->txtime = DEFAULT_TXTIME;
339 priv->rxcoalescing = DEFAULT_RX_COALESCE;
340 priv->rxcount = DEFAULT_RXCOUNT;
341 priv->rxtime = DEFAULT_RXTIME;
342
343 /* Enable most messages by default */
344 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
345
346 err = register_netdev(dev);
347
348 if (err) {
349 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
350 dev->name);
351 goto register_fail;
352 }
353
354 /* Create all the sysfs files */
355 gfar_init_sysfs(dev);
356
357 /* Print out the device info */
358 printk(KERN_INFO DEVICE_NAME, dev->name);
359 for (idx = 0; idx < 6; idx++)
360 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
361 printk("\n");
362
363 /* Even more device info helps when determining which kernel */
364 /* provided which set of benchmarks. */
365 #ifdef CONFIG_GFAR_NAPI
366 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
367 #else
368 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
369 #endif
370 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
371 dev->name, priv->rx_ring_size, priv->tx_ring_size);
372
373 return 0;
374
375 register_fail:
376 iounmap(priv->regs);
377 regs_fail:
378 free_netdev(dev);
379 return err;
380 }
381
382 static int gfar_remove(struct platform_device *pdev)
383 {
384 struct net_device *dev = platform_get_drvdata(pdev);
385 struct gfar_private *priv = netdev_priv(dev);
386
387 platform_set_drvdata(pdev, NULL);
388
389 iounmap(priv->regs);
390 free_netdev(dev);
391
392 return 0;
393 }
394
395
396 /* Initializes driver's PHY state, and attaches to the PHY.
397 * Returns 0 on success.
398 */
399 static int init_phy(struct net_device *dev)
400 {
401 struct gfar_private *priv = netdev_priv(dev);
402 uint gigabit_support =
403 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
404 SUPPORTED_1000baseT_Full : 0;
405 struct phy_device *phydev;
406 char phy_id[BUS_ID_SIZE];
407
408 priv->oldlink = 0;
409 priv->oldspeed = 0;
410 priv->oldduplex = -1;
411
412 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
413
414 phydev = phy_connect(dev, phy_id, &adjust_link, 0);
415
416 if (IS_ERR(phydev)) {
417 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
418 return PTR_ERR(phydev);
419 }
420
421 /* Remove any features not supported by the controller */
422 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
423 phydev->advertising = phydev->supported;
424
425 priv->phydev = phydev;
426
427 return 0;
428 }
429
430 static void init_registers(struct net_device *dev)
431 {
432 struct gfar_private *priv = netdev_priv(dev);
433
434 /* Clear IEVENT */
435 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
436
437 /* Initialize IMASK */
438 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
439
440 /* Init hash registers to zero */
441 gfar_write(&priv->regs->igaddr0, 0);
442 gfar_write(&priv->regs->igaddr1, 0);
443 gfar_write(&priv->regs->igaddr2, 0);
444 gfar_write(&priv->regs->igaddr3, 0);
445 gfar_write(&priv->regs->igaddr4, 0);
446 gfar_write(&priv->regs->igaddr5, 0);
447 gfar_write(&priv->regs->igaddr6, 0);
448 gfar_write(&priv->regs->igaddr7, 0);
449
450 gfar_write(&priv->regs->gaddr0, 0);
451 gfar_write(&priv->regs->gaddr1, 0);
452 gfar_write(&priv->regs->gaddr2, 0);
453 gfar_write(&priv->regs->gaddr3, 0);
454 gfar_write(&priv->regs->gaddr4, 0);
455 gfar_write(&priv->regs->gaddr5, 0);
456 gfar_write(&priv->regs->gaddr6, 0);
457 gfar_write(&priv->regs->gaddr7, 0);
458
459 /* Zero out the rmon mib registers if it has them */
460 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
461 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
462
463 /* Mask off the CAM interrupts */
464 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
465 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
466 }
467
468 /* Initialize the max receive buffer length */
469 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
470
471 /* Initialize the Minimum Frame Length Register */
472 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
473
474 /* Assign the TBI an address which won't conflict with the PHYs */
475 gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
476 }
477
478
479 /* Halt the receive and transmit queues */
480 void gfar_halt(struct net_device *dev)
481 {
482 struct gfar_private *priv = netdev_priv(dev);
483 struct gfar __iomem *regs = priv->regs;
484 u32 tempval;
485
486 /* Mask all interrupts */
487 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
488
489 /* Clear all interrupts */
490 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
491
492 /* Stop the DMA, and wait for it to stop */
493 tempval = gfar_read(&priv->regs->dmactrl);
494 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
495 != (DMACTRL_GRS | DMACTRL_GTS)) {
496 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
497 gfar_write(&priv->regs->dmactrl, tempval);
498
499 while (!(gfar_read(&priv->regs->ievent) &
500 (IEVENT_GRSC | IEVENT_GTSC)))
501 cpu_relax();
502 }
503
504 /* Disable Rx and Tx */
505 tempval = gfar_read(&regs->maccfg1);
506 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
507 gfar_write(&regs->maccfg1, tempval);
508 }
509
510 void stop_gfar(struct net_device *dev)
511 {
512 struct gfar_private *priv = netdev_priv(dev);
513 struct gfar __iomem *regs = priv->regs;
514 unsigned long flags;
515
516 phy_stop(priv->phydev);
517
518 /* Lock it down */
519 spin_lock_irqsave(&priv->txlock, flags);
520 spin_lock(&priv->rxlock);
521
522 gfar_halt(dev);
523
524 spin_unlock(&priv->rxlock);
525 spin_unlock_irqrestore(&priv->txlock, flags);
526
527 /* Free the IRQs */
528 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
529 free_irq(priv->interruptError, dev);
530 free_irq(priv->interruptTransmit, dev);
531 free_irq(priv->interruptReceive, dev);
532 } else {
533 free_irq(priv->interruptTransmit, dev);
534 }
535
536 free_skb_resources(priv);
537
538 dma_free_coherent(NULL,
539 sizeof(struct txbd8)*priv->tx_ring_size
540 + sizeof(struct rxbd8)*priv->rx_ring_size,
541 priv->tx_bd_base,
542 gfar_read(&regs->tbase0));
543 }
544
545 /* If there are any tx skbs or rx skbs still around, free them.
546 * Then free tx_skbuff and rx_skbuff */
547 static void free_skb_resources(struct gfar_private *priv)
548 {
549 struct rxbd8 *rxbdp;
550 struct txbd8 *txbdp;
551 int i;
552
553 /* Go through all the buffer descriptors and free their data buffers */
554 txbdp = priv->tx_bd_base;
555
556 for (i = 0; i < priv->tx_ring_size; i++) {
557
558 if (priv->tx_skbuff[i]) {
559 dma_unmap_single(NULL, txbdp->bufPtr,
560 txbdp->length,
561 DMA_TO_DEVICE);
562 dev_kfree_skb_any(priv->tx_skbuff[i]);
563 priv->tx_skbuff[i] = NULL;
564 }
565 }
566
567 kfree(priv->tx_skbuff);
568
569 rxbdp = priv->rx_bd_base;
570
571 /* rx_skbuff is not guaranteed to be allocated, so only
572 * free it and its contents if it is allocated */
573 if(priv->rx_skbuff != NULL) {
574 for (i = 0; i < priv->rx_ring_size; i++) {
575 if (priv->rx_skbuff[i]) {
576 dma_unmap_single(NULL, rxbdp->bufPtr,
577 priv->rx_buffer_size,
578 DMA_FROM_DEVICE);
579
580 dev_kfree_skb_any(priv->rx_skbuff[i]);
581 priv->rx_skbuff[i] = NULL;
582 }
583
584 rxbdp->status = 0;
585 rxbdp->length = 0;
586 rxbdp->bufPtr = 0;
587
588 rxbdp++;
589 }
590
591 kfree(priv->rx_skbuff);
592 }
593 }
594
595 void gfar_start(struct net_device *dev)
596 {
597 struct gfar_private *priv = netdev_priv(dev);
598 struct gfar __iomem *regs = priv->regs;
599 u32 tempval;
600
601 /* Enable Rx and Tx in MACCFG1 */
602 tempval = gfar_read(&regs->maccfg1);
603 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
604 gfar_write(&regs->maccfg1, tempval);
605
606 /* Initialize DMACTRL to have WWR and WOP */
607 tempval = gfar_read(&priv->regs->dmactrl);
608 tempval |= DMACTRL_INIT_SETTINGS;
609 gfar_write(&priv->regs->dmactrl, tempval);
610
611 /* Make sure we aren't stopped */
612 tempval = gfar_read(&priv->regs->dmactrl);
613 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
614 gfar_write(&priv->regs->dmactrl, tempval);
615
616 /* Clear THLT/RHLT, so that the DMA starts polling now */
617 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
618 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
619
620 /* Unmask the interrupts we look for */
621 gfar_write(&regs->imask, IMASK_DEFAULT);
622 }
623
624 /* Bring the controller up and running */
625 int startup_gfar(struct net_device *dev)
626 {
627 struct txbd8 *txbdp;
628 struct rxbd8 *rxbdp;
629 dma_addr_t addr;
630 unsigned long vaddr;
631 int i;
632 struct gfar_private *priv = netdev_priv(dev);
633 struct gfar __iomem *regs = priv->regs;
634 int err = 0;
635 u32 rctrl = 0;
636 u32 attrs = 0;
637
638 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
639
640 /* Allocate memory for the buffer descriptors */
641 vaddr = (unsigned long) dma_alloc_coherent(NULL,
642 sizeof (struct txbd8) * priv->tx_ring_size +
643 sizeof (struct rxbd8) * priv->rx_ring_size,
644 &addr, GFP_KERNEL);
645
646 if (vaddr == 0) {
647 if (netif_msg_ifup(priv))
648 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
649 dev->name);
650 return -ENOMEM;
651 }
652
653 priv->tx_bd_base = (struct txbd8 *) vaddr;
654
655 /* enet DMA only understands physical addresses */
656 gfar_write(&regs->tbase0, addr);
657
658 /* Start the rx descriptor ring where the tx ring leaves off */
659 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
660 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
661 priv->rx_bd_base = (struct rxbd8 *) vaddr;
662 gfar_write(&regs->rbase0, addr);
663
664 /* Setup the skbuff rings */
665 priv->tx_skbuff =
666 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
667 priv->tx_ring_size, GFP_KERNEL);
668
669 if (NULL == priv->tx_skbuff) {
670 if (netif_msg_ifup(priv))
671 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
672 dev->name);
673 err = -ENOMEM;
674 goto tx_skb_fail;
675 }
676
677 for (i = 0; i < priv->tx_ring_size; i++)
678 priv->tx_skbuff[i] = NULL;
679
680 priv->rx_skbuff =
681 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
682 priv->rx_ring_size, GFP_KERNEL);
683
684 if (NULL == priv->rx_skbuff) {
685 if (netif_msg_ifup(priv))
686 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
687 dev->name);
688 err = -ENOMEM;
689 goto rx_skb_fail;
690 }
691
692 for (i = 0; i < priv->rx_ring_size; i++)
693 priv->rx_skbuff[i] = NULL;
694
695 /* Initialize some variables in our dev structure */
696 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
697 priv->cur_rx = priv->rx_bd_base;
698 priv->skb_curtx = priv->skb_dirtytx = 0;
699 priv->skb_currx = 0;
700
701 /* Initialize Transmit Descriptor Ring */
702 txbdp = priv->tx_bd_base;
703 for (i = 0; i < priv->tx_ring_size; i++) {
704 txbdp->status = 0;
705 txbdp->length = 0;
706 txbdp->bufPtr = 0;
707 txbdp++;
708 }
709
710 /* Set the last descriptor in the ring to indicate wrap */
711 txbdp--;
712 txbdp->status |= TXBD_WRAP;
713
714 rxbdp = priv->rx_bd_base;
715 for (i = 0; i < priv->rx_ring_size; i++) {
716 struct sk_buff *skb = NULL;
717
718 rxbdp->status = 0;
719
720 skb = gfar_new_skb(dev, rxbdp);
721
722 priv->rx_skbuff[i] = skb;
723
724 rxbdp++;
725 }
726
727 /* Set the last descriptor in the ring to wrap */
728 rxbdp--;
729 rxbdp->status |= RXBD_WRAP;
730
731 /* If the device has multiple interrupts, register for
732 * them. Otherwise, only register for the one */
733 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
734 /* Install our interrupt handlers for Error,
735 * Transmit, and Receive */
736 if (request_irq(priv->interruptError, gfar_error,
737 0, "enet_error", dev) < 0) {
738 if (netif_msg_intr(priv))
739 printk(KERN_ERR "%s: Can't get IRQ %d\n",
740 dev->name, priv->interruptError);
741
742 err = -1;
743 goto err_irq_fail;
744 }
745
746 if (request_irq(priv->interruptTransmit, gfar_transmit,
747 0, "enet_tx", dev) < 0) {
748 if (netif_msg_intr(priv))
749 printk(KERN_ERR "%s: Can't get IRQ %d\n",
750 dev->name, priv->interruptTransmit);
751
752 err = -1;
753
754 goto tx_irq_fail;
755 }
756
757 if (request_irq(priv->interruptReceive, gfar_receive,
758 0, "enet_rx", dev) < 0) {
759 if (netif_msg_intr(priv))
760 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
761 dev->name, priv->interruptReceive);
762
763 err = -1;
764 goto rx_irq_fail;
765 }
766 } else {
767 if (request_irq(priv->interruptTransmit, gfar_interrupt,
768 0, "gfar_interrupt", dev) < 0) {
769 if (netif_msg_intr(priv))
770 printk(KERN_ERR "%s: Can't get IRQ %d\n",
771 dev->name, priv->interruptError);
772
773 err = -1;
774 goto err_irq_fail;
775 }
776 }
777
778 phy_start(priv->phydev);
779
780 /* Configure the coalescing support */
781 if (priv->txcoalescing)
782 gfar_write(&regs->txic,
783 mk_ic_value(priv->txcount, priv->txtime));
784 else
785 gfar_write(&regs->txic, 0);
786
787 if (priv->rxcoalescing)
788 gfar_write(&regs->rxic,
789 mk_ic_value(priv->rxcount, priv->rxtime));
790 else
791 gfar_write(&regs->rxic, 0);
792
793 if (priv->rx_csum_enable)
794 rctrl |= RCTRL_CHECKSUMMING;
795
796 if (priv->extended_hash) {
797 rctrl |= RCTRL_EXTHASH;
798
799 gfar_clear_exact_match(dev);
800 rctrl |= RCTRL_EMEN;
801 }
802
803 if (priv->vlan_enable)
804 rctrl |= RCTRL_VLAN;
805
806 if (priv->padding) {
807 rctrl &= ~RCTRL_PAL_MASK;
808 rctrl |= RCTRL_PADDING(priv->padding);
809 }
810
811 /* Init rctrl based on our settings */
812 gfar_write(&priv->regs->rctrl, rctrl);
813
814 if (dev->features & NETIF_F_IP_CSUM)
815 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
816
817 /* Set the extraction length and index */
818 attrs = ATTRELI_EL(priv->rx_stash_size) |
819 ATTRELI_EI(priv->rx_stash_index);
820
821 gfar_write(&priv->regs->attreli, attrs);
822
823 /* Start with defaults, and add stashing or locking
824 * depending on the approprate variables */
825 attrs = ATTR_INIT_SETTINGS;
826
827 if (priv->bd_stash_en)
828 attrs |= ATTR_BDSTASH;
829
830 if (priv->rx_stash_size != 0)
831 attrs |= ATTR_BUFSTASH;
832
833 gfar_write(&priv->regs->attr, attrs);
834
835 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
836 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
837 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
838
839 /* Start the controller */
840 gfar_start(dev);
841
842 return 0;
843
844 rx_irq_fail:
845 free_irq(priv->interruptTransmit, dev);
846 tx_irq_fail:
847 free_irq(priv->interruptError, dev);
848 err_irq_fail:
849 rx_skb_fail:
850 free_skb_resources(priv);
851 tx_skb_fail:
852 dma_free_coherent(NULL,
853 sizeof(struct txbd8)*priv->tx_ring_size
854 + sizeof(struct rxbd8)*priv->rx_ring_size,
855 priv->tx_bd_base,
856 gfar_read(&regs->tbase0));
857
858 return err;
859 }
860
861 /* Called when something needs to use the ethernet device */
862 /* Returns 0 for success. */
863 static int gfar_enet_open(struct net_device *dev)
864 {
865 int err;
866
867 /* Initialize a bunch of registers */
868 init_registers(dev);
869
870 gfar_set_mac_address(dev);
871
872 err = init_phy(dev);
873
874 if(err)
875 return err;
876
877 err = startup_gfar(dev);
878
879 netif_start_queue(dev);
880
881 return err;
882 }
883
884 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
885 {
886 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
887
888 memset(fcb, 0, GMAC_FCB_LEN);
889
890 return fcb;
891 }
892
893 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
894 {
895 u8 flags = 0;
896
897 /* If we're here, it's a IP packet with a TCP or UDP
898 * payload. We set it to checksum, using a pseudo-header
899 * we provide
900 */
901 flags = TXFCB_DEFAULT;
902
903 /* Tell the controller what the protocol is */
904 /* And provide the already calculated phcs */
905 if (skb->nh.iph->protocol == IPPROTO_UDP) {
906 flags |= TXFCB_UDP;
907 fcb->phcs = skb->h.uh->check;
908 } else
909 fcb->phcs = skb->h.th->check;
910
911 /* l3os is the distance between the start of the
912 * frame (skb->data) and the start of the IP hdr.
913 * l4os is the distance between the start of the
914 * l3 hdr and the l4 hdr */
915 fcb->l3os = (u16)(skb->nh.raw - skb->data - GMAC_FCB_LEN);
916 fcb->l4os = (u16)(skb->h.raw - skb->nh.raw);
917
918 fcb->flags = flags;
919 }
920
921 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
922 {
923 fcb->flags |= TXFCB_VLN;
924 fcb->vlctl = vlan_tx_tag_get(skb);
925 }
926
927 /* This is called by the kernel when a frame is ready for transmission. */
928 /* It is pointed to by the dev->hard_start_xmit function pointer */
929 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
930 {
931 struct gfar_private *priv = netdev_priv(dev);
932 struct txfcb *fcb = NULL;
933 struct txbd8 *txbdp;
934 u16 status;
935 unsigned long flags;
936
937 /* Update transmit stats */
938 priv->stats.tx_bytes += skb->len;
939
940 /* Lock priv now */
941 spin_lock_irqsave(&priv->txlock, flags);
942
943 /* Point at the first free tx descriptor */
944 txbdp = priv->cur_tx;
945
946 /* Clear all but the WRAP status flags */
947 status = txbdp->status & TXBD_WRAP;
948
949 /* Set up checksumming */
950 if (likely((dev->features & NETIF_F_IP_CSUM)
951 && (CHECKSUM_HW == skb->ip_summed))) {
952 fcb = gfar_add_fcb(skb, txbdp);
953 status |= TXBD_TOE;
954 gfar_tx_checksum(skb, fcb);
955 }
956
957 if (priv->vlan_enable &&
958 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
959 if (unlikely(NULL == fcb)) {
960 fcb = gfar_add_fcb(skb, txbdp);
961 status |= TXBD_TOE;
962 }
963
964 gfar_tx_vlan(skb, fcb);
965 }
966
967 /* Set buffer length and pointer */
968 txbdp->length = skb->len;
969 txbdp->bufPtr = dma_map_single(NULL, skb->data,
970 skb->len, DMA_TO_DEVICE);
971
972 /* Save the skb pointer so we can free it later */
973 priv->tx_skbuff[priv->skb_curtx] = skb;
974
975 /* Update the current skb pointer (wrapping if this was the last) */
976 priv->skb_curtx =
977 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
978
979 /* Flag the BD as interrupt-causing */
980 status |= TXBD_INTERRUPT;
981
982 /* Flag the BD as ready to go, last in frame, and */
983 /* in need of CRC */
984 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
985
986 dev->trans_start = jiffies;
987
988 txbdp->status = status;
989
990 /* If this was the last BD in the ring, the next one */
991 /* is at the beginning of the ring */
992 if (txbdp->status & TXBD_WRAP)
993 txbdp = priv->tx_bd_base;
994 else
995 txbdp++;
996
997 /* If the next BD still needs to be cleaned up, then the bds
998 are full. We need to tell the kernel to stop sending us stuff. */
999 if (txbdp == priv->dirty_tx) {
1000 netif_stop_queue(dev);
1001
1002 priv->stats.tx_fifo_errors++;
1003 }
1004
1005 /* Update the current txbd to the next one */
1006 priv->cur_tx = txbdp;
1007
1008 /* Tell the DMA to go go go */
1009 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1010
1011 /* Unlock priv */
1012 spin_unlock_irqrestore(&priv->txlock, flags);
1013
1014 return 0;
1015 }
1016
1017 /* Stops the kernel queue, and halts the controller */
1018 static int gfar_close(struct net_device *dev)
1019 {
1020 struct gfar_private *priv = netdev_priv(dev);
1021 stop_gfar(dev);
1022
1023 /* Disconnect from the PHY */
1024 phy_disconnect(priv->phydev);
1025 priv->phydev = NULL;
1026
1027 netif_stop_queue(dev);
1028
1029 return 0;
1030 }
1031
1032 /* returns a net_device_stats structure pointer */
1033 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1034 {
1035 struct gfar_private *priv = netdev_priv(dev);
1036
1037 return &(priv->stats);
1038 }
1039
1040 /* Changes the mac address if the controller is not running. */
1041 int gfar_set_mac_address(struct net_device *dev)
1042 {
1043 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1044
1045 return 0;
1046 }
1047
1048
1049 /* Enables and disables VLAN insertion/extraction */
1050 static void gfar_vlan_rx_register(struct net_device *dev,
1051 struct vlan_group *grp)
1052 {
1053 struct gfar_private *priv = netdev_priv(dev);
1054 unsigned long flags;
1055 u32 tempval;
1056
1057 spin_lock_irqsave(&priv->rxlock, flags);
1058
1059 priv->vlgrp = grp;
1060
1061 if (grp) {
1062 /* Enable VLAN tag insertion */
1063 tempval = gfar_read(&priv->regs->tctrl);
1064 tempval |= TCTRL_VLINS;
1065
1066 gfar_write(&priv->regs->tctrl, tempval);
1067
1068 /* Enable VLAN tag extraction */
1069 tempval = gfar_read(&priv->regs->rctrl);
1070 tempval |= RCTRL_VLEX;
1071 gfar_write(&priv->regs->rctrl, tempval);
1072 } else {
1073 /* Disable VLAN tag insertion */
1074 tempval = gfar_read(&priv->regs->tctrl);
1075 tempval &= ~TCTRL_VLINS;
1076 gfar_write(&priv->regs->tctrl, tempval);
1077
1078 /* Disable VLAN tag extraction */
1079 tempval = gfar_read(&priv->regs->rctrl);
1080 tempval &= ~RCTRL_VLEX;
1081 gfar_write(&priv->regs->rctrl, tempval);
1082 }
1083
1084 spin_unlock_irqrestore(&priv->rxlock, flags);
1085 }
1086
1087
1088 static void gfar_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
1089 {
1090 struct gfar_private *priv = netdev_priv(dev);
1091 unsigned long flags;
1092
1093 spin_lock_irqsave(&priv->rxlock, flags);
1094
1095 if (priv->vlgrp)
1096 priv->vlgrp->vlan_devices[vid] = NULL;
1097
1098 spin_unlock_irqrestore(&priv->rxlock, flags);
1099 }
1100
1101
1102 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1103 {
1104 int tempsize, tempval;
1105 struct gfar_private *priv = netdev_priv(dev);
1106 int oldsize = priv->rx_buffer_size;
1107 int frame_size = new_mtu + ETH_HLEN;
1108
1109 if (priv->vlan_enable)
1110 frame_size += VLAN_ETH_HLEN;
1111
1112 if (gfar_uses_fcb(priv))
1113 frame_size += GMAC_FCB_LEN;
1114
1115 frame_size += priv->padding;
1116
1117 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1118 if (netif_msg_drv(priv))
1119 printk(KERN_ERR "%s: Invalid MTU setting\n",
1120 dev->name);
1121 return -EINVAL;
1122 }
1123
1124 tempsize =
1125 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1126 INCREMENTAL_BUFFER_SIZE;
1127
1128 /* Only stop and start the controller if it isn't already
1129 * stopped, and we changed something */
1130 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1131 stop_gfar(dev);
1132
1133 priv->rx_buffer_size = tempsize;
1134
1135 dev->mtu = new_mtu;
1136
1137 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1138 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1139
1140 /* If the mtu is larger than the max size for standard
1141 * ethernet frames (ie, a jumbo frame), then set maccfg2
1142 * to allow huge frames, and to check the length */
1143 tempval = gfar_read(&priv->regs->maccfg2);
1144
1145 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1146 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1147 else
1148 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1149
1150 gfar_write(&priv->regs->maccfg2, tempval);
1151
1152 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1153 startup_gfar(dev);
1154
1155 return 0;
1156 }
1157
1158 /* gfar_timeout gets called when a packet has not been
1159 * transmitted after a set amount of time.
1160 * For now, assume that clearing out all the structures, and
1161 * starting over will fix the problem. */
1162 static void gfar_timeout(struct net_device *dev)
1163 {
1164 struct gfar_private *priv = netdev_priv(dev);
1165
1166 priv->stats.tx_errors++;
1167
1168 if (dev->flags & IFF_UP) {
1169 stop_gfar(dev);
1170 startup_gfar(dev);
1171 }
1172
1173 netif_schedule(dev);
1174 }
1175
1176 /* Interrupt Handler for Transmit complete */
1177 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
1178 {
1179 struct net_device *dev = (struct net_device *) dev_id;
1180 struct gfar_private *priv = netdev_priv(dev);
1181 struct txbd8 *bdp;
1182
1183 /* Clear IEVENT */
1184 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1185
1186 /* Lock priv */
1187 spin_lock(&priv->txlock);
1188 bdp = priv->dirty_tx;
1189 while ((bdp->status & TXBD_READY) == 0) {
1190 /* If dirty_tx and cur_tx are the same, then either the */
1191 /* ring is empty or full now (it could only be full in the beginning, */
1192 /* obviously). If it is empty, we are done. */
1193 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1194 break;
1195
1196 priv->stats.tx_packets++;
1197
1198 /* Deferred means some collisions occurred during transmit, */
1199 /* but we eventually sent the packet. */
1200 if (bdp->status & TXBD_DEF)
1201 priv->stats.collisions++;
1202
1203 /* Free the sk buffer associated with this TxBD */
1204 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1205 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1206 priv->skb_dirtytx =
1207 (priv->skb_dirtytx +
1208 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1209
1210 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1211 if (bdp->status & TXBD_WRAP)
1212 bdp = priv->tx_bd_base;
1213 else
1214 bdp++;
1215
1216 /* Move dirty_tx to be the next bd */
1217 priv->dirty_tx = bdp;
1218
1219 /* We freed a buffer, so now we can restart transmission */
1220 if (netif_queue_stopped(dev))
1221 netif_wake_queue(dev);
1222 } /* while ((bdp->status & TXBD_READY) == 0) */
1223
1224 /* If we are coalescing the interrupts, reset the timer */
1225 /* Otherwise, clear it */
1226 if (priv->txcoalescing)
1227 gfar_write(&priv->regs->txic,
1228 mk_ic_value(priv->txcount, priv->txtime));
1229 else
1230 gfar_write(&priv->regs->txic, 0);
1231
1232 spin_unlock(&priv->txlock);
1233
1234 return IRQ_HANDLED;
1235 }
1236
1237 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1238 {
1239 unsigned int alignamount;
1240 struct gfar_private *priv = netdev_priv(dev);
1241 struct sk_buff *skb = NULL;
1242 unsigned int timeout = SKB_ALLOC_TIMEOUT;
1243
1244 /* We have to allocate the skb, so keep trying till we succeed */
1245 while ((!skb) && timeout--)
1246 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1247
1248 if (NULL == skb)
1249 return NULL;
1250
1251 alignamount = RXBUF_ALIGNMENT -
1252 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1));
1253
1254 /* We need the data buffer to be aligned properly. We will reserve
1255 * as many bytes as needed to align the data properly
1256 */
1257 skb_reserve(skb, alignamount);
1258
1259 skb->dev = dev;
1260
1261 bdp->bufPtr = dma_map_single(NULL, skb->data,
1262 priv->rx_buffer_size, DMA_FROM_DEVICE);
1263
1264 bdp->length = 0;
1265
1266 /* Mark the buffer empty */
1267 bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1268
1269 return skb;
1270 }
1271
1272 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1273 {
1274 struct net_device_stats *stats = &priv->stats;
1275 struct gfar_extra_stats *estats = &priv->extra_stats;
1276
1277 /* If the packet was truncated, none of the other errors
1278 * matter */
1279 if (status & RXBD_TRUNCATED) {
1280 stats->rx_length_errors++;
1281
1282 estats->rx_trunc++;
1283
1284 return;
1285 }
1286 /* Count the errors, if there were any */
1287 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1288 stats->rx_length_errors++;
1289
1290 if (status & RXBD_LARGE)
1291 estats->rx_large++;
1292 else
1293 estats->rx_short++;
1294 }
1295 if (status & RXBD_NONOCTET) {
1296 stats->rx_frame_errors++;
1297 estats->rx_nonoctet++;
1298 }
1299 if (status & RXBD_CRCERR) {
1300 estats->rx_crcerr++;
1301 stats->rx_crc_errors++;
1302 }
1303 if (status & RXBD_OVERRUN) {
1304 estats->rx_overrun++;
1305 stats->rx_crc_errors++;
1306 }
1307 }
1308
1309 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
1310 {
1311 struct net_device *dev = (struct net_device *) dev_id;
1312 struct gfar_private *priv = netdev_priv(dev);
1313 #ifdef CONFIG_GFAR_NAPI
1314 u32 tempval;
1315 #else
1316 unsigned long flags;
1317 #endif
1318
1319 /* Clear IEVENT, so rx interrupt isn't called again
1320 * because of this interrupt */
1321 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1322
1323 /* support NAPI */
1324 #ifdef CONFIG_GFAR_NAPI
1325 if (netif_rx_schedule_prep(dev)) {
1326 tempval = gfar_read(&priv->regs->imask);
1327 tempval &= IMASK_RX_DISABLED;
1328 gfar_write(&priv->regs->imask, tempval);
1329
1330 __netif_rx_schedule(dev);
1331 } else {
1332 if (netif_msg_rx_err(priv))
1333 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1334 dev->name, gfar_read(&priv->regs->ievent),
1335 gfar_read(&priv->regs->imask));
1336 }
1337 #else
1338
1339 spin_lock_irqsave(&priv->rxlock, flags);
1340 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1341
1342 /* If we are coalescing interrupts, update the timer */
1343 /* Otherwise, clear it */
1344 if (priv->rxcoalescing)
1345 gfar_write(&priv->regs->rxic,
1346 mk_ic_value(priv->rxcount, priv->rxtime));
1347 else
1348 gfar_write(&priv->regs->rxic, 0);
1349
1350 spin_unlock_irqrestore(&priv->rxlock, flags);
1351 #endif
1352
1353 return IRQ_HANDLED;
1354 }
1355
1356 static inline int gfar_rx_vlan(struct sk_buff *skb,
1357 struct vlan_group *vlgrp, unsigned short vlctl)
1358 {
1359 #ifdef CONFIG_GFAR_NAPI
1360 return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1361 #else
1362 return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1363 #endif
1364 }
1365
1366 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1367 {
1368 /* If valid headers were found, and valid sums
1369 * were verified, then we tell the kernel that no
1370 * checksumming is necessary. Otherwise, it is */
1371 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1372 skb->ip_summed = CHECKSUM_UNNECESSARY;
1373 else
1374 skb->ip_summed = CHECKSUM_NONE;
1375 }
1376
1377
1378 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1379 {
1380 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1381
1382 /* Remove the FCB from the skb */
1383 skb_pull(skb, GMAC_FCB_LEN);
1384
1385 return fcb;
1386 }
1387
1388 /* gfar_process_frame() -- handle one incoming packet if skb
1389 * isn't NULL. */
1390 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1391 int length)
1392 {
1393 struct gfar_private *priv = netdev_priv(dev);
1394 struct rxfcb *fcb = NULL;
1395
1396 if (NULL == skb) {
1397 if (netif_msg_rx_err(priv))
1398 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1399 priv->stats.rx_dropped++;
1400 priv->extra_stats.rx_skbmissing++;
1401 } else {
1402 int ret;
1403
1404 /* Prep the skb for the packet */
1405 skb_put(skb, length);
1406
1407 /* Grab the FCB if there is one */
1408 if (gfar_uses_fcb(priv))
1409 fcb = gfar_get_fcb(skb);
1410
1411 /* Remove the padded bytes, if there are any */
1412 if (priv->padding)
1413 skb_pull(skb, priv->padding);
1414
1415 if (priv->rx_csum_enable)
1416 gfar_rx_checksum(skb, fcb);
1417
1418 /* Tell the skb what kind of packet this is */
1419 skb->protocol = eth_type_trans(skb, dev);
1420
1421 /* Send the packet up the stack */
1422 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1423 ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1424 else
1425 ret = RECEIVE(skb);
1426
1427 if (NET_RX_DROP == ret)
1428 priv->extra_stats.kernel_dropped++;
1429 }
1430
1431 return 0;
1432 }
1433
1434 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1435 * until the budget/quota has been reached. Returns the number
1436 * of frames handled
1437 */
1438 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1439 {
1440 struct rxbd8 *bdp;
1441 struct sk_buff *skb;
1442 u16 pkt_len;
1443 int howmany = 0;
1444 struct gfar_private *priv = netdev_priv(dev);
1445
1446 /* Get the first full descriptor */
1447 bdp = priv->cur_rx;
1448
1449 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1450 skb = priv->rx_skbuff[priv->skb_currx];
1451
1452 if (!(bdp->status &
1453 (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1454 | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1455 /* Increment the number of packets */
1456 priv->stats.rx_packets++;
1457 howmany++;
1458
1459 /* Remove the FCS from the packet length */
1460 pkt_len = bdp->length - 4;
1461
1462 gfar_process_frame(dev, skb, pkt_len);
1463
1464 priv->stats.rx_bytes += pkt_len;
1465 } else {
1466 count_errors(bdp->status, priv);
1467
1468 if (skb)
1469 dev_kfree_skb_any(skb);
1470
1471 priv->rx_skbuff[priv->skb_currx] = NULL;
1472 }
1473
1474 dev->last_rx = jiffies;
1475
1476 /* Clear the status flags for this buffer */
1477 bdp->status &= ~RXBD_STATS;
1478
1479 /* Add another skb for the future */
1480 skb = gfar_new_skb(dev, bdp);
1481 priv->rx_skbuff[priv->skb_currx] = skb;
1482
1483 /* Update to the next pointer */
1484 if (bdp->status & RXBD_WRAP)
1485 bdp = priv->rx_bd_base;
1486 else
1487 bdp++;
1488
1489 /* update to point at the next skb */
1490 priv->skb_currx =
1491 (priv->skb_currx +
1492 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1493
1494 }
1495
1496 /* Update the current rxbd pointer to be the next one */
1497 priv->cur_rx = bdp;
1498
1499 return howmany;
1500 }
1501
1502 #ifdef CONFIG_GFAR_NAPI
1503 static int gfar_poll(struct net_device *dev, int *budget)
1504 {
1505 int howmany;
1506 struct gfar_private *priv = netdev_priv(dev);
1507 int rx_work_limit = *budget;
1508
1509 if (rx_work_limit > dev->quota)
1510 rx_work_limit = dev->quota;
1511
1512 howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1513
1514 dev->quota -= howmany;
1515 rx_work_limit -= howmany;
1516 *budget -= howmany;
1517
1518 if (rx_work_limit > 0) {
1519 netif_rx_complete(dev);
1520
1521 /* Clear the halt bit in RSTAT */
1522 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1523
1524 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1525
1526 /* If we are coalescing interrupts, update the timer */
1527 /* Otherwise, clear it */
1528 if (priv->rxcoalescing)
1529 gfar_write(&priv->regs->rxic,
1530 mk_ic_value(priv->rxcount, priv->rxtime));
1531 else
1532 gfar_write(&priv->regs->rxic, 0);
1533 }
1534
1535 /* Return 1 if there's more work to do */
1536 return (rx_work_limit > 0) ? 0 : 1;
1537 }
1538 #endif
1539
1540 /* The interrupt handler for devices with one interrupt */
1541 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1542 {
1543 struct net_device *dev = dev_id;
1544 struct gfar_private *priv = netdev_priv(dev);
1545
1546 /* Save ievent for future reference */
1547 u32 events = gfar_read(&priv->regs->ievent);
1548
1549 /* Clear IEVENT */
1550 gfar_write(&priv->regs->ievent, events);
1551
1552 /* Check for reception */
1553 if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1554 gfar_receive(irq, dev_id, regs);
1555
1556 /* Check for transmit completion */
1557 if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1558 gfar_transmit(irq, dev_id, regs);
1559
1560 /* Update error statistics */
1561 if (events & IEVENT_TXE) {
1562 priv->stats.tx_errors++;
1563
1564 if (events & IEVENT_LC)
1565 priv->stats.tx_window_errors++;
1566 if (events & IEVENT_CRL)
1567 priv->stats.tx_aborted_errors++;
1568 if (events & IEVENT_XFUN) {
1569 if (netif_msg_tx_err(priv))
1570 printk(KERN_WARNING "%s: tx underrun. dropped packet\n", dev->name);
1571 priv->stats.tx_dropped++;
1572 priv->extra_stats.tx_underrun++;
1573
1574 /* Reactivate the Tx Queues */
1575 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1576 }
1577 }
1578 if (events & IEVENT_BSY) {
1579 priv->stats.rx_errors++;
1580 priv->extra_stats.rx_bsy++;
1581
1582 gfar_receive(irq, dev_id, regs);
1583
1584 #ifndef CONFIG_GFAR_NAPI
1585 /* Clear the halt bit in RSTAT */
1586 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1587 #endif
1588
1589 if (netif_msg_rx_err(priv))
1590 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1591 dev->name,
1592 gfar_read(&priv->regs->rstat));
1593 }
1594 if (events & IEVENT_BABR) {
1595 priv->stats.rx_errors++;
1596 priv->extra_stats.rx_babr++;
1597
1598 if (netif_msg_rx_err(priv))
1599 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1600 }
1601 if (events & IEVENT_EBERR) {
1602 priv->extra_stats.eberr++;
1603 if (netif_msg_rx_err(priv))
1604 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1605 }
1606 if ((events & IEVENT_RXC) && (netif_msg_rx_err(priv)))
1607 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1608
1609 if (events & IEVENT_BABT) {
1610 priv->extra_stats.tx_babt++;
1611 if (netif_msg_rx_err(priv))
1612 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1613 }
1614
1615 return IRQ_HANDLED;
1616 }
1617
1618 /* Called every time the controller might need to be made
1619 * aware of new link state. The PHY code conveys this
1620 * information through variables in the phydev structure, and this
1621 * function converts those variables into the appropriate
1622 * register values, and can bring down the device if needed.
1623 */
1624 static void adjust_link(struct net_device *dev)
1625 {
1626 struct gfar_private *priv = netdev_priv(dev);
1627 struct gfar __iomem *regs = priv->regs;
1628 unsigned long flags;
1629 struct phy_device *phydev = priv->phydev;
1630 int new_state = 0;
1631
1632 spin_lock_irqsave(&priv->txlock, flags);
1633 if (phydev->link) {
1634 u32 tempval = gfar_read(&regs->maccfg2);
1635 u32 ecntrl = gfar_read(&regs->ecntrl);
1636
1637 /* Now we make sure that we can be in full duplex mode.
1638 * If not, we operate in half-duplex mode. */
1639 if (phydev->duplex != priv->oldduplex) {
1640 new_state = 1;
1641 if (!(phydev->duplex))
1642 tempval &= ~(MACCFG2_FULL_DUPLEX);
1643 else
1644 tempval |= MACCFG2_FULL_DUPLEX;
1645
1646 priv->oldduplex = phydev->duplex;
1647 }
1648
1649 if (phydev->speed != priv->oldspeed) {
1650 new_state = 1;
1651 switch (phydev->speed) {
1652 case 1000:
1653 tempval =
1654 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1655 break;
1656 case 100:
1657 case 10:
1658 tempval =
1659 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1660
1661 /* Reduced mode distinguishes
1662 * between 10 and 100 */
1663 if (phydev->speed == SPEED_100)
1664 ecntrl |= ECNTRL_R100;
1665 else
1666 ecntrl &= ~(ECNTRL_R100);
1667 break;
1668 default:
1669 if (netif_msg_link(priv))
1670 printk(KERN_WARNING
1671 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1672 dev->name, phydev->speed);
1673 break;
1674 }
1675
1676 priv->oldspeed = phydev->speed;
1677 }
1678
1679 gfar_write(&regs->maccfg2, tempval);
1680 gfar_write(&regs->ecntrl, ecntrl);
1681
1682 if (!priv->oldlink) {
1683 new_state = 1;
1684 priv->oldlink = 1;
1685 netif_schedule(dev);
1686 }
1687 } else if (priv->oldlink) {
1688 new_state = 1;
1689 priv->oldlink = 0;
1690 priv->oldspeed = 0;
1691 priv->oldduplex = -1;
1692 }
1693
1694 if (new_state && netif_msg_link(priv))
1695 phy_print_status(phydev);
1696
1697 spin_unlock_irqrestore(&priv->txlock, flags);
1698 }
1699
1700 /* Update the hash table based on the current list of multicast
1701 * addresses we subscribe to. Also, change the promiscuity of
1702 * the device based on the flags (this function is called
1703 * whenever dev->flags is changed */
1704 static void gfar_set_multi(struct net_device *dev)
1705 {
1706 struct dev_mc_list *mc_ptr;
1707 struct gfar_private *priv = netdev_priv(dev);
1708 struct gfar __iomem *regs = priv->regs;
1709 u32 tempval;
1710
1711 if(dev->flags & IFF_PROMISC) {
1712 if (netif_msg_drv(priv))
1713 printk(KERN_INFO "%s: Entering promiscuous mode.\n",
1714 dev->name);
1715 /* Set RCTRL to PROM */
1716 tempval = gfar_read(&regs->rctrl);
1717 tempval |= RCTRL_PROM;
1718 gfar_write(&regs->rctrl, tempval);
1719 } else {
1720 /* Set RCTRL to not PROM */
1721 tempval = gfar_read(&regs->rctrl);
1722 tempval &= ~(RCTRL_PROM);
1723 gfar_write(&regs->rctrl, tempval);
1724 }
1725
1726 if(dev->flags & IFF_ALLMULTI) {
1727 /* Set the hash to rx all multicast frames */
1728 gfar_write(&regs->igaddr0, 0xffffffff);
1729 gfar_write(&regs->igaddr1, 0xffffffff);
1730 gfar_write(&regs->igaddr2, 0xffffffff);
1731 gfar_write(&regs->igaddr3, 0xffffffff);
1732 gfar_write(&regs->igaddr4, 0xffffffff);
1733 gfar_write(&regs->igaddr5, 0xffffffff);
1734 gfar_write(&regs->igaddr6, 0xffffffff);
1735 gfar_write(&regs->igaddr7, 0xffffffff);
1736 gfar_write(&regs->gaddr0, 0xffffffff);
1737 gfar_write(&regs->gaddr1, 0xffffffff);
1738 gfar_write(&regs->gaddr2, 0xffffffff);
1739 gfar_write(&regs->gaddr3, 0xffffffff);
1740 gfar_write(&regs->gaddr4, 0xffffffff);
1741 gfar_write(&regs->gaddr5, 0xffffffff);
1742 gfar_write(&regs->gaddr6, 0xffffffff);
1743 gfar_write(&regs->gaddr7, 0xffffffff);
1744 } else {
1745 int em_num;
1746 int idx;
1747
1748 /* zero out the hash */
1749 gfar_write(&regs->igaddr0, 0x0);
1750 gfar_write(&regs->igaddr1, 0x0);
1751 gfar_write(&regs->igaddr2, 0x0);
1752 gfar_write(&regs->igaddr3, 0x0);
1753 gfar_write(&regs->igaddr4, 0x0);
1754 gfar_write(&regs->igaddr5, 0x0);
1755 gfar_write(&regs->igaddr6, 0x0);
1756 gfar_write(&regs->igaddr7, 0x0);
1757 gfar_write(&regs->gaddr0, 0x0);
1758 gfar_write(&regs->gaddr1, 0x0);
1759 gfar_write(&regs->gaddr2, 0x0);
1760 gfar_write(&regs->gaddr3, 0x0);
1761 gfar_write(&regs->gaddr4, 0x0);
1762 gfar_write(&regs->gaddr5, 0x0);
1763 gfar_write(&regs->gaddr6, 0x0);
1764 gfar_write(&regs->gaddr7, 0x0);
1765
1766 /* If we have extended hash tables, we need to
1767 * clear the exact match registers to prepare for
1768 * setting them */
1769 if (priv->extended_hash) {
1770 em_num = GFAR_EM_NUM + 1;
1771 gfar_clear_exact_match(dev);
1772 idx = 1;
1773 } else {
1774 idx = 0;
1775 em_num = 0;
1776 }
1777
1778 if(dev->mc_count == 0)
1779 return;
1780
1781 /* Parse the list, and set the appropriate bits */
1782 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1783 if (idx < em_num) {
1784 gfar_set_mac_for_addr(dev, idx,
1785 mc_ptr->dmi_addr);
1786 idx++;
1787 } else
1788 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1789 }
1790 }
1791
1792 return;
1793 }
1794
1795
1796 /* Clears each of the exact match registers to zero, so they
1797 * don't interfere with normal reception */
1798 static void gfar_clear_exact_match(struct net_device *dev)
1799 {
1800 int idx;
1801 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1802
1803 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1804 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1805 }
1806
1807 /* Set the appropriate hash bit for the given addr */
1808 /* The algorithm works like so:
1809 * 1) Take the Destination Address (ie the multicast address), and
1810 * do a CRC on it (little endian), and reverse the bits of the
1811 * result.
1812 * 2) Use the 8 most significant bits as a hash into a 256-entry
1813 * table. The table is controlled through 8 32-bit registers:
1814 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1815 * gaddr7. This means that the 3 most significant bits in the
1816 * hash index which gaddr register to use, and the 5 other bits
1817 * indicate which bit (assuming an IBM numbering scheme, which
1818 * for PowerPC (tm) is usually the case) in the register holds
1819 * the entry. */
1820 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1821 {
1822 u32 tempval;
1823 struct gfar_private *priv = netdev_priv(dev);
1824 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1825 int width = priv->hash_width;
1826 u8 whichbit = (result >> (32 - width)) & 0x1f;
1827 u8 whichreg = result >> (32 - width + 5);
1828 u32 value = (1 << (31-whichbit));
1829
1830 tempval = gfar_read(priv->hash_regs[whichreg]);
1831 tempval |= value;
1832 gfar_write(priv->hash_regs[whichreg], tempval);
1833
1834 return;
1835 }
1836
1837
1838 /* There are multiple MAC Address register pairs on some controllers
1839 * This function sets the numth pair to a given address
1840 */
1841 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1842 {
1843 struct gfar_private *priv = netdev_priv(dev);
1844 int idx;
1845 char tmpbuf[MAC_ADDR_LEN];
1846 u32 tempval;
1847 u32 __iomem *macptr = &priv->regs->macstnaddr1;
1848
1849 macptr += num*2;
1850
1851 /* Now copy it into the mac registers backwards, cuz */
1852 /* little endian is silly */
1853 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1854 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1855
1856 gfar_write(macptr, *((u32 *) (tmpbuf)));
1857
1858 tempval = *((u32 *) (tmpbuf + 4));
1859
1860 gfar_write(macptr+1, tempval);
1861 }
1862
1863 /* GFAR error interrupt handler */
1864 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
1865 {
1866 struct net_device *dev = dev_id;
1867 struct gfar_private *priv = netdev_priv(dev);
1868
1869 /* Save ievent for future reference */
1870 u32 events = gfar_read(&priv->regs->ievent);
1871
1872 /* Clear IEVENT */
1873 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1874
1875 /* Hmm... */
1876 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1877 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1878 dev->name, events, gfar_read(&priv->regs->imask));
1879
1880 /* Update the error counters */
1881 if (events & IEVENT_TXE) {
1882 priv->stats.tx_errors++;
1883
1884 if (events & IEVENT_LC)
1885 priv->stats.tx_window_errors++;
1886 if (events & IEVENT_CRL)
1887 priv->stats.tx_aborted_errors++;
1888 if (events & IEVENT_XFUN) {
1889 if (netif_msg_tx_err(priv))
1890 printk(KERN_DEBUG "%s: underrun. packet dropped.\n",
1891 dev->name);
1892 priv->stats.tx_dropped++;
1893 priv->extra_stats.tx_underrun++;
1894
1895 /* Reactivate the Tx Queues */
1896 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1897 }
1898 if (netif_msg_tx_err(priv))
1899 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1900 }
1901 if (events & IEVENT_BSY) {
1902 priv->stats.rx_errors++;
1903 priv->extra_stats.rx_bsy++;
1904
1905 gfar_receive(irq, dev_id, regs);
1906
1907 #ifndef CONFIG_GFAR_NAPI
1908 /* Clear the halt bit in RSTAT */
1909 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1910 #endif
1911
1912 if (netif_msg_rx_err(priv))
1913 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1914 dev->name,
1915 gfar_read(&priv->regs->rstat));
1916 }
1917 if (events & IEVENT_BABR) {
1918 priv->stats.rx_errors++;
1919 priv->extra_stats.rx_babr++;
1920
1921 if (netif_msg_rx_err(priv))
1922 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1923 }
1924 if (events & IEVENT_EBERR) {
1925 priv->extra_stats.eberr++;
1926 if (netif_msg_rx_err(priv))
1927 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1928 }
1929 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1930 if (netif_msg_rx_status(priv))
1931 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1932
1933 if (events & IEVENT_BABT) {
1934 priv->extra_stats.tx_babt++;
1935 if (netif_msg_tx_err(priv))
1936 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1937 }
1938 return IRQ_HANDLED;
1939 }
1940
1941 /* Structure for a device driver */
1942 static struct platform_driver gfar_driver = {
1943 .probe = gfar_probe,
1944 .remove = gfar_remove,
1945 .driver = {
1946 .name = "fsl-gianfar",
1947 },
1948 };
1949
1950 static int __init gfar_init(void)
1951 {
1952 int err = gfar_mdio_init();
1953
1954 if (err)
1955 return err;
1956
1957 err = platform_driver_register(&gfar_driver);
1958
1959 if (err)
1960 gfar_mdio_exit();
1961
1962 return err;
1963 }
1964
1965 static void __exit gfar_exit(void)
1966 {
1967 platform_driver_unregister(&gfar_driver);
1968 gfar_mdio_exit();
1969 }
1970
1971 module_init(gfar_init);
1972 module_exit(gfar_exit);
1973
This page took 0.072654 seconds and 5 git commands to generate.