64b201134fdb85e5f93248644fecfaf7e91969fc
[deliverable/linux.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 *
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
32 * day be supported.
33 *
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
39 *
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. This method will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
55 * skb.
56 *
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
65 */
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/platform_device.h>
82 #include <linux/ip.h>
83 #include <linux/tcp.h>
84 #include <linux/udp.h>
85 #include <linux/in.h>
86
87 #include <asm/io.h>
88 #include <asm/irq.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
95
96 #include "gianfar.h"
97 #include "gianfar_mii.h"
98
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
102
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
105
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct platform_device *pdev);
123 static int gfar_remove(struct platform_device *pdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
131 #endif
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
135 static void gfar_vlan_rx_register(struct net_device *netdev,
136 struct vlan_group *grp);
137 void gfar_halt(struct net_device *dev);
138 static void gfar_halt_nodisable(struct net_device *dev);
139 void gfar_start(struct net_device *dev);
140 static void gfar_clear_exact_match(struct net_device *dev);
141 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
142
143 extern const struct ethtool_ops gfar_ethtool_ops;
144
145 MODULE_AUTHOR("Freescale Semiconductor, Inc");
146 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
147 MODULE_LICENSE("GPL");
148
149 /* Returns 1 if incoming frames use an FCB */
150 static inline int gfar_uses_fcb(struct gfar_private *priv)
151 {
152 return (priv->vlan_enable || priv->rx_csum_enable);
153 }
154
155 /* Set up the ethernet device structure, private data,
156 * and anything else we need before we start */
157 static int gfar_probe(struct platform_device *pdev)
158 {
159 u32 tempval;
160 struct net_device *dev = NULL;
161 struct gfar_private *priv = NULL;
162 struct gianfar_platform_data *einfo;
163 struct resource *r;
164 int err = 0, irq;
165 DECLARE_MAC_BUF(mac);
166
167 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
168
169 if (NULL == einfo) {
170 printk(KERN_ERR "gfar %d: Missing additional data!\n",
171 pdev->id);
172
173 return -ENODEV;
174 }
175
176 /* Create an ethernet device instance */
177 dev = alloc_etherdev(sizeof (*priv));
178
179 if (NULL == dev)
180 return -ENOMEM;
181
182 priv = netdev_priv(dev);
183 priv->dev = dev;
184
185 /* Set the info in the priv to the current info */
186 priv->einfo = einfo;
187
188 /* fill out IRQ fields */
189 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
190 irq = platform_get_irq_byname(pdev, "tx");
191 if (irq < 0)
192 goto regs_fail;
193 priv->interruptTransmit = irq;
194
195 irq = platform_get_irq_byname(pdev, "rx");
196 if (irq < 0)
197 goto regs_fail;
198 priv->interruptReceive = irq;
199
200 irq = platform_get_irq_byname(pdev, "error");
201 if (irq < 0)
202 goto regs_fail;
203 priv->interruptError = irq;
204 } else {
205 irq = platform_get_irq(pdev, 0);
206 if (irq < 0)
207 goto regs_fail;
208 priv->interruptTransmit = irq;
209 }
210
211 /* get a pointer to the register memory */
212 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
213 priv->regs = ioremap(r->start, sizeof (struct gfar));
214
215 if (NULL == priv->regs) {
216 err = -ENOMEM;
217 goto regs_fail;
218 }
219
220 spin_lock_init(&priv->txlock);
221 spin_lock_init(&priv->rxlock);
222 spin_lock_init(&priv->bflock);
223 INIT_WORK(&priv->reset_task, gfar_reset_task);
224
225 platform_set_drvdata(pdev, dev);
226
227 /* Stop the DMA engine now, in case it was running before */
228 /* (The firmware could have used it, and left it running). */
229 /* To do this, we write Graceful Receive Stop and Graceful */
230 /* Transmit Stop, and then wait until the corresponding bits */
231 /* in IEVENT indicate the stops have completed. */
232 tempval = gfar_read(&priv->regs->dmactrl);
233 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
234 gfar_write(&priv->regs->dmactrl, tempval);
235
236 tempval = gfar_read(&priv->regs->dmactrl);
237 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
238 gfar_write(&priv->regs->dmactrl, tempval);
239
240 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
241 cpu_relax();
242
243 /* Reset MAC layer */
244 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
245
246 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
247 gfar_write(&priv->regs->maccfg1, tempval);
248
249 /* Initialize MACCFG2. */
250 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
251
252 /* Initialize ECNTRL */
253 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
254
255 /* Copy the station address into the dev structure, */
256 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
257
258 /* Set the dev->base_addr to the gfar reg region */
259 dev->base_addr = (unsigned long) (priv->regs);
260
261 SET_NETDEV_DEV(dev, &pdev->dev);
262
263 /* Fill in the dev structure */
264 dev->open = gfar_enet_open;
265 dev->hard_start_xmit = gfar_start_xmit;
266 dev->tx_timeout = gfar_timeout;
267 dev->watchdog_timeo = TX_TIMEOUT;
268 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
269 #ifdef CONFIG_NET_POLL_CONTROLLER
270 dev->poll_controller = gfar_netpoll;
271 #endif
272 dev->stop = gfar_close;
273 dev->change_mtu = gfar_change_mtu;
274 dev->mtu = 1500;
275 dev->set_multicast_list = gfar_set_multi;
276
277 dev->ethtool_ops = &gfar_ethtool_ops;
278
279 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
280 priv->rx_csum_enable = 1;
281 dev->features |= NETIF_F_IP_CSUM;
282 } else
283 priv->rx_csum_enable = 0;
284
285 priv->vlgrp = NULL;
286
287 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
288 dev->vlan_rx_register = gfar_vlan_rx_register;
289
290 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
291
292 priv->vlan_enable = 1;
293 }
294
295 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
296 priv->extended_hash = 1;
297 priv->hash_width = 9;
298
299 priv->hash_regs[0] = &priv->regs->igaddr0;
300 priv->hash_regs[1] = &priv->regs->igaddr1;
301 priv->hash_regs[2] = &priv->regs->igaddr2;
302 priv->hash_regs[3] = &priv->regs->igaddr3;
303 priv->hash_regs[4] = &priv->regs->igaddr4;
304 priv->hash_regs[5] = &priv->regs->igaddr5;
305 priv->hash_regs[6] = &priv->regs->igaddr6;
306 priv->hash_regs[7] = &priv->regs->igaddr7;
307 priv->hash_regs[8] = &priv->regs->gaddr0;
308 priv->hash_regs[9] = &priv->regs->gaddr1;
309 priv->hash_regs[10] = &priv->regs->gaddr2;
310 priv->hash_regs[11] = &priv->regs->gaddr3;
311 priv->hash_regs[12] = &priv->regs->gaddr4;
312 priv->hash_regs[13] = &priv->regs->gaddr5;
313 priv->hash_regs[14] = &priv->regs->gaddr6;
314 priv->hash_regs[15] = &priv->regs->gaddr7;
315
316 } else {
317 priv->extended_hash = 0;
318 priv->hash_width = 8;
319
320 priv->hash_regs[0] = &priv->regs->gaddr0;
321 priv->hash_regs[1] = &priv->regs->gaddr1;
322 priv->hash_regs[2] = &priv->regs->gaddr2;
323 priv->hash_regs[3] = &priv->regs->gaddr3;
324 priv->hash_regs[4] = &priv->regs->gaddr4;
325 priv->hash_regs[5] = &priv->regs->gaddr5;
326 priv->hash_regs[6] = &priv->regs->gaddr6;
327 priv->hash_regs[7] = &priv->regs->gaddr7;
328 }
329
330 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
331 priv->padding = DEFAULT_PADDING;
332 else
333 priv->padding = 0;
334
335 if (dev->features & NETIF_F_IP_CSUM)
336 dev->hard_header_len += GMAC_FCB_LEN;
337
338 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
339 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
340 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
341
342 priv->txcoalescing = DEFAULT_TX_COALESCE;
343 priv->txcount = DEFAULT_TXCOUNT;
344 priv->txtime = DEFAULT_TXTIME;
345 priv->rxcoalescing = DEFAULT_RX_COALESCE;
346 priv->rxcount = DEFAULT_RXCOUNT;
347 priv->rxtime = DEFAULT_RXTIME;
348
349 /* Enable most messages by default */
350 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
351
352 /* Carrier starts down, phylib will bring it up */
353 netif_carrier_off(dev);
354
355 err = register_netdev(dev);
356
357 if (err) {
358 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
359 dev->name);
360 goto register_fail;
361 }
362
363 /* Create all the sysfs files */
364 gfar_init_sysfs(dev);
365
366 /* Print out the device info */
367 printk(KERN_INFO DEVICE_NAME "%s\n",
368 dev->name, print_mac(mac, dev->dev_addr));
369
370 /* Even more device info helps when determining which kernel */
371 /* provided which set of benchmarks. */
372 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
373 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
374 dev->name, priv->rx_ring_size, priv->tx_ring_size);
375
376 return 0;
377
378 register_fail:
379 iounmap(priv->regs);
380 regs_fail:
381 free_netdev(dev);
382 return err;
383 }
384
385 static int gfar_remove(struct platform_device *pdev)
386 {
387 struct net_device *dev = platform_get_drvdata(pdev);
388 struct gfar_private *priv = netdev_priv(dev);
389
390 platform_set_drvdata(pdev, NULL);
391
392 iounmap(priv->regs);
393 free_netdev(dev);
394
395 return 0;
396 }
397
398 #ifdef CONFIG_PM
399 static int gfar_suspend(struct platform_device *pdev, pm_message_t state)
400 {
401 struct net_device *dev = platform_get_drvdata(pdev);
402 struct gfar_private *priv = netdev_priv(dev);
403 unsigned long flags;
404 u32 tempval;
405
406 int magic_packet = priv->wol_en &&
407 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
408
409 netif_device_detach(dev);
410
411 if (netif_running(dev)) {
412 spin_lock_irqsave(&priv->txlock, flags);
413 spin_lock(&priv->rxlock);
414
415 gfar_halt_nodisable(dev);
416
417 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
418 tempval = gfar_read(&priv->regs->maccfg1);
419
420 tempval &= ~MACCFG1_TX_EN;
421
422 if (!magic_packet)
423 tempval &= ~MACCFG1_RX_EN;
424
425 gfar_write(&priv->regs->maccfg1, tempval);
426
427 spin_unlock(&priv->rxlock);
428 spin_unlock_irqrestore(&priv->txlock, flags);
429
430 napi_disable(&priv->napi);
431
432 if (magic_packet) {
433 /* Enable interrupt on Magic Packet */
434 gfar_write(&priv->regs->imask, IMASK_MAG);
435
436 /* Enable Magic Packet mode */
437 tempval = gfar_read(&priv->regs->maccfg2);
438 tempval |= MACCFG2_MPEN;
439 gfar_write(&priv->regs->maccfg2, tempval);
440 } else {
441 phy_stop(priv->phydev);
442 }
443 }
444
445 return 0;
446 }
447
448 static int gfar_resume(struct platform_device *pdev)
449 {
450 struct net_device *dev = platform_get_drvdata(pdev);
451 struct gfar_private *priv = netdev_priv(dev);
452 unsigned long flags;
453 u32 tempval;
454 int magic_packet = priv->wol_en &&
455 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
456
457 if (!netif_running(dev)) {
458 netif_device_attach(dev);
459 return 0;
460 }
461
462 if (!magic_packet && priv->phydev)
463 phy_start(priv->phydev);
464
465 /* Disable Magic Packet mode, in case something
466 * else woke us up.
467 */
468
469 spin_lock_irqsave(&priv->txlock, flags);
470 spin_lock(&priv->rxlock);
471
472 tempval = gfar_read(&priv->regs->maccfg2);
473 tempval &= ~MACCFG2_MPEN;
474 gfar_write(&priv->regs->maccfg2, tempval);
475
476 gfar_start(dev);
477
478 spin_unlock(&priv->rxlock);
479 spin_unlock_irqrestore(&priv->txlock, flags);
480
481 netif_device_attach(dev);
482
483 napi_enable(&priv->napi);
484
485 return 0;
486 }
487 #else
488 #define gfar_suspend NULL
489 #define gfar_resume NULL
490 #endif
491
492 /* Reads the controller's registers to determine what interface
493 * connects it to the PHY.
494 */
495 static phy_interface_t gfar_get_interface(struct net_device *dev)
496 {
497 struct gfar_private *priv = netdev_priv(dev);
498 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
499
500 if (ecntrl & ECNTRL_SGMII_MODE)
501 return PHY_INTERFACE_MODE_SGMII;
502
503 if (ecntrl & ECNTRL_TBI_MODE) {
504 if (ecntrl & ECNTRL_REDUCED_MODE)
505 return PHY_INTERFACE_MODE_RTBI;
506 else
507 return PHY_INTERFACE_MODE_TBI;
508 }
509
510 if (ecntrl & ECNTRL_REDUCED_MODE) {
511 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
512 return PHY_INTERFACE_MODE_RMII;
513 else {
514 phy_interface_t interface = priv->einfo->interface;
515
516 /*
517 * This isn't autodetected right now, so it must
518 * be set by the device tree or platform code.
519 */
520 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
521 return PHY_INTERFACE_MODE_RGMII_ID;
522
523 return PHY_INTERFACE_MODE_RGMII;
524 }
525 }
526
527 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
528 return PHY_INTERFACE_MODE_GMII;
529
530 return PHY_INTERFACE_MODE_MII;
531 }
532
533
534 /* Initializes driver's PHY state, and attaches to the PHY.
535 * Returns 0 on success.
536 */
537 static int init_phy(struct net_device *dev)
538 {
539 struct gfar_private *priv = netdev_priv(dev);
540 uint gigabit_support =
541 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
542 SUPPORTED_1000baseT_Full : 0;
543 struct phy_device *phydev;
544 char phy_id[BUS_ID_SIZE];
545 phy_interface_t interface;
546
547 priv->oldlink = 0;
548 priv->oldspeed = 0;
549 priv->oldduplex = -1;
550
551 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
552
553 interface = gfar_get_interface(dev);
554
555 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
556
557 if (interface == PHY_INTERFACE_MODE_SGMII)
558 gfar_configure_serdes(dev);
559
560 if (IS_ERR(phydev)) {
561 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
562 return PTR_ERR(phydev);
563 }
564
565 /* Remove any features not supported by the controller */
566 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
567 phydev->advertising = phydev->supported;
568
569 priv->phydev = phydev;
570
571 return 0;
572 }
573
574 /*
575 * Initialize TBI PHY interface for communicating with the
576 * SERDES lynx PHY on the chip. We communicate with this PHY
577 * through the MDIO bus on each controller, treating it as a
578 * "normal" PHY at the address found in the TBIPA register. We assume
579 * that the TBIPA register is valid. Either the MDIO bus code will set
580 * it to a value that doesn't conflict with other PHYs on the bus, or the
581 * value doesn't matter, as there are no other PHYs on the bus.
582 */
583 static void gfar_configure_serdes(struct net_device *dev)
584 {
585 struct gfar_private *priv = netdev_priv(dev);
586 struct gfar_mii __iomem *regs =
587 (void __iomem *)&priv->regs->gfar_mii_regs;
588 int tbipa = gfar_read(&priv->regs->tbipa);
589
590 /* Single clk mode, mii mode off(for serdes communication) */
591 gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT);
592
593 gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE,
594 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
595 ADVERTISE_1000XPSE_ASYM);
596
597 gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE |
598 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
599 }
600
601 static void init_registers(struct net_device *dev)
602 {
603 struct gfar_private *priv = netdev_priv(dev);
604
605 /* Clear IEVENT */
606 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
607
608 /* Initialize IMASK */
609 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
610
611 /* Init hash registers to zero */
612 gfar_write(&priv->regs->igaddr0, 0);
613 gfar_write(&priv->regs->igaddr1, 0);
614 gfar_write(&priv->regs->igaddr2, 0);
615 gfar_write(&priv->regs->igaddr3, 0);
616 gfar_write(&priv->regs->igaddr4, 0);
617 gfar_write(&priv->regs->igaddr5, 0);
618 gfar_write(&priv->regs->igaddr6, 0);
619 gfar_write(&priv->regs->igaddr7, 0);
620
621 gfar_write(&priv->regs->gaddr0, 0);
622 gfar_write(&priv->regs->gaddr1, 0);
623 gfar_write(&priv->regs->gaddr2, 0);
624 gfar_write(&priv->regs->gaddr3, 0);
625 gfar_write(&priv->regs->gaddr4, 0);
626 gfar_write(&priv->regs->gaddr5, 0);
627 gfar_write(&priv->regs->gaddr6, 0);
628 gfar_write(&priv->regs->gaddr7, 0);
629
630 /* Zero out the rmon mib registers if it has them */
631 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
632 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
633
634 /* Mask off the CAM interrupts */
635 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
636 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
637 }
638
639 /* Initialize the max receive buffer length */
640 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
641
642 /* Initialize the Minimum Frame Length Register */
643 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
644 }
645
646
647 /* Halt the receive and transmit queues */
648 static void gfar_halt_nodisable(struct net_device *dev)
649 {
650 struct gfar_private *priv = netdev_priv(dev);
651 struct gfar __iomem *regs = priv->regs;
652 u32 tempval;
653
654 /* Mask all interrupts */
655 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
656
657 /* Clear all interrupts */
658 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
659
660 /* Stop the DMA, and wait for it to stop */
661 tempval = gfar_read(&priv->regs->dmactrl);
662 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
663 != (DMACTRL_GRS | DMACTRL_GTS)) {
664 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
665 gfar_write(&priv->regs->dmactrl, tempval);
666
667 while (!(gfar_read(&priv->regs->ievent) &
668 (IEVENT_GRSC | IEVENT_GTSC)))
669 cpu_relax();
670 }
671 }
672
673 /* Halt the receive and transmit queues */
674 void gfar_halt(struct net_device *dev)
675 {
676 struct gfar_private *priv = netdev_priv(dev);
677 struct gfar __iomem *regs = priv->regs;
678 u32 tempval;
679
680 gfar_halt_nodisable(dev);
681
682 /* Disable Rx and Tx */
683 tempval = gfar_read(&regs->maccfg1);
684 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
685 gfar_write(&regs->maccfg1, tempval);
686 }
687
688 void stop_gfar(struct net_device *dev)
689 {
690 struct gfar_private *priv = netdev_priv(dev);
691 struct gfar __iomem *regs = priv->regs;
692 unsigned long flags;
693
694 phy_stop(priv->phydev);
695
696 /* Lock it down */
697 spin_lock_irqsave(&priv->txlock, flags);
698 spin_lock(&priv->rxlock);
699
700 gfar_halt(dev);
701
702 spin_unlock(&priv->rxlock);
703 spin_unlock_irqrestore(&priv->txlock, flags);
704
705 /* Free the IRQs */
706 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
707 free_irq(priv->interruptError, dev);
708 free_irq(priv->interruptTransmit, dev);
709 free_irq(priv->interruptReceive, dev);
710 } else {
711 free_irq(priv->interruptTransmit, dev);
712 }
713
714 free_skb_resources(priv);
715
716 dma_free_coherent(&dev->dev,
717 sizeof(struct txbd8)*priv->tx_ring_size
718 + sizeof(struct rxbd8)*priv->rx_ring_size,
719 priv->tx_bd_base,
720 gfar_read(&regs->tbase0));
721 }
722
723 /* If there are any tx skbs or rx skbs still around, free them.
724 * Then free tx_skbuff and rx_skbuff */
725 static void free_skb_resources(struct gfar_private *priv)
726 {
727 struct rxbd8 *rxbdp;
728 struct txbd8 *txbdp;
729 int i;
730
731 /* Go through all the buffer descriptors and free their data buffers */
732 txbdp = priv->tx_bd_base;
733
734 for (i = 0; i < priv->tx_ring_size; i++) {
735
736 if (priv->tx_skbuff[i]) {
737 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
738 txbdp->length,
739 DMA_TO_DEVICE);
740 dev_kfree_skb_any(priv->tx_skbuff[i]);
741 priv->tx_skbuff[i] = NULL;
742 }
743
744 txbdp++;
745 }
746
747 kfree(priv->tx_skbuff);
748
749 rxbdp = priv->rx_bd_base;
750
751 /* rx_skbuff is not guaranteed to be allocated, so only
752 * free it and its contents if it is allocated */
753 if(priv->rx_skbuff != NULL) {
754 for (i = 0; i < priv->rx_ring_size; i++) {
755 if (priv->rx_skbuff[i]) {
756 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
757 priv->rx_buffer_size,
758 DMA_FROM_DEVICE);
759
760 dev_kfree_skb_any(priv->rx_skbuff[i]);
761 priv->rx_skbuff[i] = NULL;
762 }
763
764 rxbdp->status = 0;
765 rxbdp->length = 0;
766 rxbdp->bufPtr = 0;
767
768 rxbdp++;
769 }
770
771 kfree(priv->rx_skbuff);
772 }
773 }
774
775 void gfar_start(struct net_device *dev)
776 {
777 struct gfar_private *priv = netdev_priv(dev);
778 struct gfar __iomem *regs = priv->regs;
779 u32 tempval;
780
781 /* Enable Rx and Tx in MACCFG1 */
782 tempval = gfar_read(&regs->maccfg1);
783 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
784 gfar_write(&regs->maccfg1, tempval);
785
786 /* Initialize DMACTRL to have WWR and WOP */
787 tempval = gfar_read(&priv->regs->dmactrl);
788 tempval |= DMACTRL_INIT_SETTINGS;
789 gfar_write(&priv->regs->dmactrl, tempval);
790
791 /* Make sure we aren't stopped */
792 tempval = gfar_read(&priv->regs->dmactrl);
793 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
794 gfar_write(&priv->regs->dmactrl, tempval);
795
796 /* Clear THLT/RHLT, so that the DMA starts polling now */
797 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
798 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
799
800 /* Unmask the interrupts we look for */
801 gfar_write(&regs->imask, IMASK_DEFAULT);
802 }
803
804 /* Bring the controller up and running */
805 int startup_gfar(struct net_device *dev)
806 {
807 struct txbd8 *txbdp;
808 struct rxbd8 *rxbdp;
809 dma_addr_t addr = 0;
810 unsigned long vaddr;
811 int i;
812 struct gfar_private *priv = netdev_priv(dev);
813 struct gfar __iomem *regs = priv->regs;
814 int err = 0;
815 u32 rctrl = 0;
816 u32 attrs = 0;
817
818 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
819
820 /* Allocate memory for the buffer descriptors */
821 vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
822 sizeof (struct txbd8) * priv->tx_ring_size +
823 sizeof (struct rxbd8) * priv->rx_ring_size,
824 &addr, GFP_KERNEL);
825
826 if (vaddr == 0) {
827 if (netif_msg_ifup(priv))
828 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
829 dev->name);
830 return -ENOMEM;
831 }
832
833 priv->tx_bd_base = (struct txbd8 *) vaddr;
834
835 /* enet DMA only understands physical addresses */
836 gfar_write(&regs->tbase0, addr);
837
838 /* Start the rx descriptor ring where the tx ring leaves off */
839 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
840 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
841 priv->rx_bd_base = (struct rxbd8 *) vaddr;
842 gfar_write(&regs->rbase0, addr);
843
844 /* Setup the skbuff rings */
845 priv->tx_skbuff =
846 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
847 priv->tx_ring_size, GFP_KERNEL);
848
849 if (NULL == priv->tx_skbuff) {
850 if (netif_msg_ifup(priv))
851 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
852 dev->name);
853 err = -ENOMEM;
854 goto tx_skb_fail;
855 }
856
857 for (i = 0; i < priv->tx_ring_size; i++)
858 priv->tx_skbuff[i] = NULL;
859
860 priv->rx_skbuff =
861 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
862 priv->rx_ring_size, GFP_KERNEL);
863
864 if (NULL == priv->rx_skbuff) {
865 if (netif_msg_ifup(priv))
866 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
867 dev->name);
868 err = -ENOMEM;
869 goto rx_skb_fail;
870 }
871
872 for (i = 0; i < priv->rx_ring_size; i++)
873 priv->rx_skbuff[i] = NULL;
874
875 /* Initialize some variables in our dev structure */
876 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
877 priv->cur_rx = priv->rx_bd_base;
878 priv->skb_curtx = priv->skb_dirtytx = 0;
879 priv->skb_currx = 0;
880
881 /* Initialize Transmit Descriptor Ring */
882 txbdp = priv->tx_bd_base;
883 for (i = 0; i < priv->tx_ring_size; i++) {
884 txbdp->status = 0;
885 txbdp->length = 0;
886 txbdp->bufPtr = 0;
887 txbdp++;
888 }
889
890 /* Set the last descriptor in the ring to indicate wrap */
891 txbdp--;
892 txbdp->status |= TXBD_WRAP;
893
894 rxbdp = priv->rx_bd_base;
895 for (i = 0; i < priv->rx_ring_size; i++) {
896 struct sk_buff *skb;
897
898 skb = gfar_new_skb(dev);
899
900 if (!skb) {
901 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
902 dev->name);
903
904 goto err_rxalloc_fail;
905 }
906
907 priv->rx_skbuff[i] = skb;
908
909 gfar_new_rxbdp(dev, rxbdp, skb);
910
911 rxbdp++;
912 }
913
914 /* Set the last descriptor in the ring to wrap */
915 rxbdp--;
916 rxbdp->status |= RXBD_WRAP;
917
918 /* If the device has multiple interrupts, register for
919 * them. Otherwise, only register for the one */
920 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
921 /* Install our interrupt handlers for Error,
922 * Transmit, and Receive */
923 if (request_irq(priv->interruptError, gfar_error,
924 0, "enet_error", dev) < 0) {
925 if (netif_msg_intr(priv))
926 printk(KERN_ERR "%s: Can't get IRQ %d\n",
927 dev->name, priv->interruptError);
928
929 err = -1;
930 goto err_irq_fail;
931 }
932
933 if (request_irq(priv->interruptTransmit, gfar_transmit,
934 0, "enet_tx", dev) < 0) {
935 if (netif_msg_intr(priv))
936 printk(KERN_ERR "%s: Can't get IRQ %d\n",
937 dev->name, priv->interruptTransmit);
938
939 err = -1;
940
941 goto tx_irq_fail;
942 }
943
944 if (request_irq(priv->interruptReceive, gfar_receive,
945 0, "enet_rx", dev) < 0) {
946 if (netif_msg_intr(priv))
947 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
948 dev->name, priv->interruptReceive);
949
950 err = -1;
951 goto rx_irq_fail;
952 }
953 } else {
954 if (request_irq(priv->interruptTransmit, gfar_interrupt,
955 0, "gfar_interrupt", dev) < 0) {
956 if (netif_msg_intr(priv))
957 printk(KERN_ERR "%s: Can't get IRQ %d\n",
958 dev->name, priv->interruptError);
959
960 err = -1;
961 goto err_irq_fail;
962 }
963 }
964
965 phy_start(priv->phydev);
966
967 /* Configure the coalescing support */
968 if (priv->txcoalescing)
969 gfar_write(&regs->txic,
970 mk_ic_value(priv->txcount, priv->txtime));
971 else
972 gfar_write(&regs->txic, 0);
973
974 if (priv->rxcoalescing)
975 gfar_write(&regs->rxic,
976 mk_ic_value(priv->rxcount, priv->rxtime));
977 else
978 gfar_write(&regs->rxic, 0);
979
980 if (priv->rx_csum_enable)
981 rctrl |= RCTRL_CHECKSUMMING;
982
983 if (priv->extended_hash) {
984 rctrl |= RCTRL_EXTHASH;
985
986 gfar_clear_exact_match(dev);
987 rctrl |= RCTRL_EMEN;
988 }
989
990 if (priv->vlan_enable)
991 rctrl |= RCTRL_VLAN;
992
993 if (priv->padding) {
994 rctrl &= ~RCTRL_PAL_MASK;
995 rctrl |= RCTRL_PADDING(priv->padding);
996 }
997
998 /* Init rctrl based on our settings */
999 gfar_write(&priv->regs->rctrl, rctrl);
1000
1001 if (dev->features & NETIF_F_IP_CSUM)
1002 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1003
1004 /* Set the extraction length and index */
1005 attrs = ATTRELI_EL(priv->rx_stash_size) |
1006 ATTRELI_EI(priv->rx_stash_index);
1007
1008 gfar_write(&priv->regs->attreli, attrs);
1009
1010 /* Start with defaults, and add stashing or locking
1011 * depending on the approprate variables */
1012 attrs = ATTR_INIT_SETTINGS;
1013
1014 if (priv->bd_stash_en)
1015 attrs |= ATTR_BDSTASH;
1016
1017 if (priv->rx_stash_size != 0)
1018 attrs |= ATTR_BUFSTASH;
1019
1020 gfar_write(&priv->regs->attr, attrs);
1021
1022 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1023 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1024 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1025
1026 /* Start the controller */
1027 gfar_start(dev);
1028
1029 return 0;
1030
1031 rx_irq_fail:
1032 free_irq(priv->interruptTransmit, dev);
1033 tx_irq_fail:
1034 free_irq(priv->interruptError, dev);
1035 err_irq_fail:
1036 err_rxalloc_fail:
1037 rx_skb_fail:
1038 free_skb_resources(priv);
1039 tx_skb_fail:
1040 dma_free_coherent(&dev->dev,
1041 sizeof(struct txbd8)*priv->tx_ring_size
1042 + sizeof(struct rxbd8)*priv->rx_ring_size,
1043 priv->tx_bd_base,
1044 gfar_read(&regs->tbase0));
1045
1046 return err;
1047 }
1048
1049 /* Called when something needs to use the ethernet device */
1050 /* Returns 0 for success. */
1051 static int gfar_enet_open(struct net_device *dev)
1052 {
1053 struct gfar_private *priv = netdev_priv(dev);
1054 int err;
1055
1056 napi_enable(&priv->napi);
1057
1058 /* Initialize a bunch of registers */
1059 init_registers(dev);
1060
1061 gfar_set_mac_address(dev);
1062
1063 err = init_phy(dev);
1064
1065 if(err) {
1066 napi_disable(&priv->napi);
1067 return err;
1068 }
1069
1070 err = startup_gfar(dev);
1071 if (err) {
1072 napi_disable(&priv->napi);
1073 return err;
1074 }
1075
1076 netif_start_queue(dev);
1077
1078 return err;
1079 }
1080
1081 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
1082 {
1083 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1084
1085 memset(fcb, 0, GMAC_FCB_LEN);
1086
1087 return fcb;
1088 }
1089
1090 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1091 {
1092 u8 flags = 0;
1093
1094 /* If we're here, it's a IP packet with a TCP or UDP
1095 * payload. We set it to checksum, using a pseudo-header
1096 * we provide
1097 */
1098 flags = TXFCB_DEFAULT;
1099
1100 /* Tell the controller what the protocol is */
1101 /* And provide the already calculated phcs */
1102 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1103 flags |= TXFCB_UDP;
1104 fcb->phcs = udp_hdr(skb)->check;
1105 } else
1106 fcb->phcs = tcp_hdr(skb)->check;
1107
1108 /* l3os is the distance between the start of the
1109 * frame (skb->data) and the start of the IP hdr.
1110 * l4os is the distance between the start of the
1111 * l3 hdr and the l4 hdr */
1112 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1113 fcb->l4os = skb_network_header_len(skb);
1114
1115 fcb->flags = flags;
1116 }
1117
1118 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1119 {
1120 fcb->flags |= TXFCB_VLN;
1121 fcb->vlctl = vlan_tx_tag_get(skb);
1122 }
1123
1124 /* This is called by the kernel when a frame is ready for transmission. */
1125 /* It is pointed to by the dev->hard_start_xmit function pointer */
1126 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1127 {
1128 struct gfar_private *priv = netdev_priv(dev);
1129 struct txfcb *fcb = NULL;
1130 struct txbd8 *txbdp;
1131 u16 status;
1132 unsigned long flags;
1133
1134 /* Update transmit stats */
1135 dev->stats.tx_bytes += skb->len;
1136
1137 /* Lock priv now */
1138 spin_lock_irqsave(&priv->txlock, flags);
1139
1140 /* Point at the first free tx descriptor */
1141 txbdp = priv->cur_tx;
1142
1143 /* Clear all but the WRAP status flags */
1144 status = txbdp->status & TXBD_WRAP;
1145
1146 /* Set up checksumming */
1147 if (likely((dev->features & NETIF_F_IP_CSUM)
1148 && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1149 fcb = gfar_add_fcb(skb, txbdp);
1150 status |= TXBD_TOE;
1151 gfar_tx_checksum(skb, fcb);
1152 }
1153
1154 if (priv->vlan_enable &&
1155 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1156 if (unlikely(NULL == fcb)) {
1157 fcb = gfar_add_fcb(skb, txbdp);
1158 status |= TXBD_TOE;
1159 }
1160
1161 gfar_tx_vlan(skb, fcb);
1162 }
1163
1164 /* Set buffer length and pointer */
1165 txbdp->length = skb->len;
1166 txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1167 skb->len, DMA_TO_DEVICE);
1168
1169 /* Save the skb pointer so we can free it later */
1170 priv->tx_skbuff[priv->skb_curtx] = skb;
1171
1172 /* Update the current skb pointer (wrapping if this was the last) */
1173 priv->skb_curtx =
1174 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1175
1176 /* Flag the BD as interrupt-causing */
1177 status |= TXBD_INTERRUPT;
1178
1179 /* Flag the BD as ready to go, last in frame, and */
1180 /* in need of CRC */
1181 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1182
1183 dev->trans_start = jiffies;
1184
1185 /* The powerpc-specific eieio() is used, as wmb() has too strong
1186 * semantics (it requires synchronization between cacheable and
1187 * uncacheable mappings, which eieio doesn't provide and which we
1188 * don't need), thus requiring a more expensive sync instruction. At
1189 * some point, the set of architecture-independent barrier functions
1190 * should be expanded to include weaker barriers.
1191 */
1192
1193 eieio();
1194 txbdp->status = status;
1195
1196 /* If this was the last BD in the ring, the next one */
1197 /* is at the beginning of the ring */
1198 if (txbdp->status & TXBD_WRAP)
1199 txbdp = priv->tx_bd_base;
1200 else
1201 txbdp++;
1202
1203 /* If the next BD still needs to be cleaned up, then the bds
1204 are full. We need to tell the kernel to stop sending us stuff. */
1205 if (txbdp == priv->dirty_tx) {
1206 netif_stop_queue(dev);
1207
1208 dev->stats.tx_fifo_errors++;
1209 }
1210
1211 /* Update the current txbd to the next one */
1212 priv->cur_tx = txbdp;
1213
1214 /* Tell the DMA to go go go */
1215 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1216
1217 /* Unlock priv */
1218 spin_unlock_irqrestore(&priv->txlock, flags);
1219
1220 return 0;
1221 }
1222
1223 /* Stops the kernel queue, and halts the controller */
1224 static int gfar_close(struct net_device *dev)
1225 {
1226 struct gfar_private *priv = netdev_priv(dev);
1227
1228 napi_disable(&priv->napi);
1229
1230 cancel_work_sync(&priv->reset_task);
1231 stop_gfar(dev);
1232
1233 /* Disconnect from the PHY */
1234 phy_disconnect(priv->phydev);
1235 priv->phydev = NULL;
1236
1237 netif_stop_queue(dev);
1238
1239 return 0;
1240 }
1241
1242 /* Changes the mac address if the controller is not running. */
1243 static int gfar_set_mac_address(struct net_device *dev)
1244 {
1245 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1246
1247 return 0;
1248 }
1249
1250
1251 /* Enables and disables VLAN insertion/extraction */
1252 static void gfar_vlan_rx_register(struct net_device *dev,
1253 struct vlan_group *grp)
1254 {
1255 struct gfar_private *priv = netdev_priv(dev);
1256 unsigned long flags;
1257 u32 tempval;
1258
1259 spin_lock_irqsave(&priv->rxlock, flags);
1260
1261 priv->vlgrp = grp;
1262
1263 if (grp) {
1264 /* Enable VLAN tag insertion */
1265 tempval = gfar_read(&priv->regs->tctrl);
1266 tempval |= TCTRL_VLINS;
1267
1268 gfar_write(&priv->regs->tctrl, tempval);
1269
1270 /* Enable VLAN tag extraction */
1271 tempval = gfar_read(&priv->regs->rctrl);
1272 tempval |= RCTRL_VLEX;
1273 gfar_write(&priv->regs->rctrl, tempval);
1274 } else {
1275 /* Disable VLAN tag insertion */
1276 tempval = gfar_read(&priv->regs->tctrl);
1277 tempval &= ~TCTRL_VLINS;
1278 gfar_write(&priv->regs->tctrl, tempval);
1279
1280 /* Disable VLAN tag extraction */
1281 tempval = gfar_read(&priv->regs->rctrl);
1282 tempval &= ~RCTRL_VLEX;
1283 gfar_write(&priv->regs->rctrl, tempval);
1284 }
1285
1286 spin_unlock_irqrestore(&priv->rxlock, flags);
1287 }
1288
1289 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1290 {
1291 int tempsize, tempval;
1292 struct gfar_private *priv = netdev_priv(dev);
1293 int oldsize = priv->rx_buffer_size;
1294 int frame_size = new_mtu + ETH_HLEN;
1295
1296 if (priv->vlan_enable)
1297 frame_size += VLAN_HLEN;
1298
1299 if (gfar_uses_fcb(priv))
1300 frame_size += GMAC_FCB_LEN;
1301
1302 frame_size += priv->padding;
1303
1304 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1305 if (netif_msg_drv(priv))
1306 printk(KERN_ERR "%s: Invalid MTU setting\n",
1307 dev->name);
1308 return -EINVAL;
1309 }
1310
1311 tempsize =
1312 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1313 INCREMENTAL_BUFFER_SIZE;
1314
1315 /* Only stop and start the controller if it isn't already
1316 * stopped, and we changed something */
1317 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1318 stop_gfar(dev);
1319
1320 priv->rx_buffer_size = tempsize;
1321
1322 dev->mtu = new_mtu;
1323
1324 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1325 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1326
1327 /* If the mtu is larger than the max size for standard
1328 * ethernet frames (ie, a jumbo frame), then set maccfg2
1329 * to allow huge frames, and to check the length */
1330 tempval = gfar_read(&priv->regs->maccfg2);
1331
1332 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1333 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1334 else
1335 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1336
1337 gfar_write(&priv->regs->maccfg2, tempval);
1338
1339 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1340 startup_gfar(dev);
1341
1342 return 0;
1343 }
1344
1345 /* gfar_reset_task gets scheduled when a packet has not been
1346 * transmitted after a set amount of time.
1347 * For now, assume that clearing out all the structures, and
1348 * starting over will fix the problem.
1349 */
1350 static void gfar_reset_task(struct work_struct *work)
1351 {
1352 struct gfar_private *priv = container_of(work, struct gfar_private,
1353 reset_task);
1354 struct net_device *dev = priv->dev;
1355
1356 if (dev->flags & IFF_UP) {
1357 stop_gfar(dev);
1358 startup_gfar(dev);
1359 }
1360
1361 netif_tx_schedule_all(dev);
1362 }
1363
1364 static void gfar_timeout(struct net_device *dev)
1365 {
1366 struct gfar_private *priv = netdev_priv(dev);
1367
1368 dev->stats.tx_errors++;
1369 schedule_work(&priv->reset_task);
1370 }
1371
1372 /* Interrupt Handler for Transmit complete */
1373 static int gfar_clean_tx_ring(struct net_device *dev)
1374 {
1375 struct txbd8 *bdp;
1376 struct gfar_private *priv = netdev_priv(dev);
1377 int howmany = 0;
1378
1379 bdp = priv->dirty_tx;
1380 while ((bdp->status & TXBD_READY) == 0) {
1381 /* If dirty_tx and cur_tx are the same, then either the */
1382 /* ring is empty or full now (it could only be full in the beginning, */
1383 /* obviously). If it is empty, we are done. */
1384 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1385 break;
1386
1387 howmany++;
1388
1389 /* Deferred means some collisions occurred during transmit, */
1390 /* but we eventually sent the packet. */
1391 if (bdp->status & TXBD_DEF)
1392 dev->stats.collisions++;
1393
1394 /* Free the sk buffer associated with this TxBD */
1395 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1396
1397 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1398 priv->skb_dirtytx =
1399 (priv->skb_dirtytx +
1400 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1401
1402 /* Clean BD length for empty detection */
1403 bdp->length = 0;
1404
1405 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1406 if (bdp->status & TXBD_WRAP)
1407 bdp = priv->tx_bd_base;
1408 else
1409 bdp++;
1410
1411 /* Move dirty_tx to be the next bd */
1412 priv->dirty_tx = bdp;
1413
1414 /* We freed a buffer, so now we can restart transmission */
1415 if (netif_queue_stopped(dev))
1416 netif_wake_queue(dev);
1417 } /* while ((bdp->status & TXBD_READY) == 0) */
1418
1419 dev->stats.tx_packets += howmany;
1420
1421 return howmany;
1422 }
1423
1424 /* Interrupt Handler for Transmit complete */
1425 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1426 {
1427 struct net_device *dev = (struct net_device *) dev_id;
1428 struct gfar_private *priv = netdev_priv(dev);
1429
1430 /* Clear IEVENT */
1431 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1432
1433 /* Lock priv */
1434 spin_lock(&priv->txlock);
1435
1436 gfar_clean_tx_ring(dev);
1437
1438 /* If we are coalescing the interrupts, reset the timer */
1439 /* Otherwise, clear it */
1440 if (likely(priv->txcoalescing)) {
1441 gfar_write(&priv->regs->txic, 0);
1442 gfar_write(&priv->regs->txic,
1443 mk_ic_value(priv->txcount, priv->txtime));
1444 }
1445
1446 spin_unlock(&priv->txlock);
1447
1448 return IRQ_HANDLED;
1449 }
1450
1451 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1452 struct sk_buff *skb)
1453 {
1454 struct gfar_private *priv = netdev_priv(dev);
1455 u32 * status_len = (u32 *)bdp;
1456 u16 flags;
1457
1458 bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1459 priv->rx_buffer_size, DMA_FROM_DEVICE);
1460
1461 flags = RXBD_EMPTY | RXBD_INTERRUPT;
1462
1463 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1464 flags |= RXBD_WRAP;
1465
1466 eieio();
1467
1468 *status_len = (u32)flags << 16;
1469 }
1470
1471
1472 struct sk_buff * gfar_new_skb(struct net_device *dev)
1473 {
1474 unsigned int alignamount;
1475 struct gfar_private *priv = netdev_priv(dev);
1476 struct sk_buff *skb = NULL;
1477
1478 /* We have to allocate the skb, so keep trying till we succeed */
1479 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1480
1481 if (!skb)
1482 return NULL;
1483
1484 alignamount = RXBUF_ALIGNMENT -
1485 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1486
1487 /* We need the data buffer to be aligned properly. We will reserve
1488 * as many bytes as needed to align the data properly
1489 */
1490 skb_reserve(skb, alignamount);
1491
1492 return skb;
1493 }
1494
1495 static inline void count_errors(unsigned short status, struct net_device *dev)
1496 {
1497 struct gfar_private *priv = netdev_priv(dev);
1498 struct net_device_stats *stats = &dev->stats;
1499 struct gfar_extra_stats *estats = &priv->extra_stats;
1500
1501 /* If the packet was truncated, none of the other errors
1502 * matter */
1503 if (status & RXBD_TRUNCATED) {
1504 stats->rx_length_errors++;
1505
1506 estats->rx_trunc++;
1507
1508 return;
1509 }
1510 /* Count the errors, if there were any */
1511 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1512 stats->rx_length_errors++;
1513
1514 if (status & RXBD_LARGE)
1515 estats->rx_large++;
1516 else
1517 estats->rx_short++;
1518 }
1519 if (status & RXBD_NONOCTET) {
1520 stats->rx_frame_errors++;
1521 estats->rx_nonoctet++;
1522 }
1523 if (status & RXBD_CRCERR) {
1524 estats->rx_crcerr++;
1525 stats->rx_crc_errors++;
1526 }
1527 if (status & RXBD_OVERRUN) {
1528 estats->rx_overrun++;
1529 stats->rx_crc_errors++;
1530 }
1531 }
1532
1533 irqreturn_t gfar_receive(int irq, void *dev_id)
1534 {
1535 struct net_device *dev = (struct net_device *) dev_id;
1536 struct gfar_private *priv = netdev_priv(dev);
1537 u32 tempval;
1538
1539 /* support NAPI */
1540 /* Clear IEVENT, so interrupts aren't called again
1541 * because of the packets that have already arrived */
1542 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1543
1544 if (netif_rx_schedule_prep(dev, &priv->napi)) {
1545 tempval = gfar_read(&priv->regs->imask);
1546 tempval &= IMASK_RTX_DISABLED;
1547 gfar_write(&priv->regs->imask, tempval);
1548
1549 __netif_rx_schedule(dev, &priv->napi);
1550 } else {
1551 if (netif_msg_rx_err(priv))
1552 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1553 dev->name, gfar_read(&priv->regs->ievent),
1554 gfar_read(&priv->regs->imask));
1555 }
1556
1557 return IRQ_HANDLED;
1558 }
1559
1560 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1561 {
1562 /* If valid headers were found, and valid sums
1563 * were verified, then we tell the kernel that no
1564 * checksumming is necessary. Otherwise, it is */
1565 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1566 skb->ip_summed = CHECKSUM_UNNECESSARY;
1567 else
1568 skb->ip_summed = CHECKSUM_NONE;
1569 }
1570
1571
1572 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1573 {
1574 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1575
1576 /* Remove the FCB from the skb */
1577 skb_pull(skb, GMAC_FCB_LEN);
1578
1579 return fcb;
1580 }
1581
1582 /* gfar_process_frame() -- handle one incoming packet if skb
1583 * isn't NULL. */
1584 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1585 int length)
1586 {
1587 struct gfar_private *priv = netdev_priv(dev);
1588 struct rxfcb *fcb = NULL;
1589
1590 if (NULL == skb) {
1591 if (netif_msg_rx_err(priv))
1592 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1593 dev->stats.rx_dropped++;
1594 priv->extra_stats.rx_skbmissing++;
1595 } else {
1596 int ret;
1597
1598 /* Prep the skb for the packet */
1599 skb_put(skb, length);
1600
1601 /* Grab the FCB if there is one */
1602 if (gfar_uses_fcb(priv))
1603 fcb = gfar_get_fcb(skb);
1604
1605 /* Remove the padded bytes, if there are any */
1606 if (priv->padding)
1607 skb_pull(skb, priv->padding);
1608
1609 if (priv->rx_csum_enable)
1610 gfar_rx_checksum(skb, fcb);
1611
1612 /* Tell the skb what kind of packet this is */
1613 skb->protocol = eth_type_trans(skb, dev);
1614
1615 /* Send the packet up the stack */
1616 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) {
1617 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1618 fcb->vlctl);
1619 } else
1620 ret = netif_receive_skb(skb);
1621
1622 if (NET_RX_DROP == ret)
1623 priv->extra_stats.kernel_dropped++;
1624 }
1625
1626 return 0;
1627 }
1628
1629 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1630 * until the budget/quota has been reached. Returns the number
1631 * of frames handled
1632 */
1633 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1634 {
1635 struct rxbd8 *bdp;
1636 struct sk_buff *skb;
1637 u16 pkt_len;
1638 int howmany = 0;
1639 struct gfar_private *priv = netdev_priv(dev);
1640
1641 /* Get the first full descriptor */
1642 bdp = priv->cur_rx;
1643
1644 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1645 struct sk_buff *newskb;
1646 rmb();
1647
1648 /* Add another skb for the future */
1649 newskb = gfar_new_skb(dev);
1650
1651 skb = priv->rx_skbuff[priv->skb_currx];
1652
1653 /* We drop the frame if we failed to allocate a new buffer */
1654 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1655 bdp->status & RXBD_ERR)) {
1656 count_errors(bdp->status, dev);
1657
1658 if (unlikely(!newskb))
1659 newskb = skb;
1660
1661 if (skb) {
1662 dma_unmap_single(&priv->dev->dev,
1663 bdp->bufPtr,
1664 priv->rx_buffer_size,
1665 DMA_FROM_DEVICE);
1666
1667 dev_kfree_skb_any(skb);
1668 }
1669 } else {
1670 /* Increment the number of packets */
1671 dev->stats.rx_packets++;
1672 howmany++;
1673
1674 /* Remove the FCS from the packet length */
1675 pkt_len = bdp->length - 4;
1676
1677 gfar_process_frame(dev, skb, pkt_len);
1678
1679 dev->stats.rx_bytes += pkt_len;
1680 }
1681
1682 dev->last_rx = jiffies;
1683
1684 priv->rx_skbuff[priv->skb_currx] = newskb;
1685
1686 /* Setup the new bdp */
1687 gfar_new_rxbdp(dev, bdp, newskb);
1688
1689 /* Update to the next pointer */
1690 if (bdp->status & RXBD_WRAP)
1691 bdp = priv->rx_bd_base;
1692 else
1693 bdp++;
1694
1695 /* update to point at the next skb */
1696 priv->skb_currx =
1697 (priv->skb_currx + 1) &
1698 RX_RING_MOD_MASK(priv->rx_ring_size);
1699 }
1700
1701 /* Update the current rxbd pointer to be the next one */
1702 priv->cur_rx = bdp;
1703
1704 return howmany;
1705 }
1706
1707 static int gfar_poll(struct napi_struct *napi, int budget)
1708 {
1709 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1710 struct net_device *dev = priv->dev;
1711 int howmany;
1712 unsigned long flags;
1713
1714 /* If we fail to get the lock, don't bother with the TX BDs */
1715 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1716 gfar_clean_tx_ring(dev);
1717 spin_unlock_irqrestore(&priv->txlock, flags);
1718 }
1719
1720 howmany = gfar_clean_rx_ring(dev, budget);
1721
1722 if (howmany < budget) {
1723 netif_rx_complete(dev, napi);
1724
1725 /* Clear the halt bit in RSTAT */
1726 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1727
1728 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1729
1730 /* If we are coalescing interrupts, update the timer */
1731 /* Otherwise, clear it */
1732 if (likely(priv->rxcoalescing)) {
1733 gfar_write(&priv->regs->rxic, 0);
1734 gfar_write(&priv->regs->rxic,
1735 mk_ic_value(priv->rxcount, priv->rxtime));
1736 }
1737 }
1738
1739 return howmany;
1740 }
1741
1742 #ifdef CONFIG_NET_POLL_CONTROLLER
1743 /*
1744 * Polling 'interrupt' - used by things like netconsole to send skbs
1745 * without having to re-enable interrupts. It's not called while
1746 * the interrupt routine is executing.
1747 */
1748 static void gfar_netpoll(struct net_device *dev)
1749 {
1750 struct gfar_private *priv = netdev_priv(dev);
1751
1752 /* If the device has multiple interrupts, run tx/rx */
1753 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1754 disable_irq(priv->interruptTransmit);
1755 disable_irq(priv->interruptReceive);
1756 disable_irq(priv->interruptError);
1757 gfar_interrupt(priv->interruptTransmit, dev);
1758 enable_irq(priv->interruptError);
1759 enable_irq(priv->interruptReceive);
1760 enable_irq(priv->interruptTransmit);
1761 } else {
1762 disable_irq(priv->interruptTransmit);
1763 gfar_interrupt(priv->interruptTransmit, dev);
1764 enable_irq(priv->interruptTransmit);
1765 }
1766 }
1767 #endif
1768
1769 /* The interrupt handler for devices with one interrupt */
1770 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1771 {
1772 struct net_device *dev = dev_id;
1773 struct gfar_private *priv = netdev_priv(dev);
1774
1775 /* Save ievent for future reference */
1776 u32 events = gfar_read(&priv->regs->ievent);
1777
1778 /* Check for reception */
1779 if (events & IEVENT_RX_MASK)
1780 gfar_receive(irq, dev_id);
1781
1782 /* Check for transmit completion */
1783 if (events & IEVENT_TX_MASK)
1784 gfar_transmit(irq, dev_id);
1785
1786 /* Check for errors */
1787 if (events & IEVENT_ERR_MASK)
1788 gfar_error(irq, dev_id);
1789
1790 return IRQ_HANDLED;
1791 }
1792
1793 /* Called every time the controller might need to be made
1794 * aware of new link state. The PHY code conveys this
1795 * information through variables in the phydev structure, and this
1796 * function converts those variables into the appropriate
1797 * register values, and can bring down the device if needed.
1798 */
1799 static void adjust_link(struct net_device *dev)
1800 {
1801 struct gfar_private *priv = netdev_priv(dev);
1802 struct gfar __iomem *regs = priv->regs;
1803 unsigned long flags;
1804 struct phy_device *phydev = priv->phydev;
1805 int new_state = 0;
1806
1807 spin_lock_irqsave(&priv->txlock, flags);
1808 if (phydev->link) {
1809 u32 tempval = gfar_read(&regs->maccfg2);
1810 u32 ecntrl = gfar_read(&regs->ecntrl);
1811
1812 /* Now we make sure that we can be in full duplex mode.
1813 * If not, we operate in half-duplex mode. */
1814 if (phydev->duplex != priv->oldduplex) {
1815 new_state = 1;
1816 if (!(phydev->duplex))
1817 tempval &= ~(MACCFG2_FULL_DUPLEX);
1818 else
1819 tempval |= MACCFG2_FULL_DUPLEX;
1820
1821 priv->oldduplex = phydev->duplex;
1822 }
1823
1824 if (phydev->speed != priv->oldspeed) {
1825 new_state = 1;
1826 switch (phydev->speed) {
1827 case 1000:
1828 tempval =
1829 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1830 break;
1831 case 100:
1832 case 10:
1833 tempval =
1834 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1835
1836 /* Reduced mode distinguishes
1837 * between 10 and 100 */
1838 if (phydev->speed == SPEED_100)
1839 ecntrl |= ECNTRL_R100;
1840 else
1841 ecntrl &= ~(ECNTRL_R100);
1842 break;
1843 default:
1844 if (netif_msg_link(priv))
1845 printk(KERN_WARNING
1846 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1847 dev->name, phydev->speed);
1848 break;
1849 }
1850
1851 priv->oldspeed = phydev->speed;
1852 }
1853
1854 gfar_write(&regs->maccfg2, tempval);
1855 gfar_write(&regs->ecntrl, ecntrl);
1856
1857 if (!priv->oldlink) {
1858 new_state = 1;
1859 priv->oldlink = 1;
1860 }
1861 } else if (priv->oldlink) {
1862 new_state = 1;
1863 priv->oldlink = 0;
1864 priv->oldspeed = 0;
1865 priv->oldduplex = -1;
1866 }
1867
1868 if (new_state && netif_msg_link(priv))
1869 phy_print_status(phydev);
1870
1871 spin_unlock_irqrestore(&priv->txlock, flags);
1872 }
1873
1874 /* Update the hash table based on the current list of multicast
1875 * addresses we subscribe to. Also, change the promiscuity of
1876 * the device based on the flags (this function is called
1877 * whenever dev->flags is changed */
1878 static void gfar_set_multi(struct net_device *dev)
1879 {
1880 struct dev_mc_list *mc_ptr;
1881 struct gfar_private *priv = netdev_priv(dev);
1882 struct gfar __iomem *regs = priv->regs;
1883 u32 tempval;
1884
1885 if(dev->flags & IFF_PROMISC) {
1886 /* Set RCTRL to PROM */
1887 tempval = gfar_read(&regs->rctrl);
1888 tempval |= RCTRL_PROM;
1889 gfar_write(&regs->rctrl, tempval);
1890 } else {
1891 /* Set RCTRL to not PROM */
1892 tempval = gfar_read(&regs->rctrl);
1893 tempval &= ~(RCTRL_PROM);
1894 gfar_write(&regs->rctrl, tempval);
1895 }
1896
1897 if(dev->flags & IFF_ALLMULTI) {
1898 /* Set the hash to rx all multicast frames */
1899 gfar_write(&regs->igaddr0, 0xffffffff);
1900 gfar_write(&regs->igaddr1, 0xffffffff);
1901 gfar_write(&regs->igaddr2, 0xffffffff);
1902 gfar_write(&regs->igaddr3, 0xffffffff);
1903 gfar_write(&regs->igaddr4, 0xffffffff);
1904 gfar_write(&regs->igaddr5, 0xffffffff);
1905 gfar_write(&regs->igaddr6, 0xffffffff);
1906 gfar_write(&regs->igaddr7, 0xffffffff);
1907 gfar_write(&regs->gaddr0, 0xffffffff);
1908 gfar_write(&regs->gaddr1, 0xffffffff);
1909 gfar_write(&regs->gaddr2, 0xffffffff);
1910 gfar_write(&regs->gaddr3, 0xffffffff);
1911 gfar_write(&regs->gaddr4, 0xffffffff);
1912 gfar_write(&regs->gaddr5, 0xffffffff);
1913 gfar_write(&regs->gaddr6, 0xffffffff);
1914 gfar_write(&regs->gaddr7, 0xffffffff);
1915 } else {
1916 int em_num;
1917 int idx;
1918
1919 /* zero out the hash */
1920 gfar_write(&regs->igaddr0, 0x0);
1921 gfar_write(&regs->igaddr1, 0x0);
1922 gfar_write(&regs->igaddr2, 0x0);
1923 gfar_write(&regs->igaddr3, 0x0);
1924 gfar_write(&regs->igaddr4, 0x0);
1925 gfar_write(&regs->igaddr5, 0x0);
1926 gfar_write(&regs->igaddr6, 0x0);
1927 gfar_write(&regs->igaddr7, 0x0);
1928 gfar_write(&regs->gaddr0, 0x0);
1929 gfar_write(&regs->gaddr1, 0x0);
1930 gfar_write(&regs->gaddr2, 0x0);
1931 gfar_write(&regs->gaddr3, 0x0);
1932 gfar_write(&regs->gaddr4, 0x0);
1933 gfar_write(&regs->gaddr5, 0x0);
1934 gfar_write(&regs->gaddr6, 0x0);
1935 gfar_write(&regs->gaddr7, 0x0);
1936
1937 /* If we have extended hash tables, we need to
1938 * clear the exact match registers to prepare for
1939 * setting them */
1940 if (priv->extended_hash) {
1941 em_num = GFAR_EM_NUM + 1;
1942 gfar_clear_exact_match(dev);
1943 idx = 1;
1944 } else {
1945 idx = 0;
1946 em_num = 0;
1947 }
1948
1949 if(dev->mc_count == 0)
1950 return;
1951
1952 /* Parse the list, and set the appropriate bits */
1953 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1954 if (idx < em_num) {
1955 gfar_set_mac_for_addr(dev, idx,
1956 mc_ptr->dmi_addr);
1957 idx++;
1958 } else
1959 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1960 }
1961 }
1962
1963 return;
1964 }
1965
1966
1967 /* Clears each of the exact match registers to zero, so they
1968 * don't interfere with normal reception */
1969 static void gfar_clear_exact_match(struct net_device *dev)
1970 {
1971 int idx;
1972 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1973
1974 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1975 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1976 }
1977
1978 /* Set the appropriate hash bit for the given addr */
1979 /* The algorithm works like so:
1980 * 1) Take the Destination Address (ie the multicast address), and
1981 * do a CRC on it (little endian), and reverse the bits of the
1982 * result.
1983 * 2) Use the 8 most significant bits as a hash into a 256-entry
1984 * table. The table is controlled through 8 32-bit registers:
1985 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1986 * gaddr7. This means that the 3 most significant bits in the
1987 * hash index which gaddr register to use, and the 5 other bits
1988 * indicate which bit (assuming an IBM numbering scheme, which
1989 * for PowerPC (tm) is usually the case) in the register holds
1990 * the entry. */
1991 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1992 {
1993 u32 tempval;
1994 struct gfar_private *priv = netdev_priv(dev);
1995 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1996 int width = priv->hash_width;
1997 u8 whichbit = (result >> (32 - width)) & 0x1f;
1998 u8 whichreg = result >> (32 - width + 5);
1999 u32 value = (1 << (31-whichbit));
2000
2001 tempval = gfar_read(priv->hash_regs[whichreg]);
2002 tempval |= value;
2003 gfar_write(priv->hash_regs[whichreg], tempval);
2004
2005 return;
2006 }
2007
2008
2009 /* There are multiple MAC Address register pairs on some controllers
2010 * This function sets the numth pair to a given address
2011 */
2012 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2013 {
2014 struct gfar_private *priv = netdev_priv(dev);
2015 int idx;
2016 char tmpbuf[MAC_ADDR_LEN];
2017 u32 tempval;
2018 u32 __iomem *macptr = &priv->regs->macstnaddr1;
2019
2020 macptr += num*2;
2021
2022 /* Now copy it into the mac registers backwards, cuz */
2023 /* little endian is silly */
2024 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2025 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2026
2027 gfar_write(macptr, *((u32 *) (tmpbuf)));
2028
2029 tempval = *((u32 *) (tmpbuf + 4));
2030
2031 gfar_write(macptr+1, tempval);
2032 }
2033
2034 /* GFAR error interrupt handler */
2035 static irqreturn_t gfar_error(int irq, void *dev_id)
2036 {
2037 struct net_device *dev = dev_id;
2038 struct gfar_private *priv = netdev_priv(dev);
2039
2040 /* Save ievent for future reference */
2041 u32 events = gfar_read(&priv->regs->ievent);
2042
2043 /* Clear IEVENT */
2044 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2045
2046 /* Magic Packet is not an error. */
2047 if ((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2048 (events & IEVENT_MAG))
2049 events &= ~IEVENT_MAG;
2050
2051 /* Hmm... */
2052 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2053 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2054 dev->name, events, gfar_read(&priv->regs->imask));
2055
2056 /* Update the error counters */
2057 if (events & IEVENT_TXE) {
2058 dev->stats.tx_errors++;
2059
2060 if (events & IEVENT_LC)
2061 dev->stats.tx_window_errors++;
2062 if (events & IEVENT_CRL)
2063 dev->stats.tx_aborted_errors++;
2064 if (events & IEVENT_XFUN) {
2065 if (netif_msg_tx_err(priv))
2066 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2067 "packet dropped.\n", dev->name);
2068 dev->stats.tx_dropped++;
2069 priv->extra_stats.tx_underrun++;
2070
2071 /* Reactivate the Tx Queues */
2072 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2073 }
2074 if (netif_msg_tx_err(priv))
2075 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2076 }
2077 if (events & IEVENT_BSY) {
2078 dev->stats.rx_errors++;
2079 priv->extra_stats.rx_bsy++;
2080
2081 gfar_receive(irq, dev_id);
2082
2083 if (netif_msg_rx_err(priv))
2084 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2085 dev->name, gfar_read(&priv->regs->rstat));
2086 }
2087 if (events & IEVENT_BABR) {
2088 dev->stats.rx_errors++;
2089 priv->extra_stats.rx_babr++;
2090
2091 if (netif_msg_rx_err(priv))
2092 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2093 }
2094 if (events & IEVENT_EBERR) {
2095 priv->extra_stats.eberr++;
2096 if (netif_msg_rx_err(priv))
2097 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2098 }
2099 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2100 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2101
2102 if (events & IEVENT_BABT) {
2103 priv->extra_stats.tx_babt++;
2104 if (netif_msg_tx_err(priv))
2105 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2106 }
2107 return IRQ_HANDLED;
2108 }
2109
2110 /* work with hotplug and coldplug */
2111 MODULE_ALIAS("platform:fsl-gianfar");
2112
2113 /* Structure for a device driver */
2114 static struct platform_driver gfar_driver = {
2115 .probe = gfar_probe,
2116 .remove = gfar_remove,
2117 .suspend = gfar_suspend,
2118 .resume = gfar_resume,
2119 .driver = {
2120 .name = "fsl-gianfar",
2121 .owner = THIS_MODULE,
2122 },
2123 };
2124
2125 static int __init gfar_init(void)
2126 {
2127 int err = gfar_mdio_init();
2128
2129 if (err)
2130 return err;
2131
2132 err = platform_driver_register(&gfar_driver);
2133
2134 if (err)
2135 gfar_mdio_exit();
2136
2137 return err;
2138 }
2139
2140 static void __exit gfar_exit(void)
2141 {
2142 platform_driver_unregister(&gfar_driver);
2143 gfar_mdio_exit();
2144 }
2145
2146 module_init(gfar_init);
2147 module_exit(gfar_exit);
2148
This page took 0.086026 seconds and 5 git commands to generate.