x86: sparse_irq: fix typo in debug print out
[deliverable/linux.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 *
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
32 * day be supported.
33 *
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
39 *
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. This method will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
55 * skb.
56 *
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
65 */
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/platform_device.h>
82 #include <linux/ip.h>
83 #include <linux/tcp.h>
84 #include <linux/udp.h>
85 #include <linux/in.h>
86
87 #include <asm/io.h>
88 #include <asm/irq.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
95
96 #include "gianfar.h"
97 #include "gianfar_mii.h"
98
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
102
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
105
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct platform_device *pdev);
123 static int gfar_remove(struct platform_device *pdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
131 #endif
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
135 static void gfar_vlan_rx_register(struct net_device *netdev,
136 struct vlan_group *grp);
137 void gfar_halt(struct net_device *dev);
138 static void gfar_halt_nodisable(struct net_device *dev);
139 void gfar_start(struct net_device *dev);
140 static void gfar_clear_exact_match(struct net_device *dev);
141 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
142
143 extern const struct ethtool_ops gfar_ethtool_ops;
144
145 MODULE_AUTHOR("Freescale Semiconductor, Inc");
146 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
147 MODULE_LICENSE("GPL");
148
149 /* Returns 1 if incoming frames use an FCB */
150 static inline int gfar_uses_fcb(struct gfar_private *priv)
151 {
152 return (priv->vlan_enable || priv->rx_csum_enable);
153 }
154
155 /* Set up the ethernet device structure, private data,
156 * and anything else we need before we start */
157 static int gfar_probe(struct platform_device *pdev)
158 {
159 u32 tempval;
160 struct net_device *dev = NULL;
161 struct gfar_private *priv = NULL;
162 struct gianfar_platform_data *einfo;
163 struct resource *r;
164 int err = 0;
165 DECLARE_MAC_BUF(mac);
166
167 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
168
169 if (NULL == einfo) {
170 printk(KERN_ERR "gfar %d: Missing additional data!\n",
171 pdev->id);
172
173 return -ENODEV;
174 }
175
176 /* Create an ethernet device instance */
177 dev = alloc_etherdev(sizeof (*priv));
178
179 if (NULL == dev)
180 return -ENOMEM;
181
182 priv = netdev_priv(dev);
183 priv->dev = dev;
184
185 /* Set the info in the priv to the current info */
186 priv->einfo = einfo;
187
188 /* fill out IRQ fields */
189 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
190 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
191 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
192 priv->interruptError = platform_get_irq_byname(pdev, "error");
193 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
194 goto regs_fail;
195 } else {
196 priv->interruptTransmit = platform_get_irq(pdev, 0);
197 if (priv->interruptTransmit < 0)
198 goto regs_fail;
199 }
200
201 /* get a pointer to the register memory */
202 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
203 priv->regs = ioremap(r->start, sizeof (struct gfar));
204
205 if (NULL == priv->regs) {
206 err = -ENOMEM;
207 goto regs_fail;
208 }
209
210 spin_lock_init(&priv->txlock);
211 spin_lock_init(&priv->rxlock);
212 spin_lock_init(&priv->bflock);
213 INIT_WORK(&priv->reset_task, gfar_reset_task);
214
215 platform_set_drvdata(pdev, dev);
216
217 /* Stop the DMA engine now, in case it was running before */
218 /* (The firmware could have used it, and left it running). */
219 /* To do this, we write Graceful Receive Stop and Graceful */
220 /* Transmit Stop, and then wait until the corresponding bits */
221 /* in IEVENT indicate the stops have completed. */
222 tempval = gfar_read(&priv->regs->dmactrl);
223 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
224 gfar_write(&priv->regs->dmactrl, tempval);
225
226 tempval = gfar_read(&priv->regs->dmactrl);
227 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
228 gfar_write(&priv->regs->dmactrl, tempval);
229
230 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
231 cpu_relax();
232
233 /* Reset MAC layer */
234 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
235
236 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
237 gfar_write(&priv->regs->maccfg1, tempval);
238
239 /* Initialize MACCFG2. */
240 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
241
242 /* Initialize ECNTRL */
243 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
244
245 /* Copy the station address into the dev structure, */
246 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
247
248 /* Set the dev->base_addr to the gfar reg region */
249 dev->base_addr = (unsigned long) (priv->regs);
250
251 SET_NETDEV_DEV(dev, &pdev->dev);
252
253 /* Fill in the dev structure */
254 dev->open = gfar_enet_open;
255 dev->hard_start_xmit = gfar_start_xmit;
256 dev->tx_timeout = gfar_timeout;
257 dev->watchdog_timeo = TX_TIMEOUT;
258 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
259 #ifdef CONFIG_NET_POLL_CONTROLLER
260 dev->poll_controller = gfar_netpoll;
261 #endif
262 dev->stop = gfar_close;
263 dev->change_mtu = gfar_change_mtu;
264 dev->mtu = 1500;
265 dev->set_multicast_list = gfar_set_multi;
266
267 dev->ethtool_ops = &gfar_ethtool_ops;
268
269 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
270 priv->rx_csum_enable = 1;
271 dev->features |= NETIF_F_IP_CSUM;
272 } else
273 priv->rx_csum_enable = 0;
274
275 priv->vlgrp = NULL;
276
277 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
278 dev->vlan_rx_register = gfar_vlan_rx_register;
279
280 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
281
282 priv->vlan_enable = 1;
283 }
284
285 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
286 priv->extended_hash = 1;
287 priv->hash_width = 9;
288
289 priv->hash_regs[0] = &priv->regs->igaddr0;
290 priv->hash_regs[1] = &priv->regs->igaddr1;
291 priv->hash_regs[2] = &priv->regs->igaddr2;
292 priv->hash_regs[3] = &priv->regs->igaddr3;
293 priv->hash_regs[4] = &priv->regs->igaddr4;
294 priv->hash_regs[5] = &priv->regs->igaddr5;
295 priv->hash_regs[6] = &priv->regs->igaddr6;
296 priv->hash_regs[7] = &priv->regs->igaddr7;
297 priv->hash_regs[8] = &priv->regs->gaddr0;
298 priv->hash_regs[9] = &priv->regs->gaddr1;
299 priv->hash_regs[10] = &priv->regs->gaddr2;
300 priv->hash_regs[11] = &priv->regs->gaddr3;
301 priv->hash_regs[12] = &priv->regs->gaddr4;
302 priv->hash_regs[13] = &priv->regs->gaddr5;
303 priv->hash_regs[14] = &priv->regs->gaddr6;
304 priv->hash_regs[15] = &priv->regs->gaddr7;
305
306 } else {
307 priv->extended_hash = 0;
308 priv->hash_width = 8;
309
310 priv->hash_regs[0] = &priv->regs->gaddr0;
311 priv->hash_regs[1] = &priv->regs->gaddr1;
312 priv->hash_regs[2] = &priv->regs->gaddr2;
313 priv->hash_regs[3] = &priv->regs->gaddr3;
314 priv->hash_regs[4] = &priv->regs->gaddr4;
315 priv->hash_regs[5] = &priv->regs->gaddr5;
316 priv->hash_regs[6] = &priv->regs->gaddr6;
317 priv->hash_regs[7] = &priv->regs->gaddr7;
318 }
319
320 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
321 priv->padding = DEFAULT_PADDING;
322 else
323 priv->padding = 0;
324
325 if (dev->features & NETIF_F_IP_CSUM)
326 dev->hard_header_len += GMAC_FCB_LEN;
327
328 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
329 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
330 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
331
332 priv->txcoalescing = DEFAULT_TX_COALESCE;
333 priv->txcount = DEFAULT_TXCOUNT;
334 priv->txtime = DEFAULT_TXTIME;
335 priv->rxcoalescing = DEFAULT_RX_COALESCE;
336 priv->rxcount = DEFAULT_RXCOUNT;
337 priv->rxtime = DEFAULT_RXTIME;
338
339 /* Enable most messages by default */
340 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
341
342 /* Carrier starts down, phylib will bring it up */
343 netif_carrier_off(dev);
344
345 err = register_netdev(dev);
346
347 if (err) {
348 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
349 dev->name);
350 goto register_fail;
351 }
352
353 /* Create all the sysfs files */
354 gfar_init_sysfs(dev);
355
356 /* Print out the device info */
357 printk(KERN_INFO DEVICE_NAME "%s\n",
358 dev->name, print_mac(mac, dev->dev_addr));
359
360 /* Even more device info helps when determining which kernel */
361 /* provided which set of benchmarks. */
362 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
363 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
364 dev->name, priv->rx_ring_size, priv->tx_ring_size);
365
366 return 0;
367
368 register_fail:
369 iounmap(priv->regs);
370 regs_fail:
371 free_netdev(dev);
372 return err;
373 }
374
375 static int gfar_remove(struct platform_device *pdev)
376 {
377 struct net_device *dev = platform_get_drvdata(pdev);
378 struct gfar_private *priv = netdev_priv(dev);
379
380 platform_set_drvdata(pdev, NULL);
381
382 iounmap(priv->regs);
383 free_netdev(dev);
384
385 return 0;
386 }
387
388 #ifdef CONFIG_PM
389 static int gfar_suspend(struct platform_device *pdev, pm_message_t state)
390 {
391 struct net_device *dev = platform_get_drvdata(pdev);
392 struct gfar_private *priv = netdev_priv(dev);
393 unsigned long flags;
394 u32 tempval;
395
396 int magic_packet = priv->wol_en &&
397 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
398
399 netif_device_detach(dev);
400
401 if (netif_running(dev)) {
402 spin_lock_irqsave(&priv->txlock, flags);
403 spin_lock(&priv->rxlock);
404
405 gfar_halt_nodisable(dev);
406
407 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
408 tempval = gfar_read(&priv->regs->maccfg1);
409
410 tempval &= ~MACCFG1_TX_EN;
411
412 if (!magic_packet)
413 tempval &= ~MACCFG1_RX_EN;
414
415 gfar_write(&priv->regs->maccfg1, tempval);
416
417 spin_unlock(&priv->rxlock);
418 spin_unlock_irqrestore(&priv->txlock, flags);
419
420 napi_disable(&priv->napi);
421
422 if (magic_packet) {
423 /* Enable interrupt on Magic Packet */
424 gfar_write(&priv->regs->imask, IMASK_MAG);
425
426 /* Enable Magic Packet mode */
427 tempval = gfar_read(&priv->regs->maccfg2);
428 tempval |= MACCFG2_MPEN;
429 gfar_write(&priv->regs->maccfg2, tempval);
430 } else {
431 phy_stop(priv->phydev);
432 }
433 }
434
435 return 0;
436 }
437
438 static int gfar_resume(struct platform_device *pdev)
439 {
440 struct net_device *dev = platform_get_drvdata(pdev);
441 struct gfar_private *priv = netdev_priv(dev);
442 unsigned long flags;
443 u32 tempval;
444 int magic_packet = priv->wol_en &&
445 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
446
447 if (!netif_running(dev)) {
448 netif_device_attach(dev);
449 return 0;
450 }
451
452 if (!magic_packet && priv->phydev)
453 phy_start(priv->phydev);
454
455 /* Disable Magic Packet mode, in case something
456 * else woke us up.
457 */
458
459 spin_lock_irqsave(&priv->txlock, flags);
460 spin_lock(&priv->rxlock);
461
462 tempval = gfar_read(&priv->regs->maccfg2);
463 tempval &= ~MACCFG2_MPEN;
464 gfar_write(&priv->regs->maccfg2, tempval);
465
466 gfar_start(dev);
467
468 spin_unlock(&priv->rxlock);
469 spin_unlock_irqrestore(&priv->txlock, flags);
470
471 netif_device_attach(dev);
472
473 napi_enable(&priv->napi);
474
475 return 0;
476 }
477 #else
478 #define gfar_suspend NULL
479 #define gfar_resume NULL
480 #endif
481
482 /* Reads the controller's registers to determine what interface
483 * connects it to the PHY.
484 */
485 static phy_interface_t gfar_get_interface(struct net_device *dev)
486 {
487 struct gfar_private *priv = netdev_priv(dev);
488 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
489
490 if (ecntrl & ECNTRL_SGMII_MODE)
491 return PHY_INTERFACE_MODE_SGMII;
492
493 if (ecntrl & ECNTRL_TBI_MODE) {
494 if (ecntrl & ECNTRL_REDUCED_MODE)
495 return PHY_INTERFACE_MODE_RTBI;
496 else
497 return PHY_INTERFACE_MODE_TBI;
498 }
499
500 if (ecntrl & ECNTRL_REDUCED_MODE) {
501 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
502 return PHY_INTERFACE_MODE_RMII;
503 else {
504 phy_interface_t interface = priv->einfo->interface;
505
506 /*
507 * This isn't autodetected right now, so it must
508 * be set by the device tree or platform code.
509 */
510 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
511 return PHY_INTERFACE_MODE_RGMII_ID;
512
513 return PHY_INTERFACE_MODE_RGMII;
514 }
515 }
516
517 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
518 return PHY_INTERFACE_MODE_GMII;
519
520 return PHY_INTERFACE_MODE_MII;
521 }
522
523
524 /* Initializes driver's PHY state, and attaches to the PHY.
525 * Returns 0 on success.
526 */
527 static int init_phy(struct net_device *dev)
528 {
529 struct gfar_private *priv = netdev_priv(dev);
530 uint gigabit_support =
531 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
532 SUPPORTED_1000baseT_Full : 0;
533 struct phy_device *phydev;
534 char phy_id[BUS_ID_SIZE];
535 phy_interface_t interface;
536
537 priv->oldlink = 0;
538 priv->oldspeed = 0;
539 priv->oldduplex = -1;
540
541 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
542
543 interface = gfar_get_interface(dev);
544
545 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
546
547 if (interface == PHY_INTERFACE_MODE_SGMII)
548 gfar_configure_serdes(dev);
549
550 if (IS_ERR(phydev)) {
551 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
552 return PTR_ERR(phydev);
553 }
554
555 /* Remove any features not supported by the controller */
556 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
557 phydev->advertising = phydev->supported;
558
559 priv->phydev = phydev;
560
561 return 0;
562 }
563
564 /*
565 * Initialize TBI PHY interface for communicating with the
566 * SERDES lynx PHY on the chip. We communicate with this PHY
567 * through the MDIO bus on each controller, treating it as a
568 * "normal" PHY at the address found in the TBIPA register. We assume
569 * that the TBIPA register is valid. Either the MDIO bus code will set
570 * it to a value that doesn't conflict with other PHYs on the bus, or the
571 * value doesn't matter, as there are no other PHYs on the bus.
572 */
573 static void gfar_configure_serdes(struct net_device *dev)
574 {
575 struct gfar_private *priv = netdev_priv(dev);
576 struct gfar_mii __iomem *regs =
577 (void __iomem *)&priv->regs->gfar_mii_regs;
578 int tbipa = gfar_read(&priv->regs->tbipa);
579
580 /* Single clk mode, mii mode off(for serdes communication) */
581 gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT);
582
583 gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE,
584 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
585 ADVERTISE_1000XPSE_ASYM);
586
587 gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE |
588 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
589 }
590
591 static void init_registers(struct net_device *dev)
592 {
593 struct gfar_private *priv = netdev_priv(dev);
594
595 /* Clear IEVENT */
596 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
597
598 /* Initialize IMASK */
599 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
600
601 /* Init hash registers to zero */
602 gfar_write(&priv->regs->igaddr0, 0);
603 gfar_write(&priv->regs->igaddr1, 0);
604 gfar_write(&priv->regs->igaddr2, 0);
605 gfar_write(&priv->regs->igaddr3, 0);
606 gfar_write(&priv->regs->igaddr4, 0);
607 gfar_write(&priv->regs->igaddr5, 0);
608 gfar_write(&priv->regs->igaddr6, 0);
609 gfar_write(&priv->regs->igaddr7, 0);
610
611 gfar_write(&priv->regs->gaddr0, 0);
612 gfar_write(&priv->regs->gaddr1, 0);
613 gfar_write(&priv->regs->gaddr2, 0);
614 gfar_write(&priv->regs->gaddr3, 0);
615 gfar_write(&priv->regs->gaddr4, 0);
616 gfar_write(&priv->regs->gaddr5, 0);
617 gfar_write(&priv->regs->gaddr6, 0);
618 gfar_write(&priv->regs->gaddr7, 0);
619
620 /* Zero out the rmon mib registers if it has them */
621 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
622 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
623
624 /* Mask off the CAM interrupts */
625 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
626 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
627 }
628
629 /* Initialize the max receive buffer length */
630 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
631
632 /* Initialize the Minimum Frame Length Register */
633 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
634 }
635
636
637 /* Halt the receive and transmit queues */
638 static void gfar_halt_nodisable(struct net_device *dev)
639 {
640 struct gfar_private *priv = netdev_priv(dev);
641 struct gfar __iomem *regs = priv->regs;
642 u32 tempval;
643
644 /* Mask all interrupts */
645 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
646
647 /* Clear all interrupts */
648 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
649
650 /* Stop the DMA, and wait for it to stop */
651 tempval = gfar_read(&priv->regs->dmactrl);
652 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
653 != (DMACTRL_GRS | DMACTRL_GTS)) {
654 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
655 gfar_write(&priv->regs->dmactrl, tempval);
656
657 while (!(gfar_read(&priv->regs->ievent) &
658 (IEVENT_GRSC | IEVENT_GTSC)))
659 cpu_relax();
660 }
661 }
662
663 /* Halt the receive and transmit queues */
664 void gfar_halt(struct net_device *dev)
665 {
666 struct gfar_private *priv = netdev_priv(dev);
667 struct gfar __iomem *regs = priv->regs;
668 u32 tempval;
669
670 gfar_halt_nodisable(dev);
671
672 /* Disable Rx and Tx */
673 tempval = gfar_read(&regs->maccfg1);
674 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
675 gfar_write(&regs->maccfg1, tempval);
676 }
677
678 void stop_gfar(struct net_device *dev)
679 {
680 struct gfar_private *priv = netdev_priv(dev);
681 struct gfar __iomem *regs = priv->regs;
682 unsigned long flags;
683
684 phy_stop(priv->phydev);
685
686 /* Lock it down */
687 spin_lock_irqsave(&priv->txlock, flags);
688 spin_lock(&priv->rxlock);
689
690 gfar_halt(dev);
691
692 spin_unlock(&priv->rxlock);
693 spin_unlock_irqrestore(&priv->txlock, flags);
694
695 /* Free the IRQs */
696 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
697 free_irq(priv->interruptError, dev);
698 free_irq(priv->interruptTransmit, dev);
699 free_irq(priv->interruptReceive, dev);
700 } else {
701 free_irq(priv->interruptTransmit, dev);
702 }
703
704 free_skb_resources(priv);
705
706 dma_free_coherent(&dev->dev,
707 sizeof(struct txbd8)*priv->tx_ring_size
708 + sizeof(struct rxbd8)*priv->rx_ring_size,
709 priv->tx_bd_base,
710 gfar_read(&regs->tbase0));
711 }
712
713 /* If there are any tx skbs or rx skbs still around, free them.
714 * Then free tx_skbuff and rx_skbuff */
715 static void free_skb_resources(struct gfar_private *priv)
716 {
717 struct rxbd8 *rxbdp;
718 struct txbd8 *txbdp;
719 int i;
720
721 /* Go through all the buffer descriptors and free their data buffers */
722 txbdp = priv->tx_bd_base;
723
724 for (i = 0; i < priv->tx_ring_size; i++) {
725
726 if (priv->tx_skbuff[i]) {
727 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
728 txbdp->length,
729 DMA_TO_DEVICE);
730 dev_kfree_skb_any(priv->tx_skbuff[i]);
731 priv->tx_skbuff[i] = NULL;
732 }
733
734 txbdp++;
735 }
736
737 kfree(priv->tx_skbuff);
738
739 rxbdp = priv->rx_bd_base;
740
741 /* rx_skbuff is not guaranteed to be allocated, so only
742 * free it and its contents if it is allocated */
743 if(priv->rx_skbuff != NULL) {
744 for (i = 0; i < priv->rx_ring_size; i++) {
745 if (priv->rx_skbuff[i]) {
746 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
747 priv->rx_buffer_size,
748 DMA_FROM_DEVICE);
749
750 dev_kfree_skb_any(priv->rx_skbuff[i]);
751 priv->rx_skbuff[i] = NULL;
752 }
753
754 rxbdp->status = 0;
755 rxbdp->length = 0;
756 rxbdp->bufPtr = 0;
757
758 rxbdp++;
759 }
760
761 kfree(priv->rx_skbuff);
762 }
763 }
764
765 void gfar_start(struct net_device *dev)
766 {
767 struct gfar_private *priv = netdev_priv(dev);
768 struct gfar __iomem *regs = priv->regs;
769 u32 tempval;
770
771 /* Enable Rx and Tx in MACCFG1 */
772 tempval = gfar_read(&regs->maccfg1);
773 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
774 gfar_write(&regs->maccfg1, tempval);
775
776 /* Initialize DMACTRL to have WWR and WOP */
777 tempval = gfar_read(&priv->regs->dmactrl);
778 tempval |= DMACTRL_INIT_SETTINGS;
779 gfar_write(&priv->regs->dmactrl, tempval);
780
781 /* Make sure we aren't stopped */
782 tempval = gfar_read(&priv->regs->dmactrl);
783 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
784 gfar_write(&priv->regs->dmactrl, tempval);
785
786 /* Clear THLT/RHLT, so that the DMA starts polling now */
787 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
788 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
789
790 /* Unmask the interrupts we look for */
791 gfar_write(&regs->imask, IMASK_DEFAULT);
792 }
793
794 /* Bring the controller up and running */
795 int startup_gfar(struct net_device *dev)
796 {
797 struct txbd8 *txbdp;
798 struct rxbd8 *rxbdp;
799 dma_addr_t addr = 0;
800 unsigned long vaddr;
801 int i;
802 struct gfar_private *priv = netdev_priv(dev);
803 struct gfar __iomem *regs = priv->regs;
804 int err = 0;
805 u32 rctrl = 0;
806 u32 attrs = 0;
807
808 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
809
810 /* Allocate memory for the buffer descriptors */
811 vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
812 sizeof (struct txbd8) * priv->tx_ring_size +
813 sizeof (struct rxbd8) * priv->rx_ring_size,
814 &addr, GFP_KERNEL);
815
816 if (vaddr == 0) {
817 if (netif_msg_ifup(priv))
818 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
819 dev->name);
820 return -ENOMEM;
821 }
822
823 priv->tx_bd_base = (struct txbd8 *) vaddr;
824
825 /* enet DMA only understands physical addresses */
826 gfar_write(&regs->tbase0, addr);
827
828 /* Start the rx descriptor ring where the tx ring leaves off */
829 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
830 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
831 priv->rx_bd_base = (struct rxbd8 *) vaddr;
832 gfar_write(&regs->rbase0, addr);
833
834 /* Setup the skbuff rings */
835 priv->tx_skbuff =
836 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
837 priv->tx_ring_size, GFP_KERNEL);
838
839 if (NULL == priv->tx_skbuff) {
840 if (netif_msg_ifup(priv))
841 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
842 dev->name);
843 err = -ENOMEM;
844 goto tx_skb_fail;
845 }
846
847 for (i = 0; i < priv->tx_ring_size; i++)
848 priv->tx_skbuff[i] = NULL;
849
850 priv->rx_skbuff =
851 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
852 priv->rx_ring_size, GFP_KERNEL);
853
854 if (NULL == priv->rx_skbuff) {
855 if (netif_msg_ifup(priv))
856 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
857 dev->name);
858 err = -ENOMEM;
859 goto rx_skb_fail;
860 }
861
862 for (i = 0; i < priv->rx_ring_size; i++)
863 priv->rx_skbuff[i] = NULL;
864
865 /* Initialize some variables in our dev structure */
866 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
867 priv->cur_rx = priv->rx_bd_base;
868 priv->skb_curtx = priv->skb_dirtytx = 0;
869 priv->skb_currx = 0;
870
871 /* Initialize Transmit Descriptor Ring */
872 txbdp = priv->tx_bd_base;
873 for (i = 0; i < priv->tx_ring_size; i++) {
874 txbdp->status = 0;
875 txbdp->length = 0;
876 txbdp->bufPtr = 0;
877 txbdp++;
878 }
879
880 /* Set the last descriptor in the ring to indicate wrap */
881 txbdp--;
882 txbdp->status |= TXBD_WRAP;
883
884 rxbdp = priv->rx_bd_base;
885 for (i = 0; i < priv->rx_ring_size; i++) {
886 struct sk_buff *skb;
887
888 skb = gfar_new_skb(dev);
889
890 if (!skb) {
891 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
892 dev->name);
893
894 goto err_rxalloc_fail;
895 }
896
897 priv->rx_skbuff[i] = skb;
898
899 gfar_new_rxbdp(dev, rxbdp, skb);
900
901 rxbdp++;
902 }
903
904 /* Set the last descriptor in the ring to wrap */
905 rxbdp--;
906 rxbdp->status |= RXBD_WRAP;
907
908 /* If the device has multiple interrupts, register for
909 * them. Otherwise, only register for the one */
910 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
911 /* Install our interrupt handlers for Error,
912 * Transmit, and Receive */
913 if (request_irq(priv->interruptError, gfar_error,
914 0, "enet_error", dev) < 0) {
915 if (netif_msg_intr(priv))
916 printk(KERN_ERR "%s: Can't get IRQ %d\n",
917 dev->name, priv->interruptError);
918
919 err = -1;
920 goto err_irq_fail;
921 }
922
923 if (request_irq(priv->interruptTransmit, gfar_transmit,
924 0, "enet_tx", dev) < 0) {
925 if (netif_msg_intr(priv))
926 printk(KERN_ERR "%s: Can't get IRQ %d\n",
927 dev->name, priv->interruptTransmit);
928
929 err = -1;
930
931 goto tx_irq_fail;
932 }
933
934 if (request_irq(priv->interruptReceive, gfar_receive,
935 0, "enet_rx", dev) < 0) {
936 if (netif_msg_intr(priv))
937 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
938 dev->name, priv->interruptReceive);
939
940 err = -1;
941 goto rx_irq_fail;
942 }
943 } else {
944 if (request_irq(priv->interruptTransmit, gfar_interrupt,
945 0, "gfar_interrupt", dev) < 0) {
946 if (netif_msg_intr(priv))
947 printk(KERN_ERR "%s: Can't get IRQ %d\n",
948 dev->name, priv->interruptError);
949
950 err = -1;
951 goto err_irq_fail;
952 }
953 }
954
955 phy_start(priv->phydev);
956
957 /* Configure the coalescing support */
958 if (priv->txcoalescing)
959 gfar_write(&regs->txic,
960 mk_ic_value(priv->txcount, priv->txtime));
961 else
962 gfar_write(&regs->txic, 0);
963
964 if (priv->rxcoalescing)
965 gfar_write(&regs->rxic,
966 mk_ic_value(priv->rxcount, priv->rxtime));
967 else
968 gfar_write(&regs->rxic, 0);
969
970 if (priv->rx_csum_enable)
971 rctrl |= RCTRL_CHECKSUMMING;
972
973 if (priv->extended_hash) {
974 rctrl |= RCTRL_EXTHASH;
975
976 gfar_clear_exact_match(dev);
977 rctrl |= RCTRL_EMEN;
978 }
979
980 if (priv->vlan_enable)
981 rctrl |= RCTRL_VLAN;
982
983 if (priv->padding) {
984 rctrl &= ~RCTRL_PAL_MASK;
985 rctrl |= RCTRL_PADDING(priv->padding);
986 }
987
988 /* Init rctrl based on our settings */
989 gfar_write(&priv->regs->rctrl, rctrl);
990
991 if (dev->features & NETIF_F_IP_CSUM)
992 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
993
994 /* Set the extraction length and index */
995 attrs = ATTRELI_EL(priv->rx_stash_size) |
996 ATTRELI_EI(priv->rx_stash_index);
997
998 gfar_write(&priv->regs->attreli, attrs);
999
1000 /* Start with defaults, and add stashing or locking
1001 * depending on the approprate variables */
1002 attrs = ATTR_INIT_SETTINGS;
1003
1004 if (priv->bd_stash_en)
1005 attrs |= ATTR_BDSTASH;
1006
1007 if (priv->rx_stash_size != 0)
1008 attrs |= ATTR_BUFSTASH;
1009
1010 gfar_write(&priv->regs->attr, attrs);
1011
1012 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1013 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1014 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1015
1016 /* Start the controller */
1017 gfar_start(dev);
1018
1019 return 0;
1020
1021 rx_irq_fail:
1022 free_irq(priv->interruptTransmit, dev);
1023 tx_irq_fail:
1024 free_irq(priv->interruptError, dev);
1025 err_irq_fail:
1026 err_rxalloc_fail:
1027 rx_skb_fail:
1028 free_skb_resources(priv);
1029 tx_skb_fail:
1030 dma_free_coherent(&dev->dev,
1031 sizeof(struct txbd8)*priv->tx_ring_size
1032 + sizeof(struct rxbd8)*priv->rx_ring_size,
1033 priv->tx_bd_base,
1034 gfar_read(&regs->tbase0));
1035
1036 return err;
1037 }
1038
1039 /* Called when something needs to use the ethernet device */
1040 /* Returns 0 for success. */
1041 static int gfar_enet_open(struct net_device *dev)
1042 {
1043 struct gfar_private *priv = netdev_priv(dev);
1044 int err;
1045
1046 napi_enable(&priv->napi);
1047
1048 /* Initialize a bunch of registers */
1049 init_registers(dev);
1050
1051 gfar_set_mac_address(dev);
1052
1053 err = init_phy(dev);
1054
1055 if(err) {
1056 napi_disable(&priv->napi);
1057 return err;
1058 }
1059
1060 err = startup_gfar(dev);
1061 if (err) {
1062 napi_disable(&priv->napi);
1063 return err;
1064 }
1065
1066 netif_start_queue(dev);
1067
1068 return err;
1069 }
1070
1071 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
1072 {
1073 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1074
1075 memset(fcb, 0, GMAC_FCB_LEN);
1076
1077 return fcb;
1078 }
1079
1080 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1081 {
1082 u8 flags = 0;
1083
1084 /* If we're here, it's a IP packet with a TCP or UDP
1085 * payload. We set it to checksum, using a pseudo-header
1086 * we provide
1087 */
1088 flags = TXFCB_DEFAULT;
1089
1090 /* Tell the controller what the protocol is */
1091 /* And provide the already calculated phcs */
1092 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1093 flags |= TXFCB_UDP;
1094 fcb->phcs = udp_hdr(skb)->check;
1095 } else
1096 fcb->phcs = tcp_hdr(skb)->check;
1097
1098 /* l3os is the distance between the start of the
1099 * frame (skb->data) and the start of the IP hdr.
1100 * l4os is the distance between the start of the
1101 * l3 hdr and the l4 hdr */
1102 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1103 fcb->l4os = skb_network_header_len(skb);
1104
1105 fcb->flags = flags;
1106 }
1107
1108 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1109 {
1110 fcb->flags |= TXFCB_VLN;
1111 fcb->vlctl = vlan_tx_tag_get(skb);
1112 }
1113
1114 /* This is called by the kernel when a frame is ready for transmission. */
1115 /* It is pointed to by the dev->hard_start_xmit function pointer */
1116 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1117 {
1118 struct gfar_private *priv = netdev_priv(dev);
1119 struct txfcb *fcb = NULL;
1120 struct txbd8 *txbdp;
1121 u16 status;
1122 unsigned long flags;
1123
1124 /* Update transmit stats */
1125 dev->stats.tx_bytes += skb->len;
1126
1127 /* Lock priv now */
1128 spin_lock_irqsave(&priv->txlock, flags);
1129
1130 /* Point at the first free tx descriptor */
1131 txbdp = priv->cur_tx;
1132
1133 /* Clear all but the WRAP status flags */
1134 status = txbdp->status & TXBD_WRAP;
1135
1136 /* Set up checksumming */
1137 if (likely((dev->features & NETIF_F_IP_CSUM)
1138 && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1139 fcb = gfar_add_fcb(skb, txbdp);
1140 status |= TXBD_TOE;
1141 gfar_tx_checksum(skb, fcb);
1142 }
1143
1144 if (priv->vlan_enable &&
1145 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1146 if (unlikely(NULL == fcb)) {
1147 fcb = gfar_add_fcb(skb, txbdp);
1148 status |= TXBD_TOE;
1149 }
1150
1151 gfar_tx_vlan(skb, fcb);
1152 }
1153
1154 /* Set buffer length and pointer */
1155 txbdp->length = skb->len;
1156 txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1157 skb->len, DMA_TO_DEVICE);
1158
1159 /* Save the skb pointer so we can free it later */
1160 priv->tx_skbuff[priv->skb_curtx] = skb;
1161
1162 /* Update the current skb pointer (wrapping if this was the last) */
1163 priv->skb_curtx =
1164 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1165
1166 /* Flag the BD as interrupt-causing */
1167 status |= TXBD_INTERRUPT;
1168
1169 /* Flag the BD as ready to go, last in frame, and */
1170 /* in need of CRC */
1171 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1172
1173 dev->trans_start = jiffies;
1174
1175 /* The powerpc-specific eieio() is used, as wmb() has too strong
1176 * semantics (it requires synchronization between cacheable and
1177 * uncacheable mappings, which eieio doesn't provide and which we
1178 * don't need), thus requiring a more expensive sync instruction. At
1179 * some point, the set of architecture-independent barrier functions
1180 * should be expanded to include weaker barriers.
1181 */
1182
1183 eieio();
1184 txbdp->status = status;
1185
1186 /* If this was the last BD in the ring, the next one */
1187 /* is at the beginning of the ring */
1188 if (txbdp->status & TXBD_WRAP)
1189 txbdp = priv->tx_bd_base;
1190 else
1191 txbdp++;
1192
1193 /* If the next BD still needs to be cleaned up, then the bds
1194 are full. We need to tell the kernel to stop sending us stuff. */
1195 if (txbdp == priv->dirty_tx) {
1196 netif_stop_queue(dev);
1197
1198 dev->stats.tx_fifo_errors++;
1199 }
1200
1201 /* Update the current txbd to the next one */
1202 priv->cur_tx = txbdp;
1203
1204 /* Tell the DMA to go go go */
1205 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1206
1207 /* Unlock priv */
1208 spin_unlock_irqrestore(&priv->txlock, flags);
1209
1210 return 0;
1211 }
1212
1213 /* Stops the kernel queue, and halts the controller */
1214 static int gfar_close(struct net_device *dev)
1215 {
1216 struct gfar_private *priv = netdev_priv(dev);
1217
1218 napi_disable(&priv->napi);
1219
1220 cancel_work_sync(&priv->reset_task);
1221 stop_gfar(dev);
1222
1223 /* Disconnect from the PHY */
1224 phy_disconnect(priv->phydev);
1225 priv->phydev = NULL;
1226
1227 netif_stop_queue(dev);
1228
1229 return 0;
1230 }
1231
1232 /* Changes the mac address if the controller is not running. */
1233 static int gfar_set_mac_address(struct net_device *dev)
1234 {
1235 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1236
1237 return 0;
1238 }
1239
1240
1241 /* Enables and disables VLAN insertion/extraction */
1242 static void gfar_vlan_rx_register(struct net_device *dev,
1243 struct vlan_group *grp)
1244 {
1245 struct gfar_private *priv = netdev_priv(dev);
1246 unsigned long flags;
1247 u32 tempval;
1248
1249 spin_lock_irqsave(&priv->rxlock, flags);
1250
1251 priv->vlgrp = grp;
1252
1253 if (grp) {
1254 /* Enable VLAN tag insertion */
1255 tempval = gfar_read(&priv->regs->tctrl);
1256 tempval |= TCTRL_VLINS;
1257
1258 gfar_write(&priv->regs->tctrl, tempval);
1259
1260 /* Enable VLAN tag extraction */
1261 tempval = gfar_read(&priv->regs->rctrl);
1262 tempval |= RCTRL_VLEX;
1263 gfar_write(&priv->regs->rctrl, tempval);
1264 } else {
1265 /* Disable VLAN tag insertion */
1266 tempval = gfar_read(&priv->regs->tctrl);
1267 tempval &= ~TCTRL_VLINS;
1268 gfar_write(&priv->regs->tctrl, tempval);
1269
1270 /* Disable VLAN tag extraction */
1271 tempval = gfar_read(&priv->regs->rctrl);
1272 tempval &= ~RCTRL_VLEX;
1273 gfar_write(&priv->regs->rctrl, tempval);
1274 }
1275
1276 spin_unlock_irqrestore(&priv->rxlock, flags);
1277 }
1278
1279 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1280 {
1281 int tempsize, tempval;
1282 struct gfar_private *priv = netdev_priv(dev);
1283 int oldsize = priv->rx_buffer_size;
1284 int frame_size = new_mtu + ETH_HLEN;
1285
1286 if (priv->vlan_enable)
1287 frame_size += VLAN_HLEN;
1288
1289 if (gfar_uses_fcb(priv))
1290 frame_size += GMAC_FCB_LEN;
1291
1292 frame_size += priv->padding;
1293
1294 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1295 if (netif_msg_drv(priv))
1296 printk(KERN_ERR "%s: Invalid MTU setting\n",
1297 dev->name);
1298 return -EINVAL;
1299 }
1300
1301 tempsize =
1302 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1303 INCREMENTAL_BUFFER_SIZE;
1304
1305 /* Only stop and start the controller if it isn't already
1306 * stopped, and we changed something */
1307 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1308 stop_gfar(dev);
1309
1310 priv->rx_buffer_size = tempsize;
1311
1312 dev->mtu = new_mtu;
1313
1314 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1315 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1316
1317 /* If the mtu is larger than the max size for standard
1318 * ethernet frames (ie, a jumbo frame), then set maccfg2
1319 * to allow huge frames, and to check the length */
1320 tempval = gfar_read(&priv->regs->maccfg2);
1321
1322 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1323 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1324 else
1325 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1326
1327 gfar_write(&priv->regs->maccfg2, tempval);
1328
1329 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1330 startup_gfar(dev);
1331
1332 return 0;
1333 }
1334
1335 /* gfar_reset_task gets scheduled when a packet has not been
1336 * transmitted after a set amount of time.
1337 * For now, assume that clearing out all the structures, and
1338 * starting over will fix the problem.
1339 */
1340 static void gfar_reset_task(struct work_struct *work)
1341 {
1342 struct gfar_private *priv = container_of(work, struct gfar_private,
1343 reset_task);
1344 struct net_device *dev = priv->dev;
1345
1346 if (dev->flags & IFF_UP) {
1347 stop_gfar(dev);
1348 startup_gfar(dev);
1349 }
1350
1351 netif_tx_schedule_all(dev);
1352 }
1353
1354 static void gfar_timeout(struct net_device *dev)
1355 {
1356 struct gfar_private *priv = netdev_priv(dev);
1357
1358 dev->stats.tx_errors++;
1359 schedule_work(&priv->reset_task);
1360 }
1361
1362 /* Interrupt Handler for Transmit complete */
1363 static int gfar_clean_tx_ring(struct net_device *dev)
1364 {
1365 struct txbd8 *bdp;
1366 struct gfar_private *priv = netdev_priv(dev);
1367 int howmany = 0;
1368
1369 bdp = priv->dirty_tx;
1370 while ((bdp->status & TXBD_READY) == 0) {
1371 /* If dirty_tx and cur_tx are the same, then either the */
1372 /* ring is empty or full now (it could only be full in the beginning, */
1373 /* obviously). If it is empty, we are done. */
1374 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1375 break;
1376
1377 howmany++;
1378
1379 /* Deferred means some collisions occurred during transmit, */
1380 /* but we eventually sent the packet. */
1381 if (bdp->status & TXBD_DEF)
1382 dev->stats.collisions++;
1383
1384 /* Free the sk buffer associated with this TxBD */
1385 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1386
1387 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1388 priv->skb_dirtytx =
1389 (priv->skb_dirtytx +
1390 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1391
1392 /* Clean BD length for empty detection */
1393 bdp->length = 0;
1394
1395 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1396 if (bdp->status & TXBD_WRAP)
1397 bdp = priv->tx_bd_base;
1398 else
1399 bdp++;
1400
1401 /* Move dirty_tx to be the next bd */
1402 priv->dirty_tx = bdp;
1403
1404 /* We freed a buffer, so now we can restart transmission */
1405 if (netif_queue_stopped(dev))
1406 netif_wake_queue(dev);
1407 } /* while ((bdp->status & TXBD_READY) == 0) */
1408
1409 dev->stats.tx_packets += howmany;
1410
1411 return howmany;
1412 }
1413
1414 /* Interrupt Handler for Transmit complete */
1415 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1416 {
1417 struct net_device *dev = (struct net_device *) dev_id;
1418 struct gfar_private *priv = netdev_priv(dev);
1419
1420 /* Clear IEVENT */
1421 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1422
1423 /* Lock priv */
1424 spin_lock(&priv->txlock);
1425
1426 gfar_clean_tx_ring(dev);
1427
1428 /* If we are coalescing the interrupts, reset the timer */
1429 /* Otherwise, clear it */
1430 if (likely(priv->txcoalescing)) {
1431 gfar_write(&priv->regs->txic, 0);
1432 gfar_write(&priv->regs->txic,
1433 mk_ic_value(priv->txcount, priv->txtime));
1434 }
1435
1436 spin_unlock(&priv->txlock);
1437
1438 return IRQ_HANDLED;
1439 }
1440
1441 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1442 struct sk_buff *skb)
1443 {
1444 struct gfar_private *priv = netdev_priv(dev);
1445 u32 * status_len = (u32 *)bdp;
1446 u16 flags;
1447
1448 bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1449 priv->rx_buffer_size, DMA_FROM_DEVICE);
1450
1451 flags = RXBD_EMPTY | RXBD_INTERRUPT;
1452
1453 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1454 flags |= RXBD_WRAP;
1455
1456 eieio();
1457
1458 *status_len = (u32)flags << 16;
1459 }
1460
1461
1462 struct sk_buff * gfar_new_skb(struct net_device *dev)
1463 {
1464 unsigned int alignamount;
1465 struct gfar_private *priv = netdev_priv(dev);
1466 struct sk_buff *skb = NULL;
1467
1468 /* We have to allocate the skb, so keep trying till we succeed */
1469 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1470
1471 if (!skb)
1472 return NULL;
1473
1474 alignamount = RXBUF_ALIGNMENT -
1475 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1476
1477 /* We need the data buffer to be aligned properly. We will reserve
1478 * as many bytes as needed to align the data properly
1479 */
1480 skb_reserve(skb, alignamount);
1481
1482 return skb;
1483 }
1484
1485 static inline void count_errors(unsigned short status, struct net_device *dev)
1486 {
1487 struct gfar_private *priv = netdev_priv(dev);
1488 struct net_device_stats *stats = &dev->stats;
1489 struct gfar_extra_stats *estats = &priv->extra_stats;
1490
1491 /* If the packet was truncated, none of the other errors
1492 * matter */
1493 if (status & RXBD_TRUNCATED) {
1494 stats->rx_length_errors++;
1495
1496 estats->rx_trunc++;
1497
1498 return;
1499 }
1500 /* Count the errors, if there were any */
1501 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1502 stats->rx_length_errors++;
1503
1504 if (status & RXBD_LARGE)
1505 estats->rx_large++;
1506 else
1507 estats->rx_short++;
1508 }
1509 if (status & RXBD_NONOCTET) {
1510 stats->rx_frame_errors++;
1511 estats->rx_nonoctet++;
1512 }
1513 if (status & RXBD_CRCERR) {
1514 estats->rx_crcerr++;
1515 stats->rx_crc_errors++;
1516 }
1517 if (status & RXBD_OVERRUN) {
1518 estats->rx_overrun++;
1519 stats->rx_crc_errors++;
1520 }
1521 }
1522
1523 irqreturn_t gfar_receive(int irq, void *dev_id)
1524 {
1525 struct net_device *dev = (struct net_device *) dev_id;
1526 struct gfar_private *priv = netdev_priv(dev);
1527 u32 tempval;
1528
1529 /* support NAPI */
1530 /* Clear IEVENT, so interrupts aren't called again
1531 * because of the packets that have already arrived */
1532 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1533
1534 if (netif_rx_schedule_prep(dev, &priv->napi)) {
1535 tempval = gfar_read(&priv->regs->imask);
1536 tempval &= IMASK_RTX_DISABLED;
1537 gfar_write(&priv->regs->imask, tempval);
1538
1539 __netif_rx_schedule(dev, &priv->napi);
1540 } else {
1541 if (netif_msg_rx_err(priv))
1542 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1543 dev->name, gfar_read(&priv->regs->ievent),
1544 gfar_read(&priv->regs->imask));
1545 }
1546
1547 return IRQ_HANDLED;
1548 }
1549
1550 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1551 {
1552 /* If valid headers were found, and valid sums
1553 * were verified, then we tell the kernel that no
1554 * checksumming is necessary. Otherwise, it is */
1555 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1556 skb->ip_summed = CHECKSUM_UNNECESSARY;
1557 else
1558 skb->ip_summed = CHECKSUM_NONE;
1559 }
1560
1561
1562 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1563 {
1564 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1565
1566 /* Remove the FCB from the skb */
1567 skb_pull(skb, GMAC_FCB_LEN);
1568
1569 return fcb;
1570 }
1571
1572 /* gfar_process_frame() -- handle one incoming packet if skb
1573 * isn't NULL. */
1574 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1575 int length)
1576 {
1577 struct gfar_private *priv = netdev_priv(dev);
1578 struct rxfcb *fcb = NULL;
1579
1580 if (NULL == skb) {
1581 if (netif_msg_rx_err(priv))
1582 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1583 dev->stats.rx_dropped++;
1584 priv->extra_stats.rx_skbmissing++;
1585 } else {
1586 int ret;
1587
1588 /* Prep the skb for the packet */
1589 skb_put(skb, length);
1590
1591 /* Grab the FCB if there is one */
1592 if (gfar_uses_fcb(priv))
1593 fcb = gfar_get_fcb(skb);
1594
1595 /* Remove the padded bytes, if there are any */
1596 if (priv->padding)
1597 skb_pull(skb, priv->padding);
1598
1599 if (priv->rx_csum_enable)
1600 gfar_rx_checksum(skb, fcb);
1601
1602 /* Tell the skb what kind of packet this is */
1603 skb->protocol = eth_type_trans(skb, dev);
1604
1605 /* Send the packet up the stack */
1606 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) {
1607 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1608 fcb->vlctl);
1609 } else
1610 ret = netif_receive_skb(skb);
1611
1612 if (NET_RX_DROP == ret)
1613 priv->extra_stats.kernel_dropped++;
1614 }
1615
1616 return 0;
1617 }
1618
1619 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1620 * until the budget/quota has been reached. Returns the number
1621 * of frames handled
1622 */
1623 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1624 {
1625 struct rxbd8 *bdp;
1626 struct sk_buff *skb;
1627 u16 pkt_len;
1628 int howmany = 0;
1629 struct gfar_private *priv = netdev_priv(dev);
1630
1631 /* Get the first full descriptor */
1632 bdp = priv->cur_rx;
1633
1634 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1635 struct sk_buff *newskb;
1636 rmb();
1637
1638 /* Add another skb for the future */
1639 newskb = gfar_new_skb(dev);
1640
1641 skb = priv->rx_skbuff[priv->skb_currx];
1642
1643 /* We drop the frame if we failed to allocate a new buffer */
1644 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1645 bdp->status & RXBD_ERR)) {
1646 count_errors(bdp->status, dev);
1647
1648 if (unlikely(!newskb))
1649 newskb = skb;
1650
1651 if (skb) {
1652 dma_unmap_single(&priv->dev->dev,
1653 bdp->bufPtr,
1654 priv->rx_buffer_size,
1655 DMA_FROM_DEVICE);
1656
1657 dev_kfree_skb_any(skb);
1658 }
1659 } else {
1660 /* Increment the number of packets */
1661 dev->stats.rx_packets++;
1662 howmany++;
1663
1664 /* Remove the FCS from the packet length */
1665 pkt_len = bdp->length - 4;
1666
1667 gfar_process_frame(dev, skb, pkt_len);
1668
1669 dev->stats.rx_bytes += pkt_len;
1670 }
1671
1672 dev->last_rx = jiffies;
1673
1674 priv->rx_skbuff[priv->skb_currx] = newskb;
1675
1676 /* Setup the new bdp */
1677 gfar_new_rxbdp(dev, bdp, newskb);
1678
1679 /* Update to the next pointer */
1680 if (bdp->status & RXBD_WRAP)
1681 bdp = priv->rx_bd_base;
1682 else
1683 bdp++;
1684
1685 /* update to point at the next skb */
1686 priv->skb_currx =
1687 (priv->skb_currx + 1) &
1688 RX_RING_MOD_MASK(priv->rx_ring_size);
1689 }
1690
1691 /* Update the current rxbd pointer to be the next one */
1692 priv->cur_rx = bdp;
1693
1694 return howmany;
1695 }
1696
1697 static int gfar_poll(struct napi_struct *napi, int budget)
1698 {
1699 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1700 struct net_device *dev = priv->dev;
1701 int howmany;
1702 unsigned long flags;
1703
1704 /* If we fail to get the lock, don't bother with the TX BDs */
1705 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1706 gfar_clean_tx_ring(dev);
1707 spin_unlock_irqrestore(&priv->txlock, flags);
1708 }
1709
1710 howmany = gfar_clean_rx_ring(dev, budget);
1711
1712 if (howmany < budget) {
1713 netif_rx_complete(dev, napi);
1714
1715 /* Clear the halt bit in RSTAT */
1716 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1717
1718 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1719
1720 /* If we are coalescing interrupts, update the timer */
1721 /* Otherwise, clear it */
1722 if (likely(priv->rxcoalescing)) {
1723 gfar_write(&priv->regs->rxic, 0);
1724 gfar_write(&priv->regs->rxic,
1725 mk_ic_value(priv->rxcount, priv->rxtime));
1726 }
1727 }
1728
1729 return howmany;
1730 }
1731
1732 #ifdef CONFIG_NET_POLL_CONTROLLER
1733 /*
1734 * Polling 'interrupt' - used by things like netconsole to send skbs
1735 * without having to re-enable interrupts. It's not called while
1736 * the interrupt routine is executing.
1737 */
1738 static void gfar_netpoll(struct net_device *dev)
1739 {
1740 struct gfar_private *priv = netdev_priv(dev);
1741
1742 /* If the device has multiple interrupts, run tx/rx */
1743 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1744 disable_irq(priv->interruptTransmit);
1745 disable_irq(priv->interruptReceive);
1746 disable_irq(priv->interruptError);
1747 gfar_interrupt(priv->interruptTransmit, dev);
1748 enable_irq(priv->interruptError);
1749 enable_irq(priv->interruptReceive);
1750 enable_irq(priv->interruptTransmit);
1751 } else {
1752 disable_irq(priv->interruptTransmit);
1753 gfar_interrupt(priv->interruptTransmit, dev);
1754 enable_irq(priv->interruptTransmit);
1755 }
1756 }
1757 #endif
1758
1759 /* The interrupt handler for devices with one interrupt */
1760 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1761 {
1762 struct net_device *dev = dev_id;
1763 struct gfar_private *priv = netdev_priv(dev);
1764
1765 /* Save ievent for future reference */
1766 u32 events = gfar_read(&priv->regs->ievent);
1767
1768 /* Check for reception */
1769 if (events & IEVENT_RX_MASK)
1770 gfar_receive(irq, dev_id);
1771
1772 /* Check for transmit completion */
1773 if (events & IEVENT_TX_MASK)
1774 gfar_transmit(irq, dev_id);
1775
1776 /* Check for errors */
1777 if (events & IEVENT_ERR_MASK)
1778 gfar_error(irq, dev_id);
1779
1780 return IRQ_HANDLED;
1781 }
1782
1783 /* Called every time the controller might need to be made
1784 * aware of new link state. The PHY code conveys this
1785 * information through variables in the phydev structure, and this
1786 * function converts those variables into the appropriate
1787 * register values, and can bring down the device if needed.
1788 */
1789 static void adjust_link(struct net_device *dev)
1790 {
1791 struct gfar_private *priv = netdev_priv(dev);
1792 struct gfar __iomem *regs = priv->regs;
1793 unsigned long flags;
1794 struct phy_device *phydev = priv->phydev;
1795 int new_state = 0;
1796
1797 spin_lock_irqsave(&priv->txlock, flags);
1798 if (phydev->link) {
1799 u32 tempval = gfar_read(&regs->maccfg2);
1800 u32 ecntrl = gfar_read(&regs->ecntrl);
1801
1802 /* Now we make sure that we can be in full duplex mode.
1803 * If not, we operate in half-duplex mode. */
1804 if (phydev->duplex != priv->oldduplex) {
1805 new_state = 1;
1806 if (!(phydev->duplex))
1807 tempval &= ~(MACCFG2_FULL_DUPLEX);
1808 else
1809 tempval |= MACCFG2_FULL_DUPLEX;
1810
1811 priv->oldduplex = phydev->duplex;
1812 }
1813
1814 if (phydev->speed != priv->oldspeed) {
1815 new_state = 1;
1816 switch (phydev->speed) {
1817 case 1000:
1818 tempval =
1819 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1820 break;
1821 case 100:
1822 case 10:
1823 tempval =
1824 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1825
1826 /* Reduced mode distinguishes
1827 * between 10 and 100 */
1828 if (phydev->speed == SPEED_100)
1829 ecntrl |= ECNTRL_R100;
1830 else
1831 ecntrl &= ~(ECNTRL_R100);
1832 break;
1833 default:
1834 if (netif_msg_link(priv))
1835 printk(KERN_WARNING
1836 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1837 dev->name, phydev->speed);
1838 break;
1839 }
1840
1841 priv->oldspeed = phydev->speed;
1842 }
1843
1844 gfar_write(&regs->maccfg2, tempval);
1845 gfar_write(&regs->ecntrl, ecntrl);
1846
1847 if (!priv->oldlink) {
1848 new_state = 1;
1849 priv->oldlink = 1;
1850 }
1851 } else if (priv->oldlink) {
1852 new_state = 1;
1853 priv->oldlink = 0;
1854 priv->oldspeed = 0;
1855 priv->oldduplex = -1;
1856 }
1857
1858 if (new_state && netif_msg_link(priv))
1859 phy_print_status(phydev);
1860
1861 spin_unlock_irqrestore(&priv->txlock, flags);
1862 }
1863
1864 /* Update the hash table based on the current list of multicast
1865 * addresses we subscribe to. Also, change the promiscuity of
1866 * the device based on the flags (this function is called
1867 * whenever dev->flags is changed */
1868 static void gfar_set_multi(struct net_device *dev)
1869 {
1870 struct dev_mc_list *mc_ptr;
1871 struct gfar_private *priv = netdev_priv(dev);
1872 struct gfar __iomem *regs = priv->regs;
1873 u32 tempval;
1874
1875 if(dev->flags & IFF_PROMISC) {
1876 /* Set RCTRL to PROM */
1877 tempval = gfar_read(&regs->rctrl);
1878 tempval |= RCTRL_PROM;
1879 gfar_write(&regs->rctrl, tempval);
1880 } else {
1881 /* Set RCTRL to not PROM */
1882 tempval = gfar_read(&regs->rctrl);
1883 tempval &= ~(RCTRL_PROM);
1884 gfar_write(&regs->rctrl, tempval);
1885 }
1886
1887 if(dev->flags & IFF_ALLMULTI) {
1888 /* Set the hash to rx all multicast frames */
1889 gfar_write(&regs->igaddr0, 0xffffffff);
1890 gfar_write(&regs->igaddr1, 0xffffffff);
1891 gfar_write(&regs->igaddr2, 0xffffffff);
1892 gfar_write(&regs->igaddr3, 0xffffffff);
1893 gfar_write(&regs->igaddr4, 0xffffffff);
1894 gfar_write(&regs->igaddr5, 0xffffffff);
1895 gfar_write(&regs->igaddr6, 0xffffffff);
1896 gfar_write(&regs->igaddr7, 0xffffffff);
1897 gfar_write(&regs->gaddr0, 0xffffffff);
1898 gfar_write(&regs->gaddr1, 0xffffffff);
1899 gfar_write(&regs->gaddr2, 0xffffffff);
1900 gfar_write(&regs->gaddr3, 0xffffffff);
1901 gfar_write(&regs->gaddr4, 0xffffffff);
1902 gfar_write(&regs->gaddr5, 0xffffffff);
1903 gfar_write(&regs->gaddr6, 0xffffffff);
1904 gfar_write(&regs->gaddr7, 0xffffffff);
1905 } else {
1906 int em_num;
1907 int idx;
1908
1909 /* zero out the hash */
1910 gfar_write(&regs->igaddr0, 0x0);
1911 gfar_write(&regs->igaddr1, 0x0);
1912 gfar_write(&regs->igaddr2, 0x0);
1913 gfar_write(&regs->igaddr3, 0x0);
1914 gfar_write(&regs->igaddr4, 0x0);
1915 gfar_write(&regs->igaddr5, 0x0);
1916 gfar_write(&regs->igaddr6, 0x0);
1917 gfar_write(&regs->igaddr7, 0x0);
1918 gfar_write(&regs->gaddr0, 0x0);
1919 gfar_write(&regs->gaddr1, 0x0);
1920 gfar_write(&regs->gaddr2, 0x0);
1921 gfar_write(&regs->gaddr3, 0x0);
1922 gfar_write(&regs->gaddr4, 0x0);
1923 gfar_write(&regs->gaddr5, 0x0);
1924 gfar_write(&regs->gaddr6, 0x0);
1925 gfar_write(&regs->gaddr7, 0x0);
1926
1927 /* If we have extended hash tables, we need to
1928 * clear the exact match registers to prepare for
1929 * setting them */
1930 if (priv->extended_hash) {
1931 em_num = GFAR_EM_NUM + 1;
1932 gfar_clear_exact_match(dev);
1933 idx = 1;
1934 } else {
1935 idx = 0;
1936 em_num = 0;
1937 }
1938
1939 if(dev->mc_count == 0)
1940 return;
1941
1942 /* Parse the list, and set the appropriate bits */
1943 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1944 if (idx < em_num) {
1945 gfar_set_mac_for_addr(dev, idx,
1946 mc_ptr->dmi_addr);
1947 idx++;
1948 } else
1949 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1950 }
1951 }
1952
1953 return;
1954 }
1955
1956
1957 /* Clears each of the exact match registers to zero, so they
1958 * don't interfere with normal reception */
1959 static void gfar_clear_exact_match(struct net_device *dev)
1960 {
1961 int idx;
1962 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1963
1964 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1965 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1966 }
1967
1968 /* Set the appropriate hash bit for the given addr */
1969 /* The algorithm works like so:
1970 * 1) Take the Destination Address (ie the multicast address), and
1971 * do a CRC on it (little endian), and reverse the bits of the
1972 * result.
1973 * 2) Use the 8 most significant bits as a hash into a 256-entry
1974 * table. The table is controlled through 8 32-bit registers:
1975 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1976 * gaddr7. This means that the 3 most significant bits in the
1977 * hash index which gaddr register to use, and the 5 other bits
1978 * indicate which bit (assuming an IBM numbering scheme, which
1979 * for PowerPC (tm) is usually the case) in the register holds
1980 * the entry. */
1981 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1982 {
1983 u32 tempval;
1984 struct gfar_private *priv = netdev_priv(dev);
1985 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1986 int width = priv->hash_width;
1987 u8 whichbit = (result >> (32 - width)) & 0x1f;
1988 u8 whichreg = result >> (32 - width + 5);
1989 u32 value = (1 << (31-whichbit));
1990
1991 tempval = gfar_read(priv->hash_regs[whichreg]);
1992 tempval |= value;
1993 gfar_write(priv->hash_regs[whichreg], tempval);
1994
1995 return;
1996 }
1997
1998
1999 /* There are multiple MAC Address register pairs on some controllers
2000 * This function sets the numth pair to a given address
2001 */
2002 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2003 {
2004 struct gfar_private *priv = netdev_priv(dev);
2005 int idx;
2006 char tmpbuf[MAC_ADDR_LEN];
2007 u32 tempval;
2008 u32 __iomem *macptr = &priv->regs->macstnaddr1;
2009
2010 macptr += num*2;
2011
2012 /* Now copy it into the mac registers backwards, cuz */
2013 /* little endian is silly */
2014 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2015 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2016
2017 gfar_write(macptr, *((u32 *) (tmpbuf)));
2018
2019 tempval = *((u32 *) (tmpbuf + 4));
2020
2021 gfar_write(macptr+1, tempval);
2022 }
2023
2024 /* GFAR error interrupt handler */
2025 static irqreturn_t gfar_error(int irq, void *dev_id)
2026 {
2027 struct net_device *dev = dev_id;
2028 struct gfar_private *priv = netdev_priv(dev);
2029
2030 /* Save ievent for future reference */
2031 u32 events = gfar_read(&priv->regs->ievent);
2032
2033 /* Clear IEVENT */
2034 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2035
2036 /* Magic Packet is not an error. */
2037 if ((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2038 (events & IEVENT_MAG))
2039 events &= ~IEVENT_MAG;
2040
2041 /* Hmm... */
2042 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2043 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2044 dev->name, events, gfar_read(&priv->regs->imask));
2045
2046 /* Update the error counters */
2047 if (events & IEVENT_TXE) {
2048 dev->stats.tx_errors++;
2049
2050 if (events & IEVENT_LC)
2051 dev->stats.tx_window_errors++;
2052 if (events & IEVENT_CRL)
2053 dev->stats.tx_aborted_errors++;
2054 if (events & IEVENT_XFUN) {
2055 if (netif_msg_tx_err(priv))
2056 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2057 "packet dropped.\n", dev->name);
2058 dev->stats.tx_dropped++;
2059 priv->extra_stats.tx_underrun++;
2060
2061 /* Reactivate the Tx Queues */
2062 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2063 }
2064 if (netif_msg_tx_err(priv))
2065 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2066 }
2067 if (events & IEVENT_BSY) {
2068 dev->stats.rx_errors++;
2069 priv->extra_stats.rx_bsy++;
2070
2071 gfar_receive(irq, dev_id);
2072
2073 if (netif_msg_rx_err(priv))
2074 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2075 dev->name, gfar_read(&priv->regs->rstat));
2076 }
2077 if (events & IEVENT_BABR) {
2078 dev->stats.rx_errors++;
2079 priv->extra_stats.rx_babr++;
2080
2081 if (netif_msg_rx_err(priv))
2082 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2083 }
2084 if (events & IEVENT_EBERR) {
2085 priv->extra_stats.eberr++;
2086 if (netif_msg_rx_err(priv))
2087 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2088 }
2089 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2090 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2091
2092 if (events & IEVENT_BABT) {
2093 priv->extra_stats.tx_babt++;
2094 if (netif_msg_tx_err(priv))
2095 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2096 }
2097 return IRQ_HANDLED;
2098 }
2099
2100 /* work with hotplug and coldplug */
2101 MODULE_ALIAS("platform:fsl-gianfar");
2102
2103 /* Structure for a device driver */
2104 static struct platform_driver gfar_driver = {
2105 .probe = gfar_probe,
2106 .remove = gfar_remove,
2107 .suspend = gfar_suspend,
2108 .resume = gfar_resume,
2109 .driver = {
2110 .name = "fsl-gianfar",
2111 .owner = THIS_MODULE,
2112 },
2113 };
2114
2115 static int __init gfar_init(void)
2116 {
2117 int err = gfar_mdio_init();
2118
2119 if (err)
2120 return err;
2121
2122 err = platform_driver_register(&gfar_driver);
2123
2124 if (err)
2125 gfar_mdio_exit();
2126
2127 return err;
2128 }
2129
2130 static void __exit gfar_exit(void)
2131 {
2132 platform_driver_unregister(&gfar_driver);
2133 gfar_mdio_exit();
2134 }
2135
2136 module_init(gfar_init);
2137 module_exit(gfar_exit);
2138
This page took 0.1004 seconds and 5 git commands to generate.