Merge branch 'upstream' of master.kernel.org:/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 *
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 * Gianfar: AKA Lambda Draconis, "Dragon"
20 * RA 11 31 24.2
21 * Dec +69 19 52
22 * V 3.84
23 * B-V +1.62
24 *
25 * Theory of operation
26 *
27 * The driver is initialized through platform_device. Structures which
28 * define the configuration needed by the board are defined in a
29 * board structure in arch/ppc/platforms (though I do not
30 * discount the possibility that other architectures could one
31 * day be supported.
32 *
33 * The Gianfar Ethernet Controller uses a ring of buffer
34 * descriptors. The beginning is indicated by a register
35 * pointing to the physical address of the start of the ring.
36 * The end is determined by a "wrap" bit being set in the
37 * last descriptor of the ring.
38 *
39 * When a packet is received, the RXF bit in the
40 * IEVENT register is set, triggering an interrupt when the
41 * corresponding bit in the IMASK register is also set (if
42 * interrupt coalescing is active, then the interrupt may not
43 * happen immediately, but will wait until either a set number
44 * of frames or amount of time have passed). In NAPI, the
45 * interrupt handler will signal there is work to be done, and
46 * exit. Without NAPI, the packet(s) will be handled
47 * immediately. Both methods will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
55 * skb.
56 *
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
65 */
66
67 #include <linux/kernel.h>
68 #include <linux/sched.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/platform_device.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87
88 #include <asm/io.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96
97 #include "gianfar.h"
98 #include "gianfar_mii.h"
99
100 #define TX_TIMEOUT (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
104
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
107 #else
108 #define RECEIVE(x) netif_rx(x)
109 #endif
110
111 const char gfar_driver_name[] = "Gianfar Ethernet";
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
119 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
120 static int gfar_set_mac_address(struct net_device *dev);
121 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
122 static irqreturn_t gfar_error(int irq, void *dev_id);
123 static irqreturn_t gfar_transmit(int irq, void *dev_id);
124 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
125 static void adjust_link(struct net_device *dev);
126 static void init_registers(struct net_device *dev);
127 static int init_phy(struct net_device *dev);
128 static int gfar_probe(struct platform_device *pdev);
129 static int gfar_remove(struct platform_device *pdev);
130 static void free_skb_resources(struct gfar_private *priv);
131 static void gfar_set_multi(struct net_device *dev);
132 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
133 #ifdef CONFIG_GFAR_NAPI
134 static int gfar_poll(struct net_device *dev, int *budget);
135 #endif
136 #ifdef CONFIG_NET_POLL_CONTROLLER
137 static void gfar_netpoll(struct net_device *dev);
138 #endif
139 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
140 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
141 static void gfar_vlan_rx_register(struct net_device *netdev,
142 struct vlan_group *grp);
143 static void gfar_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
144 void gfar_halt(struct net_device *dev);
145 void gfar_start(struct net_device *dev);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
148
149 extern const struct ethtool_ops gfar_ethtool_ops;
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
155 /* Returns 1 if incoming frames use an FCB */
156 static inline int gfar_uses_fcb(struct gfar_private *priv)
157 {
158 return (priv->vlan_enable || priv->rx_csum_enable);
159 }
160
161 /* Set up the ethernet device structure, private data,
162 * and anything else we need before we start */
163 static int gfar_probe(struct platform_device *pdev)
164 {
165 u32 tempval;
166 struct net_device *dev = NULL;
167 struct gfar_private *priv = NULL;
168 struct gianfar_platform_data *einfo;
169 struct resource *r;
170 int idx;
171 int err = 0;
172
173 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
174
175 if (NULL == einfo) {
176 printk(KERN_ERR "gfar %d: Missing additional data!\n",
177 pdev->id);
178
179 return -ENODEV;
180 }
181
182 /* Create an ethernet device instance */
183 dev = alloc_etherdev(sizeof (*priv));
184
185 if (NULL == dev)
186 return -ENOMEM;
187
188 priv = netdev_priv(dev);
189
190 /* Set the info in the priv to the current info */
191 priv->einfo = einfo;
192
193 /* fill out IRQ fields */
194 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
195 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
196 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
197 priv->interruptError = platform_get_irq_byname(pdev, "error");
198 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
199 goto regs_fail;
200 } else {
201 priv->interruptTransmit = platform_get_irq(pdev, 0);
202 if (priv->interruptTransmit < 0)
203 goto regs_fail;
204 }
205
206 /* get a pointer to the register memory */
207 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
208 priv->regs = ioremap(r->start, sizeof (struct gfar));
209
210 if (NULL == priv->regs) {
211 err = -ENOMEM;
212 goto regs_fail;
213 }
214
215 spin_lock_init(&priv->txlock);
216 spin_lock_init(&priv->rxlock);
217
218 platform_set_drvdata(pdev, dev);
219
220 /* Stop the DMA engine now, in case it was running before */
221 /* (The firmware could have used it, and left it running). */
222 /* To do this, we write Graceful Receive Stop and Graceful */
223 /* Transmit Stop, and then wait until the corresponding bits */
224 /* in IEVENT indicate the stops have completed. */
225 tempval = gfar_read(&priv->regs->dmactrl);
226 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
227 gfar_write(&priv->regs->dmactrl, tempval);
228
229 tempval = gfar_read(&priv->regs->dmactrl);
230 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
231 gfar_write(&priv->regs->dmactrl, tempval);
232
233 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
234 cpu_relax();
235
236 /* Reset MAC layer */
237 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
238
239 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
240 gfar_write(&priv->regs->maccfg1, tempval);
241
242 /* Initialize MACCFG2. */
243 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
244
245 /* Initialize ECNTRL */
246 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
247
248 /* Copy the station address into the dev structure, */
249 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
250
251 /* Set the dev->base_addr to the gfar reg region */
252 dev->base_addr = (unsigned long) (priv->regs);
253
254 SET_MODULE_OWNER(dev);
255 SET_NETDEV_DEV(dev, &pdev->dev);
256
257 /* Fill in the dev structure */
258 dev->open = gfar_enet_open;
259 dev->hard_start_xmit = gfar_start_xmit;
260 dev->tx_timeout = gfar_timeout;
261 dev->watchdog_timeo = TX_TIMEOUT;
262 #ifdef CONFIG_GFAR_NAPI
263 dev->poll = gfar_poll;
264 dev->weight = GFAR_DEV_WEIGHT;
265 #endif
266 #ifdef CONFIG_NET_POLL_CONTROLLER
267 dev->poll_controller = gfar_netpoll;
268 #endif
269 dev->stop = gfar_close;
270 dev->get_stats = gfar_get_stats;
271 dev->change_mtu = gfar_change_mtu;
272 dev->mtu = 1500;
273 dev->set_multicast_list = gfar_set_multi;
274
275 dev->ethtool_ops = &gfar_ethtool_ops;
276
277 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
278 priv->rx_csum_enable = 1;
279 dev->features |= NETIF_F_IP_CSUM;
280 } else
281 priv->rx_csum_enable = 0;
282
283 priv->vlgrp = NULL;
284
285 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
286 dev->vlan_rx_register = gfar_vlan_rx_register;
287 dev->vlan_rx_kill_vid = gfar_vlan_rx_kill_vid;
288
289 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
290
291 priv->vlan_enable = 1;
292 }
293
294 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
295 priv->extended_hash = 1;
296 priv->hash_width = 9;
297
298 priv->hash_regs[0] = &priv->regs->igaddr0;
299 priv->hash_regs[1] = &priv->regs->igaddr1;
300 priv->hash_regs[2] = &priv->regs->igaddr2;
301 priv->hash_regs[3] = &priv->regs->igaddr3;
302 priv->hash_regs[4] = &priv->regs->igaddr4;
303 priv->hash_regs[5] = &priv->regs->igaddr5;
304 priv->hash_regs[6] = &priv->regs->igaddr6;
305 priv->hash_regs[7] = &priv->regs->igaddr7;
306 priv->hash_regs[8] = &priv->regs->gaddr0;
307 priv->hash_regs[9] = &priv->regs->gaddr1;
308 priv->hash_regs[10] = &priv->regs->gaddr2;
309 priv->hash_regs[11] = &priv->regs->gaddr3;
310 priv->hash_regs[12] = &priv->regs->gaddr4;
311 priv->hash_regs[13] = &priv->regs->gaddr5;
312 priv->hash_regs[14] = &priv->regs->gaddr6;
313 priv->hash_regs[15] = &priv->regs->gaddr7;
314
315 } else {
316 priv->extended_hash = 0;
317 priv->hash_width = 8;
318
319 priv->hash_regs[0] = &priv->regs->gaddr0;
320 priv->hash_regs[1] = &priv->regs->gaddr1;
321 priv->hash_regs[2] = &priv->regs->gaddr2;
322 priv->hash_regs[3] = &priv->regs->gaddr3;
323 priv->hash_regs[4] = &priv->regs->gaddr4;
324 priv->hash_regs[5] = &priv->regs->gaddr5;
325 priv->hash_regs[6] = &priv->regs->gaddr6;
326 priv->hash_regs[7] = &priv->regs->gaddr7;
327 }
328
329 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
330 priv->padding = DEFAULT_PADDING;
331 else
332 priv->padding = 0;
333
334 if (dev->features & NETIF_F_IP_CSUM)
335 dev->hard_header_len += GMAC_FCB_LEN;
336
337 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
338 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
339 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
340
341 priv->txcoalescing = DEFAULT_TX_COALESCE;
342 priv->txcount = DEFAULT_TXCOUNT;
343 priv->txtime = DEFAULT_TXTIME;
344 priv->rxcoalescing = DEFAULT_RX_COALESCE;
345 priv->rxcount = DEFAULT_RXCOUNT;
346 priv->rxtime = DEFAULT_RXTIME;
347
348 /* Enable most messages by default */
349 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
350
351 err = register_netdev(dev);
352
353 if (err) {
354 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
355 dev->name);
356 goto register_fail;
357 }
358
359 /* Create all the sysfs files */
360 gfar_init_sysfs(dev);
361
362 /* Print out the device info */
363 printk(KERN_INFO DEVICE_NAME, dev->name);
364 for (idx = 0; idx < 6; idx++)
365 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
366 printk("\n");
367
368 /* Even more device info helps when determining which kernel */
369 /* provided which set of benchmarks. */
370 #ifdef CONFIG_GFAR_NAPI
371 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
372 #else
373 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
374 #endif
375 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
376 dev->name, priv->rx_ring_size, priv->tx_ring_size);
377
378 return 0;
379
380 register_fail:
381 iounmap(priv->regs);
382 regs_fail:
383 free_netdev(dev);
384 return err;
385 }
386
387 static int gfar_remove(struct platform_device *pdev)
388 {
389 struct net_device *dev = platform_get_drvdata(pdev);
390 struct gfar_private *priv = netdev_priv(dev);
391
392 platform_set_drvdata(pdev, NULL);
393
394 iounmap(priv->regs);
395 free_netdev(dev);
396
397 return 0;
398 }
399
400
401 /* Reads the controller's registers to determine what interface
402 * connects it to the PHY.
403 */
404 static phy_interface_t gfar_get_interface(struct net_device *dev)
405 {
406 struct gfar_private *priv = netdev_priv(dev);
407 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
408
409 if (ecntrl & ECNTRL_SGMII_MODE)
410 return PHY_INTERFACE_MODE_SGMII;
411
412 if (ecntrl & ECNTRL_TBI_MODE) {
413 if (ecntrl & ECNTRL_REDUCED_MODE)
414 return PHY_INTERFACE_MODE_RTBI;
415 else
416 return PHY_INTERFACE_MODE_TBI;
417 }
418
419 if (ecntrl & ECNTRL_REDUCED_MODE) {
420 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
421 return PHY_INTERFACE_MODE_RMII;
422 else
423 return PHY_INTERFACE_MODE_RGMII;
424 }
425
426 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
427 return PHY_INTERFACE_MODE_GMII;
428
429 return PHY_INTERFACE_MODE_MII;
430 }
431
432
433 /* Initializes driver's PHY state, and attaches to the PHY.
434 * Returns 0 on success.
435 */
436 static int init_phy(struct net_device *dev)
437 {
438 struct gfar_private *priv = netdev_priv(dev);
439 uint gigabit_support =
440 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
441 SUPPORTED_1000baseT_Full : 0;
442 struct phy_device *phydev;
443 char phy_id[BUS_ID_SIZE];
444 phy_interface_t interface;
445
446 priv->oldlink = 0;
447 priv->oldspeed = 0;
448 priv->oldduplex = -1;
449
450 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
451
452 interface = gfar_get_interface(dev);
453
454 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
455
456 if (IS_ERR(phydev)) {
457 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
458 return PTR_ERR(phydev);
459 }
460
461 /* Remove any features not supported by the controller */
462 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
463 phydev->advertising = phydev->supported;
464
465 priv->phydev = phydev;
466
467 return 0;
468 }
469
470 static void init_registers(struct net_device *dev)
471 {
472 struct gfar_private *priv = netdev_priv(dev);
473
474 /* Clear IEVENT */
475 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
476
477 /* Initialize IMASK */
478 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
479
480 /* Init hash registers to zero */
481 gfar_write(&priv->regs->igaddr0, 0);
482 gfar_write(&priv->regs->igaddr1, 0);
483 gfar_write(&priv->regs->igaddr2, 0);
484 gfar_write(&priv->regs->igaddr3, 0);
485 gfar_write(&priv->regs->igaddr4, 0);
486 gfar_write(&priv->regs->igaddr5, 0);
487 gfar_write(&priv->regs->igaddr6, 0);
488 gfar_write(&priv->regs->igaddr7, 0);
489
490 gfar_write(&priv->regs->gaddr0, 0);
491 gfar_write(&priv->regs->gaddr1, 0);
492 gfar_write(&priv->regs->gaddr2, 0);
493 gfar_write(&priv->regs->gaddr3, 0);
494 gfar_write(&priv->regs->gaddr4, 0);
495 gfar_write(&priv->regs->gaddr5, 0);
496 gfar_write(&priv->regs->gaddr6, 0);
497 gfar_write(&priv->regs->gaddr7, 0);
498
499 /* Zero out the rmon mib registers if it has them */
500 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
501 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
502
503 /* Mask off the CAM interrupts */
504 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
505 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
506 }
507
508 /* Initialize the max receive buffer length */
509 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
510
511 /* Initialize the Minimum Frame Length Register */
512 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
513
514 /* Assign the TBI an address which won't conflict with the PHYs */
515 gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
516 }
517
518
519 /* Halt the receive and transmit queues */
520 void gfar_halt(struct net_device *dev)
521 {
522 struct gfar_private *priv = netdev_priv(dev);
523 struct gfar __iomem *regs = priv->regs;
524 u32 tempval;
525
526 /* Mask all interrupts */
527 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
528
529 /* Clear all interrupts */
530 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
531
532 /* Stop the DMA, and wait for it to stop */
533 tempval = gfar_read(&priv->regs->dmactrl);
534 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
535 != (DMACTRL_GRS | DMACTRL_GTS)) {
536 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
537 gfar_write(&priv->regs->dmactrl, tempval);
538
539 while (!(gfar_read(&priv->regs->ievent) &
540 (IEVENT_GRSC | IEVENT_GTSC)))
541 cpu_relax();
542 }
543
544 /* Disable Rx and Tx */
545 tempval = gfar_read(&regs->maccfg1);
546 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
547 gfar_write(&regs->maccfg1, tempval);
548 }
549
550 void stop_gfar(struct net_device *dev)
551 {
552 struct gfar_private *priv = netdev_priv(dev);
553 struct gfar __iomem *regs = priv->regs;
554 unsigned long flags;
555
556 phy_stop(priv->phydev);
557
558 /* Lock it down */
559 spin_lock_irqsave(&priv->txlock, flags);
560 spin_lock(&priv->rxlock);
561
562 gfar_halt(dev);
563
564 spin_unlock(&priv->rxlock);
565 spin_unlock_irqrestore(&priv->txlock, flags);
566
567 /* Free the IRQs */
568 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
569 free_irq(priv->interruptError, dev);
570 free_irq(priv->interruptTransmit, dev);
571 free_irq(priv->interruptReceive, dev);
572 } else {
573 free_irq(priv->interruptTransmit, dev);
574 }
575
576 free_skb_resources(priv);
577
578 dma_free_coherent(NULL,
579 sizeof(struct txbd8)*priv->tx_ring_size
580 + sizeof(struct rxbd8)*priv->rx_ring_size,
581 priv->tx_bd_base,
582 gfar_read(&regs->tbase0));
583 }
584
585 /* If there are any tx skbs or rx skbs still around, free them.
586 * Then free tx_skbuff and rx_skbuff */
587 static void free_skb_resources(struct gfar_private *priv)
588 {
589 struct rxbd8 *rxbdp;
590 struct txbd8 *txbdp;
591 int i;
592
593 /* Go through all the buffer descriptors and free their data buffers */
594 txbdp = priv->tx_bd_base;
595
596 for (i = 0; i < priv->tx_ring_size; i++) {
597
598 if (priv->tx_skbuff[i]) {
599 dma_unmap_single(NULL, txbdp->bufPtr,
600 txbdp->length,
601 DMA_TO_DEVICE);
602 dev_kfree_skb_any(priv->tx_skbuff[i]);
603 priv->tx_skbuff[i] = NULL;
604 }
605 }
606
607 kfree(priv->tx_skbuff);
608
609 rxbdp = priv->rx_bd_base;
610
611 /* rx_skbuff is not guaranteed to be allocated, so only
612 * free it and its contents if it is allocated */
613 if(priv->rx_skbuff != NULL) {
614 for (i = 0; i < priv->rx_ring_size; i++) {
615 if (priv->rx_skbuff[i]) {
616 dma_unmap_single(NULL, rxbdp->bufPtr,
617 priv->rx_buffer_size,
618 DMA_FROM_DEVICE);
619
620 dev_kfree_skb_any(priv->rx_skbuff[i]);
621 priv->rx_skbuff[i] = NULL;
622 }
623
624 rxbdp->status = 0;
625 rxbdp->length = 0;
626 rxbdp->bufPtr = 0;
627
628 rxbdp++;
629 }
630
631 kfree(priv->rx_skbuff);
632 }
633 }
634
635 void gfar_start(struct net_device *dev)
636 {
637 struct gfar_private *priv = netdev_priv(dev);
638 struct gfar __iomem *regs = priv->regs;
639 u32 tempval;
640
641 /* Enable Rx and Tx in MACCFG1 */
642 tempval = gfar_read(&regs->maccfg1);
643 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
644 gfar_write(&regs->maccfg1, tempval);
645
646 /* Initialize DMACTRL to have WWR and WOP */
647 tempval = gfar_read(&priv->regs->dmactrl);
648 tempval |= DMACTRL_INIT_SETTINGS;
649 gfar_write(&priv->regs->dmactrl, tempval);
650
651 /* Make sure we aren't stopped */
652 tempval = gfar_read(&priv->regs->dmactrl);
653 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
654 gfar_write(&priv->regs->dmactrl, tempval);
655
656 /* Clear THLT/RHLT, so that the DMA starts polling now */
657 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
658 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
659
660 /* Unmask the interrupts we look for */
661 gfar_write(&regs->imask, IMASK_DEFAULT);
662 }
663
664 /* Bring the controller up and running */
665 int startup_gfar(struct net_device *dev)
666 {
667 struct txbd8 *txbdp;
668 struct rxbd8 *rxbdp;
669 dma_addr_t addr;
670 unsigned long vaddr;
671 int i;
672 struct gfar_private *priv = netdev_priv(dev);
673 struct gfar __iomem *regs = priv->regs;
674 int err = 0;
675 u32 rctrl = 0;
676 u32 attrs = 0;
677
678 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
679
680 /* Allocate memory for the buffer descriptors */
681 vaddr = (unsigned long) dma_alloc_coherent(NULL,
682 sizeof (struct txbd8) * priv->tx_ring_size +
683 sizeof (struct rxbd8) * priv->rx_ring_size,
684 &addr, GFP_KERNEL);
685
686 if (vaddr == 0) {
687 if (netif_msg_ifup(priv))
688 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
689 dev->name);
690 return -ENOMEM;
691 }
692
693 priv->tx_bd_base = (struct txbd8 *) vaddr;
694
695 /* enet DMA only understands physical addresses */
696 gfar_write(&regs->tbase0, addr);
697
698 /* Start the rx descriptor ring where the tx ring leaves off */
699 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
700 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
701 priv->rx_bd_base = (struct rxbd8 *) vaddr;
702 gfar_write(&regs->rbase0, addr);
703
704 /* Setup the skbuff rings */
705 priv->tx_skbuff =
706 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
707 priv->tx_ring_size, GFP_KERNEL);
708
709 if (NULL == priv->tx_skbuff) {
710 if (netif_msg_ifup(priv))
711 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
712 dev->name);
713 err = -ENOMEM;
714 goto tx_skb_fail;
715 }
716
717 for (i = 0; i < priv->tx_ring_size; i++)
718 priv->tx_skbuff[i] = NULL;
719
720 priv->rx_skbuff =
721 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
722 priv->rx_ring_size, GFP_KERNEL);
723
724 if (NULL == priv->rx_skbuff) {
725 if (netif_msg_ifup(priv))
726 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
727 dev->name);
728 err = -ENOMEM;
729 goto rx_skb_fail;
730 }
731
732 for (i = 0; i < priv->rx_ring_size; i++)
733 priv->rx_skbuff[i] = NULL;
734
735 /* Initialize some variables in our dev structure */
736 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
737 priv->cur_rx = priv->rx_bd_base;
738 priv->skb_curtx = priv->skb_dirtytx = 0;
739 priv->skb_currx = 0;
740
741 /* Initialize Transmit Descriptor Ring */
742 txbdp = priv->tx_bd_base;
743 for (i = 0; i < priv->tx_ring_size; i++) {
744 txbdp->status = 0;
745 txbdp->length = 0;
746 txbdp->bufPtr = 0;
747 txbdp++;
748 }
749
750 /* Set the last descriptor in the ring to indicate wrap */
751 txbdp--;
752 txbdp->status |= TXBD_WRAP;
753
754 rxbdp = priv->rx_bd_base;
755 for (i = 0; i < priv->rx_ring_size; i++) {
756 struct sk_buff *skb = NULL;
757
758 rxbdp->status = 0;
759
760 skb = gfar_new_skb(dev, rxbdp);
761
762 priv->rx_skbuff[i] = skb;
763
764 rxbdp++;
765 }
766
767 /* Set the last descriptor in the ring to wrap */
768 rxbdp--;
769 rxbdp->status |= RXBD_WRAP;
770
771 /* If the device has multiple interrupts, register for
772 * them. Otherwise, only register for the one */
773 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
774 /* Install our interrupt handlers for Error,
775 * Transmit, and Receive */
776 if (request_irq(priv->interruptError, gfar_error,
777 0, "enet_error", dev) < 0) {
778 if (netif_msg_intr(priv))
779 printk(KERN_ERR "%s: Can't get IRQ %d\n",
780 dev->name, priv->interruptError);
781
782 err = -1;
783 goto err_irq_fail;
784 }
785
786 if (request_irq(priv->interruptTransmit, gfar_transmit,
787 0, "enet_tx", dev) < 0) {
788 if (netif_msg_intr(priv))
789 printk(KERN_ERR "%s: Can't get IRQ %d\n",
790 dev->name, priv->interruptTransmit);
791
792 err = -1;
793
794 goto tx_irq_fail;
795 }
796
797 if (request_irq(priv->interruptReceive, gfar_receive,
798 0, "enet_rx", dev) < 0) {
799 if (netif_msg_intr(priv))
800 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
801 dev->name, priv->interruptReceive);
802
803 err = -1;
804 goto rx_irq_fail;
805 }
806 } else {
807 if (request_irq(priv->interruptTransmit, gfar_interrupt,
808 0, "gfar_interrupt", dev) < 0) {
809 if (netif_msg_intr(priv))
810 printk(KERN_ERR "%s: Can't get IRQ %d\n",
811 dev->name, priv->interruptError);
812
813 err = -1;
814 goto err_irq_fail;
815 }
816 }
817
818 phy_start(priv->phydev);
819
820 /* Configure the coalescing support */
821 if (priv->txcoalescing)
822 gfar_write(&regs->txic,
823 mk_ic_value(priv->txcount, priv->txtime));
824 else
825 gfar_write(&regs->txic, 0);
826
827 if (priv->rxcoalescing)
828 gfar_write(&regs->rxic,
829 mk_ic_value(priv->rxcount, priv->rxtime));
830 else
831 gfar_write(&regs->rxic, 0);
832
833 if (priv->rx_csum_enable)
834 rctrl |= RCTRL_CHECKSUMMING;
835
836 if (priv->extended_hash) {
837 rctrl |= RCTRL_EXTHASH;
838
839 gfar_clear_exact_match(dev);
840 rctrl |= RCTRL_EMEN;
841 }
842
843 if (priv->vlan_enable)
844 rctrl |= RCTRL_VLAN;
845
846 if (priv->padding) {
847 rctrl &= ~RCTRL_PAL_MASK;
848 rctrl |= RCTRL_PADDING(priv->padding);
849 }
850
851 /* Init rctrl based on our settings */
852 gfar_write(&priv->regs->rctrl, rctrl);
853
854 if (dev->features & NETIF_F_IP_CSUM)
855 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
856
857 /* Set the extraction length and index */
858 attrs = ATTRELI_EL(priv->rx_stash_size) |
859 ATTRELI_EI(priv->rx_stash_index);
860
861 gfar_write(&priv->regs->attreli, attrs);
862
863 /* Start with defaults, and add stashing or locking
864 * depending on the approprate variables */
865 attrs = ATTR_INIT_SETTINGS;
866
867 if (priv->bd_stash_en)
868 attrs |= ATTR_BDSTASH;
869
870 if (priv->rx_stash_size != 0)
871 attrs |= ATTR_BUFSTASH;
872
873 gfar_write(&priv->regs->attr, attrs);
874
875 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
876 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
877 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
878
879 /* Start the controller */
880 gfar_start(dev);
881
882 return 0;
883
884 rx_irq_fail:
885 free_irq(priv->interruptTransmit, dev);
886 tx_irq_fail:
887 free_irq(priv->interruptError, dev);
888 err_irq_fail:
889 rx_skb_fail:
890 free_skb_resources(priv);
891 tx_skb_fail:
892 dma_free_coherent(NULL,
893 sizeof(struct txbd8)*priv->tx_ring_size
894 + sizeof(struct rxbd8)*priv->rx_ring_size,
895 priv->tx_bd_base,
896 gfar_read(&regs->tbase0));
897
898 return err;
899 }
900
901 /* Called when something needs to use the ethernet device */
902 /* Returns 0 for success. */
903 static int gfar_enet_open(struct net_device *dev)
904 {
905 int err;
906
907 /* Initialize a bunch of registers */
908 init_registers(dev);
909
910 gfar_set_mac_address(dev);
911
912 err = init_phy(dev);
913
914 if(err)
915 return err;
916
917 err = startup_gfar(dev);
918
919 netif_start_queue(dev);
920
921 return err;
922 }
923
924 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
925 {
926 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
927
928 memset(fcb, 0, GMAC_FCB_LEN);
929
930 return fcb;
931 }
932
933 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
934 {
935 u8 flags = 0;
936
937 /* If we're here, it's a IP packet with a TCP or UDP
938 * payload. We set it to checksum, using a pseudo-header
939 * we provide
940 */
941 flags = TXFCB_DEFAULT;
942
943 /* Tell the controller what the protocol is */
944 /* And provide the already calculated phcs */
945 if (skb->nh.iph->protocol == IPPROTO_UDP) {
946 flags |= TXFCB_UDP;
947 fcb->phcs = skb->h.uh->check;
948 } else
949 fcb->phcs = skb->h.th->check;
950
951 /* l3os is the distance between the start of the
952 * frame (skb->data) and the start of the IP hdr.
953 * l4os is the distance between the start of the
954 * l3 hdr and the l4 hdr */
955 fcb->l3os = (u16)(skb->nh.raw - skb->data - GMAC_FCB_LEN);
956 fcb->l4os = (u16)(skb->h.raw - skb->nh.raw);
957
958 fcb->flags = flags;
959 }
960
961 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
962 {
963 fcb->flags |= TXFCB_VLN;
964 fcb->vlctl = vlan_tx_tag_get(skb);
965 }
966
967 /* This is called by the kernel when a frame is ready for transmission. */
968 /* It is pointed to by the dev->hard_start_xmit function pointer */
969 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
970 {
971 struct gfar_private *priv = netdev_priv(dev);
972 struct txfcb *fcb = NULL;
973 struct txbd8 *txbdp;
974 u16 status;
975 unsigned long flags;
976
977 /* Update transmit stats */
978 priv->stats.tx_bytes += skb->len;
979
980 /* Lock priv now */
981 spin_lock_irqsave(&priv->txlock, flags);
982
983 /* Point at the first free tx descriptor */
984 txbdp = priv->cur_tx;
985
986 /* Clear all but the WRAP status flags */
987 status = txbdp->status & TXBD_WRAP;
988
989 /* Set up checksumming */
990 if (likely((dev->features & NETIF_F_IP_CSUM)
991 && (CHECKSUM_PARTIAL == skb->ip_summed))) {
992 fcb = gfar_add_fcb(skb, txbdp);
993 status |= TXBD_TOE;
994 gfar_tx_checksum(skb, fcb);
995 }
996
997 if (priv->vlan_enable &&
998 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
999 if (unlikely(NULL == fcb)) {
1000 fcb = gfar_add_fcb(skb, txbdp);
1001 status |= TXBD_TOE;
1002 }
1003
1004 gfar_tx_vlan(skb, fcb);
1005 }
1006
1007 /* Set buffer length and pointer */
1008 txbdp->length = skb->len;
1009 txbdp->bufPtr = dma_map_single(NULL, skb->data,
1010 skb->len, DMA_TO_DEVICE);
1011
1012 /* Save the skb pointer so we can free it later */
1013 priv->tx_skbuff[priv->skb_curtx] = skb;
1014
1015 /* Update the current skb pointer (wrapping if this was the last) */
1016 priv->skb_curtx =
1017 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1018
1019 /* Flag the BD as interrupt-causing */
1020 status |= TXBD_INTERRUPT;
1021
1022 /* Flag the BD as ready to go, last in frame, and */
1023 /* in need of CRC */
1024 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1025
1026 dev->trans_start = jiffies;
1027
1028 txbdp->status = status;
1029
1030 /* If this was the last BD in the ring, the next one */
1031 /* is at the beginning of the ring */
1032 if (txbdp->status & TXBD_WRAP)
1033 txbdp = priv->tx_bd_base;
1034 else
1035 txbdp++;
1036
1037 /* If the next BD still needs to be cleaned up, then the bds
1038 are full. We need to tell the kernel to stop sending us stuff. */
1039 if (txbdp == priv->dirty_tx) {
1040 netif_stop_queue(dev);
1041
1042 priv->stats.tx_fifo_errors++;
1043 }
1044
1045 /* Update the current txbd to the next one */
1046 priv->cur_tx = txbdp;
1047
1048 /* Tell the DMA to go go go */
1049 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1050
1051 /* Unlock priv */
1052 spin_unlock_irqrestore(&priv->txlock, flags);
1053
1054 return 0;
1055 }
1056
1057 /* Stops the kernel queue, and halts the controller */
1058 static int gfar_close(struct net_device *dev)
1059 {
1060 struct gfar_private *priv = netdev_priv(dev);
1061 stop_gfar(dev);
1062
1063 /* Disconnect from the PHY */
1064 phy_disconnect(priv->phydev);
1065 priv->phydev = NULL;
1066
1067 netif_stop_queue(dev);
1068
1069 return 0;
1070 }
1071
1072 /* returns a net_device_stats structure pointer */
1073 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1074 {
1075 struct gfar_private *priv = netdev_priv(dev);
1076
1077 return &(priv->stats);
1078 }
1079
1080 /* Changes the mac address if the controller is not running. */
1081 int gfar_set_mac_address(struct net_device *dev)
1082 {
1083 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1084
1085 return 0;
1086 }
1087
1088
1089 /* Enables and disables VLAN insertion/extraction */
1090 static void gfar_vlan_rx_register(struct net_device *dev,
1091 struct vlan_group *grp)
1092 {
1093 struct gfar_private *priv = netdev_priv(dev);
1094 unsigned long flags;
1095 u32 tempval;
1096
1097 spin_lock_irqsave(&priv->rxlock, flags);
1098
1099 priv->vlgrp = grp;
1100
1101 if (grp) {
1102 /* Enable VLAN tag insertion */
1103 tempval = gfar_read(&priv->regs->tctrl);
1104 tempval |= TCTRL_VLINS;
1105
1106 gfar_write(&priv->regs->tctrl, tempval);
1107
1108 /* Enable VLAN tag extraction */
1109 tempval = gfar_read(&priv->regs->rctrl);
1110 tempval |= RCTRL_VLEX;
1111 gfar_write(&priv->regs->rctrl, tempval);
1112 } else {
1113 /* Disable VLAN tag insertion */
1114 tempval = gfar_read(&priv->regs->tctrl);
1115 tempval &= ~TCTRL_VLINS;
1116 gfar_write(&priv->regs->tctrl, tempval);
1117
1118 /* Disable VLAN tag extraction */
1119 tempval = gfar_read(&priv->regs->rctrl);
1120 tempval &= ~RCTRL_VLEX;
1121 gfar_write(&priv->regs->rctrl, tempval);
1122 }
1123
1124 spin_unlock_irqrestore(&priv->rxlock, flags);
1125 }
1126
1127
1128 static void gfar_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
1129 {
1130 struct gfar_private *priv = netdev_priv(dev);
1131 unsigned long flags;
1132
1133 spin_lock_irqsave(&priv->rxlock, flags);
1134
1135 if (priv->vlgrp)
1136 priv->vlgrp->vlan_devices[vid] = NULL;
1137
1138 spin_unlock_irqrestore(&priv->rxlock, flags);
1139 }
1140
1141
1142 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1143 {
1144 int tempsize, tempval;
1145 struct gfar_private *priv = netdev_priv(dev);
1146 int oldsize = priv->rx_buffer_size;
1147 int frame_size = new_mtu + ETH_HLEN;
1148
1149 if (priv->vlan_enable)
1150 frame_size += VLAN_ETH_HLEN;
1151
1152 if (gfar_uses_fcb(priv))
1153 frame_size += GMAC_FCB_LEN;
1154
1155 frame_size += priv->padding;
1156
1157 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1158 if (netif_msg_drv(priv))
1159 printk(KERN_ERR "%s: Invalid MTU setting\n",
1160 dev->name);
1161 return -EINVAL;
1162 }
1163
1164 tempsize =
1165 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1166 INCREMENTAL_BUFFER_SIZE;
1167
1168 /* Only stop and start the controller if it isn't already
1169 * stopped, and we changed something */
1170 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1171 stop_gfar(dev);
1172
1173 priv->rx_buffer_size = tempsize;
1174
1175 dev->mtu = new_mtu;
1176
1177 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1178 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1179
1180 /* If the mtu is larger than the max size for standard
1181 * ethernet frames (ie, a jumbo frame), then set maccfg2
1182 * to allow huge frames, and to check the length */
1183 tempval = gfar_read(&priv->regs->maccfg2);
1184
1185 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1186 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1187 else
1188 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1189
1190 gfar_write(&priv->regs->maccfg2, tempval);
1191
1192 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1193 startup_gfar(dev);
1194
1195 return 0;
1196 }
1197
1198 /* gfar_timeout gets called when a packet has not been
1199 * transmitted after a set amount of time.
1200 * For now, assume that clearing out all the structures, and
1201 * starting over will fix the problem. */
1202 static void gfar_timeout(struct net_device *dev)
1203 {
1204 struct gfar_private *priv = netdev_priv(dev);
1205
1206 priv->stats.tx_errors++;
1207
1208 if (dev->flags & IFF_UP) {
1209 stop_gfar(dev);
1210 startup_gfar(dev);
1211 }
1212
1213 netif_schedule(dev);
1214 }
1215
1216 /* Interrupt Handler for Transmit complete */
1217 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1218 {
1219 struct net_device *dev = (struct net_device *) dev_id;
1220 struct gfar_private *priv = netdev_priv(dev);
1221 struct txbd8 *bdp;
1222
1223 /* Clear IEVENT */
1224 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1225
1226 /* Lock priv */
1227 spin_lock(&priv->txlock);
1228 bdp = priv->dirty_tx;
1229 while ((bdp->status & TXBD_READY) == 0) {
1230 /* If dirty_tx and cur_tx are the same, then either the */
1231 /* ring is empty or full now (it could only be full in the beginning, */
1232 /* obviously). If it is empty, we are done. */
1233 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1234 break;
1235
1236 priv->stats.tx_packets++;
1237
1238 /* Deferred means some collisions occurred during transmit, */
1239 /* but we eventually sent the packet. */
1240 if (bdp->status & TXBD_DEF)
1241 priv->stats.collisions++;
1242
1243 /* Free the sk buffer associated with this TxBD */
1244 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1245 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1246 priv->skb_dirtytx =
1247 (priv->skb_dirtytx +
1248 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1249
1250 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1251 if (bdp->status & TXBD_WRAP)
1252 bdp = priv->tx_bd_base;
1253 else
1254 bdp++;
1255
1256 /* Move dirty_tx to be the next bd */
1257 priv->dirty_tx = bdp;
1258
1259 /* We freed a buffer, so now we can restart transmission */
1260 if (netif_queue_stopped(dev))
1261 netif_wake_queue(dev);
1262 } /* while ((bdp->status & TXBD_READY) == 0) */
1263
1264 /* If we are coalescing the interrupts, reset the timer */
1265 /* Otherwise, clear it */
1266 if (priv->txcoalescing)
1267 gfar_write(&priv->regs->txic,
1268 mk_ic_value(priv->txcount, priv->txtime));
1269 else
1270 gfar_write(&priv->regs->txic, 0);
1271
1272 spin_unlock(&priv->txlock);
1273
1274 return IRQ_HANDLED;
1275 }
1276
1277 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1278 {
1279 unsigned int alignamount;
1280 struct gfar_private *priv = netdev_priv(dev);
1281 struct sk_buff *skb = NULL;
1282 unsigned int timeout = SKB_ALLOC_TIMEOUT;
1283
1284 /* We have to allocate the skb, so keep trying till we succeed */
1285 while ((!skb) && timeout--)
1286 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1287
1288 if (NULL == skb)
1289 return NULL;
1290
1291 alignamount = RXBUF_ALIGNMENT -
1292 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1));
1293
1294 /* We need the data buffer to be aligned properly. We will reserve
1295 * as many bytes as needed to align the data properly
1296 */
1297 skb_reserve(skb, alignamount);
1298
1299 skb->dev = dev;
1300
1301 bdp->bufPtr = dma_map_single(NULL, skb->data,
1302 priv->rx_buffer_size, DMA_FROM_DEVICE);
1303
1304 bdp->length = 0;
1305
1306 /* Mark the buffer empty */
1307 bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1308
1309 return skb;
1310 }
1311
1312 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1313 {
1314 struct net_device_stats *stats = &priv->stats;
1315 struct gfar_extra_stats *estats = &priv->extra_stats;
1316
1317 /* If the packet was truncated, none of the other errors
1318 * matter */
1319 if (status & RXBD_TRUNCATED) {
1320 stats->rx_length_errors++;
1321
1322 estats->rx_trunc++;
1323
1324 return;
1325 }
1326 /* Count the errors, if there were any */
1327 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1328 stats->rx_length_errors++;
1329
1330 if (status & RXBD_LARGE)
1331 estats->rx_large++;
1332 else
1333 estats->rx_short++;
1334 }
1335 if (status & RXBD_NONOCTET) {
1336 stats->rx_frame_errors++;
1337 estats->rx_nonoctet++;
1338 }
1339 if (status & RXBD_CRCERR) {
1340 estats->rx_crcerr++;
1341 stats->rx_crc_errors++;
1342 }
1343 if (status & RXBD_OVERRUN) {
1344 estats->rx_overrun++;
1345 stats->rx_crc_errors++;
1346 }
1347 }
1348
1349 irqreturn_t gfar_receive(int irq, void *dev_id)
1350 {
1351 struct net_device *dev = (struct net_device *) dev_id;
1352 struct gfar_private *priv = netdev_priv(dev);
1353 #ifdef CONFIG_GFAR_NAPI
1354 u32 tempval;
1355 #else
1356 unsigned long flags;
1357 #endif
1358
1359 /* Clear IEVENT, so rx interrupt isn't called again
1360 * because of this interrupt */
1361 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1362
1363 /* support NAPI */
1364 #ifdef CONFIG_GFAR_NAPI
1365 if (netif_rx_schedule_prep(dev)) {
1366 tempval = gfar_read(&priv->regs->imask);
1367 tempval &= IMASK_RX_DISABLED;
1368 gfar_write(&priv->regs->imask, tempval);
1369
1370 __netif_rx_schedule(dev);
1371 } else {
1372 if (netif_msg_rx_err(priv))
1373 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1374 dev->name, gfar_read(&priv->regs->ievent),
1375 gfar_read(&priv->regs->imask));
1376 }
1377 #else
1378
1379 spin_lock_irqsave(&priv->rxlock, flags);
1380 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1381
1382 /* If we are coalescing interrupts, update the timer */
1383 /* Otherwise, clear it */
1384 if (priv->rxcoalescing)
1385 gfar_write(&priv->regs->rxic,
1386 mk_ic_value(priv->rxcount, priv->rxtime));
1387 else
1388 gfar_write(&priv->regs->rxic, 0);
1389
1390 spin_unlock_irqrestore(&priv->rxlock, flags);
1391 #endif
1392
1393 return IRQ_HANDLED;
1394 }
1395
1396 static inline int gfar_rx_vlan(struct sk_buff *skb,
1397 struct vlan_group *vlgrp, unsigned short vlctl)
1398 {
1399 #ifdef CONFIG_GFAR_NAPI
1400 return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1401 #else
1402 return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1403 #endif
1404 }
1405
1406 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1407 {
1408 /* If valid headers were found, and valid sums
1409 * were verified, then we tell the kernel that no
1410 * checksumming is necessary. Otherwise, it is */
1411 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1412 skb->ip_summed = CHECKSUM_UNNECESSARY;
1413 else
1414 skb->ip_summed = CHECKSUM_NONE;
1415 }
1416
1417
1418 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1419 {
1420 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1421
1422 /* Remove the FCB from the skb */
1423 skb_pull(skb, GMAC_FCB_LEN);
1424
1425 return fcb;
1426 }
1427
1428 /* gfar_process_frame() -- handle one incoming packet if skb
1429 * isn't NULL. */
1430 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1431 int length)
1432 {
1433 struct gfar_private *priv = netdev_priv(dev);
1434 struct rxfcb *fcb = NULL;
1435
1436 if (NULL == skb) {
1437 if (netif_msg_rx_err(priv))
1438 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1439 priv->stats.rx_dropped++;
1440 priv->extra_stats.rx_skbmissing++;
1441 } else {
1442 int ret;
1443
1444 /* Prep the skb for the packet */
1445 skb_put(skb, length);
1446
1447 /* Grab the FCB if there is one */
1448 if (gfar_uses_fcb(priv))
1449 fcb = gfar_get_fcb(skb);
1450
1451 /* Remove the padded bytes, if there are any */
1452 if (priv->padding)
1453 skb_pull(skb, priv->padding);
1454
1455 if (priv->rx_csum_enable)
1456 gfar_rx_checksum(skb, fcb);
1457
1458 /* Tell the skb what kind of packet this is */
1459 skb->protocol = eth_type_trans(skb, dev);
1460
1461 /* Send the packet up the stack */
1462 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1463 ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1464 else
1465 ret = RECEIVE(skb);
1466
1467 if (NET_RX_DROP == ret)
1468 priv->extra_stats.kernel_dropped++;
1469 }
1470
1471 return 0;
1472 }
1473
1474 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1475 * until the budget/quota has been reached. Returns the number
1476 * of frames handled
1477 */
1478 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1479 {
1480 struct rxbd8 *bdp;
1481 struct sk_buff *skb;
1482 u16 pkt_len;
1483 int howmany = 0;
1484 struct gfar_private *priv = netdev_priv(dev);
1485
1486 /* Get the first full descriptor */
1487 bdp = priv->cur_rx;
1488
1489 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1490 skb = priv->rx_skbuff[priv->skb_currx];
1491
1492 if (!(bdp->status &
1493 (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1494 | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1495 /* Increment the number of packets */
1496 priv->stats.rx_packets++;
1497 howmany++;
1498
1499 /* Remove the FCS from the packet length */
1500 pkt_len = bdp->length - 4;
1501
1502 gfar_process_frame(dev, skb, pkt_len);
1503
1504 priv->stats.rx_bytes += pkt_len;
1505 } else {
1506 count_errors(bdp->status, priv);
1507
1508 if (skb)
1509 dev_kfree_skb_any(skb);
1510
1511 priv->rx_skbuff[priv->skb_currx] = NULL;
1512 }
1513
1514 dev->last_rx = jiffies;
1515
1516 /* Clear the status flags for this buffer */
1517 bdp->status &= ~RXBD_STATS;
1518
1519 /* Add another skb for the future */
1520 skb = gfar_new_skb(dev, bdp);
1521 priv->rx_skbuff[priv->skb_currx] = skb;
1522
1523 /* Update to the next pointer */
1524 if (bdp->status & RXBD_WRAP)
1525 bdp = priv->rx_bd_base;
1526 else
1527 bdp++;
1528
1529 /* update to point at the next skb */
1530 priv->skb_currx =
1531 (priv->skb_currx +
1532 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1533
1534 }
1535
1536 /* Update the current rxbd pointer to be the next one */
1537 priv->cur_rx = bdp;
1538
1539 return howmany;
1540 }
1541
1542 #ifdef CONFIG_GFAR_NAPI
1543 static int gfar_poll(struct net_device *dev, int *budget)
1544 {
1545 int howmany;
1546 struct gfar_private *priv = netdev_priv(dev);
1547 int rx_work_limit = *budget;
1548
1549 if (rx_work_limit > dev->quota)
1550 rx_work_limit = dev->quota;
1551
1552 howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1553
1554 dev->quota -= howmany;
1555 rx_work_limit -= howmany;
1556 *budget -= howmany;
1557
1558 if (rx_work_limit > 0) {
1559 netif_rx_complete(dev);
1560
1561 /* Clear the halt bit in RSTAT */
1562 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1563
1564 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1565
1566 /* If we are coalescing interrupts, update the timer */
1567 /* Otherwise, clear it */
1568 if (priv->rxcoalescing)
1569 gfar_write(&priv->regs->rxic,
1570 mk_ic_value(priv->rxcount, priv->rxtime));
1571 else
1572 gfar_write(&priv->regs->rxic, 0);
1573 }
1574
1575 /* Return 1 if there's more work to do */
1576 return (rx_work_limit > 0) ? 0 : 1;
1577 }
1578 #endif
1579
1580 #ifdef CONFIG_NET_POLL_CONTROLLER
1581 /*
1582 * Polling 'interrupt' - used by things like netconsole to send skbs
1583 * without having to re-enable interrupts. It's not called while
1584 * the interrupt routine is executing.
1585 */
1586 static void gfar_netpoll(struct net_device *dev)
1587 {
1588 struct gfar_private *priv = netdev_priv(dev);
1589
1590 /* If the device has multiple interrupts, run tx/rx */
1591 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1592 disable_irq(priv->interruptTransmit);
1593 disable_irq(priv->interruptReceive);
1594 disable_irq(priv->interruptError);
1595 gfar_interrupt(priv->interruptTransmit, dev);
1596 enable_irq(priv->interruptError);
1597 enable_irq(priv->interruptReceive);
1598 enable_irq(priv->interruptTransmit);
1599 } else {
1600 disable_irq(priv->interruptTransmit);
1601 gfar_interrupt(priv->interruptTransmit, dev);
1602 enable_irq(priv->interruptTransmit);
1603 }
1604 }
1605 #endif
1606
1607 /* The interrupt handler for devices with one interrupt */
1608 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1609 {
1610 struct net_device *dev = dev_id;
1611 struct gfar_private *priv = netdev_priv(dev);
1612
1613 /* Save ievent for future reference */
1614 u32 events = gfar_read(&priv->regs->ievent);
1615
1616 /* Clear IEVENT */
1617 gfar_write(&priv->regs->ievent, events);
1618
1619 /* Check for reception */
1620 if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1621 gfar_receive(irq, dev_id);
1622
1623 /* Check for transmit completion */
1624 if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1625 gfar_transmit(irq, dev_id);
1626
1627 /* Update error statistics */
1628 if (events & IEVENT_TXE) {
1629 priv->stats.tx_errors++;
1630
1631 if (events & IEVENT_LC)
1632 priv->stats.tx_window_errors++;
1633 if (events & IEVENT_CRL)
1634 priv->stats.tx_aborted_errors++;
1635 if (events & IEVENT_XFUN) {
1636 if (netif_msg_tx_err(priv))
1637 printk(KERN_WARNING "%s: tx underrun. dropped packet\n", dev->name);
1638 priv->stats.tx_dropped++;
1639 priv->extra_stats.tx_underrun++;
1640
1641 /* Reactivate the Tx Queues */
1642 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1643 }
1644 }
1645 if (events & IEVENT_BSY) {
1646 priv->stats.rx_errors++;
1647 priv->extra_stats.rx_bsy++;
1648
1649 gfar_receive(irq, dev_id);
1650
1651 #ifndef CONFIG_GFAR_NAPI
1652 /* Clear the halt bit in RSTAT */
1653 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1654 #endif
1655
1656 if (netif_msg_rx_err(priv))
1657 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1658 dev->name,
1659 gfar_read(&priv->regs->rstat));
1660 }
1661 if (events & IEVENT_BABR) {
1662 priv->stats.rx_errors++;
1663 priv->extra_stats.rx_babr++;
1664
1665 if (netif_msg_rx_err(priv))
1666 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1667 }
1668 if (events & IEVENT_EBERR) {
1669 priv->extra_stats.eberr++;
1670 if (netif_msg_rx_err(priv))
1671 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1672 }
1673 if ((events & IEVENT_RXC) && (netif_msg_rx_err(priv)))
1674 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1675
1676 if (events & IEVENT_BABT) {
1677 priv->extra_stats.tx_babt++;
1678 if (netif_msg_rx_err(priv))
1679 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1680 }
1681
1682 return IRQ_HANDLED;
1683 }
1684
1685 /* Called every time the controller might need to be made
1686 * aware of new link state. The PHY code conveys this
1687 * information through variables in the phydev structure, and this
1688 * function converts those variables into the appropriate
1689 * register values, and can bring down the device if needed.
1690 */
1691 static void adjust_link(struct net_device *dev)
1692 {
1693 struct gfar_private *priv = netdev_priv(dev);
1694 struct gfar __iomem *regs = priv->regs;
1695 unsigned long flags;
1696 struct phy_device *phydev = priv->phydev;
1697 int new_state = 0;
1698
1699 spin_lock_irqsave(&priv->txlock, flags);
1700 if (phydev->link) {
1701 u32 tempval = gfar_read(&regs->maccfg2);
1702 u32 ecntrl = gfar_read(&regs->ecntrl);
1703
1704 /* Now we make sure that we can be in full duplex mode.
1705 * If not, we operate in half-duplex mode. */
1706 if (phydev->duplex != priv->oldduplex) {
1707 new_state = 1;
1708 if (!(phydev->duplex))
1709 tempval &= ~(MACCFG2_FULL_DUPLEX);
1710 else
1711 tempval |= MACCFG2_FULL_DUPLEX;
1712
1713 priv->oldduplex = phydev->duplex;
1714 }
1715
1716 if (phydev->speed != priv->oldspeed) {
1717 new_state = 1;
1718 switch (phydev->speed) {
1719 case 1000:
1720 tempval =
1721 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1722 break;
1723 case 100:
1724 case 10:
1725 tempval =
1726 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1727
1728 /* Reduced mode distinguishes
1729 * between 10 and 100 */
1730 if (phydev->speed == SPEED_100)
1731 ecntrl |= ECNTRL_R100;
1732 else
1733 ecntrl &= ~(ECNTRL_R100);
1734 break;
1735 default:
1736 if (netif_msg_link(priv))
1737 printk(KERN_WARNING
1738 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1739 dev->name, phydev->speed);
1740 break;
1741 }
1742
1743 priv->oldspeed = phydev->speed;
1744 }
1745
1746 gfar_write(&regs->maccfg2, tempval);
1747 gfar_write(&regs->ecntrl, ecntrl);
1748
1749 if (!priv->oldlink) {
1750 new_state = 1;
1751 priv->oldlink = 1;
1752 netif_schedule(dev);
1753 }
1754 } else if (priv->oldlink) {
1755 new_state = 1;
1756 priv->oldlink = 0;
1757 priv->oldspeed = 0;
1758 priv->oldduplex = -1;
1759 }
1760
1761 if (new_state && netif_msg_link(priv))
1762 phy_print_status(phydev);
1763
1764 spin_unlock_irqrestore(&priv->txlock, flags);
1765 }
1766
1767 /* Update the hash table based on the current list of multicast
1768 * addresses we subscribe to. Also, change the promiscuity of
1769 * the device based on the flags (this function is called
1770 * whenever dev->flags is changed */
1771 static void gfar_set_multi(struct net_device *dev)
1772 {
1773 struct dev_mc_list *mc_ptr;
1774 struct gfar_private *priv = netdev_priv(dev);
1775 struct gfar __iomem *regs = priv->regs;
1776 u32 tempval;
1777
1778 if(dev->flags & IFF_PROMISC) {
1779 /* Set RCTRL to PROM */
1780 tempval = gfar_read(&regs->rctrl);
1781 tempval |= RCTRL_PROM;
1782 gfar_write(&regs->rctrl, tempval);
1783 } else {
1784 /* Set RCTRL to not PROM */
1785 tempval = gfar_read(&regs->rctrl);
1786 tempval &= ~(RCTRL_PROM);
1787 gfar_write(&regs->rctrl, tempval);
1788 }
1789
1790 if(dev->flags & IFF_ALLMULTI) {
1791 /* Set the hash to rx all multicast frames */
1792 gfar_write(&regs->igaddr0, 0xffffffff);
1793 gfar_write(&regs->igaddr1, 0xffffffff);
1794 gfar_write(&regs->igaddr2, 0xffffffff);
1795 gfar_write(&regs->igaddr3, 0xffffffff);
1796 gfar_write(&regs->igaddr4, 0xffffffff);
1797 gfar_write(&regs->igaddr5, 0xffffffff);
1798 gfar_write(&regs->igaddr6, 0xffffffff);
1799 gfar_write(&regs->igaddr7, 0xffffffff);
1800 gfar_write(&regs->gaddr0, 0xffffffff);
1801 gfar_write(&regs->gaddr1, 0xffffffff);
1802 gfar_write(&regs->gaddr2, 0xffffffff);
1803 gfar_write(&regs->gaddr3, 0xffffffff);
1804 gfar_write(&regs->gaddr4, 0xffffffff);
1805 gfar_write(&regs->gaddr5, 0xffffffff);
1806 gfar_write(&regs->gaddr6, 0xffffffff);
1807 gfar_write(&regs->gaddr7, 0xffffffff);
1808 } else {
1809 int em_num;
1810 int idx;
1811
1812 /* zero out the hash */
1813 gfar_write(&regs->igaddr0, 0x0);
1814 gfar_write(&regs->igaddr1, 0x0);
1815 gfar_write(&regs->igaddr2, 0x0);
1816 gfar_write(&regs->igaddr3, 0x0);
1817 gfar_write(&regs->igaddr4, 0x0);
1818 gfar_write(&regs->igaddr5, 0x0);
1819 gfar_write(&regs->igaddr6, 0x0);
1820 gfar_write(&regs->igaddr7, 0x0);
1821 gfar_write(&regs->gaddr0, 0x0);
1822 gfar_write(&regs->gaddr1, 0x0);
1823 gfar_write(&regs->gaddr2, 0x0);
1824 gfar_write(&regs->gaddr3, 0x0);
1825 gfar_write(&regs->gaddr4, 0x0);
1826 gfar_write(&regs->gaddr5, 0x0);
1827 gfar_write(&regs->gaddr6, 0x0);
1828 gfar_write(&regs->gaddr7, 0x0);
1829
1830 /* If we have extended hash tables, we need to
1831 * clear the exact match registers to prepare for
1832 * setting them */
1833 if (priv->extended_hash) {
1834 em_num = GFAR_EM_NUM + 1;
1835 gfar_clear_exact_match(dev);
1836 idx = 1;
1837 } else {
1838 idx = 0;
1839 em_num = 0;
1840 }
1841
1842 if(dev->mc_count == 0)
1843 return;
1844
1845 /* Parse the list, and set the appropriate bits */
1846 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1847 if (idx < em_num) {
1848 gfar_set_mac_for_addr(dev, idx,
1849 mc_ptr->dmi_addr);
1850 idx++;
1851 } else
1852 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1853 }
1854 }
1855
1856 return;
1857 }
1858
1859
1860 /* Clears each of the exact match registers to zero, so they
1861 * don't interfere with normal reception */
1862 static void gfar_clear_exact_match(struct net_device *dev)
1863 {
1864 int idx;
1865 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1866
1867 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1868 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1869 }
1870
1871 /* Set the appropriate hash bit for the given addr */
1872 /* The algorithm works like so:
1873 * 1) Take the Destination Address (ie the multicast address), and
1874 * do a CRC on it (little endian), and reverse the bits of the
1875 * result.
1876 * 2) Use the 8 most significant bits as a hash into a 256-entry
1877 * table. The table is controlled through 8 32-bit registers:
1878 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1879 * gaddr7. This means that the 3 most significant bits in the
1880 * hash index which gaddr register to use, and the 5 other bits
1881 * indicate which bit (assuming an IBM numbering scheme, which
1882 * for PowerPC (tm) is usually the case) in the register holds
1883 * the entry. */
1884 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1885 {
1886 u32 tempval;
1887 struct gfar_private *priv = netdev_priv(dev);
1888 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1889 int width = priv->hash_width;
1890 u8 whichbit = (result >> (32 - width)) & 0x1f;
1891 u8 whichreg = result >> (32 - width + 5);
1892 u32 value = (1 << (31-whichbit));
1893
1894 tempval = gfar_read(priv->hash_regs[whichreg]);
1895 tempval |= value;
1896 gfar_write(priv->hash_regs[whichreg], tempval);
1897
1898 return;
1899 }
1900
1901
1902 /* There are multiple MAC Address register pairs on some controllers
1903 * This function sets the numth pair to a given address
1904 */
1905 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1906 {
1907 struct gfar_private *priv = netdev_priv(dev);
1908 int idx;
1909 char tmpbuf[MAC_ADDR_LEN];
1910 u32 tempval;
1911 u32 __iomem *macptr = &priv->regs->macstnaddr1;
1912
1913 macptr += num*2;
1914
1915 /* Now copy it into the mac registers backwards, cuz */
1916 /* little endian is silly */
1917 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1918 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1919
1920 gfar_write(macptr, *((u32 *) (tmpbuf)));
1921
1922 tempval = *((u32 *) (tmpbuf + 4));
1923
1924 gfar_write(macptr+1, tempval);
1925 }
1926
1927 /* GFAR error interrupt handler */
1928 static irqreturn_t gfar_error(int irq, void *dev_id)
1929 {
1930 struct net_device *dev = dev_id;
1931 struct gfar_private *priv = netdev_priv(dev);
1932
1933 /* Save ievent for future reference */
1934 u32 events = gfar_read(&priv->regs->ievent);
1935
1936 /* Clear IEVENT */
1937 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1938
1939 /* Hmm... */
1940 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1941 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1942 dev->name, events, gfar_read(&priv->regs->imask));
1943
1944 /* Update the error counters */
1945 if (events & IEVENT_TXE) {
1946 priv->stats.tx_errors++;
1947
1948 if (events & IEVENT_LC)
1949 priv->stats.tx_window_errors++;
1950 if (events & IEVENT_CRL)
1951 priv->stats.tx_aborted_errors++;
1952 if (events & IEVENT_XFUN) {
1953 if (netif_msg_tx_err(priv))
1954 printk(KERN_DEBUG "%s: underrun. packet dropped.\n",
1955 dev->name);
1956 priv->stats.tx_dropped++;
1957 priv->extra_stats.tx_underrun++;
1958
1959 /* Reactivate the Tx Queues */
1960 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1961 }
1962 if (netif_msg_tx_err(priv))
1963 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1964 }
1965 if (events & IEVENT_BSY) {
1966 priv->stats.rx_errors++;
1967 priv->extra_stats.rx_bsy++;
1968
1969 gfar_receive(irq, dev_id);
1970
1971 #ifndef CONFIG_GFAR_NAPI
1972 /* Clear the halt bit in RSTAT */
1973 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1974 #endif
1975
1976 if (netif_msg_rx_err(priv))
1977 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1978 dev->name,
1979 gfar_read(&priv->regs->rstat));
1980 }
1981 if (events & IEVENT_BABR) {
1982 priv->stats.rx_errors++;
1983 priv->extra_stats.rx_babr++;
1984
1985 if (netif_msg_rx_err(priv))
1986 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1987 }
1988 if (events & IEVENT_EBERR) {
1989 priv->extra_stats.eberr++;
1990 if (netif_msg_rx_err(priv))
1991 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1992 }
1993 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1994 if (netif_msg_rx_status(priv))
1995 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1996
1997 if (events & IEVENT_BABT) {
1998 priv->extra_stats.tx_babt++;
1999 if (netif_msg_tx_err(priv))
2000 printk(KERN_DEBUG "%s: babt error\n", dev->name);
2001 }
2002 return IRQ_HANDLED;
2003 }
2004
2005 /* Structure for a device driver */
2006 static struct platform_driver gfar_driver = {
2007 .probe = gfar_probe,
2008 .remove = gfar_remove,
2009 .driver = {
2010 .name = "fsl-gianfar",
2011 },
2012 };
2013
2014 static int __init gfar_init(void)
2015 {
2016 int err = gfar_mdio_init();
2017
2018 if (err)
2019 return err;
2020
2021 err = platform_driver_register(&gfar_driver);
2022
2023 if (err)
2024 gfar_mdio_exit();
2025
2026 return err;
2027 }
2028
2029 static void __exit gfar_exit(void)
2030 {
2031 platform_driver_unregister(&gfar_driver);
2032 gfar_mdio_exit();
2033 }
2034
2035 module_init(gfar_init);
2036 module_exit(gfar_exit);
2037
This page took 0.099024 seconds and 5 git commands to generate.