Merge branch 'master'
[deliverable/linux.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 *
12 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 * Gianfar: AKA Lambda Draconis, "Dragon"
20 * RA 11 31 24.2
21 * Dec +69 19 52
22 * V 3.84
23 * B-V +1.62
24 *
25 * Theory of operation
26 *
27 * The driver is initialized through platform_device. Structures which
28 * define the configuration needed by the board are defined in a
29 * board structure in arch/ppc/platforms (though I do not
30 * discount the possibility that other architectures could one
31 * day be supported.
32 *
33 * The Gianfar Ethernet Controller uses a ring of buffer
34 * descriptors. The beginning is indicated by a register
35 * pointing to the physical address of the start of the ring.
36 * The end is determined by a "wrap" bit being set in the
37 * last descriptor of the ring.
38 *
39 * When a packet is received, the RXF bit in the
40 * IEVENT register is set, triggering an interrupt when the
41 * corresponding bit in the IMASK register is also set (if
42 * interrupt coalescing is active, then the interrupt may not
43 * happen immediately, but will wait until either a set number
44 * of frames or amount of time have passed). In NAPI, the
45 * interrupt handler will signal there is work to be done, and
46 * exit. Without NAPI, the packet(s) will be handled
47 * immediately. Both methods will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
55 * skb.
56 *
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
65 */
66
67 #include <linux/config.h>
68 #include <linux/kernel.h>
69 #include <linux/sched.h>
70 #include <linux/string.h>
71 #include <linux/errno.h>
72 #include <linux/unistd.h>
73 #include <linux/slab.h>
74 #include <linux/interrupt.h>
75 #include <linux/init.h>
76 #include <linux/delay.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/if_vlan.h>
81 #include <linux/spinlock.h>
82 #include <linux/mm.h>
83 #include <linux/platform_device.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87
88 #include <asm/io.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96
97 #include "gianfar.h"
98 #include "gianfar_mii.h"
99
100 #define TX_TIMEOUT (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
104
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
107 #else
108 #define RECEIVE(x) netif_rx(x)
109 #endif
110
111 const char gfar_driver_name[] = "Gianfar Ethernet";
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
119 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
120 static int gfar_set_mac_address(struct net_device *dev);
121 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
122 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
123 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
124 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
125 static void adjust_link(struct net_device *dev);
126 static void init_registers(struct net_device *dev);
127 static int init_phy(struct net_device *dev);
128 static int gfar_probe(struct platform_device *pdev);
129 static int gfar_remove(struct platform_device *pdev);
130 static void free_skb_resources(struct gfar_private *priv);
131 static void gfar_set_multi(struct net_device *dev);
132 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
133 #ifdef CONFIG_GFAR_NAPI
134 static int gfar_poll(struct net_device *dev, int *budget);
135 #endif
136 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
137 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
138 static void gfar_vlan_rx_register(struct net_device *netdev,
139 struct vlan_group *grp);
140 static void gfar_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
141 void gfar_halt(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
145
146 extern struct ethtool_ops gfar_ethtool_ops;
147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151
152 /* Returns 1 if incoming frames use an FCB */
153 static inline int gfar_uses_fcb(struct gfar_private *priv)
154 {
155 return (priv->vlan_enable || priv->rx_csum_enable);
156 }
157
158 /* Set up the ethernet device structure, private data,
159 * and anything else we need before we start */
160 static int gfar_probe(struct platform_device *pdev)
161 {
162 u32 tempval;
163 struct net_device *dev = NULL;
164 struct gfar_private *priv = NULL;
165 struct gianfar_platform_data *einfo;
166 struct resource *r;
167 int idx;
168 int err = 0;
169
170 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
171
172 if (NULL == einfo) {
173 printk(KERN_ERR "gfar %d: Missing additional data!\n",
174 pdev->id);
175
176 return -ENODEV;
177 }
178
179 /* Create an ethernet device instance */
180 dev = alloc_etherdev(sizeof (*priv));
181
182 if (NULL == dev)
183 return -ENOMEM;
184
185 priv = netdev_priv(dev);
186
187 /* Set the info in the priv to the current info */
188 priv->einfo = einfo;
189
190 /* fill out IRQ fields */
191 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
192 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
193 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
194 priv->interruptError = platform_get_irq_byname(pdev, "error");
195 } else {
196 priv->interruptTransmit = platform_get_irq(pdev, 0);
197 }
198
199 /* get a pointer to the register memory */
200 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
201 priv->regs = (struct gfar *)
202 ioremap(r->start, sizeof (struct gfar));
203
204 if (NULL == priv->regs) {
205 err = -ENOMEM;
206 goto regs_fail;
207 }
208
209 spin_lock_init(&priv->lock);
210
211 platform_set_drvdata(pdev, dev);
212
213 /* Stop the DMA engine now, in case it was running before */
214 /* (The firmware could have used it, and left it running). */
215 /* To do this, we write Graceful Receive Stop and Graceful */
216 /* Transmit Stop, and then wait until the corresponding bits */
217 /* in IEVENT indicate the stops have completed. */
218 tempval = gfar_read(&priv->regs->dmactrl);
219 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
220 gfar_write(&priv->regs->dmactrl, tempval);
221
222 tempval = gfar_read(&priv->regs->dmactrl);
223 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
224 gfar_write(&priv->regs->dmactrl, tempval);
225
226 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
227 cpu_relax();
228
229 /* Reset MAC layer */
230 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
231
232 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
233 gfar_write(&priv->regs->maccfg1, tempval);
234
235 /* Initialize MACCFG2. */
236 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
237
238 /* Initialize ECNTRL */
239 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
240
241 /* Copy the station address into the dev structure, */
242 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
243
244 /* Set the dev->base_addr to the gfar reg region */
245 dev->base_addr = (unsigned long) (priv->regs);
246
247 SET_MODULE_OWNER(dev);
248 SET_NETDEV_DEV(dev, &pdev->dev);
249
250 /* Fill in the dev structure */
251 dev->open = gfar_enet_open;
252 dev->hard_start_xmit = gfar_start_xmit;
253 dev->tx_timeout = gfar_timeout;
254 dev->watchdog_timeo = TX_TIMEOUT;
255 #ifdef CONFIG_GFAR_NAPI
256 dev->poll = gfar_poll;
257 dev->weight = GFAR_DEV_WEIGHT;
258 #endif
259 dev->stop = gfar_close;
260 dev->get_stats = gfar_get_stats;
261 dev->change_mtu = gfar_change_mtu;
262 dev->mtu = 1500;
263 dev->set_multicast_list = gfar_set_multi;
264
265 dev->ethtool_ops = &gfar_ethtool_ops;
266
267 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
268 priv->rx_csum_enable = 1;
269 dev->features |= NETIF_F_IP_CSUM;
270 } else
271 priv->rx_csum_enable = 0;
272
273 priv->vlgrp = NULL;
274
275 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
276 dev->vlan_rx_register = gfar_vlan_rx_register;
277 dev->vlan_rx_kill_vid = gfar_vlan_rx_kill_vid;
278
279 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
280
281 priv->vlan_enable = 1;
282 }
283
284 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
285 priv->extended_hash = 1;
286 priv->hash_width = 9;
287
288 priv->hash_regs[0] = &priv->regs->igaddr0;
289 priv->hash_regs[1] = &priv->regs->igaddr1;
290 priv->hash_regs[2] = &priv->regs->igaddr2;
291 priv->hash_regs[3] = &priv->regs->igaddr3;
292 priv->hash_regs[4] = &priv->regs->igaddr4;
293 priv->hash_regs[5] = &priv->regs->igaddr5;
294 priv->hash_regs[6] = &priv->regs->igaddr6;
295 priv->hash_regs[7] = &priv->regs->igaddr7;
296 priv->hash_regs[8] = &priv->regs->gaddr0;
297 priv->hash_regs[9] = &priv->regs->gaddr1;
298 priv->hash_regs[10] = &priv->regs->gaddr2;
299 priv->hash_regs[11] = &priv->regs->gaddr3;
300 priv->hash_regs[12] = &priv->regs->gaddr4;
301 priv->hash_regs[13] = &priv->regs->gaddr5;
302 priv->hash_regs[14] = &priv->regs->gaddr6;
303 priv->hash_regs[15] = &priv->regs->gaddr7;
304
305 } else {
306 priv->extended_hash = 0;
307 priv->hash_width = 8;
308
309 priv->hash_regs[0] = &priv->regs->gaddr0;
310 priv->hash_regs[1] = &priv->regs->gaddr1;
311 priv->hash_regs[2] = &priv->regs->gaddr2;
312 priv->hash_regs[3] = &priv->regs->gaddr3;
313 priv->hash_regs[4] = &priv->regs->gaddr4;
314 priv->hash_regs[5] = &priv->regs->gaddr5;
315 priv->hash_regs[6] = &priv->regs->gaddr6;
316 priv->hash_regs[7] = &priv->regs->gaddr7;
317 }
318
319 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
320 priv->padding = DEFAULT_PADDING;
321 else
322 priv->padding = 0;
323
324 if (dev->features & NETIF_F_IP_CSUM)
325 dev->hard_header_len += GMAC_FCB_LEN;
326
327 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
328 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
329 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
330
331 priv->txcoalescing = DEFAULT_TX_COALESCE;
332 priv->txcount = DEFAULT_TXCOUNT;
333 priv->txtime = DEFAULT_TXTIME;
334 priv->rxcoalescing = DEFAULT_RX_COALESCE;
335 priv->rxcount = DEFAULT_RXCOUNT;
336 priv->rxtime = DEFAULT_RXTIME;
337
338 /* Enable most messages by default */
339 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
340
341 err = register_netdev(dev);
342
343 if (err) {
344 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
345 dev->name);
346 goto register_fail;
347 }
348
349 /* Create all the sysfs files */
350 gfar_init_sysfs(dev);
351
352 /* Print out the device info */
353 printk(KERN_INFO DEVICE_NAME, dev->name);
354 for (idx = 0; idx < 6; idx++)
355 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
356 printk("\n");
357
358 /* Even more device info helps when determining which kernel */
359 /* provided which set of benchmarks. */
360 #ifdef CONFIG_GFAR_NAPI
361 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
362 #else
363 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
364 #endif
365 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
366 dev->name, priv->rx_ring_size, priv->tx_ring_size);
367
368 return 0;
369
370 register_fail:
371 iounmap((void *) priv->regs);
372 regs_fail:
373 free_netdev(dev);
374 return err;
375 }
376
377 static int gfar_remove(struct platform_device *pdev)
378 {
379 struct net_device *dev = platform_get_drvdata(pdev);
380 struct gfar_private *priv = netdev_priv(dev);
381
382 platform_set_drvdata(pdev, NULL);
383
384 iounmap((void *) priv->regs);
385 free_netdev(dev);
386
387 return 0;
388 }
389
390
391 /* Initializes driver's PHY state, and attaches to the PHY.
392 * Returns 0 on success.
393 */
394 static int init_phy(struct net_device *dev)
395 {
396 struct gfar_private *priv = netdev_priv(dev);
397 uint gigabit_support =
398 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
399 SUPPORTED_1000baseT_Full : 0;
400 struct phy_device *phydev;
401
402 priv->oldlink = 0;
403 priv->oldspeed = 0;
404 priv->oldduplex = -1;
405
406 phydev = phy_connect(dev, priv->einfo->bus_id, &adjust_link, 0);
407
408 if (IS_ERR(phydev)) {
409 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
410 return PTR_ERR(phydev);
411 }
412
413 /* Remove any features not supported by the controller */
414 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
415 phydev->advertising = phydev->supported;
416
417 priv->phydev = phydev;
418
419 return 0;
420 }
421
422 static void init_registers(struct net_device *dev)
423 {
424 struct gfar_private *priv = netdev_priv(dev);
425
426 /* Clear IEVENT */
427 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
428
429 /* Initialize IMASK */
430 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
431
432 /* Init hash registers to zero */
433 gfar_write(&priv->regs->igaddr0, 0);
434 gfar_write(&priv->regs->igaddr1, 0);
435 gfar_write(&priv->regs->igaddr2, 0);
436 gfar_write(&priv->regs->igaddr3, 0);
437 gfar_write(&priv->regs->igaddr4, 0);
438 gfar_write(&priv->regs->igaddr5, 0);
439 gfar_write(&priv->regs->igaddr6, 0);
440 gfar_write(&priv->regs->igaddr7, 0);
441
442 gfar_write(&priv->regs->gaddr0, 0);
443 gfar_write(&priv->regs->gaddr1, 0);
444 gfar_write(&priv->regs->gaddr2, 0);
445 gfar_write(&priv->regs->gaddr3, 0);
446 gfar_write(&priv->regs->gaddr4, 0);
447 gfar_write(&priv->regs->gaddr5, 0);
448 gfar_write(&priv->regs->gaddr6, 0);
449 gfar_write(&priv->regs->gaddr7, 0);
450
451 /* Zero out the rmon mib registers if it has them */
452 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
453 memset((void *) &(priv->regs->rmon), 0,
454 sizeof (struct rmon_mib));
455
456 /* Mask off the CAM interrupts */
457 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
458 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
459 }
460
461 /* Initialize the max receive buffer length */
462 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
463
464 /* Initialize the Minimum Frame Length Register */
465 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
466
467 /* Assign the TBI an address which won't conflict with the PHYs */
468 gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
469 }
470
471
472 /* Halt the receive and transmit queues */
473 void gfar_halt(struct net_device *dev)
474 {
475 struct gfar_private *priv = netdev_priv(dev);
476 struct gfar *regs = priv->regs;
477 u32 tempval;
478
479 /* Mask all interrupts */
480 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
481
482 /* Clear all interrupts */
483 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
484
485 /* Stop the DMA, and wait for it to stop */
486 tempval = gfar_read(&priv->regs->dmactrl);
487 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
488 != (DMACTRL_GRS | DMACTRL_GTS)) {
489 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
490 gfar_write(&priv->regs->dmactrl, tempval);
491
492 while (!(gfar_read(&priv->regs->ievent) &
493 (IEVENT_GRSC | IEVENT_GTSC)))
494 cpu_relax();
495 }
496
497 /* Disable Rx and Tx */
498 tempval = gfar_read(&regs->maccfg1);
499 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
500 gfar_write(&regs->maccfg1, tempval);
501 }
502
503 void stop_gfar(struct net_device *dev)
504 {
505 struct gfar_private *priv = netdev_priv(dev);
506 struct gfar *regs = priv->regs;
507 unsigned long flags;
508
509 phy_stop(priv->phydev);
510
511 /* Lock it down */
512 spin_lock_irqsave(&priv->lock, flags);
513
514 gfar_halt(dev);
515
516 spin_unlock_irqrestore(&priv->lock, flags);
517
518 /* Free the IRQs */
519 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
520 free_irq(priv->interruptError, dev);
521 free_irq(priv->interruptTransmit, dev);
522 free_irq(priv->interruptReceive, dev);
523 } else {
524 free_irq(priv->interruptTransmit, dev);
525 }
526
527 free_skb_resources(priv);
528
529 dma_free_coherent(NULL,
530 sizeof(struct txbd8)*priv->tx_ring_size
531 + sizeof(struct rxbd8)*priv->rx_ring_size,
532 priv->tx_bd_base,
533 gfar_read(&regs->tbase0));
534 }
535
536 /* If there are any tx skbs or rx skbs still around, free them.
537 * Then free tx_skbuff and rx_skbuff */
538 static void free_skb_resources(struct gfar_private *priv)
539 {
540 struct rxbd8 *rxbdp;
541 struct txbd8 *txbdp;
542 int i;
543
544 /* Go through all the buffer descriptors and free their data buffers */
545 txbdp = priv->tx_bd_base;
546
547 for (i = 0; i < priv->tx_ring_size; i++) {
548
549 if (priv->tx_skbuff[i]) {
550 dma_unmap_single(NULL, txbdp->bufPtr,
551 txbdp->length,
552 DMA_TO_DEVICE);
553 dev_kfree_skb_any(priv->tx_skbuff[i]);
554 priv->tx_skbuff[i] = NULL;
555 }
556 }
557
558 kfree(priv->tx_skbuff);
559
560 rxbdp = priv->rx_bd_base;
561
562 /* rx_skbuff is not guaranteed to be allocated, so only
563 * free it and its contents if it is allocated */
564 if(priv->rx_skbuff != NULL) {
565 for (i = 0; i < priv->rx_ring_size; i++) {
566 if (priv->rx_skbuff[i]) {
567 dma_unmap_single(NULL, rxbdp->bufPtr,
568 priv->rx_buffer_size,
569 DMA_FROM_DEVICE);
570
571 dev_kfree_skb_any(priv->rx_skbuff[i]);
572 priv->rx_skbuff[i] = NULL;
573 }
574
575 rxbdp->status = 0;
576 rxbdp->length = 0;
577 rxbdp->bufPtr = 0;
578
579 rxbdp++;
580 }
581
582 kfree(priv->rx_skbuff);
583 }
584 }
585
586 void gfar_start(struct net_device *dev)
587 {
588 struct gfar_private *priv = netdev_priv(dev);
589 struct gfar *regs = priv->regs;
590 u32 tempval;
591
592 /* Enable Rx and Tx in MACCFG1 */
593 tempval = gfar_read(&regs->maccfg1);
594 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
595 gfar_write(&regs->maccfg1, tempval);
596
597 /* Initialize DMACTRL to have WWR and WOP */
598 tempval = gfar_read(&priv->regs->dmactrl);
599 tempval |= DMACTRL_INIT_SETTINGS;
600 gfar_write(&priv->regs->dmactrl, tempval);
601
602 /* Clear THLT, so that the DMA starts polling now */
603 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
604
605 /* Make sure we aren't stopped */
606 tempval = gfar_read(&priv->regs->dmactrl);
607 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
608 gfar_write(&priv->regs->dmactrl, tempval);
609
610 /* Unmask the interrupts we look for */
611 gfar_write(&regs->imask, IMASK_DEFAULT);
612 }
613
614 /* Bring the controller up and running */
615 int startup_gfar(struct net_device *dev)
616 {
617 struct txbd8 *txbdp;
618 struct rxbd8 *rxbdp;
619 dma_addr_t addr;
620 unsigned long vaddr;
621 int i;
622 struct gfar_private *priv = netdev_priv(dev);
623 struct gfar *regs = priv->regs;
624 int err = 0;
625 u32 rctrl = 0;
626 u32 attrs = 0;
627
628 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
629
630 /* Allocate memory for the buffer descriptors */
631 vaddr = (unsigned long) dma_alloc_coherent(NULL,
632 sizeof (struct txbd8) * priv->tx_ring_size +
633 sizeof (struct rxbd8) * priv->rx_ring_size,
634 &addr, GFP_KERNEL);
635
636 if (vaddr == 0) {
637 if (netif_msg_ifup(priv))
638 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
639 dev->name);
640 return -ENOMEM;
641 }
642
643 priv->tx_bd_base = (struct txbd8 *) vaddr;
644
645 /* enet DMA only understands physical addresses */
646 gfar_write(&regs->tbase0, addr);
647
648 /* Start the rx descriptor ring where the tx ring leaves off */
649 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
650 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
651 priv->rx_bd_base = (struct rxbd8 *) vaddr;
652 gfar_write(&regs->rbase0, addr);
653
654 /* Setup the skbuff rings */
655 priv->tx_skbuff =
656 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
657 priv->tx_ring_size, GFP_KERNEL);
658
659 if (NULL == priv->tx_skbuff) {
660 if (netif_msg_ifup(priv))
661 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
662 dev->name);
663 err = -ENOMEM;
664 goto tx_skb_fail;
665 }
666
667 for (i = 0; i < priv->tx_ring_size; i++)
668 priv->tx_skbuff[i] = NULL;
669
670 priv->rx_skbuff =
671 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
672 priv->rx_ring_size, GFP_KERNEL);
673
674 if (NULL == priv->rx_skbuff) {
675 if (netif_msg_ifup(priv))
676 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
677 dev->name);
678 err = -ENOMEM;
679 goto rx_skb_fail;
680 }
681
682 for (i = 0; i < priv->rx_ring_size; i++)
683 priv->rx_skbuff[i] = NULL;
684
685 /* Initialize some variables in our dev structure */
686 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
687 priv->cur_rx = priv->rx_bd_base;
688 priv->skb_curtx = priv->skb_dirtytx = 0;
689 priv->skb_currx = 0;
690
691 /* Initialize Transmit Descriptor Ring */
692 txbdp = priv->tx_bd_base;
693 for (i = 0; i < priv->tx_ring_size; i++) {
694 txbdp->status = 0;
695 txbdp->length = 0;
696 txbdp->bufPtr = 0;
697 txbdp++;
698 }
699
700 /* Set the last descriptor in the ring to indicate wrap */
701 txbdp--;
702 txbdp->status |= TXBD_WRAP;
703
704 rxbdp = priv->rx_bd_base;
705 for (i = 0; i < priv->rx_ring_size; i++) {
706 struct sk_buff *skb = NULL;
707
708 rxbdp->status = 0;
709
710 skb = gfar_new_skb(dev, rxbdp);
711
712 priv->rx_skbuff[i] = skb;
713
714 rxbdp++;
715 }
716
717 /* Set the last descriptor in the ring to wrap */
718 rxbdp--;
719 rxbdp->status |= RXBD_WRAP;
720
721 /* If the device has multiple interrupts, register for
722 * them. Otherwise, only register for the one */
723 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
724 /* Install our interrupt handlers for Error,
725 * Transmit, and Receive */
726 if (request_irq(priv->interruptError, gfar_error,
727 0, "enet_error", dev) < 0) {
728 if (netif_msg_intr(priv))
729 printk(KERN_ERR "%s: Can't get IRQ %d\n",
730 dev->name, priv->interruptError);
731
732 err = -1;
733 goto err_irq_fail;
734 }
735
736 if (request_irq(priv->interruptTransmit, gfar_transmit,
737 0, "enet_tx", dev) < 0) {
738 if (netif_msg_intr(priv))
739 printk(KERN_ERR "%s: Can't get IRQ %d\n",
740 dev->name, priv->interruptTransmit);
741
742 err = -1;
743
744 goto tx_irq_fail;
745 }
746
747 if (request_irq(priv->interruptReceive, gfar_receive,
748 0, "enet_rx", dev) < 0) {
749 if (netif_msg_intr(priv))
750 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
751 dev->name, priv->interruptReceive);
752
753 err = -1;
754 goto rx_irq_fail;
755 }
756 } else {
757 if (request_irq(priv->interruptTransmit, gfar_interrupt,
758 0, "gfar_interrupt", dev) < 0) {
759 if (netif_msg_intr(priv))
760 printk(KERN_ERR "%s: Can't get IRQ %d\n",
761 dev->name, priv->interruptError);
762
763 err = -1;
764 goto err_irq_fail;
765 }
766 }
767
768 phy_start(priv->phydev);
769
770 /* Configure the coalescing support */
771 if (priv->txcoalescing)
772 gfar_write(&regs->txic,
773 mk_ic_value(priv->txcount, priv->txtime));
774 else
775 gfar_write(&regs->txic, 0);
776
777 if (priv->rxcoalescing)
778 gfar_write(&regs->rxic,
779 mk_ic_value(priv->rxcount, priv->rxtime));
780 else
781 gfar_write(&regs->rxic, 0);
782
783 if (priv->rx_csum_enable)
784 rctrl |= RCTRL_CHECKSUMMING;
785
786 if (priv->extended_hash) {
787 rctrl |= RCTRL_EXTHASH;
788
789 gfar_clear_exact_match(dev);
790 rctrl |= RCTRL_EMEN;
791 }
792
793 if (priv->vlan_enable)
794 rctrl |= RCTRL_VLAN;
795
796 if (priv->padding) {
797 rctrl &= ~RCTRL_PAL_MASK;
798 rctrl |= RCTRL_PADDING(priv->padding);
799 }
800
801 /* Init rctrl based on our settings */
802 gfar_write(&priv->regs->rctrl, rctrl);
803
804 if (dev->features & NETIF_F_IP_CSUM)
805 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
806
807 /* Set the extraction length and index */
808 attrs = ATTRELI_EL(priv->rx_stash_size) |
809 ATTRELI_EI(priv->rx_stash_index);
810
811 gfar_write(&priv->regs->attreli, attrs);
812
813 /* Start with defaults, and add stashing or locking
814 * depending on the approprate variables */
815 attrs = ATTR_INIT_SETTINGS;
816
817 if (priv->bd_stash_en)
818 attrs |= ATTR_BDSTASH;
819
820 if (priv->rx_stash_size != 0)
821 attrs |= ATTR_BUFSTASH;
822
823 gfar_write(&priv->regs->attr, attrs);
824
825 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
826 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
827 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
828
829 /* Start the controller */
830 gfar_start(dev);
831
832 return 0;
833
834 rx_irq_fail:
835 free_irq(priv->interruptTransmit, dev);
836 tx_irq_fail:
837 free_irq(priv->interruptError, dev);
838 err_irq_fail:
839 rx_skb_fail:
840 free_skb_resources(priv);
841 tx_skb_fail:
842 dma_free_coherent(NULL,
843 sizeof(struct txbd8)*priv->tx_ring_size
844 + sizeof(struct rxbd8)*priv->rx_ring_size,
845 priv->tx_bd_base,
846 gfar_read(&regs->tbase0));
847
848 return err;
849 }
850
851 /* Called when something needs to use the ethernet device */
852 /* Returns 0 for success. */
853 static int gfar_enet_open(struct net_device *dev)
854 {
855 int err;
856
857 /* Initialize a bunch of registers */
858 init_registers(dev);
859
860 gfar_set_mac_address(dev);
861
862 err = init_phy(dev);
863
864 if(err)
865 return err;
866
867 err = startup_gfar(dev);
868
869 netif_start_queue(dev);
870
871 return err;
872 }
873
874 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
875 {
876 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
877
878 memset(fcb, 0, GMAC_FCB_LEN);
879
880 return fcb;
881 }
882
883 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
884 {
885 u8 flags = 0;
886
887 /* If we're here, it's a IP packet with a TCP or UDP
888 * payload. We set it to checksum, using a pseudo-header
889 * we provide
890 */
891 flags = TXFCB_DEFAULT;
892
893 /* Tell the controller what the protocol is */
894 /* And provide the already calculated phcs */
895 if (skb->nh.iph->protocol == IPPROTO_UDP) {
896 flags |= TXFCB_UDP;
897 fcb->phcs = skb->h.uh->check;
898 } else
899 fcb->phcs = skb->h.th->check;
900
901 /* l3os is the distance between the start of the
902 * frame (skb->data) and the start of the IP hdr.
903 * l4os is the distance between the start of the
904 * l3 hdr and the l4 hdr */
905 fcb->l3os = (u16)(skb->nh.raw - skb->data - GMAC_FCB_LEN);
906 fcb->l4os = (u16)(skb->h.raw - skb->nh.raw);
907
908 fcb->flags = flags;
909 }
910
911 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
912 {
913 fcb->flags |= TXFCB_VLN;
914 fcb->vlctl = vlan_tx_tag_get(skb);
915 }
916
917 /* This is called by the kernel when a frame is ready for transmission. */
918 /* It is pointed to by the dev->hard_start_xmit function pointer */
919 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
920 {
921 struct gfar_private *priv = netdev_priv(dev);
922 struct txfcb *fcb = NULL;
923 struct txbd8 *txbdp;
924 u16 status;
925
926 /* Update transmit stats */
927 priv->stats.tx_bytes += skb->len;
928
929 /* Lock priv now */
930 spin_lock_irq(&priv->lock);
931
932 /* Point at the first free tx descriptor */
933 txbdp = priv->cur_tx;
934
935 /* Clear all but the WRAP status flags */
936 status = txbdp->status & TXBD_WRAP;
937
938 /* Set up checksumming */
939 if (likely((dev->features & NETIF_F_IP_CSUM)
940 && (CHECKSUM_HW == skb->ip_summed))) {
941 fcb = gfar_add_fcb(skb, txbdp);
942 status |= TXBD_TOE;
943 gfar_tx_checksum(skb, fcb);
944 }
945
946 if (priv->vlan_enable &&
947 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
948 if (unlikely(NULL == fcb)) {
949 fcb = gfar_add_fcb(skb, txbdp);
950 status |= TXBD_TOE;
951 }
952
953 gfar_tx_vlan(skb, fcb);
954 }
955
956 /* Set buffer length and pointer */
957 txbdp->length = skb->len;
958 txbdp->bufPtr = dma_map_single(NULL, skb->data,
959 skb->len, DMA_TO_DEVICE);
960
961 /* Save the skb pointer so we can free it later */
962 priv->tx_skbuff[priv->skb_curtx] = skb;
963
964 /* Update the current skb pointer (wrapping if this was the last) */
965 priv->skb_curtx =
966 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
967
968 /* Flag the BD as interrupt-causing */
969 status |= TXBD_INTERRUPT;
970
971 /* Flag the BD as ready to go, last in frame, and */
972 /* in need of CRC */
973 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
974
975 dev->trans_start = jiffies;
976
977 txbdp->status = status;
978
979 /* If this was the last BD in the ring, the next one */
980 /* is at the beginning of the ring */
981 if (txbdp->status & TXBD_WRAP)
982 txbdp = priv->tx_bd_base;
983 else
984 txbdp++;
985
986 /* If the next BD still needs to be cleaned up, then the bds
987 are full. We need to tell the kernel to stop sending us stuff. */
988 if (txbdp == priv->dirty_tx) {
989 netif_stop_queue(dev);
990
991 priv->stats.tx_fifo_errors++;
992 }
993
994 /* Update the current txbd to the next one */
995 priv->cur_tx = txbdp;
996
997 /* Tell the DMA to go go go */
998 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
999
1000 /* Unlock priv */
1001 spin_unlock_irq(&priv->lock);
1002
1003 return 0;
1004 }
1005
1006 /* Stops the kernel queue, and halts the controller */
1007 static int gfar_close(struct net_device *dev)
1008 {
1009 struct gfar_private *priv = netdev_priv(dev);
1010 stop_gfar(dev);
1011
1012 /* Disconnect from the PHY */
1013 phy_disconnect(priv->phydev);
1014 priv->phydev = NULL;
1015
1016 netif_stop_queue(dev);
1017
1018 return 0;
1019 }
1020
1021 /* returns a net_device_stats structure pointer */
1022 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1023 {
1024 struct gfar_private *priv = netdev_priv(dev);
1025
1026 return &(priv->stats);
1027 }
1028
1029 /* Changes the mac address if the controller is not running. */
1030 int gfar_set_mac_address(struct net_device *dev)
1031 {
1032 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1033
1034 return 0;
1035 }
1036
1037
1038 /* Enables and disables VLAN insertion/extraction */
1039 static void gfar_vlan_rx_register(struct net_device *dev,
1040 struct vlan_group *grp)
1041 {
1042 struct gfar_private *priv = netdev_priv(dev);
1043 unsigned long flags;
1044 u32 tempval;
1045
1046 spin_lock_irqsave(&priv->lock, flags);
1047
1048 priv->vlgrp = grp;
1049
1050 if (grp) {
1051 /* Enable VLAN tag insertion */
1052 tempval = gfar_read(&priv->regs->tctrl);
1053 tempval |= TCTRL_VLINS;
1054
1055 gfar_write(&priv->regs->tctrl, tempval);
1056
1057 /* Enable VLAN tag extraction */
1058 tempval = gfar_read(&priv->regs->rctrl);
1059 tempval |= RCTRL_VLEX;
1060 gfar_write(&priv->regs->rctrl, tempval);
1061 } else {
1062 /* Disable VLAN tag insertion */
1063 tempval = gfar_read(&priv->regs->tctrl);
1064 tempval &= ~TCTRL_VLINS;
1065 gfar_write(&priv->regs->tctrl, tempval);
1066
1067 /* Disable VLAN tag extraction */
1068 tempval = gfar_read(&priv->regs->rctrl);
1069 tempval &= ~RCTRL_VLEX;
1070 gfar_write(&priv->regs->rctrl, tempval);
1071 }
1072
1073 spin_unlock_irqrestore(&priv->lock, flags);
1074 }
1075
1076
1077 static void gfar_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
1078 {
1079 struct gfar_private *priv = netdev_priv(dev);
1080 unsigned long flags;
1081
1082 spin_lock_irqsave(&priv->lock, flags);
1083
1084 if (priv->vlgrp)
1085 priv->vlgrp->vlan_devices[vid] = NULL;
1086
1087 spin_unlock_irqrestore(&priv->lock, flags);
1088 }
1089
1090
1091 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1092 {
1093 int tempsize, tempval;
1094 struct gfar_private *priv = netdev_priv(dev);
1095 int oldsize = priv->rx_buffer_size;
1096 int frame_size = new_mtu + ETH_HLEN;
1097
1098 if (priv->vlan_enable)
1099 frame_size += VLAN_ETH_HLEN;
1100
1101 if (gfar_uses_fcb(priv))
1102 frame_size += GMAC_FCB_LEN;
1103
1104 frame_size += priv->padding;
1105
1106 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1107 if (netif_msg_drv(priv))
1108 printk(KERN_ERR "%s: Invalid MTU setting\n",
1109 dev->name);
1110 return -EINVAL;
1111 }
1112
1113 tempsize =
1114 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1115 INCREMENTAL_BUFFER_SIZE;
1116
1117 /* Only stop and start the controller if it isn't already
1118 * stopped, and we changed something */
1119 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1120 stop_gfar(dev);
1121
1122 priv->rx_buffer_size = tempsize;
1123
1124 dev->mtu = new_mtu;
1125
1126 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1127 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1128
1129 /* If the mtu is larger than the max size for standard
1130 * ethernet frames (ie, a jumbo frame), then set maccfg2
1131 * to allow huge frames, and to check the length */
1132 tempval = gfar_read(&priv->regs->maccfg2);
1133
1134 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1135 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1136 else
1137 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1138
1139 gfar_write(&priv->regs->maccfg2, tempval);
1140
1141 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1142 startup_gfar(dev);
1143
1144 return 0;
1145 }
1146
1147 /* gfar_timeout gets called when a packet has not been
1148 * transmitted after a set amount of time.
1149 * For now, assume that clearing out all the structures, and
1150 * starting over will fix the problem. */
1151 static void gfar_timeout(struct net_device *dev)
1152 {
1153 struct gfar_private *priv = netdev_priv(dev);
1154
1155 priv->stats.tx_errors++;
1156
1157 if (dev->flags & IFF_UP) {
1158 stop_gfar(dev);
1159 startup_gfar(dev);
1160 }
1161
1162 netif_schedule(dev);
1163 }
1164
1165 /* Interrupt Handler for Transmit complete */
1166 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
1167 {
1168 struct net_device *dev = (struct net_device *) dev_id;
1169 struct gfar_private *priv = netdev_priv(dev);
1170 struct txbd8 *bdp;
1171
1172 /* Clear IEVENT */
1173 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1174
1175 /* Lock priv */
1176 spin_lock(&priv->lock);
1177 bdp = priv->dirty_tx;
1178 while ((bdp->status & TXBD_READY) == 0) {
1179 /* If dirty_tx and cur_tx are the same, then either the */
1180 /* ring is empty or full now (it could only be full in the beginning, */
1181 /* obviously). If it is empty, we are done. */
1182 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1183 break;
1184
1185 priv->stats.tx_packets++;
1186
1187 /* Deferred means some collisions occurred during transmit, */
1188 /* but we eventually sent the packet. */
1189 if (bdp->status & TXBD_DEF)
1190 priv->stats.collisions++;
1191
1192 /* Free the sk buffer associated with this TxBD */
1193 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1194 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1195 priv->skb_dirtytx =
1196 (priv->skb_dirtytx +
1197 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1198
1199 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1200 if (bdp->status & TXBD_WRAP)
1201 bdp = priv->tx_bd_base;
1202 else
1203 bdp++;
1204
1205 /* Move dirty_tx to be the next bd */
1206 priv->dirty_tx = bdp;
1207
1208 /* We freed a buffer, so now we can restart transmission */
1209 if (netif_queue_stopped(dev))
1210 netif_wake_queue(dev);
1211 } /* while ((bdp->status & TXBD_READY) == 0) */
1212
1213 /* If we are coalescing the interrupts, reset the timer */
1214 /* Otherwise, clear it */
1215 if (priv->txcoalescing)
1216 gfar_write(&priv->regs->txic,
1217 mk_ic_value(priv->txcount, priv->txtime));
1218 else
1219 gfar_write(&priv->regs->txic, 0);
1220
1221 spin_unlock(&priv->lock);
1222
1223 return IRQ_HANDLED;
1224 }
1225
1226 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1227 {
1228 unsigned int alignamount;
1229 struct gfar_private *priv = netdev_priv(dev);
1230 struct sk_buff *skb = NULL;
1231 unsigned int timeout = SKB_ALLOC_TIMEOUT;
1232
1233 /* We have to allocate the skb, so keep trying till we succeed */
1234 while ((!skb) && timeout--)
1235 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1236
1237 if (NULL == skb)
1238 return NULL;
1239
1240 alignamount = RXBUF_ALIGNMENT -
1241 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1));
1242
1243 /* We need the data buffer to be aligned properly. We will reserve
1244 * as many bytes as needed to align the data properly
1245 */
1246 skb_reserve(skb, alignamount);
1247
1248 skb->dev = dev;
1249
1250 bdp->bufPtr = dma_map_single(NULL, skb->data,
1251 priv->rx_buffer_size, DMA_FROM_DEVICE);
1252
1253 bdp->length = 0;
1254
1255 /* Mark the buffer empty */
1256 bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1257
1258 return skb;
1259 }
1260
1261 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1262 {
1263 struct net_device_stats *stats = &priv->stats;
1264 struct gfar_extra_stats *estats = &priv->extra_stats;
1265
1266 /* If the packet was truncated, none of the other errors
1267 * matter */
1268 if (status & RXBD_TRUNCATED) {
1269 stats->rx_length_errors++;
1270
1271 estats->rx_trunc++;
1272
1273 return;
1274 }
1275 /* Count the errors, if there were any */
1276 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1277 stats->rx_length_errors++;
1278
1279 if (status & RXBD_LARGE)
1280 estats->rx_large++;
1281 else
1282 estats->rx_short++;
1283 }
1284 if (status & RXBD_NONOCTET) {
1285 stats->rx_frame_errors++;
1286 estats->rx_nonoctet++;
1287 }
1288 if (status & RXBD_CRCERR) {
1289 estats->rx_crcerr++;
1290 stats->rx_crc_errors++;
1291 }
1292 if (status & RXBD_OVERRUN) {
1293 estats->rx_overrun++;
1294 stats->rx_crc_errors++;
1295 }
1296 }
1297
1298 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
1299 {
1300 struct net_device *dev = (struct net_device *) dev_id;
1301 struct gfar_private *priv = netdev_priv(dev);
1302
1303 #ifdef CONFIG_GFAR_NAPI
1304 u32 tempval;
1305 #endif
1306
1307 /* Clear IEVENT, so rx interrupt isn't called again
1308 * because of this interrupt */
1309 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1310
1311 /* support NAPI */
1312 #ifdef CONFIG_GFAR_NAPI
1313 if (netif_rx_schedule_prep(dev)) {
1314 tempval = gfar_read(&priv->regs->imask);
1315 tempval &= IMASK_RX_DISABLED;
1316 gfar_write(&priv->regs->imask, tempval);
1317
1318 __netif_rx_schedule(dev);
1319 } else {
1320 if (netif_msg_rx_err(priv))
1321 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1322 dev->name, gfar_read(&priv->regs->ievent),
1323 gfar_read(&priv->regs->imask));
1324 }
1325 #else
1326
1327 spin_lock(&priv->lock);
1328 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1329
1330 /* If we are coalescing interrupts, update the timer */
1331 /* Otherwise, clear it */
1332 if (priv->rxcoalescing)
1333 gfar_write(&priv->regs->rxic,
1334 mk_ic_value(priv->rxcount, priv->rxtime));
1335 else
1336 gfar_write(&priv->regs->rxic, 0);
1337
1338 spin_unlock(&priv->lock);
1339 #endif
1340
1341 return IRQ_HANDLED;
1342 }
1343
1344 static inline int gfar_rx_vlan(struct sk_buff *skb,
1345 struct vlan_group *vlgrp, unsigned short vlctl)
1346 {
1347 #ifdef CONFIG_GFAR_NAPI
1348 return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1349 #else
1350 return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1351 #endif
1352 }
1353
1354 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1355 {
1356 /* If valid headers were found, and valid sums
1357 * were verified, then we tell the kernel that no
1358 * checksumming is necessary. Otherwise, it is */
1359 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1360 skb->ip_summed = CHECKSUM_UNNECESSARY;
1361 else
1362 skb->ip_summed = CHECKSUM_NONE;
1363 }
1364
1365
1366 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1367 {
1368 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1369
1370 /* Remove the FCB from the skb */
1371 skb_pull(skb, GMAC_FCB_LEN);
1372
1373 return fcb;
1374 }
1375
1376 /* gfar_process_frame() -- handle one incoming packet if skb
1377 * isn't NULL. */
1378 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1379 int length)
1380 {
1381 struct gfar_private *priv = netdev_priv(dev);
1382 struct rxfcb *fcb = NULL;
1383
1384 if (NULL == skb) {
1385 if (netif_msg_rx_err(priv))
1386 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1387 priv->stats.rx_dropped++;
1388 priv->extra_stats.rx_skbmissing++;
1389 } else {
1390 int ret;
1391
1392 /* Prep the skb for the packet */
1393 skb_put(skb, length);
1394
1395 /* Grab the FCB if there is one */
1396 if (gfar_uses_fcb(priv))
1397 fcb = gfar_get_fcb(skb);
1398
1399 /* Remove the padded bytes, if there are any */
1400 if (priv->padding)
1401 skb_pull(skb, priv->padding);
1402
1403 if (priv->rx_csum_enable)
1404 gfar_rx_checksum(skb, fcb);
1405
1406 /* Tell the skb what kind of packet this is */
1407 skb->protocol = eth_type_trans(skb, dev);
1408
1409 /* Send the packet up the stack */
1410 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1411 ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1412 else
1413 ret = RECEIVE(skb);
1414
1415 if (NET_RX_DROP == ret)
1416 priv->extra_stats.kernel_dropped++;
1417 }
1418
1419 return 0;
1420 }
1421
1422 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1423 * until the budget/quota has been reached. Returns the number
1424 * of frames handled
1425 */
1426 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1427 {
1428 struct rxbd8 *bdp;
1429 struct sk_buff *skb;
1430 u16 pkt_len;
1431 int howmany = 0;
1432 struct gfar_private *priv = netdev_priv(dev);
1433
1434 /* Get the first full descriptor */
1435 bdp = priv->cur_rx;
1436
1437 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1438 skb = priv->rx_skbuff[priv->skb_currx];
1439
1440 if (!(bdp->status &
1441 (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1442 | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1443 /* Increment the number of packets */
1444 priv->stats.rx_packets++;
1445 howmany++;
1446
1447 /* Remove the FCS from the packet length */
1448 pkt_len = bdp->length - 4;
1449
1450 gfar_process_frame(dev, skb, pkt_len);
1451
1452 priv->stats.rx_bytes += pkt_len;
1453 } else {
1454 count_errors(bdp->status, priv);
1455
1456 if (skb)
1457 dev_kfree_skb_any(skb);
1458
1459 priv->rx_skbuff[priv->skb_currx] = NULL;
1460 }
1461
1462 dev->last_rx = jiffies;
1463
1464 /* Clear the status flags for this buffer */
1465 bdp->status &= ~RXBD_STATS;
1466
1467 /* Add another skb for the future */
1468 skb = gfar_new_skb(dev, bdp);
1469 priv->rx_skbuff[priv->skb_currx] = skb;
1470
1471 /* Update to the next pointer */
1472 if (bdp->status & RXBD_WRAP)
1473 bdp = priv->rx_bd_base;
1474 else
1475 bdp++;
1476
1477 /* update to point at the next skb */
1478 priv->skb_currx =
1479 (priv->skb_currx +
1480 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1481
1482 }
1483
1484 /* Update the current rxbd pointer to be the next one */
1485 priv->cur_rx = bdp;
1486
1487 /* If no packets have arrived since the
1488 * last one we processed, clear the IEVENT RX and
1489 * BSY bits so that another interrupt won't be
1490 * generated when we set IMASK */
1491 if (bdp->status & RXBD_EMPTY)
1492 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1493
1494 return howmany;
1495 }
1496
1497 #ifdef CONFIG_GFAR_NAPI
1498 static int gfar_poll(struct net_device *dev, int *budget)
1499 {
1500 int howmany;
1501 struct gfar_private *priv = netdev_priv(dev);
1502 int rx_work_limit = *budget;
1503
1504 if (rx_work_limit > dev->quota)
1505 rx_work_limit = dev->quota;
1506
1507 howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1508
1509 dev->quota -= howmany;
1510 rx_work_limit -= howmany;
1511 *budget -= howmany;
1512
1513 if (rx_work_limit >= 0) {
1514 netif_rx_complete(dev);
1515
1516 /* Clear the halt bit in RSTAT */
1517 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1518
1519 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1520
1521 /* If we are coalescing interrupts, update the timer */
1522 /* Otherwise, clear it */
1523 if (priv->rxcoalescing)
1524 gfar_write(&priv->regs->rxic,
1525 mk_ic_value(priv->rxcount, priv->rxtime));
1526 else
1527 gfar_write(&priv->regs->rxic, 0);
1528 }
1529
1530 return (rx_work_limit < 0) ? 1 : 0;
1531 }
1532 #endif
1533
1534 /* The interrupt handler for devices with one interrupt */
1535 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1536 {
1537 struct net_device *dev = dev_id;
1538 struct gfar_private *priv = netdev_priv(dev);
1539
1540 /* Save ievent for future reference */
1541 u32 events = gfar_read(&priv->regs->ievent);
1542
1543 /* Clear IEVENT */
1544 gfar_write(&priv->regs->ievent, events);
1545
1546 /* Check for reception */
1547 if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1548 gfar_receive(irq, dev_id, regs);
1549
1550 /* Check for transmit completion */
1551 if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1552 gfar_transmit(irq, dev_id, regs);
1553
1554 /* Update error statistics */
1555 if (events & IEVENT_TXE) {
1556 priv->stats.tx_errors++;
1557
1558 if (events & IEVENT_LC)
1559 priv->stats.tx_window_errors++;
1560 if (events & IEVENT_CRL)
1561 priv->stats.tx_aborted_errors++;
1562 if (events & IEVENT_XFUN) {
1563 if (netif_msg_tx_err(priv))
1564 printk(KERN_WARNING "%s: tx underrun. dropped packet\n", dev->name);
1565 priv->stats.tx_dropped++;
1566 priv->extra_stats.tx_underrun++;
1567
1568 /* Reactivate the Tx Queues */
1569 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1570 }
1571 }
1572 if (events & IEVENT_BSY) {
1573 priv->stats.rx_errors++;
1574 priv->extra_stats.rx_bsy++;
1575
1576 gfar_receive(irq, dev_id, regs);
1577
1578 #ifndef CONFIG_GFAR_NAPI
1579 /* Clear the halt bit in RSTAT */
1580 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1581 #endif
1582
1583 if (netif_msg_rx_err(priv))
1584 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1585 dev->name,
1586 gfar_read(&priv->regs->rstat));
1587 }
1588 if (events & IEVENT_BABR) {
1589 priv->stats.rx_errors++;
1590 priv->extra_stats.rx_babr++;
1591
1592 if (netif_msg_rx_err(priv))
1593 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1594 }
1595 if (events & IEVENT_EBERR) {
1596 priv->extra_stats.eberr++;
1597 if (netif_msg_rx_err(priv))
1598 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1599 }
1600 if ((events & IEVENT_RXC) && (netif_msg_rx_err(priv)))
1601 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1602
1603 if (events & IEVENT_BABT) {
1604 priv->extra_stats.tx_babt++;
1605 if (netif_msg_rx_err(priv))
1606 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1607 }
1608
1609 return IRQ_HANDLED;
1610 }
1611
1612 /* Called every time the controller might need to be made
1613 * aware of new link state. The PHY code conveys this
1614 * information through variables in the phydev structure, and this
1615 * function converts those variables into the appropriate
1616 * register values, and can bring down the device if needed.
1617 */
1618 static void adjust_link(struct net_device *dev)
1619 {
1620 struct gfar_private *priv = netdev_priv(dev);
1621 struct gfar *regs = priv->regs;
1622 unsigned long flags;
1623 struct phy_device *phydev = priv->phydev;
1624 int new_state = 0;
1625
1626 spin_lock_irqsave(&priv->lock, flags);
1627 if (phydev->link) {
1628 u32 tempval = gfar_read(&regs->maccfg2);
1629 u32 ecntrl = gfar_read(&regs->ecntrl);
1630
1631 /* Now we make sure that we can be in full duplex mode.
1632 * If not, we operate in half-duplex mode. */
1633 if (phydev->duplex != priv->oldduplex) {
1634 new_state = 1;
1635 if (!(phydev->duplex))
1636 tempval &= ~(MACCFG2_FULL_DUPLEX);
1637 else
1638 tempval |= MACCFG2_FULL_DUPLEX;
1639
1640 priv->oldduplex = phydev->duplex;
1641 }
1642
1643 if (phydev->speed != priv->oldspeed) {
1644 new_state = 1;
1645 switch (phydev->speed) {
1646 case 1000:
1647 tempval =
1648 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1649 break;
1650 case 100:
1651 case 10:
1652 tempval =
1653 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1654
1655 /* Reduced mode distinguishes
1656 * between 10 and 100 */
1657 if (phydev->speed == SPEED_100)
1658 ecntrl |= ECNTRL_R100;
1659 else
1660 ecntrl &= ~(ECNTRL_R100);
1661 break;
1662 default:
1663 if (netif_msg_link(priv))
1664 printk(KERN_WARNING
1665 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1666 dev->name, phydev->speed);
1667 break;
1668 }
1669
1670 priv->oldspeed = phydev->speed;
1671 }
1672
1673 gfar_write(&regs->maccfg2, tempval);
1674 gfar_write(&regs->ecntrl, ecntrl);
1675
1676 if (!priv->oldlink) {
1677 new_state = 1;
1678 priv->oldlink = 1;
1679 netif_schedule(dev);
1680 }
1681 } else if (priv->oldlink) {
1682 new_state = 1;
1683 priv->oldlink = 0;
1684 priv->oldspeed = 0;
1685 priv->oldduplex = -1;
1686 }
1687
1688 if (new_state && netif_msg_link(priv))
1689 phy_print_status(phydev);
1690
1691 spin_unlock_irqrestore(&priv->lock, flags);
1692 }
1693
1694 /* Update the hash table based on the current list of multicast
1695 * addresses we subscribe to. Also, change the promiscuity of
1696 * the device based on the flags (this function is called
1697 * whenever dev->flags is changed */
1698 static void gfar_set_multi(struct net_device *dev)
1699 {
1700 struct dev_mc_list *mc_ptr;
1701 struct gfar_private *priv = netdev_priv(dev);
1702 struct gfar *regs = priv->regs;
1703 u32 tempval;
1704
1705 if(dev->flags & IFF_PROMISC) {
1706 if (netif_msg_drv(priv))
1707 printk(KERN_INFO "%s: Entering promiscuous mode.\n",
1708 dev->name);
1709 /* Set RCTRL to PROM */
1710 tempval = gfar_read(&regs->rctrl);
1711 tempval |= RCTRL_PROM;
1712 gfar_write(&regs->rctrl, tempval);
1713 } else {
1714 /* Set RCTRL to not PROM */
1715 tempval = gfar_read(&regs->rctrl);
1716 tempval &= ~(RCTRL_PROM);
1717 gfar_write(&regs->rctrl, tempval);
1718 }
1719
1720 if(dev->flags & IFF_ALLMULTI) {
1721 /* Set the hash to rx all multicast frames */
1722 gfar_write(&regs->igaddr0, 0xffffffff);
1723 gfar_write(&regs->igaddr1, 0xffffffff);
1724 gfar_write(&regs->igaddr2, 0xffffffff);
1725 gfar_write(&regs->igaddr3, 0xffffffff);
1726 gfar_write(&regs->igaddr4, 0xffffffff);
1727 gfar_write(&regs->igaddr5, 0xffffffff);
1728 gfar_write(&regs->igaddr6, 0xffffffff);
1729 gfar_write(&regs->igaddr7, 0xffffffff);
1730 gfar_write(&regs->gaddr0, 0xffffffff);
1731 gfar_write(&regs->gaddr1, 0xffffffff);
1732 gfar_write(&regs->gaddr2, 0xffffffff);
1733 gfar_write(&regs->gaddr3, 0xffffffff);
1734 gfar_write(&regs->gaddr4, 0xffffffff);
1735 gfar_write(&regs->gaddr5, 0xffffffff);
1736 gfar_write(&regs->gaddr6, 0xffffffff);
1737 gfar_write(&regs->gaddr7, 0xffffffff);
1738 } else {
1739 int em_num;
1740 int idx;
1741
1742 /* zero out the hash */
1743 gfar_write(&regs->igaddr0, 0x0);
1744 gfar_write(&regs->igaddr1, 0x0);
1745 gfar_write(&regs->igaddr2, 0x0);
1746 gfar_write(&regs->igaddr3, 0x0);
1747 gfar_write(&regs->igaddr4, 0x0);
1748 gfar_write(&regs->igaddr5, 0x0);
1749 gfar_write(&regs->igaddr6, 0x0);
1750 gfar_write(&regs->igaddr7, 0x0);
1751 gfar_write(&regs->gaddr0, 0x0);
1752 gfar_write(&regs->gaddr1, 0x0);
1753 gfar_write(&regs->gaddr2, 0x0);
1754 gfar_write(&regs->gaddr3, 0x0);
1755 gfar_write(&regs->gaddr4, 0x0);
1756 gfar_write(&regs->gaddr5, 0x0);
1757 gfar_write(&regs->gaddr6, 0x0);
1758 gfar_write(&regs->gaddr7, 0x0);
1759
1760 /* If we have extended hash tables, we need to
1761 * clear the exact match registers to prepare for
1762 * setting them */
1763 if (priv->extended_hash) {
1764 em_num = GFAR_EM_NUM + 1;
1765 gfar_clear_exact_match(dev);
1766 idx = 1;
1767 } else {
1768 idx = 0;
1769 em_num = 0;
1770 }
1771
1772 if(dev->mc_count == 0)
1773 return;
1774
1775 /* Parse the list, and set the appropriate bits */
1776 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1777 if (idx < em_num) {
1778 gfar_set_mac_for_addr(dev, idx,
1779 mc_ptr->dmi_addr);
1780 idx++;
1781 } else
1782 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1783 }
1784 }
1785
1786 return;
1787 }
1788
1789
1790 /* Clears each of the exact match registers to zero, so they
1791 * don't interfere with normal reception */
1792 static void gfar_clear_exact_match(struct net_device *dev)
1793 {
1794 int idx;
1795 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1796
1797 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1798 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1799 }
1800
1801 /* Set the appropriate hash bit for the given addr */
1802 /* The algorithm works like so:
1803 * 1) Take the Destination Address (ie the multicast address), and
1804 * do a CRC on it (little endian), and reverse the bits of the
1805 * result.
1806 * 2) Use the 8 most significant bits as a hash into a 256-entry
1807 * table. The table is controlled through 8 32-bit registers:
1808 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1809 * gaddr7. This means that the 3 most significant bits in the
1810 * hash index which gaddr register to use, and the 5 other bits
1811 * indicate which bit (assuming an IBM numbering scheme, which
1812 * for PowerPC (tm) is usually the case) in the register holds
1813 * the entry. */
1814 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1815 {
1816 u32 tempval;
1817 struct gfar_private *priv = netdev_priv(dev);
1818 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1819 int width = priv->hash_width;
1820 u8 whichbit = (result >> (32 - width)) & 0x1f;
1821 u8 whichreg = result >> (32 - width + 5);
1822 u32 value = (1 << (31-whichbit));
1823
1824 tempval = gfar_read(priv->hash_regs[whichreg]);
1825 tempval |= value;
1826 gfar_write(priv->hash_regs[whichreg], tempval);
1827
1828 return;
1829 }
1830
1831
1832 /* There are multiple MAC Address register pairs on some controllers
1833 * This function sets the numth pair to a given address
1834 */
1835 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1836 {
1837 struct gfar_private *priv = netdev_priv(dev);
1838 int idx;
1839 char tmpbuf[MAC_ADDR_LEN];
1840 u32 tempval;
1841 u32 *macptr = &priv->regs->macstnaddr1;
1842
1843 macptr += num*2;
1844
1845 /* Now copy it into the mac registers backwards, cuz */
1846 /* little endian is silly */
1847 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1848 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1849
1850 gfar_write(macptr, *((u32 *) (tmpbuf)));
1851
1852 tempval = *((u32 *) (tmpbuf + 4));
1853
1854 gfar_write(macptr+1, tempval);
1855 }
1856
1857 /* GFAR error interrupt handler */
1858 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
1859 {
1860 struct net_device *dev = dev_id;
1861 struct gfar_private *priv = netdev_priv(dev);
1862
1863 /* Save ievent for future reference */
1864 u32 events = gfar_read(&priv->regs->ievent);
1865
1866 /* Clear IEVENT */
1867 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1868
1869 /* Hmm... */
1870 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1871 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1872 dev->name, events, gfar_read(&priv->regs->imask));
1873
1874 /* Update the error counters */
1875 if (events & IEVENT_TXE) {
1876 priv->stats.tx_errors++;
1877
1878 if (events & IEVENT_LC)
1879 priv->stats.tx_window_errors++;
1880 if (events & IEVENT_CRL)
1881 priv->stats.tx_aborted_errors++;
1882 if (events & IEVENT_XFUN) {
1883 if (netif_msg_tx_err(priv))
1884 printk(KERN_DEBUG "%s: underrun. packet dropped.\n",
1885 dev->name);
1886 priv->stats.tx_dropped++;
1887 priv->extra_stats.tx_underrun++;
1888
1889 /* Reactivate the Tx Queues */
1890 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1891 }
1892 if (netif_msg_tx_err(priv))
1893 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1894 }
1895 if (events & IEVENT_BSY) {
1896 priv->stats.rx_errors++;
1897 priv->extra_stats.rx_bsy++;
1898
1899 gfar_receive(irq, dev_id, regs);
1900
1901 #ifndef CONFIG_GFAR_NAPI
1902 /* Clear the halt bit in RSTAT */
1903 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1904 #endif
1905
1906 if (netif_msg_rx_err(priv))
1907 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1908 dev->name,
1909 gfar_read(&priv->regs->rstat));
1910 }
1911 if (events & IEVENT_BABR) {
1912 priv->stats.rx_errors++;
1913 priv->extra_stats.rx_babr++;
1914
1915 if (netif_msg_rx_err(priv))
1916 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1917 }
1918 if (events & IEVENT_EBERR) {
1919 priv->extra_stats.eberr++;
1920 if (netif_msg_rx_err(priv))
1921 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1922 }
1923 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1924 if (netif_msg_rx_status(priv))
1925 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1926
1927 if (events & IEVENT_BABT) {
1928 priv->extra_stats.tx_babt++;
1929 if (netif_msg_tx_err(priv))
1930 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1931 }
1932 return IRQ_HANDLED;
1933 }
1934
1935 /* Structure for a device driver */
1936 static struct platform_driver gfar_driver = {
1937 .probe = gfar_probe,
1938 .remove = gfar_remove,
1939 .driver = {
1940 .name = "fsl-gianfar",
1941 },
1942 };
1943
1944 static int __init gfar_init(void)
1945 {
1946 int err = gfar_mdio_init();
1947
1948 if (err)
1949 return err;
1950
1951 err = platform_driver_register(&gfar_driver);
1952
1953 if (err)
1954 gfar_mdio_exit();
1955
1956 return err;
1957 }
1958
1959 static void __exit gfar_exit(void)
1960 {
1961 platform_driver_unregister(&gfar_driver);
1962 gfar_mdio_exit();
1963 }
1964
1965 module_init(gfar_init);
1966 module_exit(gfar_exit);
1967
This page took 0.07199 seconds and 6 git commands to generate.