Merge branch 'drm-patches' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[deliverable/linux.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 *
12 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 * Gianfar: AKA Lambda Draconis, "Dragon"
20 * RA 11 31 24.2
21 * Dec +69 19 52
22 * V 3.84
23 * B-V +1.62
24 *
25 * Theory of operation
26 *
27 * The driver is initialized through platform_device. Structures which
28 * define the configuration needed by the board are defined in a
29 * board structure in arch/ppc/platforms (though I do not
30 * discount the possibility that other architectures could one
31 * day be supported.
32 *
33 * The Gianfar Ethernet Controller uses a ring of buffer
34 * descriptors. The beginning is indicated by a register
35 * pointing to the physical address of the start of the ring.
36 * The end is determined by a "wrap" bit being set in the
37 * last descriptor of the ring.
38 *
39 * When a packet is received, the RXF bit in the
40 * IEVENT register is set, triggering an interrupt when the
41 * corresponding bit in the IMASK register is also set (if
42 * interrupt coalescing is active, then the interrupt may not
43 * happen immediately, but will wait until either a set number
44 * of frames or amount of time have passed). In NAPI, the
45 * interrupt handler will signal there is work to be done, and
46 * exit. Without NAPI, the packet(s) will be handled
47 * immediately. Both methods will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
55 * skb.
56 *
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
65 */
66
67 #include <linux/config.h>
68 #include <linux/kernel.h>
69 #include <linux/sched.h>
70 #include <linux/string.h>
71 #include <linux/errno.h>
72 #include <linux/unistd.h>
73 #include <linux/slab.h>
74 #include <linux/interrupt.h>
75 #include <linux/init.h>
76 #include <linux/delay.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/if_vlan.h>
81 #include <linux/spinlock.h>
82 #include <linux/mm.h>
83 #include <linux/platform_device.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88
89 #include <asm/io.h>
90 #include <asm/irq.h>
91 #include <asm/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97
98 #include "gianfar.h"
99 #include "gianfar_mii.h"
100
101 #define TX_TIMEOUT (1*HZ)
102 #define SKB_ALLOC_TIMEOUT 1000000
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
105
106 #ifdef CONFIG_GFAR_NAPI
107 #define RECEIVE(x) netif_receive_skb(x)
108 #else
109 #define RECEIVE(x) netif_rx(x)
110 #endif
111
112 const char gfar_driver_name[] = "Gianfar Ethernet";
113 const char gfar_driver_version[] = "1.3";
114
115 static int gfar_enet_open(struct net_device *dev);
116 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
120 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
126 static void adjust_link(struct net_device *dev);
127 static void init_registers(struct net_device *dev);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *pdev);
130 static int gfar_remove(struct platform_device *pdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 #ifdef CONFIG_GFAR_NAPI
135 static int gfar_poll(struct net_device *dev, int *budget);
136 #endif
137 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
139 static void gfar_vlan_rx_register(struct net_device *netdev,
140 struct vlan_group *grp);
141 static void gfar_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
142 void gfar_halt(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
146
147 extern struct ethtool_ops gfar_ethtool_ops;
148
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152
153 /* Returns 1 if incoming frames use an FCB */
154 static inline int gfar_uses_fcb(struct gfar_private *priv)
155 {
156 return (priv->vlan_enable || priv->rx_csum_enable);
157 }
158
159 /* Set up the ethernet device structure, private data,
160 * and anything else we need before we start */
161 static int gfar_probe(struct platform_device *pdev)
162 {
163 u32 tempval;
164 struct net_device *dev = NULL;
165 struct gfar_private *priv = NULL;
166 struct gianfar_platform_data *einfo;
167 struct resource *r;
168 int idx;
169 int err = 0;
170
171 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
172
173 if (NULL == einfo) {
174 printk(KERN_ERR "gfar %d: Missing additional data!\n",
175 pdev->id);
176
177 return -ENODEV;
178 }
179
180 /* Create an ethernet device instance */
181 dev = alloc_etherdev(sizeof (*priv));
182
183 if (NULL == dev)
184 return -ENOMEM;
185
186 priv = netdev_priv(dev);
187
188 /* Set the info in the priv to the current info */
189 priv->einfo = einfo;
190
191 /* fill out IRQ fields */
192 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
193 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
194 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
195 priv->interruptError = platform_get_irq_byname(pdev, "error");
196 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
197 goto regs_fail;
198 } else {
199 priv->interruptTransmit = platform_get_irq(pdev, 0);
200 if (priv->interruptTransmit < 0)
201 goto regs_fail;
202 }
203
204 /* get a pointer to the register memory */
205 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
206 priv->regs = ioremap(r->start, sizeof (struct gfar));
207
208 if (NULL == priv->regs) {
209 err = -ENOMEM;
210 goto regs_fail;
211 }
212
213 spin_lock_init(&priv->lock);
214
215 platform_set_drvdata(pdev, dev);
216
217 /* Stop the DMA engine now, in case it was running before */
218 /* (The firmware could have used it, and left it running). */
219 /* To do this, we write Graceful Receive Stop and Graceful */
220 /* Transmit Stop, and then wait until the corresponding bits */
221 /* in IEVENT indicate the stops have completed. */
222 tempval = gfar_read(&priv->regs->dmactrl);
223 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
224 gfar_write(&priv->regs->dmactrl, tempval);
225
226 tempval = gfar_read(&priv->regs->dmactrl);
227 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
228 gfar_write(&priv->regs->dmactrl, tempval);
229
230 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
231 cpu_relax();
232
233 /* Reset MAC layer */
234 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
235
236 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
237 gfar_write(&priv->regs->maccfg1, tempval);
238
239 /* Initialize MACCFG2. */
240 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
241
242 /* Initialize ECNTRL */
243 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
244
245 /* Copy the station address into the dev structure, */
246 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
247
248 /* Set the dev->base_addr to the gfar reg region */
249 dev->base_addr = (unsigned long) (priv->regs);
250
251 SET_MODULE_OWNER(dev);
252 SET_NETDEV_DEV(dev, &pdev->dev);
253
254 /* Fill in the dev structure */
255 dev->open = gfar_enet_open;
256 dev->hard_start_xmit = gfar_start_xmit;
257 dev->tx_timeout = gfar_timeout;
258 dev->watchdog_timeo = TX_TIMEOUT;
259 #ifdef CONFIG_GFAR_NAPI
260 dev->poll = gfar_poll;
261 dev->weight = GFAR_DEV_WEIGHT;
262 #endif
263 dev->stop = gfar_close;
264 dev->get_stats = gfar_get_stats;
265 dev->change_mtu = gfar_change_mtu;
266 dev->mtu = 1500;
267 dev->set_multicast_list = gfar_set_multi;
268
269 dev->ethtool_ops = &gfar_ethtool_ops;
270
271 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
272 priv->rx_csum_enable = 1;
273 dev->features |= NETIF_F_IP_CSUM;
274 } else
275 priv->rx_csum_enable = 0;
276
277 priv->vlgrp = NULL;
278
279 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
280 dev->vlan_rx_register = gfar_vlan_rx_register;
281 dev->vlan_rx_kill_vid = gfar_vlan_rx_kill_vid;
282
283 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
284
285 priv->vlan_enable = 1;
286 }
287
288 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
289 priv->extended_hash = 1;
290 priv->hash_width = 9;
291
292 priv->hash_regs[0] = &priv->regs->igaddr0;
293 priv->hash_regs[1] = &priv->regs->igaddr1;
294 priv->hash_regs[2] = &priv->regs->igaddr2;
295 priv->hash_regs[3] = &priv->regs->igaddr3;
296 priv->hash_regs[4] = &priv->regs->igaddr4;
297 priv->hash_regs[5] = &priv->regs->igaddr5;
298 priv->hash_regs[6] = &priv->regs->igaddr6;
299 priv->hash_regs[7] = &priv->regs->igaddr7;
300 priv->hash_regs[8] = &priv->regs->gaddr0;
301 priv->hash_regs[9] = &priv->regs->gaddr1;
302 priv->hash_regs[10] = &priv->regs->gaddr2;
303 priv->hash_regs[11] = &priv->regs->gaddr3;
304 priv->hash_regs[12] = &priv->regs->gaddr4;
305 priv->hash_regs[13] = &priv->regs->gaddr5;
306 priv->hash_regs[14] = &priv->regs->gaddr6;
307 priv->hash_regs[15] = &priv->regs->gaddr7;
308
309 } else {
310 priv->extended_hash = 0;
311 priv->hash_width = 8;
312
313 priv->hash_regs[0] = &priv->regs->gaddr0;
314 priv->hash_regs[1] = &priv->regs->gaddr1;
315 priv->hash_regs[2] = &priv->regs->gaddr2;
316 priv->hash_regs[3] = &priv->regs->gaddr3;
317 priv->hash_regs[4] = &priv->regs->gaddr4;
318 priv->hash_regs[5] = &priv->regs->gaddr5;
319 priv->hash_regs[6] = &priv->regs->gaddr6;
320 priv->hash_regs[7] = &priv->regs->gaddr7;
321 }
322
323 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
324 priv->padding = DEFAULT_PADDING;
325 else
326 priv->padding = 0;
327
328 if (dev->features & NETIF_F_IP_CSUM)
329 dev->hard_header_len += GMAC_FCB_LEN;
330
331 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
332 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
333 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
334
335 priv->txcoalescing = DEFAULT_TX_COALESCE;
336 priv->txcount = DEFAULT_TXCOUNT;
337 priv->txtime = DEFAULT_TXTIME;
338 priv->rxcoalescing = DEFAULT_RX_COALESCE;
339 priv->rxcount = DEFAULT_RXCOUNT;
340 priv->rxtime = DEFAULT_RXTIME;
341
342 /* Enable most messages by default */
343 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
344
345 err = register_netdev(dev);
346
347 if (err) {
348 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
349 dev->name);
350 goto register_fail;
351 }
352
353 /* Create all the sysfs files */
354 gfar_init_sysfs(dev);
355
356 /* Print out the device info */
357 printk(KERN_INFO DEVICE_NAME, dev->name);
358 for (idx = 0; idx < 6; idx++)
359 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
360 printk("\n");
361
362 /* Even more device info helps when determining which kernel */
363 /* provided which set of benchmarks. */
364 #ifdef CONFIG_GFAR_NAPI
365 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
366 #else
367 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
368 #endif
369 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
370 dev->name, priv->rx_ring_size, priv->tx_ring_size);
371
372 return 0;
373
374 register_fail:
375 iounmap(priv->regs);
376 regs_fail:
377 free_netdev(dev);
378 return err;
379 }
380
381 static int gfar_remove(struct platform_device *pdev)
382 {
383 struct net_device *dev = platform_get_drvdata(pdev);
384 struct gfar_private *priv = netdev_priv(dev);
385
386 platform_set_drvdata(pdev, NULL);
387
388 iounmap(priv->regs);
389 free_netdev(dev);
390
391 return 0;
392 }
393
394
395 /* Initializes driver's PHY state, and attaches to the PHY.
396 * Returns 0 on success.
397 */
398 static int init_phy(struct net_device *dev)
399 {
400 struct gfar_private *priv = netdev_priv(dev);
401 uint gigabit_support =
402 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
403 SUPPORTED_1000baseT_Full : 0;
404 struct phy_device *phydev;
405 char phy_id[BUS_ID_SIZE];
406
407 priv->oldlink = 0;
408 priv->oldspeed = 0;
409 priv->oldduplex = -1;
410
411 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
412
413 phydev = phy_connect(dev, phy_id, &adjust_link, 0);
414
415 if (IS_ERR(phydev)) {
416 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
417 return PTR_ERR(phydev);
418 }
419
420 /* Remove any features not supported by the controller */
421 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
422 phydev->advertising = phydev->supported;
423
424 priv->phydev = phydev;
425
426 return 0;
427 }
428
429 static void init_registers(struct net_device *dev)
430 {
431 struct gfar_private *priv = netdev_priv(dev);
432
433 /* Clear IEVENT */
434 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
435
436 /* Initialize IMASK */
437 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
438
439 /* Init hash registers to zero */
440 gfar_write(&priv->regs->igaddr0, 0);
441 gfar_write(&priv->regs->igaddr1, 0);
442 gfar_write(&priv->regs->igaddr2, 0);
443 gfar_write(&priv->regs->igaddr3, 0);
444 gfar_write(&priv->regs->igaddr4, 0);
445 gfar_write(&priv->regs->igaddr5, 0);
446 gfar_write(&priv->regs->igaddr6, 0);
447 gfar_write(&priv->regs->igaddr7, 0);
448
449 gfar_write(&priv->regs->gaddr0, 0);
450 gfar_write(&priv->regs->gaddr1, 0);
451 gfar_write(&priv->regs->gaddr2, 0);
452 gfar_write(&priv->regs->gaddr3, 0);
453 gfar_write(&priv->regs->gaddr4, 0);
454 gfar_write(&priv->regs->gaddr5, 0);
455 gfar_write(&priv->regs->gaddr6, 0);
456 gfar_write(&priv->regs->gaddr7, 0);
457
458 /* Zero out the rmon mib registers if it has them */
459 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
460 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
461
462 /* Mask off the CAM interrupts */
463 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
464 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
465 }
466
467 /* Initialize the max receive buffer length */
468 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
469
470 /* Initialize the Minimum Frame Length Register */
471 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
472
473 /* Assign the TBI an address which won't conflict with the PHYs */
474 gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
475 }
476
477
478 /* Halt the receive and transmit queues */
479 void gfar_halt(struct net_device *dev)
480 {
481 struct gfar_private *priv = netdev_priv(dev);
482 struct gfar __iomem *regs = priv->regs;
483 u32 tempval;
484
485 /* Mask all interrupts */
486 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
487
488 /* Clear all interrupts */
489 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
490
491 /* Stop the DMA, and wait for it to stop */
492 tempval = gfar_read(&priv->regs->dmactrl);
493 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
494 != (DMACTRL_GRS | DMACTRL_GTS)) {
495 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
496 gfar_write(&priv->regs->dmactrl, tempval);
497
498 while (!(gfar_read(&priv->regs->ievent) &
499 (IEVENT_GRSC | IEVENT_GTSC)))
500 cpu_relax();
501 }
502
503 /* Disable Rx and Tx */
504 tempval = gfar_read(&regs->maccfg1);
505 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
506 gfar_write(&regs->maccfg1, tempval);
507 }
508
509 void stop_gfar(struct net_device *dev)
510 {
511 struct gfar_private *priv = netdev_priv(dev);
512 struct gfar __iomem *regs = priv->regs;
513 unsigned long flags;
514
515 phy_stop(priv->phydev);
516
517 /* Lock it down */
518 spin_lock_irqsave(&priv->lock, flags);
519
520 gfar_halt(dev);
521
522 spin_unlock_irqrestore(&priv->lock, flags);
523
524 /* Free the IRQs */
525 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
526 free_irq(priv->interruptError, dev);
527 free_irq(priv->interruptTransmit, dev);
528 free_irq(priv->interruptReceive, dev);
529 } else {
530 free_irq(priv->interruptTransmit, dev);
531 }
532
533 free_skb_resources(priv);
534
535 dma_free_coherent(NULL,
536 sizeof(struct txbd8)*priv->tx_ring_size
537 + sizeof(struct rxbd8)*priv->rx_ring_size,
538 priv->tx_bd_base,
539 gfar_read(&regs->tbase0));
540 }
541
542 /* If there are any tx skbs or rx skbs still around, free them.
543 * Then free tx_skbuff and rx_skbuff */
544 static void free_skb_resources(struct gfar_private *priv)
545 {
546 struct rxbd8 *rxbdp;
547 struct txbd8 *txbdp;
548 int i;
549
550 /* Go through all the buffer descriptors and free their data buffers */
551 txbdp = priv->tx_bd_base;
552
553 for (i = 0; i < priv->tx_ring_size; i++) {
554
555 if (priv->tx_skbuff[i]) {
556 dma_unmap_single(NULL, txbdp->bufPtr,
557 txbdp->length,
558 DMA_TO_DEVICE);
559 dev_kfree_skb_any(priv->tx_skbuff[i]);
560 priv->tx_skbuff[i] = NULL;
561 }
562 }
563
564 kfree(priv->tx_skbuff);
565
566 rxbdp = priv->rx_bd_base;
567
568 /* rx_skbuff is not guaranteed to be allocated, so only
569 * free it and its contents if it is allocated */
570 if(priv->rx_skbuff != NULL) {
571 for (i = 0; i < priv->rx_ring_size; i++) {
572 if (priv->rx_skbuff[i]) {
573 dma_unmap_single(NULL, rxbdp->bufPtr,
574 priv->rx_buffer_size,
575 DMA_FROM_DEVICE);
576
577 dev_kfree_skb_any(priv->rx_skbuff[i]);
578 priv->rx_skbuff[i] = NULL;
579 }
580
581 rxbdp->status = 0;
582 rxbdp->length = 0;
583 rxbdp->bufPtr = 0;
584
585 rxbdp++;
586 }
587
588 kfree(priv->rx_skbuff);
589 }
590 }
591
592 void gfar_start(struct net_device *dev)
593 {
594 struct gfar_private *priv = netdev_priv(dev);
595 struct gfar __iomem *regs = priv->regs;
596 u32 tempval;
597
598 /* Enable Rx and Tx in MACCFG1 */
599 tempval = gfar_read(&regs->maccfg1);
600 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
601 gfar_write(&regs->maccfg1, tempval);
602
603 /* Initialize DMACTRL to have WWR and WOP */
604 tempval = gfar_read(&priv->regs->dmactrl);
605 tempval |= DMACTRL_INIT_SETTINGS;
606 gfar_write(&priv->regs->dmactrl, tempval);
607
608 /* Clear THLT, so that the DMA starts polling now */
609 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
610
611 /* Make sure we aren't stopped */
612 tempval = gfar_read(&priv->regs->dmactrl);
613 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
614 gfar_write(&priv->regs->dmactrl, tempval);
615
616 /* Unmask the interrupts we look for */
617 gfar_write(&regs->imask, IMASK_DEFAULT);
618 }
619
620 /* Bring the controller up and running */
621 int startup_gfar(struct net_device *dev)
622 {
623 struct txbd8 *txbdp;
624 struct rxbd8 *rxbdp;
625 dma_addr_t addr;
626 unsigned long vaddr;
627 int i;
628 struct gfar_private *priv = netdev_priv(dev);
629 struct gfar __iomem *regs = priv->regs;
630 int err = 0;
631 u32 rctrl = 0;
632 u32 attrs = 0;
633
634 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
635
636 /* Allocate memory for the buffer descriptors */
637 vaddr = (unsigned long) dma_alloc_coherent(NULL,
638 sizeof (struct txbd8) * priv->tx_ring_size +
639 sizeof (struct rxbd8) * priv->rx_ring_size,
640 &addr, GFP_KERNEL);
641
642 if (vaddr == 0) {
643 if (netif_msg_ifup(priv))
644 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
645 dev->name);
646 return -ENOMEM;
647 }
648
649 priv->tx_bd_base = (struct txbd8 *) vaddr;
650
651 /* enet DMA only understands physical addresses */
652 gfar_write(&regs->tbase0, addr);
653
654 /* Start the rx descriptor ring where the tx ring leaves off */
655 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
656 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
657 priv->rx_bd_base = (struct rxbd8 *) vaddr;
658 gfar_write(&regs->rbase0, addr);
659
660 /* Setup the skbuff rings */
661 priv->tx_skbuff =
662 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
663 priv->tx_ring_size, GFP_KERNEL);
664
665 if (NULL == priv->tx_skbuff) {
666 if (netif_msg_ifup(priv))
667 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
668 dev->name);
669 err = -ENOMEM;
670 goto tx_skb_fail;
671 }
672
673 for (i = 0; i < priv->tx_ring_size; i++)
674 priv->tx_skbuff[i] = NULL;
675
676 priv->rx_skbuff =
677 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
678 priv->rx_ring_size, GFP_KERNEL);
679
680 if (NULL == priv->rx_skbuff) {
681 if (netif_msg_ifup(priv))
682 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
683 dev->name);
684 err = -ENOMEM;
685 goto rx_skb_fail;
686 }
687
688 for (i = 0; i < priv->rx_ring_size; i++)
689 priv->rx_skbuff[i] = NULL;
690
691 /* Initialize some variables in our dev structure */
692 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
693 priv->cur_rx = priv->rx_bd_base;
694 priv->skb_curtx = priv->skb_dirtytx = 0;
695 priv->skb_currx = 0;
696
697 /* Initialize Transmit Descriptor Ring */
698 txbdp = priv->tx_bd_base;
699 for (i = 0; i < priv->tx_ring_size; i++) {
700 txbdp->status = 0;
701 txbdp->length = 0;
702 txbdp->bufPtr = 0;
703 txbdp++;
704 }
705
706 /* Set the last descriptor in the ring to indicate wrap */
707 txbdp--;
708 txbdp->status |= TXBD_WRAP;
709
710 rxbdp = priv->rx_bd_base;
711 for (i = 0; i < priv->rx_ring_size; i++) {
712 struct sk_buff *skb = NULL;
713
714 rxbdp->status = 0;
715
716 skb = gfar_new_skb(dev, rxbdp);
717
718 priv->rx_skbuff[i] = skb;
719
720 rxbdp++;
721 }
722
723 /* Set the last descriptor in the ring to wrap */
724 rxbdp--;
725 rxbdp->status |= RXBD_WRAP;
726
727 /* If the device has multiple interrupts, register for
728 * them. Otherwise, only register for the one */
729 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
730 /* Install our interrupt handlers for Error,
731 * Transmit, and Receive */
732 if (request_irq(priv->interruptError, gfar_error,
733 0, "enet_error", dev) < 0) {
734 if (netif_msg_intr(priv))
735 printk(KERN_ERR "%s: Can't get IRQ %d\n",
736 dev->name, priv->interruptError);
737
738 err = -1;
739 goto err_irq_fail;
740 }
741
742 if (request_irq(priv->interruptTransmit, gfar_transmit,
743 0, "enet_tx", dev) < 0) {
744 if (netif_msg_intr(priv))
745 printk(KERN_ERR "%s: Can't get IRQ %d\n",
746 dev->name, priv->interruptTransmit);
747
748 err = -1;
749
750 goto tx_irq_fail;
751 }
752
753 if (request_irq(priv->interruptReceive, gfar_receive,
754 0, "enet_rx", dev) < 0) {
755 if (netif_msg_intr(priv))
756 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
757 dev->name, priv->interruptReceive);
758
759 err = -1;
760 goto rx_irq_fail;
761 }
762 } else {
763 if (request_irq(priv->interruptTransmit, gfar_interrupt,
764 0, "gfar_interrupt", dev) < 0) {
765 if (netif_msg_intr(priv))
766 printk(KERN_ERR "%s: Can't get IRQ %d\n",
767 dev->name, priv->interruptError);
768
769 err = -1;
770 goto err_irq_fail;
771 }
772 }
773
774 phy_start(priv->phydev);
775
776 /* Configure the coalescing support */
777 if (priv->txcoalescing)
778 gfar_write(&regs->txic,
779 mk_ic_value(priv->txcount, priv->txtime));
780 else
781 gfar_write(&regs->txic, 0);
782
783 if (priv->rxcoalescing)
784 gfar_write(&regs->rxic,
785 mk_ic_value(priv->rxcount, priv->rxtime));
786 else
787 gfar_write(&regs->rxic, 0);
788
789 if (priv->rx_csum_enable)
790 rctrl |= RCTRL_CHECKSUMMING;
791
792 if (priv->extended_hash) {
793 rctrl |= RCTRL_EXTHASH;
794
795 gfar_clear_exact_match(dev);
796 rctrl |= RCTRL_EMEN;
797 }
798
799 if (priv->vlan_enable)
800 rctrl |= RCTRL_VLAN;
801
802 if (priv->padding) {
803 rctrl &= ~RCTRL_PAL_MASK;
804 rctrl |= RCTRL_PADDING(priv->padding);
805 }
806
807 /* Init rctrl based on our settings */
808 gfar_write(&priv->regs->rctrl, rctrl);
809
810 if (dev->features & NETIF_F_IP_CSUM)
811 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
812
813 /* Set the extraction length and index */
814 attrs = ATTRELI_EL(priv->rx_stash_size) |
815 ATTRELI_EI(priv->rx_stash_index);
816
817 gfar_write(&priv->regs->attreli, attrs);
818
819 /* Start with defaults, and add stashing or locking
820 * depending on the approprate variables */
821 attrs = ATTR_INIT_SETTINGS;
822
823 if (priv->bd_stash_en)
824 attrs |= ATTR_BDSTASH;
825
826 if (priv->rx_stash_size != 0)
827 attrs |= ATTR_BUFSTASH;
828
829 gfar_write(&priv->regs->attr, attrs);
830
831 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
832 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
833 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
834
835 /* Start the controller */
836 gfar_start(dev);
837
838 return 0;
839
840 rx_irq_fail:
841 free_irq(priv->interruptTransmit, dev);
842 tx_irq_fail:
843 free_irq(priv->interruptError, dev);
844 err_irq_fail:
845 rx_skb_fail:
846 free_skb_resources(priv);
847 tx_skb_fail:
848 dma_free_coherent(NULL,
849 sizeof(struct txbd8)*priv->tx_ring_size
850 + sizeof(struct rxbd8)*priv->rx_ring_size,
851 priv->tx_bd_base,
852 gfar_read(&regs->tbase0));
853
854 return err;
855 }
856
857 /* Called when something needs to use the ethernet device */
858 /* Returns 0 for success. */
859 static int gfar_enet_open(struct net_device *dev)
860 {
861 int err;
862
863 /* Initialize a bunch of registers */
864 init_registers(dev);
865
866 gfar_set_mac_address(dev);
867
868 err = init_phy(dev);
869
870 if(err)
871 return err;
872
873 err = startup_gfar(dev);
874
875 netif_start_queue(dev);
876
877 return err;
878 }
879
880 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
881 {
882 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
883
884 memset(fcb, 0, GMAC_FCB_LEN);
885
886 return fcb;
887 }
888
889 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
890 {
891 u8 flags = 0;
892
893 /* If we're here, it's a IP packet with a TCP or UDP
894 * payload. We set it to checksum, using a pseudo-header
895 * we provide
896 */
897 flags = TXFCB_DEFAULT;
898
899 /* Tell the controller what the protocol is */
900 /* And provide the already calculated phcs */
901 if (skb->nh.iph->protocol == IPPROTO_UDP) {
902 flags |= TXFCB_UDP;
903 fcb->phcs = skb->h.uh->check;
904 } else
905 fcb->phcs = skb->h.th->check;
906
907 /* l3os is the distance between the start of the
908 * frame (skb->data) and the start of the IP hdr.
909 * l4os is the distance between the start of the
910 * l3 hdr and the l4 hdr */
911 fcb->l3os = (u16)(skb->nh.raw - skb->data - GMAC_FCB_LEN);
912 fcb->l4os = (u16)(skb->h.raw - skb->nh.raw);
913
914 fcb->flags = flags;
915 }
916
917 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
918 {
919 fcb->flags |= TXFCB_VLN;
920 fcb->vlctl = vlan_tx_tag_get(skb);
921 }
922
923 /* This is called by the kernel when a frame is ready for transmission. */
924 /* It is pointed to by the dev->hard_start_xmit function pointer */
925 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
926 {
927 struct gfar_private *priv = netdev_priv(dev);
928 struct txfcb *fcb = NULL;
929 struct txbd8 *txbdp;
930 u16 status;
931
932 /* Update transmit stats */
933 priv->stats.tx_bytes += skb->len;
934
935 /* Lock priv now */
936 spin_lock_irq(&priv->lock);
937
938 /* Point at the first free tx descriptor */
939 txbdp = priv->cur_tx;
940
941 /* Clear all but the WRAP status flags */
942 status = txbdp->status & TXBD_WRAP;
943
944 /* Set up checksumming */
945 if (likely((dev->features & NETIF_F_IP_CSUM)
946 && (CHECKSUM_HW == skb->ip_summed))) {
947 fcb = gfar_add_fcb(skb, txbdp);
948 status |= TXBD_TOE;
949 gfar_tx_checksum(skb, fcb);
950 }
951
952 if (priv->vlan_enable &&
953 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
954 if (unlikely(NULL == fcb)) {
955 fcb = gfar_add_fcb(skb, txbdp);
956 status |= TXBD_TOE;
957 }
958
959 gfar_tx_vlan(skb, fcb);
960 }
961
962 /* Set buffer length and pointer */
963 txbdp->length = skb->len;
964 txbdp->bufPtr = dma_map_single(NULL, skb->data,
965 skb->len, DMA_TO_DEVICE);
966
967 /* Save the skb pointer so we can free it later */
968 priv->tx_skbuff[priv->skb_curtx] = skb;
969
970 /* Update the current skb pointer (wrapping if this was the last) */
971 priv->skb_curtx =
972 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
973
974 /* Flag the BD as interrupt-causing */
975 status |= TXBD_INTERRUPT;
976
977 /* Flag the BD as ready to go, last in frame, and */
978 /* in need of CRC */
979 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
980
981 dev->trans_start = jiffies;
982
983 txbdp->status = status;
984
985 /* If this was the last BD in the ring, the next one */
986 /* is at the beginning of the ring */
987 if (txbdp->status & TXBD_WRAP)
988 txbdp = priv->tx_bd_base;
989 else
990 txbdp++;
991
992 /* If the next BD still needs to be cleaned up, then the bds
993 are full. We need to tell the kernel to stop sending us stuff. */
994 if (txbdp == priv->dirty_tx) {
995 netif_stop_queue(dev);
996
997 priv->stats.tx_fifo_errors++;
998 }
999
1000 /* Update the current txbd to the next one */
1001 priv->cur_tx = txbdp;
1002
1003 /* Tell the DMA to go go go */
1004 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1005
1006 /* Unlock priv */
1007 spin_unlock_irq(&priv->lock);
1008
1009 return 0;
1010 }
1011
1012 /* Stops the kernel queue, and halts the controller */
1013 static int gfar_close(struct net_device *dev)
1014 {
1015 struct gfar_private *priv = netdev_priv(dev);
1016 stop_gfar(dev);
1017
1018 /* Disconnect from the PHY */
1019 phy_disconnect(priv->phydev);
1020 priv->phydev = NULL;
1021
1022 netif_stop_queue(dev);
1023
1024 return 0;
1025 }
1026
1027 /* returns a net_device_stats structure pointer */
1028 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1029 {
1030 struct gfar_private *priv = netdev_priv(dev);
1031
1032 return &(priv->stats);
1033 }
1034
1035 /* Changes the mac address if the controller is not running. */
1036 int gfar_set_mac_address(struct net_device *dev)
1037 {
1038 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1039
1040 return 0;
1041 }
1042
1043
1044 /* Enables and disables VLAN insertion/extraction */
1045 static void gfar_vlan_rx_register(struct net_device *dev,
1046 struct vlan_group *grp)
1047 {
1048 struct gfar_private *priv = netdev_priv(dev);
1049 unsigned long flags;
1050 u32 tempval;
1051
1052 spin_lock_irqsave(&priv->lock, flags);
1053
1054 priv->vlgrp = grp;
1055
1056 if (grp) {
1057 /* Enable VLAN tag insertion */
1058 tempval = gfar_read(&priv->regs->tctrl);
1059 tempval |= TCTRL_VLINS;
1060
1061 gfar_write(&priv->regs->tctrl, tempval);
1062
1063 /* Enable VLAN tag extraction */
1064 tempval = gfar_read(&priv->regs->rctrl);
1065 tempval |= RCTRL_VLEX;
1066 gfar_write(&priv->regs->rctrl, tempval);
1067 } else {
1068 /* Disable VLAN tag insertion */
1069 tempval = gfar_read(&priv->regs->tctrl);
1070 tempval &= ~TCTRL_VLINS;
1071 gfar_write(&priv->regs->tctrl, tempval);
1072
1073 /* Disable VLAN tag extraction */
1074 tempval = gfar_read(&priv->regs->rctrl);
1075 tempval &= ~RCTRL_VLEX;
1076 gfar_write(&priv->regs->rctrl, tempval);
1077 }
1078
1079 spin_unlock_irqrestore(&priv->lock, flags);
1080 }
1081
1082
1083 static void gfar_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
1084 {
1085 struct gfar_private *priv = netdev_priv(dev);
1086 unsigned long flags;
1087
1088 spin_lock_irqsave(&priv->lock, flags);
1089
1090 if (priv->vlgrp)
1091 priv->vlgrp->vlan_devices[vid] = NULL;
1092
1093 spin_unlock_irqrestore(&priv->lock, flags);
1094 }
1095
1096
1097 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1098 {
1099 int tempsize, tempval;
1100 struct gfar_private *priv = netdev_priv(dev);
1101 int oldsize = priv->rx_buffer_size;
1102 int frame_size = new_mtu + ETH_HLEN;
1103
1104 if (priv->vlan_enable)
1105 frame_size += VLAN_ETH_HLEN;
1106
1107 if (gfar_uses_fcb(priv))
1108 frame_size += GMAC_FCB_LEN;
1109
1110 frame_size += priv->padding;
1111
1112 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1113 if (netif_msg_drv(priv))
1114 printk(KERN_ERR "%s: Invalid MTU setting\n",
1115 dev->name);
1116 return -EINVAL;
1117 }
1118
1119 tempsize =
1120 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1121 INCREMENTAL_BUFFER_SIZE;
1122
1123 /* Only stop and start the controller if it isn't already
1124 * stopped, and we changed something */
1125 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1126 stop_gfar(dev);
1127
1128 priv->rx_buffer_size = tempsize;
1129
1130 dev->mtu = new_mtu;
1131
1132 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1133 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1134
1135 /* If the mtu is larger than the max size for standard
1136 * ethernet frames (ie, a jumbo frame), then set maccfg2
1137 * to allow huge frames, and to check the length */
1138 tempval = gfar_read(&priv->regs->maccfg2);
1139
1140 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1141 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1142 else
1143 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1144
1145 gfar_write(&priv->regs->maccfg2, tempval);
1146
1147 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1148 startup_gfar(dev);
1149
1150 return 0;
1151 }
1152
1153 /* gfar_timeout gets called when a packet has not been
1154 * transmitted after a set amount of time.
1155 * For now, assume that clearing out all the structures, and
1156 * starting over will fix the problem. */
1157 static void gfar_timeout(struct net_device *dev)
1158 {
1159 struct gfar_private *priv = netdev_priv(dev);
1160
1161 priv->stats.tx_errors++;
1162
1163 if (dev->flags & IFF_UP) {
1164 stop_gfar(dev);
1165 startup_gfar(dev);
1166 }
1167
1168 netif_schedule(dev);
1169 }
1170
1171 /* Interrupt Handler for Transmit complete */
1172 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
1173 {
1174 struct net_device *dev = (struct net_device *) dev_id;
1175 struct gfar_private *priv = netdev_priv(dev);
1176 struct txbd8 *bdp;
1177
1178 /* Clear IEVENT */
1179 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1180
1181 /* Lock priv */
1182 spin_lock(&priv->lock);
1183 bdp = priv->dirty_tx;
1184 while ((bdp->status & TXBD_READY) == 0) {
1185 /* If dirty_tx and cur_tx are the same, then either the */
1186 /* ring is empty or full now (it could only be full in the beginning, */
1187 /* obviously). If it is empty, we are done. */
1188 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1189 break;
1190
1191 priv->stats.tx_packets++;
1192
1193 /* Deferred means some collisions occurred during transmit, */
1194 /* but we eventually sent the packet. */
1195 if (bdp->status & TXBD_DEF)
1196 priv->stats.collisions++;
1197
1198 /* Free the sk buffer associated with this TxBD */
1199 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1200 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1201 priv->skb_dirtytx =
1202 (priv->skb_dirtytx +
1203 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1204
1205 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1206 if (bdp->status & TXBD_WRAP)
1207 bdp = priv->tx_bd_base;
1208 else
1209 bdp++;
1210
1211 /* Move dirty_tx to be the next bd */
1212 priv->dirty_tx = bdp;
1213
1214 /* We freed a buffer, so now we can restart transmission */
1215 if (netif_queue_stopped(dev))
1216 netif_wake_queue(dev);
1217 } /* while ((bdp->status & TXBD_READY) == 0) */
1218
1219 /* If we are coalescing the interrupts, reset the timer */
1220 /* Otherwise, clear it */
1221 if (priv->txcoalescing)
1222 gfar_write(&priv->regs->txic,
1223 mk_ic_value(priv->txcount, priv->txtime));
1224 else
1225 gfar_write(&priv->regs->txic, 0);
1226
1227 spin_unlock(&priv->lock);
1228
1229 return IRQ_HANDLED;
1230 }
1231
1232 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1233 {
1234 unsigned int alignamount;
1235 struct gfar_private *priv = netdev_priv(dev);
1236 struct sk_buff *skb = NULL;
1237 unsigned int timeout = SKB_ALLOC_TIMEOUT;
1238
1239 /* We have to allocate the skb, so keep trying till we succeed */
1240 while ((!skb) && timeout--)
1241 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1242
1243 if (NULL == skb)
1244 return NULL;
1245
1246 alignamount = RXBUF_ALIGNMENT -
1247 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1));
1248
1249 /* We need the data buffer to be aligned properly. We will reserve
1250 * as many bytes as needed to align the data properly
1251 */
1252 skb_reserve(skb, alignamount);
1253
1254 skb->dev = dev;
1255
1256 bdp->bufPtr = dma_map_single(NULL, skb->data,
1257 priv->rx_buffer_size, DMA_FROM_DEVICE);
1258
1259 bdp->length = 0;
1260
1261 /* Mark the buffer empty */
1262 bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1263
1264 return skb;
1265 }
1266
1267 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1268 {
1269 struct net_device_stats *stats = &priv->stats;
1270 struct gfar_extra_stats *estats = &priv->extra_stats;
1271
1272 /* If the packet was truncated, none of the other errors
1273 * matter */
1274 if (status & RXBD_TRUNCATED) {
1275 stats->rx_length_errors++;
1276
1277 estats->rx_trunc++;
1278
1279 return;
1280 }
1281 /* Count the errors, if there were any */
1282 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1283 stats->rx_length_errors++;
1284
1285 if (status & RXBD_LARGE)
1286 estats->rx_large++;
1287 else
1288 estats->rx_short++;
1289 }
1290 if (status & RXBD_NONOCTET) {
1291 stats->rx_frame_errors++;
1292 estats->rx_nonoctet++;
1293 }
1294 if (status & RXBD_CRCERR) {
1295 estats->rx_crcerr++;
1296 stats->rx_crc_errors++;
1297 }
1298 if (status & RXBD_OVERRUN) {
1299 estats->rx_overrun++;
1300 stats->rx_crc_errors++;
1301 }
1302 }
1303
1304 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
1305 {
1306 struct net_device *dev = (struct net_device *) dev_id;
1307 struct gfar_private *priv = netdev_priv(dev);
1308
1309 #ifdef CONFIG_GFAR_NAPI
1310 u32 tempval;
1311 #endif
1312
1313 /* Clear IEVENT, so rx interrupt isn't called again
1314 * because of this interrupt */
1315 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1316
1317 /* support NAPI */
1318 #ifdef CONFIG_GFAR_NAPI
1319 if (netif_rx_schedule_prep(dev)) {
1320 tempval = gfar_read(&priv->regs->imask);
1321 tempval &= IMASK_RX_DISABLED;
1322 gfar_write(&priv->regs->imask, tempval);
1323
1324 __netif_rx_schedule(dev);
1325 } else {
1326 if (netif_msg_rx_err(priv))
1327 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1328 dev->name, gfar_read(&priv->regs->ievent),
1329 gfar_read(&priv->regs->imask));
1330 }
1331 #else
1332
1333 spin_lock(&priv->lock);
1334 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1335
1336 /* If we are coalescing interrupts, update the timer */
1337 /* Otherwise, clear it */
1338 if (priv->rxcoalescing)
1339 gfar_write(&priv->regs->rxic,
1340 mk_ic_value(priv->rxcount, priv->rxtime));
1341 else
1342 gfar_write(&priv->regs->rxic, 0);
1343
1344 spin_unlock(&priv->lock);
1345 #endif
1346
1347 return IRQ_HANDLED;
1348 }
1349
1350 static inline int gfar_rx_vlan(struct sk_buff *skb,
1351 struct vlan_group *vlgrp, unsigned short vlctl)
1352 {
1353 #ifdef CONFIG_GFAR_NAPI
1354 return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1355 #else
1356 return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1357 #endif
1358 }
1359
1360 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1361 {
1362 /* If valid headers were found, and valid sums
1363 * were verified, then we tell the kernel that no
1364 * checksumming is necessary. Otherwise, it is */
1365 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1366 skb->ip_summed = CHECKSUM_UNNECESSARY;
1367 else
1368 skb->ip_summed = CHECKSUM_NONE;
1369 }
1370
1371
1372 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1373 {
1374 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1375
1376 /* Remove the FCB from the skb */
1377 skb_pull(skb, GMAC_FCB_LEN);
1378
1379 return fcb;
1380 }
1381
1382 /* gfar_process_frame() -- handle one incoming packet if skb
1383 * isn't NULL. */
1384 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1385 int length)
1386 {
1387 struct gfar_private *priv = netdev_priv(dev);
1388 struct rxfcb *fcb = NULL;
1389
1390 if (NULL == skb) {
1391 if (netif_msg_rx_err(priv))
1392 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1393 priv->stats.rx_dropped++;
1394 priv->extra_stats.rx_skbmissing++;
1395 } else {
1396 int ret;
1397
1398 /* Prep the skb for the packet */
1399 skb_put(skb, length);
1400
1401 /* Grab the FCB if there is one */
1402 if (gfar_uses_fcb(priv))
1403 fcb = gfar_get_fcb(skb);
1404
1405 /* Remove the padded bytes, if there are any */
1406 if (priv->padding)
1407 skb_pull(skb, priv->padding);
1408
1409 if (priv->rx_csum_enable)
1410 gfar_rx_checksum(skb, fcb);
1411
1412 /* Tell the skb what kind of packet this is */
1413 skb->protocol = eth_type_trans(skb, dev);
1414
1415 /* Send the packet up the stack */
1416 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1417 ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1418 else
1419 ret = RECEIVE(skb);
1420
1421 if (NET_RX_DROP == ret)
1422 priv->extra_stats.kernel_dropped++;
1423 }
1424
1425 return 0;
1426 }
1427
1428 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1429 * until the budget/quota has been reached. Returns the number
1430 * of frames handled
1431 */
1432 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1433 {
1434 struct rxbd8 *bdp;
1435 struct sk_buff *skb;
1436 u16 pkt_len;
1437 int howmany = 0;
1438 struct gfar_private *priv = netdev_priv(dev);
1439
1440 /* Get the first full descriptor */
1441 bdp = priv->cur_rx;
1442
1443 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1444 skb = priv->rx_skbuff[priv->skb_currx];
1445
1446 if (!(bdp->status &
1447 (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1448 | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1449 /* Increment the number of packets */
1450 priv->stats.rx_packets++;
1451 howmany++;
1452
1453 /* Remove the FCS from the packet length */
1454 pkt_len = bdp->length - 4;
1455
1456 gfar_process_frame(dev, skb, pkt_len);
1457
1458 priv->stats.rx_bytes += pkt_len;
1459 } else {
1460 count_errors(bdp->status, priv);
1461
1462 if (skb)
1463 dev_kfree_skb_any(skb);
1464
1465 priv->rx_skbuff[priv->skb_currx] = NULL;
1466 }
1467
1468 dev->last_rx = jiffies;
1469
1470 /* Clear the status flags for this buffer */
1471 bdp->status &= ~RXBD_STATS;
1472
1473 /* Add another skb for the future */
1474 skb = gfar_new_skb(dev, bdp);
1475 priv->rx_skbuff[priv->skb_currx] = skb;
1476
1477 /* Update to the next pointer */
1478 if (bdp->status & RXBD_WRAP)
1479 bdp = priv->rx_bd_base;
1480 else
1481 bdp++;
1482
1483 /* update to point at the next skb */
1484 priv->skb_currx =
1485 (priv->skb_currx +
1486 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1487
1488 }
1489
1490 /* Update the current rxbd pointer to be the next one */
1491 priv->cur_rx = bdp;
1492
1493 /* If no packets have arrived since the
1494 * last one we processed, clear the IEVENT RX and
1495 * BSY bits so that another interrupt won't be
1496 * generated when we set IMASK */
1497 if (bdp->status & RXBD_EMPTY)
1498 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1499
1500 return howmany;
1501 }
1502
1503 #ifdef CONFIG_GFAR_NAPI
1504 static int gfar_poll(struct net_device *dev, int *budget)
1505 {
1506 int howmany;
1507 struct gfar_private *priv = netdev_priv(dev);
1508 int rx_work_limit = *budget;
1509
1510 if (rx_work_limit > dev->quota)
1511 rx_work_limit = dev->quota;
1512
1513 howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1514
1515 dev->quota -= howmany;
1516 rx_work_limit -= howmany;
1517 *budget -= howmany;
1518
1519 if (rx_work_limit >= 0) {
1520 netif_rx_complete(dev);
1521
1522 /* Clear the halt bit in RSTAT */
1523 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1524
1525 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1526
1527 /* If we are coalescing interrupts, update the timer */
1528 /* Otherwise, clear it */
1529 if (priv->rxcoalescing)
1530 gfar_write(&priv->regs->rxic,
1531 mk_ic_value(priv->rxcount, priv->rxtime));
1532 else
1533 gfar_write(&priv->regs->rxic, 0);
1534 }
1535
1536 return (rx_work_limit < 0) ? 1 : 0;
1537 }
1538 #endif
1539
1540 /* The interrupt handler for devices with one interrupt */
1541 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1542 {
1543 struct net_device *dev = dev_id;
1544 struct gfar_private *priv = netdev_priv(dev);
1545
1546 /* Save ievent for future reference */
1547 u32 events = gfar_read(&priv->regs->ievent);
1548
1549 /* Clear IEVENT */
1550 gfar_write(&priv->regs->ievent, events);
1551
1552 /* Check for reception */
1553 if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1554 gfar_receive(irq, dev_id, regs);
1555
1556 /* Check for transmit completion */
1557 if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1558 gfar_transmit(irq, dev_id, regs);
1559
1560 /* Update error statistics */
1561 if (events & IEVENT_TXE) {
1562 priv->stats.tx_errors++;
1563
1564 if (events & IEVENT_LC)
1565 priv->stats.tx_window_errors++;
1566 if (events & IEVENT_CRL)
1567 priv->stats.tx_aborted_errors++;
1568 if (events & IEVENT_XFUN) {
1569 if (netif_msg_tx_err(priv))
1570 printk(KERN_WARNING "%s: tx underrun. dropped packet\n", dev->name);
1571 priv->stats.tx_dropped++;
1572 priv->extra_stats.tx_underrun++;
1573
1574 /* Reactivate the Tx Queues */
1575 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1576 }
1577 }
1578 if (events & IEVENT_BSY) {
1579 priv->stats.rx_errors++;
1580 priv->extra_stats.rx_bsy++;
1581
1582 gfar_receive(irq, dev_id, regs);
1583
1584 #ifndef CONFIG_GFAR_NAPI
1585 /* Clear the halt bit in RSTAT */
1586 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1587 #endif
1588
1589 if (netif_msg_rx_err(priv))
1590 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1591 dev->name,
1592 gfar_read(&priv->regs->rstat));
1593 }
1594 if (events & IEVENT_BABR) {
1595 priv->stats.rx_errors++;
1596 priv->extra_stats.rx_babr++;
1597
1598 if (netif_msg_rx_err(priv))
1599 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1600 }
1601 if (events & IEVENT_EBERR) {
1602 priv->extra_stats.eberr++;
1603 if (netif_msg_rx_err(priv))
1604 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1605 }
1606 if ((events & IEVENT_RXC) && (netif_msg_rx_err(priv)))
1607 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1608
1609 if (events & IEVENT_BABT) {
1610 priv->extra_stats.tx_babt++;
1611 if (netif_msg_rx_err(priv))
1612 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1613 }
1614
1615 return IRQ_HANDLED;
1616 }
1617
1618 /* Called every time the controller might need to be made
1619 * aware of new link state. The PHY code conveys this
1620 * information through variables in the phydev structure, and this
1621 * function converts those variables into the appropriate
1622 * register values, and can bring down the device if needed.
1623 */
1624 static void adjust_link(struct net_device *dev)
1625 {
1626 struct gfar_private *priv = netdev_priv(dev);
1627 struct gfar __iomem *regs = priv->regs;
1628 unsigned long flags;
1629 struct phy_device *phydev = priv->phydev;
1630 int new_state = 0;
1631
1632 spin_lock_irqsave(&priv->lock, flags);
1633 if (phydev->link) {
1634 u32 tempval = gfar_read(&regs->maccfg2);
1635 u32 ecntrl = gfar_read(&regs->ecntrl);
1636
1637 /* Now we make sure that we can be in full duplex mode.
1638 * If not, we operate in half-duplex mode. */
1639 if (phydev->duplex != priv->oldduplex) {
1640 new_state = 1;
1641 if (!(phydev->duplex))
1642 tempval &= ~(MACCFG2_FULL_DUPLEX);
1643 else
1644 tempval |= MACCFG2_FULL_DUPLEX;
1645
1646 priv->oldduplex = phydev->duplex;
1647 }
1648
1649 if (phydev->speed != priv->oldspeed) {
1650 new_state = 1;
1651 switch (phydev->speed) {
1652 case 1000:
1653 tempval =
1654 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1655 break;
1656 case 100:
1657 case 10:
1658 tempval =
1659 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1660
1661 /* Reduced mode distinguishes
1662 * between 10 and 100 */
1663 if (phydev->speed == SPEED_100)
1664 ecntrl |= ECNTRL_R100;
1665 else
1666 ecntrl &= ~(ECNTRL_R100);
1667 break;
1668 default:
1669 if (netif_msg_link(priv))
1670 printk(KERN_WARNING
1671 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1672 dev->name, phydev->speed);
1673 break;
1674 }
1675
1676 priv->oldspeed = phydev->speed;
1677 }
1678
1679 gfar_write(&regs->maccfg2, tempval);
1680 gfar_write(&regs->ecntrl, ecntrl);
1681
1682 if (!priv->oldlink) {
1683 new_state = 1;
1684 priv->oldlink = 1;
1685 netif_schedule(dev);
1686 }
1687 } else if (priv->oldlink) {
1688 new_state = 1;
1689 priv->oldlink = 0;
1690 priv->oldspeed = 0;
1691 priv->oldduplex = -1;
1692 }
1693
1694 if (new_state && netif_msg_link(priv))
1695 phy_print_status(phydev);
1696
1697 spin_unlock_irqrestore(&priv->lock, flags);
1698 }
1699
1700 /* Update the hash table based on the current list of multicast
1701 * addresses we subscribe to. Also, change the promiscuity of
1702 * the device based on the flags (this function is called
1703 * whenever dev->flags is changed */
1704 static void gfar_set_multi(struct net_device *dev)
1705 {
1706 struct dev_mc_list *mc_ptr;
1707 struct gfar_private *priv = netdev_priv(dev);
1708 struct gfar __iomem *regs = priv->regs;
1709 u32 tempval;
1710
1711 if(dev->flags & IFF_PROMISC) {
1712 if (netif_msg_drv(priv))
1713 printk(KERN_INFO "%s: Entering promiscuous mode.\n",
1714 dev->name);
1715 /* Set RCTRL to PROM */
1716 tempval = gfar_read(&regs->rctrl);
1717 tempval |= RCTRL_PROM;
1718 gfar_write(&regs->rctrl, tempval);
1719 } else {
1720 /* Set RCTRL to not PROM */
1721 tempval = gfar_read(&regs->rctrl);
1722 tempval &= ~(RCTRL_PROM);
1723 gfar_write(&regs->rctrl, tempval);
1724 }
1725
1726 if(dev->flags & IFF_ALLMULTI) {
1727 /* Set the hash to rx all multicast frames */
1728 gfar_write(&regs->igaddr0, 0xffffffff);
1729 gfar_write(&regs->igaddr1, 0xffffffff);
1730 gfar_write(&regs->igaddr2, 0xffffffff);
1731 gfar_write(&regs->igaddr3, 0xffffffff);
1732 gfar_write(&regs->igaddr4, 0xffffffff);
1733 gfar_write(&regs->igaddr5, 0xffffffff);
1734 gfar_write(&regs->igaddr6, 0xffffffff);
1735 gfar_write(&regs->igaddr7, 0xffffffff);
1736 gfar_write(&regs->gaddr0, 0xffffffff);
1737 gfar_write(&regs->gaddr1, 0xffffffff);
1738 gfar_write(&regs->gaddr2, 0xffffffff);
1739 gfar_write(&regs->gaddr3, 0xffffffff);
1740 gfar_write(&regs->gaddr4, 0xffffffff);
1741 gfar_write(&regs->gaddr5, 0xffffffff);
1742 gfar_write(&regs->gaddr6, 0xffffffff);
1743 gfar_write(&regs->gaddr7, 0xffffffff);
1744 } else {
1745 int em_num;
1746 int idx;
1747
1748 /* zero out the hash */
1749 gfar_write(&regs->igaddr0, 0x0);
1750 gfar_write(&regs->igaddr1, 0x0);
1751 gfar_write(&regs->igaddr2, 0x0);
1752 gfar_write(&regs->igaddr3, 0x0);
1753 gfar_write(&regs->igaddr4, 0x0);
1754 gfar_write(&regs->igaddr5, 0x0);
1755 gfar_write(&regs->igaddr6, 0x0);
1756 gfar_write(&regs->igaddr7, 0x0);
1757 gfar_write(&regs->gaddr0, 0x0);
1758 gfar_write(&regs->gaddr1, 0x0);
1759 gfar_write(&regs->gaddr2, 0x0);
1760 gfar_write(&regs->gaddr3, 0x0);
1761 gfar_write(&regs->gaddr4, 0x0);
1762 gfar_write(&regs->gaddr5, 0x0);
1763 gfar_write(&regs->gaddr6, 0x0);
1764 gfar_write(&regs->gaddr7, 0x0);
1765
1766 /* If we have extended hash tables, we need to
1767 * clear the exact match registers to prepare for
1768 * setting them */
1769 if (priv->extended_hash) {
1770 em_num = GFAR_EM_NUM + 1;
1771 gfar_clear_exact_match(dev);
1772 idx = 1;
1773 } else {
1774 idx = 0;
1775 em_num = 0;
1776 }
1777
1778 if(dev->mc_count == 0)
1779 return;
1780
1781 /* Parse the list, and set the appropriate bits */
1782 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1783 if (idx < em_num) {
1784 gfar_set_mac_for_addr(dev, idx,
1785 mc_ptr->dmi_addr);
1786 idx++;
1787 } else
1788 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1789 }
1790 }
1791
1792 return;
1793 }
1794
1795
1796 /* Clears each of the exact match registers to zero, so they
1797 * don't interfere with normal reception */
1798 static void gfar_clear_exact_match(struct net_device *dev)
1799 {
1800 int idx;
1801 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1802
1803 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1804 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1805 }
1806
1807 /* Set the appropriate hash bit for the given addr */
1808 /* The algorithm works like so:
1809 * 1) Take the Destination Address (ie the multicast address), and
1810 * do a CRC on it (little endian), and reverse the bits of the
1811 * result.
1812 * 2) Use the 8 most significant bits as a hash into a 256-entry
1813 * table. The table is controlled through 8 32-bit registers:
1814 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1815 * gaddr7. This means that the 3 most significant bits in the
1816 * hash index which gaddr register to use, and the 5 other bits
1817 * indicate which bit (assuming an IBM numbering scheme, which
1818 * for PowerPC (tm) is usually the case) in the register holds
1819 * the entry. */
1820 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1821 {
1822 u32 tempval;
1823 struct gfar_private *priv = netdev_priv(dev);
1824 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1825 int width = priv->hash_width;
1826 u8 whichbit = (result >> (32 - width)) & 0x1f;
1827 u8 whichreg = result >> (32 - width + 5);
1828 u32 value = (1 << (31-whichbit));
1829
1830 tempval = gfar_read(priv->hash_regs[whichreg]);
1831 tempval |= value;
1832 gfar_write(priv->hash_regs[whichreg], tempval);
1833
1834 return;
1835 }
1836
1837
1838 /* There are multiple MAC Address register pairs on some controllers
1839 * This function sets the numth pair to a given address
1840 */
1841 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1842 {
1843 struct gfar_private *priv = netdev_priv(dev);
1844 int idx;
1845 char tmpbuf[MAC_ADDR_LEN];
1846 u32 tempval;
1847 u32 __iomem *macptr = &priv->regs->macstnaddr1;
1848
1849 macptr += num*2;
1850
1851 /* Now copy it into the mac registers backwards, cuz */
1852 /* little endian is silly */
1853 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1854 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1855
1856 gfar_write(macptr, *((u32 *) (tmpbuf)));
1857
1858 tempval = *((u32 *) (tmpbuf + 4));
1859
1860 gfar_write(macptr+1, tempval);
1861 }
1862
1863 /* GFAR error interrupt handler */
1864 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
1865 {
1866 struct net_device *dev = dev_id;
1867 struct gfar_private *priv = netdev_priv(dev);
1868
1869 /* Save ievent for future reference */
1870 u32 events = gfar_read(&priv->regs->ievent);
1871
1872 /* Clear IEVENT */
1873 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1874
1875 /* Hmm... */
1876 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1877 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1878 dev->name, events, gfar_read(&priv->regs->imask));
1879
1880 /* Update the error counters */
1881 if (events & IEVENT_TXE) {
1882 priv->stats.tx_errors++;
1883
1884 if (events & IEVENT_LC)
1885 priv->stats.tx_window_errors++;
1886 if (events & IEVENT_CRL)
1887 priv->stats.tx_aborted_errors++;
1888 if (events & IEVENT_XFUN) {
1889 if (netif_msg_tx_err(priv))
1890 printk(KERN_DEBUG "%s: underrun. packet dropped.\n",
1891 dev->name);
1892 priv->stats.tx_dropped++;
1893 priv->extra_stats.tx_underrun++;
1894
1895 /* Reactivate the Tx Queues */
1896 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1897 }
1898 if (netif_msg_tx_err(priv))
1899 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1900 }
1901 if (events & IEVENT_BSY) {
1902 priv->stats.rx_errors++;
1903 priv->extra_stats.rx_bsy++;
1904
1905 gfar_receive(irq, dev_id, regs);
1906
1907 #ifndef CONFIG_GFAR_NAPI
1908 /* Clear the halt bit in RSTAT */
1909 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1910 #endif
1911
1912 if (netif_msg_rx_err(priv))
1913 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1914 dev->name,
1915 gfar_read(&priv->regs->rstat));
1916 }
1917 if (events & IEVENT_BABR) {
1918 priv->stats.rx_errors++;
1919 priv->extra_stats.rx_babr++;
1920
1921 if (netif_msg_rx_err(priv))
1922 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1923 }
1924 if (events & IEVENT_EBERR) {
1925 priv->extra_stats.eberr++;
1926 if (netif_msg_rx_err(priv))
1927 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1928 }
1929 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1930 if (netif_msg_rx_status(priv))
1931 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1932
1933 if (events & IEVENT_BABT) {
1934 priv->extra_stats.tx_babt++;
1935 if (netif_msg_tx_err(priv))
1936 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1937 }
1938 return IRQ_HANDLED;
1939 }
1940
1941 /* Structure for a device driver */
1942 static struct platform_driver gfar_driver = {
1943 .probe = gfar_probe,
1944 .remove = gfar_remove,
1945 .driver = {
1946 .name = "fsl-gianfar",
1947 },
1948 };
1949
1950 static int __init gfar_init(void)
1951 {
1952 int err = gfar_mdio_init();
1953
1954 if (err)
1955 return err;
1956
1957 err = platform_driver_register(&gfar_driver);
1958
1959 if (err)
1960 gfar_mdio_exit();
1961
1962 return err;
1963 }
1964
1965 static void __exit gfar_exit(void)
1966 {
1967 platform_driver_unregister(&gfar_driver);
1968 gfar_mdio_exit();
1969 }
1970
1971 module_init(gfar_init);
1972 module_exit(gfar_exit);
1973
This page took 0.069992 seconds and 6 git commands to generate.