Merge branch 'for-rmk' of git://aeryn.fluff.org.uk/bjdooks/linux
[deliverable/linux.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 *
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
32 * day be supported.
33 *
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
39 *
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. This method will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
55 * skb.
56 *
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
65 */
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/platform_device.h>
82 #include <linux/ip.h>
83 #include <linux/tcp.h>
84 #include <linux/udp.h>
85 #include <linux/in.h>
86
87 #include <asm/io.h>
88 #include <asm/irq.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
95
96 #include "gianfar.h"
97 #include "gianfar_mii.h"
98
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
102
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
105
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112 struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct platform_device *pdev);
122 static int gfar_remove(struct platform_device *pdev);
123 static void free_skb_resources(struct gfar_private *priv);
124 static void gfar_set_multi(struct net_device *dev);
125 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
126 static void gfar_configure_serdes(struct net_device *dev);
127 static int gfar_poll(struct napi_struct *napi, int budget);
128 #ifdef CONFIG_NET_POLL_CONTROLLER
129 static void gfar_netpoll(struct net_device *dev);
130 #endif
131 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
132 static int gfar_clean_tx_ring(struct net_device *dev);
133 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
134 static void gfar_vlan_rx_register(struct net_device *netdev,
135 struct vlan_group *grp);
136 void gfar_halt(struct net_device *dev);
137 #ifdef CONFIG_PM
138 static void gfar_halt_nodisable(struct net_device *dev);
139 #endif
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
143
144 extern const struct ethtool_ops gfar_ethtool_ops;
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 /* Returns 1 if incoming frames use an FCB */
151 static inline int gfar_uses_fcb(struct gfar_private *priv)
152 {
153 return (priv->vlan_enable || priv->rx_csum_enable);
154 }
155
156 /* Set up the ethernet device structure, private data,
157 * and anything else we need before we start */
158 static int gfar_probe(struct platform_device *pdev)
159 {
160 u32 tempval;
161 struct net_device *dev = NULL;
162 struct gfar_private *priv = NULL;
163 struct gianfar_platform_data *einfo;
164 struct resource *r;
165 int err = 0;
166 DECLARE_MAC_BUF(mac);
167
168 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
169
170 if (NULL == einfo) {
171 printk(KERN_ERR "gfar %d: Missing additional data!\n",
172 pdev->id);
173
174 return -ENODEV;
175 }
176
177 /* Create an ethernet device instance */
178 dev = alloc_etherdev(sizeof (*priv));
179
180 if (NULL == dev)
181 return -ENOMEM;
182
183 priv = netdev_priv(dev);
184 priv->dev = dev;
185
186 /* Set the info in the priv to the current info */
187 priv->einfo = einfo;
188
189 /* fill out IRQ fields */
190 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
191 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
192 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
193 priv->interruptError = platform_get_irq_byname(pdev, "error");
194 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
195 goto regs_fail;
196 } else {
197 priv->interruptTransmit = platform_get_irq(pdev, 0);
198 if (priv->interruptTransmit < 0)
199 goto regs_fail;
200 }
201
202 /* get a pointer to the register memory */
203 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
204 priv->regs = ioremap(r->start, sizeof (struct gfar));
205
206 if (NULL == priv->regs) {
207 err = -ENOMEM;
208 goto regs_fail;
209 }
210
211 spin_lock_init(&priv->txlock);
212 spin_lock_init(&priv->rxlock);
213 spin_lock_init(&priv->bflock);
214
215 platform_set_drvdata(pdev, dev);
216
217 /* Stop the DMA engine now, in case it was running before */
218 /* (The firmware could have used it, and left it running). */
219 /* To do this, we write Graceful Receive Stop and Graceful */
220 /* Transmit Stop, and then wait until the corresponding bits */
221 /* in IEVENT indicate the stops have completed. */
222 tempval = gfar_read(&priv->regs->dmactrl);
223 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
224 gfar_write(&priv->regs->dmactrl, tempval);
225
226 tempval = gfar_read(&priv->regs->dmactrl);
227 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
228 gfar_write(&priv->regs->dmactrl, tempval);
229
230 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
231 cpu_relax();
232
233 /* Reset MAC layer */
234 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
235
236 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
237 gfar_write(&priv->regs->maccfg1, tempval);
238
239 /* Initialize MACCFG2. */
240 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
241
242 /* Initialize ECNTRL */
243 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
244
245 /* Copy the station address into the dev structure, */
246 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
247
248 /* Set the dev->base_addr to the gfar reg region */
249 dev->base_addr = (unsigned long) (priv->regs);
250
251 SET_NETDEV_DEV(dev, &pdev->dev);
252
253 /* Fill in the dev structure */
254 dev->open = gfar_enet_open;
255 dev->hard_start_xmit = gfar_start_xmit;
256 dev->tx_timeout = gfar_timeout;
257 dev->watchdog_timeo = TX_TIMEOUT;
258 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
259 #ifdef CONFIG_NET_POLL_CONTROLLER
260 dev->poll_controller = gfar_netpoll;
261 #endif
262 dev->stop = gfar_close;
263 dev->change_mtu = gfar_change_mtu;
264 dev->mtu = 1500;
265 dev->set_multicast_list = gfar_set_multi;
266
267 dev->ethtool_ops = &gfar_ethtool_ops;
268
269 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
270 priv->rx_csum_enable = 1;
271 dev->features |= NETIF_F_IP_CSUM;
272 } else
273 priv->rx_csum_enable = 0;
274
275 priv->vlgrp = NULL;
276
277 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
278 dev->vlan_rx_register = gfar_vlan_rx_register;
279
280 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
281
282 priv->vlan_enable = 1;
283 }
284
285 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
286 priv->extended_hash = 1;
287 priv->hash_width = 9;
288
289 priv->hash_regs[0] = &priv->regs->igaddr0;
290 priv->hash_regs[1] = &priv->regs->igaddr1;
291 priv->hash_regs[2] = &priv->regs->igaddr2;
292 priv->hash_regs[3] = &priv->regs->igaddr3;
293 priv->hash_regs[4] = &priv->regs->igaddr4;
294 priv->hash_regs[5] = &priv->regs->igaddr5;
295 priv->hash_regs[6] = &priv->regs->igaddr6;
296 priv->hash_regs[7] = &priv->regs->igaddr7;
297 priv->hash_regs[8] = &priv->regs->gaddr0;
298 priv->hash_regs[9] = &priv->regs->gaddr1;
299 priv->hash_regs[10] = &priv->regs->gaddr2;
300 priv->hash_regs[11] = &priv->regs->gaddr3;
301 priv->hash_regs[12] = &priv->regs->gaddr4;
302 priv->hash_regs[13] = &priv->regs->gaddr5;
303 priv->hash_regs[14] = &priv->regs->gaddr6;
304 priv->hash_regs[15] = &priv->regs->gaddr7;
305
306 } else {
307 priv->extended_hash = 0;
308 priv->hash_width = 8;
309
310 priv->hash_regs[0] = &priv->regs->gaddr0;
311 priv->hash_regs[1] = &priv->regs->gaddr1;
312 priv->hash_regs[2] = &priv->regs->gaddr2;
313 priv->hash_regs[3] = &priv->regs->gaddr3;
314 priv->hash_regs[4] = &priv->regs->gaddr4;
315 priv->hash_regs[5] = &priv->regs->gaddr5;
316 priv->hash_regs[6] = &priv->regs->gaddr6;
317 priv->hash_regs[7] = &priv->regs->gaddr7;
318 }
319
320 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
321 priv->padding = DEFAULT_PADDING;
322 else
323 priv->padding = 0;
324
325 if (dev->features & NETIF_F_IP_CSUM)
326 dev->hard_header_len += GMAC_FCB_LEN;
327
328 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
329 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
330 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
331
332 priv->txcoalescing = DEFAULT_TX_COALESCE;
333 priv->txcount = DEFAULT_TXCOUNT;
334 priv->txtime = DEFAULT_TXTIME;
335 priv->rxcoalescing = DEFAULT_RX_COALESCE;
336 priv->rxcount = DEFAULT_RXCOUNT;
337 priv->rxtime = DEFAULT_RXTIME;
338
339 /* Enable most messages by default */
340 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
341
342 err = register_netdev(dev);
343
344 if (err) {
345 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
346 dev->name);
347 goto register_fail;
348 }
349
350 /* Create all the sysfs files */
351 gfar_init_sysfs(dev);
352
353 /* Print out the device info */
354 printk(KERN_INFO DEVICE_NAME "%s\n",
355 dev->name, print_mac(mac, dev->dev_addr));
356
357 /* Even more device info helps when determining which kernel */
358 /* provided which set of benchmarks. */
359 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
360 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
361 dev->name, priv->rx_ring_size, priv->tx_ring_size);
362
363 return 0;
364
365 register_fail:
366 iounmap(priv->regs);
367 regs_fail:
368 free_netdev(dev);
369 return err;
370 }
371
372 static int gfar_remove(struct platform_device *pdev)
373 {
374 struct net_device *dev = platform_get_drvdata(pdev);
375 struct gfar_private *priv = netdev_priv(dev);
376
377 platform_set_drvdata(pdev, NULL);
378
379 iounmap(priv->regs);
380 free_netdev(dev);
381
382 return 0;
383 }
384
385 #ifdef CONFIG_PM
386 static int gfar_suspend(struct platform_device *pdev, pm_message_t state)
387 {
388 struct net_device *dev = platform_get_drvdata(pdev);
389 struct gfar_private *priv = netdev_priv(dev);
390 unsigned long flags;
391 u32 tempval;
392
393 int magic_packet = priv->wol_en &&
394 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
395
396 netif_device_detach(dev);
397
398 if (netif_running(dev)) {
399 spin_lock_irqsave(&priv->txlock, flags);
400 spin_lock(&priv->rxlock);
401
402 gfar_halt_nodisable(dev);
403
404 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
405 tempval = gfar_read(&priv->regs->maccfg1);
406
407 tempval &= ~MACCFG1_TX_EN;
408
409 if (!magic_packet)
410 tempval &= ~MACCFG1_RX_EN;
411
412 gfar_write(&priv->regs->maccfg1, tempval);
413
414 spin_unlock(&priv->rxlock);
415 spin_unlock_irqrestore(&priv->txlock, flags);
416
417 napi_disable(&priv->napi);
418
419 if (magic_packet) {
420 /* Enable interrupt on Magic Packet */
421 gfar_write(&priv->regs->imask, IMASK_MAG);
422
423 /* Enable Magic Packet mode */
424 tempval = gfar_read(&priv->regs->maccfg2);
425 tempval |= MACCFG2_MPEN;
426 gfar_write(&priv->regs->maccfg2, tempval);
427 } else {
428 phy_stop(priv->phydev);
429 }
430 }
431
432 return 0;
433 }
434
435 static int gfar_resume(struct platform_device *pdev)
436 {
437 struct net_device *dev = platform_get_drvdata(pdev);
438 struct gfar_private *priv = netdev_priv(dev);
439 unsigned long flags;
440 u32 tempval;
441 int magic_packet = priv->wol_en &&
442 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
443
444 if (!netif_running(dev)) {
445 netif_device_attach(dev);
446 return 0;
447 }
448
449 if (!magic_packet && priv->phydev)
450 phy_start(priv->phydev);
451
452 /* Disable Magic Packet mode, in case something
453 * else woke us up.
454 */
455
456 spin_lock_irqsave(&priv->txlock, flags);
457 spin_lock(&priv->rxlock);
458
459 tempval = gfar_read(&priv->regs->maccfg2);
460 tempval &= ~MACCFG2_MPEN;
461 gfar_write(&priv->regs->maccfg2, tempval);
462
463 gfar_start(dev);
464
465 spin_unlock(&priv->rxlock);
466 spin_unlock_irqrestore(&priv->txlock, flags);
467
468 netif_device_attach(dev);
469
470 napi_enable(&priv->napi);
471
472 return 0;
473 }
474 #else
475 #define gfar_suspend NULL
476 #define gfar_resume NULL
477 #endif
478
479 /* Reads the controller's registers to determine what interface
480 * connects it to the PHY.
481 */
482 static phy_interface_t gfar_get_interface(struct net_device *dev)
483 {
484 struct gfar_private *priv = netdev_priv(dev);
485 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
486
487 if (ecntrl & ECNTRL_SGMII_MODE)
488 return PHY_INTERFACE_MODE_SGMII;
489
490 if (ecntrl & ECNTRL_TBI_MODE) {
491 if (ecntrl & ECNTRL_REDUCED_MODE)
492 return PHY_INTERFACE_MODE_RTBI;
493 else
494 return PHY_INTERFACE_MODE_TBI;
495 }
496
497 if (ecntrl & ECNTRL_REDUCED_MODE) {
498 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
499 return PHY_INTERFACE_MODE_RMII;
500 else {
501 phy_interface_t interface = priv->einfo->interface;
502
503 /*
504 * This isn't autodetected right now, so it must
505 * be set by the device tree or platform code.
506 */
507 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
508 return PHY_INTERFACE_MODE_RGMII_ID;
509
510 return PHY_INTERFACE_MODE_RGMII;
511 }
512 }
513
514 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
515 return PHY_INTERFACE_MODE_GMII;
516
517 return PHY_INTERFACE_MODE_MII;
518 }
519
520
521 /* Initializes driver's PHY state, and attaches to the PHY.
522 * Returns 0 on success.
523 */
524 static int init_phy(struct net_device *dev)
525 {
526 struct gfar_private *priv = netdev_priv(dev);
527 uint gigabit_support =
528 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
529 SUPPORTED_1000baseT_Full : 0;
530 struct phy_device *phydev;
531 char phy_id[BUS_ID_SIZE];
532 phy_interface_t interface;
533
534 priv->oldlink = 0;
535 priv->oldspeed = 0;
536 priv->oldduplex = -1;
537
538 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
539
540 interface = gfar_get_interface(dev);
541
542 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
543
544 if (interface == PHY_INTERFACE_MODE_SGMII)
545 gfar_configure_serdes(dev);
546
547 if (IS_ERR(phydev)) {
548 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
549 return PTR_ERR(phydev);
550 }
551
552 /* Remove any features not supported by the controller */
553 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
554 phydev->advertising = phydev->supported;
555
556 priv->phydev = phydev;
557
558 return 0;
559 }
560
561 /*
562 * Initialize TBI PHY interface for communicating with the
563 * SERDES lynx PHY on the chip. We communicate with this PHY
564 * through the MDIO bus on each controller, treating it as a
565 * "normal" PHY at the address found in the TBIPA register. We assume
566 * that the TBIPA register is valid. Either the MDIO bus code will set
567 * it to a value that doesn't conflict with other PHYs on the bus, or the
568 * value doesn't matter, as there are no other PHYs on the bus.
569 */
570 static void gfar_configure_serdes(struct net_device *dev)
571 {
572 struct gfar_private *priv = netdev_priv(dev);
573 struct gfar_mii __iomem *regs =
574 (void __iomem *)&priv->regs->gfar_mii_regs;
575 int tbipa = gfar_read(&priv->regs->tbipa);
576
577 /* Single clk mode, mii mode off(for serdes communication) */
578 gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT);
579
580 gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE,
581 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
582 ADVERTISE_1000XPSE_ASYM);
583
584 gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE |
585 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
586 }
587
588 static void init_registers(struct net_device *dev)
589 {
590 struct gfar_private *priv = netdev_priv(dev);
591
592 /* Clear IEVENT */
593 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
594
595 /* Initialize IMASK */
596 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
597
598 /* Init hash registers to zero */
599 gfar_write(&priv->regs->igaddr0, 0);
600 gfar_write(&priv->regs->igaddr1, 0);
601 gfar_write(&priv->regs->igaddr2, 0);
602 gfar_write(&priv->regs->igaddr3, 0);
603 gfar_write(&priv->regs->igaddr4, 0);
604 gfar_write(&priv->regs->igaddr5, 0);
605 gfar_write(&priv->regs->igaddr6, 0);
606 gfar_write(&priv->regs->igaddr7, 0);
607
608 gfar_write(&priv->regs->gaddr0, 0);
609 gfar_write(&priv->regs->gaddr1, 0);
610 gfar_write(&priv->regs->gaddr2, 0);
611 gfar_write(&priv->regs->gaddr3, 0);
612 gfar_write(&priv->regs->gaddr4, 0);
613 gfar_write(&priv->regs->gaddr5, 0);
614 gfar_write(&priv->regs->gaddr6, 0);
615 gfar_write(&priv->regs->gaddr7, 0);
616
617 /* Zero out the rmon mib registers if it has them */
618 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
619 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
620
621 /* Mask off the CAM interrupts */
622 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
623 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
624 }
625
626 /* Initialize the max receive buffer length */
627 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
628
629 /* Initialize the Minimum Frame Length Register */
630 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
631 }
632
633
634 #ifdef CONFIG_PM
635 /* Halt the receive and transmit queues */
636 static void gfar_halt_nodisable(struct net_device *dev)
637 {
638 struct gfar_private *priv = netdev_priv(dev);
639 struct gfar __iomem *regs = priv->regs;
640 u32 tempval;
641
642 /* Mask all interrupts */
643 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
644
645 /* Clear all interrupts */
646 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
647
648 /* Stop the DMA, and wait for it to stop */
649 tempval = gfar_read(&priv->regs->dmactrl);
650 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
651 != (DMACTRL_GRS | DMACTRL_GTS)) {
652 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
653 gfar_write(&priv->regs->dmactrl, tempval);
654
655 while (!(gfar_read(&priv->regs->ievent) &
656 (IEVENT_GRSC | IEVENT_GTSC)))
657 cpu_relax();
658 }
659 }
660 #endif
661
662 /* Halt the receive and transmit queues */
663 void gfar_halt(struct net_device *dev)
664 {
665 struct gfar_private *priv = netdev_priv(dev);
666 struct gfar __iomem *regs = priv->regs;
667 u32 tempval;
668
669 /* Disable Rx and Tx */
670 tempval = gfar_read(&regs->maccfg1);
671 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
672 gfar_write(&regs->maccfg1, tempval);
673 }
674
675 void stop_gfar(struct net_device *dev)
676 {
677 struct gfar_private *priv = netdev_priv(dev);
678 struct gfar __iomem *regs = priv->regs;
679 unsigned long flags;
680
681 phy_stop(priv->phydev);
682
683 /* Lock it down */
684 spin_lock_irqsave(&priv->txlock, flags);
685 spin_lock(&priv->rxlock);
686
687 gfar_halt(dev);
688
689 spin_unlock(&priv->rxlock);
690 spin_unlock_irqrestore(&priv->txlock, flags);
691
692 /* Free the IRQs */
693 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
694 free_irq(priv->interruptError, dev);
695 free_irq(priv->interruptTransmit, dev);
696 free_irq(priv->interruptReceive, dev);
697 } else {
698 free_irq(priv->interruptTransmit, dev);
699 }
700
701 free_skb_resources(priv);
702
703 dma_free_coherent(&dev->dev,
704 sizeof(struct txbd8)*priv->tx_ring_size
705 + sizeof(struct rxbd8)*priv->rx_ring_size,
706 priv->tx_bd_base,
707 gfar_read(&regs->tbase0));
708 }
709
710 /* If there are any tx skbs or rx skbs still around, free them.
711 * Then free tx_skbuff and rx_skbuff */
712 static void free_skb_resources(struct gfar_private *priv)
713 {
714 struct rxbd8 *rxbdp;
715 struct txbd8 *txbdp;
716 int i;
717
718 /* Go through all the buffer descriptors and free their data buffers */
719 txbdp = priv->tx_bd_base;
720
721 for (i = 0; i < priv->tx_ring_size; i++) {
722
723 if (priv->tx_skbuff[i]) {
724 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
725 txbdp->length,
726 DMA_TO_DEVICE);
727 dev_kfree_skb_any(priv->tx_skbuff[i]);
728 priv->tx_skbuff[i] = NULL;
729 }
730
731 txbdp++;
732 }
733
734 kfree(priv->tx_skbuff);
735
736 rxbdp = priv->rx_bd_base;
737
738 /* rx_skbuff is not guaranteed to be allocated, so only
739 * free it and its contents if it is allocated */
740 if(priv->rx_skbuff != NULL) {
741 for (i = 0; i < priv->rx_ring_size; i++) {
742 if (priv->rx_skbuff[i]) {
743 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
744 priv->rx_buffer_size,
745 DMA_FROM_DEVICE);
746
747 dev_kfree_skb_any(priv->rx_skbuff[i]);
748 priv->rx_skbuff[i] = NULL;
749 }
750
751 rxbdp->status = 0;
752 rxbdp->length = 0;
753 rxbdp->bufPtr = 0;
754
755 rxbdp++;
756 }
757
758 kfree(priv->rx_skbuff);
759 }
760 }
761
762 void gfar_start(struct net_device *dev)
763 {
764 struct gfar_private *priv = netdev_priv(dev);
765 struct gfar __iomem *regs = priv->regs;
766 u32 tempval;
767
768 /* Enable Rx and Tx in MACCFG1 */
769 tempval = gfar_read(&regs->maccfg1);
770 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
771 gfar_write(&regs->maccfg1, tempval);
772
773 /* Initialize DMACTRL to have WWR and WOP */
774 tempval = gfar_read(&priv->regs->dmactrl);
775 tempval |= DMACTRL_INIT_SETTINGS;
776 gfar_write(&priv->regs->dmactrl, tempval);
777
778 /* Make sure we aren't stopped */
779 tempval = gfar_read(&priv->regs->dmactrl);
780 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
781 gfar_write(&priv->regs->dmactrl, tempval);
782
783 /* Clear THLT/RHLT, so that the DMA starts polling now */
784 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
785 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
786
787 /* Unmask the interrupts we look for */
788 gfar_write(&regs->imask, IMASK_DEFAULT);
789 }
790
791 /* Bring the controller up and running */
792 int startup_gfar(struct net_device *dev)
793 {
794 struct txbd8 *txbdp;
795 struct rxbd8 *rxbdp;
796 dma_addr_t addr = 0;
797 unsigned long vaddr;
798 int i;
799 struct gfar_private *priv = netdev_priv(dev);
800 struct gfar __iomem *regs = priv->regs;
801 int err = 0;
802 u32 rctrl = 0;
803 u32 attrs = 0;
804
805 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
806
807 /* Allocate memory for the buffer descriptors */
808 vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
809 sizeof (struct txbd8) * priv->tx_ring_size +
810 sizeof (struct rxbd8) * priv->rx_ring_size,
811 &addr, GFP_KERNEL);
812
813 if (vaddr == 0) {
814 if (netif_msg_ifup(priv))
815 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
816 dev->name);
817 return -ENOMEM;
818 }
819
820 priv->tx_bd_base = (struct txbd8 *) vaddr;
821
822 /* enet DMA only understands physical addresses */
823 gfar_write(&regs->tbase0, addr);
824
825 /* Start the rx descriptor ring where the tx ring leaves off */
826 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
827 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
828 priv->rx_bd_base = (struct rxbd8 *) vaddr;
829 gfar_write(&regs->rbase0, addr);
830
831 /* Setup the skbuff rings */
832 priv->tx_skbuff =
833 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
834 priv->tx_ring_size, GFP_KERNEL);
835
836 if (NULL == priv->tx_skbuff) {
837 if (netif_msg_ifup(priv))
838 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
839 dev->name);
840 err = -ENOMEM;
841 goto tx_skb_fail;
842 }
843
844 for (i = 0; i < priv->tx_ring_size; i++)
845 priv->tx_skbuff[i] = NULL;
846
847 priv->rx_skbuff =
848 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
849 priv->rx_ring_size, GFP_KERNEL);
850
851 if (NULL == priv->rx_skbuff) {
852 if (netif_msg_ifup(priv))
853 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
854 dev->name);
855 err = -ENOMEM;
856 goto rx_skb_fail;
857 }
858
859 for (i = 0; i < priv->rx_ring_size; i++)
860 priv->rx_skbuff[i] = NULL;
861
862 /* Initialize some variables in our dev structure */
863 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
864 priv->cur_rx = priv->rx_bd_base;
865 priv->skb_curtx = priv->skb_dirtytx = 0;
866 priv->skb_currx = 0;
867
868 /* Initialize Transmit Descriptor Ring */
869 txbdp = priv->tx_bd_base;
870 for (i = 0; i < priv->tx_ring_size; i++) {
871 txbdp->status = 0;
872 txbdp->length = 0;
873 txbdp->bufPtr = 0;
874 txbdp++;
875 }
876
877 /* Set the last descriptor in the ring to indicate wrap */
878 txbdp--;
879 txbdp->status |= TXBD_WRAP;
880
881 rxbdp = priv->rx_bd_base;
882 for (i = 0; i < priv->rx_ring_size; i++) {
883 struct sk_buff *skb;
884
885 skb = gfar_new_skb(dev);
886
887 if (!skb) {
888 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
889 dev->name);
890
891 goto err_rxalloc_fail;
892 }
893
894 priv->rx_skbuff[i] = skb;
895
896 gfar_new_rxbdp(dev, rxbdp, skb);
897
898 rxbdp++;
899 }
900
901 /* Set the last descriptor in the ring to wrap */
902 rxbdp--;
903 rxbdp->status |= RXBD_WRAP;
904
905 /* If the device has multiple interrupts, register for
906 * them. Otherwise, only register for the one */
907 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
908 /* Install our interrupt handlers for Error,
909 * Transmit, and Receive */
910 if (request_irq(priv->interruptError, gfar_error,
911 0, "enet_error", dev) < 0) {
912 if (netif_msg_intr(priv))
913 printk(KERN_ERR "%s: Can't get IRQ %d\n",
914 dev->name, priv->interruptError);
915
916 err = -1;
917 goto err_irq_fail;
918 }
919
920 if (request_irq(priv->interruptTransmit, gfar_transmit,
921 0, "enet_tx", dev) < 0) {
922 if (netif_msg_intr(priv))
923 printk(KERN_ERR "%s: Can't get IRQ %d\n",
924 dev->name, priv->interruptTransmit);
925
926 err = -1;
927
928 goto tx_irq_fail;
929 }
930
931 if (request_irq(priv->interruptReceive, gfar_receive,
932 0, "enet_rx", dev) < 0) {
933 if (netif_msg_intr(priv))
934 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
935 dev->name, priv->interruptReceive);
936
937 err = -1;
938 goto rx_irq_fail;
939 }
940 } else {
941 if (request_irq(priv->interruptTransmit, gfar_interrupt,
942 0, "gfar_interrupt", dev) < 0) {
943 if (netif_msg_intr(priv))
944 printk(KERN_ERR "%s: Can't get IRQ %d\n",
945 dev->name, priv->interruptError);
946
947 err = -1;
948 goto err_irq_fail;
949 }
950 }
951
952 phy_start(priv->phydev);
953
954 /* Configure the coalescing support */
955 if (priv->txcoalescing)
956 gfar_write(&regs->txic,
957 mk_ic_value(priv->txcount, priv->txtime));
958 else
959 gfar_write(&regs->txic, 0);
960
961 if (priv->rxcoalescing)
962 gfar_write(&regs->rxic,
963 mk_ic_value(priv->rxcount, priv->rxtime));
964 else
965 gfar_write(&regs->rxic, 0);
966
967 if (priv->rx_csum_enable)
968 rctrl |= RCTRL_CHECKSUMMING;
969
970 if (priv->extended_hash) {
971 rctrl |= RCTRL_EXTHASH;
972
973 gfar_clear_exact_match(dev);
974 rctrl |= RCTRL_EMEN;
975 }
976
977 if (priv->vlan_enable)
978 rctrl |= RCTRL_VLAN;
979
980 if (priv->padding) {
981 rctrl &= ~RCTRL_PAL_MASK;
982 rctrl |= RCTRL_PADDING(priv->padding);
983 }
984
985 /* Init rctrl based on our settings */
986 gfar_write(&priv->regs->rctrl, rctrl);
987
988 if (dev->features & NETIF_F_IP_CSUM)
989 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
990
991 /* Set the extraction length and index */
992 attrs = ATTRELI_EL(priv->rx_stash_size) |
993 ATTRELI_EI(priv->rx_stash_index);
994
995 gfar_write(&priv->regs->attreli, attrs);
996
997 /* Start with defaults, and add stashing or locking
998 * depending on the approprate variables */
999 attrs = ATTR_INIT_SETTINGS;
1000
1001 if (priv->bd_stash_en)
1002 attrs |= ATTR_BDSTASH;
1003
1004 if (priv->rx_stash_size != 0)
1005 attrs |= ATTR_BUFSTASH;
1006
1007 gfar_write(&priv->regs->attr, attrs);
1008
1009 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1010 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1011 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1012
1013 /* Start the controller */
1014 gfar_start(dev);
1015
1016 return 0;
1017
1018 rx_irq_fail:
1019 free_irq(priv->interruptTransmit, dev);
1020 tx_irq_fail:
1021 free_irq(priv->interruptError, dev);
1022 err_irq_fail:
1023 err_rxalloc_fail:
1024 rx_skb_fail:
1025 free_skb_resources(priv);
1026 tx_skb_fail:
1027 dma_free_coherent(&dev->dev,
1028 sizeof(struct txbd8)*priv->tx_ring_size
1029 + sizeof(struct rxbd8)*priv->rx_ring_size,
1030 priv->tx_bd_base,
1031 gfar_read(&regs->tbase0));
1032
1033 return err;
1034 }
1035
1036 /* Called when something needs to use the ethernet device */
1037 /* Returns 0 for success. */
1038 static int gfar_enet_open(struct net_device *dev)
1039 {
1040 struct gfar_private *priv = netdev_priv(dev);
1041 int err;
1042
1043 napi_enable(&priv->napi);
1044
1045 /* Initialize a bunch of registers */
1046 init_registers(dev);
1047
1048 gfar_set_mac_address(dev);
1049
1050 err = init_phy(dev);
1051
1052 if(err) {
1053 napi_disable(&priv->napi);
1054 return err;
1055 }
1056
1057 err = startup_gfar(dev);
1058 if (err) {
1059 napi_disable(&priv->napi);
1060 return err;
1061 }
1062
1063 netif_start_queue(dev);
1064
1065 return err;
1066 }
1067
1068 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
1069 {
1070 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1071
1072 memset(fcb, 0, GMAC_FCB_LEN);
1073
1074 return fcb;
1075 }
1076
1077 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1078 {
1079 u8 flags = 0;
1080
1081 /* If we're here, it's a IP packet with a TCP or UDP
1082 * payload. We set it to checksum, using a pseudo-header
1083 * we provide
1084 */
1085 flags = TXFCB_DEFAULT;
1086
1087 /* Tell the controller what the protocol is */
1088 /* And provide the already calculated phcs */
1089 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1090 flags |= TXFCB_UDP;
1091 fcb->phcs = udp_hdr(skb)->check;
1092 } else
1093 fcb->phcs = tcp_hdr(skb)->check;
1094
1095 /* l3os is the distance between the start of the
1096 * frame (skb->data) and the start of the IP hdr.
1097 * l4os is the distance between the start of the
1098 * l3 hdr and the l4 hdr */
1099 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1100 fcb->l4os = skb_network_header_len(skb);
1101
1102 fcb->flags = flags;
1103 }
1104
1105 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1106 {
1107 fcb->flags |= TXFCB_VLN;
1108 fcb->vlctl = vlan_tx_tag_get(skb);
1109 }
1110
1111 /* This is called by the kernel when a frame is ready for transmission. */
1112 /* It is pointed to by the dev->hard_start_xmit function pointer */
1113 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1114 {
1115 struct gfar_private *priv = netdev_priv(dev);
1116 struct txfcb *fcb = NULL;
1117 struct txbd8 *txbdp;
1118 u16 status;
1119 unsigned long flags;
1120
1121 /* Update transmit stats */
1122 dev->stats.tx_bytes += skb->len;
1123
1124 /* Lock priv now */
1125 spin_lock_irqsave(&priv->txlock, flags);
1126
1127 /* Point at the first free tx descriptor */
1128 txbdp = priv->cur_tx;
1129
1130 /* Clear all but the WRAP status flags */
1131 status = txbdp->status & TXBD_WRAP;
1132
1133 /* Set up checksumming */
1134 if (likely((dev->features & NETIF_F_IP_CSUM)
1135 && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1136 fcb = gfar_add_fcb(skb, txbdp);
1137 status |= TXBD_TOE;
1138 gfar_tx_checksum(skb, fcb);
1139 }
1140
1141 if (priv->vlan_enable &&
1142 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1143 if (unlikely(NULL == fcb)) {
1144 fcb = gfar_add_fcb(skb, txbdp);
1145 status |= TXBD_TOE;
1146 }
1147
1148 gfar_tx_vlan(skb, fcb);
1149 }
1150
1151 /* Set buffer length and pointer */
1152 txbdp->length = skb->len;
1153 txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1154 skb->len, DMA_TO_DEVICE);
1155
1156 /* Save the skb pointer so we can free it later */
1157 priv->tx_skbuff[priv->skb_curtx] = skb;
1158
1159 /* Update the current skb pointer (wrapping if this was the last) */
1160 priv->skb_curtx =
1161 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1162
1163 /* Flag the BD as interrupt-causing */
1164 status |= TXBD_INTERRUPT;
1165
1166 /* Flag the BD as ready to go, last in frame, and */
1167 /* in need of CRC */
1168 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1169
1170 dev->trans_start = jiffies;
1171
1172 /* The powerpc-specific eieio() is used, as wmb() has too strong
1173 * semantics (it requires synchronization between cacheable and
1174 * uncacheable mappings, which eieio doesn't provide and which we
1175 * don't need), thus requiring a more expensive sync instruction. At
1176 * some point, the set of architecture-independent barrier functions
1177 * should be expanded to include weaker barriers.
1178 */
1179
1180 eieio();
1181 txbdp->status = status;
1182
1183 /* If this was the last BD in the ring, the next one */
1184 /* is at the beginning of the ring */
1185 if (txbdp->status & TXBD_WRAP)
1186 txbdp = priv->tx_bd_base;
1187 else
1188 txbdp++;
1189
1190 /* If the next BD still needs to be cleaned up, then the bds
1191 are full. We need to tell the kernel to stop sending us stuff. */
1192 if (txbdp == priv->dirty_tx) {
1193 netif_stop_queue(dev);
1194
1195 dev->stats.tx_fifo_errors++;
1196 }
1197
1198 /* Update the current txbd to the next one */
1199 priv->cur_tx = txbdp;
1200
1201 /* Tell the DMA to go go go */
1202 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1203
1204 /* Unlock priv */
1205 spin_unlock_irqrestore(&priv->txlock, flags);
1206
1207 return 0;
1208 }
1209
1210 /* Stops the kernel queue, and halts the controller */
1211 static int gfar_close(struct net_device *dev)
1212 {
1213 struct gfar_private *priv = netdev_priv(dev);
1214
1215 napi_disable(&priv->napi);
1216
1217 stop_gfar(dev);
1218
1219 /* Disconnect from the PHY */
1220 phy_disconnect(priv->phydev);
1221 priv->phydev = NULL;
1222
1223 netif_stop_queue(dev);
1224
1225 return 0;
1226 }
1227
1228 /* Changes the mac address if the controller is not running. */
1229 static int gfar_set_mac_address(struct net_device *dev)
1230 {
1231 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1232
1233 return 0;
1234 }
1235
1236
1237 /* Enables and disables VLAN insertion/extraction */
1238 static void gfar_vlan_rx_register(struct net_device *dev,
1239 struct vlan_group *grp)
1240 {
1241 struct gfar_private *priv = netdev_priv(dev);
1242 unsigned long flags;
1243 u32 tempval;
1244
1245 spin_lock_irqsave(&priv->rxlock, flags);
1246
1247 priv->vlgrp = grp;
1248
1249 if (grp) {
1250 /* Enable VLAN tag insertion */
1251 tempval = gfar_read(&priv->regs->tctrl);
1252 tempval |= TCTRL_VLINS;
1253
1254 gfar_write(&priv->regs->tctrl, tempval);
1255
1256 /* Enable VLAN tag extraction */
1257 tempval = gfar_read(&priv->regs->rctrl);
1258 tempval |= RCTRL_VLEX;
1259 gfar_write(&priv->regs->rctrl, tempval);
1260 } else {
1261 /* Disable VLAN tag insertion */
1262 tempval = gfar_read(&priv->regs->tctrl);
1263 tempval &= ~TCTRL_VLINS;
1264 gfar_write(&priv->regs->tctrl, tempval);
1265
1266 /* Disable VLAN tag extraction */
1267 tempval = gfar_read(&priv->regs->rctrl);
1268 tempval &= ~RCTRL_VLEX;
1269 gfar_write(&priv->regs->rctrl, tempval);
1270 }
1271
1272 spin_unlock_irqrestore(&priv->rxlock, flags);
1273 }
1274
1275 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1276 {
1277 int tempsize, tempval;
1278 struct gfar_private *priv = netdev_priv(dev);
1279 int oldsize = priv->rx_buffer_size;
1280 int frame_size = new_mtu + ETH_HLEN;
1281
1282 if (priv->vlan_enable)
1283 frame_size += VLAN_HLEN;
1284
1285 if (gfar_uses_fcb(priv))
1286 frame_size += GMAC_FCB_LEN;
1287
1288 frame_size += priv->padding;
1289
1290 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1291 if (netif_msg_drv(priv))
1292 printk(KERN_ERR "%s: Invalid MTU setting\n",
1293 dev->name);
1294 return -EINVAL;
1295 }
1296
1297 tempsize =
1298 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1299 INCREMENTAL_BUFFER_SIZE;
1300
1301 /* Only stop and start the controller if it isn't already
1302 * stopped, and we changed something */
1303 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1304 stop_gfar(dev);
1305
1306 priv->rx_buffer_size = tempsize;
1307
1308 dev->mtu = new_mtu;
1309
1310 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1311 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1312
1313 /* If the mtu is larger than the max size for standard
1314 * ethernet frames (ie, a jumbo frame), then set maccfg2
1315 * to allow huge frames, and to check the length */
1316 tempval = gfar_read(&priv->regs->maccfg2);
1317
1318 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1319 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1320 else
1321 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1322
1323 gfar_write(&priv->regs->maccfg2, tempval);
1324
1325 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1326 startup_gfar(dev);
1327
1328 return 0;
1329 }
1330
1331 /* gfar_timeout gets called when a packet has not been
1332 * transmitted after a set amount of time.
1333 * For now, assume that clearing out all the structures, and
1334 * starting over will fix the problem. */
1335 static void gfar_timeout(struct net_device *dev)
1336 {
1337 dev->stats.tx_errors++;
1338
1339 if (dev->flags & IFF_UP) {
1340 stop_gfar(dev);
1341 startup_gfar(dev);
1342 }
1343
1344 netif_tx_schedule_all(dev);
1345 }
1346
1347 /* Interrupt Handler for Transmit complete */
1348 static int gfar_clean_tx_ring(struct net_device *dev)
1349 {
1350 struct txbd8 *bdp;
1351 struct gfar_private *priv = netdev_priv(dev);
1352 int howmany = 0;
1353
1354 bdp = priv->dirty_tx;
1355 while ((bdp->status & TXBD_READY) == 0) {
1356 /* If dirty_tx and cur_tx are the same, then either the */
1357 /* ring is empty or full now (it could only be full in the beginning, */
1358 /* obviously). If it is empty, we are done. */
1359 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1360 break;
1361
1362 howmany++;
1363
1364 /* Deferred means some collisions occurred during transmit, */
1365 /* but we eventually sent the packet. */
1366 if (bdp->status & TXBD_DEF)
1367 dev->stats.collisions++;
1368
1369 /* Free the sk buffer associated with this TxBD */
1370 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1371
1372 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1373 priv->skb_dirtytx =
1374 (priv->skb_dirtytx +
1375 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1376
1377 /* Clean BD length for empty detection */
1378 bdp->length = 0;
1379
1380 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1381 if (bdp->status & TXBD_WRAP)
1382 bdp = priv->tx_bd_base;
1383 else
1384 bdp++;
1385
1386 /* Move dirty_tx to be the next bd */
1387 priv->dirty_tx = bdp;
1388
1389 /* We freed a buffer, so now we can restart transmission */
1390 if (netif_queue_stopped(dev))
1391 netif_wake_queue(dev);
1392 } /* while ((bdp->status & TXBD_READY) == 0) */
1393
1394 dev->stats.tx_packets += howmany;
1395
1396 return howmany;
1397 }
1398
1399 /* Interrupt Handler for Transmit complete */
1400 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1401 {
1402 struct net_device *dev = (struct net_device *) dev_id;
1403 struct gfar_private *priv = netdev_priv(dev);
1404
1405 /* Clear IEVENT */
1406 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1407
1408 /* Lock priv */
1409 spin_lock(&priv->txlock);
1410
1411 gfar_clean_tx_ring(dev);
1412
1413 /* If we are coalescing the interrupts, reset the timer */
1414 /* Otherwise, clear it */
1415 if (likely(priv->txcoalescing)) {
1416 gfar_write(&priv->regs->txic, 0);
1417 gfar_write(&priv->regs->txic,
1418 mk_ic_value(priv->txcount, priv->txtime));
1419 }
1420
1421 spin_unlock(&priv->txlock);
1422
1423 return IRQ_HANDLED;
1424 }
1425
1426 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1427 struct sk_buff *skb)
1428 {
1429 struct gfar_private *priv = netdev_priv(dev);
1430 u32 * status_len = (u32 *)bdp;
1431 u16 flags;
1432
1433 bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1434 priv->rx_buffer_size, DMA_FROM_DEVICE);
1435
1436 flags = RXBD_EMPTY | RXBD_INTERRUPT;
1437
1438 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1439 flags |= RXBD_WRAP;
1440
1441 eieio();
1442
1443 *status_len = (u32)flags << 16;
1444 }
1445
1446
1447 struct sk_buff * gfar_new_skb(struct net_device *dev)
1448 {
1449 unsigned int alignamount;
1450 struct gfar_private *priv = netdev_priv(dev);
1451 struct sk_buff *skb = NULL;
1452
1453 /* We have to allocate the skb, so keep trying till we succeed */
1454 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1455
1456 if (!skb)
1457 return NULL;
1458
1459 alignamount = RXBUF_ALIGNMENT -
1460 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1461
1462 /* We need the data buffer to be aligned properly. We will reserve
1463 * as many bytes as needed to align the data properly
1464 */
1465 skb_reserve(skb, alignamount);
1466
1467 return skb;
1468 }
1469
1470 static inline void count_errors(unsigned short status, struct net_device *dev)
1471 {
1472 struct gfar_private *priv = netdev_priv(dev);
1473 struct net_device_stats *stats = &dev->stats;
1474 struct gfar_extra_stats *estats = &priv->extra_stats;
1475
1476 /* If the packet was truncated, none of the other errors
1477 * matter */
1478 if (status & RXBD_TRUNCATED) {
1479 stats->rx_length_errors++;
1480
1481 estats->rx_trunc++;
1482
1483 return;
1484 }
1485 /* Count the errors, if there were any */
1486 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1487 stats->rx_length_errors++;
1488
1489 if (status & RXBD_LARGE)
1490 estats->rx_large++;
1491 else
1492 estats->rx_short++;
1493 }
1494 if (status & RXBD_NONOCTET) {
1495 stats->rx_frame_errors++;
1496 estats->rx_nonoctet++;
1497 }
1498 if (status & RXBD_CRCERR) {
1499 estats->rx_crcerr++;
1500 stats->rx_crc_errors++;
1501 }
1502 if (status & RXBD_OVERRUN) {
1503 estats->rx_overrun++;
1504 stats->rx_crc_errors++;
1505 }
1506 }
1507
1508 irqreturn_t gfar_receive(int irq, void *dev_id)
1509 {
1510 struct net_device *dev = (struct net_device *) dev_id;
1511 struct gfar_private *priv = netdev_priv(dev);
1512 u32 tempval;
1513
1514 /* support NAPI */
1515 /* Clear IEVENT, so interrupts aren't called again
1516 * because of the packets that have already arrived */
1517 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1518
1519 if (netif_rx_schedule_prep(dev, &priv->napi)) {
1520 tempval = gfar_read(&priv->regs->imask);
1521 tempval &= IMASK_RTX_DISABLED;
1522 gfar_write(&priv->regs->imask, tempval);
1523
1524 __netif_rx_schedule(dev, &priv->napi);
1525 } else {
1526 if (netif_msg_rx_err(priv))
1527 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1528 dev->name, gfar_read(&priv->regs->ievent),
1529 gfar_read(&priv->regs->imask));
1530 }
1531
1532 return IRQ_HANDLED;
1533 }
1534
1535 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1536 {
1537 /* If valid headers were found, and valid sums
1538 * were verified, then we tell the kernel that no
1539 * checksumming is necessary. Otherwise, it is */
1540 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1541 skb->ip_summed = CHECKSUM_UNNECESSARY;
1542 else
1543 skb->ip_summed = CHECKSUM_NONE;
1544 }
1545
1546
1547 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1548 {
1549 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1550
1551 /* Remove the FCB from the skb */
1552 skb_pull(skb, GMAC_FCB_LEN);
1553
1554 return fcb;
1555 }
1556
1557 /* gfar_process_frame() -- handle one incoming packet if skb
1558 * isn't NULL. */
1559 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1560 int length)
1561 {
1562 struct gfar_private *priv = netdev_priv(dev);
1563 struct rxfcb *fcb = NULL;
1564
1565 if (NULL == skb) {
1566 if (netif_msg_rx_err(priv))
1567 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1568 dev->stats.rx_dropped++;
1569 priv->extra_stats.rx_skbmissing++;
1570 } else {
1571 int ret;
1572
1573 /* Prep the skb for the packet */
1574 skb_put(skb, length);
1575
1576 /* Grab the FCB if there is one */
1577 if (gfar_uses_fcb(priv))
1578 fcb = gfar_get_fcb(skb);
1579
1580 /* Remove the padded bytes, if there are any */
1581 if (priv->padding)
1582 skb_pull(skb, priv->padding);
1583
1584 if (priv->rx_csum_enable)
1585 gfar_rx_checksum(skb, fcb);
1586
1587 /* Tell the skb what kind of packet this is */
1588 skb->protocol = eth_type_trans(skb, dev);
1589
1590 /* Send the packet up the stack */
1591 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) {
1592 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1593 fcb->vlctl);
1594 } else
1595 ret = netif_receive_skb(skb);
1596
1597 if (NET_RX_DROP == ret)
1598 priv->extra_stats.kernel_dropped++;
1599 }
1600
1601 return 0;
1602 }
1603
1604 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1605 * until the budget/quota has been reached. Returns the number
1606 * of frames handled
1607 */
1608 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1609 {
1610 struct rxbd8 *bdp;
1611 struct sk_buff *skb;
1612 u16 pkt_len;
1613 int howmany = 0;
1614 struct gfar_private *priv = netdev_priv(dev);
1615
1616 /* Get the first full descriptor */
1617 bdp = priv->cur_rx;
1618
1619 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1620 struct sk_buff *newskb;
1621 rmb();
1622
1623 /* Add another skb for the future */
1624 newskb = gfar_new_skb(dev);
1625
1626 skb = priv->rx_skbuff[priv->skb_currx];
1627
1628 /* We drop the frame if we failed to allocate a new buffer */
1629 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1630 bdp->status & RXBD_ERR)) {
1631 count_errors(bdp->status, dev);
1632
1633 if (unlikely(!newskb))
1634 newskb = skb;
1635
1636 if (skb) {
1637 dma_unmap_single(&priv->dev->dev,
1638 bdp->bufPtr,
1639 priv->rx_buffer_size,
1640 DMA_FROM_DEVICE);
1641
1642 dev_kfree_skb_any(skb);
1643 }
1644 } else {
1645 /* Increment the number of packets */
1646 dev->stats.rx_packets++;
1647 howmany++;
1648
1649 /* Remove the FCS from the packet length */
1650 pkt_len = bdp->length - 4;
1651
1652 gfar_process_frame(dev, skb, pkt_len);
1653
1654 dev->stats.rx_bytes += pkt_len;
1655 }
1656
1657 dev->last_rx = jiffies;
1658
1659 priv->rx_skbuff[priv->skb_currx] = newskb;
1660
1661 /* Setup the new bdp */
1662 gfar_new_rxbdp(dev, bdp, newskb);
1663
1664 /* Update to the next pointer */
1665 if (bdp->status & RXBD_WRAP)
1666 bdp = priv->rx_bd_base;
1667 else
1668 bdp++;
1669
1670 /* update to point at the next skb */
1671 priv->skb_currx =
1672 (priv->skb_currx + 1) &
1673 RX_RING_MOD_MASK(priv->rx_ring_size);
1674 }
1675
1676 /* Update the current rxbd pointer to be the next one */
1677 priv->cur_rx = bdp;
1678
1679 return howmany;
1680 }
1681
1682 static int gfar_poll(struct napi_struct *napi, int budget)
1683 {
1684 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1685 struct net_device *dev = priv->dev;
1686 int howmany;
1687 unsigned long flags;
1688
1689 /* If we fail to get the lock, don't bother with the TX BDs */
1690 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1691 gfar_clean_tx_ring(dev);
1692 spin_unlock_irqrestore(&priv->txlock, flags);
1693 }
1694
1695 howmany = gfar_clean_rx_ring(dev, budget);
1696
1697 if (howmany < budget) {
1698 netif_rx_complete(dev, napi);
1699
1700 /* Clear the halt bit in RSTAT */
1701 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1702
1703 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1704
1705 /* If we are coalescing interrupts, update the timer */
1706 /* Otherwise, clear it */
1707 if (likely(priv->rxcoalescing)) {
1708 gfar_write(&priv->regs->rxic, 0);
1709 gfar_write(&priv->regs->rxic,
1710 mk_ic_value(priv->rxcount, priv->rxtime));
1711 }
1712 }
1713
1714 return howmany;
1715 }
1716
1717 #ifdef CONFIG_NET_POLL_CONTROLLER
1718 /*
1719 * Polling 'interrupt' - used by things like netconsole to send skbs
1720 * without having to re-enable interrupts. It's not called while
1721 * the interrupt routine is executing.
1722 */
1723 static void gfar_netpoll(struct net_device *dev)
1724 {
1725 struct gfar_private *priv = netdev_priv(dev);
1726
1727 /* If the device has multiple interrupts, run tx/rx */
1728 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1729 disable_irq(priv->interruptTransmit);
1730 disable_irq(priv->interruptReceive);
1731 disable_irq(priv->interruptError);
1732 gfar_interrupt(priv->interruptTransmit, dev);
1733 enable_irq(priv->interruptError);
1734 enable_irq(priv->interruptReceive);
1735 enable_irq(priv->interruptTransmit);
1736 } else {
1737 disable_irq(priv->interruptTransmit);
1738 gfar_interrupt(priv->interruptTransmit, dev);
1739 enable_irq(priv->interruptTransmit);
1740 }
1741 }
1742 #endif
1743
1744 /* The interrupt handler for devices with one interrupt */
1745 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1746 {
1747 struct net_device *dev = dev_id;
1748 struct gfar_private *priv = netdev_priv(dev);
1749
1750 /* Save ievent for future reference */
1751 u32 events = gfar_read(&priv->regs->ievent);
1752
1753 /* Check for reception */
1754 if (events & IEVENT_RX_MASK)
1755 gfar_receive(irq, dev_id);
1756
1757 /* Check for transmit completion */
1758 if (events & IEVENT_TX_MASK)
1759 gfar_transmit(irq, dev_id);
1760
1761 /* Check for errors */
1762 if (events & IEVENT_ERR_MASK)
1763 gfar_error(irq, dev_id);
1764
1765 return IRQ_HANDLED;
1766 }
1767
1768 /* Called every time the controller might need to be made
1769 * aware of new link state. The PHY code conveys this
1770 * information through variables in the phydev structure, and this
1771 * function converts those variables into the appropriate
1772 * register values, and can bring down the device if needed.
1773 */
1774 static void adjust_link(struct net_device *dev)
1775 {
1776 struct gfar_private *priv = netdev_priv(dev);
1777 struct gfar __iomem *regs = priv->regs;
1778 unsigned long flags;
1779 struct phy_device *phydev = priv->phydev;
1780 int new_state = 0;
1781
1782 spin_lock_irqsave(&priv->txlock, flags);
1783 if (phydev->link) {
1784 u32 tempval = gfar_read(&regs->maccfg2);
1785 u32 ecntrl = gfar_read(&regs->ecntrl);
1786
1787 /* Now we make sure that we can be in full duplex mode.
1788 * If not, we operate in half-duplex mode. */
1789 if (phydev->duplex != priv->oldduplex) {
1790 new_state = 1;
1791 if (!(phydev->duplex))
1792 tempval &= ~(MACCFG2_FULL_DUPLEX);
1793 else
1794 tempval |= MACCFG2_FULL_DUPLEX;
1795
1796 priv->oldduplex = phydev->duplex;
1797 }
1798
1799 if (phydev->speed != priv->oldspeed) {
1800 new_state = 1;
1801 switch (phydev->speed) {
1802 case 1000:
1803 tempval =
1804 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1805 break;
1806 case 100:
1807 case 10:
1808 tempval =
1809 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1810
1811 /* Reduced mode distinguishes
1812 * between 10 and 100 */
1813 if (phydev->speed == SPEED_100)
1814 ecntrl |= ECNTRL_R100;
1815 else
1816 ecntrl &= ~(ECNTRL_R100);
1817 break;
1818 default:
1819 if (netif_msg_link(priv))
1820 printk(KERN_WARNING
1821 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1822 dev->name, phydev->speed);
1823 break;
1824 }
1825
1826 priv->oldspeed = phydev->speed;
1827 }
1828
1829 gfar_write(&regs->maccfg2, tempval);
1830 gfar_write(&regs->ecntrl, ecntrl);
1831
1832 if (!priv->oldlink) {
1833 new_state = 1;
1834 priv->oldlink = 1;
1835 }
1836 } else if (priv->oldlink) {
1837 new_state = 1;
1838 priv->oldlink = 0;
1839 priv->oldspeed = 0;
1840 priv->oldduplex = -1;
1841 }
1842
1843 if (new_state && netif_msg_link(priv))
1844 phy_print_status(phydev);
1845
1846 spin_unlock_irqrestore(&priv->txlock, flags);
1847 }
1848
1849 /* Update the hash table based on the current list of multicast
1850 * addresses we subscribe to. Also, change the promiscuity of
1851 * the device based on the flags (this function is called
1852 * whenever dev->flags is changed */
1853 static void gfar_set_multi(struct net_device *dev)
1854 {
1855 struct dev_mc_list *mc_ptr;
1856 struct gfar_private *priv = netdev_priv(dev);
1857 struct gfar __iomem *regs = priv->regs;
1858 u32 tempval;
1859
1860 if(dev->flags & IFF_PROMISC) {
1861 /* Set RCTRL to PROM */
1862 tempval = gfar_read(&regs->rctrl);
1863 tempval |= RCTRL_PROM;
1864 gfar_write(&regs->rctrl, tempval);
1865 } else {
1866 /* Set RCTRL to not PROM */
1867 tempval = gfar_read(&regs->rctrl);
1868 tempval &= ~(RCTRL_PROM);
1869 gfar_write(&regs->rctrl, tempval);
1870 }
1871
1872 if(dev->flags & IFF_ALLMULTI) {
1873 /* Set the hash to rx all multicast frames */
1874 gfar_write(&regs->igaddr0, 0xffffffff);
1875 gfar_write(&regs->igaddr1, 0xffffffff);
1876 gfar_write(&regs->igaddr2, 0xffffffff);
1877 gfar_write(&regs->igaddr3, 0xffffffff);
1878 gfar_write(&regs->igaddr4, 0xffffffff);
1879 gfar_write(&regs->igaddr5, 0xffffffff);
1880 gfar_write(&regs->igaddr6, 0xffffffff);
1881 gfar_write(&regs->igaddr7, 0xffffffff);
1882 gfar_write(&regs->gaddr0, 0xffffffff);
1883 gfar_write(&regs->gaddr1, 0xffffffff);
1884 gfar_write(&regs->gaddr2, 0xffffffff);
1885 gfar_write(&regs->gaddr3, 0xffffffff);
1886 gfar_write(&regs->gaddr4, 0xffffffff);
1887 gfar_write(&regs->gaddr5, 0xffffffff);
1888 gfar_write(&regs->gaddr6, 0xffffffff);
1889 gfar_write(&regs->gaddr7, 0xffffffff);
1890 } else {
1891 int em_num;
1892 int idx;
1893
1894 /* zero out the hash */
1895 gfar_write(&regs->igaddr0, 0x0);
1896 gfar_write(&regs->igaddr1, 0x0);
1897 gfar_write(&regs->igaddr2, 0x0);
1898 gfar_write(&regs->igaddr3, 0x0);
1899 gfar_write(&regs->igaddr4, 0x0);
1900 gfar_write(&regs->igaddr5, 0x0);
1901 gfar_write(&regs->igaddr6, 0x0);
1902 gfar_write(&regs->igaddr7, 0x0);
1903 gfar_write(&regs->gaddr0, 0x0);
1904 gfar_write(&regs->gaddr1, 0x0);
1905 gfar_write(&regs->gaddr2, 0x0);
1906 gfar_write(&regs->gaddr3, 0x0);
1907 gfar_write(&regs->gaddr4, 0x0);
1908 gfar_write(&regs->gaddr5, 0x0);
1909 gfar_write(&regs->gaddr6, 0x0);
1910 gfar_write(&regs->gaddr7, 0x0);
1911
1912 /* If we have extended hash tables, we need to
1913 * clear the exact match registers to prepare for
1914 * setting them */
1915 if (priv->extended_hash) {
1916 em_num = GFAR_EM_NUM + 1;
1917 gfar_clear_exact_match(dev);
1918 idx = 1;
1919 } else {
1920 idx = 0;
1921 em_num = 0;
1922 }
1923
1924 if(dev->mc_count == 0)
1925 return;
1926
1927 /* Parse the list, and set the appropriate bits */
1928 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1929 if (idx < em_num) {
1930 gfar_set_mac_for_addr(dev, idx,
1931 mc_ptr->dmi_addr);
1932 idx++;
1933 } else
1934 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1935 }
1936 }
1937
1938 return;
1939 }
1940
1941
1942 /* Clears each of the exact match registers to zero, so they
1943 * don't interfere with normal reception */
1944 static void gfar_clear_exact_match(struct net_device *dev)
1945 {
1946 int idx;
1947 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1948
1949 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1950 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1951 }
1952
1953 /* Set the appropriate hash bit for the given addr */
1954 /* The algorithm works like so:
1955 * 1) Take the Destination Address (ie the multicast address), and
1956 * do a CRC on it (little endian), and reverse the bits of the
1957 * result.
1958 * 2) Use the 8 most significant bits as a hash into a 256-entry
1959 * table. The table is controlled through 8 32-bit registers:
1960 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1961 * gaddr7. This means that the 3 most significant bits in the
1962 * hash index which gaddr register to use, and the 5 other bits
1963 * indicate which bit (assuming an IBM numbering scheme, which
1964 * for PowerPC (tm) is usually the case) in the register holds
1965 * the entry. */
1966 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1967 {
1968 u32 tempval;
1969 struct gfar_private *priv = netdev_priv(dev);
1970 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1971 int width = priv->hash_width;
1972 u8 whichbit = (result >> (32 - width)) & 0x1f;
1973 u8 whichreg = result >> (32 - width + 5);
1974 u32 value = (1 << (31-whichbit));
1975
1976 tempval = gfar_read(priv->hash_regs[whichreg]);
1977 tempval |= value;
1978 gfar_write(priv->hash_regs[whichreg], tempval);
1979
1980 return;
1981 }
1982
1983
1984 /* There are multiple MAC Address register pairs on some controllers
1985 * This function sets the numth pair to a given address
1986 */
1987 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1988 {
1989 struct gfar_private *priv = netdev_priv(dev);
1990 int idx;
1991 char tmpbuf[MAC_ADDR_LEN];
1992 u32 tempval;
1993 u32 __iomem *macptr = &priv->regs->macstnaddr1;
1994
1995 macptr += num*2;
1996
1997 /* Now copy it into the mac registers backwards, cuz */
1998 /* little endian is silly */
1999 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2000 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2001
2002 gfar_write(macptr, *((u32 *) (tmpbuf)));
2003
2004 tempval = *((u32 *) (tmpbuf + 4));
2005
2006 gfar_write(macptr+1, tempval);
2007 }
2008
2009 /* GFAR error interrupt handler */
2010 static irqreturn_t gfar_error(int irq, void *dev_id)
2011 {
2012 struct net_device *dev = dev_id;
2013 struct gfar_private *priv = netdev_priv(dev);
2014
2015 /* Save ievent for future reference */
2016 u32 events = gfar_read(&priv->regs->ievent);
2017
2018 /* Clear IEVENT */
2019 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2020
2021 /* Magic Packet is not an error. */
2022 if ((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2023 (events & IEVENT_MAG))
2024 events &= ~IEVENT_MAG;
2025
2026 /* Hmm... */
2027 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2028 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2029 dev->name, events, gfar_read(&priv->regs->imask));
2030
2031 /* Update the error counters */
2032 if (events & IEVENT_TXE) {
2033 dev->stats.tx_errors++;
2034
2035 if (events & IEVENT_LC)
2036 dev->stats.tx_window_errors++;
2037 if (events & IEVENT_CRL)
2038 dev->stats.tx_aborted_errors++;
2039 if (events & IEVENT_XFUN) {
2040 if (netif_msg_tx_err(priv))
2041 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2042 "packet dropped.\n", dev->name);
2043 dev->stats.tx_dropped++;
2044 priv->extra_stats.tx_underrun++;
2045
2046 /* Reactivate the Tx Queues */
2047 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2048 }
2049 if (netif_msg_tx_err(priv))
2050 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2051 }
2052 if (events & IEVENT_BSY) {
2053 dev->stats.rx_errors++;
2054 priv->extra_stats.rx_bsy++;
2055
2056 gfar_receive(irq, dev_id);
2057
2058 if (netif_msg_rx_err(priv))
2059 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2060 dev->name, gfar_read(&priv->regs->rstat));
2061 }
2062 if (events & IEVENT_BABR) {
2063 dev->stats.rx_errors++;
2064 priv->extra_stats.rx_babr++;
2065
2066 if (netif_msg_rx_err(priv))
2067 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2068 }
2069 if (events & IEVENT_EBERR) {
2070 priv->extra_stats.eberr++;
2071 if (netif_msg_rx_err(priv))
2072 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2073 }
2074 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2075 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2076
2077 if (events & IEVENT_BABT) {
2078 priv->extra_stats.tx_babt++;
2079 if (netif_msg_tx_err(priv))
2080 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2081 }
2082 return IRQ_HANDLED;
2083 }
2084
2085 /* work with hotplug and coldplug */
2086 MODULE_ALIAS("platform:fsl-gianfar");
2087
2088 /* Structure for a device driver */
2089 static struct platform_driver gfar_driver = {
2090 .probe = gfar_probe,
2091 .remove = gfar_remove,
2092 .suspend = gfar_suspend,
2093 .resume = gfar_resume,
2094 .driver = {
2095 .name = "fsl-gianfar",
2096 .owner = THIS_MODULE,
2097 },
2098 };
2099
2100 static int __init gfar_init(void)
2101 {
2102 int err = gfar_mdio_init();
2103
2104 if (err)
2105 return err;
2106
2107 err = platform_driver_register(&gfar_driver);
2108
2109 if (err)
2110 gfar_mdio_exit();
2111
2112 return err;
2113 }
2114
2115 static void __exit gfar_exit(void)
2116 {
2117 platform_driver_unregister(&gfar_driver);
2118 gfar_mdio_exit();
2119 }
2120
2121 module_init(gfar_init);
2122 module_exit(gfar_exit);
2123
This page took 0.118145 seconds and 6 git commands to generate.