869e38d6f41b3abd92ea2a941c5e0dfcce3a4213
[deliverable/linux.git] / drivers / net / greth.c
1 /*
2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
3 *
4 * 2005-2009 (c) Aeroflex Gaisler AB
5 *
6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
7 * available in the GRLIB VHDL IP core library.
8 *
9 * Full documentation of both cores can be found here:
10 * http://www.gaisler.com/products/grlib/grip.pdf
11 *
12 * The Gigabit version supports scatter/gather DMA, any alignment of
13 * buffers and checksum offloading.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Contributors: Kristoffer Glembo
21 * Daniel Hellstrom
22 * Marko Isomaki
23 */
24
25 #include <linux/module.h>
26 #include <linux/uaccess.h>
27 #include <linux/init.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/skbuff.h>
32 #include <linux/io.h>
33 #include <linux/crc32.h>
34 #include <linux/mii.h>
35 #include <linux/of_device.h>
36 #include <linux/of_platform.h>
37 #include <linux/slab.h>
38 #include <asm/cacheflush.h>
39 #include <asm/byteorder.h>
40
41 #ifdef CONFIG_SPARC
42 #include <asm/idprom.h>
43 #endif
44
45 #include "greth.h"
46
47 #define GRETH_DEF_MSG_ENABLE \
48 (NETIF_MSG_DRV | \
49 NETIF_MSG_PROBE | \
50 NETIF_MSG_LINK | \
51 NETIF_MSG_IFDOWN | \
52 NETIF_MSG_IFUP | \
53 NETIF_MSG_RX_ERR | \
54 NETIF_MSG_TX_ERR)
55
56 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
57 module_param(greth_debug, int, 0);
58 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
59
60 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
61 static int macaddr[6];
62 module_param_array(macaddr, int, NULL, 0);
63 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
64
65 static int greth_edcl = 1;
66 module_param(greth_edcl, int, 0);
67 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
68
69 static int greth_open(struct net_device *dev);
70 static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
71 struct net_device *dev);
72 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
73 struct net_device *dev);
74 static int greth_rx(struct net_device *dev, int limit);
75 static int greth_rx_gbit(struct net_device *dev, int limit);
76 static void greth_clean_tx(struct net_device *dev);
77 static void greth_clean_tx_gbit(struct net_device *dev);
78 static irqreturn_t greth_interrupt(int irq, void *dev_id);
79 static int greth_close(struct net_device *dev);
80 static int greth_set_mac_add(struct net_device *dev, void *p);
81 static void greth_set_multicast_list(struct net_device *dev);
82
83 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
84 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
85 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
86 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
87
88 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
89 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
90 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
91
92 static void greth_print_rx_packet(void *addr, int len)
93 {
94 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
95 addr, len, true);
96 }
97
98 static void greth_print_tx_packet(struct sk_buff *skb)
99 {
100 int i;
101 int length;
102
103 if (skb_shinfo(skb)->nr_frags == 0)
104 length = skb->len;
105 else
106 length = skb_headlen(skb);
107
108 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
109 skb->data, length, true);
110
111 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
112
113 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
114 phys_to_virt(page_to_phys(skb_shinfo(skb)->frags[i].page)) +
115 skb_shinfo(skb)->frags[i].page_offset,
116 length, true);
117 }
118 }
119
120 static inline void greth_enable_tx(struct greth_private *greth)
121 {
122 wmb();
123 GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
124 }
125
126 static inline void greth_disable_tx(struct greth_private *greth)
127 {
128 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
129 }
130
131 static inline void greth_enable_rx(struct greth_private *greth)
132 {
133 wmb();
134 GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
135 }
136
137 static inline void greth_disable_rx(struct greth_private *greth)
138 {
139 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
140 }
141
142 static inline void greth_enable_irqs(struct greth_private *greth)
143 {
144 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
145 }
146
147 static inline void greth_disable_irqs(struct greth_private *greth)
148 {
149 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
150 }
151
152 static inline void greth_write_bd(u32 *bd, u32 val)
153 {
154 __raw_writel(cpu_to_be32(val), bd);
155 }
156
157 static inline u32 greth_read_bd(u32 *bd)
158 {
159 return be32_to_cpu(__raw_readl(bd));
160 }
161
162 static void greth_clean_rings(struct greth_private *greth)
163 {
164 int i;
165 struct greth_bd *rx_bdp = greth->rx_bd_base;
166 struct greth_bd *tx_bdp = greth->tx_bd_base;
167
168 if (greth->gbit_mac) {
169
170 /* Free and unmap RX buffers */
171 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
172 if (greth->rx_skbuff[i] != NULL) {
173 dev_kfree_skb(greth->rx_skbuff[i]);
174 dma_unmap_single(greth->dev,
175 greth_read_bd(&rx_bdp->addr),
176 MAX_FRAME_SIZE+NET_IP_ALIGN,
177 DMA_FROM_DEVICE);
178 }
179 }
180
181 /* TX buffers */
182 while (greth->tx_free < GRETH_TXBD_NUM) {
183
184 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
185 int nr_frags = skb_shinfo(skb)->nr_frags;
186 tx_bdp = greth->tx_bd_base + greth->tx_last;
187 greth->tx_last = NEXT_TX(greth->tx_last);
188
189 dma_unmap_single(greth->dev,
190 greth_read_bd(&tx_bdp->addr),
191 skb_headlen(skb),
192 DMA_TO_DEVICE);
193
194 for (i = 0; i < nr_frags; i++) {
195 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
196 tx_bdp = greth->tx_bd_base + greth->tx_last;
197
198 dma_unmap_page(greth->dev,
199 greth_read_bd(&tx_bdp->addr),
200 frag->size,
201 DMA_TO_DEVICE);
202
203 greth->tx_last = NEXT_TX(greth->tx_last);
204 }
205 greth->tx_free += nr_frags+1;
206 dev_kfree_skb(skb);
207 }
208
209
210 } else { /* 10/100 Mbps MAC */
211
212 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
213 kfree(greth->rx_bufs[i]);
214 dma_unmap_single(greth->dev,
215 greth_read_bd(&rx_bdp->addr),
216 MAX_FRAME_SIZE,
217 DMA_FROM_DEVICE);
218 }
219 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
220 kfree(greth->tx_bufs[i]);
221 dma_unmap_single(greth->dev,
222 greth_read_bd(&tx_bdp->addr),
223 MAX_FRAME_SIZE,
224 DMA_TO_DEVICE);
225 }
226 }
227 }
228
229 static int greth_init_rings(struct greth_private *greth)
230 {
231 struct sk_buff *skb;
232 struct greth_bd *rx_bd, *tx_bd;
233 u32 dma_addr;
234 int i;
235
236 rx_bd = greth->rx_bd_base;
237 tx_bd = greth->tx_bd_base;
238
239 /* Initialize descriptor rings and buffers */
240 if (greth->gbit_mac) {
241
242 for (i = 0; i < GRETH_RXBD_NUM; i++) {
243 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
244 if (skb == NULL) {
245 if (netif_msg_ifup(greth))
246 dev_err(greth->dev, "Error allocating DMA ring.\n");
247 goto cleanup;
248 }
249 skb_reserve(skb, NET_IP_ALIGN);
250 dma_addr = dma_map_single(greth->dev,
251 skb->data,
252 MAX_FRAME_SIZE+NET_IP_ALIGN,
253 DMA_FROM_DEVICE);
254
255 if (dma_mapping_error(greth->dev, dma_addr)) {
256 if (netif_msg_ifup(greth))
257 dev_err(greth->dev, "Could not create initial DMA mapping\n");
258 goto cleanup;
259 }
260 greth->rx_skbuff[i] = skb;
261 greth_write_bd(&rx_bd[i].addr, dma_addr);
262 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
263 }
264
265 } else {
266
267 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
268 for (i = 0; i < GRETH_RXBD_NUM; i++) {
269
270 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
271
272 if (greth->rx_bufs[i] == NULL) {
273 if (netif_msg_ifup(greth))
274 dev_err(greth->dev, "Error allocating DMA ring.\n");
275 goto cleanup;
276 }
277
278 dma_addr = dma_map_single(greth->dev,
279 greth->rx_bufs[i],
280 MAX_FRAME_SIZE,
281 DMA_FROM_DEVICE);
282
283 if (dma_mapping_error(greth->dev, dma_addr)) {
284 if (netif_msg_ifup(greth))
285 dev_err(greth->dev, "Could not create initial DMA mapping\n");
286 goto cleanup;
287 }
288 greth_write_bd(&rx_bd[i].addr, dma_addr);
289 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
290 }
291 for (i = 0; i < GRETH_TXBD_NUM; i++) {
292
293 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
294
295 if (greth->tx_bufs[i] == NULL) {
296 if (netif_msg_ifup(greth))
297 dev_err(greth->dev, "Error allocating DMA ring.\n");
298 goto cleanup;
299 }
300
301 dma_addr = dma_map_single(greth->dev,
302 greth->tx_bufs[i],
303 MAX_FRAME_SIZE,
304 DMA_TO_DEVICE);
305
306 if (dma_mapping_error(greth->dev, dma_addr)) {
307 if (netif_msg_ifup(greth))
308 dev_err(greth->dev, "Could not create initial DMA mapping\n");
309 goto cleanup;
310 }
311 greth_write_bd(&tx_bd[i].addr, dma_addr);
312 greth_write_bd(&tx_bd[i].stat, 0);
313 }
314 }
315 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
316 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
317
318 /* Initialize pointers. */
319 greth->rx_cur = 0;
320 greth->tx_next = 0;
321 greth->tx_last = 0;
322 greth->tx_free = GRETH_TXBD_NUM;
323
324 /* Initialize descriptor base address */
325 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
326 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
327
328 return 0;
329
330 cleanup:
331 greth_clean_rings(greth);
332 return -ENOMEM;
333 }
334
335 static int greth_open(struct net_device *dev)
336 {
337 struct greth_private *greth = netdev_priv(dev);
338 int err;
339
340 err = greth_init_rings(greth);
341 if (err) {
342 if (netif_msg_ifup(greth))
343 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
344 return err;
345 }
346
347 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
348 if (err) {
349 if (netif_msg_ifup(greth))
350 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
351 greth_clean_rings(greth);
352 return err;
353 }
354
355 if (netif_msg_ifup(greth))
356 dev_dbg(&dev->dev, " starting queue\n");
357 netif_start_queue(dev);
358
359 GRETH_REGSAVE(greth->regs->status, 0xFF);
360
361 napi_enable(&greth->napi);
362
363 greth_enable_irqs(greth);
364 greth_enable_tx(greth);
365 greth_enable_rx(greth);
366 return 0;
367
368 }
369
370 static int greth_close(struct net_device *dev)
371 {
372 struct greth_private *greth = netdev_priv(dev);
373
374 napi_disable(&greth->napi);
375
376 greth_disable_irqs(greth);
377 greth_disable_tx(greth);
378 greth_disable_rx(greth);
379
380 netif_stop_queue(dev);
381
382 free_irq(greth->irq, (void *) dev);
383
384 greth_clean_rings(greth);
385
386 return 0;
387 }
388
389 static netdev_tx_t
390 greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
391 {
392 struct greth_private *greth = netdev_priv(dev);
393 struct greth_bd *bdp;
394 int err = NETDEV_TX_OK;
395 u32 status, dma_addr;
396
397 bdp = greth->tx_bd_base + greth->tx_next;
398
399 if (unlikely(greth->tx_free <= 0)) {
400 netif_stop_queue(dev);
401 return NETDEV_TX_BUSY;
402 }
403
404 if (netif_msg_pktdata(greth))
405 greth_print_tx_packet(skb);
406
407
408 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
409 dev->stats.tx_errors++;
410 goto out;
411 }
412
413 dma_addr = greth_read_bd(&bdp->addr);
414
415 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
416
417 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
418
419 status = GRETH_BD_EN | (skb->len & GRETH_BD_LEN);
420
421 /* Wrap around descriptor ring */
422 if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
423 status |= GRETH_BD_WR;
424 }
425
426 greth->tx_next = NEXT_TX(greth->tx_next);
427 greth->tx_free--;
428
429 /* No more descriptors */
430 if (unlikely(greth->tx_free == 0)) {
431
432 /* Free transmitted descriptors */
433 greth_clean_tx(dev);
434
435 /* If nothing was cleaned, stop queue & wait for irq */
436 if (unlikely(greth->tx_free == 0)) {
437 status |= GRETH_BD_IE;
438 netif_stop_queue(dev);
439 }
440 }
441
442 /* Write descriptor control word and enable transmission */
443 greth_write_bd(&bdp->stat, status);
444 greth_enable_tx(greth);
445
446 out:
447 dev_kfree_skb(skb);
448 return err;
449 }
450
451
452 static netdev_tx_t
453 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
454 {
455 struct greth_private *greth = netdev_priv(dev);
456 struct greth_bd *bdp;
457 u32 status = 0, dma_addr;
458 int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
459
460 nr_frags = skb_shinfo(skb)->nr_frags;
461
462 if (greth->tx_free < nr_frags + 1) {
463 netif_stop_queue(dev);
464 err = NETDEV_TX_BUSY;
465 goto out;
466 }
467
468 if (netif_msg_pktdata(greth))
469 greth_print_tx_packet(skb);
470
471 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
472 dev->stats.tx_errors++;
473 goto out;
474 }
475
476 /* Save skb pointer. */
477 greth->tx_skbuff[greth->tx_next] = skb;
478
479 /* Linear buf */
480 if (nr_frags != 0)
481 status = GRETH_TXBD_MORE;
482
483 status |= GRETH_TXBD_CSALL;
484 status |= skb_headlen(skb) & GRETH_BD_LEN;
485 if (greth->tx_next == GRETH_TXBD_NUM_MASK)
486 status |= GRETH_BD_WR;
487
488
489 bdp = greth->tx_bd_base + greth->tx_next;
490 greth_write_bd(&bdp->stat, status);
491 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
492
493 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
494 goto map_error;
495
496 greth_write_bd(&bdp->addr, dma_addr);
497
498 curr_tx = NEXT_TX(greth->tx_next);
499
500 /* Frags */
501 for (i = 0; i < nr_frags; i++) {
502 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
503 greth->tx_skbuff[curr_tx] = NULL;
504 bdp = greth->tx_bd_base + curr_tx;
505
506 status = GRETH_TXBD_CSALL | GRETH_BD_EN;
507 status |= frag->size & GRETH_BD_LEN;
508
509 /* Wrap around descriptor ring */
510 if (curr_tx == GRETH_TXBD_NUM_MASK)
511 status |= GRETH_BD_WR;
512
513 /* More fragments left */
514 if (i < nr_frags - 1)
515 status |= GRETH_TXBD_MORE;
516
517 /* ... last fragment, check if out of descriptors */
518 else if (greth->tx_free - nr_frags - 1 < (MAX_SKB_FRAGS + 1)) {
519
520 /* Enable interrupts and stop queue */
521 status |= GRETH_BD_IE;
522 netif_stop_queue(dev);
523 }
524
525 greth_write_bd(&bdp->stat, status);
526
527 dma_addr = dma_map_page(greth->dev,
528 frag->page,
529 frag->page_offset,
530 frag->size,
531 DMA_TO_DEVICE);
532
533 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
534 goto frag_map_error;
535
536 greth_write_bd(&bdp->addr, dma_addr);
537
538 curr_tx = NEXT_TX(curr_tx);
539 }
540
541 wmb();
542
543 /* Enable the descriptor chain by enabling the first descriptor */
544 bdp = greth->tx_bd_base + greth->tx_next;
545 greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN);
546 greth->tx_next = curr_tx;
547 greth->tx_free -= nr_frags + 1;
548
549 wmb();
550
551 greth_enable_tx(greth);
552
553 return NETDEV_TX_OK;
554
555 frag_map_error:
556 /* Unmap SKB mappings that succeeded and disable descriptor */
557 for (i = 0; greth->tx_next + i != curr_tx; i++) {
558 bdp = greth->tx_bd_base + greth->tx_next + i;
559 dma_unmap_single(greth->dev,
560 greth_read_bd(&bdp->addr),
561 greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
562 DMA_TO_DEVICE);
563 greth_write_bd(&bdp->stat, 0);
564 }
565 map_error:
566 if (net_ratelimit())
567 dev_warn(greth->dev, "Could not create TX DMA mapping\n");
568 dev_kfree_skb(skb);
569 out:
570 return err;
571 }
572
573
574 static irqreturn_t greth_interrupt(int irq, void *dev_id)
575 {
576 struct net_device *dev = dev_id;
577 struct greth_private *greth;
578 u32 status;
579 irqreturn_t retval = IRQ_NONE;
580
581 greth = netdev_priv(dev);
582
583 spin_lock(&greth->devlock);
584
585 /* Get the interrupt events that caused us to be here. */
586 status = GRETH_REGLOAD(greth->regs->status);
587
588 /* Handle rx and tx interrupts through poll */
589 if (status & (GRETH_INT_RX | GRETH_INT_TX)) {
590
591 /* Clear interrupt status */
592 GRETH_REGORIN(greth->regs->status,
593 status & (GRETH_INT_RX | GRETH_INT_TX));
594
595 retval = IRQ_HANDLED;
596
597 /* Disable interrupts and schedule poll() */
598 greth_disable_irqs(greth);
599 napi_schedule(&greth->napi);
600 }
601
602 mmiowb();
603 spin_unlock(&greth->devlock);
604
605 return retval;
606 }
607
608 static void greth_clean_tx(struct net_device *dev)
609 {
610 struct greth_private *greth;
611 struct greth_bd *bdp;
612 u32 stat;
613
614 greth = netdev_priv(dev);
615
616 while (1) {
617 bdp = greth->tx_bd_base + greth->tx_last;
618 stat = greth_read_bd(&bdp->stat);
619
620 if (unlikely(stat & GRETH_BD_EN))
621 break;
622
623 if (greth->tx_free == GRETH_TXBD_NUM)
624 break;
625
626 /* Check status for errors */
627 if (unlikely(stat & GRETH_TXBD_STATUS)) {
628 dev->stats.tx_errors++;
629 if (stat & GRETH_TXBD_ERR_AL)
630 dev->stats.tx_aborted_errors++;
631 if (stat & GRETH_TXBD_ERR_UE)
632 dev->stats.tx_fifo_errors++;
633 }
634 dev->stats.tx_packets++;
635 greth->tx_last = NEXT_TX(greth->tx_last);
636 greth->tx_free++;
637 }
638
639 if (greth->tx_free > 0) {
640 netif_wake_queue(dev);
641 }
642
643 }
644
645 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
646 {
647 /* Check status for errors */
648 if (unlikely(stat & GRETH_TXBD_STATUS)) {
649 dev->stats.tx_errors++;
650 if (stat & GRETH_TXBD_ERR_AL)
651 dev->stats.tx_aborted_errors++;
652 if (stat & GRETH_TXBD_ERR_UE)
653 dev->stats.tx_fifo_errors++;
654 if (stat & GRETH_TXBD_ERR_LC)
655 dev->stats.tx_aborted_errors++;
656 }
657 dev->stats.tx_packets++;
658 }
659
660 static void greth_clean_tx_gbit(struct net_device *dev)
661 {
662 struct greth_private *greth;
663 struct greth_bd *bdp, *bdp_last_frag;
664 struct sk_buff *skb;
665 u32 stat;
666 int nr_frags, i;
667
668 greth = netdev_priv(dev);
669
670 while (greth->tx_free < GRETH_TXBD_NUM) {
671
672 skb = greth->tx_skbuff[greth->tx_last];
673
674 nr_frags = skb_shinfo(skb)->nr_frags;
675
676 /* We only clean fully completed SKBs */
677 bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags);
678 stat = bdp_last_frag->stat;
679
680 if (stat & GRETH_BD_EN)
681 break;
682
683 greth->tx_skbuff[greth->tx_last] = NULL;
684
685 greth_update_tx_stats(dev, stat);
686
687 bdp = greth->tx_bd_base + greth->tx_last;
688
689 greth->tx_last = NEXT_TX(greth->tx_last);
690
691 dma_unmap_single(greth->dev,
692 greth_read_bd(&bdp->addr),
693 skb_headlen(skb),
694 DMA_TO_DEVICE);
695
696 for (i = 0; i < nr_frags; i++) {
697 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
698 bdp = greth->tx_bd_base + greth->tx_last;
699
700 dma_unmap_page(greth->dev,
701 greth_read_bd(&bdp->addr),
702 frag->size,
703 DMA_TO_DEVICE);
704
705 greth->tx_last = NEXT_TX(greth->tx_last);
706 }
707 greth->tx_free += nr_frags+1;
708 dev_kfree_skb(skb);
709 }
710 if (greth->tx_free > (MAX_SKB_FRAGS + 1)) {
711 netif_wake_queue(dev);
712 }
713 }
714
715 static int greth_pending_packets(struct greth_private *greth)
716 {
717 struct greth_bd *bdp;
718 u32 status;
719 bdp = greth->rx_bd_base + greth->rx_cur;
720 status = greth_read_bd(&bdp->stat);
721 if (status & GRETH_BD_EN)
722 return 0;
723 else
724 return 1;
725 }
726
727 static int greth_rx(struct net_device *dev, int limit)
728 {
729 struct greth_private *greth;
730 struct greth_bd *bdp;
731 struct sk_buff *skb;
732 int pkt_len;
733 int bad, count;
734 u32 status, dma_addr;
735
736 greth = netdev_priv(dev);
737
738 for (count = 0; count < limit; ++count) {
739
740 bdp = greth->rx_bd_base + greth->rx_cur;
741 status = greth_read_bd(&bdp->stat);
742 dma_addr = greth_read_bd(&bdp->addr);
743 bad = 0;
744
745 if (unlikely(status & GRETH_BD_EN)) {
746 break;
747 }
748
749 /* Check status for errors. */
750 if (unlikely(status & GRETH_RXBD_STATUS)) {
751 if (status & GRETH_RXBD_ERR_FT) {
752 dev->stats.rx_length_errors++;
753 bad = 1;
754 }
755 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
756 dev->stats.rx_frame_errors++;
757 bad = 1;
758 }
759 if (status & GRETH_RXBD_ERR_CRC) {
760 dev->stats.rx_crc_errors++;
761 bad = 1;
762 }
763 }
764 if (unlikely(bad)) {
765 dev->stats.rx_errors++;
766
767 } else {
768
769 pkt_len = status & GRETH_BD_LEN;
770
771 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
772
773 if (unlikely(skb == NULL)) {
774
775 if (net_ratelimit())
776 dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
777
778 dev->stats.rx_dropped++;
779
780 } else {
781 skb_reserve(skb, NET_IP_ALIGN);
782 skb->dev = dev;
783
784 dma_sync_single_for_cpu(greth->dev,
785 dma_addr,
786 pkt_len,
787 DMA_FROM_DEVICE);
788
789 if (netif_msg_pktdata(greth))
790 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
791
792 memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
793
794 skb->protocol = eth_type_trans(skb, dev);
795 dev->stats.rx_packets++;
796 netif_receive_skb(skb);
797 }
798 }
799
800 status = GRETH_BD_EN | GRETH_BD_IE;
801 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
802 status |= GRETH_BD_WR;
803 }
804
805 wmb();
806 greth_write_bd(&bdp->stat, status);
807
808 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
809
810 greth_enable_rx(greth);
811
812 greth->rx_cur = NEXT_RX(greth->rx_cur);
813 }
814
815 return count;
816 }
817
818 static inline int hw_checksummed(u32 status)
819 {
820
821 if (status & GRETH_RXBD_IP_FRAG)
822 return 0;
823
824 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
825 return 0;
826
827 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
828 return 0;
829
830 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
831 return 0;
832
833 return 1;
834 }
835
836 static int greth_rx_gbit(struct net_device *dev, int limit)
837 {
838 struct greth_private *greth;
839 struct greth_bd *bdp;
840 struct sk_buff *skb, *newskb;
841 int pkt_len;
842 int bad, count = 0;
843 u32 status, dma_addr;
844
845 greth = netdev_priv(dev);
846
847 for (count = 0; count < limit; ++count) {
848
849 bdp = greth->rx_bd_base + greth->rx_cur;
850 skb = greth->rx_skbuff[greth->rx_cur];
851 status = greth_read_bd(&bdp->stat);
852 bad = 0;
853
854 if (status & GRETH_BD_EN)
855 break;
856
857 /* Check status for errors. */
858 if (unlikely(status & GRETH_RXBD_STATUS)) {
859
860 if (status & GRETH_RXBD_ERR_FT) {
861 dev->stats.rx_length_errors++;
862 bad = 1;
863 } else if (status &
864 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
865 dev->stats.rx_frame_errors++;
866 bad = 1;
867 } else if (status & GRETH_RXBD_ERR_CRC) {
868 dev->stats.rx_crc_errors++;
869 bad = 1;
870 }
871 }
872
873 /* Allocate new skb to replace current */
874 newskb = netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN);
875
876 if (!bad && newskb) {
877 skb_reserve(newskb, NET_IP_ALIGN);
878
879 dma_addr = dma_map_single(greth->dev,
880 newskb->data,
881 MAX_FRAME_SIZE + NET_IP_ALIGN,
882 DMA_FROM_DEVICE);
883
884 if (!dma_mapping_error(greth->dev, dma_addr)) {
885 /* Process the incoming frame. */
886 pkt_len = status & GRETH_BD_LEN;
887
888 dma_unmap_single(greth->dev,
889 greth_read_bd(&bdp->addr),
890 MAX_FRAME_SIZE + NET_IP_ALIGN,
891 DMA_FROM_DEVICE);
892
893 if (netif_msg_pktdata(greth))
894 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
895
896 skb_put(skb, pkt_len);
897
898 if (greth->flags & GRETH_FLAG_RX_CSUM && hw_checksummed(status))
899 skb->ip_summed = CHECKSUM_UNNECESSARY;
900 else
901 skb_checksum_none_assert(skb);
902
903 skb->protocol = eth_type_trans(skb, dev);
904 dev->stats.rx_packets++;
905 netif_receive_skb(skb);
906
907 greth->rx_skbuff[greth->rx_cur] = newskb;
908 greth_write_bd(&bdp->addr, dma_addr);
909 } else {
910 if (net_ratelimit())
911 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
912 dev_kfree_skb(newskb);
913 dev->stats.rx_dropped++;
914 }
915 } else {
916 if (net_ratelimit())
917 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
918 dev->stats.rx_dropped++;
919 }
920
921 status = GRETH_BD_EN | GRETH_BD_IE;
922 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
923 status |= GRETH_BD_WR;
924 }
925
926 wmb();
927 greth_write_bd(&bdp->stat, status);
928 greth_enable_rx(greth);
929 greth->rx_cur = NEXT_RX(greth->rx_cur);
930 }
931
932 return count;
933
934 }
935
936 static int greth_poll(struct napi_struct *napi, int budget)
937 {
938 struct greth_private *greth;
939 int work_done = 0;
940 greth = container_of(napi, struct greth_private, napi);
941
942 if (greth->gbit_mac) {
943 greth_clean_tx_gbit(greth->netdev);
944 } else {
945 greth_clean_tx(greth->netdev);
946 }
947
948 restart_poll:
949 if (greth->gbit_mac) {
950 work_done += greth_rx_gbit(greth->netdev, budget - work_done);
951 } else {
952 work_done += greth_rx(greth->netdev, budget - work_done);
953 }
954
955 if (work_done < budget) {
956
957 napi_complete(napi);
958
959 if (greth_pending_packets(greth)) {
960 napi_reschedule(napi);
961 goto restart_poll;
962 }
963 }
964
965 greth_enable_irqs(greth);
966 return work_done;
967 }
968
969 static int greth_set_mac_add(struct net_device *dev, void *p)
970 {
971 struct sockaddr *addr = p;
972 struct greth_private *greth;
973 struct greth_regs *regs;
974
975 greth = netdev_priv(dev);
976 regs = (struct greth_regs *) greth->regs;
977
978 if (!is_valid_ether_addr(addr->sa_data))
979 return -EINVAL;
980
981 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
982
983 GRETH_REGSAVE(regs->esa_msb, addr->sa_data[0] << 8 | addr->sa_data[1]);
984 GRETH_REGSAVE(regs->esa_lsb,
985 addr->sa_data[2] << 24 | addr->
986 sa_data[3] << 16 | addr->sa_data[4] << 8 | addr->sa_data[5]);
987 return 0;
988 }
989
990 static u32 greth_hash_get_index(__u8 *addr)
991 {
992 return (ether_crc(6, addr)) & 0x3F;
993 }
994
995 static void greth_set_hash_filter(struct net_device *dev)
996 {
997 struct netdev_hw_addr *ha;
998 struct greth_private *greth = netdev_priv(dev);
999 struct greth_regs *regs = (struct greth_regs *) greth->regs;
1000 u32 mc_filter[2];
1001 unsigned int bitnr;
1002
1003 mc_filter[0] = mc_filter[1] = 0;
1004
1005 netdev_for_each_mc_addr(ha, dev) {
1006 bitnr = greth_hash_get_index(ha->addr);
1007 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
1008 }
1009
1010 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
1011 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
1012 }
1013
1014 static void greth_set_multicast_list(struct net_device *dev)
1015 {
1016 int cfg;
1017 struct greth_private *greth = netdev_priv(dev);
1018 struct greth_regs *regs = (struct greth_regs *) greth->regs;
1019
1020 cfg = GRETH_REGLOAD(regs->control);
1021 if (dev->flags & IFF_PROMISC)
1022 cfg |= GRETH_CTRL_PR;
1023 else
1024 cfg &= ~GRETH_CTRL_PR;
1025
1026 if (greth->multicast) {
1027 if (dev->flags & IFF_ALLMULTI) {
1028 GRETH_REGSAVE(regs->hash_msb, -1);
1029 GRETH_REGSAVE(regs->hash_lsb, -1);
1030 cfg |= GRETH_CTRL_MCEN;
1031 GRETH_REGSAVE(regs->control, cfg);
1032 return;
1033 }
1034
1035 if (netdev_mc_empty(dev)) {
1036 cfg &= ~GRETH_CTRL_MCEN;
1037 GRETH_REGSAVE(regs->control, cfg);
1038 return;
1039 }
1040
1041 /* Setup multicast filter */
1042 greth_set_hash_filter(dev);
1043 cfg |= GRETH_CTRL_MCEN;
1044 }
1045 GRETH_REGSAVE(regs->control, cfg);
1046 }
1047
1048 static u32 greth_get_msglevel(struct net_device *dev)
1049 {
1050 struct greth_private *greth = netdev_priv(dev);
1051 return greth->msg_enable;
1052 }
1053
1054 static void greth_set_msglevel(struct net_device *dev, u32 value)
1055 {
1056 struct greth_private *greth = netdev_priv(dev);
1057 greth->msg_enable = value;
1058 }
1059 static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1060 {
1061 struct greth_private *greth = netdev_priv(dev);
1062 struct phy_device *phy = greth->phy;
1063
1064 if (!phy)
1065 return -ENODEV;
1066
1067 return phy_ethtool_gset(phy, cmd);
1068 }
1069
1070 static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1071 {
1072 struct greth_private *greth = netdev_priv(dev);
1073 struct phy_device *phy = greth->phy;
1074
1075 if (!phy)
1076 return -ENODEV;
1077
1078 return phy_ethtool_sset(phy, cmd);
1079 }
1080
1081 static int greth_get_regs_len(struct net_device *dev)
1082 {
1083 return sizeof(struct greth_regs);
1084 }
1085
1086 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1087 {
1088 struct greth_private *greth = netdev_priv(dev);
1089
1090 strncpy(info->driver, dev_driver_string(greth->dev), 32);
1091 strncpy(info->version, "revision: 1.0", 32);
1092 strncpy(info->bus_info, greth->dev->bus->name, 32);
1093 strncpy(info->fw_version, "N/A", 32);
1094 info->eedump_len = 0;
1095 info->regdump_len = sizeof(struct greth_regs);
1096 }
1097
1098 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
1099 {
1100 int i;
1101 struct greth_private *greth = netdev_priv(dev);
1102 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
1103 u32 *buff = p;
1104
1105 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
1106 buff[i] = greth_read_bd(&greth_regs[i]);
1107 }
1108
1109 static u32 greth_get_rx_csum(struct net_device *dev)
1110 {
1111 struct greth_private *greth = netdev_priv(dev);
1112 return (greth->flags & GRETH_FLAG_RX_CSUM) != 0;
1113 }
1114
1115 static int greth_set_rx_csum(struct net_device *dev, u32 data)
1116 {
1117 struct greth_private *greth = netdev_priv(dev);
1118
1119 spin_lock_bh(&greth->devlock);
1120
1121 if (data)
1122 greth->flags |= GRETH_FLAG_RX_CSUM;
1123 else
1124 greth->flags &= ~GRETH_FLAG_RX_CSUM;
1125
1126 spin_unlock_bh(&greth->devlock);
1127
1128 return 0;
1129 }
1130
1131 static u32 greth_get_tx_csum(struct net_device *dev)
1132 {
1133 return (dev->features & NETIF_F_IP_CSUM) != 0;
1134 }
1135
1136 static int greth_set_tx_csum(struct net_device *dev, u32 data)
1137 {
1138 netif_tx_lock_bh(dev);
1139 ethtool_op_set_tx_csum(dev, data);
1140 netif_tx_unlock_bh(dev);
1141 return 0;
1142 }
1143
1144 static const struct ethtool_ops greth_ethtool_ops = {
1145 .get_msglevel = greth_get_msglevel,
1146 .set_msglevel = greth_set_msglevel,
1147 .get_settings = greth_get_settings,
1148 .set_settings = greth_set_settings,
1149 .get_drvinfo = greth_get_drvinfo,
1150 .get_regs_len = greth_get_regs_len,
1151 .get_regs = greth_get_regs,
1152 .get_rx_csum = greth_get_rx_csum,
1153 .set_rx_csum = greth_set_rx_csum,
1154 .get_tx_csum = greth_get_tx_csum,
1155 .set_tx_csum = greth_set_tx_csum,
1156 .get_link = ethtool_op_get_link,
1157 };
1158
1159 static struct net_device_ops greth_netdev_ops = {
1160 .ndo_open = greth_open,
1161 .ndo_stop = greth_close,
1162 .ndo_start_xmit = greth_start_xmit,
1163 .ndo_set_mac_address = greth_set_mac_add,
1164 .ndo_validate_addr = eth_validate_addr,
1165 };
1166
1167 static inline int wait_for_mdio(struct greth_private *greth)
1168 {
1169 unsigned long timeout = jiffies + 4*HZ/100;
1170 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
1171 if (time_after(jiffies, timeout))
1172 return 0;
1173 }
1174 return 1;
1175 }
1176
1177 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
1178 {
1179 struct greth_private *greth = bus->priv;
1180 int data;
1181
1182 if (!wait_for_mdio(greth))
1183 return -EBUSY;
1184
1185 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
1186
1187 if (!wait_for_mdio(greth))
1188 return -EBUSY;
1189
1190 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
1191 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
1192 return data;
1193
1194 } else {
1195 return -1;
1196 }
1197 }
1198
1199 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
1200 {
1201 struct greth_private *greth = bus->priv;
1202
1203 if (!wait_for_mdio(greth))
1204 return -EBUSY;
1205
1206 GRETH_REGSAVE(greth->regs->mdio,
1207 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
1208
1209 if (!wait_for_mdio(greth))
1210 return -EBUSY;
1211
1212 return 0;
1213 }
1214
1215 static int greth_mdio_reset(struct mii_bus *bus)
1216 {
1217 return 0;
1218 }
1219
1220 static void greth_link_change(struct net_device *dev)
1221 {
1222 struct greth_private *greth = netdev_priv(dev);
1223 struct phy_device *phydev = greth->phy;
1224 unsigned long flags;
1225
1226 int status_change = 0;
1227
1228 spin_lock_irqsave(&greth->devlock, flags);
1229
1230 if (phydev->link) {
1231
1232 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
1233
1234 GRETH_REGANDIN(greth->regs->control,
1235 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB));
1236
1237 if (phydev->duplex)
1238 GRETH_REGORIN(greth->regs->control, GRETH_CTRL_FD);
1239
1240 if (phydev->speed == SPEED_100) {
1241
1242 GRETH_REGORIN(greth->regs->control, GRETH_CTRL_SP);
1243 }
1244
1245 else if (phydev->speed == SPEED_1000)
1246 GRETH_REGORIN(greth->regs->control, GRETH_CTRL_GB);
1247
1248 greth->speed = phydev->speed;
1249 greth->duplex = phydev->duplex;
1250 status_change = 1;
1251 }
1252 }
1253
1254 if (phydev->link != greth->link) {
1255 if (!phydev->link) {
1256 greth->speed = 0;
1257 greth->duplex = -1;
1258 }
1259 greth->link = phydev->link;
1260
1261 status_change = 1;
1262 }
1263
1264 spin_unlock_irqrestore(&greth->devlock, flags);
1265
1266 if (status_change) {
1267 if (phydev->link)
1268 pr_debug("%s: link up (%d/%s)\n",
1269 dev->name, phydev->speed,
1270 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
1271 else
1272 pr_debug("%s: link down\n", dev->name);
1273 }
1274 }
1275
1276 static int greth_mdio_probe(struct net_device *dev)
1277 {
1278 struct greth_private *greth = netdev_priv(dev);
1279 struct phy_device *phy = NULL;
1280 int ret;
1281
1282 /* Find the first PHY */
1283 phy = phy_find_first(greth->mdio);
1284
1285 if (!phy) {
1286 if (netif_msg_probe(greth))
1287 dev_err(&dev->dev, "no PHY found\n");
1288 return -ENXIO;
1289 }
1290
1291 ret = phy_connect_direct(dev, phy, &greth_link_change,
1292 0, greth->gbit_mac ?
1293 PHY_INTERFACE_MODE_GMII :
1294 PHY_INTERFACE_MODE_MII);
1295 if (ret) {
1296 if (netif_msg_ifup(greth))
1297 dev_err(&dev->dev, "could not attach to PHY\n");
1298 return ret;
1299 }
1300
1301 if (greth->gbit_mac)
1302 phy->supported &= PHY_GBIT_FEATURES;
1303 else
1304 phy->supported &= PHY_BASIC_FEATURES;
1305
1306 phy->advertising = phy->supported;
1307
1308 greth->link = 0;
1309 greth->speed = 0;
1310 greth->duplex = -1;
1311 greth->phy = phy;
1312
1313 return 0;
1314 }
1315
1316 static inline int phy_aneg_done(struct phy_device *phydev)
1317 {
1318 int retval;
1319
1320 retval = phy_read(phydev, MII_BMSR);
1321
1322 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
1323 }
1324
1325 static int greth_mdio_init(struct greth_private *greth)
1326 {
1327 int ret, phy;
1328 unsigned long timeout;
1329
1330 greth->mdio = mdiobus_alloc();
1331 if (!greth->mdio) {
1332 return -ENOMEM;
1333 }
1334
1335 greth->mdio->name = "greth-mdio";
1336 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
1337 greth->mdio->read = greth_mdio_read;
1338 greth->mdio->write = greth_mdio_write;
1339 greth->mdio->reset = greth_mdio_reset;
1340 greth->mdio->priv = greth;
1341
1342 greth->mdio->irq = greth->mdio_irqs;
1343
1344 for (phy = 0; phy < PHY_MAX_ADDR; phy++)
1345 greth->mdio->irq[phy] = PHY_POLL;
1346
1347 ret = mdiobus_register(greth->mdio);
1348 if (ret) {
1349 goto error;
1350 }
1351
1352 ret = greth_mdio_probe(greth->netdev);
1353 if (ret) {
1354 if (netif_msg_probe(greth))
1355 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
1356 goto unreg_mdio;
1357 }
1358
1359 phy_start(greth->phy);
1360
1361 /* If Ethernet debug link is used make autoneg happen right away */
1362 if (greth->edcl && greth_edcl == 1) {
1363 phy_start_aneg(greth->phy);
1364 timeout = jiffies + 6*HZ;
1365 while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) {
1366 }
1367 genphy_read_status(greth->phy);
1368 greth_link_change(greth->netdev);
1369 }
1370
1371 return 0;
1372
1373 unreg_mdio:
1374 mdiobus_unregister(greth->mdio);
1375 error:
1376 mdiobus_free(greth->mdio);
1377 return ret;
1378 }
1379
1380 /* Initialize the GRETH MAC */
1381 static int __devinit greth_of_probe(struct platform_device *ofdev, const struct of_device_id *match)
1382 {
1383 struct net_device *dev;
1384 struct greth_private *greth;
1385 struct greth_regs *regs;
1386
1387 int i;
1388 int err;
1389 int tmp;
1390 unsigned long timeout;
1391
1392 dev = alloc_etherdev(sizeof(struct greth_private));
1393
1394 if (dev == NULL)
1395 return -ENOMEM;
1396
1397 greth = netdev_priv(dev);
1398 greth->netdev = dev;
1399 greth->dev = &ofdev->dev;
1400
1401 if (greth_debug > 0)
1402 greth->msg_enable = greth_debug;
1403 else
1404 greth->msg_enable = GRETH_DEF_MSG_ENABLE;
1405
1406 spin_lock_init(&greth->devlock);
1407
1408 greth->regs = of_ioremap(&ofdev->resource[0], 0,
1409 resource_size(&ofdev->resource[0]),
1410 "grlib-greth regs");
1411
1412 if (greth->regs == NULL) {
1413 if (netif_msg_probe(greth))
1414 dev_err(greth->dev, "ioremap failure.\n");
1415 err = -EIO;
1416 goto error1;
1417 }
1418
1419 regs = (struct greth_regs *) greth->regs;
1420 greth->irq = ofdev->archdata.irqs[0];
1421
1422 dev_set_drvdata(greth->dev, dev);
1423 SET_NETDEV_DEV(dev, greth->dev);
1424
1425 if (netif_msg_probe(greth))
1426 dev_dbg(greth->dev, "reseting controller.\n");
1427
1428 /* Reset the controller. */
1429 GRETH_REGSAVE(regs->control, GRETH_RESET);
1430
1431 /* Wait for MAC to reset itself */
1432 timeout = jiffies + HZ/100;
1433 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
1434 if (time_after(jiffies, timeout)) {
1435 err = -EIO;
1436 if (netif_msg_probe(greth))
1437 dev_err(greth->dev, "timeout when waiting for reset.\n");
1438 goto error2;
1439 }
1440 }
1441
1442 /* Get default PHY address */
1443 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
1444
1445 /* Check if we have GBIT capable MAC */
1446 tmp = GRETH_REGLOAD(regs->control);
1447 greth->gbit_mac = (tmp >> 27) & 1;
1448
1449 /* Check for multicast capability */
1450 greth->multicast = (tmp >> 25) & 1;
1451
1452 greth->edcl = (tmp >> 31) & 1;
1453
1454 /* If we have EDCL we disable the EDCL speed-duplex FSM so
1455 * it doesn't interfere with the software */
1456 if (greth->edcl != 0)
1457 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
1458
1459 /* Check if MAC can handle MDIO interrupts */
1460 greth->mdio_int_en = (tmp >> 26) & 1;
1461
1462 err = greth_mdio_init(greth);
1463 if (err) {
1464 if (netif_msg_probe(greth))
1465 dev_err(greth->dev, "failed to register MDIO bus\n");
1466 goto error2;
1467 }
1468
1469 /* Allocate TX descriptor ring in coherent memory */
1470 greth->tx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
1471 1024,
1472 &greth->tx_bd_base_phys,
1473 GFP_KERNEL);
1474
1475 if (!greth->tx_bd_base) {
1476 if (netif_msg_probe(greth))
1477 dev_err(&dev->dev, "could not allocate descriptor memory.\n");
1478 err = -ENOMEM;
1479 goto error3;
1480 }
1481
1482 memset(greth->tx_bd_base, 0, 1024);
1483
1484 /* Allocate RX descriptor ring in coherent memory */
1485 greth->rx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
1486 1024,
1487 &greth->rx_bd_base_phys,
1488 GFP_KERNEL);
1489
1490 if (!greth->rx_bd_base) {
1491 if (netif_msg_probe(greth))
1492 dev_err(greth->dev, "could not allocate descriptor memory.\n");
1493 err = -ENOMEM;
1494 goto error4;
1495 }
1496
1497 memset(greth->rx_bd_base, 0, 1024);
1498
1499 /* Get MAC address from: module param, OF property or ID prom */
1500 for (i = 0; i < 6; i++) {
1501 if (macaddr[i] != 0)
1502 break;
1503 }
1504 if (i == 6) {
1505 const unsigned char *addr;
1506 int len;
1507 addr = of_get_property(ofdev->dev.of_node, "local-mac-address",
1508 &len);
1509 if (addr != NULL && len == 6) {
1510 for (i = 0; i < 6; i++)
1511 macaddr[i] = (unsigned int) addr[i];
1512 } else {
1513 #ifdef CONFIG_SPARC
1514 for (i = 0; i < 6; i++)
1515 macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
1516 #endif
1517 }
1518 }
1519
1520 for (i = 0; i < 6; i++)
1521 dev->dev_addr[i] = macaddr[i];
1522
1523 macaddr[5]++;
1524
1525 if (!is_valid_ether_addr(&dev->dev_addr[0])) {
1526 if (netif_msg_probe(greth))
1527 dev_err(greth->dev, "no valid ethernet address, aborting.\n");
1528 err = -EINVAL;
1529 goto error5;
1530 }
1531
1532 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1533 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1534 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1535
1536 /* Clear all pending interrupts except PHY irq */
1537 GRETH_REGSAVE(regs->status, 0xFF);
1538
1539 if (greth->gbit_mac) {
1540 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HIGHDMA;
1541 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
1542 greth->flags = GRETH_FLAG_RX_CSUM;
1543 }
1544
1545 if (greth->multicast) {
1546 greth_netdev_ops.ndo_set_multicast_list = greth_set_multicast_list;
1547 dev->flags |= IFF_MULTICAST;
1548 } else {
1549 dev->flags &= ~IFF_MULTICAST;
1550 }
1551
1552 dev->netdev_ops = &greth_netdev_ops;
1553 dev->ethtool_ops = &greth_ethtool_ops;
1554
1555 err = register_netdev(dev);
1556 if (err) {
1557 if (netif_msg_probe(greth))
1558 dev_err(greth->dev, "netdevice registration failed.\n");
1559 goto error5;
1560 }
1561
1562 /* setup NAPI */
1563 netif_napi_add(dev, &greth->napi, greth_poll, 64);
1564
1565 return 0;
1566
1567 error5:
1568 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1569 error4:
1570 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1571 error3:
1572 mdiobus_unregister(greth->mdio);
1573 error2:
1574 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
1575 error1:
1576 free_netdev(dev);
1577 return err;
1578 }
1579
1580 static int __devexit greth_of_remove(struct platform_device *of_dev)
1581 {
1582 struct net_device *ndev = dev_get_drvdata(&of_dev->dev);
1583 struct greth_private *greth = netdev_priv(ndev);
1584
1585 /* Free descriptor areas */
1586 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1587
1588 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1589
1590 dev_set_drvdata(&of_dev->dev, NULL);
1591
1592 if (greth->phy)
1593 phy_stop(greth->phy);
1594 mdiobus_unregister(greth->mdio);
1595
1596 unregister_netdev(ndev);
1597 free_netdev(ndev);
1598
1599 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
1600
1601 return 0;
1602 }
1603
1604 static struct of_device_id greth_of_match[] = {
1605 {
1606 .name = "GAISLER_ETHMAC",
1607 },
1608 {
1609 .name = "01_01d",
1610 },
1611 {},
1612 };
1613
1614 MODULE_DEVICE_TABLE(of, greth_of_match);
1615
1616 static struct of_platform_driver greth_of_driver = {
1617 .driver = {
1618 .name = "grlib-greth",
1619 .owner = THIS_MODULE,
1620 .of_match_table = greth_of_match,
1621 },
1622 .probe = greth_of_probe,
1623 .remove = __devexit_p(greth_of_remove),
1624 };
1625
1626 static int __init greth_init(void)
1627 {
1628 return of_register_platform_driver(&greth_of_driver);
1629 }
1630
1631 static void __exit greth_cleanup(void)
1632 {
1633 of_unregister_platform_driver(&greth_of_driver);
1634 }
1635
1636 module_init(greth_init);
1637 module_exit(greth_cleanup);
1638
1639 MODULE_AUTHOR("Aeroflex Gaisler AB.");
1640 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
1641 MODULE_LICENSE("GPL");
This page took 0.099794 seconds and 4 git commands to generate.