Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/pci-2.6
[deliverable/linux.git] / drivers / net / hamradio / 6pack.c
1 /*
2 * 6pack.c This module implements the 6pack protocol for kernel-based
3 * devices like TTY. It interfaces between a raw TTY and the
4 * kernel's AX.25 protocol layers.
5 *
6 * Authors: Andreas Könsgen <ajk@iehk.rwth-aachen.de>
7 * Ralf Baechle DL5RB <ralf@linux-mips.org>
8 *
9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10 *
11 * Laurence Culhane, <loz@holmes.demon.co.uk>
12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13 */
14
15 #include <linux/config.h>
16 #include <linux/module.h>
17 #include <asm/system.h>
18 #include <asm/uaccess.h>
19 #include <linux/bitops.h>
20 #include <linux/string.h>
21 #include <linux/mm.h>
22 #include <linux/interrupt.h>
23 #include <linux/in.h>
24 #include <linux/tty.h>
25 #include <linux/errno.h>
26 #include <linux/netdevice.h>
27 #include <linux/timer.h>
28 #include <net/ax25.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/rtnetlink.h>
32 #include <linux/spinlock.h>
33 #include <linux/if_arp.h>
34 #include <linux/init.h>
35 #include <linux/ip.h>
36 #include <linux/tcp.h>
37 #include <asm/semaphore.h>
38 #include <asm/atomic.h>
39
40 #define SIXPACK_VERSION "Revision: 0.3.0"
41
42 /* sixpack priority commands */
43 #define SIXP_SEOF 0x40 /* start and end of a 6pack frame */
44 #define SIXP_TX_URUN 0x48 /* transmit overrun */
45 #define SIXP_RX_ORUN 0x50 /* receive overrun */
46 #define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */
47
48 #define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */
49
50 /* masks to get certain bits out of the status bytes sent by the TNC */
51
52 #define SIXP_CMD_MASK 0xC0
53 #define SIXP_CHN_MASK 0x07
54 #define SIXP_PRIO_CMD_MASK 0x80
55 #define SIXP_STD_CMD_MASK 0x40
56 #define SIXP_PRIO_DATA_MASK 0x38
57 #define SIXP_TX_MASK 0x20
58 #define SIXP_RX_MASK 0x10
59 #define SIXP_RX_DCD_MASK 0x18
60 #define SIXP_LEDS_ON 0x78
61 #define SIXP_LEDS_OFF 0x60
62 #define SIXP_CON 0x08
63 #define SIXP_STA 0x10
64
65 #define SIXP_FOUND_TNC 0xe9
66 #define SIXP_CON_ON 0x68
67 #define SIXP_DCD_MASK 0x08
68 #define SIXP_DAMA_OFF 0
69
70 /* default level 2 parameters */
71 #define SIXP_TXDELAY (HZ/4) /* in 1 s */
72 #define SIXP_PERSIST 50 /* in 256ths */
73 #define SIXP_SLOTTIME (HZ/10) /* in 1 s */
74 #define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */
75 #define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */
76
77 /* 6pack configuration. */
78 #define SIXP_NRUNIT 31 /* MAX number of 6pack channels */
79 #define SIXP_MTU 256 /* Default MTU */
80
81 enum sixpack_flags {
82 SIXPF_ERROR, /* Parity, etc. error */
83 };
84
85 struct sixpack {
86 /* Various fields. */
87 struct tty_struct *tty; /* ptr to TTY structure */
88 struct net_device *dev; /* easy for intr handling */
89
90 /* These are pointers to the malloc()ed frame buffers. */
91 unsigned char *rbuff; /* receiver buffer */
92 int rcount; /* received chars counter */
93 unsigned char *xbuff; /* transmitter buffer */
94 unsigned char *xhead; /* next byte to XMIT */
95 int xleft; /* bytes left in XMIT queue */
96
97 unsigned char raw_buf[4];
98 unsigned char cooked_buf[400];
99
100 unsigned int rx_count;
101 unsigned int rx_count_cooked;
102
103 /* 6pack interface statistics. */
104 struct net_device_stats stats;
105
106 int mtu; /* Our mtu (to spot changes!) */
107 int buffsize; /* Max buffers sizes */
108
109 unsigned long flags; /* Flag values/ mode etc */
110 unsigned char mode; /* 6pack mode */
111
112 /* 6pack stuff */
113 unsigned char tx_delay;
114 unsigned char persistence;
115 unsigned char slottime;
116 unsigned char duplex;
117 unsigned char led_state;
118 unsigned char status;
119 unsigned char status1;
120 unsigned char status2;
121 unsigned char tx_enable;
122 unsigned char tnc_state;
123
124 struct timer_list tx_t;
125 struct timer_list resync_t;
126 atomic_t refcnt;
127 struct semaphore dead_sem;
128 spinlock_t lock;
129 };
130
131 #define AX25_6PACK_HEADER_LEN 0
132
133 static void sixpack_decode(struct sixpack *, unsigned char[], int);
134 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
135
136 /*
137 * Perform the persistence/slottime algorithm for CSMA access. If the
138 * persistence check was successful, write the data to the serial driver.
139 * Note that in case of DAMA operation, the data is not sent here.
140 */
141
142 static void sp_xmit_on_air(unsigned long channel)
143 {
144 struct sixpack *sp = (struct sixpack *) channel;
145 int actual, when = sp->slottime;
146 static unsigned char random;
147
148 random = random * 17 + 41;
149
150 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
151 sp->led_state = 0x70;
152 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
153 sp->tx_enable = 1;
154 actual = sp->tty->driver->write(sp->tty, sp->xbuff, sp->status2);
155 sp->xleft -= actual;
156 sp->xhead += actual;
157 sp->led_state = 0x60;
158 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
159 sp->status2 = 0;
160 } else
161 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
162 }
163
164 /* ----> 6pack timer interrupt handler and friends. <---- */
165
166 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
167 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
168 {
169 unsigned char *msg, *p = icp;
170 int actual, count;
171
172 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
173 msg = "oversized transmit packet!";
174 goto out_drop;
175 }
176
177 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
178 msg = "oversized transmit packet!";
179 goto out_drop;
180 }
181
182 if (p[0] > 5) {
183 msg = "invalid KISS command";
184 goto out_drop;
185 }
186
187 if ((p[0] != 0) && (len > 2)) {
188 msg = "KISS control packet too long";
189 goto out_drop;
190 }
191
192 if ((p[0] == 0) && (len < 15)) {
193 msg = "bad AX.25 packet to transmit";
194 goto out_drop;
195 }
196
197 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
198 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
199
200 switch (p[0]) {
201 case 1: sp->tx_delay = p[1];
202 return;
203 case 2: sp->persistence = p[1];
204 return;
205 case 3: sp->slottime = p[1];
206 return;
207 case 4: /* ignored */
208 return;
209 case 5: sp->duplex = p[1];
210 return;
211 }
212
213 if (p[0] != 0)
214 return;
215
216 /*
217 * In case of fullduplex or DAMA operation, we don't take care about the
218 * state of the DCD or of any timers, as the determination of the
219 * correct time to send is the job of the AX.25 layer. We send
220 * immediately after data has arrived.
221 */
222 if (sp->duplex == 1) {
223 sp->led_state = 0x70;
224 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
225 sp->tx_enable = 1;
226 actual = sp->tty->driver->write(sp->tty, sp->xbuff, count);
227 sp->xleft = count - actual;
228 sp->xhead = sp->xbuff + actual;
229 sp->led_state = 0x60;
230 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
231 } else {
232 sp->xleft = count;
233 sp->xhead = sp->xbuff;
234 sp->status2 = count;
235 sp_xmit_on_air((unsigned long)sp);
236 }
237
238 return;
239
240 out_drop:
241 sp->stats.tx_dropped++;
242 netif_start_queue(sp->dev);
243 if (net_ratelimit())
244 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
245 }
246
247 /* Encapsulate an IP datagram and kick it into a TTY queue. */
248
249 static int sp_xmit(struct sk_buff *skb, struct net_device *dev)
250 {
251 struct sixpack *sp = netdev_priv(dev);
252
253 spin_lock_bh(&sp->lock);
254 /* We were not busy, so we are now... :-) */
255 netif_stop_queue(dev);
256 sp->stats.tx_bytes += skb->len;
257 sp_encaps(sp, skb->data, skb->len);
258 spin_unlock_bh(&sp->lock);
259
260 dev_kfree_skb(skb);
261
262 return 0;
263 }
264
265 static int sp_open_dev(struct net_device *dev)
266 {
267 struct sixpack *sp = netdev_priv(dev);
268
269 if (sp->tty == NULL)
270 return -ENODEV;
271 return 0;
272 }
273
274 /* Close the low-level part of the 6pack channel. */
275 static int sp_close(struct net_device *dev)
276 {
277 struct sixpack *sp = netdev_priv(dev);
278
279 spin_lock_bh(&sp->lock);
280 if (sp->tty) {
281 /* TTY discipline is running. */
282 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
283 }
284 netif_stop_queue(dev);
285 spin_unlock_bh(&sp->lock);
286
287 return 0;
288 }
289
290 /* Return the frame type ID */
291 static int sp_header(struct sk_buff *skb, struct net_device *dev,
292 unsigned short type, void *daddr, void *saddr, unsigned len)
293 {
294 #ifdef CONFIG_INET
295 if (type != htons(ETH_P_AX25))
296 return ax25_hard_header(skb, dev, type, daddr, saddr, len);
297 #endif
298 return 0;
299 }
300
301 static struct net_device_stats *sp_get_stats(struct net_device *dev)
302 {
303 struct sixpack *sp = netdev_priv(dev);
304 return &sp->stats;
305 }
306
307 static int sp_set_mac_address(struct net_device *dev, void *addr)
308 {
309 struct sockaddr_ax25 *sa = addr;
310
311 netif_tx_lock_bh(dev);
312 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
313 netif_tx_unlock_bh(dev);
314
315 return 0;
316 }
317
318 static int sp_rebuild_header(struct sk_buff *skb)
319 {
320 #ifdef CONFIG_INET
321 return ax25_rebuild_header(skb);
322 #else
323 return 0;
324 #endif
325 }
326
327 static void sp_setup(struct net_device *dev)
328 {
329 static char ax25_bcast[AX25_ADDR_LEN] =
330 {'Q'<<1,'S'<<1,'T'<<1,' '<<1,' '<<1,' '<<1,'0'<<1};
331 static char ax25_test[AX25_ADDR_LEN] =
332 {'L'<<1,'I'<<1,'N'<<1,'U'<<1,'X'<<1,' '<<1,'1'<<1};
333
334 /* Finish setting up the DEVICE info. */
335 dev->mtu = SIXP_MTU;
336 dev->hard_start_xmit = sp_xmit;
337 dev->open = sp_open_dev;
338 dev->destructor = free_netdev;
339 dev->stop = sp_close;
340 dev->hard_header = sp_header;
341 dev->get_stats = sp_get_stats;
342 dev->set_mac_address = sp_set_mac_address;
343 dev->hard_header_len = AX25_MAX_HEADER_LEN;
344 dev->addr_len = AX25_ADDR_LEN;
345 dev->type = ARPHRD_AX25;
346 dev->tx_queue_len = 10;
347 dev->rebuild_header = sp_rebuild_header;
348 dev->tx_timeout = NULL;
349
350 /* Only activated in AX.25 mode */
351 memcpy(dev->broadcast, ax25_bcast, AX25_ADDR_LEN);
352 memcpy(dev->dev_addr, ax25_test, AX25_ADDR_LEN);
353
354 SET_MODULE_OWNER(dev);
355
356 dev->flags = 0;
357 }
358
359 /* Send one completely decapsulated IP datagram to the IP layer. */
360
361 /*
362 * This is the routine that sends the received data to the kernel AX.25.
363 * 'cmd' is the KISS command. For AX.25 data, it is zero.
364 */
365
366 static void sp_bump(struct sixpack *sp, char cmd)
367 {
368 struct sk_buff *skb;
369 int count;
370 unsigned char *ptr;
371
372 count = sp->rcount + 1;
373
374 sp->stats.rx_bytes += count;
375
376 if ((skb = dev_alloc_skb(count)) == NULL)
377 goto out_mem;
378
379 ptr = skb_put(skb, count);
380 *ptr++ = cmd; /* KISS command */
381
382 memcpy(ptr, sp->cooked_buf + 1, count);
383 skb->protocol = ax25_type_trans(skb, sp->dev);
384 netif_rx(skb);
385 sp->dev->last_rx = jiffies;
386 sp->stats.rx_packets++;
387
388 return;
389
390 out_mem:
391 sp->stats.rx_dropped++;
392 }
393
394
395 /* ----------------------------------------------------------------------- */
396
397 /*
398 * We have a potential race on dereferencing tty->disc_data, because the tty
399 * layer provides no locking at all - thus one cpu could be running
400 * sixpack_receive_buf while another calls sixpack_close, which zeroes
401 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The
402 * best way to fix this is to use a rwlock in the tty struct, but for now we
403 * use a single global rwlock for all ttys in ppp line discipline.
404 */
405 static DEFINE_RWLOCK(disc_data_lock);
406
407 static struct sixpack *sp_get(struct tty_struct *tty)
408 {
409 struct sixpack *sp;
410
411 read_lock(&disc_data_lock);
412 sp = tty->disc_data;
413 if (sp)
414 atomic_inc(&sp->refcnt);
415 read_unlock(&disc_data_lock);
416
417 return sp;
418 }
419
420 static void sp_put(struct sixpack *sp)
421 {
422 if (atomic_dec_and_test(&sp->refcnt))
423 up(&sp->dead_sem);
424 }
425
426 /*
427 * Called by the TTY driver when there's room for more data. If we have
428 * more packets to send, we send them here.
429 */
430 static void sixpack_write_wakeup(struct tty_struct *tty)
431 {
432 struct sixpack *sp = sp_get(tty);
433 int actual;
434
435 if (!sp)
436 return;
437 if (sp->xleft <= 0) {
438 /* Now serial buffer is almost free & we can start
439 * transmission of another packet */
440 sp->stats.tx_packets++;
441 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
442 sp->tx_enable = 0;
443 netif_wake_queue(sp->dev);
444 goto out;
445 }
446
447 if (sp->tx_enable) {
448 actual = tty->driver->write(tty, sp->xhead, sp->xleft);
449 sp->xleft -= actual;
450 sp->xhead += actual;
451 }
452
453 out:
454 sp_put(sp);
455 }
456
457 /* ----------------------------------------------------------------------- */
458
459 /*
460 * Handle the 'receiver data ready' interrupt.
461 * This function is called by the 'tty_io' module in the kernel when
462 * a block of 6pack data has been received, which can now be decapsulated
463 * and sent on to some IP layer for further processing.
464 */
465 static void sixpack_receive_buf(struct tty_struct *tty,
466 const unsigned char *cp, char *fp, int count)
467 {
468 struct sixpack *sp;
469 unsigned char buf[512];
470 int count1;
471
472 if (!count)
473 return;
474
475 sp = sp_get(tty);
476 if (!sp)
477 return;
478
479 memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
480
481 /* Read the characters out of the buffer */
482
483 count1 = count;
484 while (count) {
485 count--;
486 if (fp && *fp++) {
487 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
488 sp->stats.rx_errors++;
489 continue;
490 }
491 }
492 sixpack_decode(sp, buf, count1);
493
494 sp_put(sp);
495 if (test_and_clear_bit(TTY_THROTTLED, &tty->flags)
496 && tty->driver->unthrottle)
497 tty->driver->unthrottle(tty);
498 }
499
500 /*
501 * Try to resync the TNC. Called by the resync timer defined in
502 * decode_prio_command
503 */
504
505 #define TNC_UNINITIALIZED 0
506 #define TNC_UNSYNC_STARTUP 1
507 #define TNC_UNSYNCED 2
508 #define TNC_IN_SYNC 3
509
510 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
511 {
512 char *msg;
513
514 switch (new_tnc_state) {
515 default: /* gcc oh piece-o-crap ... */
516 case TNC_UNSYNC_STARTUP:
517 msg = "Synchronizing with TNC";
518 break;
519 case TNC_UNSYNCED:
520 msg = "Lost synchronization with TNC\n";
521 break;
522 case TNC_IN_SYNC:
523 msg = "Found TNC";
524 break;
525 }
526
527 sp->tnc_state = new_tnc_state;
528 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
529 }
530
531 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
532 {
533 int old_tnc_state = sp->tnc_state;
534
535 if (old_tnc_state != new_tnc_state)
536 __tnc_set_sync_state(sp, new_tnc_state);
537 }
538
539 static void resync_tnc(unsigned long channel)
540 {
541 struct sixpack *sp = (struct sixpack *) channel;
542 static char resync_cmd = 0xe8;
543
544 /* clear any data that might have been received */
545
546 sp->rx_count = 0;
547 sp->rx_count_cooked = 0;
548
549 /* reset state machine */
550
551 sp->status = 1;
552 sp->status1 = 1;
553 sp->status2 = 0;
554
555 /* resync the TNC */
556
557 sp->led_state = 0x60;
558 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
559 sp->tty->driver->write(sp->tty, &resync_cmd, 1);
560
561
562 /* Start resync timer again -- the TNC might be still absent */
563
564 del_timer(&sp->resync_t);
565 sp->resync_t.data = (unsigned long) sp;
566 sp->resync_t.function = resync_tnc;
567 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
568 add_timer(&sp->resync_t);
569 }
570
571 static inline int tnc_init(struct sixpack *sp)
572 {
573 unsigned char inbyte = 0xe8;
574
575 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
576
577 sp->tty->driver->write(sp->tty, &inbyte, 1);
578
579 del_timer(&sp->resync_t);
580 sp->resync_t.data = (unsigned long) sp;
581 sp->resync_t.function = resync_tnc;
582 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
583 add_timer(&sp->resync_t);
584
585 return 0;
586 }
587
588 /*
589 * Open the high-level part of the 6pack channel.
590 * This function is called by the TTY module when the
591 * 6pack line discipline is called for. Because we are
592 * sure the tty line exists, we only have to link it to
593 * a free 6pcack channel...
594 */
595 static int sixpack_open(struct tty_struct *tty)
596 {
597 char *rbuff = NULL, *xbuff = NULL;
598 struct net_device *dev;
599 struct sixpack *sp;
600 unsigned long len;
601 int err = 0;
602
603 if (!capable(CAP_NET_ADMIN))
604 return -EPERM;
605
606 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
607 if (!dev) {
608 err = -ENOMEM;
609 goto out;
610 }
611
612 sp = netdev_priv(dev);
613 sp->dev = dev;
614
615 spin_lock_init(&sp->lock);
616 atomic_set(&sp->refcnt, 1);
617 init_MUTEX_LOCKED(&sp->dead_sem);
618
619 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */
620
621 len = dev->mtu * 2;
622
623 rbuff = kmalloc(len + 4, GFP_KERNEL);
624 xbuff = kmalloc(len + 4, GFP_KERNEL);
625
626 if (rbuff == NULL || xbuff == NULL) {
627 err = -ENOBUFS;
628 goto out_free;
629 }
630
631 spin_lock_bh(&sp->lock);
632
633 sp->tty = tty;
634
635 sp->rbuff = rbuff;
636 sp->xbuff = xbuff;
637
638 sp->mtu = AX25_MTU + 73;
639 sp->buffsize = len;
640 sp->rcount = 0;
641 sp->rx_count = 0;
642 sp->rx_count_cooked = 0;
643 sp->xleft = 0;
644
645 sp->flags = 0; /* Clear ESCAPE & ERROR flags */
646
647 sp->duplex = 0;
648 sp->tx_delay = SIXP_TXDELAY;
649 sp->persistence = SIXP_PERSIST;
650 sp->slottime = SIXP_SLOTTIME;
651 sp->led_state = 0x60;
652 sp->status = 1;
653 sp->status1 = 1;
654 sp->status2 = 0;
655 sp->tx_enable = 0;
656
657 netif_start_queue(dev);
658
659 init_timer(&sp->tx_t);
660 sp->tx_t.function = sp_xmit_on_air;
661 sp->tx_t.data = (unsigned long) sp;
662
663 init_timer(&sp->resync_t);
664
665 spin_unlock_bh(&sp->lock);
666
667 /* Done. We have linked the TTY line to a channel. */
668 tty->disc_data = sp;
669 tty->receive_room = 65536;
670
671 /* Now we're ready to register. */
672 if (register_netdev(dev))
673 goto out_free;
674
675 tnc_init(sp);
676
677 return 0;
678
679 out_free:
680 kfree(xbuff);
681 kfree(rbuff);
682
683 if (dev)
684 free_netdev(dev);
685
686 out:
687 return err;
688 }
689
690
691 /*
692 * Close down a 6pack channel.
693 * This means flushing out any pending queues, and then restoring the
694 * TTY line discipline to what it was before it got hooked to 6pack
695 * (which usually is TTY again).
696 */
697 static void sixpack_close(struct tty_struct *tty)
698 {
699 struct sixpack *sp;
700
701 write_lock(&disc_data_lock);
702 sp = tty->disc_data;
703 tty->disc_data = NULL;
704 write_unlock(&disc_data_lock);
705 if (sp == 0)
706 return;
707
708 /*
709 * We have now ensured that nobody can start using ap from now on, but
710 * we have to wait for all existing users to finish.
711 */
712 if (!atomic_dec_and_test(&sp->refcnt))
713 down(&sp->dead_sem);
714
715 unregister_netdev(sp->dev);
716
717 del_timer(&sp->tx_t);
718 del_timer(&sp->resync_t);
719
720 /* Free all 6pack frame buffers. */
721 kfree(sp->rbuff);
722 kfree(sp->xbuff);
723 }
724
725 /* Perform I/O control on an active 6pack channel. */
726 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
727 unsigned int cmd, unsigned long arg)
728 {
729 struct sixpack *sp = sp_get(tty);
730 struct net_device *dev = sp->dev;
731 unsigned int tmp, err;
732
733 if (!sp)
734 return -ENXIO;
735
736 switch(cmd) {
737 case SIOCGIFNAME:
738 err = copy_to_user((void __user *) arg, dev->name,
739 strlen(dev->name) + 1) ? -EFAULT : 0;
740 break;
741
742 case SIOCGIFENCAP:
743 err = put_user(0, (int __user *) arg);
744 break;
745
746 case SIOCSIFENCAP:
747 if (get_user(tmp, (int __user *) arg)) {
748 err = -EFAULT;
749 break;
750 }
751
752 sp->mode = tmp;
753 dev->addr_len = AX25_ADDR_LEN;
754 dev->hard_header_len = AX25_KISS_HEADER_LEN +
755 AX25_MAX_HEADER_LEN + 3;
756 dev->type = ARPHRD_AX25;
757
758 err = 0;
759 break;
760
761 case SIOCSIFHWADDR: {
762 char addr[AX25_ADDR_LEN];
763
764 if (copy_from_user(&addr,
765 (void __user *) arg, AX25_ADDR_LEN)) {
766 err = -EFAULT;
767 break;
768 }
769
770 netif_tx_lock_bh(dev);
771 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
772 netif_tx_unlock_bh(dev);
773
774 err = 0;
775 break;
776 }
777
778 /* Allow stty to read, but not set, the serial port */
779 case TCGETS:
780 case TCGETA:
781 err = n_tty_ioctl(tty, (struct file *) file, cmd, arg);
782 break;
783
784 default:
785 err = -ENOIOCTLCMD;
786 }
787
788 sp_put(sp);
789
790 return err;
791 }
792
793 static struct tty_ldisc sp_ldisc = {
794 .owner = THIS_MODULE,
795 .magic = TTY_LDISC_MAGIC,
796 .name = "6pack",
797 .open = sixpack_open,
798 .close = sixpack_close,
799 .ioctl = sixpack_ioctl,
800 .receive_buf = sixpack_receive_buf,
801 .write_wakeup = sixpack_write_wakeup,
802 };
803
804 /* Initialize 6pack control device -- register 6pack line discipline */
805
806 static char msg_banner[] __initdata = KERN_INFO \
807 "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
808 static char msg_regfail[] __initdata = KERN_ERR \
809 "6pack: can't register line discipline (err = %d)\n";
810
811 static int __init sixpack_init_driver(void)
812 {
813 int status;
814
815 printk(msg_banner);
816
817 /* Register the provided line protocol discipline */
818 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
819 printk(msg_regfail, status);
820
821 return status;
822 }
823
824 static const char msg_unregfail[] __exitdata = KERN_ERR \
825 "6pack: can't unregister line discipline (err = %d)\n";
826
827 static void __exit sixpack_exit_driver(void)
828 {
829 int ret;
830
831 if ((ret = tty_unregister_ldisc(N_6PACK)))
832 printk(msg_unregfail, ret);
833 }
834
835 /* encode an AX.25 packet into 6pack */
836
837 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
838 int length, unsigned char tx_delay)
839 {
840 int count = 0;
841 unsigned char checksum = 0, buf[400];
842 int raw_count = 0;
843
844 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
845 tx_buf_raw[raw_count++] = SIXP_SEOF;
846
847 buf[0] = tx_delay;
848 for (count = 1; count < length; count++)
849 buf[count] = tx_buf[count];
850
851 for (count = 0; count < length; count++)
852 checksum += buf[count];
853 buf[length] = (unsigned char) 0xff - checksum;
854
855 for (count = 0; count <= length; count++) {
856 if ((count % 3) == 0) {
857 tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
858 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
859 } else if ((count % 3) == 1) {
860 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
861 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
862 } else {
863 tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
864 tx_buf_raw[raw_count++] = (buf[count] >> 2);
865 }
866 }
867 if ((length % 3) != 2)
868 raw_count++;
869 tx_buf_raw[raw_count++] = SIXP_SEOF;
870 return raw_count;
871 }
872
873 /* decode 4 sixpack-encoded bytes into 3 data bytes */
874
875 static void decode_data(struct sixpack *sp, unsigned char inbyte)
876 {
877 unsigned char *buf;
878
879 if (sp->rx_count != 3) {
880 sp->raw_buf[sp->rx_count++] = inbyte;
881
882 return;
883 }
884
885 buf = sp->raw_buf;
886 sp->cooked_buf[sp->rx_count_cooked++] =
887 buf[0] | ((buf[1] << 2) & 0xc0);
888 sp->cooked_buf[sp->rx_count_cooked++] =
889 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
890 sp->cooked_buf[sp->rx_count_cooked++] =
891 (buf[2] & 0x03) | (inbyte << 2);
892 sp->rx_count = 0;
893 }
894
895 /* identify and execute a 6pack priority command byte */
896
897 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
898 {
899 unsigned char channel;
900 int actual;
901
902 channel = cmd & SIXP_CHN_MASK;
903 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */
904
905 /* RX and DCD flags can only be set in the same prio command,
906 if the DCD flag has been set without the RX flag in the previous
907 prio command. If DCD has not been set before, something in the
908 transmission has gone wrong. In this case, RX and DCD are
909 cleared in order to prevent the decode_data routine from
910 reading further data that might be corrupt. */
911
912 if (((sp->status & SIXP_DCD_MASK) == 0) &&
913 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
914 if (sp->status != 1)
915 printk(KERN_DEBUG "6pack: protocol violation\n");
916 else
917 sp->status = 0;
918 cmd &= !SIXP_RX_DCD_MASK;
919 }
920 sp->status = cmd & SIXP_PRIO_DATA_MASK;
921 } else { /* output watchdog char if idle */
922 if ((sp->status2 != 0) && (sp->duplex == 1)) {
923 sp->led_state = 0x70;
924 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
925 sp->tx_enable = 1;
926 actual = sp->tty->driver->write(sp->tty, sp->xbuff, sp->status2);
927 sp->xleft -= actual;
928 sp->xhead += actual;
929 sp->led_state = 0x60;
930 sp->status2 = 0;
931
932 }
933 }
934
935 /* needed to trigger the TNC watchdog */
936 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
937
938 /* if the state byte has been received, the TNC is present,
939 so the resync timer can be reset. */
940
941 if (sp->tnc_state == TNC_IN_SYNC) {
942 del_timer(&sp->resync_t);
943 sp->resync_t.data = (unsigned long) sp;
944 sp->resync_t.function = resync_tnc;
945 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT;
946 add_timer(&sp->resync_t);
947 }
948
949 sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
950 }
951
952 /* identify and execute a standard 6pack command byte */
953
954 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
955 {
956 unsigned char checksum = 0, rest = 0, channel;
957 short i;
958
959 channel = cmd & SIXP_CHN_MASK;
960 switch (cmd & SIXP_CMD_MASK) { /* normal command */
961 case SIXP_SEOF:
962 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
963 if ((sp->status & SIXP_RX_DCD_MASK) ==
964 SIXP_RX_DCD_MASK) {
965 sp->led_state = 0x68;
966 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
967 }
968 } else {
969 sp->led_state = 0x60;
970 /* fill trailing bytes with zeroes */
971 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
972 rest = sp->rx_count;
973 if (rest != 0)
974 for (i = rest; i <= 3; i++)
975 decode_data(sp, 0);
976 if (rest == 2)
977 sp->rx_count_cooked -= 2;
978 else if (rest == 3)
979 sp->rx_count_cooked -= 1;
980 for (i = 0; i < sp->rx_count_cooked; i++)
981 checksum += sp->cooked_buf[i];
982 if (checksum != SIXP_CHKSUM) {
983 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
984 } else {
985 sp->rcount = sp->rx_count_cooked-2;
986 sp_bump(sp, 0);
987 }
988 sp->rx_count_cooked = 0;
989 }
990 break;
991 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
992 break;
993 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
994 break;
995 case SIXP_RX_BUF_OVL:
996 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
997 }
998 }
999
1000 /* decode a 6pack packet */
1001
1002 static void
1003 sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1004 {
1005 unsigned char inbyte;
1006 int count1;
1007
1008 for (count1 = 0; count1 < count; count1++) {
1009 inbyte = pre_rbuff[count1];
1010 if (inbyte == SIXP_FOUND_TNC) {
1011 tnc_set_sync_state(sp, TNC_IN_SYNC);
1012 del_timer(&sp->resync_t);
1013 }
1014 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1015 decode_prio_command(sp, inbyte);
1016 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1017 decode_std_command(sp, inbyte);
1018 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1019 decode_data(sp, inbyte);
1020 }
1021 }
1022
1023 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1024 MODULE_DESCRIPTION("6pack driver for AX.25");
1025 MODULE_LICENSE("GPL");
1026 MODULE_ALIAS_LDISC(N_6PACK);
1027
1028 module_init(sixpack_init_driver);
1029 module_exit(sixpack_exit_driver);
This page took 0.143382 seconds and 6 git commands to generate.