at86rf230: add slp_tr support to start tx
[deliverable/linux.git] / drivers / net / ieee802154 / at86rf230.c
1 /*
2 * AT86RF230/RF231 driver
3 *
4 * Copyright (C) 2009-2012 Siemens AG
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * Written by:
16 * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
17 * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
18 * Alexander Aring <aar@pengutronix.de>
19 */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/hrtimer.h>
23 #include <linux/jiffies.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/gpio.h>
27 #include <linux/delay.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/at86rf230.h>
30 #include <linux/regmap.h>
31 #include <linux/skbuff.h>
32 #include <linux/of_gpio.h>
33 #include <linux/ieee802154.h>
34
35 #include <net/mac802154.h>
36 #include <net/cfg802154.h>
37
38 struct at86rf230_local;
39 /* at86rf2xx chip depend data.
40 * All timings are in us.
41 */
42 struct at86rf2xx_chip_data {
43 u16 t_sleep_cycle;
44 u16 t_channel_switch;
45 u16 t_reset_to_off;
46 u16 t_off_to_aack;
47 u16 t_off_to_tx_on;
48 u16 t_frame;
49 u16 t_p_ack;
50 int rssi_base_val;
51
52 int (*set_channel)(struct at86rf230_local *, u8, u8);
53 int (*get_desense_steps)(struct at86rf230_local *, s32);
54 };
55
56 #define AT86RF2XX_MAX_BUF (127 + 3)
57 /* tx retries to access the TX_ON state
58 * if it's above then force change will be started.
59 *
60 * We assume the max_frame_retries (7) value of 802.15.4 here.
61 */
62 #define AT86RF2XX_MAX_TX_RETRIES 7
63 /* We use the recommended 5 minutes timeout to recalibrate */
64 #define AT86RF2XX_CAL_LOOP_TIMEOUT (5 * 60 * HZ)
65
66 struct at86rf230_state_change {
67 struct at86rf230_local *lp;
68 int irq;
69
70 struct hrtimer timer;
71 struct spi_message msg;
72 struct spi_transfer trx;
73 u8 buf[AT86RF2XX_MAX_BUF];
74
75 void (*complete)(void *context);
76 u8 from_state;
77 u8 to_state;
78
79 bool irq_enable;
80 };
81
82 struct at86rf230_local {
83 struct spi_device *spi;
84
85 struct ieee802154_hw *hw;
86 struct at86rf2xx_chip_data *data;
87 struct regmap *regmap;
88 int slp_tr;
89
90 struct completion state_complete;
91 struct at86rf230_state_change state;
92
93 struct at86rf230_state_change irq;
94
95 bool tx_aret;
96 unsigned long cal_timeout;
97 s8 max_frame_retries;
98 bool is_tx;
99 bool is_tx_from_off;
100 u8 tx_retry;
101 struct sk_buff *tx_skb;
102 struct at86rf230_state_change tx;
103 };
104
105 #define RG_TRX_STATUS (0x01)
106 #define SR_TRX_STATUS 0x01, 0x1f, 0
107 #define SR_RESERVED_01_3 0x01, 0x20, 5
108 #define SR_CCA_STATUS 0x01, 0x40, 6
109 #define SR_CCA_DONE 0x01, 0x80, 7
110 #define RG_TRX_STATE (0x02)
111 #define SR_TRX_CMD 0x02, 0x1f, 0
112 #define SR_TRAC_STATUS 0x02, 0xe0, 5
113 #define RG_TRX_CTRL_0 (0x03)
114 #define SR_CLKM_CTRL 0x03, 0x07, 0
115 #define SR_CLKM_SHA_SEL 0x03, 0x08, 3
116 #define SR_PAD_IO_CLKM 0x03, 0x30, 4
117 #define SR_PAD_IO 0x03, 0xc0, 6
118 #define RG_TRX_CTRL_1 (0x04)
119 #define SR_IRQ_POLARITY 0x04, 0x01, 0
120 #define SR_IRQ_MASK_MODE 0x04, 0x02, 1
121 #define SR_SPI_CMD_MODE 0x04, 0x0c, 2
122 #define SR_RX_BL_CTRL 0x04, 0x10, 4
123 #define SR_TX_AUTO_CRC_ON 0x04, 0x20, 5
124 #define SR_IRQ_2_EXT_EN 0x04, 0x40, 6
125 #define SR_PA_EXT_EN 0x04, 0x80, 7
126 #define RG_PHY_TX_PWR (0x05)
127 #define SR_TX_PWR 0x05, 0x0f, 0
128 #define SR_PA_LT 0x05, 0x30, 4
129 #define SR_PA_BUF_LT 0x05, 0xc0, 6
130 #define RG_PHY_RSSI (0x06)
131 #define SR_RSSI 0x06, 0x1f, 0
132 #define SR_RND_VALUE 0x06, 0x60, 5
133 #define SR_RX_CRC_VALID 0x06, 0x80, 7
134 #define RG_PHY_ED_LEVEL (0x07)
135 #define SR_ED_LEVEL 0x07, 0xff, 0
136 #define RG_PHY_CC_CCA (0x08)
137 #define SR_CHANNEL 0x08, 0x1f, 0
138 #define SR_CCA_MODE 0x08, 0x60, 5
139 #define SR_CCA_REQUEST 0x08, 0x80, 7
140 #define RG_CCA_THRES (0x09)
141 #define SR_CCA_ED_THRES 0x09, 0x0f, 0
142 #define SR_RESERVED_09_1 0x09, 0xf0, 4
143 #define RG_RX_CTRL (0x0a)
144 #define SR_PDT_THRES 0x0a, 0x0f, 0
145 #define SR_RESERVED_0a_1 0x0a, 0xf0, 4
146 #define RG_SFD_VALUE (0x0b)
147 #define SR_SFD_VALUE 0x0b, 0xff, 0
148 #define RG_TRX_CTRL_2 (0x0c)
149 #define SR_OQPSK_DATA_RATE 0x0c, 0x03, 0
150 #define SR_SUB_MODE 0x0c, 0x04, 2
151 #define SR_BPSK_QPSK 0x0c, 0x08, 3
152 #define SR_OQPSK_SUB1_RC_EN 0x0c, 0x10, 4
153 #define SR_RESERVED_0c_5 0x0c, 0x60, 5
154 #define SR_RX_SAFE_MODE 0x0c, 0x80, 7
155 #define RG_ANT_DIV (0x0d)
156 #define SR_ANT_CTRL 0x0d, 0x03, 0
157 #define SR_ANT_EXT_SW_EN 0x0d, 0x04, 2
158 #define SR_ANT_DIV_EN 0x0d, 0x08, 3
159 #define SR_RESERVED_0d_2 0x0d, 0x70, 4
160 #define SR_ANT_SEL 0x0d, 0x80, 7
161 #define RG_IRQ_MASK (0x0e)
162 #define SR_IRQ_MASK 0x0e, 0xff, 0
163 #define RG_IRQ_STATUS (0x0f)
164 #define SR_IRQ_0_PLL_LOCK 0x0f, 0x01, 0
165 #define SR_IRQ_1_PLL_UNLOCK 0x0f, 0x02, 1
166 #define SR_IRQ_2_RX_START 0x0f, 0x04, 2
167 #define SR_IRQ_3_TRX_END 0x0f, 0x08, 3
168 #define SR_IRQ_4_CCA_ED_DONE 0x0f, 0x10, 4
169 #define SR_IRQ_5_AMI 0x0f, 0x20, 5
170 #define SR_IRQ_6_TRX_UR 0x0f, 0x40, 6
171 #define SR_IRQ_7_BAT_LOW 0x0f, 0x80, 7
172 #define RG_VREG_CTRL (0x10)
173 #define SR_RESERVED_10_6 0x10, 0x03, 0
174 #define SR_DVDD_OK 0x10, 0x04, 2
175 #define SR_DVREG_EXT 0x10, 0x08, 3
176 #define SR_RESERVED_10_3 0x10, 0x30, 4
177 #define SR_AVDD_OK 0x10, 0x40, 6
178 #define SR_AVREG_EXT 0x10, 0x80, 7
179 #define RG_BATMON (0x11)
180 #define SR_BATMON_VTH 0x11, 0x0f, 0
181 #define SR_BATMON_HR 0x11, 0x10, 4
182 #define SR_BATMON_OK 0x11, 0x20, 5
183 #define SR_RESERVED_11_1 0x11, 0xc0, 6
184 #define RG_XOSC_CTRL (0x12)
185 #define SR_XTAL_TRIM 0x12, 0x0f, 0
186 #define SR_XTAL_MODE 0x12, 0xf0, 4
187 #define RG_RX_SYN (0x15)
188 #define SR_RX_PDT_LEVEL 0x15, 0x0f, 0
189 #define SR_RESERVED_15_2 0x15, 0x70, 4
190 #define SR_RX_PDT_DIS 0x15, 0x80, 7
191 #define RG_XAH_CTRL_1 (0x17)
192 #define SR_RESERVED_17_8 0x17, 0x01, 0
193 #define SR_AACK_PROM_MODE 0x17, 0x02, 1
194 #define SR_AACK_ACK_TIME 0x17, 0x04, 2
195 #define SR_RESERVED_17_5 0x17, 0x08, 3
196 #define SR_AACK_UPLD_RES_FT 0x17, 0x10, 4
197 #define SR_AACK_FLTR_RES_FT 0x17, 0x20, 5
198 #define SR_CSMA_LBT_MODE 0x17, 0x40, 6
199 #define SR_RESERVED_17_1 0x17, 0x80, 7
200 #define RG_FTN_CTRL (0x18)
201 #define SR_RESERVED_18_2 0x18, 0x7f, 0
202 #define SR_FTN_START 0x18, 0x80, 7
203 #define RG_PLL_CF (0x1a)
204 #define SR_RESERVED_1a_2 0x1a, 0x7f, 0
205 #define SR_PLL_CF_START 0x1a, 0x80, 7
206 #define RG_PLL_DCU (0x1b)
207 #define SR_RESERVED_1b_3 0x1b, 0x3f, 0
208 #define SR_RESERVED_1b_2 0x1b, 0x40, 6
209 #define SR_PLL_DCU_START 0x1b, 0x80, 7
210 #define RG_PART_NUM (0x1c)
211 #define SR_PART_NUM 0x1c, 0xff, 0
212 #define RG_VERSION_NUM (0x1d)
213 #define SR_VERSION_NUM 0x1d, 0xff, 0
214 #define RG_MAN_ID_0 (0x1e)
215 #define SR_MAN_ID_0 0x1e, 0xff, 0
216 #define RG_MAN_ID_1 (0x1f)
217 #define SR_MAN_ID_1 0x1f, 0xff, 0
218 #define RG_SHORT_ADDR_0 (0x20)
219 #define SR_SHORT_ADDR_0 0x20, 0xff, 0
220 #define RG_SHORT_ADDR_1 (0x21)
221 #define SR_SHORT_ADDR_1 0x21, 0xff, 0
222 #define RG_PAN_ID_0 (0x22)
223 #define SR_PAN_ID_0 0x22, 0xff, 0
224 #define RG_PAN_ID_1 (0x23)
225 #define SR_PAN_ID_1 0x23, 0xff, 0
226 #define RG_IEEE_ADDR_0 (0x24)
227 #define SR_IEEE_ADDR_0 0x24, 0xff, 0
228 #define RG_IEEE_ADDR_1 (0x25)
229 #define SR_IEEE_ADDR_1 0x25, 0xff, 0
230 #define RG_IEEE_ADDR_2 (0x26)
231 #define SR_IEEE_ADDR_2 0x26, 0xff, 0
232 #define RG_IEEE_ADDR_3 (0x27)
233 #define SR_IEEE_ADDR_3 0x27, 0xff, 0
234 #define RG_IEEE_ADDR_4 (0x28)
235 #define SR_IEEE_ADDR_4 0x28, 0xff, 0
236 #define RG_IEEE_ADDR_5 (0x29)
237 #define SR_IEEE_ADDR_5 0x29, 0xff, 0
238 #define RG_IEEE_ADDR_6 (0x2a)
239 #define SR_IEEE_ADDR_6 0x2a, 0xff, 0
240 #define RG_IEEE_ADDR_7 (0x2b)
241 #define SR_IEEE_ADDR_7 0x2b, 0xff, 0
242 #define RG_XAH_CTRL_0 (0x2c)
243 #define SR_SLOTTED_OPERATION 0x2c, 0x01, 0
244 #define SR_MAX_CSMA_RETRIES 0x2c, 0x0e, 1
245 #define SR_MAX_FRAME_RETRIES 0x2c, 0xf0, 4
246 #define RG_CSMA_SEED_0 (0x2d)
247 #define SR_CSMA_SEED_0 0x2d, 0xff, 0
248 #define RG_CSMA_SEED_1 (0x2e)
249 #define SR_CSMA_SEED_1 0x2e, 0x07, 0
250 #define SR_AACK_I_AM_COORD 0x2e, 0x08, 3
251 #define SR_AACK_DIS_ACK 0x2e, 0x10, 4
252 #define SR_AACK_SET_PD 0x2e, 0x20, 5
253 #define SR_AACK_FVN_MODE 0x2e, 0xc0, 6
254 #define RG_CSMA_BE (0x2f)
255 #define SR_MIN_BE 0x2f, 0x0f, 0
256 #define SR_MAX_BE 0x2f, 0xf0, 4
257
258 #define CMD_REG 0x80
259 #define CMD_REG_MASK 0x3f
260 #define CMD_WRITE 0x40
261 #define CMD_FB 0x20
262
263 #define IRQ_BAT_LOW (1 << 7)
264 #define IRQ_TRX_UR (1 << 6)
265 #define IRQ_AMI (1 << 5)
266 #define IRQ_CCA_ED (1 << 4)
267 #define IRQ_TRX_END (1 << 3)
268 #define IRQ_RX_START (1 << 2)
269 #define IRQ_PLL_UNL (1 << 1)
270 #define IRQ_PLL_LOCK (1 << 0)
271
272 #define IRQ_ACTIVE_HIGH 0
273 #define IRQ_ACTIVE_LOW 1
274
275 #define STATE_P_ON 0x00 /* BUSY */
276 #define STATE_BUSY_RX 0x01
277 #define STATE_BUSY_TX 0x02
278 #define STATE_FORCE_TRX_OFF 0x03
279 #define STATE_FORCE_TX_ON 0x04 /* IDLE */
280 /* 0x05 */ /* INVALID_PARAMETER */
281 #define STATE_RX_ON 0x06
282 /* 0x07 */ /* SUCCESS */
283 #define STATE_TRX_OFF 0x08
284 #define STATE_TX_ON 0x09
285 /* 0x0a - 0x0e */ /* 0x0a - UNSUPPORTED_ATTRIBUTE */
286 #define STATE_SLEEP 0x0F
287 #define STATE_PREP_DEEP_SLEEP 0x10
288 #define STATE_BUSY_RX_AACK 0x11
289 #define STATE_BUSY_TX_ARET 0x12
290 #define STATE_RX_AACK_ON 0x16
291 #define STATE_TX_ARET_ON 0x19
292 #define STATE_RX_ON_NOCLK 0x1C
293 #define STATE_RX_AACK_ON_NOCLK 0x1D
294 #define STATE_BUSY_RX_AACK_NOCLK 0x1E
295 #define STATE_TRANSITION_IN_PROGRESS 0x1F
296
297 #define TRX_STATE_MASK (0x1F)
298
299 #define AT86RF2XX_NUMREGS 0x3F
300
301 static void
302 at86rf230_async_state_change(struct at86rf230_local *lp,
303 struct at86rf230_state_change *ctx,
304 const u8 state, void (*complete)(void *context),
305 const bool irq_enable);
306
307 static inline int
308 __at86rf230_write(struct at86rf230_local *lp,
309 unsigned int addr, unsigned int data)
310 {
311 return regmap_write(lp->regmap, addr, data);
312 }
313
314 static inline int
315 __at86rf230_read(struct at86rf230_local *lp,
316 unsigned int addr, unsigned int *data)
317 {
318 return regmap_read(lp->regmap, addr, data);
319 }
320
321 static inline int
322 at86rf230_read_subreg(struct at86rf230_local *lp,
323 unsigned int addr, unsigned int mask,
324 unsigned int shift, unsigned int *data)
325 {
326 int rc;
327
328 rc = __at86rf230_read(lp, addr, data);
329 if (!rc)
330 *data = (*data & mask) >> shift;
331
332 return rc;
333 }
334
335 static inline int
336 at86rf230_write_subreg(struct at86rf230_local *lp,
337 unsigned int addr, unsigned int mask,
338 unsigned int shift, unsigned int data)
339 {
340 return regmap_update_bits(lp->regmap, addr, mask, data << shift);
341 }
342
343 static inline void
344 at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp)
345 {
346 gpio_set_value(lp->slp_tr, 1);
347 udelay(1);
348 gpio_set_value(lp->slp_tr, 0);
349 }
350
351 static bool
352 at86rf230_reg_writeable(struct device *dev, unsigned int reg)
353 {
354 switch (reg) {
355 case RG_TRX_STATE:
356 case RG_TRX_CTRL_0:
357 case RG_TRX_CTRL_1:
358 case RG_PHY_TX_PWR:
359 case RG_PHY_ED_LEVEL:
360 case RG_PHY_CC_CCA:
361 case RG_CCA_THRES:
362 case RG_RX_CTRL:
363 case RG_SFD_VALUE:
364 case RG_TRX_CTRL_2:
365 case RG_ANT_DIV:
366 case RG_IRQ_MASK:
367 case RG_VREG_CTRL:
368 case RG_BATMON:
369 case RG_XOSC_CTRL:
370 case RG_RX_SYN:
371 case RG_XAH_CTRL_1:
372 case RG_FTN_CTRL:
373 case RG_PLL_CF:
374 case RG_PLL_DCU:
375 case RG_SHORT_ADDR_0:
376 case RG_SHORT_ADDR_1:
377 case RG_PAN_ID_0:
378 case RG_PAN_ID_1:
379 case RG_IEEE_ADDR_0:
380 case RG_IEEE_ADDR_1:
381 case RG_IEEE_ADDR_2:
382 case RG_IEEE_ADDR_3:
383 case RG_IEEE_ADDR_4:
384 case RG_IEEE_ADDR_5:
385 case RG_IEEE_ADDR_6:
386 case RG_IEEE_ADDR_7:
387 case RG_XAH_CTRL_0:
388 case RG_CSMA_SEED_0:
389 case RG_CSMA_SEED_1:
390 case RG_CSMA_BE:
391 return true;
392 default:
393 return false;
394 }
395 }
396
397 static bool
398 at86rf230_reg_readable(struct device *dev, unsigned int reg)
399 {
400 bool rc;
401
402 /* all writeable are also readable */
403 rc = at86rf230_reg_writeable(dev, reg);
404 if (rc)
405 return rc;
406
407 /* readonly regs */
408 switch (reg) {
409 case RG_TRX_STATUS:
410 case RG_PHY_RSSI:
411 case RG_IRQ_STATUS:
412 case RG_PART_NUM:
413 case RG_VERSION_NUM:
414 case RG_MAN_ID_1:
415 case RG_MAN_ID_0:
416 return true;
417 default:
418 return false;
419 }
420 }
421
422 static bool
423 at86rf230_reg_volatile(struct device *dev, unsigned int reg)
424 {
425 /* can be changed during runtime */
426 switch (reg) {
427 case RG_TRX_STATUS:
428 case RG_TRX_STATE:
429 case RG_PHY_RSSI:
430 case RG_PHY_ED_LEVEL:
431 case RG_IRQ_STATUS:
432 case RG_VREG_CTRL:
433 case RG_PLL_CF:
434 case RG_PLL_DCU:
435 return true;
436 default:
437 return false;
438 }
439 }
440
441 static bool
442 at86rf230_reg_precious(struct device *dev, unsigned int reg)
443 {
444 /* don't clear irq line on read */
445 switch (reg) {
446 case RG_IRQ_STATUS:
447 return true;
448 default:
449 return false;
450 }
451 }
452
453 static const struct regmap_config at86rf230_regmap_spi_config = {
454 .reg_bits = 8,
455 .val_bits = 8,
456 .write_flag_mask = CMD_REG | CMD_WRITE,
457 .read_flag_mask = CMD_REG,
458 .cache_type = REGCACHE_RBTREE,
459 .max_register = AT86RF2XX_NUMREGS,
460 .writeable_reg = at86rf230_reg_writeable,
461 .readable_reg = at86rf230_reg_readable,
462 .volatile_reg = at86rf230_reg_volatile,
463 .precious_reg = at86rf230_reg_precious,
464 };
465
466 static void
467 at86rf230_async_error_recover(void *context)
468 {
469 struct at86rf230_state_change *ctx = context;
470 struct at86rf230_local *lp = ctx->lp;
471
472 lp->is_tx = 0;
473 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL, false);
474 ieee802154_wake_queue(lp->hw);
475 }
476
477 static inline void
478 at86rf230_async_error(struct at86rf230_local *lp,
479 struct at86rf230_state_change *ctx, int rc)
480 {
481 dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
482
483 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
484 at86rf230_async_error_recover, false);
485 }
486
487 /* Generic function to get some register value in async mode */
488 static void
489 at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg,
490 struct at86rf230_state_change *ctx,
491 void (*complete)(void *context),
492 const bool irq_enable)
493 {
494 int rc;
495
496 u8 *tx_buf = ctx->buf;
497
498 tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
499 ctx->msg.complete = complete;
500 ctx->irq_enable = irq_enable;
501 rc = spi_async(lp->spi, &ctx->msg);
502 if (rc) {
503 if (irq_enable)
504 enable_irq(ctx->irq);
505
506 at86rf230_async_error(lp, ctx, rc);
507 }
508 }
509
510 static inline u8 at86rf230_state_to_force(u8 state)
511 {
512 if (state == STATE_TX_ON)
513 return STATE_FORCE_TX_ON;
514 else
515 return STATE_FORCE_TRX_OFF;
516 }
517
518 static void
519 at86rf230_async_state_assert(void *context)
520 {
521 struct at86rf230_state_change *ctx = context;
522 struct at86rf230_local *lp = ctx->lp;
523 const u8 *buf = ctx->buf;
524 const u8 trx_state = buf[1] & TRX_STATE_MASK;
525
526 /* Assert state change */
527 if (trx_state != ctx->to_state) {
528 /* Special handling if transceiver state is in
529 * STATE_BUSY_RX_AACK and a SHR was detected.
530 */
531 if (trx_state == STATE_BUSY_RX_AACK) {
532 /* Undocumented race condition. If we send a state
533 * change to STATE_RX_AACK_ON the transceiver could
534 * change his state automatically to STATE_BUSY_RX_AACK
535 * if a SHR was detected. This is not an error, but we
536 * can't assert this.
537 */
538 if (ctx->to_state == STATE_RX_AACK_ON)
539 goto done;
540
541 /* If we change to STATE_TX_ON without forcing and
542 * transceiver state is STATE_BUSY_RX_AACK, we wait
543 * 'tFrame + tPAck' receiving time. In this time the
544 * PDU should be received. If the transceiver is still
545 * in STATE_BUSY_RX_AACK, we run a force state change
546 * to STATE_TX_ON. This is a timeout handling, if the
547 * transceiver stucks in STATE_BUSY_RX_AACK.
548 *
549 * Additional we do several retries to try to get into
550 * TX_ON state without forcing. If the retries are
551 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
552 * will do a force change.
553 */
554 if (ctx->to_state == STATE_TX_ON ||
555 ctx->to_state == STATE_TRX_OFF) {
556 u8 state = ctx->to_state;
557
558 if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
559 state = at86rf230_state_to_force(state);
560 lp->tx_retry++;
561
562 at86rf230_async_state_change(lp, ctx, state,
563 ctx->complete,
564 ctx->irq_enable);
565 return;
566 }
567 }
568
569 dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
570 ctx->from_state, ctx->to_state, trx_state);
571 }
572
573 done:
574 if (ctx->complete)
575 ctx->complete(context);
576 }
577
578 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
579 {
580 struct at86rf230_state_change *ctx =
581 container_of(timer, struct at86rf230_state_change, timer);
582 struct at86rf230_local *lp = ctx->lp;
583
584 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
585 at86rf230_async_state_assert,
586 ctx->irq_enable);
587
588 return HRTIMER_NORESTART;
589 }
590
591 /* Do state change timing delay. */
592 static void
593 at86rf230_async_state_delay(void *context)
594 {
595 struct at86rf230_state_change *ctx = context;
596 struct at86rf230_local *lp = ctx->lp;
597 struct at86rf2xx_chip_data *c = lp->data;
598 bool force = false;
599 ktime_t tim;
600
601 /* The force state changes are will show as normal states in the
602 * state status subregister. We change the to_state to the
603 * corresponding one and remember if it was a force change, this
604 * differs if we do a state change from STATE_BUSY_RX_AACK.
605 */
606 switch (ctx->to_state) {
607 case STATE_FORCE_TX_ON:
608 ctx->to_state = STATE_TX_ON;
609 force = true;
610 break;
611 case STATE_FORCE_TRX_OFF:
612 ctx->to_state = STATE_TRX_OFF;
613 force = true;
614 break;
615 default:
616 break;
617 }
618
619 switch (ctx->from_state) {
620 case STATE_TRX_OFF:
621 switch (ctx->to_state) {
622 case STATE_RX_AACK_ON:
623 tim = ktime_set(0, c->t_off_to_aack * NSEC_PER_USEC);
624 /* state change from TRX_OFF to RX_AACK_ON to do a
625 * calibration, we need to reset the timeout for the
626 * next one.
627 */
628 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
629 goto change;
630 case STATE_TX_ARET_ON:
631 case STATE_TX_ON:
632 tim = ktime_set(0, c->t_off_to_tx_on * NSEC_PER_USEC);
633 /* state change from TRX_OFF to TX_ON or ARET_ON to do
634 * a calibration, we need to reset the timeout for the
635 * next one.
636 */
637 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
638 goto change;
639 default:
640 break;
641 }
642 break;
643 case STATE_BUSY_RX_AACK:
644 switch (ctx->to_state) {
645 case STATE_TRX_OFF:
646 case STATE_TX_ON:
647 /* Wait for worst case receiving time if we
648 * didn't make a force change from BUSY_RX_AACK
649 * to TX_ON or TRX_OFF.
650 */
651 if (!force) {
652 tim = ktime_set(0, (c->t_frame + c->t_p_ack) *
653 NSEC_PER_USEC);
654 goto change;
655 }
656 break;
657 default:
658 break;
659 }
660 break;
661 /* Default value, means RESET state */
662 case STATE_P_ON:
663 switch (ctx->to_state) {
664 case STATE_TRX_OFF:
665 tim = ktime_set(0, c->t_reset_to_off * NSEC_PER_USEC);
666 goto change;
667 default:
668 break;
669 }
670 break;
671 default:
672 break;
673 }
674
675 /* Default delay is 1us in the most cases */
676 tim = ktime_set(0, NSEC_PER_USEC);
677
678 change:
679 hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
680 }
681
682 static void
683 at86rf230_async_state_change_start(void *context)
684 {
685 struct at86rf230_state_change *ctx = context;
686 struct at86rf230_local *lp = ctx->lp;
687 u8 *buf = ctx->buf;
688 const u8 trx_state = buf[1] & TRX_STATE_MASK;
689 int rc;
690
691 /* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
692 if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
693 udelay(1);
694 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
695 at86rf230_async_state_change_start,
696 ctx->irq_enable);
697 return;
698 }
699
700 /* Check if we already are in the state which we change in */
701 if (trx_state == ctx->to_state) {
702 if (ctx->complete)
703 ctx->complete(context);
704 return;
705 }
706
707 /* Set current state to the context of state change */
708 ctx->from_state = trx_state;
709
710 /* Going into the next step for a state change which do a timing
711 * relevant delay.
712 */
713 buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
714 buf[1] = ctx->to_state;
715 ctx->msg.complete = at86rf230_async_state_delay;
716 rc = spi_async(lp->spi, &ctx->msg);
717 if (rc) {
718 if (ctx->irq_enable)
719 enable_irq(ctx->irq);
720
721 at86rf230_async_error(lp, ctx, rc);
722 }
723 }
724
725 static void
726 at86rf230_async_state_change(struct at86rf230_local *lp,
727 struct at86rf230_state_change *ctx,
728 const u8 state, void (*complete)(void *context),
729 const bool irq_enable)
730 {
731 /* Initialization for the state change context */
732 ctx->to_state = state;
733 ctx->complete = complete;
734 ctx->irq_enable = irq_enable;
735 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
736 at86rf230_async_state_change_start,
737 irq_enable);
738 }
739
740 static void
741 at86rf230_sync_state_change_complete(void *context)
742 {
743 struct at86rf230_state_change *ctx = context;
744 struct at86rf230_local *lp = ctx->lp;
745
746 complete(&lp->state_complete);
747 }
748
749 /* This function do a sync framework above the async state change.
750 * Some callbacks of the IEEE 802.15.4 driver interface need to be
751 * handled synchronously.
752 */
753 static int
754 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
755 {
756 unsigned long rc;
757
758 at86rf230_async_state_change(lp, &lp->state, state,
759 at86rf230_sync_state_change_complete,
760 false);
761
762 rc = wait_for_completion_timeout(&lp->state_complete,
763 msecs_to_jiffies(100));
764 if (!rc) {
765 at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
766 return -ETIMEDOUT;
767 }
768
769 return 0;
770 }
771
772 static void
773 at86rf230_tx_complete(void *context)
774 {
775 struct at86rf230_state_change *ctx = context;
776 struct at86rf230_local *lp = ctx->lp;
777
778 enable_irq(ctx->irq);
779
780 ieee802154_xmit_complete(lp->hw, lp->tx_skb, !lp->tx_aret);
781 }
782
783 static void
784 at86rf230_tx_on(void *context)
785 {
786 struct at86rf230_state_change *ctx = context;
787 struct at86rf230_local *lp = ctx->lp;
788
789 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
790 at86rf230_tx_complete, true);
791 }
792
793 static void
794 at86rf230_tx_trac_check(void *context)
795 {
796 struct at86rf230_state_change *ctx = context;
797 struct at86rf230_local *lp = ctx->lp;
798 const u8 *buf = ctx->buf;
799 const u8 trac = (buf[1] & 0xe0) >> 5;
800
801 /* If trac status is different than zero we need to do a state change
802 * to STATE_FORCE_TRX_OFF then STATE_RX_AACK_ON to recover the
803 * transceiver.
804 */
805 if (trac)
806 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
807 at86rf230_tx_on, true);
808 else
809 at86rf230_tx_on(context);
810 }
811
812 static void
813 at86rf230_tx_trac_status(void *context)
814 {
815 struct at86rf230_state_change *ctx = context;
816 struct at86rf230_local *lp = ctx->lp;
817
818 at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
819 at86rf230_tx_trac_check, true);
820 }
821
822 static void
823 at86rf230_rx_read_frame_complete(void *context)
824 {
825 struct at86rf230_state_change *ctx = context;
826 struct at86rf230_local *lp = ctx->lp;
827 u8 rx_local_buf[AT86RF2XX_MAX_BUF];
828 const u8 *buf = ctx->buf;
829 struct sk_buff *skb;
830 u8 len, lqi;
831
832 len = buf[1];
833 if (!ieee802154_is_valid_psdu_len(len)) {
834 dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
835 len = IEEE802154_MTU;
836 }
837 lqi = buf[2 + len];
838
839 memcpy(rx_local_buf, buf + 2, len);
840 ctx->trx.len = 2;
841 enable_irq(ctx->irq);
842
843 skb = dev_alloc_skb(IEEE802154_MTU);
844 if (!skb) {
845 dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
846 return;
847 }
848
849 memcpy(skb_put(skb, len), rx_local_buf, len);
850 ieee802154_rx_irqsafe(lp->hw, skb, lqi);
851 }
852
853 static void
854 at86rf230_rx_read_frame(void *context)
855 {
856 struct at86rf230_state_change *ctx = context;
857 struct at86rf230_local *lp = ctx->lp;
858 u8 *buf = ctx->buf;
859 int rc;
860
861 buf[0] = CMD_FB;
862 ctx->trx.len = AT86RF2XX_MAX_BUF;
863 ctx->msg.complete = at86rf230_rx_read_frame_complete;
864 rc = spi_async(lp->spi, &ctx->msg);
865 if (rc) {
866 ctx->trx.len = 2;
867 enable_irq(ctx->irq);
868 at86rf230_async_error(lp, ctx, rc);
869 }
870 }
871
872 static void
873 at86rf230_rx_trac_check(void *context)
874 {
875 /* Possible check on trac status here. This could be useful to make
876 * some stats why receive is failed. Not used at the moment, but it's
877 * maybe timing relevant. Datasheet doesn't say anything about this.
878 * The programming guide say do it so.
879 */
880
881 at86rf230_rx_read_frame(context);
882 }
883
884 static void
885 at86rf230_irq_trx_end(struct at86rf230_local *lp)
886 {
887 if (lp->is_tx) {
888 lp->is_tx = 0;
889
890 if (lp->tx_aret)
891 at86rf230_async_state_change(lp, &lp->irq,
892 STATE_FORCE_TX_ON,
893 at86rf230_tx_trac_status,
894 true);
895 else
896 at86rf230_async_state_change(lp, &lp->irq,
897 STATE_RX_AACK_ON,
898 at86rf230_tx_complete,
899 true);
900 } else {
901 at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq,
902 at86rf230_rx_trac_check, true);
903 }
904 }
905
906 static void
907 at86rf230_irq_status(void *context)
908 {
909 struct at86rf230_state_change *ctx = context;
910 struct at86rf230_local *lp = ctx->lp;
911 const u8 *buf = ctx->buf;
912 const u8 irq = buf[1];
913
914 if (irq & IRQ_TRX_END) {
915 at86rf230_irq_trx_end(lp);
916 } else {
917 enable_irq(ctx->irq);
918 dev_err(&lp->spi->dev, "not supported irq %02x received\n",
919 irq);
920 }
921 }
922
923 static irqreturn_t at86rf230_isr(int irq, void *data)
924 {
925 struct at86rf230_local *lp = data;
926 struct at86rf230_state_change *ctx = &lp->irq;
927 u8 *buf = ctx->buf;
928 int rc;
929
930 disable_irq_nosync(irq);
931
932 buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
933 ctx->msg.complete = at86rf230_irq_status;
934 rc = spi_async(lp->spi, &ctx->msg);
935 if (rc) {
936 enable_irq(irq);
937 at86rf230_async_error(lp, ctx, rc);
938 return IRQ_NONE;
939 }
940
941 return IRQ_HANDLED;
942 }
943
944 static void
945 at86rf230_write_frame_complete(void *context)
946 {
947 struct at86rf230_state_change *ctx = context;
948 struct at86rf230_local *lp = ctx->lp;
949 u8 *buf = ctx->buf;
950 int rc;
951
952 ctx->trx.len = 2;
953
954 if (gpio_is_valid(lp->slp_tr)) {
955 at86rf230_slp_tr_rising_edge(lp);
956 } else {
957 buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
958 buf[1] = STATE_BUSY_TX;
959 ctx->msg.complete = NULL;
960 rc = spi_async(lp->spi, &ctx->msg);
961 if (rc)
962 at86rf230_async_error(lp, ctx, rc);
963 }
964 }
965
966 static void
967 at86rf230_write_frame(void *context)
968 {
969 struct at86rf230_state_change *ctx = context;
970 struct at86rf230_local *lp = ctx->lp;
971 struct sk_buff *skb = lp->tx_skb;
972 u8 *buf = ctx->buf;
973 int rc;
974
975 lp->is_tx = 1;
976
977 buf[0] = CMD_FB | CMD_WRITE;
978 buf[1] = skb->len + 2;
979 memcpy(buf + 2, skb->data, skb->len);
980 ctx->trx.len = skb->len + 2;
981 ctx->msg.complete = at86rf230_write_frame_complete;
982 rc = spi_async(lp->spi, &ctx->msg);
983 if (rc) {
984 ctx->trx.len = 2;
985 at86rf230_async_error(lp, ctx, rc);
986 }
987 }
988
989 static void
990 at86rf230_xmit_tx_on(void *context)
991 {
992 struct at86rf230_state_change *ctx = context;
993 struct at86rf230_local *lp = ctx->lp;
994
995 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
996 at86rf230_write_frame, false);
997 }
998
999 static void
1000 at86rf230_xmit_start(void *context)
1001 {
1002 struct at86rf230_state_change *ctx = context;
1003 struct at86rf230_local *lp = ctx->lp;
1004
1005 /* In ARET mode we need to go into STATE_TX_ARET_ON after we
1006 * are in STATE_TX_ON. The pfad differs here, so we change
1007 * the complete handler.
1008 */
1009 if (lp->tx_aret) {
1010 if (lp->is_tx_from_off) {
1011 lp->is_tx_from_off = false;
1012 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
1013 at86rf230_xmit_tx_on,
1014 false);
1015 } else {
1016 at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
1017 at86rf230_xmit_tx_on,
1018 false);
1019 }
1020 } else {
1021 at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
1022 at86rf230_write_frame, false);
1023 }
1024 }
1025
1026 static int
1027 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
1028 {
1029 struct at86rf230_local *lp = hw->priv;
1030 struct at86rf230_state_change *ctx = &lp->tx;
1031
1032 lp->tx_skb = skb;
1033 lp->tx_retry = 0;
1034
1035 /* After 5 minutes in PLL and the same frequency we run again the
1036 * calibration loops which is recommended by at86rf2xx datasheets.
1037 *
1038 * The calibration is initiate by a state change from TRX_OFF
1039 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
1040 * function then to start in the next 5 minutes.
1041 */
1042 if (time_is_before_jiffies(lp->cal_timeout)) {
1043 lp->is_tx_from_off = true;
1044 at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
1045 at86rf230_xmit_start, false);
1046 } else {
1047 at86rf230_xmit_start(ctx);
1048 }
1049
1050 return 0;
1051 }
1052
1053 static int
1054 at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
1055 {
1056 BUG_ON(!level);
1057 *level = 0xbe;
1058 return 0;
1059 }
1060
1061 static int
1062 at86rf230_start(struct ieee802154_hw *hw)
1063 {
1064 return at86rf230_sync_state_change(hw->priv, STATE_RX_AACK_ON);
1065 }
1066
1067 static void
1068 at86rf230_stop(struct ieee802154_hw *hw)
1069 {
1070 at86rf230_sync_state_change(hw->priv, STATE_FORCE_TRX_OFF);
1071 }
1072
1073 static int
1074 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1075 {
1076 return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1077 }
1078
1079 static int
1080 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1081 {
1082 int rc;
1083
1084 if (channel == 0)
1085 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1086 else
1087 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1088 if (rc < 0)
1089 return rc;
1090
1091 if (page == 0) {
1092 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1093 lp->data->rssi_base_val = -100;
1094 } else {
1095 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1096 lp->data->rssi_base_val = -98;
1097 }
1098 if (rc < 0)
1099 return rc;
1100
1101 /* This sets the symbol_duration according frequency on the 212.
1102 * TODO move this handling while set channel and page in cfg802154.
1103 * We can do that, this timings are according 802.15.4 standard.
1104 * If we do that in cfg802154, this is a more generic calculation.
1105 *
1106 * This should also protected from ifs_timer. Means cancel timer and
1107 * init with a new value. For now, this is okay.
1108 */
1109 if (channel == 0) {
1110 if (page == 0) {
1111 /* SUB:0 and BPSK:0 -> BPSK-20 */
1112 lp->hw->phy->symbol_duration = 50;
1113 } else {
1114 /* SUB:1 and BPSK:0 -> BPSK-40 */
1115 lp->hw->phy->symbol_duration = 25;
1116 }
1117 } else {
1118 if (page == 0)
1119 /* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */
1120 lp->hw->phy->symbol_duration = 40;
1121 else
1122 /* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */
1123 lp->hw->phy->symbol_duration = 16;
1124 }
1125
1126 lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD *
1127 lp->hw->phy->symbol_duration;
1128 lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD *
1129 lp->hw->phy->symbol_duration;
1130
1131 return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1132 }
1133
1134 static int
1135 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1136 {
1137 struct at86rf230_local *lp = hw->priv;
1138 int rc;
1139
1140 rc = lp->data->set_channel(lp, page, channel);
1141 /* Wait for PLL */
1142 usleep_range(lp->data->t_channel_switch,
1143 lp->data->t_channel_switch + 10);
1144
1145 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1146 return rc;
1147 }
1148
1149 static int
1150 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1151 struct ieee802154_hw_addr_filt *filt,
1152 unsigned long changed)
1153 {
1154 struct at86rf230_local *lp = hw->priv;
1155
1156 if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1157 u16 addr = le16_to_cpu(filt->short_addr);
1158
1159 dev_vdbg(&lp->spi->dev,
1160 "at86rf230_set_hw_addr_filt called for saddr\n");
1161 __at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1162 __at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1163 }
1164
1165 if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1166 u16 pan = le16_to_cpu(filt->pan_id);
1167
1168 dev_vdbg(&lp->spi->dev,
1169 "at86rf230_set_hw_addr_filt called for pan id\n");
1170 __at86rf230_write(lp, RG_PAN_ID_0, pan);
1171 __at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1172 }
1173
1174 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1175 u8 i, addr[8];
1176
1177 memcpy(addr, &filt->ieee_addr, 8);
1178 dev_vdbg(&lp->spi->dev,
1179 "at86rf230_set_hw_addr_filt called for IEEE addr\n");
1180 for (i = 0; i < 8; i++)
1181 __at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1182 }
1183
1184 if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1185 dev_vdbg(&lp->spi->dev,
1186 "at86rf230_set_hw_addr_filt called for panc change\n");
1187 if (filt->pan_coord)
1188 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1189 else
1190 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1191 }
1192
1193 return 0;
1194 }
1195
1196 static int
1197 at86rf230_set_txpower(struct ieee802154_hw *hw, s8 db)
1198 {
1199 struct at86rf230_local *lp = hw->priv;
1200
1201 /* typical maximum output is 5dBm with RG_PHY_TX_PWR 0x60, lower five
1202 * bits decrease power in 1dB steps. 0x60 represents extra PA gain of
1203 * 0dB.
1204 * thus, supported values for db range from -26 to 5, for 31dB of
1205 * reduction to 0dB of reduction.
1206 */
1207 if (db > 5 || db < -26)
1208 return -EINVAL;
1209
1210 db = -(db - 5);
1211
1212 return __at86rf230_write(lp, RG_PHY_TX_PWR, 0x60 | db);
1213 }
1214
1215 static int
1216 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1217 {
1218 struct at86rf230_local *lp = hw->priv;
1219
1220 return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1221 }
1222
1223 static int
1224 at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1225 const struct wpan_phy_cca *cca)
1226 {
1227 struct at86rf230_local *lp = hw->priv;
1228 u8 val;
1229
1230 /* mapping 802.15.4 to driver spec */
1231 switch (cca->mode) {
1232 case NL802154_CCA_ENERGY:
1233 val = 1;
1234 break;
1235 case NL802154_CCA_CARRIER:
1236 val = 2;
1237 break;
1238 case NL802154_CCA_ENERGY_CARRIER:
1239 switch (cca->opt) {
1240 case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1241 val = 3;
1242 break;
1243 case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1244 val = 0;
1245 break;
1246 default:
1247 return -EINVAL;
1248 }
1249 break;
1250 default:
1251 return -EINVAL;
1252 }
1253
1254 return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1255 }
1256
1257 static int
1258 at86rf212_get_desens_steps(struct at86rf230_local *lp, s32 level)
1259 {
1260 return (level - lp->data->rssi_base_val) * 100 / 207;
1261 }
1262
1263 static int
1264 at86rf23x_get_desens_steps(struct at86rf230_local *lp, s32 level)
1265 {
1266 return (level - lp->data->rssi_base_val) / 2;
1267 }
1268
1269 static int
1270 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 level)
1271 {
1272 struct at86rf230_local *lp = hw->priv;
1273
1274 if (level < lp->data->rssi_base_val || level > 30)
1275 return -EINVAL;
1276
1277 return at86rf230_write_subreg(lp, SR_CCA_ED_THRES,
1278 lp->data->get_desense_steps(lp, level));
1279 }
1280
1281 static int
1282 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1283 u8 retries)
1284 {
1285 struct at86rf230_local *lp = hw->priv;
1286 int rc;
1287
1288 rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1289 if (rc)
1290 return rc;
1291
1292 rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1293 if (rc)
1294 return rc;
1295
1296 return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1297 }
1298
1299 static int
1300 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1301 {
1302 struct at86rf230_local *lp = hw->priv;
1303 int rc = 0;
1304
1305 lp->tx_aret = retries >= 0;
1306 lp->max_frame_retries = retries;
1307
1308 if (retries >= 0)
1309 rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1310
1311 return rc;
1312 }
1313
1314 static int
1315 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1316 {
1317 struct at86rf230_local *lp = hw->priv;
1318 int rc;
1319
1320 if (on) {
1321 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1322 if (rc < 0)
1323 return rc;
1324
1325 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1326 if (rc < 0)
1327 return rc;
1328 } else {
1329 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1330 if (rc < 0)
1331 return rc;
1332
1333 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1334 if (rc < 0)
1335 return rc;
1336 }
1337
1338 return 0;
1339 }
1340
1341 static const struct ieee802154_ops at86rf230_ops = {
1342 .owner = THIS_MODULE,
1343 .xmit_async = at86rf230_xmit,
1344 .ed = at86rf230_ed,
1345 .set_channel = at86rf230_channel,
1346 .start = at86rf230_start,
1347 .stop = at86rf230_stop,
1348 .set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1349 .set_txpower = at86rf230_set_txpower,
1350 .set_lbt = at86rf230_set_lbt,
1351 .set_cca_mode = at86rf230_set_cca_mode,
1352 .set_cca_ed_level = at86rf230_set_cca_ed_level,
1353 .set_csma_params = at86rf230_set_csma_params,
1354 .set_frame_retries = at86rf230_set_frame_retries,
1355 .set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1356 };
1357
1358 static struct at86rf2xx_chip_data at86rf233_data = {
1359 .t_sleep_cycle = 330,
1360 .t_channel_switch = 11,
1361 .t_reset_to_off = 26,
1362 .t_off_to_aack = 80,
1363 .t_off_to_tx_on = 80,
1364 .t_frame = 4096,
1365 .t_p_ack = 545,
1366 .rssi_base_val = -91,
1367 .set_channel = at86rf23x_set_channel,
1368 .get_desense_steps = at86rf23x_get_desens_steps
1369 };
1370
1371 static struct at86rf2xx_chip_data at86rf231_data = {
1372 .t_sleep_cycle = 330,
1373 .t_channel_switch = 24,
1374 .t_reset_to_off = 37,
1375 .t_off_to_aack = 110,
1376 .t_off_to_tx_on = 110,
1377 .t_frame = 4096,
1378 .t_p_ack = 545,
1379 .rssi_base_val = -91,
1380 .set_channel = at86rf23x_set_channel,
1381 .get_desense_steps = at86rf23x_get_desens_steps
1382 };
1383
1384 static struct at86rf2xx_chip_data at86rf212_data = {
1385 .t_sleep_cycle = 330,
1386 .t_channel_switch = 11,
1387 .t_reset_to_off = 26,
1388 .t_off_to_aack = 200,
1389 .t_off_to_tx_on = 200,
1390 .t_frame = 4096,
1391 .t_p_ack = 545,
1392 .rssi_base_val = -100,
1393 .set_channel = at86rf212_set_channel,
1394 .get_desense_steps = at86rf212_get_desens_steps
1395 };
1396
1397 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1398 {
1399 int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1400 unsigned int dvdd;
1401 u8 csma_seed[2];
1402
1403 rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1404 if (rc)
1405 return rc;
1406
1407 irq_type = irq_get_trigger_type(lp->spi->irq);
1408 if (irq_type == IRQ_TYPE_EDGE_RISING ||
1409 irq_type == IRQ_TYPE_EDGE_FALLING)
1410 dev_warn(&lp->spi->dev,
1411 "Using edge triggered irq's are not recommended!\n");
1412 if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1413 irq_type == IRQ_TYPE_LEVEL_LOW)
1414 irq_pol = IRQ_ACTIVE_LOW;
1415
1416 rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1417 if (rc)
1418 return rc;
1419
1420 rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1421 if (rc)
1422 return rc;
1423
1424 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1425 if (rc)
1426 return rc;
1427
1428 /* reset values differs in at86rf231 and at86rf233 */
1429 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1430 if (rc)
1431 return rc;
1432
1433 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1434 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1435 if (rc)
1436 return rc;
1437 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1438 if (rc)
1439 return rc;
1440
1441 /* CLKM changes are applied immediately */
1442 rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1443 if (rc)
1444 return rc;
1445
1446 /* Turn CLKM Off */
1447 rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1448 if (rc)
1449 return rc;
1450 /* Wait the next SLEEP cycle */
1451 usleep_range(lp->data->t_sleep_cycle,
1452 lp->data->t_sleep_cycle + 100);
1453
1454 /* xtal_trim value is calculated by:
1455 * CL = 0.5 * (CX + CTRIM + CPAR)
1456 *
1457 * whereas:
1458 * CL = capacitor of used crystal
1459 * CX = connected capacitors at xtal pins
1460 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1461 * but this is different on each board setup. You need to fine
1462 * tuning this value via CTRIM.
1463 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1464 * 0 pF upto 4.5 pF.
1465 *
1466 * Examples:
1467 * atben transceiver:
1468 *
1469 * CL = 8 pF
1470 * CX = 12 pF
1471 * CPAR = 3 pF (We assume the magic constant from datasheet)
1472 * CTRIM = 0.9 pF
1473 *
1474 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1475 *
1476 * xtal_trim = 0x3
1477 *
1478 * openlabs transceiver:
1479 *
1480 * CL = 16 pF
1481 * CX = 22 pF
1482 * CPAR = 3 pF (We assume the magic constant from datasheet)
1483 * CTRIM = 4.5 pF
1484 *
1485 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1486 *
1487 * xtal_trim = 0xf
1488 */
1489 rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1490 if (rc)
1491 return rc;
1492
1493 rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1494 if (rc)
1495 return rc;
1496 if (!dvdd) {
1497 dev_err(&lp->spi->dev, "DVDD error\n");
1498 return -EINVAL;
1499 }
1500
1501 /* Force setting slotted operation bit to 0. Sometimes the atben
1502 * sets this bit and I don't know why. We set this always force
1503 * to zero while probing.
1504 */
1505 return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1506 }
1507
1508 static int
1509 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr,
1510 u8 *xtal_trim)
1511 {
1512 struct at86rf230_platform_data *pdata = spi->dev.platform_data;
1513 int ret;
1514
1515 if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) {
1516 if (!pdata)
1517 return -ENOENT;
1518
1519 *rstn = pdata->rstn;
1520 *slp_tr = pdata->slp_tr;
1521 *xtal_trim = pdata->xtal_trim;
1522 return 0;
1523 }
1524
1525 *rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
1526 *slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
1527 ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim);
1528 if (ret < 0 && ret != -EINVAL)
1529 return ret;
1530
1531 return 0;
1532 }
1533
1534 static int
1535 at86rf230_detect_device(struct at86rf230_local *lp)
1536 {
1537 unsigned int part, version, val;
1538 u16 man_id = 0;
1539 const char *chip;
1540 int rc;
1541
1542 rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1543 if (rc)
1544 return rc;
1545 man_id |= val;
1546
1547 rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1548 if (rc)
1549 return rc;
1550 man_id |= (val << 8);
1551
1552 rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1553 if (rc)
1554 return rc;
1555
1556 rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1557 if (rc)
1558 return rc;
1559
1560 if (man_id != 0x001f) {
1561 dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1562 man_id >> 8, man_id & 0xFF);
1563 return -EINVAL;
1564 }
1565
1566 lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AACK |
1567 IEEE802154_HW_TXPOWER | IEEE802154_HW_ARET |
1568 IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS;
1569
1570 lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1571
1572 switch (part) {
1573 case 2:
1574 chip = "at86rf230";
1575 rc = -ENOTSUPP;
1576 break;
1577 case 3:
1578 chip = "at86rf231";
1579 lp->data = &at86rf231_data;
1580 lp->hw->phy->channels_supported[0] = 0x7FFF800;
1581 lp->hw->phy->current_channel = 11;
1582 lp->hw->phy->symbol_duration = 16;
1583 break;
1584 case 7:
1585 chip = "at86rf212";
1586 lp->data = &at86rf212_data;
1587 lp->hw->flags |= IEEE802154_HW_LBT;
1588 lp->hw->phy->channels_supported[0] = 0x00007FF;
1589 lp->hw->phy->channels_supported[2] = 0x00007FF;
1590 lp->hw->phy->current_channel = 5;
1591 lp->hw->phy->symbol_duration = 25;
1592 break;
1593 case 11:
1594 chip = "at86rf233";
1595 lp->data = &at86rf233_data;
1596 lp->hw->phy->channels_supported[0] = 0x7FFF800;
1597 lp->hw->phy->current_channel = 13;
1598 lp->hw->phy->symbol_duration = 16;
1599 break;
1600 default:
1601 chip = "unknown";
1602 rc = -ENOTSUPP;
1603 break;
1604 }
1605
1606 dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1607
1608 return rc;
1609 }
1610
1611 static void
1612 at86rf230_setup_spi_messages(struct at86rf230_local *lp)
1613 {
1614 lp->state.lp = lp;
1615 lp->state.irq = lp->spi->irq;
1616 spi_message_init(&lp->state.msg);
1617 lp->state.msg.context = &lp->state;
1618 lp->state.trx.len = 2;
1619 lp->state.trx.tx_buf = lp->state.buf;
1620 lp->state.trx.rx_buf = lp->state.buf;
1621 spi_message_add_tail(&lp->state.trx, &lp->state.msg);
1622 hrtimer_init(&lp->state.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1623 lp->state.timer.function = at86rf230_async_state_timer;
1624
1625 lp->irq.lp = lp;
1626 lp->irq.irq = lp->spi->irq;
1627 spi_message_init(&lp->irq.msg);
1628 lp->irq.msg.context = &lp->irq;
1629 lp->irq.trx.len = 2;
1630 lp->irq.trx.tx_buf = lp->irq.buf;
1631 lp->irq.trx.rx_buf = lp->irq.buf;
1632 spi_message_add_tail(&lp->irq.trx, &lp->irq.msg);
1633 hrtimer_init(&lp->irq.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1634 lp->irq.timer.function = at86rf230_async_state_timer;
1635
1636 lp->tx.lp = lp;
1637 lp->tx.irq = lp->spi->irq;
1638 spi_message_init(&lp->tx.msg);
1639 lp->tx.msg.context = &lp->tx;
1640 lp->tx.trx.len = 2;
1641 lp->tx.trx.tx_buf = lp->tx.buf;
1642 lp->tx.trx.rx_buf = lp->tx.buf;
1643 spi_message_add_tail(&lp->tx.trx, &lp->tx.msg);
1644 hrtimer_init(&lp->tx.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1645 lp->tx.timer.function = at86rf230_async_state_timer;
1646 }
1647
1648 static int at86rf230_probe(struct spi_device *spi)
1649 {
1650 struct ieee802154_hw *hw;
1651 struct at86rf230_local *lp;
1652 unsigned int status;
1653 int rc, irq_type, rstn, slp_tr;
1654 u8 xtal_trim = 0;
1655
1656 if (!spi->irq) {
1657 dev_err(&spi->dev, "no IRQ specified\n");
1658 return -EINVAL;
1659 }
1660
1661 rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim);
1662 if (rc < 0) {
1663 dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc);
1664 return rc;
1665 }
1666
1667 if (gpio_is_valid(rstn)) {
1668 rc = devm_gpio_request_one(&spi->dev, rstn,
1669 GPIOF_OUT_INIT_HIGH, "rstn");
1670 if (rc)
1671 return rc;
1672 }
1673
1674 if (gpio_is_valid(slp_tr)) {
1675 rc = devm_gpio_request_one(&spi->dev, slp_tr,
1676 GPIOF_OUT_INIT_LOW, "slp_tr");
1677 if (rc)
1678 return rc;
1679 }
1680
1681 /* Reset */
1682 if (gpio_is_valid(rstn)) {
1683 udelay(1);
1684 gpio_set_value(rstn, 0);
1685 udelay(1);
1686 gpio_set_value(rstn, 1);
1687 usleep_range(120, 240);
1688 }
1689
1690 hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1691 if (!hw)
1692 return -ENOMEM;
1693
1694 lp = hw->priv;
1695 lp->hw = hw;
1696 lp->spi = spi;
1697 lp->slp_tr = slp_tr;
1698 hw->parent = &spi->dev;
1699 hw->vif_data_size = sizeof(*lp);
1700 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1701
1702 lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1703 if (IS_ERR(lp->regmap)) {
1704 rc = PTR_ERR(lp->regmap);
1705 dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1706 rc);
1707 goto free_dev;
1708 }
1709
1710 at86rf230_setup_spi_messages(lp);
1711
1712 rc = at86rf230_detect_device(lp);
1713 if (rc < 0)
1714 goto free_dev;
1715
1716 init_completion(&lp->state_complete);
1717
1718 spi_set_drvdata(spi, lp);
1719
1720 rc = at86rf230_hw_init(lp, xtal_trim);
1721 if (rc)
1722 goto free_dev;
1723
1724 /* Read irq status register to reset irq line */
1725 rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1726 if (rc)
1727 goto free_dev;
1728
1729 irq_type = irq_get_trigger_type(spi->irq);
1730 if (!irq_type)
1731 irq_type = IRQF_TRIGGER_RISING;
1732
1733 rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1734 IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1735 if (rc)
1736 goto free_dev;
1737
1738 rc = ieee802154_register_hw(lp->hw);
1739 if (rc)
1740 goto free_dev;
1741
1742 return rc;
1743
1744 free_dev:
1745 ieee802154_free_hw(lp->hw);
1746
1747 return rc;
1748 }
1749
1750 static int at86rf230_remove(struct spi_device *spi)
1751 {
1752 struct at86rf230_local *lp = spi_get_drvdata(spi);
1753
1754 /* mask all at86rf230 irq's */
1755 at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1756 ieee802154_unregister_hw(lp->hw);
1757 ieee802154_free_hw(lp->hw);
1758 dev_dbg(&spi->dev, "unregistered at86rf230\n");
1759
1760 return 0;
1761 }
1762
1763 static const struct of_device_id at86rf230_of_match[] = {
1764 { .compatible = "atmel,at86rf230", },
1765 { .compatible = "atmel,at86rf231", },
1766 { .compatible = "atmel,at86rf233", },
1767 { .compatible = "atmel,at86rf212", },
1768 { },
1769 };
1770 MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1771
1772 static const struct spi_device_id at86rf230_device_id[] = {
1773 { .name = "at86rf230", },
1774 { .name = "at86rf231", },
1775 { .name = "at86rf233", },
1776 { .name = "at86rf212", },
1777 { },
1778 };
1779 MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1780
1781 static struct spi_driver at86rf230_driver = {
1782 .id_table = at86rf230_device_id,
1783 .driver = {
1784 .of_match_table = of_match_ptr(at86rf230_of_match),
1785 .name = "at86rf230",
1786 .owner = THIS_MODULE,
1787 },
1788 .probe = at86rf230_probe,
1789 .remove = at86rf230_remove,
1790 };
1791
1792 module_spi_driver(at86rf230_driver);
1793
1794 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1795 MODULE_LICENSE("GPL v2");
This page took 0.070851 seconds and 5 git commands to generate.