mac802154: fix transmission power datatype
[deliverable/linux.git] / drivers / net / ieee802154 / at86rf230.c
1 /*
2 * AT86RF230/RF231 driver
3 *
4 * Copyright (C) 2009-2012 Siemens AG
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * Written by:
16 * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
17 * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
18 * Alexander Aring <aar@pengutronix.de>
19 */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/hrtimer.h>
23 #include <linux/jiffies.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/gpio.h>
27 #include <linux/delay.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/at86rf230.h>
30 #include <linux/regmap.h>
31 #include <linux/skbuff.h>
32 #include <linux/of_gpio.h>
33 #include <linux/ieee802154.h>
34
35 #include <net/mac802154.h>
36 #include <net/cfg802154.h>
37
38 struct at86rf230_local;
39 /* at86rf2xx chip depend data.
40 * All timings are in us.
41 */
42 struct at86rf2xx_chip_data {
43 u16 t_sleep_cycle;
44 u16 t_channel_switch;
45 u16 t_reset_to_off;
46 u16 t_off_to_aack;
47 u16 t_off_to_tx_on;
48 u16 t_frame;
49 u16 t_p_ack;
50 int rssi_base_val;
51
52 int (*set_channel)(struct at86rf230_local *, u8, u8);
53 int (*get_desense_steps)(struct at86rf230_local *, s32);
54 };
55
56 #define AT86RF2XX_MAX_BUF (127 + 3)
57 /* tx retries to access the TX_ON state
58 * if it's above then force change will be started.
59 *
60 * We assume the max_frame_retries (7) value of 802.15.4 here.
61 */
62 #define AT86RF2XX_MAX_TX_RETRIES 7
63 /* We use the recommended 5 minutes timeout to recalibrate */
64 #define AT86RF2XX_CAL_LOOP_TIMEOUT (5 * 60 * HZ)
65
66 struct at86rf230_state_change {
67 struct at86rf230_local *lp;
68 int irq;
69
70 struct hrtimer timer;
71 struct spi_message msg;
72 struct spi_transfer trx;
73 u8 buf[AT86RF2XX_MAX_BUF];
74
75 void (*complete)(void *context);
76 u8 from_state;
77 u8 to_state;
78
79 bool irq_enable;
80 };
81
82 struct at86rf230_local {
83 struct spi_device *spi;
84
85 struct ieee802154_hw *hw;
86 struct at86rf2xx_chip_data *data;
87 struct regmap *regmap;
88
89 struct completion state_complete;
90 struct at86rf230_state_change state;
91
92 struct at86rf230_state_change irq;
93
94 bool tx_aret;
95 unsigned long cal_timeout;
96 s8 max_frame_retries;
97 bool is_tx;
98 u8 tx_retry;
99 struct sk_buff *tx_skb;
100 struct at86rf230_state_change tx;
101 };
102
103 #define RG_TRX_STATUS (0x01)
104 #define SR_TRX_STATUS 0x01, 0x1f, 0
105 #define SR_RESERVED_01_3 0x01, 0x20, 5
106 #define SR_CCA_STATUS 0x01, 0x40, 6
107 #define SR_CCA_DONE 0x01, 0x80, 7
108 #define RG_TRX_STATE (0x02)
109 #define SR_TRX_CMD 0x02, 0x1f, 0
110 #define SR_TRAC_STATUS 0x02, 0xe0, 5
111 #define RG_TRX_CTRL_0 (0x03)
112 #define SR_CLKM_CTRL 0x03, 0x07, 0
113 #define SR_CLKM_SHA_SEL 0x03, 0x08, 3
114 #define SR_PAD_IO_CLKM 0x03, 0x30, 4
115 #define SR_PAD_IO 0x03, 0xc0, 6
116 #define RG_TRX_CTRL_1 (0x04)
117 #define SR_IRQ_POLARITY 0x04, 0x01, 0
118 #define SR_IRQ_MASK_MODE 0x04, 0x02, 1
119 #define SR_SPI_CMD_MODE 0x04, 0x0c, 2
120 #define SR_RX_BL_CTRL 0x04, 0x10, 4
121 #define SR_TX_AUTO_CRC_ON 0x04, 0x20, 5
122 #define SR_IRQ_2_EXT_EN 0x04, 0x40, 6
123 #define SR_PA_EXT_EN 0x04, 0x80, 7
124 #define RG_PHY_TX_PWR (0x05)
125 #define SR_TX_PWR 0x05, 0x0f, 0
126 #define SR_PA_LT 0x05, 0x30, 4
127 #define SR_PA_BUF_LT 0x05, 0xc0, 6
128 #define RG_PHY_RSSI (0x06)
129 #define SR_RSSI 0x06, 0x1f, 0
130 #define SR_RND_VALUE 0x06, 0x60, 5
131 #define SR_RX_CRC_VALID 0x06, 0x80, 7
132 #define RG_PHY_ED_LEVEL (0x07)
133 #define SR_ED_LEVEL 0x07, 0xff, 0
134 #define RG_PHY_CC_CCA (0x08)
135 #define SR_CHANNEL 0x08, 0x1f, 0
136 #define SR_CCA_MODE 0x08, 0x60, 5
137 #define SR_CCA_REQUEST 0x08, 0x80, 7
138 #define RG_CCA_THRES (0x09)
139 #define SR_CCA_ED_THRES 0x09, 0x0f, 0
140 #define SR_RESERVED_09_1 0x09, 0xf0, 4
141 #define RG_RX_CTRL (0x0a)
142 #define SR_PDT_THRES 0x0a, 0x0f, 0
143 #define SR_RESERVED_0a_1 0x0a, 0xf0, 4
144 #define RG_SFD_VALUE (0x0b)
145 #define SR_SFD_VALUE 0x0b, 0xff, 0
146 #define RG_TRX_CTRL_2 (0x0c)
147 #define SR_OQPSK_DATA_RATE 0x0c, 0x03, 0
148 #define SR_SUB_MODE 0x0c, 0x04, 2
149 #define SR_BPSK_QPSK 0x0c, 0x08, 3
150 #define SR_OQPSK_SUB1_RC_EN 0x0c, 0x10, 4
151 #define SR_RESERVED_0c_5 0x0c, 0x60, 5
152 #define SR_RX_SAFE_MODE 0x0c, 0x80, 7
153 #define RG_ANT_DIV (0x0d)
154 #define SR_ANT_CTRL 0x0d, 0x03, 0
155 #define SR_ANT_EXT_SW_EN 0x0d, 0x04, 2
156 #define SR_ANT_DIV_EN 0x0d, 0x08, 3
157 #define SR_RESERVED_0d_2 0x0d, 0x70, 4
158 #define SR_ANT_SEL 0x0d, 0x80, 7
159 #define RG_IRQ_MASK (0x0e)
160 #define SR_IRQ_MASK 0x0e, 0xff, 0
161 #define RG_IRQ_STATUS (0x0f)
162 #define SR_IRQ_0_PLL_LOCK 0x0f, 0x01, 0
163 #define SR_IRQ_1_PLL_UNLOCK 0x0f, 0x02, 1
164 #define SR_IRQ_2_RX_START 0x0f, 0x04, 2
165 #define SR_IRQ_3_TRX_END 0x0f, 0x08, 3
166 #define SR_IRQ_4_CCA_ED_DONE 0x0f, 0x10, 4
167 #define SR_IRQ_5_AMI 0x0f, 0x20, 5
168 #define SR_IRQ_6_TRX_UR 0x0f, 0x40, 6
169 #define SR_IRQ_7_BAT_LOW 0x0f, 0x80, 7
170 #define RG_VREG_CTRL (0x10)
171 #define SR_RESERVED_10_6 0x10, 0x03, 0
172 #define SR_DVDD_OK 0x10, 0x04, 2
173 #define SR_DVREG_EXT 0x10, 0x08, 3
174 #define SR_RESERVED_10_3 0x10, 0x30, 4
175 #define SR_AVDD_OK 0x10, 0x40, 6
176 #define SR_AVREG_EXT 0x10, 0x80, 7
177 #define RG_BATMON (0x11)
178 #define SR_BATMON_VTH 0x11, 0x0f, 0
179 #define SR_BATMON_HR 0x11, 0x10, 4
180 #define SR_BATMON_OK 0x11, 0x20, 5
181 #define SR_RESERVED_11_1 0x11, 0xc0, 6
182 #define RG_XOSC_CTRL (0x12)
183 #define SR_XTAL_TRIM 0x12, 0x0f, 0
184 #define SR_XTAL_MODE 0x12, 0xf0, 4
185 #define RG_RX_SYN (0x15)
186 #define SR_RX_PDT_LEVEL 0x15, 0x0f, 0
187 #define SR_RESERVED_15_2 0x15, 0x70, 4
188 #define SR_RX_PDT_DIS 0x15, 0x80, 7
189 #define RG_XAH_CTRL_1 (0x17)
190 #define SR_RESERVED_17_8 0x17, 0x01, 0
191 #define SR_AACK_PROM_MODE 0x17, 0x02, 1
192 #define SR_AACK_ACK_TIME 0x17, 0x04, 2
193 #define SR_RESERVED_17_5 0x17, 0x08, 3
194 #define SR_AACK_UPLD_RES_FT 0x17, 0x10, 4
195 #define SR_AACK_FLTR_RES_FT 0x17, 0x20, 5
196 #define SR_CSMA_LBT_MODE 0x17, 0x40, 6
197 #define SR_RESERVED_17_1 0x17, 0x80, 7
198 #define RG_FTN_CTRL (0x18)
199 #define SR_RESERVED_18_2 0x18, 0x7f, 0
200 #define SR_FTN_START 0x18, 0x80, 7
201 #define RG_PLL_CF (0x1a)
202 #define SR_RESERVED_1a_2 0x1a, 0x7f, 0
203 #define SR_PLL_CF_START 0x1a, 0x80, 7
204 #define RG_PLL_DCU (0x1b)
205 #define SR_RESERVED_1b_3 0x1b, 0x3f, 0
206 #define SR_RESERVED_1b_2 0x1b, 0x40, 6
207 #define SR_PLL_DCU_START 0x1b, 0x80, 7
208 #define RG_PART_NUM (0x1c)
209 #define SR_PART_NUM 0x1c, 0xff, 0
210 #define RG_VERSION_NUM (0x1d)
211 #define SR_VERSION_NUM 0x1d, 0xff, 0
212 #define RG_MAN_ID_0 (0x1e)
213 #define SR_MAN_ID_0 0x1e, 0xff, 0
214 #define RG_MAN_ID_1 (0x1f)
215 #define SR_MAN_ID_1 0x1f, 0xff, 0
216 #define RG_SHORT_ADDR_0 (0x20)
217 #define SR_SHORT_ADDR_0 0x20, 0xff, 0
218 #define RG_SHORT_ADDR_1 (0x21)
219 #define SR_SHORT_ADDR_1 0x21, 0xff, 0
220 #define RG_PAN_ID_0 (0x22)
221 #define SR_PAN_ID_0 0x22, 0xff, 0
222 #define RG_PAN_ID_1 (0x23)
223 #define SR_PAN_ID_1 0x23, 0xff, 0
224 #define RG_IEEE_ADDR_0 (0x24)
225 #define SR_IEEE_ADDR_0 0x24, 0xff, 0
226 #define RG_IEEE_ADDR_1 (0x25)
227 #define SR_IEEE_ADDR_1 0x25, 0xff, 0
228 #define RG_IEEE_ADDR_2 (0x26)
229 #define SR_IEEE_ADDR_2 0x26, 0xff, 0
230 #define RG_IEEE_ADDR_3 (0x27)
231 #define SR_IEEE_ADDR_3 0x27, 0xff, 0
232 #define RG_IEEE_ADDR_4 (0x28)
233 #define SR_IEEE_ADDR_4 0x28, 0xff, 0
234 #define RG_IEEE_ADDR_5 (0x29)
235 #define SR_IEEE_ADDR_5 0x29, 0xff, 0
236 #define RG_IEEE_ADDR_6 (0x2a)
237 #define SR_IEEE_ADDR_6 0x2a, 0xff, 0
238 #define RG_IEEE_ADDR_7 (0x2b)
239 #define SR_IEEE_ADDR_7 0x2b, 0xff, 0
240 #define RG_XAH_CTRL_0 (0x2c)
241 #define SR_SLOTTED_OPERATION 0x2c, 0x01, 0
242 #define SR_MAX_CSMA_RETRIES 0x2c, 0x0e, 1
243 #define SR_MAX_FRAME_RETRIES 0x2c, 0xf0, 4
244 #define RG_CSMA_SEED_0 (0x2d)
245 #define SR_CSMA_SEED_0 0x2d, 0xff, 0
246 #define RG_CSMA_SEED_1 (0x2e)
247 #define SR_CSMA_SEED_1 0x2e, 0x07, 0
248 #define SR_AACK_I_AM_COORD 0x2e, 0x08, 3
249 #define SR_AACK_DIS_ACK 0x2e, 0x10, 4
250 #define SR_AACK_SET_PD 0x2e, 0x20, 5
251 #define SR_AACK_FVN_MODE 0x2e, 0xc0, 6
252 #define RG_CSMA_BE (0x2f)
253 #define SR_MIN_BE 0x2f, 0x0f, 0
254 #define SR_MAX_BE 0x2f, 0xf0, 4
255
256 #define CMD_REG 0x80
257 #define CMD_REG_MASK 0x3f
258 #define CMD_WRITE 0x40
259 #define CMD_FB 0x20
260
261 #define IRQ_BAT_LOW (1 << 7)
262 #define IRQ_TRX_UR (1 << 6)
263 #define IRQ_AMI (1 << 5)
264 #define IRQ_CCA_ED (1 << 4)
265 #define IRQ_TRX_END (1 << 3)
266 #define IRQ_RX_START (1 << 2)
267 #define IRQ_PLL_UNL (1 << 1)
268 #define IRQ_PLL_LOCK (1 << 0)
269
270 #define IRQ_ACTIVE_HIGH 0
271 #define IRQ_ACTIVE_LOW 1
272
273 #define STATE_P_ON 0x00 /* BUSY */
274 #define STATE_BUSY_RX 0x01
275 #define STATE_BUSY_TX 0x02
276 #define STATE_FORCE_TRX_OFF 0x03
277 #define STATE_FORCE_TX_ON 0x04 /* IDLE */
278 /* 0x05 */ /* INVALID_PARAMETER */
279 #define STATE_RX_ON 0x06
280 /* 0x07 */ /* SUCCESS */
281 #define STATE_TRX_OFF 0x08
282 #define STATE_TX_ON 0x09
283 /* 0x0a - 0x0e */ /* 0x0a - UNSUPPORTED_ATTRIBUTE */
284 #define STATE_SLEEP 0x0F
285 #define STATE_PREP_DEEP_SLEEP 0x10
286 #define STATE_BUSY_RX_AACK 0x11
287 #define STATE_BUSY_TX_ARET 0x12
288 #define STATE_RX_AACK_ON 0x16
289 #define STATE_TX_ARET_ON 0x19
290 #define STATE_RX_ON_NOCLK 0x1C
291 #define STATE_RX_AACK_ON_NOCLK 0x1D
292 #define STATE_BUSY_RX_AACK_NOCLK 0x1E
293 #define STATE_TRANSITION_IN_PROGRESS 0x1F
294
295 #define AT86RF2XX_NUMREGS 0x3F
296
297 static void
298 at86rf230_async_state_change(struct at86rf230_local *lp,
299 struct at86rf230_state_change *ctx,
300 const u8 state, void (*complete)(void *context),
301 const bool irq_enable);
302
303 static inline int
304 __at86rf230_write(struct at86rf230_local *lp,
305 unsigned int addr, unsigned int data)
306 {
307 return regmap_write(lp->regmap, addr, data);
308 }
309
310 static inline int
311 __at86rf230_read(struct at86rf230_local *lp,
312 unsigned int addr, unsigned int *data)
313 {
314 return regmap_read(lp->regmap, addr, data);
315 }
316
317 static inline int
318 at86rf230_read_subreg(struct at86rf230_local *lp,
319 unsigned int addr, unsigned int mask,
320 unsigned int shift, unsigned int *data)
321 {
322 int rc;
323
324 rc = __at86rf230_read(lp, addr, data);
325 if (!rc)
326 *data = (*data & mask) >> shift;
327
328 return rc;
329 }
330
331 static inline int
332 at86rf230_write_subreg(struct at86rf230_local *lp,
333 unsigned int addr, unsigned int mask,
334 unsigned int shift, unsigned int data)
335 {
336 return regmap_update_bits(lp->regmap, addr, mask, data << shift);
337 }
338
339 static bool
340 at86rf230_reg_writeable(struct device *dev, unsigned int reg)
341 {
342 switch (reg) {
343 case RG_TRX_STATE:
344 case RG_TRX_CTRL_0:
345 case RG_TRX_CTRL_1:
346 case RG_PHY_TX_PWR:
347 case RG_PHY_ED_LEVEL:
348 case RG_PHY_CC_CCA:
349 case RG_CCA_THRES:
350 case RG_RX_CTRL:
351 case RG_SFD_VALUE:
352 case RG_TRX_CTRL_2:
353 case RG_ANT_DIV:
354 case RG_IRQ_MASK:
355 case RG_VREG_CTRL:
356 case RG_BATMON:
357 case RG_XOSC_CTRL:
358 case RG_RX_SYN:
359 case RG_XAH_CTRL_1:
360 case RG_FTN_CTRL:
361 case RG_PLL_CF:
362 case RG_PLL_DCU:
363 case RG_SHORT_ADDR_0:
364 case RG_SHORT_ADDR_1:
365 case RG_PAN_ID_0:
366 case RG_PAN_ID_1:
367 case RG_IEEE_ADDR_0:
368 case RG_IEEE_ADDR_1:
369 case RG_IEEE_ADDR_2:
370 case RG_IEEE_ADDR_3:
371 case RG_IEEE_ADDR_4:
372 case RG_IEEE_ADDR_5:
373 case RG_IEEE_ADDR_6:
374 case RG_IEEE_ADDR_7:
375 case RG_XAH_CTRL_0:
376 case RG_CSMA_SEED_0:
377 case RG_CSMA_SEED_1:
378 case RG_CSMA_BE:
379 return true;
380 default:
381 return false;
382 }
383 }
384
385 static bool
386 at86rf230_reg_readable(struct device *dev, unsigned int reg)
387 {
388 bool rc;
389
390 /* all writeable are also readable */
391 rc = at86rf230_reg_writeable(dev, reg);
392 if (rc)
393 return rc;
394
395 /* readonly regs */
396 switch (reg) {
397 case RG_TRX_STATUS:
398 case RG_PHY_RSSI:
399 case RG_IRQ_STATUS:
400 case RG_PART_NUM:
401 case RG_VERSION_NUM:
402 case RG_MAN_ID_1:
403 case RG_MAN_ID_0:
404 return true;
405 default:
406 return false;
407 }
408 }
409
410 static bool
411 at86rf230_reg_volatile(struct device *dev, unsigned int reg)
412 {
413 /* can be changed during runtime */
414 switch (reg) {
415 case RG_TRX_STATUS:
416 case RG_TRX_STATE:
417 case RG_PHY_RSSI:
418 case RG_PHY_ED_LEVEL:
419 case RG_IRQ_STATUS:
420 case RG_VREG_CTRL:
421 case RG_PLL_CF:
422 case RG_PLL_DCU:
423 return true;
424 default:
425 return false;
426 }
427 }
428
429 static bool
430 at86rf230_reg_precious(struct device *dev, unsigned int reg)
431 {
432 /* don't clear irq line on read */
433 switch (reg) {
434 case RG_IRQ_STATUS:
435 return true;
436 default:
437 return false;
438 }
439 }
440
441 static const struct regmap_config at86rf230_regmap_spi_config = {
442 .reg_bits = 8,
443 .val_bits = 8,
444 .write_flag_mask = CMD_REG | CMD_WRITE,
445 .read_flag_mask = CMD_REG,
446 .cache_type = REGCACHE_RBTREE,
447 .max_register = AT86RF2XX_NUMREGS,
448 .writeable_reg = at86rf230_reg_writeable,
449 .readable_reg = at86rf230_reg_readable,
450 .volatile_reg = at86rf230_reg_volatile,
451 .precious_reg = at86rf230_reg_precious,
452 };
453
454 static void
455 at86rf230_async_error_recover(void *context)
456 {
457 struct at86rf230_state_change *ctx = context;
458 struct at86rf230_local *lp = ctx->lp;
459
460 lp->is_tx = 0;
461 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL, false);
462 ieee802154_wake_queue(lp->hw);
463 }
464
465 static inline void
466 at86rf230_async_error(struct at86rf230_local *lp,
467 struct at86rf230_state_change *ctx, int rc)
468 {
469 dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
470
471 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
472 at86rf230_async_error_recover, false);
473 }
474
475 /* Generic function to get some register value in async mode */
476 static void
477 at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg,
478 struct at86rf230_state_change *ctx,
479 void (*complete)(void *context),
480 const bool irq_enable)
481 {
482 int rc;
483
484 u8 *tx_buf = ctx->buf;
485
486 tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
487 ctx->msg.complete = complete;
488 ctx->irq_enable = irq_enable;
489 rc = spi_async(lp->spi, &ctx->msg);
490 if (rc) {
491 if (irq_enable)
492 enable_irq(ctx->irq);
493
494 at86rf230_async_error(lp, ctx, rc);
495 }
496 }
497
498 static inline u8 at86rf230_state_to_force(u8 state)
499 {
500 if (state == STATE_TX_ON)
501 return STATE_FORCE_TX_ON;
502 else
503 return STATE_FORCE_TRX_OFF;
504 }
505
506 static void
507 at86rf230_async_state_assert(void *context)
508 {
509 struct at86rf230_state_change *ctx = context;
510 struct at86rf230_local *lp = ctx->lp;
511 const u8 *buf = ctx->buf;
512 const u8 trx_state = buf[1] & 0x1f;
513
514 /* Assert state change */
515 if (trx_state != ctx->to_state) {
516 /* Special handling if transceiver state is in
517 * STATE_BUSY_RX_AACK and a SHR was detected.
518 */
519 if (trx_state == STATE_BUSY_RX_AACK) {
520 /* Undocumented race condition. If we send a state
521 * change to STATE_RX_AACK_ON the transceiver could
522 * change his state automatically to STATE_BUSY_RX_AACK
523 * if a SHR was detected. This is not an error, but we
524 * can't assert this.
525 */
526 if (ctx->to_state == STATE_RX_AACK_ON)
527 goto done;
528
529 /* If we change to STATE_TX_ON without forcing and
530 * transceiver state is STATE_BUSY_RX_AACK, we wait
531 * 'tFrame + tPAck' receiving time. In this time the
532 * PDU should be received. If the transceiver is still
533 * in STATE_BUSY_RX_AACK, we run a force state change
534 * to STATE_TX_ON. This is a timeout handling, if the
535 * transceiver stucks in STATE_BUSY_RX_AACK.
536 *
537 * Additional we do several retries to try to get into
538 * TX_ON state without forcing. If the retries are
539 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
540 * will do a force change.
541 */
542 if (ctx->to_state == STATE_TX_ON ||
543 ctx->to_state == STATE_TRX_OFF) {
544 u8 state = ctx->to_state;
545
546 if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
547 state = at86rf230_state_to_force(state);
548 lp->tx_retry++;
549
550 at86rf230_async_state_change(lp, ctx, state,
551 ctx->complete,
552 ctx->irq_enable);
553 return;
554 }
555 }
556
557 dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
558 ctx->from_state, ctx->to_state, trx_state);
559 }
560
561 done:
562 if (ctx->complete)
563 ctx->complete(context);
564 }
565
566 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
567 {
568 struct at86rf230_state_change *ctx =
569 container_of(timer, struct at86rf230_state_change, timer);
570 struct at86rf230_local *lp = ctx->lp;
571
572 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
573 at86rf230_async_state_assert,
574 ctx->irq_enable);
575
576 return HRTIMER_NORESTART;
577 }
578
579 /* Do state change timing delay. */
580 static void
581 at86rf230_async_state_delay(void *context)
582 {
583 struct at86rf230_state_change *ctx = context;
584 struct at86rf230_local *lp = ctx->lp;
585 struct at86rf2xx_chip_data *c = lp->data;
586 bool force = false;
587 ktime_t tim;
588
589 /* The force state changes are will show as normal states in the
590 * state status subregister. We change the to_state to the
591 * corresponding one and remember if it was a force change, this
592 * differs if we do a state change from STATE_BUSY_RX_AACK.
593 */
594 switch (ctx->to_state) {
595 case STATE_FORCE_TX_ON:
596 ctx->to_state = STATE_TX_ON;
597 force = true;
598 break;
599 case STATE_FORCE_TRX_OFF:
600 ctx->to_state = STATE_TRX_OFF;
601 force = true;
602 break;
603 default:
604 break;
605 }
606
607 switch (ctx->from_state) {
608 case STATE_TRX_OFF:
609 switch (ctx->to_state) {
610 case STATE_RX_AACK_ON:
611 tim = ktime_set(0, c->t_off_to_aack * NSEC_PER_USEC);
612 goto change;
613 case STATE_TX_ON:
614 tim = ktime_set(0, c->t_off_to_tx_on * NSEC_PER_USEC);
615 /* state change from TRX_OFF to TX_ON to do a
616 * calibration, we need to reset the timeout for the
617 * next one.
618 */
619 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
620 goto change;
621 default:
622 break;
623 }
624 break;
625 case STATE_BUSY_RX_AACK:
626 switch (ctx->to_state) {
627 case STATE_TRX_OFF:
628 case STATE_TX_ON:
629 /* Wait for worst case receiving time if we
630 * didn't make a force change from BUSY_RX_AACK
631 * to TX_ON or TRX_OFF.
632 */
633 if (!force) {
634 tim = ktime_set(0, (c->t_frame + c->t_p_ack) *
635 NSEC_PER_USEC);
636 goto change;
637 }
638 break;
639 default:
640 break;
641 }
642 break;
643 /* Default value, means RESET state */
644 case STATE_P_ON:
645 switch (ctx->to_state) {
646 case STATE_TRX_OFF:
647 tim = ktime_set(0, c->t_reset_to_off * NSEC_PER_USEC);
648 goto change;
649 default:
650 break;
651 }
652 break;
653 default:
654 break;
655 }
656
657 /* Default delay is 1us in the most cases */
658 tim = ktime_set(0, NSEC_PER_USEC);
659
660 change:
661 hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
662 }
663
664 static void
665 at86rf230_async_state_change_start(void *context)
666 {
667 struct at86rf230_state_change *ctx = context;
668 struct at86rf230_local *lp = ctx->lp;
669 u8 *buf = ctx->buf;
670 const u8 trx_state = buf[1] & 0x1f;
671 int rc;
672
673 /* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
674 if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
675 udelay(1);
676 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
677 at86rf230_async_state_change_start,
678 ctx->irq_enable);
679 return;
680 }
681
682 /* Check if we already are in the state which we change in */
683 if (trx_state == ctx->to_state) {
684 if (ctx->complete)
685 ctx->complete(context);
686 return;
687 }
688
689 /* Set current state to the context of state change */
690 ctx->from_state = trx_state;
691
692 /* Going into the next step for a state change which do a timing
693 * relevant delay.
694 */
695 buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
696 buf[1] = ctx->to_state;
697 ctx->msg.complete = at86rf230_async_state_delay;
698 rc = spi_async(lp->spi, &ctx->msg);
699 if (rc) {
700 if (ctx->irq_enable)
701 enable_irq(ctx->irq);
702
703 at86rf230_async_error(lp, ctx, rc);
704 }
705 }
706
707 static void
708 at86rf230_async_state_change(struct at86rf230_local *lp,
709 struct at86rf230_state_change *ctx,
710 const u8 state, void (*complete)(void *context),
711 const bool irq_enable)
712 {
713 /* Initialization for the state change context */
714 ctx->to_state = state;
715 ctx->complete = complete;
716 ctx->irq_enable = irq_enable;
717 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
718 at86rf230_async_state_change_start,
719 irq_enable);
720 }
721
722 static void
723 at86rf230_sync_state_change_complete(void *context)
724 {
725 struct at86rf230_state_change *ctx = context;
726 struct at86rf230_local *lp = ctx->lp;
727
728 complete(&lp->state_complete);
729 }
730
731 /* This function do a sync framework above the async state change.
732 * Some callbacks of the IEEE 802.15.4 driver interface need to be
733 * handled synchronously.
734 */
735 static int
736 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
737 {
738 unsigned long rc;
739
740 at86rf230_async_state_change(lp, &lp->state, state,
741 at86rf230_sync_state_change_complete,
742 false);
743
744 rc = wait_for_completion_timeout(&lp->state_complete,
745 msecs_to_jiffies(100));
746 if (!rc) {
747 at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
748 return -ETIMEDOUT;
749 }
750
751 return 0;
752 }
753
754 static void
755 at86rf230_tx_complete(void *context)
756 {
757 struct at86rf230_state_change *ctx = context;
758 struct at86rf230_local *lp = ctx->lp;
759
760 enable_irq(ctx->irq);
761
762 ieee802154_xmit_complete(lp->hw, lp->tx_skb, !lp->tx_aret);
763 }
764
765 static void
766 at86rf230_tx_on(void *context)
767 {
768 struct at86rf230_state_change *ctx = context;
769 struct at86rf230_local *lp = ctx->lp;
770
771 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
772 at86rf230_tx_complete, true);
773 }
774
775 static void
776 at86rf230_tx_trac_error(void *context)
777 {
778 struct at86rf230_state_change *ctx = context;
779 struct at86rf230_local *lp = ctx->lp;
780
781 at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
782 at86rf230_tx_on, true);
783 }
784
785 static void
786 at86rf230_tx_trac_check(void *context)
787 {
788 struct at86rf230_state_change *ctx = context;
789 struct at86rf230_local *lp = ctx->lp;
790 const u8 *buf = ctx->buf;
791 const u8 trac = (buf[1] & 0xe0) >> 5;
792
793 /* If trac status is different than zero we need to do a state change
794 * to STATE_FORCE_TRX_OFF then STATE_TX_ON to recover the transceiver
795 * state to TX_ON.
796 */
797 if (trac)
798 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
799 at86rf230_tx_trac_error, true);
800 else
801 at86rf230_tx_on(context);
802 }
803
804 static void
805 at86rf230_tx_trac_status(void *context)
806 {
807 struct at86rf230_state_change *ctx = context;
808 struct at86rf230_local *lp = ctx->lp;
809
810 at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
811 at86rf230_tx_trac_check, true);
812 }
813
814 static void
815 at86rf230_rx_read_frame_complete(void *context)
816 {
817 struct at86rf230_state_change *ctx = context;
818 struct at86rf230_local *lp = ctx->lp;
819 u8 rx_local_buf[AT86RF2XX_MAX_BUF];
820 const u8 *buf = ctx->buf;
821 struct sk_buff *skb;
822 u8 len, lqi;
823
824 len = buf[1];
825 if (!ieee802154_is_valid_psdu_len(len)) {
826 dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
827 len = IEEE802154_MTU;
828 }
829 lqi = buf[2 + len];
830
831 memcpy(rx_local_buf, buf + 2, len);
832 ctx->trx.len = 2;
833 enable_irq(ctx->irq);
834
835 skb = dev_alloc_skb(IEEE802154_MTU);
836 if (!skb) {
837 dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
838 return;
839 }
840
841 memcpy(skb_put(skb, len), rx_local_buf, len);
842 ieee802154_rx_irqsafe(lp->hw, skb, lqi);
843 }
844
845 static void
846 at86rf230_rx_read_frame(void *context)
847 {
848 struct at86rf230_state_change *ctx = context;
849 struct at86rf230_local *lp = ctx->lp;
850 u8 *buf = ctx->buf;
851 int rc;
852
853 buf[0] = CMD_FB;
854 ctx->trx.len = AT86RF2XX_MAX_BUF;
855 ctx->msg.complete = at86rf230_rx_read_frame_complete;
856 rc = spi_async(lp->spi, &ctx->msg);
857 if (rc) {
858 ctx->trx.len = 2;
859 enable_irq(ctx->irq);
860 at86rf230_async_error(lp, ctx, rc);
861 }
862 }
863
864 static void
865 at86rf230_rx_trac_check(void *context)
866 {
867 /* Possible check on trac status here. This could be useful to make
868 * some stats why receive is failed. Not used at the moment, but it's
869 * maybe timing relevant. Datasheet doesn't say anything about this.
870 * The programming guide say do it so.
871 */
872
873 at86rf230_rx_read_frame(context);
874 }
875
876 static void
877 at86rf230_irq_trx_end(struct at86rf230_local *lp)
878 {
879 if (lp->is_tx) {
880 lp->is_tx = 0;
881
882 if (lp->tx_aret)
883 at86rf230_async_state_change(lp, &lp->irq,
884 STATE_FORCE_TX_ON,
885 at86rf230_tx_trac_status,
886 true);
887 else
888 at86rf230_async_state_change(lp, &lp->irq,
889 STATE_RX_AACK_ON,
890 at86rf230_tx_complete,
891 true);
892 } else {
893 at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq,
894 at86rf230_rx_trac_check, true);
895 }
896 }
897
898 static void
899 at86rf230_irq_status(void *context)
900 {
901 struct at86rf230_state_change *ctx = context;
902 struct at86rf230_local *lp = ctx->lp;
903 const u8 *buf = ctx->buf;
904 const u8 irq = buf[1];
905
906 if (irq & IRQ_TRX_END) {
907 at86rf230_irq_trx_end(lp);
908 } else {
909 enable_irq(ctx->irq);
910 dev_err(&lp->spi->dev, "not supported irq %02x received\n",
911 irq);
912 }
913 }
914
915 static irqreturn_t at86rf230_isr(int irq, void *data)
916 {
917 struct at86rf230_local *lp = data;
918 struct at86rf230_state_change *ctx = &lp->irq;
919 u8 *buf = ctx->buf;
920 int rc;
921
922 disable_irq_nosync(irq);
923
924 buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
925 ctx->msg.complete = at86rf230_irq_status;
926 rc = spi_async(lp->spi, &ctx->msg);
927 if (rc) {
928 enable_irq(irq);
929 at86rf230_async_error(lp, ctx, rc);
930 return IRQ_NONE;
931 }
932
933 return IRQ_HANDLED;
934 }
935
936 static void
937 at86rf230_write_frame_complete(void *context)
938 {
939 struct at86rf230_state_change *ctx = context;
940 struct at86rf230_local *lp = ctx->lp;
941 u8 *buf = ctx->buf;
942 int rc;
943
944 buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
945 buf[1] = STATE_BUSY_TX;
946 ctx->trx.len = 2;
947 ctx->msg.complete = NULL;
948 rc = spi_async(lp->spi, &ctx->msg);
949 if (rc)
950 at86rf230_async_error(lp, ctx, rc);
951 }
952
953 static void
954 at86rf230_write_frame(void *context)
955 {
956 struct at86rf230_state_change *ctx = context;
957 struct at86rf230_local *lp = ctx->lp;
958 struct sk_buff *skb = lp->tx_skb;
959 u8 *buf = ctx->buf;
960 int rc;
961
962 lp->is_tx = 1;
963
964 buf[0] = CMD_FB | CMD_WRITE;
965 buf[1] = skb->len + 2;
966 memcpy(buf + 2, skb->data, skb->len);
967 ctx->trx.len = skb->len + 2;
968 ctx->msg.complete = at86rf230_write_frame_complete;
969 rc = spi_async(lp->spi, &ctx->msg);
970 if (rc) {
971 ctx->trx.len = 2;
972 at86rf230_async_error(lp, ctx, rc);
973 }
974 }
975
976 static void
977 at86rf230_xmit_tx_on(void *context)
978 {
979 struct at86rf230_state_change *ctx = context;
980 struct at86rf230_local *lp = ctx->lp;
981
982 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
983 at86rf230_write_frame, false);
984 }
985
986 static void
987 at86rf230_xmit_start(void *context)
988 {
989 struct at86rf230_state_change *ctx = context;
990 struct at86rf230_local *lp = ctx->lp;
991
992 /* In ARET mode we need to go into STATE_TX_ARET_ON after we
993 * are in STATE_TX_ON. The pfad differs here, so we change
994 * the complete handler.
995 */
996 if (lp->tx_aret)
997 at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
998 at86rf230_xmit_tx_on, false);
999 else
1000 at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
1001 at86rf230_write_frame, false);
1002 }
1003
1004 static int
1005 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
1006 {
1007 struct at86rf230_local *lp = hw->priv;
1008 struct at86rf230_state_change *ctx = &lp->tx;
1009
1010 lp->tx_skb = skb;
1011 lp->tx_retry = 0;
1012
1013 /* After 5 minutes in PLL and the same frequency we run again the
1014 * calibration loops which is recommended by at86rf2xx datasheets.
1015 *
1016 * The calibration is initiate by a state change from TRX_OFF
1017 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
1018 * function then to start in the next 5 minutes.
1019 */
1020 if (time_is_before_jiffies(lp->cal_timeout))
1021 at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
1022 at86rf230_xmit_start, false);
1023 else
1024 at86rf230_xmit_start(ctx);
1025
1026 return 0;
1027 }
1028
1029 static int
1030 at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
1031 {
1032 BUG_ON(!level);
1033 *level = 0xbe;
1034 return 0;
1035 }
1036
1037 static int
1038 at86rf230_start(struct ieee802154_hw *hw)
1039 {
1040 struct at86rf230_local *lp = hw->priv;
1041
1042 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1043 return at86rf230_sync_state_change(hw->priv, STATE_RX_AACK_ON);
1044 }
1045
1046 static void
1047 at86rf230_stop(struct ieee802154_hw *hw)
1048 {
1049 at86rf230_sync_state_change(hw->priv, STATE_FORCE_TRX_OFF);
1050 }
1051
1052 static int
1053 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1054 {
1055 return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1056 }
1057
1058 static int
1059 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1060 {
1061 int rc;
1062
1063 if (channel == 0)
1064 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1065 else
1066 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1067 if (rc < 0)
1068 return rc;
1069
1070 if (page == 0) {
1071 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1072 lp->data->rssi_base_val = -100;
1073 } else {
1074 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1075 lp->data->rssi_base_val = -98;
1076 }
1077 if (rc < 0)
1078 return rc;
1079
1080 /* This sets the symbol_duration according frequency on the 212.
1081 * TODO move this handling while set channel and page in cfg802154.
1082 * We can do that, this timings are according 802.15.4 standard.
1083 * If we do that in cfg802154, this is a more generic calculation.
1084 *
1085 * This should also protected from ifs_timer. Means cancel timer and
1086 * init with a new value. For now, this is okay.
1087 */
1088 if (channel == 0) {
1089 if (page == 0) {
1090 /* SUB:0 and BPSK:0 -> BPSK-20 */
1091 lp->hw->phy->symbol_duration = 50;
1092 } else {
1093 /* SUB:1 and BPSK:0 -> BPSK-40 */
1094 lp->hw->phy->symbol_duration = 25;
1095 }
1096 } else {
1097 if (page == 0)
1098 /* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */
1099 lp->hw->phy->symbol_duration = 40;
1100 else
1101 /* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */
1102 lp->hw->phy->symbol_duration = 16;
1103 }
1104
1105 lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD *
1106 lp->hw->phy->symbol_duration;
1107 lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD *
1108 lp->hw->phy->symbol_duration;
1109
1110 return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1111 }
1112
1113 static int
1114 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1115 {
1116 struct at86rf230_local *lp = hw->priv;
1117 int rc;
1118
1119 rc = lp->data->set_channel(lp, page, channel);
1120 /* Wait for PLL */
1121 usleep_range(lp->data->t_channel_switch,
1122 lp->data->t_channel_switch + 10);
1123
1124 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1125 return rc;
1126 }
1127
1128 static int
1129 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1130 struct ieee802154_hw_addr_filt *filt,
1131 unsigned long changed)
1132 {
1133 struct at86rf230_local *lp = hw->priv;
1134
1135 if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1136 u16 addr = le16_to_cpu(filt->short_addr);
1137
1138 dev_vdbg(&lp->spi->dev,
1139 "at86rf230_set_hw_addr_filt called for saddr\n");
1140 __at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1141 __at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1142 }
1143
1144 if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1145 u16 pan = le16_to_cpu(filt->pan_id);
1146
1147 dev_vdbg(&lp->spi->dev,
1148 "at86rf230_set_hw_addr_filt called for pan id\n");
1149 __at86rf230_write(lp, RG_PAN_ID_0, pan);
1150 __at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1151 }
1152
1153 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1154 u8 i, addr[8];
1155
1156 memcpy(addr, &filt->ieee_addr, 8);
1157 dev_vdbg(&lp->spi->dev,
1158 "at86rf230_set_hw_addr_filt called for IEEE addr\n");
1159 for (i = 0; i < 8; i++)
1160 __at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1161 }
1162
1163 if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1164 dev_vdbg(&lp->spi->dev,
1165 "at86rf230_set_hw_addr_filt called for panc change\n");
1166 if (filt->pan_coord)
1167 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1168 else
1169 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1170 }
1171
1172 return 0;
1173 }
1174
1175 static int
1176 at86rf230_set_txpower(struct ieee802154_hw *hw, s8 db)
1177 {
1178 struct at86rf230_local *lp = hw->priv;
1179
1180 /* typical maximum output is 5dBm with RG_PHY_TX_PWR 0x60, lower five
1181 * bits decrease power in 1dB steps. 0x60 represents extra PA gain of
1182 * 0dB.
1183 * thus, supported values for db range from -26 to 5, for 31dB of
1184 * reduction to 0dB of reduction.
1185 */
1186 if (db > 5 || db < -26)
1187 return -EINVAL;
1188
1189 db = -(db - 5);
1190
1191 return __at86rf230_write(lp, RG_PHY_TX_PWR, 0x60 | db);
1192 }
1193
1194 static int
1195 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1196 {
1197 struct at86rf230_local *lp = hw->priv;
1198
1199 return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1200 }
1201
1202 static int
1203 at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1204 const struct wpan_phy_cca *cca)
1205 {
1206 struct at86rf230_local *lp = hw->priv;
1207 u8 val;
1208
1209 /* mapping 802.15.4 to driver spec */
1210 switch (cca->mode) {
1211 case NL802154_CCA_ENERGY:
1212 val = 1;
1213 break;
1214 case NL802154_CCA_CARRIER:
1215 val = 2;
1216 break;
1217 case NL802154_CCA_ENERGY_CARRIER:
1218 switch (cca->opt) {
1219 case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1220 val = 3;
1221 break;
1222 case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1223 val = 0;
1224 break;
1225 default:
1226 return -EINVAL;
1227 }
1228 break;
1229 default:
1230 return -EINVAL;
1231 }
1232
1233 return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1234 }
1235
1236 static int
1237 at86rf212_get_desens_steps(struct at86rf230_local *lp, s32 level)
1238 {
1239 return (level - lp->data->rssi_base_val) * 100 / 207;
1240 }
1241
1242 static int
1243 at86rf23x_get_desens_steps(struct at86rf230_local *lp, s32 level)
1244 {
1245 return (level - lp->data->rssi_base_val) / 2;
1246 }
1247
1248 static int
1249 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 level)
1250 {
1251 struct at86rf230_local *lp = hw->priv;
1252
1253 if (level < lp->data->rssi_base_val || level > 30)
1254 return -EINVAL;
1255
1256 return at86rf230_write_subreg(lp, SR_CCA_ED_THRES,
1257 lp->data->get_desense_steps(lp, level));
1258 }
1259
1260 static int
1261 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1262 u8 retries)
1263 {
1264 struct at86rf230_local *lp = hw->priv;
1265 int rc;
1266
1267 rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1268 if (rc)
1269 return rc;
1270
1271 rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1272 if (rc)
1273 return rc;
1274
1275 return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1276 }
1277
1278 static int
1279 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1280 {
1281 struct at86rf230_local *lp = hw->priv;
1282 int rc = 0;
1283
1284 lp->tx_aret = retries >= 0;
1285 lp->max_frame_retries = retries;
1286
1287 if (retries >= 0)
1288 rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1289
1290 return rc;
1291 }
1292
1293 static int
1294 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1295 {
1296 struct at86rf230_local *lp = hw->priv;
1297 int rc;
1298
1299 if (on) {
1300 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1301 if (rc < 0)
1302 return rc;
1303
1304 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1305 if (rc < 0)
1306 return rc;
1307 } else {
1308 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1309 if (rc < 0)
1310 return rc;
1311
1312 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1313 if (rc < 0)
1314 return rc;
1315 }
1316
1317 return 0;
1318 }
1319
1320 static const struct ieee802154_ops at86rf230_ops = {
1321 .owner = THIS_MODULE,
1322 .xmit_async = at86rf230_xmit,
1323 .ed = at86rf230_ed,
1324 .set_channel = at86rf230_channel,
1325 .start = at86rf230_start,
1326 .stop = at86rf230_stop,
1327 .set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1328 .set_txpower = at86rf230_set_txpower,
1329 .set_lbt = at86rf230_set_lbt,
1330 .set_cca_mode = at86rf230_set_cca_mode,
1331 .set_cca_ed_level = at86rf230_set_cca_ed_level,
1332 .set_csma_params = at86rf230_set_csma_params,
1333 .set_frame_retries = at86rf230_set_frame_retries,
1334 .set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1335 };
1336
1337 static struct at86rf2xx_chip_data at86rf233_data = {
1338 .t_sleep_cycle = 330,
1339 .t_channel_switch = 11,
1340 .t_reset_to_off = 26,
1341 .t_off_to_aack = 80,
1342 .t_off_to_tx_on = 80,
1343 .t_frame = 4096,
1344 .t_p_ack = 545,
1345 .rssi_base_val = -91,
1346 .set_channel = at86rf23x_set_channel,
1347 .get_desense_steps = at86rf23x_get_desens_steps
1348 };
1349
1350 static struct at86rf2xx_chip_data at86rf231_data = {
1351 .t_sleep_cycle = 330,
1352 .t_channel_switch = 24,
1353 .t_reset_to_off = 37,
1354 .t_off_to_aack = 110,
1355 .t_off_to_tx_on = 110,
1356 .t_frame = 4096,
1357 .t_p_ack = 545,
1358 .rssi_base_val = -91,
1359 .set_channel = at86rf23x_set_channel,
1360 .get_desense_steps = at86rf23x_get_desens_steps
1361 };
1362
1363 static struct at86rf2xx_chip_data at86rf212_data = {
1364 .t_sleep_cycle = 330,
1365 .t_channel_switch = 11,
1366 .t_reset_to_off = 26,
1367 .t_off_to_aack = 200,
1368 .t_off_to_tx_on = 200,
1369 .t_frame = 4096,
1370 .t_p_ack = 545,
1371 .rssi_base_val = -100,
1372 .set_channel = at86rf212_set_channel,
1373 .get_desense_steps = at86rf212_get_desens_steps
1374 };
1375
1376 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1377 {
1378 int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1379 unsigned int dvdd;
1380 u8 csma_seed[2];
1381
1382 rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1383 if (rc)
1384 return rc;
1385
1386 irq_type = irq_get_trigger_type(lp->spi->irq);
1387 if (irq_type == IRQ_TYPE_EDGE_RISING ||
1388 irq_type == IRQ_TYPE_EDGE_FALLING)
1389 dev_warn(&lp->spi->dev,
1390 "Using edge triggered irq's are not recommended!\n");
1391 if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1392 irq_type == IRQ_TYPE_LEVEL_LOW)
1393 irq_pol = IRQ_ACTIVE_LOW;
1394
1395 rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1396 if (rc)
1397 return rc;
1398
1399 rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1400 if (rc)
1401 return rc;
1402
1403 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1404 if (rc)
1405 return rc;
1406
1407 /* reset values differs in at86rf231 and at86rf233 */
1408 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1409 if (rc)
1410 return rc;
1411
1412 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1413 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1414 if (rc)
1415 return rc;
1416 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1417 if (rc)
1418 return rc;
1419
1420 /* CLKM changes are applied immediately */
1421 rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1422 if (rc)
1423 return rc;
1424
1425 /* Turn CLKM Off */
1426 rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1427 if (rc)
1428 return rc;
1429 /* Wait the next SLEEP cycle */
1430 usleep_range(lp->data->t_sleep_cycle,
1431 lp->data->t_sleep_cycle + 100);
1432
1433 /* xtal_trim value is calculated by:
1434 * CL = 0.5 * (CX + CTRIM + CPAR)
1435 *
1436 * whereas:
1437 * CL = capacitor of used crystal
1438 * CX = connected capacitors at xtal pins
1439 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1440 * but this is different on each board setup. You need to fine
1441 * tuning this value via CTRIM.
1442 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1443 * 0 pF upto 4.5 pF.
1444 *
1445 * Examples:
1446 * atben transceiver:
1447 *
1448 * CL = 8 pF
1449 * CX = 12 pF
1450 * CPAR = 3 pF (We assume the magic constant from datasheet)
1451 * CTRIM = 0.9 pF
1452 *
1453 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1454 *
1455 * xtal_trim = 0x3
1456 *
1457 * openlabs transceiver:
1458 *
1459 * CL = 16 pF
1460 * CX = 22 pF
1461 * CPAR = 3 pF (We assume the magic constant from datasheet)
1462 * CTRIM = 4.5 pF
1463 *
1464 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1465 *
1466 * xtal_trim = 0xf
1467 */
1468 rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1469 if (rc)
1470 return rc;
1471
1472 rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1473 if (rc)
1474 return rc;
1475 if (!dvdd) {
1476 dev_err(&lp->spi->dev, "DVDD error\n");
1477 return -EINVAL;
1478 }
1479
1480 /* Force setting slotted operation bit to 0. Sometimes the atben
1481 * sets this bit and I don't know why. We set this always force
1482 * to zero while probing.
1483 */
1484 return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1485 }
1486
1487 static int
1488 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr,
1489 u8 *xtal_trim)
1490 {
1491 struct at86rf230_platform_data *pdata = spi->dev.platform_data;
1492 int ret;
1493
1494 if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) {
1495 if (!pdata)
1496 return -ENOENT;
1497
1498 *rstn = pdata->rstn;
1499 *slp_tr = pdata->slp_tr;
1500 *xtal_trim = pdata->xtal_trim;
1501 return 0;
1502 }
1503
1504 *rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
1505 *slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
1506 ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim);
1507 if (ret < 0 && ret != -EINVAL)
1508 return ret;
1509
1510 return 0;
1511 }
1512
1513 static int
1514 at86rf230_detect_device(struct at86rf230_local *lp)
1515 {
1516 unsigned int part, version, val;
1517 u16 man_id = 0;
1518 const char *chip;
1519 int rc;
1520
1521 rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1522 if (rc)
1523 return rc;
1524 man_id |= val;
1525
1526 rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1527 if (rc)
1528 return rc;
1529 man_id |= (val << 8);
1530
1531 rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1532 if (rc)
1533 return rc;
1534
1535 rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1536 if (rc)
1537 return rc;
1538
1539 if (man_id != 0x001f) {
1540 dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1541 man_id >> 8, man_id & 0xFF);
1542 return -EINVAL;
1543 }
1544
1545 lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AACK |
1546 IEEE802154_HW_TXPOWER | IEEE802154_HW_ARET |
1547 IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS;
1548
1549 lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1550
1551 switch (part) {
1552 case 2:
1553 chip = "at86rf230";
1554 rc = -ENOTSUPP;
1555 break;
1556 case 3:
1557 chip = "at86rf231";
1558 lp->data = &at86rf231_data;
1559 lp->hw->phy->channels_supported[0] = 0x7FFF800;
1560 lp->hw->phy->current_channel = 11;
1561 lp->hw->phy->symbol_duration = 16;
1562 break;
1563 case 7:
1564 chip = "at86rf212";
1565 lp->data = &at86rf212_data;
1566 lp->hw->flags |= IEEE802154_HW_LBT;
1567 lp->hw->phy->channels_supported[0] = 0x00007FF;
1568 lp->hw->phy->channels_supported[2] = 0x00007FF;
1569 lp->hw->phy->current_channel = 5;
1570 lp->hw->phy->symbol_duration = 25;
1571 break;
1572 case 11:
1573 chip = "at86rf233";
1574 lp->data = &at86rf233_data;
1575 lp->hw->phy->channels_supported[0] = 0x7FFF800;
1576 lp->hw->phy->current_channel = 13;
1577 lp->hw->phy->symbol_duration = 16;
1578 break;
1579 default:
1580 chip = "unknown";
1581 rc = -ENOTSUPP;
1582 break;
1583 }
1584
1585 dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1586
1587 return rc;
1588 }
1589
1590 static void
1591 at86rf230_setup_spi_messages(struct at86rf230_local *lp)
1592 {
1593 lp->state.lp = lp;
1594 lp->state.irq = lp->spi->irq;
1595 spi_message_init(&lp->state.msg);
1596 lp->state.msg.context = &lp->state;
1597 lp->state.trx.len = 2;
1598 lp->state.trx.tx_buf = lp->state.buf;
1599 lp->state.trx.rx_buf = lp->state.buf;
1600 spi_message_add_tail(&lp->state.trx, &lp->state.msg);
1601 hrtimer_init(&lp->state.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1602 lp->state.timer.function = at86rf230_async_state_timer;
1603
1604 lp->irq.lp = lp;
1605 lp->irq.irq = lp->spi->irq;
1606 spi_message_init(&lp->irq.msg);
1607 lp->irq.msg.context = &lp->irq;
1608 lp->irq.trx.len = 2;
1609 lp->irq.trx.tx_buf = lp->irq.buf;
1610 lp->irq.trx.rx_buf = lp->irq.buf;
1611 spi_message_add_tail(&lp->irq.trx, &lp->irq.msg);
1612 hrtimer_init(&lp->irq.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1613 lp->irq.timer.function = at86rf230_async_state_timer;
1614
1615 lp->tx.lp = lp;
1616 lp->tx.irq = lp->spi->irq;
1617 spi_message_init(&lp->tx.msg);
1618 lp->tx.msg.context = &lp->tx;
1619 lp->tx.trx.len = 2;
1620 lp->tx.trx.tx_buf = lp->tx.buf;
1621 lp->tx.trx.rx_buf = lp->tx.buf;
1622 spi_message_add_tail(&lp->tx.trx, &lp->tx.msg);
1623 hrtimer_init(&lp->tx.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1624 lp->tx.timer.function = at86rf230_async_state_timer;
1625 }
1626
1627 static int at86rf230_probe(struct spi_device *spi)
1628 {
1629 struct ieee802154_hw *hw;
1630 struct at86rf230_local *lp;
1631 unsigned int status;
1632 int rc, irq_type, rstn, slp_tr;
1633 u8 xtal_trim = 0;
1634
1635 if (!spi->irq) {
1636 dev_err(&spi->dev, "no IRQ specified\n");
1637 return -EINVAL;
1638 }
1639
1640 rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim);
1641 if (rc < 0) {
1642 dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc);
1643 return rc;
1644 }
1645
1646 if (gpio_is_valid(rstn)) {
1647 rc = devm_gpio_request_one(&spi->dev, rstn,
1648 GPIOF_OUT_INIT_HIGH, "rstn");
1649 if (rc)
1650 return rc;
1651 }
1652
1653 if (gpio_is_valid(slp_tr)) {
1654 rc = devm_gpio_request_one(&spi->dev, slp_tr,
1655 GPIOF_OUT_INIT_LOW, "slp_tr");
1656 if (rc)
1657 return rc;
1658 }
1659
1660 /* Reset */
1661 if (gpio_is_valid(rstn)) {
1662 udelay(1);
1663 gpio_set_value(rstn, 0);
1664 udelay(1);
1665 gpio_set_value(rstn, 1);
1666 usleep_range(120, 240);
1667 }
1668
1669 hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1670 if (!hw)
1671 return -ENOMEM;
1672
1673 lp = hw->priv;
1674 lp->hw = hw;
1675 lp->spi = spi;
1676 hw->parent = &spi->dev;
1677 hw->vif_data_size = sizeof(*lp);
1678 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1679
1680 lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1681 if (IS_ERR(lp->regmap)) {
1682 rc = PTR_ERR(lp->regmap);
1683 dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1684 rc);
1685 goto free_dev;
1686 }
1687
1688 at86rf230_setup_spi_messages(lp);
1689
1690 rc = at86rf230_detect_device(lp);
1691 if (rc < 0)
1692 goto free_dev;
1693
1694 init_completion(&lp->state_complete);
1695
1696 spi_set_drvdata(spi, lp);
1697
1698 rc = at86rf230_hw_init(lp, xtal_trim);
1699 if (rc)
1700 goto free_dev;
1701
1702 /* Read irq status register to reset irq line */
1703 rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1704 if (rc)
1705 goto free_dev;
1706
1707 irq_type = irq_get_trigger_type(spi->irq);
1708 if (!irq_type)
1709 irq_type = IRQF_TRIGGER_RISING;
1710
1711 rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1712 IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1713 if (rc)
1714 goto free_dev;
1715
1716 rc = ieee802154_register_hw(lp->hw);
1717 if (rc)
1718 goto free_dev;
1719
1720 return rc;
1721
1722 free_dev:
1723 ieee802154_free_hw(lp->hw);
1724
1725 return rc;
1726 }
1727
1728 static int at86rf230_remove(struct spi_device *spi)
1729 {
1730 struct at86rf230_local *lp = spi_get_drvdata(spi);
1731
1732 /* mask all at86rf230 irq's */
1733 at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1734 ieee802154_unregister_hw(lp->hw);
1735 ieee802154_free_hw(lp->hw);
1736 dev_dbg(&spi->dev, "unregistered at86rf230\n");
1737
1738 return 0;
1739 }
1740
1741 static const struct of_device_id at86rf230_of_match[] = {
1742 { .compatible = "atmel,at86rf230", },
1743 { .compatible = "atmel,at86rf231", },
1744 { .compatible = "atmel,at86rf233", },
1745 { .compatible = "atmel,at86rf212", },
1746 { },
1747 };
1748 MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1749
1750 static const struct spi_device_id at86rf230_device_id[] = {
1751 { .name = "at86rf230", },
1752 { .name = "at86rf231", },
1753 { .name = "at86rf233", },
1754 { .name = "at86rf212", },
1755 { },
1756 };
1757 MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1758
1759 static struct spi_driver at86rf230_driver = {
1760 .id_table = at86rf230_device_id,
1761 .driver = {
1762 .of_match_table = of_match_ptr(at86rf230_of_match),
1763 .name = "at86rf230",
1764 .owner = THIS_MODULE,
1765 },
1766 .probe = at86rf230_probe,
1767 .remove = at86rf230_remove,
1768 };
1769
1770 module_spi_driver(at86rf230_driver);
1771
1772 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1773 MODULE_LICENSE("GPL v2");
This page took 0.091924 seconds and 6 git commands to generate.