at86rf230: add support for calibration timeout
[deliverable/linux.git] / drivers / net / ieee802154 / at86rf230.c
1 /*
2 * AT86RF230/RF231 driver
3 *
4 * Copyright (C) 2009-2012 Siemens AG
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * Written by:
16 * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
17 * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
18 * Alexander Aring <aar@pengutronix.de>
19 */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/hrtimer.h>
23 #include <linux/jiffies.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/gpio.h>
27 #include <linux/delay.h>
28 #include <linux/spinlock.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/at86rf230.h>
31 #include <linux/regmap.h>
32 #include <linux/skbuff.h>
33 #include <linux/of_gpio.h>
34 #include <linux/ieee802154.h>
35
36 #include <net/mac802154.h>
37 #include <net/cfg802154.h>
38
39 struct at86rf230_local;
40 /* at86rf2xx chip depend data.
41 * All timings are in us.
42 */
43 struct at86rf2xx_chip_data {
44 u16 t_sleep_cycle;
45 u16 t_channel_switch;
46 u16 t_reset_to_off;
47 u16 t_off_to_aack;
48 u16 t_off_to_tx_on;
49 u16 t_frame;
50 u16 t_p_ack;
51 int rssi_base_val;
52
53 int (*set_channel)(struct at86rf230_local *, u8, u8);
54 int (*get_desense_steps)(struct at86rf230_local *, s32);
55 };
56
57 #define AT86RF2XX_MAX_BUF (127 + 3)
58 /* tx retries to access the TX_ON state
59 * if it's above then force change will be started.
60 *
61 * We assume the max_frame_retries (7) value of 802.15.4 here.
62 */
63 #define AT86RF2XX_MAX_TX_RETRIES 7
64 /* We use the recommended 5 minutes timeout to recalibrate */
65 #define AT86RF2XX_CAL_LOOP_TIMEOUT (5 * 60 * HZ)
66
67 struct at86rf230_state_change {
68 struct at86rf230_local *lp;
69 int irq;
70
71 struct hrtimer timer;
72 struct spi_message msg;
73 struct spi_transfer trx;
74 u8 buf[AT86RF2XX_MAX_BUF];
75
76 void (*complete)(void *context);
77 u8 from_state;
78 u8 to_state;
79
80 bool irq_enable;
81 };
82
83 struct at86rf230_local {
84 struct spi_device *spi;
85
86 struct ieee802154_hw *hw;
87 struct at86rf2xx_chip_data *data;
88 struct regmap *regmap;
89
90 struct completion state_complete;
91 struct at86rf230_state_change state;
92
93 struct at86rf230_state_change irq;
94
95 bool tx_aret;
96 unsigned long cal_timeout;
97 s8 max_frame_retries;
98 bool is_tx;
99 /* spinlock for is_tx protection */
100 spinlock_t lock;
101 u8 tx_retry;
102 struct sk_buff *tx_skb;
103 struct at86rf230_state_change tx;
104 };
105
106 #define RG_TRX_STATUS (0x01)
107 #define SR_TRX_STATUS 0x01, 0x1f, 0
108 #define SR_RESERVED_01_3 0x01, 0x20, 5
109 #define SR_CCA_STATUS 0x01, 0x40, 6
110 #define SR_CCA_DONE 0x01, 0x80, 7
111 #define RG_TRX_STATE (0x02)
112 #define SR_TRX_CMD 0x02, 0x1f, 0
113 #define SR_TRAC_STATUS 0x02, 0xe0, 5
114 #define RG_TRX_CTRL_0 (0x03)
115 #define SR_CLKM_CTRL 0x03, 0x07, 0
116 #define SR_CLKM_SHA_SEL 0x03, 0x08, 3
117 #define SR_PAD_IO_CLKM 0x03, 0x30, 4
118 #define SR_PAD_IO 0x03, 0xc0, 6
119 #define RG_TRX_CTRL_1 (0x04)
120 #define SR_IRQ_POLARITY 0x04, 0x01, 0
121 #define SR_IRQ_MASK_MODE 0x04, 0x02, 1
122 #define SR_SPI_CMD_MODE 0x04, 0x0c, 2
123 #define SR_RX_BL_CTRL 0x04, 0x10, 4
124 #define SR_TX_AUTO_CRC_ON 0x04, 0x20, 5
125 #define SR_IRQ_2_EXT_EN 0x04, 0x40, 6
126 #define SR_PA_EXT_EN 0x04, 0x80, 7
127 #define RG_PHY_TX_PWR (0x05)
128 #define SR_TX_PWR 0x05, 0x0f, 0
129 #define SR_PA_LT 0x05, 0x30, 4
130 #define SR_PA_BUF_LT 0x05, 0xc0, 6
131 #define RG_PHY_RSSI (0x06)
132 #define SR_RSSI 0x06, 0x1f, 0
133 #define SR_RND_VALUE 0x06, 0x60, 5
134 #define SR_RX_CRC_VALID 0x06, 0x80, 7
135 #define RG_PHY_ED_LEVEL (0x07)
136 #define SR_ED_LEVEL 0x07, 0xff, 0
137 #define RG_PHY_CC_CCA (0x08)
138 #define SR_CHANNEL 0x08, 0x1f, 0
139 #define SR_CCA_MODE 0x08, 0x60, 5
140 #define SR_CCA_REQUEST 0x08, 0x80, 7
141 #define RG_CCA_THRES (0x09)
142 #define SR_CCA_ED_THRES 0x09, 0x0f, 0
143 #define SR_RESERVED_09_1 0x09, 0xf0, 4
144 #define RG_RX_CTRL (0x0a)
145 #define SR_PDT_THRES 0x0a, 0x0f, 0
146 #define SR_RESERVED_0a_1 0x0a, 0xf0, 4
147 #define RG_SFD_VALUE (0x0b)
148 #define SR_SFD_VALUE 0x0b, 0xff, 0
149 #define RG_TRX_CTRL_2 (0x0c)
150 #define SR_OQPSK_DATA_RATE 0x0c, 0x03, 0
151 #define SR_SUB_MODE 0x0c, 0x04, 2
152 #define SR_BPSK_QPSK 0x0c, 0x08, 3
153 #define SR_OQPSK_SUB1_RC_EN 0x0c, 0x10, 4
154 #define SR_RESERVED_0c_5 0x0c, 0x60, 5
155 #define SR_RX_SAFE_MODE 0x0c, 0x80, 7
156 #define RG_ANT_DIV (0x0d)
157 #define SR_ANT_CTRL 0x0d, 0x03, 0
158 #define SR_ANT_EXT_SW_EN 0x0d, 0x04, 2
159 #define SR_ANT_DIV_EN 0x0d, 0x08, 3
160 #define SR_RESERVED_0d_2 0x0d, 0x70, 4
161 #define SR_ANT_SEL 0x0d, 0x80, 7
162 #define RG_IRQ_MASK (0x0e)
163 #define SR_IRQ_MASK 0x0e, 0xff, 0
164 #define RG_IRQ_STATUS (0x0f)
165 #define SR_IRQ_0_PLL_LOCK 0x0f, 0x01, 0
166 #define SR_IRQ_1_PLL_UNLOCK 0x0f, 0x02, 1
167 #define SR_IRQ_2_RX_START 0x0f, 0x04, 2
168 #define SR_IRQ_3_TRX_END 0x0f, 0x08, 3
169 #define SR_IRQ_4_CCA_ED_DONE 0x0f, 0x10, 4
170 #define SR_IRQ_5_AMI 0x0f, 0x20, 5
171 #define SR_IRQ_6_TRX_UR 0x0f, 0x40, 6
172 #define SR_IRQ_7_BAT_LOW 0x0f, 0x80, 7
173 #define RG_VREG_CTRL (0x10)
174 #define SR_RESERVED_10_6 0x10, 0x03, 0
175 #define SR_DVDD_OK 0x10, 0x04, 2
176 #define SR_DVREG_EXT 0x10, 0x08, 3
177 #define SR_RESERVED_10_3 0x10, 0x30, 4
178 #define SR_AVDD_OK 0x10, 0x40, 6
179 #define SR_AVREG_EXT 0x10, 0x80, 7
180 #define RG_BATMON (0x11)
181 #define SR_BATMON_VTH 0x11, 0x0f, 0
182 #define SR_BATMON_HR 0x11, 0x10, 4
183 #define SR_BATMON_OK 0x11, 0x20, 5
184 #define SR_RESERVED_11_1 0x11, 0xc0, 6
185 #define RG_XOSC_CTRL (0x12)
186 #define SR_XTAL_TRIM 0x12, 0x0f, 0
187 #define SR_XTAL_MODE 0x12, 0xf0, 4
188 #define RG_RX_SYN (0x15)
189 #define SR_RX_PDT_LEVEL 0x15, 0x0f, 0
190 #define SR_RESERVED_15_2 0x15, 0x70, 4
191 #define SR_RX_PDT_DIS 0x15, 0x80, 7
192 #define RG_XAH_CTRL_1 (0x17)
193 #define SR_RESERVED_17_8 0x17, 0x01, 0
194 #define SR_AACK_PROM_MODE 0x17, 0x02, 1
195 #define SR_AACK_ACK_TIME 0x17, 0x04, 2
196 #define SR_RESERVED_17_5 0x17, 0x08, 3
197 #define SR_AACK_UPLD_RES_FT 0x17, 0x10, 4
198 #define SR_AACK_FLTR_RES_FT 0x17, 0x20, 5
199 #define SR_CSMA_LBT_MODE 0x17, 0x40, 6
200 #define SR_RESERVED_17_1 0x17, 0x80, 7
201 #define RG_FTN_CTRL (0x18)
202 #define SR_RESERVED_18_2 0x18, 0x7f, 0
203 #define SR_FTN_START 0x18, 0x80, 7
204 #define RG_PLL_CF (0x1a)
205 #define SR_RESERVED_1a_2 0x1a, 0x7f, 0
206 #define SR_PLL_CF_START 0x1a, 0x80, 7
207 #define RG_PLL_DCU (0x1b)
208 #define SR_RESERVED_1b_3 0x1b, 0x3f, 0
209 #define SR_RESERVED_1b_2 0x1b, 0x40, 6
210 #define SR_PLL_DCU_START 0x1b, 0x80, 7
211 #define RG_PART_NUM (0x1c)
212 #define SR_PART_NUM 0x1c, 0xff, 0
213 #define RG_VERSION_NUM (0x1d)
214 #define SR_VERSION_NUM 0x1d, 0xff, 0
215 #define RG_MAN_ID_0 (0x1e)
216 #define SR_MAN_ID_0 0x1e, 0xff, 0
217 #define RG_MAN_ID_1 (0x1f)
218 #define SR_MAN_ID_1 0x1f, 0xff, 0
219 #define RG_SHORT_ADDR_0 (0x20)
220 #define SR_SHORT_ADDR_0 0x20, 0xff, 0
221 #define RG_SHORT_ADDR_1 (0x21)
222 #define SR_SHORT_ADDR_1 0x21, 0xff, 0
223 #define RG_PAN_ID_0 (0x22)
224 #define SR_PAN_ID_0 0x22, 0xff, 0
225 #define RG_PAN_ID_1 (0x23)
226 #define SR_PAN_ID_1 0x23, 0xff, 0
227 #define RG_IEEE_ADDR_0 (0x24)
228 #define SR_IEEE_ADDR_0 0x24, 0xff, 0
229 #define RG_IEEE_ADDR_1 (0x25)
230 #define SR_IEEE_ADDR_1 0x25, 0xff, 0
231 #define RG_IEEE_ADDR_2 (0x26)
232 #define SR_IEEE_ADDR_2 0x26, 0xff, 0
233 #define RG_IEEE_ADDR_3 (0x27)
234 #define SR_IEEE_ADDR_3 0x27, 0xff, 0
235 #define RG_IEEE_ADDR_4 (0x28)
236 #define SR_IEEE_ADDR_4 0x28, 0xff, 0
237 #define RG_IEEE_ADDR_5 (0x29)
238 #define SR_IEEE_ADDR_5 0x29, 0xff, 0
239 #define RG_IEEE_ADDR_6 (0x2a)
240 #define SR_IEEE_ADDR_6 0x2a, 0xff, 0
241 #define RG_IEEE_ADDR_7 (0x2b)
242 #define SR_IEEE_ADDR_7 0x2b, 0xff, 0
243 #define RG_XAH_CTRL_0 (0x2c)
244 #define SR_SLOTTED_OPERATION 0x2c, 0x01, 0
245 #define SR_MAX_CSMA_RETRIES 0x2c, 0x0e, 1
246 #define SR_MAX_FRAME_RETRIES 0x2c, 0xf0, 4
247 #define RG_CSMA_SEED_0 (0x2d)
248 #define SR_CSMA_SEED_0 0x2d, 0xff, 0
249 #define RG_CSMA_SEED_1 (0x2e)
250 #define SR_CSMA_SEED_1 0x2e, 0x07, 0
251 #define SR_AACK_I_AM_COORD 0x2e, 0x08, 3
252 #define SR_AACK_DIS_ACK 0x2e, 0x10, 4
253 #define SR_AACK_SET_PD 0x2e, 0x20, 5
254 #define SR_AACK_FVN_MODE 0x2e, 0xc0, 6
255 #define RG_CSMA_BE (0x2f)
256 #define SR_MIN_BE 0x2f, 0x0f, 0
257 #define SR_MAX_BE 0x2f, 0xf0, 4
258
259 #define CMD_REG 0x80
260 #define CMD_REG_MASK 0x3f
261 #define CMD_WRITE 0x40
262 #define CMD_FB 0x20
263
264 #define IRQ_BAT_LOW (1 << 7)
265 #define IRQ_TRX_UR (1 << 6)
266 #define IRQ_AMI (1 << 5)
267 #define IRQ_CCA_ED (1 << 4)
268 #define IRQ_TRX_END (1 << 3)
269 #define IRQ_RX_START (1 << 2)
270 #define IRQ_PLL_UNL (1 << 1)
271 #define IRQ_PLL_LOCK (1 << 0)
272
273 #define IRQ_ACTIVE_HIGH 0
274 #define IRQ_ACTIVE_LOW 1
275
276 #define STATE_P_ON 0x00 /* BUSY */
277 #define STATE_BUSY_RX 0x01
278 #define STATE_BUSY_TX 0x02
279 #define STATE_FORCE_TRX_OFF 0x03
280 #define STATE_FORCE_TX_ON 0x04 /* IDLE */
281 /* 0x05 */ /* INVALID_PARAMETER */
282 #define STATE_RX_ON 0x06
283 /* 0x07 */ /* SUCCESS */
284 #define STATE_TRX_OFF 0x08
285 #define STATE_TX_ON 0x09
286 /* 0x0a - 0x0e */ /* 0x0a - UNSUPPORTED_ATTRIBUTE */
287 #define STATE_SLEEP 0x0F
288 #define STATE_PREP_DEEP_SLEEP 0x10
289 #define STATE_BUSY_RX_AACK 0x11
290 #define STATE_BUSY_TX_ARET 0x12
291 #define STATE_RX_AACK_ON 0x16
292 #define STATE_TX_ARET_ON 0x19
293 #define STATE_RX_ON_NOCLK 0x1C
294 #define STATE_RX_AACK_ON_NOCLK 0x1D
295 #define STATE_BUSY_RX_AACK_NOCLK 0x1E
296 #define STATE_TRANSITION_IN_PROGRESS 0x1F
297
298 #define AT86RF2XX_NUMREGS 0x3F
299
300 static void
301 at86rf230_async_state_change(struct at86rf230_local *lp,
302 struct at86rf230_state_change *ctx,
303 const u8 state, void (*complete)(void *context),
304 const bool irq_enable);
305
306 static inline int
307 __at86rf230_write(struct at86rf230_local *lp,
308 unsigned int addr, unsigned int data)
309 {
310 return regmap_write(lp->regmap, addr, data);
311 }
312
313 static inline int
314 __at86rf230_read(struct at86rf230_local *lp,
315 unsigned int addr, unsigned int *data)
316 {
317 return regmap_read(lp->regmap, addr, data);
318 }
319
320 static inline int
321 at86rf230_read_subreg(struct at86rf230_local *lp,
322 unsigned int addr, unsigned int mask,
323 unsigned int shift, unsigned int *data)
324 {
325 int rc;
326
327 rc = __at86rf230_read(lp, addr, data);
328 if (rc > 0)
329 *data = (*data & mask) >> shift;
330
331 return rc;
332 }
333
334 static inline int
335 at86rf230_write_subreg(struct at86rf230_local *lp,
336 unsigned int addr, unsigned int mask,
337 unsigned int shift, unsigned int data)
338 {
339 return regmap_update_bits(lp->regmap, addr, mask, data << shift);
340 }
341
342 static bool
343 at86rf230_reg_writeable(struct device *dev, unsigned int reg)
344 {
345 switch (reg) {
346 case RG_TRX_STATE:
347 case RG_TRX_CTRL_0:
348 case RG_TRX_CTRL_1:
349 case RG_PHY_TX_PWR:
350 case RG_PHY_ED_LEVEL:
351 case RG_PHY_CC_CCA:
352 case RG_CCA_THRES:
353 case RG_RX_CTRL:
354 case RG_SFD_VALUE:
355 case RG_TRX_CTRL_2:
356 case RG_ANT_DIV:
357 case RG_IRQ_MASK:
358 case RG_VREG_CTRL:
359 case RG_BATMON:
360 case RG_XOSC_CTRL:
361 case RG_RX_SYN:
362 case RG_XAH_CTRL_1:
363 case RG_FTN_CTRL:
364 case RG_PLL_CF:
365 case RG_PLL_DCU:
366 case RG_SHORT_ADDR_0:
367 case RG_SHORT_ADDR_1:
368 case RG_PAN_ID_0:
369 case RG_PAN_ID_1:
370 case RG_IEEE_ADDR_0:
371 case RG_IEEE_ADDR_1:
372 case RG_IEEE_ADDR_2:
373 case RG_IEEE_ADDR_3:
374 case RG_IEEE_ADDR_4:
375 case RG_IEEE_ADDR_5:
376 case RG_IEEE_ADDR_6:
377 case RG_IEEE_ADDR_7:
378 case RG_XAH_CTRL_0:
379 case RG_CSMA_SEED_0:
380 case RG_CSMA_SEED_1:
381 case RG_CSMA_BE:
382 return true;
383 default:
384 return false;
385 }
386 }
387
388 static bool
389 at86rf230_reg_readable(struct device *dev, unsigned int reg)
390 {
391 bool rc;
392
393 /* all writeable are also readable */
394 rc = at86rf230_reg_writeable(dev, reg);
395 if (rc)
396 return rc;
397
398 /* readonly regs */
399 switch (reg) {
400 case RG_TRX_STATUS:
401 case RG_PHY_RSSI:
402 case RG_IRQ_STATUS:
403 case RG_PART_NUM:
404 case RG_VERSION_NUM:
405 case RG_MAN_ID_1:
406 case RG_MAN_ID_0:
407 return true;
408 default:
409 return false;
410 }
411 }
412
413 static bool
414 at86rf230_reg_volatile(struct device *dev, unsigned int reg)
415 {
416 /* can be changed during runtime */
417 switch (reg) {
418 case RG_TRX_STATUS:
419 case RG_TRX_STATE:
420 case RG_PHY_RSSI:
421 case RG_PHY_ED_LEVEL:
422 case RG_IRQ_STATUS:
423 case RG_VREG_CTRL:
424 return true;
425 default:
426 return false;
427 }
428 }
429
430 static bool
431 at86rf230_reg_precious(struct device *dev, unsigned int reg)
432 {
433 /* don't clear irq line on read */
434 switch (reg) {
435 case RG_IRQ_STATUS:
436 return true;
437 default:
438 return false;
439 }
440 }
441
442 static const struct regmap_config at86rf230_regmap_spi_config = {
443 .reg_bits = 8,
444 .val_bits = 8,
445 .write_flag_mask = CMD_REG | CMD_WRITE,
446 .read_flag_mask = CMD_REG,
447 .cache_type = REGCACHE_RBTREE,
448 .max_register = AT86RF2XX_NUMREGS,
449 .writeable_reg = at86rf230_reg_writeable,
450 .readable_reg = at86rf230_reg_readable,
451 .volatile_reg = at86rf230_reg_volatile,
452 .precious_reg = at86rf230_reg_precious,
453 };
454
455 static void
456 at86rf230_async_error_recover(void *context)
457 {
458 struct at86rf230_state_change *ctx = context;
459 struct at86rf230_local *lp = ctx->lp;
460
461 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL, false);
462 ieee802154_wake_queue(lp->hw);
463 }
464
465 static inline void
466 at86rf230_async_error(struct at86rf230_local *lp,
467 struct at86rf230_state_change *ctx, int rc)
468 {
469 dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
470
471 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
472 at86rf230_async_error_recover, false);
473 }
474
475 /* Generic function to get some register value in async mode */
476 static void
477 at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg,
478 struct at86rf230_state_change *ctx,
479 void (*complete)(void *context),
480 const bool irq_enable)
481 {
482 int rc;
483
484 u8 *tx_buf = ctx->buf;
485
486 tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
487 ctx->msg.complete = complete;
488 ctx->irq_enable = irq_enable;
489 rc = spi_async(lp->spi, &ctx->msg);
490 if (rc) {
491 if (irq_enable)
492 enable_irq(ctx->irq);
493
494 at86rf230_async_error(lp, ctx, rc);
495 }
496 }
497
498 static inline u8 at86rf230_state_to_force(u8 state)
499 {
500 if (state == STATE_TX_ON)
501 return STATE_FORCE_TX_ON;
502 else
503 return STATE_FORCE_TRX_OFF;
504 }
505
506 static void
507 at86rf230_async_state_assert(void *context)
508 {
509 struct at86rf230_state_change *ctx = context;
510 struct at86rf230_local *lp = ctx->lp;
511 const u8 *buf = ctx->buf;
512 const u8 trx_state = buf[1] & 0x1f;
513
514 /* Assert state change */
515 if (trx_state != ctx->to_state) {
516 /* Special handling if transceiver state is in
517 * STATE_BUSY_RX_AACK and a SHR was detected.
518 */
519 if (trx_state == STATE_BUSY_RX_AACK) {
520 /* Undocumented race condition. If we send a state
521 * change to STATE_RX_AACK_ON the transceiver could
522 * change his state automatically to STATE_BUSY_RX_AACK
523 * if a SHR was detected. This is not an error, but we
524 * can't assert this.
525 */
526 if (ctx->to_state == STATE_RX_AACK_ON)
527 goto done;
528
529 /* If we change to STATE_TX_ON without forcing and
530 * transceiver state is STATE_BUSY_RX_AACK, we wait
531 * 'tFrame + tPAck' receiving time. In this time the
532 * PDU should be received. If the transceiver is still
533 * in STATE_BUSY_RX_AACK, we run a force state change
534 * to STATE_TX_ON. This is a timeout handling, if the
535 * transceiver stucks in STATE_BUSY_RX_AACK.
536 *
537 * Additional we do several retries to try to get into
538 * TX_ON state without forcing. If the retries are
539 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
540 * will do a force change.
541 */
542 if (ctx->to_state == STATE_TX_ON ||
543 ctx->to_state == STATE_TRX_OFF) {
544 u8 state = ctx->to_state;
545
546 if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
547 state = at86rf230_state_to_force(state);
548 lp->tx_retry++;
549
550 at86rf230_async_state_change(lp, ctx, state,
551 ctx->complete,
552 ctx->irq_enable);
553 return;
554 }
555 }
556
557 dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
558 ctx->from_state, ctx->to_state, trx_state);
559 }
560
561 done:
562 if (ctx->complete)
563 ctx->complete(context);
564 }
565
566 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
567 {
568 struct at86rf230_state_change *ctx =
569 container_of(timer, struct at86rf230_state_change, timer);
570 struct at86rf230_local *lp = ctx->lp;
571
572 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
573 at86rf230_async_state_assert,
574 ctx->irq_enable);
575
576 return HRTIMER_NORESTART;
577 }
578
579 /* Do state change timing delay. */
580 static void
581 at86rf230_async_state_delay(void *context)
582 {
583 struct at86rf230_state_change *ctx = context;
584 struct at86rf230_local *lp = ctx->lp;
585 struct at86rf2xx_chip_data *c = lp->data;
586 bool force = false;
587 ktime_t tim;
588
589 /* The force state changes are will show as normal states in the
590 * state status subregister. We change the to_state to the
591 * corresponding one and remember if it was a force change, this
592 * differs if we do a state change from STATE_BUSY_RX_AACK.
593 */
594 switch (ctx->to_state) {
595 case STATE_FORCE_TX_ON:
596 ctx->to_state = STATE_TX_ON;
597 force = true;
598 break;
599 case STATE_FORCE_TRX_OFF:
600 ctx->to_state = STATE_TRX_OFF;
601 force = true;
602 break;
603 default:
604 break;
605 }
606
607 switch (ctx->from_state) {
608 case STATE_TRX_OFF:
609 switch (ctx->to_state) {
610 case STATE_RX_AACK_ON:
611 tim = ktime_set(0, c->t_off_to_aack * NSEC_PER_USEC);
612 goto change;
613 case STATE_TX_ON:
614 tim = ktime_set(0, c->t_off_to_tx_on * NSEC_PER_USEC);
615 /* state change from TRX_OFF to TX_ON to do a
616 * calibration, we need to reset the timeout for the
617 * next one.
618 */
619 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
620 goto change;
621 default:
622 break;
623 }
624 break;
625 case STATE_BUSY_RX_AACK:
626 switch (ctx->to_state) {
627 case STATE_TRX_OFF:
628 case STATE_TX_ON:
629 /* Wait for worst case receiving time if we
630 * didn't make a force change from BUSY_RX_AACK
631 * to TX_ON or TRX_OFF.
632 */
633 if (!force) {
634 tim = ktime_set(0, (c->t_frame + c->t_p_ack) *
635 NSEC_PER_USEC);
636 goto change;
637 }
638 break;
639 default:
640 break;
641 }
642 break;
643 /* Default value, means RESET state */
644 case STATE_P_ON:
645 switch (ctx->to_state) {
646 case STATE_TRX_OFF:
647 tim = ktime_set(0, c->t_reset_to_off * NSEC_PER_USEC);
648 goto change;
649 default:
650 break;
651 }
652 break;
653 default:
654 break;
655 }
656
657 /* Default delay is 1us in the most cases */
658 tim = ktime_set(0, NSEC_PER_USEC);
659
660 change:
661 hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
662 }
663
664 static void
665 at86rf230_async_state_change_start(void *context)
666 {
667 struct at86rf230_state_change *ctx = context;
668 struct at86rf230_local *lp = ctx->lp;
669 u8 *buf = ctx->buf;
670 const u8 trx_state = buf[1] & 0x1f;
671 int rc;
672
673 /* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
674 if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
675 udelay(1);
676 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
677 at86rf230_async_state_change_start,
678 ctx->irq_enable);
679 return;
680 }
681
682 /* Check if we already are in the state which we change in */
683 if (trx_state == ctx->to_state) {
684 if (ctx->complete)
685 ctx->complete(context);
686 return;
687 }
688
689 /* Set current state to the context of state change */
690 ctx->from_state = trx_state;
691
692 /* Going into the next step for a state change which do a timing
693 * relevant delay.
694 */
695 buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
696 buf[1] = ctx->to_state;
697 ctx->msg.complete = at86rf230_async_state_delay;
698 rc = spi_async(lp->spi, &ctx->msg);
699 if (rc) {
700 if (ctx->irq_enable)
701 enable_irq(ctx->irq);
702
703 at86rf230_async_error(lp, ctx, rc);
704 }
705 }
706
707 static void
708 at86rf230_async_state_change(struct at86rf230_local *lp,
709 struct at86rf230_state_change *ctx,
710 const u8 state, void (*complete)(void *context),
711 const bool irq_enable)
712 {
713 /* Initialization for the state change context */
714 ctx->to_state = state;
715 ctx->complete = complete;
716 ctx->irq_enable = irq_enable;
717 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
718 at86rf230_async_state_change_start,
719 irq_enable);
720 }
721
722 static void
723 at86rf230_sync_state_change_complete(void *context)
724 {
725 struct at86rf230_state_change *ctx = context;
726 struct at86rf230_local *lp = ctx->lp;
727
728 complete(&lp->state_complete);
729 }
730
731 /* This function do a sync framework above the async state change.
732 * Some callbacks of the IEEE 802.15.4 driver interface need to be
733 * handled synchronously.
734 */
735 static int
736 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
737 {
738 unsigned long rc;
739
740 at86rf230_async_state_change(lp, &lp->state, state,
741 at86rf230_sync_state_change_complete,
742 false);
743
744 rc = wait_for_completion_timeout(&lp->state_complete,
745 msecs_to_jiffies(100));
746 if (!rc) {
747 at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
748 return -ETIMEDOUT;
749 }
750
751 return 0;
752 }
753
754 static void
755 at86rf230_tx_complete(void *context)
756 {
757 struct at86rf230_state_change *ctx = context;
758 struct at86rf230_local *lp = ctx->lp;
759
760 enable_irq(ctx->irq);
761
762 ieee802154_xmit_complete(lp->hw, lp->tx_skb, !lp->tx_aret);
763 }
764
765 static void
766 at86rf230_tx_on(void *context)
767 {
768 struct at86rf230_state_change *ctx = context;
769 struct at86rf230_local *lp = ctx->lp;
770
771 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
772 at86rf230_tx_complete, true);
773 }
774
775 static void
776 at86rf230_tx_trac_error(void *context)
777 {
778 struct at86rf230_state_change *ctx = context;
779 struct at86rf230_local *lp = ctx->lp;
780
781 at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
782 at86rf230_tx_on, true);
783 }
784
785 static void
786 at86rf230_tx_trac_check(void *context)
787 {
788 struct at86rf230_state_change *ctx = context;
789 struct at86rf230_local *lp = ctx->lp;
790 const u8 *buf = ctx->buf;
791 const u8 trac = (buf[1] & 0xe0) >> 5;
792
793 /* If trac status is different than zero we need to do a state change
794 * to STATE_FORCE_TRX_OFF then STATE_TX_ON to recover the transceiver
795 * state to TX_ON.
796 */
797 if (trac)
798 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
799 at86rf230_tx_trac_error, true);
800 else
801 at86rf230_tx_on(context);
802 }
803
804 static void
805 at86rf230_tx_trac_status(void *context)
806 {
807 struct at86rf230_state_change *ctx = context;
808 struct at86rf230_local *lp = ctx->lp;
809
810 at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
811 at86rf230_tx_trac_check, true);
812 }
813
814 static void
815 at86rf230_rx_read_frame_complete(void *context)
816 {
817 struct at86rf230_state_change *ctx = context;
818 struct at86rf230_local *lp = ctx->lp;
819 u8 rx_local_buf[AT86RF2XX_MAX_BUF];
820 const u8 *buf = ctx->buf;
821 struct sk_buff *skb;
822 u8 len, lqi;
823
824 len = buf[1];
825 if (!ieee802154_is_valid_psdu_len(len)) {
826 dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
827 len = IEEE802154_MTU;
828 }
829 lqi = buf[2 + len];
830
831 memcpy(rx_local_buf, buf + 2, len);
832 ctx->trx.len = 2;
833 enable_irq(ctx->irq);
834
835 skb = dev_alloc_skb(IEEE802154_MTU);
836 if (!skb) {
837 dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
838 return;
839 }
840
841 memcpy(skb_put(skb, len), rx_local_buf, len);
842 ieee802154_rx_irqsafe(lp->hw, skb, lqi);
843 }
844
845 static void
846 at86rf230_rx_read_frame(void *context)
847 {
848 struct at86rf230_state_change *ctx = context;
849 struct at86rf230_local *lp = ctx->lp;
850 u8 *buf = ctx->buf;
851 int rc;
852
853 buf[0] = CMD_FB;
854 ctx->trx.len = AT86RF2XX_MAX_BUF;
855 ctx->msg.complete = at86rf230_rx_read_frame_complete;
856 rc = spi_async(lp->spi, &ctx->msg);
857 if (rc) {
858 ctx->trx.len = 2;
859 enable_irq(ctx->irq);
860 at86rf230_async_error(lp, ctx, rc);
861 }
862 }
863
864 static void
865 at86rf230_rx_trac_check(void *context)
866 {
867 /* Possible check on trac status here. This could be useful to make
868 * some stats why receive is failed. Not used at the moment, but it's
869 * maybe timing relevant. Datasheet doesn't say anything about this.
870 * The programming guide say do it so.
871 */
872
873 at86rf230_rx_read_frame(context);
874 }
875
876 static void
877 at86rf230_irq_trx_end(struct at86rf230_local *lp)
878 {
879 spin_lock(&lp->lock);
880 if (lp->is_tx) {
881 lp->is_tx = 0;
882 spin_unlock(&lp->lock);
883
884 if (lp->tx_aret)
885 at86rf230_async_state_change(lp, &lp->irq,
886 STATE_FORCE_TX_ON,
887 at86rf230_tx_trac_status,
888 true);
889 else
890 at86rf230_async_state_change(lp, &lp->irq,
891 STATE_RX_AACK_ON,
892 at86rf230_tx_complete,
893 true);
894 } else {
895 spin_unlock(&lp->lock);
896 at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq,
897 at86rf230_rx_trac_check, true);
898 }
899 }
900
901 static void
902 at86rf230_irq_status(void *context)
903 {
904 struct at86rf230_state_change *ctx = context;
905 struct at86rf230_local *lp = ctx->lp;
906 const u8 *buf = ctx->buf;
907 const u8 irq = buf[1];
908
909 if (irq & IRQ_TRX_END) {
910 at86rf230_irq_trx_end(lp);
911 } else {
912 enable_irq(ctx->irq);
913 dev_err(&lp->spi->dev, "not supported irq %02x received\n",
914 irq);
915 }
916 }
917
918 static irqreturn_t at86rf230_isr(int irq, void *data)
919 {
920 struct at86rf230_local *lp = data;
921 struct at86rf230_state_change *ctx = &lp->irq;
922 u8 *buf = ctx->buf;
923 int rc;
924
925 disable_irq_nosync(irq);
926
927 buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
928 ctx->msg.complete = at86rf230_irq_status;
929 rc = spi_async(lp->spi, &ctx->msg);
930 if (rc) {
931 enable_irq(irq);
932 at86rf230_async_error(lp, ctx, rc);
933 return IRQ_NONE;
934 }
935
936 return IRQ_HANDLED;
937 }
938
939 static void
940 at86rf230_write_frame_complete(void *context)
941 {
942 struct at86rf230_state_change *ctx = context;
943 struct at86rf230_local *lp = ctx->lp;
944 u8 *buf = ctx->buf;
945 int rc;
946
947 buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
948 buf[1] = STATE_BUSY_TX;
949 ctx->trx.len = 2;
950 ctx->msg.complete = NULL;
951 rc = spi_async(lp->spi, &ctx->msg);
952 if (rc)
953 at86rf230_async_error(lp, ctx, rc);
954 }
955
956 static void
957 at86rf230_write_frame(void *context)
958 {
959 struct at86rf230_state_change *ctx = context;
960 struct at86rf230_local *lp = ctx->lp;
961 struct sk_buff *skb = lp->tx_skb;
962 u8 *buf = ctx->buf;
963 int rc;
964
965 spin_lock(&lp->lock);
966 lp->is_tx = 1;
967 spin_unlock(&lp->lock);
968
969 buf[0] = CMD_FB | CMD_WRITE;
970 buf[1] = skb->len + 2;
971 memcpy(buf + 2, skb->data, skb->len);
972 ctx->trx.len = skb->len + 2;
973 ctx->msg.complete = at86rf230_write_frame_complete;
974 rc = spi_async(lp->spi, &ctx->msg);
975 if (rc) {
976 ctx->trx.len = 2;
977 at86rf230_async_error(lp, ctx, rc);
978 }
979 }
980
981 static void
982 at86rf230_xmit_tx_on(void *context)
983 {
984 struct at86rf230_state_change *ctx = context;
985 struct at86rf230_local *lp = ctx->lp;
986
987 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
988 at86rf230_write_frame, false);
989 }
990
991 static void
992 at86rf230_xmit_start(void *context)
993 {
994 struct at86rf230_state_change *ctx = context;
995 struct at86rf230_local *lp = ctx->lp;
996
997 /* In ARET mode we need to go into STATE_TX_ARET_ON after we
998 * are in STATE_TX_ON. The pfad differs here, so we change
999 * the complete handler.
1000 */
1001 if (lp->tx_aret)
1002 at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
1003 at86rf230_xmit_tx_on, false);
1004 else
1005 at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
1006 at86rf230_write_frame, false);
1007 }
1008
1009 static int
1010 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
1011 {
1012 struct at86rf230_local *lp = hw->priv;
1013 struct at86rf230_state_change *ctx = &lp->tx;
1014
1015 lp->tx_skb = skb;
1016 lp->tx_retry = 0;
1017
1018 /* After 5 minutes in PLL and the same frequency we run again the
1019 * calibration loops which is recommended by at86rf2xx datasheets.
1020 *
1021 * The calibration is initiate by a state change from TRX_OFF
1022 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
1023 * function then to start in the next 5 minutes.
1024 */
1025 if (time_is_before_jiffies(lp->cal_timeout))
1026 at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
1027 at86rf230_xmit_start, false);
1028 else
1029 at86rf230_xmit_start(ctx);
1030
1031 return 0;
1032 }
1033
1034 static int
1035 at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
1036 {
1037 BUG_ON(!level);
1038 *level = 0xbe;
1039 return 0;
1040 }
1041
1042 static int
1043 at86rf230_start(struct ieee802154_hw *hw)
1044 {
1045 struct at86rf230_local *lp = hw->priv;
1046
1047 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1048 return at86rf230_sync_state_change(hw->priv, STATE_RX_AACK_ON);
1049 }
1050
1051 static void
1052 at86rf230_stop(struct ieee802154_hw *hw)
1053 {
1054 at86rf230_sync_state_change(hw->priv, STATE_FORCE_TRX_OFF);
1055 }
1056
1057 static int
1058 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1059 {
1060 return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1061 }
1062
1063 static int
1064 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1065 {
1066 int rc;
1067
1068 if (channel == 0)
1069 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1070 else
1071 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1072 if (rc < 0)
1073 return rc;
1074
1075 if (page == 0) {
1076 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1077 lp->data->rssi_base_val = -100;
1078 } else {
1079 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1080 lp->data->rssi_base_val = -98;
1081 }
1082 if (rc < 0)
1083 return rc;
1084
1085 /* This sets the symbol_duration according frequency on the 212.
1086 * TODO move this handling while set channel and page in cfg802154.
1087 * We can do that, this timings are according 802.15.4 standard.
1088 * If we do that in cfg802154, this is a more generic calculation.
1089 *
1090 * This should also protected from ifs_timer. Means cancel timer and
1091 * init with a new value. For now, this is okay.
1092 */
1093 if (channel == 0) {
1094 if (page == 0) {
1095 /* SUB:0 and BPSK:0 -> BPSK-20 */
1096 lp->hw->phy->symbol_duration = 50;
1097 } else {
1098 /* SUB:1 and BPSK:0 -> BPSK-40 */
1099 lp->hw->phy->symbol_duration = 25;
1100 }
1101 } else {
1102 if (page == 0)
1103 /* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */
1104 lp->hw->phy->symbol_duration = 40;
1105 else
1106 /* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */
1107 lp->hw->phy->symbol_duration = 16;
1108 }
1109
1110 lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD *
1111 lp->hw->phy->symbol_duration;
1112 lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD *
1113 lp->hw->phy->symbol_duration;
1114
1115 return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1116 }
1117
1118 static int
1119 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1120 {
1121 struct at86rf230_local *lp = hw->priv;
1122 int rc;
1123
1124 rc = lp->data->set_channel(lp, page, channel);
1125 /* Wait for PLL */
1126 usleep_range(lp->data->t_channel_switch,
1127 lp->data->t_channel_switch + 10);
1128
1129 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1130 return rc;
1131 }
1132
1133 static int
1134 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1135 struct ieee802154_hw_addr_filt *filt,
1136 unsigned long changed)
1137 {
1138 struct at86rf230_local *lp = hw->priv;
1139
1140 if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1141 u16 addr = le16_to_cpu(filt->short_addr);
1142
1143 dev_vdbg(&lp->spi->dev,
1144 "at86rf230_set_hw_addr_filt called for saddr\n");
1145 __at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1146 __at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1147 }
1148
1149 if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1150 u16 pan = le16_to_cpu(filt->pan_id);
1151
1152 dev_vdbg(&lp->spi->dev,
1153 "at86rf230_set_hw_addr_filt called for pan id\n");
1154 __at86rf230_write(lp, RG_PAN_ID_0, pan);
1155 __at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1156 }
1157
1158 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1159 u8 i, addr[8];
1160
1161 memcpy(addr, &filt->ieee_addr, 8);
1162 dev_vdbg(&lp->spi->dev,
1163 "at86rf230_set_hw_addr_filt called for IEEE addr\n");
1164 for (i = 0; i < 8; i++)
1165 __at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1166 }
1167
1168 if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1169 dev_vdbg(&lp->spi->dev,
1170 "at86rf230_set_hw_addr_filt called for panc change\n");
1171 if (filt->pan_coord)
1172 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1173 else
1174 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1175 }
1176
1177 return 0;
1178 }
1179
1180 static int
1181 at86rf230_set_txpower(struct ieee802154_hw *hw, int db)
1182 {
1183 struct at86rf230_local *lp = hw->priv;
1184
1185 /* typical maximum output is 5dBm with RG_PHY_TX_PWR 0x60, lower five
1186 * bits decrease power in 1dB steps. 0x60 represents extra PA gain of
1187 * 0dB.
1188 * thus, supported values for db range from -26 to 5, for 31dB of
1189 * reduction to 0dB of reduction.
1190 */
1191 if (db > 5 || db < -26)
1192 return -EINVAL;
1193
1194 db = -(db - 5);
1195
1196 return __at86rf230_write(lp, RG_PHY_TX_PWR, 0x60 | db);
1197 }
1198
1199 static int
1200 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1201 {
1202 struct at86rf230_local *lp = hw->priv;
1203
1204 return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1205 }
1206
1207 static int
1208 at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1209 const struct wpan_phy_cca *cca)
1210 {
1211 struct at86rf230_local *lp = hw->priv;
1212 u8 val;
1213
1214 /* mapping 802.15.4 to driver spec */
1215 switch (cca->mode) {
1216 case NL802154_CCA_ENERGY:
1217 val = 1;
1218 break;
1219 case NL802154_CCA_CARRIER:
1220 val = 2;
1221 break;
1222 case NL802154_CCA_ENERGY_CARRIER:
1223 switch (cca->opt) {
1224 case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1225 val = 3;
1226 break;
1227 case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1228 val = 0;
1229 break;
1230 default:
1231 return -EINVAL;
1232 }
1233 break;
1234 default:
1235 return -EINVAL;
1236 }
1237
1238 return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1239 }
1240
1241 static int
1242 at86rf212_get_desens_steps(struct at86rf230_local *lp, s32 level)
1243 {
1244 return (level - lp->data->rssi_base_val) * 100 / 207;
1245 }
1246
1247 static int
1248 at86rf23x_get_desens_steps(struct at86rf230_local *lp, s32 level)
1249 {
1250 return (level - lp->data->rssi_base_val) / 2;
1251 }
1252
1253 static int
1254 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 level)
1255 {
1256 struct at86rf230_local *lp = hw->priv;
1257
1258 if (level < lp->data->rssi_base_val || level > 30)
1259 return -EINVAL;
1260
1261 return at86rf230_write_subreg(lp, SR_CCA_ED_THRES,
1262 lp->data->get_desense_steps(lp, level));
1263 }
1264
1265 static int
1266 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1267 u8 retries)
1268 {
1269 struct at86rf230_local *lp = hw->priv;
1270 int rc;
1271
1272 rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1273 if (rc)
1274 return rc;
1275
1276 rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1277 if (rc)
1278 return rc;
1279
1280 return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1281 }
1282
1283 static int
1284 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1285 {
1286 struct at86rf230_local *lp = hw->priv;
1287 int rc = 0;
1288
1289 lp->tx_aret = retries >= 0;
1290 lp->max_frame_retries = retries;
1291
1292 if (retries >= 0)
1293 rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1294
1295 return rc;
1296 }
1297
1298 static int
1299 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1300 {
1301 struct at86rf230_local *lp = hw->priv;
1302 int rc;
1303
1304 if (on) {
1305 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1306 if (rc < 0)
1307 return rc;
1308
1309 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1310 if (rc < 0)
1311 return rc;
1312 } else {
1313 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1314 if (rc < 0)
1315 return rc;
1316
1317 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1318 if (rc < 0)
1319 return rc;
1320 }
1321
1322 return 0;
1323 }
1324
1325 static const struct ieee802154_ops at86rf230_ops = {
1326 .owner = THIS_MODULE,
1327 .xmit_async = at86rf230_xmit,
1328 .ed = at86rf230_ed,
1329 .set_channel = at86rf230_channel,
1330 .start = at86rf230_start,
1331 .stop = at86rf230_stop,
1332 .set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1333 .set_txpower = at86rf230_set_txpower,
1334 .set_lbt = at86rf230_set_lbt,
1335 .set_cca_mode = at86rf230_set_cca_mode,
1336 .set_cca_ed_level = at86rf230_set_cca_ed_level,
1337 .set_csma_params = at86rf230_set_csma_params,
1338 .set_frame_retries = at86rf230_set_frame_retries,
1339 .set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1340 };
1341
1342 static struct at86rf2xx_chip_data at86rf233_data = {
1343 .t_sleep_cycle = 330,
1344 .t_channel_switch = 11,
1345 .t_reset_to_off = 26,
1346 .t_off_to_aack = 80,
1347 .t_off_to_tx_on = 80,
1348 .t_frame = 4096,
1349 .t_p_ack = 545,
1350 .rssi_base_val = -91,
1351 .set_channel = at86rf23x_set_channel,
1352 .get_desense_steps = at86rf23x_get_desens_steps
1353 };
1354
1355 static struct at86rf2xx_chip_data at86rf231_data = {
1356 .t_sleep_cycle = 330,
1357 .t_channel_switch = 24,
1358 .t_reset_to_off = 37,
1359 .t_off_to_aack = 110,
1360 .t_off_to_tx_on = 110,
1361 .t_frame = 4096,
1362 .t_p_ack = 545,
1363 .rssi_base_val = -91,
1364 .set_channel = at86rf23x_set_channel,
1365 .get_desense_steps = at86rf23x_get_desens_steps
1366 };
1367
1368 static struct at86rf2xx_chip_data at86rf212_data = {
1369 .t_sleep_cycle = 330,
1370 .t_channel_switch = 11,
1371 .t_reset_to_off = 26,
1372 .t_off_to_aack = 200,
1373 .t_off_to_tx_on = 200,
1374 .t_frame = 4096,
1375 .t_p_ack = 545,
1376 .rssi_base_val = -100,
1377 .set_channel = at86rf212_set_channel,
1378 .get_desense_steps = at86rf212_get_desens_steps
1379 };
1380
1381 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1382 {
1383 int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1384 unsigned int dvdd;
1385 u8 csma_seed[2];
1386
1387 rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1388 if (rc)
1389 return rc;
1390
1391 irq_type = irq_get_trigger_type(lp->spi->irq);
1392 if (irq_type == IRQ_TYPE_EDGE_RISING ||
1393 irq_type == IRQ_TYPE_EDGE_FALLING)
1394 dev_warn(&lp->spi->dev,
1395 "Using edge triggered irq's are not recommended!\n");
1396 if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1397 irq_type == IRQ_TYPE_LEVEL_LOW)
1398 irq_pol = IRQ_ACTIVE_LOW;
1399
1400 rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1401 if (rc)
1402 return rc;
1403
1404 rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1405 if (rc)
1406 return rc;
1407
1408 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1409 if (rc)
1410 return rc;
1411
1412 /* reset values differs in at86rf231 and at86rf233 */
1413 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1414 if (rc)
1415 return rc;
1416
1417 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1418 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1419 if (rc)
1420 return rc;
1421 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1422 if (rc)
1423 return rc;
1424
1425 /* CLKM changes are applied immediately */
1426 rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1427 if (rc)
1428 return rc;
1429
1430 /* Turn CLKM Off */
1431 rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1432 if (rc)
1433 return rc;
1434 /* Wait the next SLEEP cycle */
1435 usleep_range(lp->data->t_sleep_cycle,
1436 lp->data->t_sleep_cycle + 100);
1437
1438 /* xtal_trim value is calculated by:
1439 * CL = 0.5 * (CX + CTRIM + CPAR)
1440 *
1441 * whereas:
1442 * CL = capacitor of used crystal
1443 * CX = connected capacitors at xtal pins
1444 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1445 * but this is different on each board setup. You need to fine
1446 * tuning this value via CTRIM.
1447 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1448 * 0 pF upto 4.5 pF.
1449 *
1450 * Examples:
1451 * atben transceiver:
1452 *
1453 * CL = 8 pF
1454 * CX = 12 pF
1455 * CPAR = 3 pF (We assume the magic constant from datasheet)
1456 * CTRIM = 0.9 pF
1457 *
1458 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1459 *
1460 * xtal_trim = 0x3
1461 *
1462 * openlabs transceiver:
1463 *
1464 * CL = 16 pF
1465 * CX = 22 pF
1466 * CPAR = 3 pF (We assume the magic constant from datasheet)
1467 * CTRIM = 4.5 pF
1468 *
1469 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1470 *
1471 * xtal_trim = 0xf
1472 */
1473 rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1474 if (rc)
1475 return rc;
1476
1477 rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1478 if (rc)
1479 return rc;
1480 if (!dvdd) {
1481 dev_err(&lp->spi->dev, "DVDD error\n");
1482 return -EINVAL;
1483 }
1484
1485 /* Force setting slotted operation bit to 0. Sometimes the atben
1486 * sets this bit and I don't know why. We set this always force
1487 * to zero while probing.
1488 */
1489 return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1490 }
1491
1492 static int
1493 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr,
1494 u8 *xtal_trim)
1495 {
1496 struct at86rf230_platform_data *pdata = spi->dev.platform_data;
1497 int ret;
1498
1499 if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) {
1500 if (!pdata)
1501 return -ENOENT;
1502
1503 *rstn = pdata->rstn;
1504 *slp_tr = pdata->slp_tr;
1505 *xtal_trim = pdata->xtal_trim;
1506 return 0;
1507 }
1508
1509 *rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
1510 *slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
1511 ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim);
1512 if (ret < 0 && ret != -EINVAL)
1513 return ret;
1514
1515 return 0;
1516 }
1517
1518 static int
1519 at86rf230_detect_device(struct at86rf230_local *lp)
1520 {
1521 unsigned int part, version, val;
1522 u16 man_id = 0;
1523 const char *chip;
1524 int rc;
1525
1526 rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1527 if (rc)
1528 return rc;
1529 man_id |= val;
1530
1531 rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1532 if (rc)
1533 return rc;
1534 man_id |= (val << 8);
1535
1536 rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1537 if (rc)
1538 return rc;
1539
1540 rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1541 if (rc)
1542 return rc;
1543
1544 if (man_id != 0x001f) {
1545 dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1546 man_id >> 8, man_id & 0xFF);
1547 return -EINVAL;
1548 }
1549
1550 lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AACK |
1551 IEEE802154_HW_TXPOWER | IEEE802154_HW_ARET |
1552 IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS;
1553
1554 lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1555
1556 switch (part) {
1557 case 2:
1558 chip = "at86rf230";
1559 rc = -ENOTSUPP;
1560 break;
1561 case 3:
1562 chip = "at86rf231";
1563 lp->data = &at86rf231_data;
1564 lp->hw->phy->channels_supported[0] = 0x7FFF800;
1565 lp->hw->phy->current_channel = 11;
1566 lp->hw->phy->symbol_duration = 16;
1567 break;
1568 case 7:
1569 chip = "at86rf212";
1570 lp->data = &at86rf212_data;
1571 lp->hw->flags |= IEEE802154_HW_LBT;
1572 lp->hw->phy->channels_supported[0] = 0x00007FF;
1573 lp->hw->phy->channels_supported[2] = 0x00007FF;
1574 lp->hw->phy->current_channel = 5;
1575 lp->hw->phy->symbol_duration = 25;
1576 break;
1577 case 11:
1578 chip = "at86rf233";
1579 lp->data = &at86rf233_data;
1580 lp->hw->phy->channels_supported[0] = 0x7FFF800;
1581 lp->hw->phy->current_channel = 13;
1582 lp->hw->phy->symbol_duration = 16;
1583 break;
1584 default:
1585 chip = "unknown";
1586 rc = -ENOTSUPP;
1587 break;
1588 }
1589
1590 dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1591
1592 return rc;
1593 }
1594
1595 static void
1596 at86rf230_setup_spi_messages(struct at86rf230_local *lp)
1597 {
1598 lp->state.lp = lp;
1599 lp->state.irq = lp->spi->irq;
1600 spi_message_init(&lp->state.msg);
1601 lp->state.msg.context = &lp->state;
1602 lp->state.trx.len = 2;
1603 lp->state.trx.tx_buf = lp->state.buf;
1604 lp->state.trx.rx_buf = lp->state.buf;
1605 spi_message_add_tail(&lp->state.trx, &lp->state.msg);
1606 hrtimer_init(&lp->state.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1607 lp->state.timer.function = at86rf230_async_state_timer;
1608
1609 lp->irq.lp = lp;
1610 lp->irq.irq = lp->spi->irq;
1611 spi_message_init(&lp->irq.msg);
1612 lp->irq.msg.context = &lp->irq;
1613 lp->irq.trx.len = 2;
1614 lp->irq.trx.tx_buf = lp->irq.buf;
1615 lp->irq.trx.rx_buf = lp->irq.buf;
1616 spi_message_add_tail(&lp->irq.trx, &lp->irq.msg);
1617 hrtimer_init(&lp->irq.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1618 lp->irq.timer.function = at86rf230_async_state_timer;
1619
1620 lp->tx.lp = lp;
1621 lp->tx.irq = lp->spi->irq;
1622 spi_message_init(&lp->tx.msg);
1623 lp->tx.msg.context = &lp->tx;
1624 lp->tx.trx.len = 2;
1625 lp->tx.trx.tx_buf = lp->tx.buf;
1626 lp->tx.trx.rx_buf = lp->tx.buf;
1627 spi_message_add_tail(&lp->tx.trx, &lp->tx.msg);
1628 hrtimer_init(&lp->tx.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1629 lp->tx.timer.function = at86rf230_async_state_timer;
1630 }
1631
1632 static int at86rf230_probe(struct spi_device *spi)
1633 {
1634 struct ieee802154_hw *hw;
1635 struct at86rf230_local *lp;
1636 unsigned int status;
1637 int rc, irq_type, rstn, slp_tr;
1638 u8 xtal_trim = 0;
1639
1640 if (!spi->irq) {
1641 dev_err(&spi->dev, "no IRQ specified\n");
1642 return -EINVAL;
1643 }
1644
1645 rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim);
1646 if (rc < 0) {
1647 dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc);
1648 return rc;
1649 }
1650
1651 if (gpio_is_valid(rstn)) {
1652 rc = devm_gpio_request_one(&spi->dev, rstn,
1653 GPIOF_OUT_INIT_HIGH, "rstn");
1654 if (rc)
1655 return rc;
1656 }
1657
1658 if (gpio_is_valid(slp_tr)) {
1659 rc = devm_gpio_request_one(&spi->dev, slp_tr,
1660 GPIOF_OUT_INIT_LOW, "slp_tr");
1661 if (rc)
1662 return rc;
1663 }
1664
1665 /* Reset */
1666 if (gpio_is_valid(rstn)) {
1667 udelay(1);
1668 gpio_set_value(rstn, 0);
1669 udelay(1);
1670 gpio_set_value(rstn, 1);
1671 usleep_range(120, 240);
1672 }
1673
1674 hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1675 if (!hw)
1676 return -ENOMEM;
1677
1678 lp = hw->priv;
1679 lp->hw = hw;
1680 lp->spi = spi;
1681 hw->parent = &spi->dev;
1682 hw->vif_data_size = sizeof(*lp);
1683 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1684
1685 lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1686 if (IS_ERR(lp->regmap)) {
1687 rc = PTR_ERR(lp->regmap);
1688 dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1689 rc);
1690 goto free_dev;
1691 }
1692
1693 at86rf230_setup_spi_messages(lp);
1694
1695 rc = at86rf230_detect_device(lp);
1696 if (rc < 0)
1697 goto free_dev;
1698
1699 spin_lock_init(&lp->lock);
1700 init_completion(&lp->state_complete);
1701
1702 spi_set_drvdata(spi, lp);
1703
1704 rc = at86rf230_hw_init(lp, xtal_trim);
1705 if (rc)
1706 goto free_dev;
1707
1708 /* Read irq status register to reset irq line */
1709 rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1710 if (rc)
1711 goto free_dev;
1712
1713 irq_type = irq_get_trigger_type(spi->irq);
1714 if (!irq_type)
1715 irq_type = IRQF_TRIGGER_RISING;
1716
1717 rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1718 IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1719 if (rc)
1720 goto free_dev;
1721
1722 rc = ieee802154_register_hw(lp->hw);
1723 if (rc)
1724 goto free_dev;
1725
1726 return rc;
1727
1728 free_dev:
1729 ieee802154_free_hw(lp->hw);
1730
1731 return rc;
1732 }
1733
1734 static int at86rf230_remove(struct spi_device *spi)
1735 {
1736 struct at86rf230_local *lp = spi_get_drvdata(spi);
1737
1738 /* mask all at86rf230 irq's */
1739 at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1740 ieee802154_unregister_hw(lp->hw);
1741 ieee802154_free_hw(lp->hw);
1742 dev_dbg(&spi->dev, "unregistered at86rf230\n");
1743
1744 return 0;
1745 }
1746
1747 static const struct of_device_id at86rf230_of_match[] = {
1748 { .compatible = "atmel,at86rf230", },
1749 { .compatible = "atmel,at86rf231", },
1750 { .compatible = "atmel,at86rf233", },
1751 { .compatible = "atmel,at86rf212", },
1752 { },
1753 };
1754 MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1755
1756 static const struct spi_device_id at86rf230_device_id[] = {
1757 { .name = "at86rf230", },
1758 { .name = "at86rf231", },
1759 { .name = "at86rf233", },
1760 { .name = "at86rf212", },
1761 { },
1762 };
1763 MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1764
1765 static struct spi_driver at86rf230_driver = {
1766 .id_table = at86rf230_device_id,
1767 .driver = {
1768 .of_match_table = of_match_ptr(at86rf230_of_match),
1769 .name = "at86rf230",
1770 .owner = THIS_MODULE,
1771 },
1772 .probe = at86rf230_probe,
1773 .remove = at86rf230_remove,
1774 };
1775
1776 module_spi_driver(at86rf230_driver);
1777
1778 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1779 MODULE_LICENSE("GPL v2");
This page took 0.118241 seconds and 6 git commands to generate.