igb: fix PHY config access on 82580
[deliverable/linux.git] / drivers / net / igb / e1000_82575.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29 * e1000_82576
30 */
31
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
34
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
37
38 static s32 igb_get_invariants_82575(struct e1000_hw *);
39 static s32 igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32 igb_check_for_link_82575(struct e1000_hw *);
44 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32 igb_init_hw_82575(struct e1000_hw *);
46 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32 igb_reset_hw_82575(struct e1000_hw *);
51 static s32 igb_reset_hw_82580(struct e1000_hw *);
52 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
54 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
55 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
56 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
57 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
58 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 u16 *);
60 static s32 igb_get_phy_id_82575(struct e1000_hw *);
61 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
62 static bool igb_sgmii_active_82575(struct e1000_hw *);
63 static s32 igb_reset_init_script_82575(struct e1000_hw *);
64 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
65 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
66
67 static const u16 e1000_82580_rxpbs_table[] =
68 { 36, 72, 144, 1, 2, 4, 8, 16,
69 35, 70, 140 };
70 #define E1000_82580_RXPBS_TABLE_SIZE \
71 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
72
73 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
74 {
75 struct e1000_phy_info *phy = &hw->phy;
76 struct e1000_nvm_info *nvm = &hw->nvm;
77 struct e1000_mac_info *mac = &hw->mac;
78 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
79 u32 eecd;
80 s32 ret_val;
81 u16 size;
82 u32 ctrl_ext = 0;
83
84 switch (hw->device_id) {
85 case E1000_DEV_ID_82575EB_COPPER:
86 case E1000_DEV_ID_82575EB_FIBER_SERDES:
87 case E1000_DEV_ID_82575GB_QUAD_COPPER:
88 mac->type = e1000_82575;
89 break;
90 case E1000_DEV_ID_82576:
91 case E1000_DEV_ID_82576_NS:
92 case E1000_DEV_ID_82576_NS_SERDES:
93 case E1000_DEV_ID_82576_FIBER:
94 case E1000_DEV_ID_82576_SERDES:
95 case E1000_DEV_ID_82576_QUAD_COPPER:
96 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
97 case E1000_DEV_ID_82576_SERDES_QUAD:
98 mac->type = e1000_82576;
99 break;
100 case E1000_DEV_ID_82580_COPPER:
101 case E1000_DEV_ID_82580_FIBER:
102 case E1000_DEV_ID_82580_SERDES:
103 case E1000_DEV_ID_82580_SGMII:
104 case E1000_DEV_ID_82580_COPPER_DUAL:
105 mac->type = e1000_82580;
106 break;
107 case E1000_DEV_ID_I350_COPPER:
108 case E1000_DEV_ID_I350_FIBER:
109 case E1000_DEV_ID_I350_SERDES:
110 case E1000_DEV_ID_I350_SGMII:
111 mac->type = e1000_i350;
112 break;
113 default:
114 return -E1000_ERR_MAC_INIT;
115 break;
116 }
117
118 /* Set media type */
119 /*
120 * The 82575 uses bits 22:23 for link mode. The mode can be changed
121 * based on the EEPROM. We cannot rely upon device ID. There
122 * is no distinguishable difference between fiber and internal
123 * SerDes mode on the 82575. There can be an external PHY attached
124 * on the SGMII interface. For this, we'll set sgmii_active to true.
125 */
126 phy->media_type = e1000_media_type_copper;
127 dev_spec->sgmii_active = false;
128
129 ctrl_ext = rd32(E1000_CTRL_EXT);
130 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
131 case E1000_CTRL_EXT_LINK_MODE_SGMII:
132 dev_spec->sgmii_active = true;
133 ctrl_ext |= E1000_CTRL_I2C_ENA;
134 break;
135 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
136 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
137 hw->phy.media_type = e1000_media_type_internal_serdes;
138 ctrl_ext |= E1000_CTRL_I2C_ENA;
139 break;
140 default:
141 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
142 break;
143 }
144
145 wr32(E1000_CTRL_EXT, ctrl_ext);
146
147 /*
148 * if using i2c make certain the MDICNFG register is cleared to prevent
149 * communications from being misrouted to the mdic registers
150 */
151 if ((ctrl_ext & E1000_CTRL_I2C_ENA) && (hw->mac.type == e1000_82580))
152 wr32(E1000_MDICNFG, 0);
153
154 /* Set mta register count */
155 mac->mta_reg_count = 128;
156 /* Set rar entry count */
157 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
158 if (mac->type == e1000_82576)
159 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
160 if (mac->type == e1000_82580)
161 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
162 if (mac->type == e1000_i350)
163 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
164 /* reset */
165 if (mac->type >= e1000_82580)
166 mac->ops.reset_hw = igb_reset_hw_82580;
167 else
168 mac->ops.reset_hw = igb_reset_hw_82575;
169 /* Set if part includes ASF firmware */
170 mac->asf_firmware_present = true;
171 /* Set if manageability features are enabled. */
172 mac->arc_subsystem_valid =
173 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
174 ? true : false;
175
176 /* physical interface link setup */
177 mac->ops.setup_physical_interface =
178 (hw->phy.media_type == e1000_media_type_copper)
179 ? igb_setup_copper_link_82575
180 : igb_setup_serdes_link_82575;
181
182 /* NVM initialization */
183 eecd = rd32(E1000_EECD);
184
185 nvm->opcode_bits = 8;
186 nvm->delay_usec = 1;
187 switch (nvm->override) {
188 case e1000_nvm_override_spi_large:
189 nvm->page_size = 32;
190 nvm->address_bits = 16;
191 break;
192 case e1000_nvm_override_spi_small:
193 nvm->page_size = 8;
194 nvm->address_bits = 8;
195 break;
196 default:
197 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
198 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
199 break;
200 }
201
202 nvm->type = e1000_nvm_eeprom_spi;
203
204 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
205 E1000_EECD_SIZE_EX_SHIFT);
206
207 /*
208 * Added to a constant, "size" becomes the left-shift value
209 * for setting word_size.
210 */
211 size += NVM_WORD_SIZE_BASE_SHIFT;
212
213 /* EEPROM access above 16k is unsupported */
214 if (size > 14)
215 size = 14;
216 nvm->word_size = 1 << size;
217
218 /* if 82576 then initialize mailbox parameters */
219 if (mac->type == e1000_82576)
220 igb_init_mbx_params_pf(hw);
221
222 /* setup PHY parameters */
223 if (phy->media_type != e1000_media_type_copper) {
224 phy->type = e1000_phy_none;
225 return 0;
226 }
227
228 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
229 phy->reset_delay_us = 100;
230
231 /* PHY function pointers */
232 if (igb_sgmii_active_82575(hw)) {
233 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
234 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
235 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
236 } else if (hw->mac.type >= e1000_82580) {
237 phy->ops.reset = igb_phy_hw_reset;
238 phy->ops.read_reg = igb_read_phy_reg_82580;
239 phy->ops.write_reg = igb_write_phy_reg_82580;
240 } else {
241 phy->ops.reset = igb_phy_hw_reset;
242 phy->ops.read_reg = igb_read_phy_reg_igp;
243 phy->ops.write_reg = igb_write_phy_reg_igp;
244 }
245
246 /* set lan id */
247 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
248 E1000_STATUS_FUNC_SHIFT;
249
250 /* Set phy->phy_addr and phy->id. */
251 ret_val = igb_get_phy_id_82575(hw);
252 if (ret_val)
253 return ret_val;
254
255 /* Verify phy id and set remaining function pointers */
256 switch (phy->id) {
257 case M88E1111_I_PHY_ID:
258 phy->type = e1000_phy_m88;
259 phy->ops.get_phy_info = igb_get_phy_info_m88;
260 phy->ops.get_cable_length = igb_get_cable_length_m88;
261 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
262 break;
263 case IGP03E1000_E_PHY_ID:
264 phy->type = e1000_phy_igp_3;
265 phy->ops.get_phy_info = igb_get_phy_info_igp;
266 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
267 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
268 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
269 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
270 break;
271 case I82580_I_PHY_ID:
272 case I350_I_PHY_ID:
273 phy->type = e1000_phy_82580;
274 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
275 phy->ops.get_cable_length = igb_get_cable_length_82580;
276 phy->ops.get_phy_info = igb_get_phy_info_82580;
277 break;
278 default:
279 return -E1000_ERR_PHY;
280 }
281
282 return 0;
283 }
284
285 /**
286 * igb_acquire_phy_82575 - Acquire rights to access PHY
287 * @hw: pointer to the HW structure
288 *
289 * Acquire access rights to the correct PHY. This is a
290 * function pointer entry point called by the api module.
291 **/
292 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
293 {
294 u16 mask = E1000_SWFW_PHY0_SM;
295
296 if (hw->bus.func == E1000_FUNC_1)
297 mask = E1000_SWFW_PHY1_SM;
298 else if (hw->bus.func == E1000_FUNC_2)
299 mask = E1000_SWFW_PHY2_SM;
300 else if (hw->bus.func == E1000_FUNC_3)
301 mask = E1000_SWFW_PHY3_SM;
302
303 return igb_acquire_swfw_sync_82575(hw, mask);
304 }
305
306 /**
307 * igb_release_phy_82575 - Release rights to access PHY
308 * @hw: pointer to the HW structure
309 *
310 * A wrapper to release access rights to the correct PHY. This is a
311 * function pointer entry point called by the api module.
312 **/
313 static void igb_release_phy_82575(struct e1000_hw *hw)
314 {
315 u16 mask = E1000_SWFW_PHY0_SM;
316
317 if (hw->bus.func == E1000_FUNC_1)
318 mask = E1000_SWFW_PHY1_SM;
319 else if (hw->bus.func == E1000_FUNC_2)
320 mask = E1000_SWFW_PHY2_SM;
321 else if (hw->bus.func == E1000_FUNC_3)
322 mask = E1000_SWFW_PHY3_SM;
323
324 igb_release_swfw_sync_82575(hw, mask);
325 }
326
327 /**
328 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
329 * @hw: pointer to the HW structure
330 * @offset: register offset to be read
331 * @data: pointer to the read data
332 *
333 * Reads the PHY register at offset using the serial gigabit media independent
334 * interface and stores the retrieved information in data.
335 **/
336 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
337 u16 *data)
338 {
339 s32 ret_val = -E1000_ERR_PARAM;
340
341 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
342 hw_dbg("PHY Address %u is out of range\n", offset);
343 goto out;
344 }
345
346 ret_val = hw->phy.ops.acquire(hw);
347 if (ret_val)
348 goto out;
349
350 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
351
352 hw->phy.ops.release(hw);
353
354 out:
355 return ret_val;
356 }
357
358 /**
359 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
360 * @hw: pointer to the HW structure
361 * @offset: register offset to write to
362 * @data: data to write at register offset
363 *
364 * Writes the data to PHY register at the offset using the serial gigabit
365 * media independent interface.
366 **/
367 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
368 u16 data)
369 {
370 s32 ret_val = -E1000_ERR_PARAM;
371
372
373 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
374 hw_dbg("PHY Address %d is out of range\n", offset);
375 goto out;
376 }
377
378 ret_val = hw->phy.ops.acquire(hw);
379 if (ret_val)
380 goto out;
381
382 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
383
384 hw->phy.ops.release(hw);
385
386 out:
387 return ret_val;
388 }
389
390 /**
391 * igb_get_phy_id_82575 - Retrieve PHY addr and id
392 * @hw: pointer to the HW structure
393 *
394 * Retrieves the PHY address and ID for both PHY's which do and do not use
395 * sgmi interface.
396 **/
397 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
398 {
399 struct e1000_phy_info *phy = &hw->phy;
400 s32 ret_val = 0;
401 u16 phy_id;
402 u32 ctrl_ext;
403
404 /*
405 * For SGMII PHYs, we try the list of possible addresses until
406 * we find one that works. For non-SGMII PHYs
407 * (e.g. integrated copper PHYs), an address of 1 should
408 * work. The result of this function should mean phy->phy_addr
409 * and phy->id are set correctly.
410 */
411 if (!(igb_sgmii_active_82575(hw))) {
412 phy->addr = 1;
413 ret_val = igb_get_phy_id(hw);
414 goto out;
415 }
416
417 /* Power on sgmii phy if it is disabled */
418 ctrl_ext = rd32(E1000_CTRL_EXT);
419 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
420 wrfl();
421 msleep(300);
422
423 /*
424 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
425 * Therefore, we need to test 1-7
426 */
427 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
428 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
429 if (ret_val == 0) {
430 hw_dbg("Vendor ID 0x%08X read at address %u\n",
431 phy_id, phy->addr);
432 /*
433 * At the time of this writing, The M88 part is
434 * the only supported SGMII PHY product.
435 */
436 if (phy_id == M88_VENDOR)
437 break;
438 } else {
439 hw_dbg("PHY address %u was unreadable\n", phy->addr);
440 }
441 }
442
443 /* A valid PHY type couldn't be found. */
444 if (phy->addr == 8) {
445 phy->addr = 0;
446 ret_val = -E1000_ERR_PHY;
447 goto out;
448 } else {
449 ret_val = igb_get_phy_id(hw);
450 }
451
452 /* restore previous sfp cage power state */
453 wr32(E1000_CTRL_EXT, ctrl_ext);
454
455 out:
456 return ret_val;
457 }
458
459 /**
460 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
461 * @hw: pointer to the HW structure
462 *
463 * Resets the PHY using the serial gigabit media independent interface.
464 **/
465 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
466 {
467 s32 ret_val;
468
469 /*
470 * This isn't a true "hard" reset, but is the only reset
471 * available to us at this time.
472 */
473
474 hw_dbg("Soft resetting SGMII attached PHY...\n");
475
476 /*
477 * SFP documentation requires the following to configure the SPF module
478 * to work on SGMII. No further documentation is given.
479 */
480 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
481 if (ret_val)
482 goto out;
483
484 ret_val = igb_phy_sw_reset(hw);
485
486 out:
487 return ret_val;
488 }
489
490 /**
491 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
492 * @hw: pointer to the HW structure
493 * @active: true to enable LPLU, false to disable
494 *
495 * Sets the LPLU D0 state according to the active flag. When
496 * activating LPLU this function also disables smart speed
497 * and vice versa. LPLU will not be activated unless the
498 * device autonegotiation advertisement meets standards of
499 * either 10 or 10/100 or 10/100/1000 at all duplexes.
500 * This is a function pointer entry point only called by
501 * PHY setup routines.
502 **/
503 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
504 {
505 struct e1000_phy_info *phy = &hw->phy;
506 s32 ret_val;
507 u16 data;
508
509 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
510 if (ret_val)
511 goto out;
512
513 if (active) {
514 data |= IGP02E1000_PM_D0_LPLU;
515 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
516 data);
517 if (ret_val)
518 goto out;
519
520 /* When LPLU is enabled, we should disable SmartSpeed */
521 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
522 &data);
523 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
524 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
525 data);
526 if (ret_val)
527 goto out;
528 } else {
529 data &= ~IGP02E1000_PM_D0_LPLU;
530 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
531 data);
532 /*
533 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
534 * during Dx states where the power conservation is most
535 * important. During driver activity we should enable
536 * SmartSpeed, so performance is maintained.
537 */
538 if (phy->smart_speed == e1000_smart_speed_on) {
539 ret_val = phy->ops.read_reg(hw,
540 IGP01E1000_PHY_PORT_CONFIG, &data);
541 if (ret_val)
542 goto out;
543
544 data |= IGP01E1000_PSCFR_SMART_SPEED;
545 ret_val = phy->ops.write_reg(hw,
546 IGP01E1000_PHY_PORT_CONFIG, data);
547 if (ret_val)
548 goto out;
549 } else if (phy->smart_speed == e1000_smart_speed_off) {
550 ret_val = phy->ops.read_reg(hw,
551 IGP01E1000_PHY_PORT_CONFIG, &data);
552 if (ret_val)
553 goto out;
554
555 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
556 ret_val = phy->ops.write_reg(hw,
557 IGP01E1000_PHY_PORT_CONFIG, data);
558 if (ret_val)
559 goto out;
560 }
561 }
562
563 out:
564 return ret_val;
565 }
566
567 /**
568 * igb_acquire_nvm_82575 - Request for access to EEPROM
569 * @hw: pointer to the HW structure
570 *
571 * Acquire the necessary semaphores for exclusive access to the EEPROM.
572 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
573 * Return successful if access grant bit set, else clear the request for
574 * EEPROM access and return -E1000_ERR_NVM (-1).
575 **/
576 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
577 {
578 s32 ret_val;
579
580 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
581 if (ret_val)
582 goto out;
583
584 ret_val = igb_acquire_nvm(hw);
585
586 if (ret_val)
587 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
588
589 out:
590 return ret_val;
591 }
592
593 /**
594 * igb_release_nvm_82575 - Release exclusive access to EEPROM
595 * @hw: pointer to the HW structure
596 *
597 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
598 * then release the semaphores acquired.
599 **/
600 static void igb_release_nvm_82575(struct e1000_hw *hw)
601 {
602 igb_release_nvm(hw);
603 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
604 }
605
606 /**
607 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
608 * @hw: pointer to the HW structure
609 * @mask: specifies which semaphore to acquire
610 *
611 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
612 * will also specify which port we're acquiring the lock for.
613 **/
614 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
615 {
616 u32 swfw_sync;
617 u32 swmask = mask;
618 u32 fwmask = mask << 16;
619 s32 ret_val = 0;
620 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
621
622 while (i < timeout) {
623 if (igb_get_hw_semaphore(hw)) {
624 ret_val = -E1000_ERR_SWFW_SYNC;
625 goto out;
626 }
627
628 swfw_sync = rd32(E1000_SW_FW_SYNC);
629 if (!(swfw_sync & (fwmask | swmask)))
630 break;
631
632 /*
633 * Firmware currently using resource (fwmask)
634 * or other software thread using resource (swmask)
635 */
636 igb_put_hw_semaphore(hw);
637 mdelay(5);
638 i++;
639 }
640
641 if (i == timeout) {
642 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
643 ret_val = -E1000_ERR_SWFW_SYNC;
644 goto out;
645 }
646
647 swfw_sync |= swmask;
648 wr32(E1000_SW_FW_SYNC, swfw_sync);
649
650 igb_put_hw_semaphore(hw);
651
652 out:
653 return ret_val;
654 }
655
656 /**
657 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
658 * @hw: pointer to the HW structure
659 * @mask: specifies which semaphore to acquire
660 *
661 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
662 * will also specify which port we're releasing the lock for.
663 **/
664 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
665 {
666 u32 swfw_sync;
667
668 while (igb_get_hw_semaphore(hw) != 0);
669 /* Empty */
670
671 swfw_sync = rd32(E1000_SW_FW_SYNC);
672 swfw_sync &= ~mask;
673 wr32(E1000_SW_FW_SYNC, swfw_sync);
674
675 igb_put_hw_semaphore(hw);
676 }
677
678 /**
679 * igb_get_cfg_done_82575 - Read config done bit
680 * @hw: pointer to the HW structure
681 *
682 * Read the management control register for the config done bit for
683 * completion status. NOTE: silicon which is EEPROM-less will fail trying
684 * to read the config done bit, so an error is *ONLY* logged and returns
685 * 0. If we were to return with error, EEPROM-less silicon
686 * would not be able to be reset or change link.
687 **/
688 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
689 {
690 s32 timeout = PHY_CFG_TIMEOUT;
691 s32 ret_val = 0;
692 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
693
694 if (hw->bus.func == 1)
695 mask = E1000_NVM_CFG_DONE_PORT_1;
696 else if (hw->bus.func == E1000_FUNC_2)
697 mask = E1000_NVM_CFG_DONE_PORT_2;
698 else if (hw->bus.func == E1000_FUNC_3)
699 mask = E1000_NVM_CFG_DONE_PORT_3;
700
701 while (timeout) {
702 if (rd32(E1000_EEMNGCTL) & mask)
703 break;
704 msleep(1);
705 timeout--;
706 }
707 if (!timeout)
708 hw_dbg("MNG configuration cycle has not completed.\n");
709
710 /* If EEPROM is not marked present, init the PHY manually */
711 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
712 (hw->phy.type == e1000_phy_igp_3))
713 igb_phy_init_script_igp3(hw);
714
715 return ret_val;
716 }
717
718 /**
719 * igb_check_for_link_82575 - Check for link
720 * @hw: pointer to the HW structure
721 *
722 * If sgmii is enabled, then use the pcs register to determine link, otherwise
723 * use the generic interface for determining link.
724 **/
725 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
726 {
727 s32 ret_val;
728 u16 speed, duplex;
729
730 if (hw->phy.media_type != e1000_media_type_copper) {
731 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
732 &duplex);
733 /*
734 * Use this flag to determine if link needs to be checked or
735 * not. If we have link clear the flag so that we do not
736 * continue to check for link.
737 */
738 hw->mac.get_link_status = !hw->mac.serdes_has_link;
739 } else {
740 ret_val = igb_check_for_copper_link(hw);
741 }
742
743 return ret_val;
744 }
745
746 /**
747 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
748 * @hw: pointer to the HW structure
749 **/
750 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
751 {
752 u32 reg;
753
754
755 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
756 !igb_sgmii_active_82575(hw))
757 return;
758
759 /* Enable PCS to turn on link */
760 reg = rd32(E1000_PCS_CFG0);
761 reg |= E1000_PCS_CFG_PCS_EN;
762 wr32(E1000_PCS_CFG0, reg);
763
764 /* Power up the laser */
765 reg = rd32(E1000_CTRL_EXT);
766 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
767 wr32(E1000_CTRL_EXT, reg);
768
769 /* flush the write to verify completion */
770 wrfl();
771 msleep(1);
772 }
773
774 /**
775 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
776 * @hw: pointer to the HW structure
777 * @speed: stores the current speed
778 * @duplex: stores the current duplex
779 *
780 * Using the physical coding sub-layer (PCS), retrieve the current speed and
781 * duplex, then store the values in the pointers provided.
782 **/
783 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
784 u16 *duplex)
785 {
786 struct e1000_mac_info *mac = &hw->mac;
787 u32 pcs;
788
789 /* Set up defaults for the return values of this function */
790 mac->serdes_has_link = false;
791 *speed = 0;
792 *duplex = 0;
793
794 /*
795 * Read the PCS Status register for link state. For non-copper mode,
796 * the status register is not accurate. The PCS status register is
797 * used instead.
798 */
799 pcs = rd32(E1000_PCS_LSTAT);
800
801 /*
802 * The link up bit determines when link is up on autoneg. The sync ok
803 * gets set once both sides sync up and agree upon link. Stable link
804 * can be determined by checking for both link up and link sync ok
805 */
806 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
807 mac->serdes_has_link = true;
808
809 /* Detect and store PCS speed */
810 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
811 *speed = SPEED_1000;
812 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
813 *speed = SPEED_100;
814 } else {
815 *speed = SPEED_10;
816 }
817
818 /* Detect and store PCS duplex */
819 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
820 *duplex = FULL_DUPLEX;
821 } else {
822 *duplex = HALF_DUPLEX;
823 }
824 }
825
826 return 0;
827 }
828
829 /**
830 * igb_shutdown_serdes_link_82575 - Remove link during power down
831 * @hw: pointer to the HW structure
832 *
833 * In the case of fiber serdes, shut down optics and PCS on driver unload
834 * when management pass thru is not enabled.
835 **/
836 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
837 {
838 u32 reg;
839
840 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
841 igb_sgmii_active_82575(hw))
842 return;
843
844 if (!igb_enable_mng_pass_thru(hw)) {
845 /* Disable PCS to turn off link */
846 reg = rd32(E1000_PCS_CFG0);
847 reg &= ~E1000_PCS_CFG_PCS_EN;
848 wr32(E1000_PCS_CFG0, reg);
849
850 /* shutdown the laser */
851 reg = rd32(E1000_CTRL_EXT);
852 reg |= E1000_CTRL_EXT_SDP3_DATA;
853 wr32(E1000_CTRL_EXT, reg);
854
855 /* flush the write to verify completion */
856 wrfl();
857 msleep(1);
858 }
859 }
860
861 /**
862 * igb_reset_hw_82575 - Reset hardware
863 * @hw: pointer to the HW structure
864 *
865 * This resets the hardware into a known state. This is a
866 * function pointer entry point called by the api module.
867 **/
868 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
869 {
870 u32 ctrl, icr;
871 s32 ret_val;
872
873 /*
874 * Prevent the PCI-E bus from sticking if there is no TLP connection
875 * on the last TLP read/write transaction when MAC is reset.
876 */
877 ret_val = igb_disable_pcie_master(hw);
878 if (ret_val)
879 hw_dbg("PCI-E Master disable polling has failed.\n");
880
881 /* set the completion timeout for interface */
882 ret_val = igb_set_pcie_completion_timeout(hw);
883 if (ret_val) {
884 hw_dbg("PCI-E Set completion timeout has failed.\n");
885 }
886
887 hw_dbg("Masking off all interrupts\n");
888 wr32(E1000_IMC, 0xffffffff);
889
890 wr32(E1000_RCTL, 0);
891 wr32(E1000_TCTL, E1000_TCTL_PSP);
892 wrfl();
893
894 msleep(10);
895
896 ctrl = rd32(E1000_CTRL);
897
898 hw_dbg("Issuing a global reset to MAC\n");
899 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
900
901 ret_val = igb_get_auto_rd_done(hw);
902 if (ret_val) {
903 /*
904 * When auto config read does not complete, do not
905 * return with an error. This can happen in situations
906 * where there is no eeprom and prevents getting link.
907 */
908 hw_dbg("Auto Read Done did not complete\n");
909 }
910
911 /* If EEPROM is not present, run manual init scripts */
912 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
913 igb_reset_init_script_82575(hw);
914
915 /* Clear any pending interrupt events. */
916 wr32(E1000_IMC, 0xffffffff);
917 icr = rd32(E1000_ICR);
918
919 /* Install any alternate MAC address into RAR0 */
920 ret_val = igb_check_alt_mac_addr(hw);
921
922 return ret_val;
923 }
924
925 /**
926 * igb_init_hw_82575 - Initialize hardware
927 * @hw: pointer to the HW structure
928 *
929 * This inits the hardware readying it for operation.
930 **/
931 static s32 igb_init_hw_82575(struct e1000_hw *hw)
932 {
933 struct e1000_mac_info *mac = &hw->mac;
934 s32 ret_val;
935 u16 i, rar_count = mac->rar_entry_count;
936
937 /* Initialize identification LED */
938 ret_val = igb_id_led_init(hw);
939 if (ret_val) {
940 hw_dbg("Error initializing identification LED\n");
941 /* This is not fatal and we should not stop init due to this */
942 }
943
944 /* Disabling VLAN filtering */
945 hw_dbg("Initializing the IEEE VLAN\n");
946 igb_clear_vfta(hw);
947
948 /* Setup the receive address */
949 igb_init_rx_addrs(hw, rar_count);
950
951 /* Zero out the Multicast HASH table */
952 hw_dbg("Zeroing the MTA\n");
953 for (i = 0; i < mac->mta_reg_count; i++)
954 array_wr32(E1000_MTA, i, 0);
955
956 /* Zero out the Unicast HASH table */
957 hw_dbg("Zeroing the UTA\n");
958 for (i = 0; i < mac->uta_reg_count; i++)
959 array_wr32(E1000_UTA, i, 0);
960
961 /* Setup link and flow control */
962 ret_val = igb_setup_link(hw);
963
964 /*
965 * Clear all of the statistics registers (clear on read). It is
966 * important that we do this after we have tried to establish link
967 * because the symbol error count will increment wildly if there
968 * is no link.
969 */
970 igb_clear_hw_cntrs_82575(hw);
971
972 return ret_val;
973 }
974
975 /**
976 * igb_setup_copper_link_82575 - Configure copper link settings
977 * @hw: pointer to the HW structure
978 *
979 * Configures the link for auto-neg or forced speed and duplex. Then we check
980 * for link, once link is established calls to configure collision distance
981 * and flow control are called.
982 **/
983 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
984 {
985 u32 ctrl;
986 s32 ret_val;
987
988 ctrl = rd32(E1000_CTRL);
989 ctrl |= E1000_CTRL_SLU;
990 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
991 wr32(E1000_CTRL, ctrl);
992
993 ret_val = igb_setup_serdes_link_82575(hw);
994 if (ret_val)
995 goto out;
996
997 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
998 /* allow time for SFP cage time to power up phy */
999 msleep(300);
1000
1001 ret_val = hw->phy.ops.reset(hw);
1002 if (ret_val) {
1003 hw_dbg("Error resetting the PHY.\n");
1004 goto out;
1005 }
1006 }
1007 switch (hw->phy.type) {
1008 case e1000_phy_m88:
1009 ret_val = igb_copper_link_setup_m88(hw);
1010 break;
1011 case e1000_phy_igp_3:
1012 ret_val = igb_copper_link_setup_igp(hw);
1013 break;
1014 case e1000_phy_82580:
1015 ret_val = igb_copper_link_setup_82580(hw);
1016 break;
1017 default:
1018 ret_val = -E1000_ERR_PHY;
1019 break;
1020 }
1021
1022 if (ret_val)
1023 goto out;
1024
1025 ret_val = igb_setup_copper_link(hw);
1026 out:
1027 return ret_val;
1028 }
1029
1030 /**
1031 * igb_setup_serdes_link_82575 - Setup link for serdes
1032 * @hw: pointer to the HW structure
1033 *
1034 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1035 * used on copper connections where the serialized gigabit media independent
1036 * interface (sgmii), or serdes fiber is being used. Configures the link
1037 * for auto-negotiation or forces speed/duplex.
1038 **/
1039 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1040 {
1041 u32 ctrl_ext, ctrl_reg, reg;
1042 bool pcs_autoneg;
1043
1044 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1045 !igb_sgmii_active_82575(hw))
1046 return 0;
1047
1048 /*
1049 * On the 82575, SerDes loopback mode persists until it is
1050 * explicitly turned off or a power cycle is performed. A read to
1051 * the register does not indicate its status. Therefore, we ensure
1052 * loopback mode is disabled during initialization.
1053 */
1054 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1055
1056 /* power on the sfp cage if present */
1057 ctrl_ext = rd32(E1000_CTRL_EXT);
1058 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1059 wr32(E1000_CTRL_EXT, ctrl_ext);
1060
1061 ctrl_reg = rd32(E1000_CTRL);
1062 ctrl_reg |= E1000_CTRL_SLU;
1063
1064 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1065 /* set both sw defined pins */
1066 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1067
1068 /* Set switch control to serdes energy detect */
1069 reg = rd32(E1000_CONNSW);
1070 reg |= E1000_CONNSW_ENRGSRC;
1071 wr32(E1000_CONNSW, reg);
1072 }
1073
1074 reg = rd32(E1000_PCS_LCTL);
1075
1076 /* default pcs_autoneg to the same setting as mac autoneg */
1077 pcs_autoneg = hw->mac.autoneg;
1078
1079 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1080 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1081 /* sgmii mode lets the phy handle forcing speed/duplex */
1082 pcs_autoneg = true;
1083 /* autoneg time out should be disabled for SGMII mode */
1084 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1085 break;
1086 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1087 /* disable PCS autoneg and support parallel detect only */
1088 pcs_autoneg = false;
1089 default:
1090 /*
1091 * non-SGMII modes only supports a speed of 1000/Full for the
1092 * link so it is best to just force the MAC and let the pcs
1093 * link either autoneg or be forced to 1000/Full
1094 */
1095 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1096 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1097
1098 /* set speed of 1000/Full if speed/duplex is forced */
1099 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1100 break;
1101 }
1102
1103 wr32(E1000_CTRL, ctrl_reg);
1104
1105 /*
1106 * New SerDes mode allows for forcing speed or autonegotiating speed
1107 * at 1gb. Autoneg should be default set by most drivers. This is the
1108 * mode that will be compatible with older link partners and switches.
1109 * However, both are supported by the hardware and some drivers/tools.
1110 */
1111 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1112 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1113
1114 /*
1115 * We force flow control to prevent the CTRL register values from being
1116 * overwritten by the autonegotiated flow control values
1117 */
1118 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1119
1120 if (pcs_autoneg) {
1121 /* Set PCS register for autoneg */
1122 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1123 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1124 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1125 } else {
1126 /* Set PCS register for forced link */
1127 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1128
1129 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1130 }
1131
1132 wr32(E1000_PCS_LCTL, reg);
1133
1134 if (!igb_sgmii_active_82575(hw))
1135 igb_force_mac_fc(hw);
1136
1137 return 0;
1138 }
1139
1140 /**
1141 * igb_sgmii_active_82575 - Return sgmii state
1142 * @hw: pointer to the HW structure
1143 *
1144 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1145 * which can be enabled for use in the embedded applications. Simply
1146 * return the current state of the sgmii interface.
1147 **/
1148 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1149 {
1150 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1151 return dev_spec->sgmii_active;
1152 }
1153
1154 /**
1155 * igb_reset_init_script_82575 - Inits HW defaults after reset
1156 * @hw: pointer to the HW structure
1157 *
1158 * Inits recommended HW defaults after a reset when there is no EEPROM
1159 * detected. This is only for the 82575.
1160 **/
1161 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1162 {
1163 if (hw->mac.type == e1000_82575) {
1164 hw_dbg("Running reset init script for 82575\n");
1165 /* SerDes configuration via SERDESCTRL */
1166 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1167 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1168 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1169 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1170
1171 /* CCM configuration via CCMCTL register */
1172 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1173 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1174
1175 /* PCIe lanes configuration */
1176 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1177 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1178 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1179 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1180
1181 /* PCIe PLL Configuration */
1182 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1183 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1184 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1185 }
1186
1187 return 0;
1188 }
1189
1190 /**
1191 * igb_read_mac_addr_82575 - Read device MAC address
1192 * @hw: pointer to the HW structure
1193 **/
1194 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1195 {
1196 s32 ret_val = 0;
1197
1198 /*
1199 * If there's an alternate MAC address place it in RAR0
1200 * so that it will override the Si installed default perm
1201 * address.
1202 */
1203 ret_val = igb_check_alt_mac_addr(hw);
1204 if (ret_val)
1205 goto out;
1206
1207 ret_val = igb_read_mac_addr(hw);
1208
1209 out:
1210 return ret_val;
1211 }
1212
1213 /**
1214 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1215 * @hw: pointer to the HW structure
1216 *
1217 * In the case of a PHY power down to save power, or to turn off link during a
1218 * driver unload, or wake on lan is not enabled, remove the link.
1219 **/
1220 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1221 {
1222 /* If the management interface is not enabled, then power down */
1223 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1224 igb_power_down_phy_copper(hw);
1225 }
1226
1227 /**
1228 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1229 * @hw: pointer to the HW structure
1230 *
1231 * Clears the hardware counters by reading the counter registers.
1232 **/
1233 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1234 {
1235 igb_clear_hw_cntrs_base(hw);
1236
1237 rd32(E1000_PRC64);
1238 rd32(E1000_PRC127);
1239 rd32(E1000_PRC255);
1240 rd32(E1000_PRC511);
1241 rd32(E1000_PRC1023);
1242 rd32(E1000_PRC1522);
1243 rd32(E1000_PTC64);
1244 rd32(E1000_PTC127);
1245 rd32(E1000_PTC255);
1246 rd32(E1000_PTC511);
1247 rd32(E1000_PTC1023);
1248 rd32(E1000_PTC1522);
1249
1250 rd32(E1000_ALGNERRC);
1251 rd32(E1000_RXERRC);
1252 rd32(E1000_TNCRS);
1253 rd32(E1000_CEXTERR);
1254 rd32(E1000_TSCTC);
1255 rd32(E1000_TSCTFC);
1256
1257 rd32(E1000_MGTPRC);
1258 rd32(E1000_MGTPDC);
1259 rd32(E1000_MGTPTC);
1260
1261 rd32(E1000_IAC);
1262 rd32(E1000_ICRXOC);
1263
1264 rd32(E1000_ICRXPTC);
1265 rd32(E1000_ICRXATC);
1266 rd32(E1000_ICTXPTC);
1267 rd32(E1000_ICTXATC);
1268 rd32(E1000_ICTXQEC);
1269 rd32(E1000_ICTXQMTC);
1270 rd32(E1000_ICRXDMTC);
1271
1272 rd32(E1000_CBTMPC);
1273 rd32(E1000_HTDPMC);
1274 rd32(E1000_CBRMPC);
1275 rd32(E1000_RPTHC);
1276 rd32(E1000_HGPTC);
1277 rd32(E1000_HTCBDPC);
1278 rd32(E1000_HGORCL);
1279 rd32(E1000_HGORCH);
1280 rd32(E1000_HGOTCL);
1281 rd32(E1000_HGOTCH);
1282 rd32(E1000_LENERRS);
1283
1284 /* This register should not be read in copper configurations */
1285 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1286 igb_sgmii_active_82575(hw))
1287 rd32(E1000_SCVPC);
1288 }
1289
1290 /**
1291 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1292 * @hw: pointer to the HW structure
1293 *
1294 * After rx enable if managability is enabled then there is likely some
1295 * bad data at the start of the fifo and possibly in the DMA fifo. This
1296 * function clears the fifos and flushes any packets that came in as rx was
1297 * being enabled.
1298 **/
1299 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1300 {
1301 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1302 int i, ms_wait;
1303
1304 if (hw->mac.type != e1000_82575 ||
1305 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1306 return;
1307
1308 /* Disable all RX queues */
1309 for (i = 0; i < 4; i++) {
1310 rxdctl[i] = rd32(E1000_RXDCTL(i));
1311 wr32(E1000_RXDCTL(i),
1312 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1313 }
1314 /* Poll all queues to verify they have shut down */
1315 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1316 msleep(1);
1317 rx_enabled = 0;
1318 for (i = 0; i < 4; i++)
1319 rx_enabled |= rd32(E1000_RXDCTL(i));
1320 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1321 break;
1322 }
1323
1324 if (ms_wait == 10)
1325 hw_dbg("Queue disable timed out after 10ms\n");
1326
1327 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1328 * incoming packets are rejected. Set enable and wait 2ms so that
1329 * any packet that was coming in as RCTL.EN was set is flushed
1330 */
1331 rfctl = rd32(E1000_RFCTL);
1332 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1333
1334 rlpml = rd32(E1000_RLPML);
1335 wr32(E1000_RLPML, 0);
1336
1337 rctl = rd32(E1000_RCTL);
1338 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1339 temp_rctl |= E1000_RCTL_LPE;
1340
1341 wr32(E1000_RCTL, temp_rctl);
1342 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1343 wrfl();
1344 msleep(2);
1345
1346 /* Enable RX queues that were previously enabled and restore our
1347 * previous state
1348 */
1349 for (i = 0; i < 4; i++)
1350 wr32(E1000_RXDCTL(i), rxdctl[i]);
1351 wr32(E1000_RCTL, rctl);
1352 wrfl();
1353
1354 wr32(E1000_RLPML, rlpml);
1355 wr32(E1000_RFCTL, rfctl);
1356
1357 /* Flush receive errors generated by workaround */
1358 rd32(E1000_ROC);
1359 rd32(E1000_RNBC);
1360 rd32(E1000_MPC);
1361 }
1362
1363 /**
1364 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1365 * @hw: pointer to the HW structure
1366 *
1367 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1368 * however the hardware default for these parts is 500us to 1ms which is less
1369 * than the 10ms recommended by the pci-e spec. To address this we need to
1370 * increase the value to either 10ms to 200ms for capability version 1 config,
1371 * or 16ms to 55ms for version 2.
1372 **/
1373 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1374 {
1375 u32 gcr = rd32(E1000_GCR);
1376 s32 ret_val = 0;
1377 u16 pcie_devctl2;
1378
1379 /* only take action if timeout value is defaulted to 0 */
1380 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1381 goto out;
1382
1383 /*
1384 * if capababilities version is type 1 we can write the
1385 * timeout of 10ms to 200ms through the GCR register
1386 */
1387 if (!(gcr & E1000_GCR_CAP_VER2)) {
1388 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1389 goto out;
1390 }
1391
1392 /*
1393 * for version 2 capabilities we need to write the config space
1394 * directly in order to set the completion timeout value for
1395 * 16ms to 55ms
1396 */
1397 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1398 &pcie_devctl2);
1399 if (ret_val)
1400 goto out;
1401
1402 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1403
1404 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1405 &pcie_devctl2);
1406 out:
1407 /* disable completion timeout resend */
1408 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1409
1410 wr32(E1000_GCR, gcr);
1411 return ret_val;
1412 }
1413
1414 /**
1415 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1416 * @hw: pointer to the hardware struct
1417 * @enable: state to enter, either enabled or disabled
1418 *
1419 * enables/disables L2 switch loopback functionality.
1420 **/
1421 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1422 {
1423 u32 dtxswc = rd32(E1000_DTXSWC);
1424
1425 if (enable)
1426 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1427 else
1428 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1429
1430 wr32(E1000_DTXSWC, dtxswc);
1431 }
1432
1433 /**
1434 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1435 * @hw: pointer to the hardware struct
1436 * @enable: state to enter, either enabled or disabled
1437 *
1438 * enables/disables replication of packets across multiple pools.
1439 **/
1440 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1441 {
1442 u32 vt_ctl = rd32(E1000_VT_CTL);
1443
1444 if (enable)
1445 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1446 else
1447 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1448
1449 wr32(E1000_VT_CTL, vt_ctl);
1450 }
1451
1452 /**
1453 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1454 * @hw: pointer to the HW structure
1455 * @offset: register offset to be read
1456 * @data: pointer to the read data
1457 *
1458 * Reads the MDI control register in the PHY at offset and stores the
1459 * information read to data.
1460 **/
1461 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1462 {
1463 s32 ret_val;
1464
1465
1466 ret_val = hw->phy.ops.acquire(hw);
1467 if (ret_val)
1468 goto out;
1469
1470 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1471
1472 hw->phy.ops.release(hw);
1473
1474 out:
1475 return ret_val;
1476 }
1477
1478 /**
1479 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1480 * @hw: pointer to the HW structure
1481 * @offset: register offset to write to
1482 * @data: data to write to register at offset
1483 *
1484 * Writes data to MDI control register in the PHY at offset.
1485 **/
1486 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1487 {
1488 s32 ret_val;
1489
1490
1491 ret_val = hw->phy.ops.acquire(hw);
1492 if (ret_val)
1493 goto out;
1494
1495 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1496
1497 hw->phy.ops.release(hw);
1498
1499 out:
1500 return ret_val;
1501 }
1502
1503 /**
1504 * igb_reset_hw_82580 - Reset hardware
1505 * @hw: pointer to the HW structure
1506 *
1507 * This resets function or entire device (all ports, etc.)
1508 * to a known state.
1509 **/
1510 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1511 {
1512 s32 ret_val = 0;
1513 /* BH SW mailbox bit in SW_FW_SYNC */
1514 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1515 u32 ctrl, icr;
1516 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1517
1518
1519 hw->dev_spec._82575.global_device_reset = false;
1520
1521 /* Get current control state. */
1522 ctrl = rd32(E1000_CTRL);
1523
1524 /*
1525 * Prevent the PCI-E bus from sticking if there is no TLP connection
1526 * on the last TLP read/write transaction when MAC is reset.
1527 */
1528 ret_val = igb_disable_pcie_master(hw);
1529 if (ret_val)
1530 hw_dbg("PCI-E Master disable polling has failed.\n");
1531
1532 hw_dbg("Masking off all interrupts\n");
1533 wr32(E1000_IMC, 0xffffffff);
1534 wr32(E1000_RCTL, 0);
1535 wr32(E1000_TCTL, E1000_TCTL_PSP);
1536 wrfl();
1537
1538 msleep(10);
1539
1540 /* Determine whether or not a global dev reset is requested */
1541 if (global_device_reset &&
1542 igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1543 global_device_reset = false;
1544
1545 if (global_device_reset &&
1546 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1547 ctrl |= E1000_CTRL_DEV_RST;
1548 else
1549 ctrl |= E1000_CTRL_RST;
1550
1551 wr32(E1000_CTRL, ctrl);
1552
1553 /* Add delay to insure DEV_RST has time to complete */
1554 if (global_device_reset)
1555 msleep(5);
1556
1557 ret_val = igb_get_auto_rd_done(hw);
1558 if (ret_val) {
1559 /*
1560 * When auto config read does not complete, do not
1561 * return with an error. This can happen in situations
1562 * where there is no eeprom and prevents getting link.
1563 */
1564 hw_dbg("Auto Read Done did not complete\n");
1565 }
1566
1567 /* If EEPROM is not present, run manual init scripts */
1568 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1569 igb_reset_init_script_82575(hw);
1570
1571 /* clear global device reset status bit */
1572 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1573
1574 /* Clear any pending interrupt events. */
1575 wr32(E1000_IMC, 0xffffffff);
1576 icr = rd32(E1000_ICR);
1577
1578 /* Install any alternate MAC address into RAR0 */
1579 ret_val = igb_check_alt_mac_addr(hw);
1580
1581 /* Release semaphore */
1582 if (global_device_reset)
1583 igb_release_swfw_sync_82575(hw, swmbsw_mask);
1584
1585 return ret_val;
1586 }
1587
1588 /**
1589 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1590 * @data: data received by reading RXPBS register
1591 *
1592 * The 82580 uses a table based approach for packet buffer allocation sizes.
1593 * This function converts the retrieved value into the correct table value
1594 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1595 * 0x0 36 72 144 1 2 4 8 16
1596 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1597 */
1598 u16 igb_rxpbs_adjust_82580(u32 data)
1599 {
1600 u16 ret_val = 0;
1601
1602 if (data < E1000_82580_RXPBS_TABLE_SIZE)
1603 ret_val = e1000_82580_rxpbs_table[data];
1604
1605 return ret_val;
1606 }
1607
1608 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1609 .init_hw = igb_init_hw_82575,
1610 .check_for_link = igb_check_for_link_82575,
1611 .rar_set = igb_rar_set,
1612 .read_mac_addr = igb_read_mac_addr_82575,
1613 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1614 };
1615
1616 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1617 .acquire = igb_acquire_phy_82575,
1618 .get_cfg_done = igb_get_cfg_done_82575,
1619 .release = igb_release_phy_82575,
1620 };
1621
1622 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1623 .acquire = igb_acquire_nvm_82575,
1624 .read = igb_read_nvm_eerd,
1625 .release = igb_release_nvm_82575,
1626 .write = igb_write_nvm_spi,
1627 };
1628
1629 const struct e1000_info e1000_82575_info = {
1630 .get_invariants = igb_get_invariants_82575,
1631 .mac_ops = &e1000_mac_ops_82575,
1632 .phy_ops = &e1000_phy_ops_82575,
1633 .nvm_ops = &e1000_nvm_ops_82575,
1634 };
1635
This page took 0.132988 seconds and 5 git commands to generate.