ext3: Flush disk caches on fsync when needed
[deliverable/linux.git] / drivers / net / igb / e1000_82575.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29 * e1000_82576
30 */
31
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
35
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
38
39 static s32 igb_get_invariants_82575(struct e1000_hw *);
40 static s32 igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32 igb_check_for_link_82575(struct e1000_hw *);
45 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32 igb_init_hw_82575(struct e1000_hw *);
47 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32 igb_reset_hw_82575(struct e1000_hw *);
50 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56 static void igb_configure_pcs_link_82575(struct e1000_hw *);
57 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
58 u16 *);
59 static s32 igb_get_phy_id_82575(struct e1000_hw *);
60 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61 static bool igb_sgmii_active_82575(struct e1000_hw *);
62 static s32 igb_reset_init_script_82575(struct e1000_hw *);
63 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
64 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
65
66 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
67 {
68 struct e1000_phy_info *phy = &hw->phy;
69 struct e1000_nvm_info *nvm = &hw->nvm;
70 struct e1000_mac_info *mac = &hw->mac;
71 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
72 u32 eecd;
73 s32 ret_val;
74 u16 size;
75 u32 ctrl_ext = 0;
76
77 switch (hw->device_id) {
78 case E1000_DEV_ID_82575EB_COPPER:
79 case E1000_DEV_ID_82575EB_FIBER_SERDES:
80 case E1000_DEV_ID_82575GB_QUAD_COPPER:
81 mac->type = e1000_82575;
82 break;
83 case E1000_DEV_ID_82576:
84 case E1000_DEV_ID_82576_NS:
85 case E1000_DEV_ID_82576_FIBER:
86 case E1000_DEV_ID_82576_SERDES:
87 case E1000_DEV_ID_82576_QUAD_COPPER:
88 case E1000_DEV_ID_82576_SERDES_QUAD:
89 mac->type = e1000_82576;
90 break;
91 default:
92 return -E1000_ERR_MAC_INIT;
93 break;
94 }
95
96 /* Set media type */
97 /*
98 * The 82575 uses bits 22:23 for link mode. The mode can be changed
99 * based on the EEPROM. We cannot rely upon device ID. There
100 * is no distinguishable difference between fiber and internal
101 * SerDes mode on the 82575. There can be an external PHY attached
102 * on the SGMII interface. For this, we'll set sgmii_active to true.
103 */
104 phy->media_type = e1000_media_type_copper;
105 dev_spec->sgmii_active = false;
106
107 ctrl_ext = rd32(E1000_CTRL_EXT);
108 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
109 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
110 hw->phy.media_type = e1000_media_type_internal_serdes;
111 ctrl_ext |= E1000_CTRL_I2C_ENA;
112 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
113 dev_spec->sgmii_active = true;
114 ctrl_ext |= E1000_CTRL_I2C_ENA;
115 } else {
116 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
117 }
118 wr32(E1000_CTRL_EXT, ctrl_ext);
119
120 /* Set mta register count */
121 mac->mta_reg_count = 128;
122 /* Set rar entry count */
123 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
124 if (mac->type == e1000_82576)
125 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
126 /* Set if part includes ASF firmware */
127 mac->asf_firmware_present = true;
128 /* Set if manageability features are enabled. */
129 mac->arc_subsystem_valid =
130 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
131 ? true : false;
132
133 /* physical interface link setup */
134 mac->ops.setup_physical_interface =
135 (hw->phy.media_type == e1000_media_type_copper)
136 ? igb_setup_copper_link_82575
137 : igb_setup_fiber_serdes_link_82575;
138
139 /* NVM initialization */
140 eecd = rd32(E1000_EECD);
141
142 nvm->opcode_bits = 8;
143 nvm->delay_usec = 1;
144 switch (nvm->override) {
145 case e1000_nvm_override_spi_large:
146 nvm->page_size = 32;
147 nvm->address_bits = 16;
148 break;
149 case e1000_nvm_override_spi_small:
150 nvm->page_size = 8;
151 nvm->address_bits = 8;
152 break;
153 default:
154 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
155 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
156 break;
157 }
158
159 nvm->type = e1000_nvm_eeprom_spi;
160
161 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
162 E1000_EECD_SIZE_EX_SHIFT);
163
164 /*
165 * Added to a constant, "size" becomes the left-shift value
166 * for setting word_size.
167 */
168 size += NVM_WORD_SIZE_BASE_SHIFT;
169
170 /* EEPROM access above 16k is unsupported */
171 if (size > 14)
172 size = 14;
173 nvm->word_size = 1 << size;
174
175 /* if 82576 then initialize mailbox parameters */
176 if (mac->type == e1000_82576)
177 igb_init_mbx_params_pf(hw);
178
179 /* setup PHY parameters */
180 if (phy->media_type != e1000_media_type_copper) {
181 phy->type = e1000_phy_none;
182 return 0;
183 }
184
185 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
186 phy->reset_delay_us = 100;
187
188 /* PHY function pointers */
189 if (igb_sgmii_active_82575(hw)) {
190 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
191 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
192 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
193 } else {
194 phy->ops.reset = igb_phy_hw_reset;
195 phy->ops.read_reg = igb_read_phy_reg_igp;
196 phy->ops.write_reg = igb_write_phy_reg_igp;
197 }
198
199 /* set lan id */
200 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
201 E1000_STATUS_FUNC_SHIFT;
202
203 /* Set phy->phy_addr and phy->id. */
204 ret_val = igb_get_phy_id_82575(hw);
205 if (ret_val)
206 return ret_val;
207
208 /* Verify phy id and set remaining function pointers */
209 switch (phy->id) {
210 case M88E1111_I_PHY_ID:
211 phy->type = e1000_phy_m88;
212 phy->ops.get_phy_info = igb_get_phy_info_m88;
213 phy->ops.get_cable_length = igb_get_cable_length_m88;
214 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
215 break;
216 case IGP03E1000_E_PHY_ID:
217 phy->type = e1000_phy_igp_3;
218 phy->ops.get_phy_info = igb_get_phy_info_igp;
219 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
220 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
221 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
222 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
223 break;
224 default:
225 return -E1000_ERR_PHY;
226 }
227
228 return 0;
229 }
230
231 /**
232 * igb_acquire_phy_82575 - Acquire rights to access PHY
233 * @hw: pointer to the HW structure
234 *
235 * Acquire access rights to the correct PHY. This is a
236 * function pointer entry point called by the api module.
237 **/
238 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
239 {
240 u16 mask;
241
242 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
243
244 return igb_acquire_swfw_sync_82575(hw, mask);
245 }
246
247 /**
248 * igb_release_phy_82575 - Release rights to access PHY
249 * @hw: pointer to the HW structure
250 *
251 * A wrapper to release access rights to the correct PHY. This is a
252 * function pointer entry point called by the api module.
253 **/
254 static void igb_release_phy_82575(struct e1000_hw *hw)
255 {
256 u16 mask;
257
258 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
259 igb_release_swfw_sync_82575(hw, mask);
260 }
261
262 /**
263 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
264 * @hw: pointer to the HW structure
265 * @offset: register offset to be read
266 * @data: pointer to the read data
267 *
268 * Reads the PHY register at offset using the serial gigabit media independent
269 * interface and stores the retrieved information in data.
270 **/
271 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
272 u16 *data)
273 {
274 struct e1000_phy_info *phy = &hw->phy;
275 u32 i, i2ccmd = 0;
276
277 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
278 hw_dbg("PHY Address %u is out of range\n", offset);
279 return -E1000_ERR_PARAM;
280 }
281
282 /*
283 * Set up Op-code, Phy Address, and register address in the I2CCMD
284 * register. The MAC will take care of interfacing with the
285 * PHY to retrieve the desired data.
286 */
287 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
288 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
289 (E1000_I2CCMD_OPCODE_READ));
290
291 wr32(E1000_I2CCMD, i2ccmd);
292
293 /* Poll the ready bit to see if the I2C read completed */
294 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
295 udelay(50);
296 i2ccmd = rd32(E1000_I2CCMD);
297 if (i2ccmd & E1000_I2CCMD_READY)
298 break;
299 }
300 if (!(i2ccmd & E1000_I2CCMD_READY)) {
301 hw_dbg("I2CCMD Read did not complete\n");
302 return -E1000_ERR_PHY;
303 }
304 if (i2ccmd & E1000_I2CCMD_ERROR) {
305 hw_dbg("I2CCMD Error bit set\n");
306 return -E1000_ERR_PHY;
307 }
308
309 /* Need to byte-swap the 16-bit value. */
310 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
311
312 return 0;
313 }
314
315 /**
316 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
317 * @hw: pointer to the HW structure
318 * @offset: register offset to write to
319 * @data: data to write at register offset
320 *
321 * Writes the data to PHY register at the offset using the serial gigabit
322 * media independent interface.
323 **/
324 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
325 u16 data)
326 {
327 struct e1000_phy_info *phy = &hw->phy;
328 u32 i, i2ccmd = 0;
329 u16 phy_data_swapped;
330
331 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
332 hw_dbg("PHY Address %d is out of range\n", offset);
333 return -E1000_ERR_PARAM;
334 }
335
336 /* Swap the data bytes for the I2C interface */
337 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
338
339 /*
340 * Set up Op-code, Phy Address, and register address in the I2CCMD
341 * register. The MAC will take care of interfacing with the
342 * PHY to retrieve the desired data.
343 */
344 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
345 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
346 E1000_I2CCMD_OPCODE_WRITE |
347 phy_data_swapped);
348
349 wr32(E1000_I2CCMD, i2ccmd);
350
351 /* Poll the ready bit to see if the I2C read completed */
352 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
353 udelay(50);
354 i2ccmd = rd32(E1000_I2CCMD);
355 if (i2ccmd & E1000_I2CCMD_READY)
356 break;
357 }
358 if (!(i2ccmd & E1000_I2CCMD_READY)) {
359 hw_dbg("I2CCMD Write did not complete\n");
360 return -E1000_ERR_PHY;
361 }
362 if (i2ccmd & E1000_I2CCMD_ERROR) {
363 hw_dbg("I2CCMD Error bit set\n");
364 return -E1000_ERR_PHY;
365 }
366
367 return 0;
368 }
369
370 /**
371 * igb_get_phy_id_82575 - Retrieve PHY addr and id
372 * @hw: pointer to the HW structure
373 *
374 * Retrieves the PHY address and ID for both PHY's which do and do not use
375 * sgmi interface.
376 **/
377 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
378 {
379 struct e1000_phy_info *phy = &hw->phy;
380 s32 ret_val = 0;
381 u16 phy_id;
382
383 /*
384 * For SGMII PHYs, we try the list of possible addresses until
385 * we find one that works. For non-SGMII PHYs
386 * (e.g. integrated copper PHYs), an address of 1 should
387 * work. The result of this function should mean phy->phy_addr
388 * and phy->id are set correctly.
389 */
390 if (!(igb_sgmii_active_82575(hw))) {
391 phy->addr = 1;
392 ret_val = igb_get_phy_id(hw);
393 goto out;
394 }
395
396 /*
397 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
398 * Therefore, we need to test 1-7
399 */
400 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
401 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
402 if (ret_val == 0) {
403 hw_dbg("Vendor ID 0x%08X read at address %u\n",
404 phy_id, phy->addr);
405 /*
406 * At the time of this writing, The M88 part is
407 * the only supported SGMII PHY product.
408 */
409 if (phy_id == M88_VENDOR)
410 break;
411 } else {
412 hw_dbg("PHY address %u was unreadable\n", phy->addr);
413 }
414 }
415
416 /* A valid PHY type couldn't be found. */
417 if (phy->addr == 8) {
418 phy->addr = 0;
419 ret_val = -E1000_ERR_PHY;
420 goto out;
421 }
422
423 ret_val = igb_get_phy_id(hw);
424
425 out:
426 return ret_val;
427 }
428
429 /**
430 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
431 * @hw: pointer to the HW structure
432 *
433 * Resets the PHY using the serial gigabit media independent interface.
434 **/
435 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
436 {
437 s32 ret_val;
438
439 /*
440 * This isn't a true "hard" reset, but is the only reset
441 * available to us at this time.
442 */
443
444 hw_dbg("Soft resetting SGMII attached PHY...\n");
445
446 /*
447 * SFP documentation requires the following to configure the SPF module
448 * to work on SGMII. No further documentation is given.
449 */
450 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
451 if (ret_val)
452 goto out;
453
454 ret_val = igb_phy_sw_reset(hw);
455
456 out:
457 return ret_val;
458 }
459
460 /**
461 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
462 * @hw: pointer to the HW structure
463 * @active: true to enable LPLU, false to disable
464 *
465 * Sets the LPLU D0 state according to the active flag. When
466 * activating LPLU this function also disables smart speed
467 * and vice versa. LPLU will not be activated unless the
468 * device autonegotiation advertisement meets standards of
469 * either 10 or 10/100 or 10/100/1000 at all duplexes.
470 * This is a function pointer entry point only called by
471 * PHY setup routines.
472 **/
473 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
474 {
475 struct e1000_phy_info *phy = &hw->phy;
476 s32 ret_val;
477 u16 data;
478
479 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
480 if (ret_val)
481 goto out;
482
483 if (active) {
484 data |= IGP02E1000_PM_D0_LPLU;
485 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
486 data);
487 if (ret_val)
488 goto out;
489
490 /* When LPLU is enabled, we should disable SmartSpeed */
491 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
492 &data);
493 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
494 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
495 data);
496 if (ret_val)
497 goto out;
498 } else {
499 data &= ~IGP02E1000_PM_D0_LPLU;
500 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
501 data);
502 /*
503 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
504 * during Dx states where the power conservation is most
505 * important. During driver activity we should enable
506 * SmartSpeed, so performance is maintained.
507 */
508 if (phy->smart_speed == e1000_smart_speed_on) {
509 ret_val = phy->ops.read_reg(hw,
510 IGP01E1000_PHY_PORT_CONFIG, &data);
511 if (ret_val)
512 goto out;
513
514 data |= IGP01E1000_PSCFR_SMART_SPEED;
515 ret_val = phy->ops.write_reg(hw,
516 IGP01E1000_PHY_PORT_CONFIG, data);
517 if (ret_val)
518 goto out;
519 } else if (phy->smart_speed == e1000_smart_speed_off) {
520 ret_val = phy->ops.read_reg(hw,
521 IGP01E1000_PHY_PORT_CONFIG, &data);
522 if (ret_val)
523 goto out;
524
525 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
526 ret_val = phy->ops.write_reg(hw,
527 IGP01E1000_PHY_PORT_CONFIG, data);
528 if (ret_val)
529 goto out;
530 }
531 }
532
533 out:
534 return ret_val;
535 }
536
537 /**
538 * igb_acquire_nvm_82575 - Request for access to EEPROM
539 * @hw: pointer to the HW structure
540 *
541 * Acquire the necessary semaphores for exclusive access to the EEPROM.
542 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
543 * Return successful if access grant bit set, else clear the request for
544 * EEPROM access and return -E1000_ERR_NVM (-1).
545 **/
546 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
547 {
548 s32 ret_val;
549
550 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
551 if (ret_val)
552 goto out;
553
554 ret_val = igb_acquire_nvm(hw);
555
556 if (ret_val)
557 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
558
559 out:
560 return ret_val;
561 }
562
563 /**
564 * igb_release_nvm_82575 - Release exclusive access to EEPROM
565 * @hw: pointer to the HW structure
566 *
567 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
568 * then release the semaphores acquired.
569 **/
570 static void igb_release_nvm_82575(struct e1000_hw *hw)
571 {
572 igb_release_nvm(hw);
573 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
574 }
575
576 /**
577 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
578 * @hw: pointer to the HW structure
579 * @mask: specifies which semaphore to acquire
580 *
581 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
582 * will also specify which port we're acquiring the lock for.
583 **/
584 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
585 {
586 u32 swfw_sync;
587 u32 swmask = mask;
588 u32 fwmask = mask << 16;
589 s32 ret_val = 0;
590 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
591
592 while (i < timeout) {
593 if (igb_get_hw_semaphore(hw)) {
594 ret_val = -E1000_ERR_SWFW_SYNC;
595 goto out;
596 }
597
598 swfw_sync = rd32(E1000_SW_FW_SYNC);
599 if (!(swfw_sync & (fwmask | swmask)))
600 break;
601
602 /*
603 * Firmware currently using resource (fwmask)
604 * or other software thread using resource (swmask)
605 */
606 igb_put_hw_semaphore(hw);
607 mdelay(5);
608 i++;
609 }
610
611 if (i == timeout) {
612 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
613 ret_val = -E1000_ERR_SWFW_SYNC;
614 goto out;
615 }
616
617 swfw_sync |= swmask;
618 wr32(E1000_SW_FW_SYNC, swfw_sync);
619
620 igb_put_hw_semaphore(hw);
621
622 out:
623 return ret_val;
624 }
625
626 /**
627 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
628 * @hw: pointer to the HW structure
629 * @mask: specifies which semaphore to acquire
630 *
631 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
632 * will also specify which port we're releasing the lock for.
633 **/
634 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
635 {
636 u32 swfw_sync;
637
638 while (igb_get_hw_semaphore(hw) != 0);
639 /* Empty */
640
641 swfw_sync = rd32(E1000_SW_FW_SYNC);
642 swfw_sync &= ~mask;
643 wr32(E1000_SW_FW_SYNC, swfw_sync);
644
645 igb_put_hw_semaphore(hw);
646 }
647
648 /**
649 * igb_get_cfg_done_82575 - Read config done bit
650 * @hw: pointer to the HW structure
651 *
652 * Read the management control register for the config done bit for
653 * completion status. NOTE: silicon which is EEPROM-less will fail trying
654 * to read the config done bit, so an error is *ONLY* logged and returns
655 * 0. If we were to return with error, EEPROM-less silicon
656 * would not be able to be reset or change link.
657 **/
658 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
659 {
660 s32 timeout = PHY_CFG_TIMEOUT;
661 s32 ret_val = 0;
662 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
663
664 if (hw->bus.func == 1)
665 mask = E1000_NVM_CFG_DONE_PORT_1;
666
667 while (timeout) {
668 if (rd32(E1000_EEMNGCTL) & mask)
669 break;
670 msleep(1);
671 timeout--;
672 }
673 if (!timeout)
674 hw_dbg("MNG configuration cycle has not completed.\n");
675
676 /* If EEPROM is not marked present, init the PHY manually */
677 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
678 (hw->phy.type == e1000_phy_igp_3))
679 igb_phy_init_script_igp3(hw);
680
681 return ret_val;
682 }
683
684 /**
685 * igb_check_for_link_82575 - Check for link
686 * @hw: pointer to the HW structure
687 *
688 * If sgmii is enabled, then use the pcs register to determine link, otherwise
689 * use the generic interface for determining link.
690 **/
691 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
692 {
693 s32 ret_val;
694 u16 speed, duplex;
695
696 /* SGMII link check is done through the PCS register. */
697 if ((hw->phy.media_type != e1000_media_type_copper) ||
698 (igb_sgmii_active_82575(hw))) {
699 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
700 &duplex);
701 /*
702 * Use this flag to determine if link needs to be checked or
703 * not. If we have link clear the flag so that we do not
704 * continue to check for link.
705 */
706 hw->mac.get_link_status = !hw->mac.serdes_has_link;
707 } else {
708 ret_val = igb_check_for_copper_link(hw);
709 }
710
711 return ret_val;
712 }
713 /**
714 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
715 * @hw: pointer to the HW structure
716 * @speed: stores the current speed
717 * @duplex: stores the current duplex
718 *
719 * Using the physical coding sub-layer (PCS), retrieve the current speed and
720 * duplex, then store the values in the pointers provided.
721 **/
722 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
723 u16 *duplex)
724 {
725 struct e1000_mac_info *mac = &hw->mac;
726 u32 pcs;
727
728 /* Set up defaults for the return values of this function */
729 mac->serdes_has_link = false;
730 *speed = 0;
731 *duplex = 0;
732
733 /*
734 * Read the PCS Status register for link state. For non-copper mode,
735 * the status register is not accurate. The PCS status register is
736 * used instead.
737 */
738 pcs = rd32(E1000_PCS_LSTAT);
739
740 /*
741 * The link up bit determines when link is up on autoneg. The sync ok
742 * gets set once both sides sync up and agree upon link. Stable link
743 * can be determined by checking for both link up and link sync ok
744 */
745 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
746 mac->serdes_has_link = true;
747
748 /* Detect and store PCS speed */
749 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
750 *speed = SPEED_1000;
751 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
752 *speed = SPEED_100;
753 } else {
754 *speed = SPEED_10;
755 }
756
757 /* Detect and store PCS duplex */
758 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
759 *duplex = FULL_DUPLEX;
760 } else {
761 *duplex = HALF_DUPLEX;
762 }
763 }
764
765 return 0;
766 }
767
768 /**
769 * igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
770 * @hw: pointer to the HW structure
771 *
772 * In the case of fiber serdes, shut down optics and PCS on driver unload
773 * when management pass thru is not enabled.
774 **/
775 void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw)
776 {
777 u32 reg;
778
779 if (hw->phy.media_type != e1000_media_type_internal_serdes)
780 return;
781
782 /* if the management interface is not enabled, then power down */
783 if (!igb_enable_mng_pass_thru(hw)) {
784 /* Disable PCS to turn off link */
785 reg = rd32(E1000_PCS_CFG0);
786 reg &= ~E1000_PCS_CFG_PCS_EN;
787 wr32(E1000_PCS_CFG0, reg);
788
789 /* shutdown the laser */
790 reg = rd32(E1000_CTRL_EXT);
791 reg |= E1000_CTRL_EXT_SDP7_DATA;
792 wr32(E1000_CTRL_EXT, reg);
793
794 /* flush the write to verify completion */
795 wrfl();
796 msleep(1);
797 }
798
799 return;
800 }
801
802 /**
803 * igb_reset_hw_82575 - Reset hardware
804 * @hw: pointer to the HW structure
805 *
806 * This resets the hardware into a known state. This is a
807 * function pointer entry point called by the api module.
808 **/
809 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
810 {
811 u32 ctrl, icr;
812 s32 ret_val;
813
814 /*
815 * Prevent the PCI-E bus from sticking if there is no TLP connection
816 * on the last TLP read/write transaction when MAC is reset.
817 */
818 ret_val = igb_disable_pcie_master(hw);
819 if (ret_val)
820 hw_dbg("PCI-E Master disable polling has failed.\n");
821
822 /* set the completion timeout for interface */
823 ret_val = igb_set_pcie_completion_timeout(hw);
824 if (ret_val) {
825 hw_dbg("PCI-E Set completion timeout has failed.\n");
826 }
827
828 hw_dbg("Masking off all interrupts\n");
829 wr32(E1000_IMC, 0xffffffff);
830
831 wr32(E1000_RCTL, 0);
832 wr32(E1000_TCTL, E1000_TCTL_PSP);
833 wrfl();
834
835 msleep(10);
836
837 ctrl = rd32(E1000_CTRL);
838
839 hw_dbg("Issuing a global reset to MAC\n");
840 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
841
842 ret_val = igb_get_auto_rd_done(hw);
843 if (ret_val) {
844 /*
845 * When auto config read does not complete, do not
846 * return with an error. This can happen in situations
847 * where there is no eeprom and prevents getting link.
848 */
849 hw_dbg("Auto Read Done did not complete\n");
850 }
851
852 /* If EEPROM is not present, run manual init scripts */
853 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
854 igb_reset_init_script_82575(hw);
855
856 /* Clear any pending interrupt events. */
857 wr32(E1000_IMC, 0xffffffff);
858 icr = rd32(E1000_ICR);
859
860 /* Install any alternate MAC address into RAR0 */
861 ret_val = igb_check_alt_mac_addr(hw);
862
863 return ret_val;
864 }
865
866 /**
867 * igb_init_hw_82575 - Initialize hardware
868 * @hw: pointer to the HW structure
869 *
870 * This inits the hardware readying it for operation.
871 **/
872 static s32 igb_init_hw_82575(struct e1000_hw *hw)
873 {
874 struct e1000_mac_info *mac = &hw->mac;
875 s32 ret_val;
876 u16 i, rar_count = mac->rar_entry_count;
877
878 /* Initialize identification LED */
879 ret_val = igb_id_led_init(hw);
880 if (ret_val) {
881 hw_dbg("Error initializing identification LED\n");
882 /* This is not fatal and we should not stop init due to this */
883 }
884
885 /* Disabling VLAN filtering */
886 hw_dbg("Initializing the IEEE VLAN\n");
887 igb_clear_vfta(hw);
888
889 /* Setup the receive address */
890 igb_init_rx_addrs(hw, rar_count);
891
892 /* Zero out the Multicast HASH table */
893 hw_dbg("Zeroing the MTA\n");
894 for (i = 0; i < mac->mta_reg_count; i++)
895 array_wr32(E1000_MTA, i, 0);
896
897 /* Setup link and flow control */
898 ret_val = igb_setup_link(hw);
899
900 /*
901 * Clear all of the statistics registers (clear on read). It is
902 * important that we do this after we have tried to establish link
903 * because the symbol error count will increment wildly if there
904 * is no link.
905 */
906 igb_clear_hw_cntrs_82575(hw);
907
908 return ret_val;
909 }
910
911 /**
912 * igb_setup_copper_link_82575 - Configure copper link settings
913 * @hw: pointer to the HW structure
914 *
915 * Configures the link for auto-neg or forced speed and duplex. Then we check
916 * for link, once link is established calls to configure collision distance
917 * and flow control are called.
918 **/
919 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
920 {
921 u32 ctrl;
922 s32 ret_val;
923 bool link;
924
925 ctrl = rd32(E1000_CTRL);
926 ctrl |= E1000_CTRL_SLU;
927 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
928 wr32(E1000_CTRL, ctrl);
929
930 switch (hw->phy.type) {
931 case e1000_phy_m88:
932 ret_val = igb_copper_link_setup_m88(hw);
933 break;
934 case e1000_phy_igp_3:
935 ret_val = igb_copper_link_setup_igp(hw);
936 break;
937 default:
938 ret_val = -E1000_ERR_PHY;
939 break;
940 }
941
942 if (ret_val)
943 goto out;
944
945 if (hw->mac.autoneg) {
946 /*
947 * Setup autoneg and flow control advertisement
948 * and perform autonegotiation.
949 */
950 ret_val = igb_copper_link_autoneg(hw);
951 if (ret_val)
952 goto out;
953 } else {
954 /*
955 * PHY will be set to 10H, 10F, 100H or 100F
956 * depending on user settings.
957 */
958 hw_dbg("Forcing Speed and Duplex\n");
959 ret_val = hw->phy.ops.force_speed_duplex(hw);
960 if (ret_val) {
961 hw_dbg("Error Forcing Speed and Duplex\n");
962 goto out;
963 }
964 }
965
966 igb_configure_pcs_link_82575(hw);
967
968 /*
969 * Check link status. Wait up to 100 microseconds for link to become
970 * valid.
971 */
972 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
973 if (ret_val)
974 goto out;
975
976 if (link) {
977 hw_dbg("Valid link established!!!\n");
978 /* Config the MAC and PHY after link is up */
979 igb_config_collision_dist(hw);
980 ret_val = igb_config_fc_after_link_up(hw);
981 } else {
982 hw_dbg("Unable to establish link!!!\n");
983 }
984
985 out:
986 return ret_val;
987 }
988
989 /**
990 * igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
991 * @hw: pointer to the HW structure
992 *
993 * Configures speed and duplex for fiber and serdes links.
994 **/
995 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
996 {
997 u32 reg;
998
999 /*
1000 * On the 82575, SerDes loopback mode persists until it is
1001 * explicitly turned off or a power cycle is performed. A read to
1002 * the register does not indicate its status. Therefore, we ensure
1003 * loopback mode is disabled during initialization.
1004 */
1005 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1006
1007 /* Force link up, set 1gb, set both sw defined pins */
1008 reg = rd32(E1000_CTRL);
1009 reg |= E1000_CTRL_SLU |
1010 E1000_CTRL_SPD_1000 |
1011 E1000_CTRL_FRCSPD |
1012 E1000_CTRL_SWDPIN0 |
1013 E1000_CTRL_SWDPIN1;
1014 wr32(E1000_CTRL, reg);
1015
1016 /* Power on phy for 82576 fiber adapters */
1017 if (hw->mac.type == e1000_82576) {
1018 reg = rd32(E1000_CTRL_EXT);
1019 reg &= ~E1000_CTRL_EXT_SDP7_DATA;
1020 wr32(E1000_CTRL_EXT, reg);
1021 }
1022
1023 /* Set switch control to serdes energy detect */
1024 reg = rd32(E1000_CONNSW);
1025 reg |= E1000_CONNSW_ENRGSRC;
1026 wr32(E1000_CONNSW, reg);
1027
1028 /*
1029 * New SerDes mode allows for forcing speed or autonegotiating speed
1030 * at 1gb. Autoneg should be default set by most drivers. This is the
1031 * mode that will be compatible with older link partners and switches.
1032 * However, both are supported by the hardware and some drivers/tools.
1033 */
1034 reg = rd32(E1000_PCS_LCTL);
1035
1036 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1037 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1038
1039 if (hw->mac.autoneg) {
1040 /* Set PCS register for autoneg */
1041 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1042 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1043 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1044 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1045 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1046 } else {
1047 /* Set PCS register for forced speed */
1048 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1049 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1050 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1051 E1000_PCS_LCTL_FSD | /* Force Speed */
1052 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1053 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1054 }
1055
1056 if (hw->mac.type == e1000_82576) {
1057 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1058 igb_force_mac_fc(hw);
1059 }
1060
1061 wr32(E1000_PCS_LCTL, reg);
1062
1063 return 0;
1064 }
1065
1066 /**
1067 * igb_configure_pcs_link_82575 - Configure PCS link
1068 * @hw: pointer to the HW structure
1069 *
1070 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1071 * only used on copper connections where the serialized gigabit media
1072 * independent interface (sgmii) is being used. Configures the link
1073 * for auto-negotiation or forces speed/duplex.
1074 **/
1075 static void igb_configure_pcs_link_82575(struct e1000_hw *hw)
1076 {
1077 struct e1000_mac_info *mac = &hw->mac;
1078 u32 reg = 0;
1079
1080 if (hw->phy.media_type != e1000_media_type_copper ||
1081 !(igb_sgmii_active_82575(hw)))
1082 return;
1083
1084 /* For SGMII, we need to issue a PCS autoneg restart */
1085 reg = rd32(E1000_PCS_LCTL);
1086
1087 /* AN time out should be disabled for SGMII mode */
1088 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1089
1090 if (mac->autoneg) {
1091 /* Make sure forced speed and force link are not set */
1092 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1093
1094 /*
1095 * The PHY should be setup prior to calling this function.
1096 * All we need to do is restart autoneg and enable autoneg.
1097 */
1098 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1099 } else {
1100 /* Set PCS register for forced speed */
1101
1102 /* Turn off bits for full duplex, speed, and autoneg */
1103 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1104 E1000_PCS_LCTL_FSV_100 |
1105 E1000_PCS_LCTL_FDV_FULL |
1106 E1000_PCS_LCTL_AN_ENABLE);
1107
1108 /* Check for duplex first */
1109 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1110 reg |= E1000_PCS_LCTL_FDV_FULL;
1111
1112 /* Now set speed */
1113 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1114 reg |= E1000_PCS_LCTL_FSV_100;
1115
1116 /* Force speed and force link */
1117 reg |= E1000_PCS_LCTL_FSD |
1118 E1000_PCS_LCTL_FORCE_LINK |
1119 E1000_PCS_LCTL_FLV_LINK_UP;
1120
1121 hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1122 reg);
1123 }
1124 wr32(E1000_PCS_LCTL, reg);
1125 }
1126
1127 /**
1128 * igb_sgmii_active_82575 - Return sgmii state
1129 * @hw: pointer to the HW structure
1130 *
1131 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1132 * which can be enabled for use in the embedded applications. Simply
1133 * return the current state of the sgmii interface.
1134 **/
1135 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1136 {
1137 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1138 return dev_spec->sgmii_active;
1139 }
1140
1141 /**
1142 * igb_reset_init_script_82575 - Inits HW defaults after reset
1143 * @hw: pointer to the HW structure
1144 *
1145 * Inits recommended HW defaults after a reset when there is no EEPROM
1146 * detected. This is only for the 82575.
1147 **/
1148 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1149 {
1150 if (hw->mac.type == e1000_82575) {
1151 hw_dbg("Running reset init script for 82575\n");
1152 /* SerDes configuration via SERDESCTRL */
1153 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1154 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1155 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1156 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1157
1158 /* CCM configuration via CCMCTL register */
1159 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1160 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1161
1162 /* PCIe lanes configuration */
1163 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1164 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1165 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1166 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1167
1168 /* PCIe PLL Configuration */
1169 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1170 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1171 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1172 }
1173
1174 return 0;
1175 }
1176
1177 /**
1178 * igb_read_mac_addr_82575 - Read device MAC address
1179 * @hw: pointer to the HW structure
1180 **/
1181 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1182 {
1183 s32 ret_val = 0;
1184
1185 if (igb_check_alt_mac_addr(hw))
1186 ret_val = igb_read_mac_addr(hw);
1187
1188 return ret_val;
1189 }
1190
1191 /**
1192 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1193 * @hw: pointer to the HW structure
1194 *
1195 * Clears the hardware counters by reading the counter registers.
1196 **/
1197 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1198 {
1199 u32 temp;
1200
1201 igb_clear_hw_cntrs_base(hw);
1202
1203 temp = rd32(E1000_PRC64);
1204 temp = rd32(E1000_PRC127);
1205 temp = rd32(E1000_PRC255);
1206 temp = rd32(E1000_PRC511);
1207 temp = rd32(E1000_PRC1023);
1208 temp = rd32(E1000_PRC1522);
1209 temp = rd32(E1000_PTC64);
1210 temp = rd32(E1000_PTC127);
1211 temp = rd32(E1000_PTC255);
1212 temp = rd32(E1000_PTC511);
1213 temp = rd32(E1000_PTC1023);
1214 temp = rd32(E1000_PTC1522);
1215
1216 temp = rd32(E1000_ALGNERRC);
1217 temp = rd32(E1000_RXERRC);
1218 temp = rd32(E1000_TNCRS);
1219 temp = rd32(E1000_CEXTERR);
1220 temp = rd32(E1000_TSCTC);
1221 temp = rd32(E1000_TSCTFC);
1222
1223 temp = rd32(E1000_MGTPRC);
1224 temp = rd32(E1000_MGTPDC);
1225 temp = rd32(E1000_MGTPTC);
1226
1227 temp = rd32(E1000_IAC);
1228 temp = rd32(E1000_ICRXOC);
1229
1230 temp = rd32(E1000_ICRXPTC);
1231 temp = rd32(E1000_ICRXATC);
1232 temp = rd32(E1000_ICTXPTC);
1233 temp = rd32(E1000_ICTXATC);
1234 temp = rd32(E1000_ICTXQEC);
1235 temp = rd32(E1000_ICTXQMTC);
1236 temp = rd32(E1000_ICRXDMTC);
1237
1238 temp = rd32(E1000_CBTMPC);
1239 temp = rd32(E1000_HTDPMC);
1240 temp = rd32(E1000_CBRMPC);
1241 temp = rd32(E1000_RPTHC);
1242 temp = rd32(E1000_HGPTC);
1243 temp = rd32(E1000_HTCBDPC);
1244 temp = rd32(E1000_HGORCL);
1245 temp = rd32(E1000_HGORCH);
1246 temp = rd32(E1000_HGOTCL);
1247 temp = rd32(E1000_HGOTCH);
1248 temp = rd32(E1000_LENERRS);
1249
1250 /* This register should not be read in copper configurations */
1251 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1252 temp = rd32(E1000_SCVPC);
1253 }
1254
1255 /**
1256 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1257 * @hw: pointer to the HW structure
1258 *
1259 * After rx enable if managability is enabled then there is likely some
1260 * bad data at the start of the fifo and possibly in the DMA fifo. This
1261 * function clears the fifos and flushes any packets that came in as rx was
1262 * being enabled.
1263 **/
1264 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1265 {
1266 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1267 int i, ms_wait;
1268
1269 if (hw->mac.type != e1000_82575 ||
1270 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1271 return;
1272
1273 /* Disable all RX queues */
1274 for (i = 0; i < 4; i++) {
1275 rxdctl[i] = rd32(E1000_RXDCTL(i));
1276 wr32(E1000_RXDCTL(i),
1277 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1278 }
1279 /* Poll all queues to verify they have shut down */
1280 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1281 msleep(1);
1282 rx_enabled = 0;
1283 for (i = 0; i < 4; i++)
1284 rx_enabled |= rd32(E1000_RXDCTL(i));
1285 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1286 break;
1287 }
1288
1289 if (ms_wait == 10)
1290 hw_dbg("Queue disable timed out after 10ms\n");
1291
1292 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1293 * incoming packets are rejected. Set enable and wait 2ms so that
1294 * any packet that was coming in as RCTL.EN was set is flushed
1295 */
1296 rfctl = rd32(E1000_RFCTL);
1297 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1298
1299 rlpml = rd32(E1000_RLPML);
1300 wr32(E1000_RLPML, 0);
1301
1302 rctl = rd32(E1000_RCTL);
1303 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1304 temp_rctl |= E1000_RCTL_LPE;
1305
1306 wr32(E1000_RCTL, temp_rctl);
1307 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1308 wrfl();
1309 msleep(2);
1310
1311 /* Enable RX queues that were previously enabled and restore our
1312 * previous state
1313 */
1314 for (i = 0; i < 4; i++)
1315 wr32(E1000_RXDCTL(i), rxdctl[i]);
1316 wr32(E1000_RCTL, rctl);
1317 wrfl();
1318
1319 wr32(E1000_RLPML, rlpml);
1320 wr32(E1000_RFCTL, rfctl);
1321
1322 /* Flush receive errors generated by workaround */
1323 rd32(E1000_ROC);
1324 rd32(E1000_RNBC);
1325 rd32(E1000_MPC);
1326 }
1327
1328 /**
1329 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1330 * @hw: pointer to the HW structure
1331 *
1332 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1333 * however the hardware default for these parts is 500us to 1ms which is less
1334 * than the 10ms recommended by the pci-e spec. To address this we need to
1335 * increase the value to either 10ms to 200ms for capability version 1 config,
1336 * or 16ms to 55ms for version 2.
1337 **/
1338 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1339 {
1340 u32 gcr = rd32(E1000_GCR);
1341 s32 ret_val = 0;
1342 u16 pcie_devctl2;
1343
1344 /* only take action if timeout value is defaulted to 0 */
1345 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1346 goto out;
1347
1348 /*
1349 * if capababilities version is type 1 we can write the
1350 * timeout of 10ms to 200ms through the GCR register
1351 */
1352 if (!(gcr & E1000_GCR_CAP_VER2)) {
1353 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1354 goto out;
1355 }
1356
1357 /*
1358 * for version 2 capabilities we need to write the config space
1359 * directly in order to set the completion timeout value for
1360 * 16ms to 55ms
1361 */
1362 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1363 &pcie_devctl2);
1364 if (ret_val)
1365 goto out;
1366
1367 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1368
1369 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1370 &pcie_devctl2);
1371 out:
1372 /* disable completion timeout resend */
1373 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1374
1375 wr32(E1000_GCR, gcr);
1376 return ret_val;
1377 }
1378
1379 /**
1380 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1381 * @hw: pointer to the hardware struct
1382 * @enable: state to enter, either enabled or disabled
1383 *
1384 * enables/disables L2 switch loopback functionality.
1385 **/
1386 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1387 {
1388 u32 dtxswc = rd32(E1000_DTXSWC);
1389
1390 if (enable)
1391 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1392 else
1393 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1394
1395 wr32(E1000_DTXSWC, dtxswc);
1396 }
1397
1398 /**
1399 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1400 * @hw: pointer to the hardware struct
1401 * @enable: state to enter, either enabled or disabled
1402 *
1403 * enables/disables replication of packets across multiple pools.
1404 **/
1405 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1406 {
1407 u32 vt_ctl = rd32(E1000_VT_CTL);
1408
1409 if (enable)
1410 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1411 else
1412 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1413
1414 wr32(E1000_VT_CTL, vt_ctl);
1415 }
1416
1417 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1418 .reset_hw = igb_reset_hw_82575,
1419 .init_hw = igb_init_hw_82575,
1420 .check_for_link = igb_check_for_link_82575,
1421 .rar_set = igb_rar_set,
1422 .read_mac_addr = igb_read_mac_addr_82575,
1423 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1424 };
1425
1426 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1427 .acquire = igb_acquire_phy_82575,
1428 .get_cfg_done = igb_get_cfg_done_82575,
1429 .release = igb_release_phy_82575,
1430 };
1431
1432 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1433 .acquire = igb_acquire_nvm_82575,
1434 .read = igb_read_nvm_eerd,
1435 .release = igb_release_nvm_82575,
1436 .write = igb_write_nvm_spi,
1437 };
1438
1439 const struct e1000_info e1000_82575_info = {
1440 .get_invariants = igb_get_invariants_82575,
1441 .mac_ops = &e1000_mac_ops_82575,
1442 .phy_ops = &e1000_phy_ops_82575,
1443 .nvm_ops = &e1000_nvm_ops_82575,
1444 };
1445
This page took 0.102638 seconds and 5 git commands to generate.