Merge branch 'delayed-logging-for-2.6.35' into for-linus
[deliverable/linux.git] / drivers / net / igb / e1000_82575.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29 * e1000_82576
30 */
31
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
34
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
37
38 static s32 igb_get_invariants_82575(struct e1000_hw *);
39 static s32 igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32 igb_check_for_link_82575(struct e1000_hw *);
44 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32 igb_init_hw_82575(struct e1000_hw *);
46 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32 igb_reset_hw_82575(struct e1000_hw *);
51 static s32 igb_reset_hw_82580(struct e1000_hw *);
52 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
54 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
55 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
56 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
57 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
58 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 u16 *);
60 static s32 igb_get_phy_id_82575(struct e1000_hw *);
61 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
62 static bool igb_sgmii_active_82575(struct e1000_hw *);
63 static s32 igb_reset_init_script_82575(struct e1000_hw *);
64 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
65 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
66
67 static const u16 e1000_82580_rxpbs_table[] =
68 { 36, 72, 144, 1, 2, 4, 8, 16,
69 35, 70, 140 };
70 #define E1000_82580_RXPBS_TABLE_SIZE \
71 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
72
73 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
74 {
75 struct e1000_phy_info *phy = &hw->phy;
76 struct e1000_nvm_info *nvm = &hw->nvm;
77 struct e1000_mac_info *mac = &hw->mac;
78 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
79 u32 eecd;
80 s32 ret_val;
81 u16 size;
82 u32 ctrl_ext = 0;
83
84 switch (hw->device_id) {
85 case E1000_DEV_ID_82575EB_COPPER:
86 case E1000_DEV_ID_82575EB_FIBER_SERDES:
87 case E1000_DEV_ID_82575GB_QUAD_COPPER:
88 mac->type = e1000_82575;
89 break;
90 case E1000_DEV_ID_82576:
91 case E1000_DEV_ID_82576_NS:
92 case E1000_DEV_ID_82576_NS_SERDES:
93 case E1000_DEV_ID_82576_FIBER:
94 case E1000_DEV_ID_82576_SERDES:
95 case E1000_DEV_ID_82576_QUAD_COPPER:
96 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
97 case E1000_DEV_ID_82576_SERDES_QUAD:
98 mac->type = e1000_82576;
99 break;
100 case E1000_DEV_ID_82580_COPPER:
101 case E1000_DEV_ID_82580_FIBER:
102 case E1000_DEV_ID_82580_SERDES:
103 case E1000_DEV_ID_82580_SGMII:
104 case E1000_DEV_ID_82580_COPPER_DUAL:
105 mac->type = e1000_82580;
106 break;
107 case E1000_DEV_ID_I350_COPPER:
108 case E1000_DEV_ID_I350_FIBER:
109 case E1000_DEV_ID_I350_SERDES:
110 case E1000_DEV_ID_I350_SGMII:
111 mac->type = e1000_i350;
112 break;
113 default:
114 return -E1000_ERR_MAC_INIT;
115 break;
116 }
117
118 /* Set media type */
119 /*
120 * The 82575 uses bits 22:23 for link mode. The mode can be changed
121 * based on the EEPROM. We cannot rely upon device ID. There
122 * is no distinguishable difference between fiber and internal
123 * SerDes mode on the 82575. There can be an external PHY attached
124 * on the SGMII interface. For this, we'll set sgmii_active to true.
125 */
126 phy->media_type = e1000_media_type_copper;
127 dev_spec->sgmii_active = false;
128
129 ctrl_ext = rd32(E1000_CTRL_EXT);
130 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
131 case E1000_CTRL_EXT_LINK_MODE_SGMII:
132 dev_spec->sgmii_active = true;
133 ctrl_ext |= E1000_CTRL_I2C_ENA;
134 break;
135 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
136 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
137 hw->phy.media_type = e1000_media_type_internal_serdes;
138 ctrl_ext |= E1000_CTRL_I2C_ENA;
139 break;
140 default:
141 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
142 break;
143 }
144
145 wr32(E1000_CTRL_EXT, ctrl_ext);
146
147 /*
148 * if using i2c make certain the MDICNFG register is cleared to prevent
149 * communications from being misrouted to the mdic registers
150 */
151 if ((ctrl_ext & E1000_CTRL_I2C_ENA) && (hw->mac.type == e1000_82580))
152 wr32(E1000_MDICNFG, 0);
153
154 /* Set mta register count */
155 mac->mta_reg_count = 128;
156 /* Set rar entry count */
157 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
158 if (mac->type == e1000_82576)
159 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
160 if (mac->type == e1000_82580)
161 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
162 if (mac->type == e1000_i350)
163 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
164 /* reset */
165 if (mac->type >= e1000_82580)
166 mac->ops.reset_hw = igb_reset_hw_82580;
167 else
168 mac->ops.reset_hw = igb_reset_hw_82575;
169 /* Set if part includes ASF firmware */
170 mac->asf_firmware_present = true;
171 /* Set if manageability features are enabled. */
172 mac->arc_subsystem_valid =
173 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
174 ? true : false;
175
176 /* physical interface link setup */
177 mac->ops.setup_physical_interface =
178 (hw->phy.media_type == e1000_media_type_copper)
179 ? igb_setup_copper_link_82575
180 : igb_setup_serdes_link_82575;
181
182 /* NVM initialization */
183 eecd = rd32(E1000_EECD);
184
185 nvm->opcode_bits = 8;
186 nvm->delay_usec = 1;
187 switch (nvm->override) {
188 case e1000_nvm_override_spi_large:
189 nvm->page_size = 32;
190 nvm->address_bits = 16;
191 break;
192 case e1000_nvm_override_spi_small:
193 nvm->page_size = 8;
194 nvm->address_bits = 8;
195 break;
196 default:
197 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
198 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
199 break;
200 }
201
202 nvm->type = e1000_nvm_eeprom_spi;
203
204 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
205 E1000_EECD_SIZE_EX_SHIFT);
206
207 /*
208 * Added to a constant, "size" becomes the left-shift value
209 * for setting word_size.
210 */
211 size += NVM_WORD_SIZE_BASE_SHIFT;
212
213 /* EEPROM access above 16k is unsupported */
214 if (size > 14)
215 size = 14;
216 nvm->word_size = 1 << size;
217
218 /* if 82576 then initialize mailbox parameters */
219 if (mac->type == e1000_82576)
220 igb_init_mbx_params_pf(hw);
221
222 /* setup PHY parameters */
223 if (phy->media_type != e1000_media_type_copper) {
224 phy->type = e1000_phy_none;
225 return 0;
226 }
227
228 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
229 phy->reset_delay_us = 100;
230
231 /* PHY function pointers */
232 if (igb_sgmii_active_82575(hw)) {
233 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
234 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
235 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
236 } else if (hw->mac.type >= e1000_82580) {
237 phy->ops.reset = igb_phy_hw_reset;
238 phy->ops.read_reg = igb_read_phy_reg_82580;
239 phy->ops.write_reg = igb_write_phy_reg_82580;
240 } else {
241 phy->ops.reset = igb_phy_hw_reset;
242 phy->ops.read_reg = igb_read_phy_reg_igp;
243 phy->ops.write_reg = igb_write_phy_reg_igp;
244 }
245
246 /* set lan id */
247 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
248 E1000_STATUS_FUNC_SHIFT;
249
250 /* Set phy->phy_addr and phy->id. */
251 ret_val = igb_get_phy_id_82575(hw);
252 if (ret_val)
253 return ret_val;
254
255 /* Verify phy id and set remaining function pointers */
256 switch (phy->id) {
257 case M88E1111_I_PHY_ID:
258 phy->type = e1000_phy_m88;
259 phy->ops.get_phy_info = igb_get_phy_info_m88;
260 phy->ops.get_cable_length = igb_get_cable_length_m88;
261 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
262 break;
263 case IGP03E1000_E_PHY_ID:
264 phy->type = e1000_phy_igp_3;
265 phy->ops.get_phy_info = igb_get_phy_info_igp;
266 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
267 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
268 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
269 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
270 break;
271 case I82580_I_PHY_ID:
272 case I350_I_PHY_ID:
273 phy->type = e1000_phy_82580;
274 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
275 phy->ops.get_cable_length = igb_get_cable_length_82580;
276 phy->ops.get_phy_info = igb_get_phy_info_82580;
277 break;
278 default:
279 return -E1000_ERR_PHY;
280 }
281
282 return 0;
283 }
284
285 /**
286 * igb_acquire_phy_82575 - Acquire rights to access PHY
287 * @hw: pointer to the HW structure
288 *
289 * Acquire access rights to the correct PHY. This is a
290 * function pointer entry point called by the api module.
291 **/
292 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
293 {
294 u16 mask = E1000_SWFW_PHY0_SM;
295
296 if (hw->bus.func == E1000_FUNC_1)
297 mask = E1000_SWFW_PHY1_SM;
298
299 return igb_acquire_swfw_sync_82575(hw, mask);
300 }
301
302 /**
303 * igb_release_phy_82575 - Release rights to access PHY
304 * @hw: pointer to the HW structure
305 *
306 * A wrapper to release access rights to the correct PHY. This is a
307 * function pointer entry point called by the api module.
308 **/
309 static void igb_release_phy_82575(struct e1000_hw *hw)
310 {
311 u16 mask = E1000_SWFW_PHY0_SM;
312
313 if (hw->bus.func == E1000_FUNC_1)
314 mask = E1000_SWFW_PHY1_SM;
315
316 igb_release_swfw_sync_82575(hw, mask);
317 }
318
319 /**
320 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
321 * @hw: pointer to the HW structure
322 * @offset: register offset to be read
323 * @data: pointer to the read data
324 *
325 * Reads the PHY register at offset using the serial gigabit media independent
326 * interface and stores the retrieved information in data.
327 **/
328 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
329 u16 *data)
330 {
331 s32 ret_val = -E1000_ERR_PARAM;
332
333 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
334 hw_dbg("PHY Address %u is out of range\n", offset);
335 goto out;
336 }
337
338 ret_val = hw->phy.ops.acquire(hw);
339 if (ret_val)
340 goto out;
341
342 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
343
344 hw->phy.ops.release(hw);
345
346 out:
347 return ret_val;
348 }
349
350 /**
351 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
352 * @hw: pointer to the HW structure
353 * @offset: register offset to write to
354 * @data: data to write at register offset
355 *
356 * Writes the data to PHY register at the offset using the serial gigabit
357 * media independent interface.
358 **/
359 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
360 u16 data)
361 {
362 s32 ret_val = -E1000_ERR_PARAM;
363
364
365 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
366 hw_dbg("PHY Address %d is out of range\n", offset);
367 goto out;
368 }
369
370 ret_val = hw->phy.ops.acquire(hw);
371 if (ret_val)
372 goto out;
373
374 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
375
376 hw->phy.ops.release(hw);
377
378 out:
379 return ret_val;
380 }
381
382 /**
383 * igb_get_phy_id_82575 - Retrieve PHY addr and id
384 * @hw: pointer to the HW structure
385 *
386 * Retrieves the PHY address and ID for both PHY's which do and do not use
387 * sgmi interface.
388 **/
389 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
390 {
391 struct e1000_phy_info *phy = &hw->phy;
392 s32 ret_val = 0;
393 u16 phy_id;
394 u32 ctrl_ext;
395
396 /*
397 * For SGMII PHYs, we try the list of possible addresses until
398 * we find one that works. For non-SGMII PHYs
399 * (e.g. integrated copper PHYs), an address of 1 should
400 * work. The result of this function should mean phy->phy_addr
401 * and phy->id are set correctly.
402 */
403 if (!(igb_sgmii_active_82575(hw))) {
404 phy->addr = 1;
405 ret_val = igb_get_phy_id(hw);
406 goto out;
407 }
408
409 /* Power on sgmii phy if it is disabled */
410 ctrl_ext = rd32(E1000_CTRL_EXT);
411 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
412 wrfl();
413 msleep(300);
414
415 /*
416 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
417 * Therefore, we need to test 1-7
418 */
419 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
420 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
421 if (ret_val == 0) {
422 hw_dbg("Vendor ID 0x%08X read at address %u\n",
423 phy_id, phy->addr);
424 /*
425 * At the time of this writing, The M88 part is
426 * the only supported SGMII PHY product.
427 */
428 if (phy_id == M88_VENDOR)
429 break;
430 } else {
431 hw_dbg("PHY address %u was unreadable\n", phy->addr);
432 }
433 }
434
435 /* A valid PHY type couldn't be found. */
436 if (phy->addr == 8) {
437 phy->addr = 0;
438 ret_val = -E1000_ERR_PHY;
439 goto out;
440 } else {
441 ret_val = igb_get_phy_id(hw);
442 }
443
444 /* restore previous sfp cage power state */
445 wr32(E1000_CTRL_EXT, ctrl_ext);
446
447 out:
448 return ret_val;
449 }
450
451 /**
452 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
453 * @hw: pointer to the HW structure
454 *
455 * Resets the PHY using the serial gigabit media independent interface.
456 **/
457 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
458 {
459 s32 ret_val;
460
461 /*
462 * This isn't a true "hard" reset, but is the only reset
463 * available to us at this time.
464 */
465
466 hw_dbg("Soft resetting SGMII attached PHY...\n");
467
468 /*
469 * SFP documentation requires the following to configure the SPF module
470 * to work on SGMII. No further documentation is given.
471 */
472 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
473 if (ret_val)
474 goto out;
475
476 ret_val = igb_phy_sw_reset(hw);
477
478 out:
479 return ret_val;
480 }
481
482 /**
483 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
484 * @hw: pointer to the HW structure
485 * @active: true to enable LPLU, false to disable
486 *
487 * Sets the LPLU D0 state according to the active flag. When
488 * activating LPLU this function also disables smart speed
489 * and vice versa. LPLU will not be activated unless the
490 * device autonegotiation advertisement meets standards of
491 * either 10 or 10/100 or 10/100/1000 at all duplexes.
492 * This is a function pointer entry point only called by
493 * PHY setup routines.
494 **/
495 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
496 {
497 struct e1000_phy_info *phy = &hw->phy;
498 s32 ret_val;
499 u16 data;
500
501 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
502 if (ret_val)
503 goto out;
504
505 if (active) {
506 data |= IGP02E1000_PM_D0_LPLU;
507 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
508 data);
509 if (ret_val)
510 goto out;
511
512 /* When LPLU is enabled, we should disable SmartSpeed */
513 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
514 &data);
515 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
516 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
517 data);
518 if (ret_val)
519 goto out;
520 } else {
521 data &= ~IGP02E1000_PM_D0_LPLU;
522 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
523 data);
524 /*
525 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
526 * during Dx states where the power conservation is most
527 * important. During driver activity we should enable
528 * SmartSpeed, so performance is maintained.
529 */
530 if (phy->smart_speed == e1000_smart_speed_on) {
531 ret_val = phy->ops.read_reg(hw,
532 IGP01E1000_PHY_PORT_CONFIG, &data);
533 if (ret_val)
534 goto out;
535
536 data |= IGP01E1000_PSCFR_SMART_SPEED;
537 ret_val = phy->ops.write_reg(hw,
538 IGP01E1000_PHY_PORT_CONFIG, data);
539 if (ret_val)
540 goto out;
541 } else if (phy->smart_speed == e1000_smart_speed_off) {
542 ret_val = phy->ops.read_reg(hw,
543 IGP01E1000_PHY_PORT_CONFIG, &data);
544 if (ret_val)
545 goto out;
546
547 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
548 ret_val = phy->ops.write_reg(hw,
549 IGP01E1000_PHY_PORT_CONFIG, data);
550 if (ret_val)
551 goto out;
552 }
553 }
554
555 out:
556 return ret_val;
557 }
558
559 /**
560 * igb_acquire_nvm_82575 - Request for access to EEPROM
561 * @hw: pointer to the HW structure
562 *
563 * Acquire the necessary semaphores for exclusive access to the EEPROM.
564 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
565 * Return successful if access grant bit set, else clear the request for
566 * EEPROM access and return -E1000_ERR_NVM (-1).
567 **/
568 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
569 {
570 s32 ret_val;
571
572 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
573 if (ret_val)
574 goto out;
575
576 ret_val = igb_acquire_nvm(hw);
577
578 if (ret_val)
579 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
580
581 out:
582 return ret_val;
583 }
584
585 /**
586 * igb_release_nvm_82575 - Release exclusive access to EEPROM
587 * @hw: pointer to the HW structure
588 *
589 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
590 * then release the semaphores acquired.
591 **/
592 static void igb_release_nvm_82575(struct e1000_hw *hw)
593 {
594 igb_release_nvm(hw);
595 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
596 }
597
598 /**
599 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
600 * @hw: pointer to the HW structure
601 * @mask: specifies which semaphore to acquire
602 *
603 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
604 * will also specify which port we're acquiring the lock for.
605 **/
606 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
607 {
608 u32 swfw_sync;
609 u32 swmask = mask;
610 u32 fwmask = mask << 16;
611 s32 ret_val = 0;
612 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
613
614 while (i < timeout) {
615 if (igb_get_hw_semaphore(hw)) {
616 ret_val = -E1000_ERR_SWFW_SYNC;
617 goto out;
618 }
619
620 swfw_sync = rd32(E1000_SW_FW_SYNC);
621 if (!(swfw_sync & (fwmask | swmask)))
622 break;
623
624 /*
625 * Firmware currently using resource (fwmask)
626 * or other software thread using resource (swmask)
627 */
628 igb_put_hw_semaphore(hw);
629 mdelay(5);
630 i++;
631 }
632
633 if (i == timeout) {
634 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
635 ret_val = -E1000_ERR_SWFW_SYNC;
636 goto out;
637 }
638
639 swfw_sync |= swmask;
640 wr32(E1000_SW_FW_SYNC, swfw_sync);
641
642 igb_put_hw_semaphore(hw);
643
644 out:
645 return ret_val;
646 }
647
648 /**
649 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
650 * @hw: pointer to the HW structure
651 * @mask: specifies which semaphore to acquire
652 *
653 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
654 * will also specify which port we're releasing the lock for.
655 **/
656 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
657 {
658 u32 swfw_sync;
659
660 while (igb_get_hw_semaphore(hw) != 0);
661 /* Empty */
662
663 swfw_sync = rd32(E1000_SW_FW_SYNC);
664 swfw_sync &= ~mask;
665 wr32(E1000_SW_FW_SYNC, swfw_sync);
666
667 igb_put_hw_semaphore(hw);
668 }
669
670 /**
671 * igb_get_cfg_done_82575 - Read config done bit
672 * @hw: pointer to the HW structure
673 *
674 * Read the management control register for the config done bit for
675 * completion status. NOTE: silicon which is EEPROM-less will fail trying
676 * to read the config done bit, so an error is *ONLY* logged and returns
677 * 0. If we were to return with error, EEPROM-less silicon
678 * would not be able to be reset or change link.
679 **/
680 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
681 {
682 s32 timeout = PHY_CFG_TIMEOUT;
683 s32 ret_val = 0;
684 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
685
686 if (hw->bus.func == 1)
687 mask = E1000_NVM_CFG_DONE_PORT_1;
688 else if (hw->bus.func == E1000_FUNC_2)
689 mask = E1000_NVM_CFG_DONE_PORT_2;
690 else if (hw->bus.func == E1000_FUNC_3)
691 mask = E1000_NVM_CFG_DONE_PORT_3;
692
693 while (timeout) {
694 if (rd32(E1000_EEMNGCTL) & mask)
695 break;
696 msleep(1);
697 timeout--;
698 }
699 if (!timeout)
700 hw_dbg("MNG configuration cycle has not completed.\n");
701
702 /* If EEPROM is not marked present, init the PHY manually */
703 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
704 (hw->phy.type == e1000_phy_igp_3))
705 igb_phy_init_script_igp3(hw);
706
707 return ret_val;
708 }
709
710 /**
711 * igb_check_for_link_82575 - Check for link
712 * @hw: pointer to the HW structure
713 *
714 * If sgmii is enabled, then use the pcs register to determine link, otherwise
715 * use the generic interface for determining link.
716 **/
717 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
718 {
719 s32 ret_val;
720 u16 speed, duplex;
721
722 if (hw->phy.media_type != e1000_media_type_copper) {
723 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
724 &duplex);
725 /*
726 * Use this flag to determine if link needs to be checked or
727 * not. If we have link clear the flag so that we do not
728 * continue to check for link.
729 */
730 hw->mac.get_link_status = !hw->mac.serdes_has_link;
731 } else {
732 ret_val = igb_check_for_copper_link(hw);
733 }
734
735 return ret_val;
736 }
737
738 /**
739 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
740 * @hw: pointer to the HW structure
741 **/
742 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
743 {
744 u32 reg;
745
746
747 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
748 !igb_sgmii_active_82575(hw))
749 return;
750
751 /* Enable PCS to turn on link */
752 reg = rd32(E1000_PCS_CFG0);
753 reg |= E1000_PCS_CFG_PCS_EN;
754 wr32(E1000_PCS_CFG0, reg);
755
756 /* Power up the laser */
757 reg = rd32(E1000_CTRL_EXT);
758 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
759 wr32(E1000_CTRL_EXT, reg);
760
761 /* flush the write to verify completion */
762 wrfl();
763 msleep(1);
764 }
765
766 /**
767 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
768 * @hw: pointer to the HW structure
769 * @speed: stores the current speed
770 * @duplex: stores the current duplex
771 *
772 * Using the physical coding sub-layer (PCS), retrieve the current speed and
773 * duplex, then store the values in the pointers provided.
774 **/
775 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
776 u16 *duplex)
777 {
778 struct e1000_mac_info *mac = &hw->mac;
779 u32 pcs;
780
781 /* Set up defaults for the return values of this function */
782 mac->serdes_has_link = false;
783 *speed = 0;
784 *duplex = 0;
785
786 /*
787 * Read the PCS Status register for link state. For non-copper mode,
788 * the status register is not accurate. The PCS status register is
789 * used instead.
790 */
791 pcs = rd32(E1000_PCS_LSTAT);
792
793 /*
794 * The link up bit determines when link is up on autoneg. The sync ok
795 * gets set once both sides sync up and agree upon link. Stable link
796 * can be determined by checking for both link up and link sync ok
797 */
798 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
799 mac->serdes_has_link = true;
800
801 /* Detect and store PCS speed */
802 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
803 *speed = SPEED_1000;
804 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
805 *speed = SPEED_100;
806 } else {
807 *speed = SPEED_10;
808 }
809
810 /* Detect and store PCS duplex */
811 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
812 *duplex = FULL_DUPLEX;
813 } else {
814 *duplex = HALF_DUPLEX;
815 }
816 }
817
818 return 0;
819 }
820
821 /**
822 * igb_shutdown_serdes_link_82575 - Remove link during power down
823 * @hw: pointer to the HW structure
824 *
825 * In the case of fiber serdes, shut down optics and PCS on driver unload
826 * when management pass thru is not enabled.
827 **/
828 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
829 {
830 u32 reg;
831
832 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
833 igb_sgmii_active_82575(hw))
834 return;
835
836 if (!igb_enable_mng_pass_thru(hw)) {
837 /* Disable PCS to turn off link */
838 reg = rd32(E1000_PCS_CFG0);
839 reg &= ~E1000_PCS_CFG_PCS_EN;
840 wr32(E1000_PCS_CFG0, reg);
841
842 /* shutdown the laser */
843 reg = rd32(E1000_CTRL_EXT);
844 reg |= E1000_CTRL_EXT_SDP3_DATA;
845 wr32(E1000_CTRL_EXT, reg);
846
847 /* flush the write to verify completion */
848 wrfl();
849 msleep(1);
850 }
851 }
852
853 /**
854 * igb_reset_hw_82575 - Reset hardware
855 * @hw: pointer to the HW structure
856 *
857 * This resets the hardware into a known state. This is a
858 * function pointer entry point called by the api module.
859 **/
860 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
861 {
862 u32 ctrl, icr;
863 s32 ret_val;
864
865 /*
866 * Prevent the PCI-E bus from sticking if there is no TLP connection
867 * on the last TLP read/write transaction when MAC is reset.
868 */
869 ret_val = igb_disable_pcie_master(hw);
870 if (ret_val)
871 hw_dbg("PCI-E Master disable polling has failed.\n");
872
873 /* set the completion timeout for interface */
874 ret_val = igb_set_pcie_completion_timeout(hw);
875 if (ret_val) {
876 hw_dbg("PCI-E Set completion timeout has failed.\n");
877 }
878
879 hw_dbg("Masking off all interrupts\n");
880 wr32(E1000_IMC, 0xffffffff);
881
882 wr32(E1000_RCTL, 0);
883 wr32(E1000_TCTL, E1000_TCTL_PSP);
884 wrfl();
885
886 msleep(10);
887
888 ctrl = rd32(E1000_CTRL);
889
890 hw_dbg("Issuing a global reset to MAC\n");
891 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
892
893 ret_val = igb_get_auto_rd_done(hw);
894 if (ret_val) {
895 /*
896 * When auto config read does not complete, do not
897 * return with an error. This can happen in situations
898 * where there is no eeprom and prevents getting link.
899 */
900 hw_dbg("Auto Read Done did not complete\n");
901 }
902
903 /* If EEPROM is not present, run manual init scripts */
904 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
905 igb_reset_init_script_82575(hw);
906
907 /* Clear any pending interrupt events. */
908 wr32(E1000_IMC, 0xffffffff);
909 icr = rd32(E1000_ICR);
910
911 /* Install any alternate MAC address into RAR0 */
912 ret_val = igb_check_alt_mac_addr(hw);
913
914 return ret_val;
915 }
916
917 /**
918 * igb_init_hw_82575 - Initialize hardware
919 * @hw: pointer to the HW structure
920 *
921 * This inits the hardware readying it for operation.
922 **/
923 static s32 igb_init_hw_82575(struct e1000_hw *hw)
924 {
925 struct e1000_mac_info *mac = &hw->mac;
926 s32 ret_val;
927 u16 i, rar_count = mac->rar_entry_count;
928
929 /* Initialize identification LED */
930 ret_val = igb_id_led_init(hw);
931 if (ret_val) {
932 hw_dbg("Error initializing identification LED\n");
933 /* This is not fatal and we should not stop init due to this */
934 }
935
936 /* Disabling VLAN filtering */
937 hw_dbg("Initializing the IEEE VLAN\n");
938 igb_clear_vfta(hw);
939
940 /* Setup the receive address */
941 igb_init_rx_addrs(hw, rar_count);
942
943 /* Zero out the Multicast HASH table */
944 hw_dbg("Zeroing the MTA\n");
945 for (i = 0; i < mac->mta_reg_count; i++)
946 array_wr32(E1000_MTA, i, 0);
947
948 /* Zero out the Unicast HASH table */
949 hw_dbg("Zeroing the UTA\n");
950 for (i = 0; i < mac->uta_reg_count; i++)
951 array_wr32(E1000_UTA, i, 0);
952
953 /* Setup link and flow control */
954 ret_val = igb_setup_link(hw);
955
956 /*
957 * Clear all of the statistics registers (clear on read). It is
958 * important that we do this after we have tried to establish link
959 * because the symbol error count will increment wildly if there
960 * is no link.
961 */
962 igb_clear_hw_cntrs_82575(hw);
963
964 return ret_val;
965 }
966
967 /**
968 * igb_setup_copper_link_82575 - Configure copper link settings
969 * @hw: pointer to the HW structure
970 *
971 * Configures the link for auto-neg or forced speed and duplex. Then we check
972 * for link, once link is established calls to configure collision distance
973 * and flow control are called.
974 **/
975 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
976 {
977 u32 ctrl;
978 s32 ret_val;
979
980 ctrl = rd32(E1000_CTRL);
981 ctrl |= E1000_CTRL_SLU;
982 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
983 wr32(E1000_CTRL, ctrl);
984
985 ret_val = igb_setup_serdes_link_82575(hw);
986 if (ret_val)
987 goto out;
988
989 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
990 /* allow time for SFP cage time to power up phy */
991 msleep(300);
992
993 ret_val = hw->phy.ops.reset(hw);
994 if (ret_val) {
995 hw_dbg("Error resetting the PHY.\n");
996 goto out;
997 }
998 }
999 switch (hw->phy.type) {
1000 case e1000_phy_m88:
1001 ret_val = igb_copper_link_setup_m88(hw);
1002 break;
1003 case e1000_phy_igp_3:
1004 ret_val = igb_copper_link_setup_igp(hw);
1005 break;
1006 case e1000_phy_82580:
1007 ret_val = igb_copper_link_setup_82580(hw);
1008 break;
1009 default:
1010 ret_val = -E1000_ERR_PHY;
1011 break;
1012 }
1013
1014 if (ret_val)
1015 goto out;
1016
1017 ret_val = igb_setup_copper_link(hw);
1018 out:
1019 return ret_val;
1020 }
1021
1022 /**
1023 * igb_setup_serdes_link_82575 - Setup link for serdes
1024 * @hw: pointer to the HW structure
1025 *
1026 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1027 * used on copper connections where the serialized gigabit media independent
1028 * interface (sgmii), or serdes fiber is being used. Configures the link
1029 * for auto-negotiation or forces speed/duplex.
1030 **/
1031 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1032 {
1033 u32 ctrl_ext, ctrl_reg, reg;
1034 bool pcs_autoneg;
1035
1036 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1037 !igb_sgmii_active_82575(hw))
1038 return 0;
1039
1040 /*
1041 * On the 82575, SerDes loopback mode persists until it is
1042 * explicitly turned off or a power cycle is performed. A read to
1043 * the register does not indicate its status. Therefore, we ensure
1044 * loopback mode is disabled during initialization.
1045 */
1046 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1047
1048 /* power on the sfp cage if present */
1049 ctrl_ext = rd32(E1000_CTRL_EXT);
1050 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1051 wr32(E1000_CTRL_EXT, ctrl_ext);
1052
1053 ctrl_reg = rd32(E1000_CTRL);
1054 ctrl_reg |= E1000_CTRL_SLU;
1055
1056 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1057 /* set both sw defined pins */
1058 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1059
1060 /* Set switch control to serdes energy detect */
1061 reg = rd32(E1000_CONNSW);
1062 reg |= E1000_CONNSW_ENRGSRC;
1063 wr32(E1000_CONNSW, reg);
1064 }
1065
1066 reg = rd32(E1000_PCS_LCTL);
1067
1068 /* default pcs_autoneg to the same setting as mac autoneg */
1069 pcs_autoneg = hw->mac.autoneg;
1070
1071 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1072 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1073 /* sgmii mode lets the phy handle forcing speed/duplex */
1074 pcs_autoneg = true;
1075 /* autoneg time out should be disabled for SGMII mode */
1076 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1077 break;
1078 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1079 /* disable PCS autoneg and support parallel detect only */
1080 pcs_autoneg = false;
1081 default:
1082 /*
1083 * non-SGMII modes only supports a speed of 1000/Full for the
1084 * link so it is best to just force the MAC and let the pcs
1085 * link either autoneg or be forced to 1000/Full
1086 */
1087 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1088 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1089
1090 /* set speed of 1000/Full if speed/duplex is forced */
1091 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1092 break;
1093 }
1094
1095 wr32(E1000_CTRL, ctrl_reg);
1096
1097 /*
1098 * New SerDes mode allows for forcing speed or autonegotiating speed
1099 * at 1gb. Autoneg should be default set by most drivers. This is the
1100 * mode that will be compatible with older link partners and switches.
1101 * However, both are supported by the hardware and some drivers/tools.
1102 */
1103 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1104 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1105
1106 /*
1107 * We force flow control to prevent the CTRL register values from being
1108 * overwritten by the autonegotiated flow control values
1109 */
1110 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1111
1112 if (pcs_autoneg) {
1113 /* Set PCS register for autoneg */
1114 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1115 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1116 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1117 } else {
1118 /* Set PCS register for forced link */
1119 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1120
1121 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1122 }
1123
1124 wr32(E1000_PCS_LCTL, reg);
1125
1126 if (!igb_sgmii_active_82575(hw))
1127 igb_force_mac_fc(hw);
1128
1129 return 0;
1130 }
1131
1132 /**
1133 * igb_sgmii_active_82575 - Return sgmii state
1134 * @hw: pointer to the HW structure
1135 *
1136 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1137 * which can be enabled for use in the embedded applications. Simply
1138 * return the current state of the sgmii interface.
1139 **/
1140 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1141 {
1142 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1143 return dev_spec->sgmii_active;
1144 }
1145
1146 /**
1147 * igb_reset_init_script_82575 - Inits HW defaults after reset
1148 * @hw: pointer to the HW structure
1149 *
1150 * Inits recommended HW defaults after a reset when there is no EEPROM
1151 * detected. This is only for the 82575.
1152 **/
1153 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1154 {
1155 if (hw->mac.type == e1000_82575) {
1156 hw_dbg("Running reset init script for 82575\n");
1157 /* SerDes configuration via SERDESCTRL */
1158 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1159 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1160 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1161 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1162
1163 /* CCM configuration via CCMCTL register */
1164 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1165 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1166
1167 /* PCIe lanes configuration */
1168 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1169 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1170 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1171 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1172
1173 /* PCIe PLL Configuration */
1174 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1175 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1176 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1177 }
1178
1179 return 0;
1180 }
1181
1182 /**
1183 * igb_read_mac_addr_82575 - Read device MAC address
1184 * @hw: pointer to the HW structure
1185 **/
1186 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1187 {
1188 s32 ret_val = 0;
1189
1190 /*
1191 * If there's an alternate MAC address place it in RAR0
1192 * so that it will override the Si installed default perm
1193 * address.
1194 */
1195 ret_val = igb_check_alt_mac_addr(hw);
1196 if (ret_val)
1197 goto out;
1198
1199 ret_val = igb_read_mac_addr(hw);
1200
1201 out:
1202 return ret_val;
1203 }
1204
1205 /**
1206 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1207 * @hw: pointer to the HW structure
1208 *
1209 * In the case of a PHY power down to save power, or to turn off link during a
1210 * driver unload, or wake on lan is not enabled, remove the link.
1211 **/
1212 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1213 {
1214 /* If the management interface is not enabled, then power down */
1215 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1216 igb_power_down_phy_copper(hw);
1217 }
1218
1219 /**
1220 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1221 * @hw: pointer to the HW structure
1222 *
1223 * Clears the hardware counters by reading the counter registers.
1224 **/
1225 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1226 {
1227 igb_clear_hw_cntrs_base(hw);
1228
1229 rd32(E1000_PRC64);
1230 rd32(E1000_PRC127);
1231 rd32(E1000_PRC255);
1232 rd32(E1000_PRC511);
1233 rd32(E1000_PRC1023);
1234 rd32(E1000_PRC1522);
1235 rd32(E1000_PTC64);
1236 rd32(E1000_PTC127);
1237 rd32(E1000_PTC255);
1238 rd32(E1000_PTC511);
1239 rd32(E1000_PTC1023);
1240 rd32(E1000_PTC1522);
1241
1242 rd32(E1000_ALGNERRC);
1243 rd32(E1000_RXERRC);
1244 rd32(E1000_TNCRS);
1245 rd32(E1000_CEXTERR);
1246 rd32(E1000_TSCTC);
1247 rd32(E1000_TSCTFC);
1248
1249 rd32(E1000_MGTPRC);
1250 rd32(E1000_MGTPDC);
1251 rd32(E1000_MGTPTC);
1252
1253 rd32(E1000_IAC);
1254 rd32(E1000_ICRXOC);
1255
1256 rd32(E1000_ICRXPTC);
1257 rd32(E1000_ICRXATC);
1258 rd32(E1000_ICTXPTC);
1259 rd32(E1000_ICTXATC);
1260 rd32(E1000_ICTXQEC);
1261 rd32(E1000_ICTXQMTC);
1262 rd32(E1000_ICRXDMTC);
1263
1264 rd32(E1000_CBTMPC);
1265 rd32(E1000_HTDPMC);
1266 rd32(E1000_CBRMPC);
1267 rd32(E1000_RPTHC);
1268 rd32(E1000_HGPTC);
1269 rd32(E1000_HTCBDPC);
1270 rd32(E1000_HGORCL);
1271 rd32(E1000_HGORCH);
1272 rd32(E1000_HGOTCL);
1273 rd32(E1000_HGOTCH);
1274 rd32(E1000_LENERRS);
1275
1276 /* This register should not be read in copper configurations */
1277 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1278 igb_sgmii_active_82575(hw))
1279 rd32(E1000_SCVPC);
1280 }
1281
1282 /**
1283 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1284 * @hw: pointer to the HW structure
1285 *
1286 * After rx enable if managability is enabled then there is likely some
1287 * bad data at the start of the fifo and possibly in the DMA fifo. This
1288 * function clears the fifos and flushes any packets that came in as rx was
1289 * being enabled.
1290 **/
1291 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1292 {
1293 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1294 int i, ms_wait;
1295
1296 if (hw->mac.type != e1000_82575 ||
1297 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1298 return;
1299
1300 /* Disable all RX queues */
1301 for (i = 0; i < 4; i++) {
1302 rxdctl[i] = rd32(E1000_RXDCTL(i));
1303 wr32(E1000_RXDCTL(i),
1304 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1305 }
1306 /* Poll all queues to verify they have shut down */
1307 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1308 msleep(1);
1309 rx_enabled = 0;
1310 for (i = 0; i < 4; i++)
1311 rx_enabled |= rd32(E1000_RXDCTL(i));
1312 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1313 break;
1314 }
1315
1316 if (ms_wait == 10)
1317 hw_dbg("Queue disable timed out after 10ms\n");
1318
1319 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1320 * incoming packets are rejected. Set enable and wait 2ms so that
1321 * any packet that was coming in as RCTL.EN was set is flushed
1322 */
1323 rfctl = rd32(E1000_RFCTL);
1324 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1325
1326 rlpml = rd32(E1000_RLPML);
1327 wr32(E1000_RLPML, 0);
1328
1329 rctl = rd32(E1000_RCTL);
1330 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1331 temp_rctl |= E1000_RCTL_LPE;
1332
1333 wr32(E1000_RCTL, temp_rctl);
1334 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1335 wrfl();
1336 msleep(2);
1337
1338 /* Enable RX queues that were previously enabled and restore our
1339 * previous state
1340 */
1341 for (i = 0; i < 4; i++)
1342 wr32(E1000_RXDCTL(i), rxdctl[i]);
1343 wr32(E1000_RCTL, rctl);
1344 wrfl();
1345
1346 wr32(E1000_RLPML, rlpml);
1347 wr32(E1000_RFCTL, rfctl);
1348
1349 /* Flush receive errors generated by workaround */
1350 rd32(E1000_ROC);
1351 rd32(E1000_RNBC);
1352 rd32(E1000_MPC);
1353 }
1354
1355 /**
1356 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1357 * @hw: pointer to the HW structure
1358 *
1359 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1360 * however the hardware default for these parts is 500us to 1ms which is less
1361 * than the 10ms recommended by the pci-e spec. To address this we need to
1362 * increase the value to either 10ms to 200ms for capability version 1 config,
1363 * or 16ms to 55ms for version 2.
1364 **/
1365 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1366 {
1367 u32 gcr = rd32(E1000_GCR);
1368 s32 ret_val = 0;
1369 u16 pcie_devctl2;
1370
1371 /* only take action if timeout value is defaulted to 0 */
1372 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1373 goto out;
1374
1375 /*
1376 * if capababilities version is type 1 we can write the
1377 * timeout of 10ms to 200ms through the GCR register
1378 */
1379 if (!(gcr & E1000_GCR_CAP_VER2)) {
1380 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1381 goto out;
1382 }
1383
1384 /*
1385 * for version 2 capabilities we need to write the config space
1386 * directly in order to set the completion timeout value for
1387 * 16ms to 55ms
1388 */
1389 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1390 &pcie_devctl2);
1391 if (ret_val)
1392 goto out;
1393
1394 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1395
1396 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1397 &pcie_devctl2);
1398 out:
1399 /* disable completion timeout resend */
1400 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1401
1402 wr32(E1000_GCR, gcr);
1403 return ret_val;
1404 }
1405
1406 /**
1407 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1408 * @hw: pointer to the hardware struct
1409 * @enable: state to enter, either enabled or disabled
1410 *
1411 * enables/disables L2 switch loopback functionality.
1412 **/
1413 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1414 {
1415 u32 dtxswc = rd32(E1000_DTXSWC);
1416
1417 if (enable)
1418 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1419 else
1420 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1421
1422 wr32(E1000_DTXSWC, dtxswc);
1423 }
1424
1425 /**
1426 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1427 * @hw: pointer to the hardware struct
1428 * @enable: state to enter, either enabled or disabled
1429 *
1430 * enables/disables replication of packets across multiple pools.
1431 **/
1432 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1433 {
1434 u32 vt_ctl = rd32(E1000_VT_CTL);
1435
1436 if (enable)
1437 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1438 else
1439 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1440
1441 wr32(E1000_VT_CTL, vt_ctl);
1442 }
1443
1444 /**
1445 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1446 * @hw: pointer to the HW structure
1447 * @offset: register offset to be read
1448 * @data: pointer to the read data
1449 *
1450 * Reads the MDI control register in the PHY at offset and stores the
1451 * information read to data.
1452 **/
1453 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1454 {
1455 s32 ret_val;
1456
1457
1458 ret_val = hw->phy.ops.acquire(hw);
1459 if (ret_val)
1460 goto out;
1461
1462 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1463
1464 hw->phy.ops.release(hw);
1465
1466 out:
1467 return ret_val;
1468 }
1469
1470 /**
1471 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1472 * @hw: pointer to the HW structure
1473 * @offset: register offset to write to
1474 * @data: data to write to register at offset
1475 *
1476 * Writes data to MDI control register in the PHY at offset.
1477 **/
1478 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1479 {
1480 s32 ret_val;
1481
1482
1483 ret_val = hw->phy.ops.acquire(hw);
1484 if (ret_val)
1485 goto out;
1486
1487 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1488
1489 hw->phy.ops.release(hw);
1490
1491 out:
1492 return ret_val;
1493 }
1494
1495 /**
1496 * igb_reset_hw_82580 - Reset hardware
1497 * @hw: pointer to the HW structure
1498 *
1499 * This resets function or entire device (all ports, etc.)
1500 * to a known state.
1501 **/
1502 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1503 {
1504 s32 ret_val = 0;
1505 /* BH SW mailbox bit in SW_FW_SYNC */
1506 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1507 u32 ctrl, icr;
1508 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1509
1510
1511 hw->dev_spec._82575.global_device_reset = false;
1512
1513 /* Get current control state. */
1514 ctrl = rd32(E1000_CTRL);
1515
1516 /*
1517 * Prevent the PCI-E bus from sticking if there is no TLP connection
1518 * on the last TLP read/write transaction when MAC is reset.
1519 */
1520 ret_val = igb_disable_pcie_master(hw);
1521 if (ret_val)
1522 hw_dbg("PCI-E Master disable polling has failed.\n");
1523
1524 hw_dbg("Masking off all interrupts\n");
1525 wr32(E1000_IMC, 0xffffffff);
1526 wr32(E1000_RCTL, 0);
1527 wr32(E1000_TCTL, E1000_TCTL_PSP);
1528 wrfl();
1529
1530 msleep(10);
1531
1532 /* Determine whether or not a global dev reset is requested */
1533 if (global_device_reset &&
1534 igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1535 global_device_reset = false;
1536
1537 if (global_device_reset &&
1538 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1539 ctrl |= E1000_CTRL_DEV_RST;
1540 else
1541 ctrl |= E1000_CTRL_RST;
1542
1543 wr32(E1000_CTRL, ctrl);
1544
1545 /* Add delay to insure DEV_RST has time to complete */
1546 if (global_device_reset)
1547 msleep(5);
1548
1549 ret_val = igb_get_auto_rd_done(hw);
1550 if (ret_val) {
1551 /*
1552 * When auto config read does not complete, do not
1553 * return with an error. This can happen in situations
1554 * where there is no eeprom and prevents getting link.
1555 */
1556 hw_dbg("Auto Read Done did not complete\n");
1557 }
1558
1559 /* If EEPROM is not present, run manual init scripts */
1560 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1561 igb_reset_init_script_82575(hw);
1562
1563 /* clear global device reset status bit */
1564 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1565
1566 /* Clear any pending interrupt events. */
1567 wr32(E1000_IMC, 0xffffffff);
1568 icr = rd32(E1000_ICR);
1569
1570 /* Install any alternate MAC address into RAR0 */
1571 ret_val = igb_check_alt_mac_addr(hw);
1572
1573 /* Release semaphore */
1574 if (global_device_reset)
1575 igb_release_swfw_sync_82575(hw, swmbsw_mask);
1576
1577 return ret_val;
1578 }
1579
1580 /**
1581 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1582 * @data: data received by reading RXPBS register
1583 *
1584 * The 82580 uses a table based approach for packet buffer allocation sizes.
1585 * This function converts the retrieved value into the correct table value
1586 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1587 * 0x0 36 72 144 1 2 4 8 16
1588 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1589 */
1590 u16 igb_rxpbs_adjust_82580(u32 data)
1591 {
1592 u16 ret_val = 0;
1593
1594 if (data < E1000_82580_RXPBS_TABLE_SIZE)
1595 ret_val = e1000_82580_rxpbs_table[data];
1596
1597 return ret_val;
1598 }
1599
1600 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1601 .init_hw = igb_init_hw_82575,
1602 .check_for_link = igb_check_for_link_82575,
1603 .rar_set = igb_rar_set,
1604 .read_mac_addr = igb_read_mac_addr_82575,
1605 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1606 };
1607
1608 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1609 .acquire = igb_acquire_phy_82575,
1610 .get_cfg_done = igb_get_cfg_done_82575,
1611 .release = igb_release_phy_82575,
1612 };
1613
1614 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1615 .acquire = igb_acquire_nvm_82575,
1616 .read = igb_read_nvm_eerd,
1617 .release = igb_release_nvm_82575,
1618 .write = igb_write_nvm_spi,
1619 };
1620
1621 const struct e1000_info e1000_82575_info = {
1622 .get_invariants = igb_get_invariants_82575,
1623 .mac_ops = &e1000_mac_ops_82575,
1624 .phy_ops = &e1000_phy_ops_82575,
1625 .nvm_ops = &e1000_nvm_ops_82575,
1626 };
1627
This page took 0.13778 seconds and 5 git commands to generate.