Merge branch 'fix/hda' into for-linus
[deliverable/linux.git] / drivers / net / igb / e1000_82575.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29 * e1000_82576
30 */
31
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
35
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
38
39 static s32 igb_get_invariants_82575(struct e1000_hw *);
40 static s32 igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32 igb_check_for_link_82575(struct e1000_hw *);
45 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32 igb_init_hw_82575(struct e1000_hw *);
47 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32 igb_reset_hw_82575(struct e1000_hw *);
50 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56 static s32 igb_configure_pcs_link_82575(struct e1000_hw *);
57 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
58 u16 *);
59 static s32 igb_get_phy_id_82575(struct e1000_hw *);
60 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61 static bool igb_sgmii_active_82575(struct e1000_hw *);
62 static s32 igb_reset_init_script_82575(struct e1000_hw *);
63 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
64
65 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
66 {
67 struct e1000_phy_info *phy = &hw->phy;
68 struct e1000_nvm_info *nvm = &hw->nvm;
69 struct e1000_mac_info *mac = &hw->mac;
70 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
71 u32 eecd;
72 s32 ret_val;
73 u16 size;
74 u32 ctrl_ext = 0;
75
76 switch (hw->device_id) {
77 case E1000_DEV_ID_82575EB_COPPER:
78 case E1000_DEV_ID_82575EB_FIBER_SERDES:
79 case E1000_DEV_ID_82575GB_QUAD_COPPER:
80 mac->type = e1000_82575;
81 break;
82 case E1000_DEV_ID_82576:
83 case E1000_DEV_ID_82576_NS:
84 case E1000_DEV_ID_82576_FIBER:
85 case E1000_DEV_ID_82576_SERDES:
86 case E1000_DEV_ID_82576_QUAD_COPPER:
87 mac->type = e1000_82576;
88 break;
89 default:
90 return -E1000_ERR_MAC_INIT;
91 break;
92 }
93
94 /* Set media type */
95 /*
96 * The 82575 uses bits 22:23 for link mode. The mode can be changed
97 * based on the EEPROM. We cannot rely upon device ID. There
98 * is no distinguishable difference between fiber and internal
99 * SerDes mode on the 82575. There can be an external PHY attached
100 * on the SGMII interface. For this, we'll set sgmii_active to true.
101 */
102 phy->media_type = e1000_media_type_copper;
103 dev_spec->sgmii_active = false;
104
105 ctrl_ext = rd32(E1000_CTRL_EXT);
106 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
107 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
108 hw->phy.media_type = e1000_media_type_internal_serdes;
109 ctrl_ext |= E1000_CTRL_I2C_ENA;
110 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
111 dev_spec->sgmii_active = true;
112 ctrl_ext |= E1000_CTRL_I2C_ENA;
113 } else {
114 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
115 }
116 wr32(E1000_CTRL_EXT, ctrl_ext);
117
118 /* Set mta register count */
119 mac->mta_reg_count = 128;
120 /* Set rar entry count */
121 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
122 if (mac->type == e1000_82576)
123 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
124 /* Set if part includes ASF firmware */
125 mac->asf_firmware_present = true;
126 /* Set if manageability features are enabled. */
127 mac->arc_subsystem_valid =
128 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
129 ? true : false;
130
131 /* physical interface link setup */
132 mac->ops.setup_physical_interface =
133 (hw->phy.media_type == e1000_media_type_copper)
134 ? igb_setup_copper_link_82575
135 : igb_setup_fiber_serdes_link_82575;
136
137 /* NVM initialization */
138 eecd = rd32(E1000_EECD);
139
140 nvm->opcode_bits = 8;
141 nvm->delay_usec = 1;
142 switch (nvm->override) {
143 case e1000_nvm_override_spi_large:
144 nvm->page_size = 32;
145 nvm->address_bits = 16;
146 break;
147 case e1000_nvm_override_spi_small:
148 nvm->page_size = 8;
149 nvm->address_bits = 8;
150 break;
151 default:
152 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
153 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
154 break;
155 }
156
157 nvm->type = e1000_nvm_eeprom_spi;
158
159 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
160 E1000_EECD_SIZE_EX_SHIFT);
161
162 /*
163 * Added to a constant, "size" becomes the left-shift value
164 * for setting word_size.
165 */
166 size += NVM_WORD_SIZE_BASE_SHIFT;
167
168 /* EEPROM access above 16k is unsupported */
169 if (size > 14)
170 size = 14;
171 nvm->word_size = 1 << size;
172
173 /* setup PHY parameters */
174 if (phy->media_type != e1000_media_type_copper) {
175 phy->type = e1000_phy_none;
176 return 0;
177 }
178
179 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
180 phy->reset_delay_us = 100;
181
182 /* PHY function pointers */
183 if (igb_sgmii_active_82575(hw)) {
184 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
185 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
186 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
187 } else {
188 phy->ops.reset = igb_phy_hw_reset;
189 phy->ops.read_reg = igb_read_phy_reg_igp;
190 phy->ops.write_reg = igb_write_phy_reg_igp;
191 }
192
193 /* set lan id */
194 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
195 E1000_STATUS_FUNC_SHIFT;
196
197 /* Set phy->phy_addr and phy->id. */
198 ret_val = igb_get_phy_id_82575(hw);
199 if (ret_val)
200 return ret_val;
201
202 /* Verify phy id and set remaining function pointers */
203 switch (phy->id) {
204 case M88E1111_I_PHY_ID:
205 phy->type = e1000_phy_m88;
206 phy->ops.get_phy_info = igb_get_phy_info_m88;
207 phy->ops.get_cable_length = igb_get_cable_length_m88;
208 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
209 break;
210 case IGP03E1000_E_PHY_ID:
211 phy->type = e1000_phy_igp_3;
212 phy->ops.get_phy_info = igb_get_phy_info_igp;
213 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
214 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
215 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
216 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
217 break;
218 default:
219 return -E1000_ERR_PHY;
220 }
221
222 /* if 82576 then initialize mailbox parameters */
223 if (mac->type == e1000_82576)
224 igb_init_mbx_params_pf(hw);
225
226 return 0;
227 }
228
229 /**
230 * igb_acquire_phy_82575 - Acquire rights to access PHY
231 * @hw: pointer to the HW structure
232 *
233 * Acquire access rights to the correct PHY. This is a
234 * function pointer entry point called by the api module.
235 **/
236 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
237 {
238 u16 mask;
239
240 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
241
242 return igb_acquire_swfw_sync_82575(hw, mask);
243 }
244
245 /**
246 * igb_release_phy_82575 - Release rights to access PHY
247 * @hw: pointer to the HW structure
248 *
249 * A wrapper to release access rights to the correct PHY. This is a
250 * function pointer entry point called by the api module.
251 **/
252 static void igb_release_phy_82575(struct e1000_hw *hw)
253 {
254 u16 mask;
255
256 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
257 igb_release_swfw_sync_82575(hw, mask);
258 }
259
260 /**
261 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
262 * @hw: pointer to the HW structure
263 * @offset: register offset to be read
264 * @data: pointer to the read data
265 *
266 * Reads the PHY register at offset using the serial gigabit media independent
267 * interface and stores the retrieved information in data.
268 **/
269 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
270 u16 *data)
271 {
272 struct e1000_phy_info *phy = &hw->phy;
273 u32 i, i2ccmd = 0;
274
275 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
276 hw_dbg("PHY Address %u is out of range\n", offset);
277 return -E1000_ERR_PARAM;
278 }
279
280 /*
281 * Set up Op-code, Phy Address, and register address in the I2CCMD
282 * register. The MAC will take care of interfacing with the
283 * PHY to retrieve the desired data.
284 */
285 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
286 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
287 (E1000_I2CCMD_OPCODE_READ));
288
289 wr32(E1000_I2CCMD, i2ccmd);
290
291 /* Poll the ready bit to see if the I2C read completed */
292 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
293 udelay(50);
294 i2ccmd = rd32(E1000_I2CCMD);
295 if (i2ccmd & E1000_I2CCMD_READY)
296 break;
297 }
298 if (!(i2ccmd & E1000_I2CCMD_READY)) {
299 hw_dbg("I2CCMD Read did not complete\n");
300 return -E1000_ERR_PHY;
301 }
302 if (i2ccmd & E1000_I2CCMD_ERROR) {
303 hw_dbg("I2CCMD Error bit set\n");
304 return -E1000_ERR_PHY;
305 }
306
307 /* Need to byte-swap the 16-bit value. */
308 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
309
310 return 0;
311 }
312
313 /**
314 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
315 * @hw: pointer to the HW structure
316 * @offset: register offset to write to
317 * @data: data to write at register offset
318 *
319 * Writes the data to PHY register at the offset using the serial gigabit
320 * media independent interface.
321 **/
322 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
323 u16 data)
324 {
325 struct e1000_phy_info *phy = &hw->phy;
326 u32 i, i2ccmd = 0;
327 u16 phy_data_swapped;
328
329 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
330 hw_dbg("PHY Address %d is out of range\n", offset);
331 return -E1000_ERR_PARAM;
332 }
333
334 /* Swap the data bytes for the I2C interface */
335 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
336
337 /*
338 * Set up Op-code, Phy Address, and register address in the I2CCMD
339 * register. The MAC will take care of interfacing with the
340 * PHY to retrieve the desired data.
341 */
342 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
343 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
344 E1000_I2CCMD_OPCODE_WRITE |
345 phy_data_swapped);
346
347 wr32(E1000_I2CCMD, i2ccmd);
348
349 /* Poll the ready bit to see if the I2C read completed */
350 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
351 udelay(50);
352 i2ccmd = rd32(E1000_I2CCMD);
353 if (i2ccmd & E1000_I2CCMD_READY)
354 break;
355 }
356 if (!(i2ccmd & E1000_I2CCMD_READY)) {
357 hw_dbg("I2CCMD Write did not complete\n");
358 return -E1000_ERR_PHY;
359 }
360 if (i2ccmd & E1000_I2CCMD_ERROR) {
361 hw_dbg("I2CCMD Error bit set\n");
362 return -E1000_ERR_PHY;
363 }
364
365 return 0;
366 }
367
368 /**
369 * igb_get_phy_id_82575 - Retrieve PHY addr and id
370 * @hw: pointer to the HW structure
371 *
372 * Retrieves the PHY address and ID for both PHY's which do and do not use
373 * sgmi interface.
374 **/
375 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
376 {
377 struct e1000_phy_info *phy = &hw->phy;
378 s32 ret_val = 0;
379 u16 phy_id;
380
381 /*
382 * For SGMII PHYs, we try the list of possible addresses until
383 * we find one that works. For non-SGMII PHYs
384 * (e.g. integrated copper PHYs), an address of 1 should
385 * work. The result of this function should mean phy->phy_addr
386 * and phy->id are set correctly.
387 */
388 if (!(igb_sgmii_active_82575(hw))) {
389 phy->addr = 1;
390 ret_val = igb_get_phy_id(hw);
391 goto out;
392 }
393
394 /*
395 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
396 * Therefore, we need to test 1-7
397 */
398 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
399 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
400 if (ret_val == 0) {
401 hw_dbg("Vendor ID 0x%08X read at address %u\n",
402 phy_id, phy->addr);
403 /*
404 * At the time of this writing, The M88 part is
405 * the only supported SGMII PHY product.
406 */
407 if (phy_id == M88_VENDOR)
408 break;
409 } else {
410 hw_dbg("PHY address %u was unreadable\n", phy->addr);
411 }
412 }
413
414 /* A valid PHY type couldn't be found. */
415 if (phy->addr == 8) {
416 phy->addr = 0;
417 ret_val = -E1000_ERR_PHY;
418 goto out;
419 }
420
421 ret_val = igb_get_phy_id(hw);
422
423 out:
424 return ret_val;
425 }
426
427 /**
428 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
429 * @hw: pointer to the HW structure
430 *
431 * Resets the PHY using the serial gigabit media independent interface.
432 **/
433 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
434 {
435 s32 ret_val;
436
437 /*
438 * This isn't a true "hard" reset, but is the only reset
439 * available to us at this time.
440 */
441
442 hw_dbg("Soft resetting SGMII attached PHY...\n");
443
444 /*
445 * SFP documentation requires the following to configure the SPF module
446 * to work on SGMII. No further documentation is given.
447 */
448 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
449 if (ret_val)
450 goto out;
451
452 ret_val = igb_phy_sw_reset(hw);
453
454 out:
455 return ret_val;
456 }
457
458 /**
459 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
460 * @hw: pointer to the HW structure
461 * @active: true to enable LPLU, false to disable
462 *
463 * Sets the LPLU D0 state according to the active flag. When
464 * activating LPLU this function also disables smart speed
465 * and vice versa. LPLU will not be activated unless the
466 * device autonegotiation advertisement meets standards of
467 * either 10 or 10/100 or 10/100/1000 at all duplexes.
468 * This is a function pointer entry point only called by
469 * PHY setup routines.
470 **/
471 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
472 {
473 struct e1000_phy_info *phy = &hw->phy;
474 s32 ret_val;
475 u16 data;
476
477 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
478 if (ret_val)
479 goto out;
480
481 if (active) {
482 data |= IGP02E1000_PM_D0_LPLU;
483 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
484 data);
485 if (ret_val)
486 goto out;
487
488 /* When LPLU is enabled, we should disable SmartSpeed */
489 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
490 &data);
491 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
492 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
493 data);
494 if (ret_val)
495 goto out;
496 } else {
497 data &= ~IGP02E1000_PM_D0_LPLU;
498 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
499 data);
500 /*
501 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
502 * during Dx states where the power conservation is most
503 * important. During driver activity we should enable
504 * SmartSpeed, so performance is maintained.
505 */
506 if (phy->smart_speed == e1000_smart_speed_on) {
507 ret_val = phy->ops.read_reg(hw,
508 IGP01E1000_PHY_PORT_CONFIG, &data);
509 if (ret_val)
510 goto out;
511
512 data |= IGP01E1000_PSCFR_SMART_SPEED;
513 ret_val = phy->ops.write_reg(hw,
514 IGP01E1000_PHY_PORT_CONFIG, data);
515 if (ret_val)
516 goto out;
517 } else if (phy->smart_speed == e1000_smart_speed_off) {
518 ret_val = phy->ops.read_reg(hw,
519 IGP01E1000_PHY_PORT_CONFIG, &data);
520 if (ret_val)
521 goto out;
522
523 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
524 ret_val = phy->ops.write_reg(hw,
525 IGP01E1000_PHY_PORT_CONFIG, data);
526 if (ret_val)
527 goto out;
528 }
529 }
530
531 out:
532 return ret_val;
533 }
534
535 /**
536 * igb_acquire_nvm_82575 - Request for access to EEPROM
537 * @hw: pointer to the HW structure
538 *
539 * Acquire the necessary semaphores for exclusive access to the EEPROM.
540 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
541 * Return successful if access grant bit set, else clear the request for
542 * EEPROM access and return -E1000_ERR_NVM (-1).
543 **/
544 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
545 {
546 s32 ret_val;
547
548 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
549 if (ret_val)
550 goto out;
551
552 ret_val = igb_acquire_nvm(hw);
553
554 if (ret_val)
555 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
556
557 out:
558 return ret_val;
559 }
560
561 /**
562 * igb_release_nvm_82575 - Release exclusive access to EEPROM
563 * @hw: pointer to the HW structure
564 *
565 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
566 * then release the semaphores acquired.
567 **/
568 static void igb_release_nvm_82575(struct e1000_hw *hw)
569 {
570 igb_release_nvm(hw);
571 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
572 }
573
574 /**
575 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
576 * @hw: pointer to the HW structure
577 * @mask: specifies which semaphore to acquire
578 *
579 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
580 * will also specify which port we're acquiring the lock for.
581 **/
582 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
583 {
584 u32 swfw_sync;
585 u32 swmask = mask;
586 u32 fwmask = mask << 16;
587 s32 ret_val = 0;
588 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
589
590 while (i < timeout) {
591 if (igb_get_hw_semaphore(hw)) {
592 ret_val = -E1000_ERR_SWFW_SYNC;
593 goto out;
594 }
595
596 swfw_sync = rd32(E1000_SW_FW_SYNC);
597 if (!(swfw_sync & (fwmask | swmask)))
598 break;
599
600 /*
601 * Firmware currently using resource (fwmask)
602 * or other software thread using resource (swmask)
603 */
604 igb_put_hw_semaphore(hw);
605 mdelay(5);
606 i++;
607 }
608
609 if (i == timeout) {
610 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
611 ret_val = -E1000_ERR_SWFW_SYNC;
612 goto out;
613 }
614
615 swfw_sync |= swmask;
616 wr32(E1000_SW_FW_SYNC, swfw_sync);
617
618 igb_put_hw_semaphore(hw);
619
620 out:
621 return ret_val;
622 }
623
624 /**
625 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
626 * @hw: pointer to the HW structure
627 * @mask: specifies which semaphore to acquire
628 *
629 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
630 * will also specify which port we're releasing the lock for.
631 **/
632 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
633 {
634 u32 swfw_sync;
635
636 while (igb_get_hw_semaphore(hw) != 0);
637 /* Empty */
638
639 swfw_sync = rd32(E1000_SW_FW_SYNC);
640 swfw_sync &= ~mask;
641 wr32(E1000_SW_FW_SYNC, swfw_sync);
642
643 igb_put_hw_semaphore(hw);
644 }
645
646 /**
647 * igb_get_cfg_done_82575 - Read config done bit
648 * @hw: pointer to the HW structure
649 *
650 * Read the management control register for the config done bit for
651 * completion status. NOTE: silicon which is EEPROM-less will fail trying
652 * to read the config done bit, so an error is *ONLY* logged and returns
653 * 0. If we were to return with error, EEPROM-less silicon
654 * would not be able to be reset or change link.
655 **/
656 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
657 {
658 s32 timeout = PHY_CFG_TIMEOUT;
659 s32 ret_val = 0;
660 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
661
662 if (hw->bus.func == 1)
663 mask = E1000_NVM_CFG_DONE_PORT_1;
664
665 while (timeout) {
666 if (rd32(E1000_EEMNGCTL) & mask)
667 break;
668 msleep(1);
669 timeout--;
670 }
671 if (!timeout)
672 hw_dbg("MNG configuration cycle has not completed.\n");
673
674 /* If EEPROM is not marked present, init the PHY manually */
675 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
676 (hw->phy.type == e1000_phy_igp_3))
677 igb_phy_init_script_igp3(hw);
678
679 return ret_val;
680 }
681
682 /**
683 * igb_check_for_link_82575 - Check for link
684 * @hw: pointer to the HW structure
685 *
686 * If sgmii is enabled, then use the pcs register to determine link, otherwise
687 * use the generic interface for determining link.
688 **/
689 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
690 {
691 s32 ret_val;
692 u16 speed, duplex;
693
694 /* SGMII link check is done through the PCS register. */
695 if ((hw->phy.media_type != e1000_media_type_copper) ||
696 (igb_sgmii_active_82575(hw))) {
697 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
698 &duplex);
699 /*
700 * Use this flag to determine if link needs to be checked or
701 * not. If we have link clear the flag so that we do not
702 * continue to check for link.
703 */
704 hw->mac.get_link_status = !hw->mac.serdes_has_link;
705 } else {
706 ret_val = igb_check_for_copper_link(hw);
707 }
708
709 return ret_val;
710 }
711 /**
712 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
713 * @hw: pointer to the HW structure
714 * @speed: stores the current speed
715 * @duplex: stores the current duplex
716 *
717 * Using the physical coding sub-layer (PCS), retrieve the current speed and
718 * duplex, then store the values in the pointers provided.
719 **/
720 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
721 u16 *duplex)
722 {
723 struct e1000_mac_info *mac = &hw->mac;
724 u32 pcs;
725
726 /* Set up defaults for the return values of this function */
727 mac->serdes_has_link = false;
728 *speed = 0;
729 *duplex = 0;
730
731 /*
732 * Read the PCS Status register for link state. For non-copper mode,
733 * the status register is not accurate. The PCS status register is
734 * used instead.
735 */
736 pcs = rd32(E1000_PCS_LSTAT);
737
738 /*
739 * The link up bit determines when link is up on autoneg. The sync ok
740 * gets set once both sides sync up and agree upon link. Stable link
741 * can be determined by checking for both link up and link sync ok
742 */
743 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
744 mac->serdes_has_link = true;
745
746 /* Detect and store PCS speed */
747 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
748 *speed = SPEED_1000;
749 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
750 *speed = SPEED_100;
751 } else {
752 *speed = SPEED_10;
753 }
754
755 /* Detect and store PCS duplex */
756 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
757 *duplex = FULL_DUPLEX;
758 } else {
759 *duplex = HALF_DUPLEX;
760 }
761 }
762
763 return 0;
764 }
765
766 /**
767 * igb_init_rx_addrs_82575 - Initialize receive address's
768 * @hw: pointer to the HW structure
769 * @rar_count: receive address registers
770 *
771 * Setups the receive address registers by setting the base receive address
772 * register to the devices MAC address and clearing all the other receive
773 * address registers to 0.
774 **/
775 static void igb_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count)
776 {
777 u32 i;
778 u8 addr[6] = {0,0,0,0,0,0};
779 /*
780 * This function is essentially the same as that of
781 * e1000_init_rx_addrs_generic. However it also takes care
782 * of the special case where the register offset of the
783 * second set of RARs begins elsewhere. This is implicitly taken care by
784 * function e1000_rar_set_generic.
785 */
786
787 hw_dbg("e1000_init_rx_addrs_82575");
788
789 /* Setup the receive address */
790 hw_dbg("Programming MAC Address into RAR[0]\n");
791 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
792
793 /* Zero out the other (rar_entry_count - 1) receive addresses */
794 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
795 for (i = 1; i < rar_count; i++)
796 hw->mac.ops.rar_set(hw, addr, i);
797 }
798
799 /**
800 * igb_update_mc_addr_list - Update Multicast addresses
801 * @hw: pointer to the HW structure
802 * @mc_addr_list: array of multicast addresses to program
803 * @mc_addr_count: number of multicast addresses to program
804 * @rar_used_count: the first RAR register free to program
805 * @rar_count: total number of supported Receive Address Registers
806 *
807 * Updates the Receive Address Registers and Multicast Table Array.
808 * The caller must have a packed mc_addr_list of multicast addresses.
809 * The parameter rar_count will usually be hw->mac.rar_entry_count
810 * unless there are workarounds that change this.
811 **/
812 void igb_update_mc_addr_list(struct e1000_hw *hw,
813 u8 *mc_addr_list, u32 mc_addr_count,
814 u32 rar_used_count, u32 rar_count)
815 {
816 u32 hash_value;
817 u32 i;
818 u8 addr[6] = {0,0,0,0,0,0};
819 /*
820 * This function is essentially the same as that of
821 * igb_update_mc_addr_list_generic. However it also takes care
822 * of the special case where the register offset of the
823 * second set of RARs begins elsewhere. This is implicitly taken care by
824 * function e1000_rar_set_generic.
825 */
826
827 /*
828 * Load the first set of multicast addresses into the exact
829 * filters (RAR). If there are not enough to fill the RAR
830 * array, clear the filters.
831 */
832 for (i = rar_used_count; i < rar_count; i++) {
833 if (mc_addr_count) {
834 igb_rar_set(hw, mc_addr_list, i);
835 mc_addr_count--;
836 mc_addr_list += ETH_ALEN;
837 } else {
838 igb_rar_set(hw, addr, i);
839 }
840 }
841
842 /* Clear the old settings from the MTA */
843 hw_dbg("Clearing MTA\n");
844 for (i = 0; i < hw->mac.mta_reg_count; i++) {
845 array_wr32(E1000_MTA, i, 0);
846 wrfl();
847 }
848
849 /* Load any remaining multicast addresses into the hash table. */
850 for (; mc_addr_count > 0; mc_addr_count--) {
851 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
852 hw_dbg("Hash value = 0x%03X\n", hash_value);
853 igb_mta_set(hw, hash_value);
854 mc_addr_list += ETH_ALEN;
855 }
856 }
857
858 /**
859 * igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
860 * @hw: pointer to the HW structure
861 *
862 * In the case of fiber serdes, shut down optics and PCS on driver unload
863 * when management pass thru is not enabled.
864 **/
865 void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw)
866 {
867 u32 reg;
868
869 if (hw->mac.type != e1000_82576 ||
870 (hw->phy.media_type != e1000_media_type_fiber &&
871 hw->phy.media_type != e1000_media_type_internal_serdes))
872 return;
873
874 /* if the management interface is not enabled, then power down */
875 if (!igb_enable_mng_pass_thru(hw)) {
876 /* Disable PCS to turn off link */
877 reg = rd32(E1000_PCS_CFG0);
878 reg &= ~E1000_PCS_CFG_PCS_EN;
879 wr32(E1000_PCS_CFG0, reg);
880
881 /* shutdown the laser */
882 reg = rd32(E1000_CTRL_EXT);
883 reg |= E1000_CTRL_EXT_SDP7_DATA;
884 wr32(E1000_CTRL_EXT, reg);
885
886 /* flush the write to verify completion */
887 wrfl();
888 msleep(1);
889 }
890
891 return;
892 }
893
894 /**
895 * igb_reset_hw_82575 - Reset hardware
896 * @hw: pointer to the HW structure
897 *
898 * This resets the hardware into a known state. This is a
899 * function pointer entry point called by the api module.
900 **/
901 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
902 {
903 u32 ctrl, icr;
904 s32 ret_val;
905
906 /*
907 * Prevent the PCI-E bus from sticking if there is no TLP connection
908 * on the last TLP read/write transaction when MAC is reset.
909 */
910 ret_val = igb_disable_pcie_master(hw);
911 if (ret_val)
912 hw_dbg("PCI-E Master disable polling has failed.\n");
913
914 hw_dbg("Masking off all interrupts\n");
915 wr32(E1000_IMC, 0xffffffff);
916
917 wr32(E1000_RCTL, 0);
918 wr32(E1000_TCTL, E1000_TCTL_PSP);
919 wrfl();
920
921 msleep(10);
922
923 ctrl = rd32(E1000_CTRL);
924
925 hw_dbg("Issuing a global reset to MAC\n");
926 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
927
928 ret_val = igb_get_auto_rd_done(hw);
929 if (ret_val) {
930 /*
931 * When auto config read does not complete, do not
932 * return with an error. This can happen in situations
933 * where there is no eeprom and prevents getting link.
934 */
935 hw_dbg("Auto Read Done did not complete\n");
936 }
937
938 /* If EEPROM is not present, run manual init scripts */
939 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
940 igb_reset_init_script_82575(hw);
941
942 /* Clear any pending interrupt events. */
943 wr32(E1000_IMC, 0xffffffff);
944 icr = rd32(E1000_ICR);
945
946 igb_check_alt_mac_addr(hw);
947
948 return ret_val;
949 }
950
951 /**
952 * igb_init_hw_82575 - Initialize hardware
953 * @hw: pointer to the HW structure
954 *
955 * This inits the hardware readying it for operation.
956 **/
957 static s32 igb_init_hw_82575(struct e1000_hw *hw)
958 {
959 struct e1000_mac_info *mac = &hw->mac;
960 s32 ret_val;
961 u16 i, rar_count = mac->rar_entry_count;
962
963 /* Initialize identification LED */
964 ret_val = igb_id_led_init(hw);
965 if (ret_val) {
966 hw_dbg("Error initializing identification LED\n");
967 /* This is not fatal and we should not stop init due to this */
968 }
969
970 /* Disabling VLAN filtering */
971 hw_dbg("Initializing the IEEE VLAN\n");
972 igb_clear_vfta(hw);
973
974 /* Setup the receive address */
975 igb_init_rx_addrs_82575(hw, rar_count);
976 /* Zero out the Multicast HASH table */
977 hw_dbg("Zeroing the MTA\n");
978 for (i = 0; i < mac->mta_reg_count; i++)
979 array_wr32(E1000_MTA, i, 0);
980
981 /* Setup link and flow control */
982 ret_val = igb_setup_link(hw);
983
984 /*
985 * Clear all of the statistics registers (clear on read). It is
986 * important that we do this after we have tried to establish link
987 * because the symbol error count will increment wildly if there
988 * is no link.
989 */
990 igb_clear_hw_cntrs_82575(hw);
991
992 return ret_val;
993 }
994
995 /**
996 * igb_setup_copper_link_82575 - Configure copper link settings
997 * @hw: pointer to the HW structure
998 *
999 * Configures the link for auto-neg or forced speed and duplex. Then we check
1000 * for link, once link is established calls to configure collision distance
1001 * and flow control are called.
1002 **/
1003 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1004 {
1005 u32 ctrl, led_ctrl;
1006 s32 ret_val;
1007 bool link;
1008
1009 ctrl = rd32(E1000_CTRL);
1010 ctrl |= E1000_CTRL_SLU;
1011 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1012 wr32(E1000_CTRL, ctrl);
1013
1014 switch (hw->phy.type) {
1015 case e1000_phy_m88:
1016 ret_val = igb_copper_link_setup_m88(hw);
1017 break;
1018 case e1000_phy_igp_3:
1019 ret_val = igb_copper_link_setup_igp(hw);
1020 /* Setup activity LED */
1021 led_ctrl = rd32(E1000_LEDCTL);
1022 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1023 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1024 wr32(E1000_LEDCTL, led_ctrl);
1025 break;
1026 default:
1027 ret_val = -E1000_ERR_PHY;
1028 break;
1029 }
1030
1031 if (ret_val)
1032 goto out;
1033
1034 if (hw->mac.autoneg) {
1035 /*
1036 * Setup autoneg and flow control advertisement
1037 * and perform autonegotiation.
1038 */
1039 ret_val = igb_copper_link_autoneg(hw);
1040 if (ret_val)
1041 goto out;
1042 } else {
1043 /*
1044 * PHY will be set to 10H, 10F, 100H or 100F
1045 * depending on user settings.
1046 */
1047 hw_dbg("Forcing Speed and Duplex\n");
1048 ret_val = hw->phy.ops.force_speed_duplex(hw);
1049 if (ret_val) {
1050 hw_dbg("Error Forcing Speed and Duplex\n");
1051 goto out;
1052 }
1053 }
1054
1055 ret_val = igb_configure_pcs_link_82575(hw);
1056 if (ret_val)
1057 goto out;
1058
1059 /*
1060 * Check link status. Wait up to 100 microseconds for link to become
1061 * valid.
1062 */
1063 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1064 if (ret_val)
1065 goto out;
1066
1067 if (link) {
1068 hw_dbg("Valid link established!!!\n");
1069 /* Config the MAC and PHY after link is up */
1070 igb_config_collision_dist(hw);
1071 ret_val = igb_config_fc_after_link_up(hw);
1072 } else {
1073 hw_dbg("Unable to establish link!!!\n");
1074 }
1075
1076 out:
1077 return ret_val;
1078 }
1079
1080 /**
1081 * igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
1082 * @hw: pointer to the HW structure
1083 *
1084 * Configures speed and duplex for fiber and serdes links.
1085 **/
1086 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
1087 {
1088 u32 reg;
1089
1090 /*
1091 * On the 82575, SerDes loopback mode persists until it is
1092 * explicitly turned off or a power cycle is performed. A read to
1093 * the register does not indicate its status. Therefore, we ensure
1094 * loopback mode is disabled during initialization.
1095 */
1096 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1097
1098 /* Force link up, set 1gb, set both sw defined pins */
1099 reg = rd32(E1000_CTRL);
1100 reg |= E1000_CTRL_SLU |
1101 E1000_CTRL_SPD_1000 |
1102 E1000_CTRL_FRCSPD |
1103 E1000_CTRL_SWDPIN0 |
1104 E1000_CTRL_SWDPIN1;
1105 wr32(E1000_CTRL, reg);
1106
1107 /* Power on phy for 82576 fiber adapters */
1108 if (hw->mac.type == e1000_82576) {
1109 reg = rd32(E1000_CTRL_EXT);
1110 reg &= ~E1000_CTRL_EXT_SDP7_DATA;
1111 wr32(E1000_CTRL_EXT, reg);
1112 }
1113
1114 /* Set switch control to serdes energy detect */
1115 reg = rd32(E1000_CONNSW);
1116 reg |= E1000_CONNSW_ENRGSRC;
1117 wr32(E1000_CONNSW, reg);
1118
1119 /*
1120 * New SerDes mode allows for forcing speed or autonegotiating speed
1121 * at 1gb. Autoneg should be default set by most drivers. This is the
1122 * mode that will be compatible with older link partners and switches.
1123 * However, both are supported by the hardware and some drivers/tools.
1124 */
1125 reg = rd32(E1000_PCS_LCTL);
1126
1127 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1128 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1129
1130 if (hw->mac.autoneg) {
1131 /* Set PCS register for autoneg */
1132 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1133 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1134 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1135 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1136 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1137 } else {
1138 /* Set PCS register for forced speed */
1139 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1140 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1141 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1142 E1000_PCS_LCTL_FSD | /* Force Speed */
1143 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1144 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1145 }
1146
1147 if (hw->mac.type == e1000_82576) {
1148 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1149 igb_force_mac_fc(hw);
1150 }
1151
1152 wr32(E1000_PCS_LCTL, reg);
1153
1154 return 0;
1155 }
1156
1157 /**
1158 * igb_configure_pcs_link_82575 - Configure PCS link
1159 * @hw: pointer to the HW structure
1160 *
1161 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1162 * only used on copper connections where the serialized gigabit media
1163 * independent interface (sgmii) is being used. Configures the link
1164 * for auto-negotiation or forces speed/duplex.
1165 **/
1166 static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
1167 {
1168 struct e1000_mac_info *mac = &hw->mac;
1169 u32 reg = 0;
1170
1171 if (hw->phy.media_type != e1000_media_type_copper ||
1172 !(igb_sgmii_active_82575(hw)))
1173 goto out;
1174
1175 /* For SGMII, we need to issue a PCS autoneg restart */
1176 reg = rd32(E1000_PCS_LCTL);
1177
1178 /* AN time out should be disabled for SGMII mode */
1179 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1180
1181 if (mac->autoneg) {
1182 /* Make sure forced speed and force link are not set */
1183 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1184
1185 /*
1186 * The PHY should be setup prior to calling this function.
1187 * All we need to do is restart autoneg and enable autoneg.
1188 */
1189 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1190 } else {
1191 /* Set PCS register for forced speed */
1192
1193 /* Turn off bits for full duplex, speed, and autoneg */
1194 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1195 E1000_PCS_LCTL_FSV_100 |
1196 E1000_PCS_LCTL_FDV_FULL |
1197 E1000_PCS_LCTL_AN_ENABLE);
1198
1199 /* Check for duplex first */
1200 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1201 reg |= E1000_PCS_LCTL_FDV_FULL;
1202
1203 /* Now set speed */
1204 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1205 reg |= E1000_PCS_LCTL_FSV_100;
1206
1207 /* Force speed and force link */
1208 reg |= E1000_PCS_LCTL_FSD |
1209 E1000_PCS_LCTL_FORCE_LINK |
1210 E1000_PCS_LCTL_FLV_LINK_UP;
1211
1212 hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1213 reg);
1214 }
1215 wr32(E1000_PCS_LCTL, reg);
1216
1217 out:
1218 return 0;
1219 }
1220
1221 /**
1222 * igb_sgmii_active_82575 - Return sgmii state
1223 * @hw: pointer to the HW structure
1224 *
1225 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1226 * which can be enabled for use in the embedded applications. Simply
1227 * return the current state of the sgmii interface.
1228 **/
1229 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1230 {
1231 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1232
1233 if (hw->mac.type != e1000_82575 && hw->mac.type != e1000_82576)
1234 return false;
1235
1236 return dev_spec->sgmii_active;
1237 }
1238
1239 /**
1240 * igb_reset_init_script_82575 - Inits HW defaults after reset
1241 * @hw: pointer to the HW structure
1242 *
1243 * Inits recommended HW defaults after a reset when there is no EEPROM
1244 * detected. This is only for the 82575.
1245 **/
1246 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1247 {
1248 if (hw->mac.type == e1000_82575) {
1249 hw_dbg("Running reset init script for 82575\n");
1250 /* SerDes configuration via SERDESCTRL */
1251 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1252 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1253 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1254 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1255
1256 /* CCM configuration via CCMCTL register */
1257 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1258 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1259
1260 /* PCIe lanes configuration */
1261 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1262 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1263 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1264 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1265
1266 /* PCIe PLL Configuration */
1267 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1268 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1269 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1270 }
1271
1272 return 0;
1273 }
1274
1275 /**
1276 * igb_read_mac_addr_82575 - Read device MAC address
1277 * @hw: pointer to the HW structure
1278 **/
1279 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1280 {
1281 s32 ret_val = 0;
1282
1283 if (igb_check_alt_mac_addr(hw))
1284 ret_val = igb_read_mac_addr(hw);
1285
1286 return ret_val;
1287 }
1288
1289 /**
1290 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1291 * @hw: pointer to the HW structure
1292 *
1293 * Clears the hardware counters by reading the counter registers.
1294 **/
1295 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1296 {
1297 u32 temp;
1298
1299 igb_clear_hw_cntrs_base(hw);
1300
1301 temp = rd32(E1000_PRC64);
1302 temp = rd32(E1000_PRC127);
1303 temp = rd32(E1000_PRC255);
1304 temp = rd32(E1000_PRC511);
1305 temp = rd32(E1000_PRC1023);
1306 temp = rd32(E1000_PRC1522);
1307 temp = rd32(E1000_PTC64);
1308 temp = rd32(E1000_PTC127);
1309 temp = rd32(E1000_PTC255);
1310 temp = rd32(E1000_PTC511);
1311 temp = rd32(E1000_PTC1023);
1312 temp = rd32(E1000_PTC1522);
1313
1314 temp = rd32(E1000_ALGNERRC);
1315 temp = rd32(E1000_RXERRC);
1316 temp = rd32(E1000_TNCRS);
1317 temp = rd32(E1000_CEXTERR);
1318 temp = rd32(E1000_TSCTC);
1319 temp = rd32(E1000_TSCTFC);
1320
1321 temp = rd32(E1000_MGTPRC);
1322 temp = rd32(E1000_MGTPDC);
1323 temp = rd32(E1000_MGTPTC);
1324
1325 temp = rd32(E1000_IAC);
1326 temp = rd32(E1000_ICRXOC);
1327
1328 temp = rd32(E1000_ICRXPTC);
1329 temp = rd32(E1000_ICRXATC);
1330 temp = rd32(E1000_ICTXPTC);
1331 temp = rd32(E1000_ICTXATC);
1332 temp = rd32(E1000_ICTXQEC);
1333 temp = rd32(E1000_ICTXQMTC);
1334 temp = rd32(E1000_ICRXDMTC);
1335
1336 temp = rd32(E1000_CBTMPC);
1337 temp = rd32(E1000_HTDPMC);
1338 temp = rd32(E1000_CBRMPC);
1339 temp = rd32(E1000_RPTHC);
1340 temp = rd32(E1000_HGPTC);
1341 temp = rd32(E1000_HTCBDPC);
1342 temp = rd32(E1000_HGORCL);
1343 temp = rd32(E1000_HGORCH);
1344 temp = rd32(E1000_HGOTCL);
1345 temp = rd32(E1000_HGOTCH);
1346 temp = rd32(E1000_LENERRS);
1347
1348 /* This register should not be read in copper configurations */
1349 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1350 temp = rd32(E1000_SCVPC);
1351 }
1352
1353 /**
1354 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1355 * @hw: pointer to the HW structure
1356 *
1357 * After rx enable if managability is enabled then there is likely some
1358 * bad data at the start of the fifo and possibly in the DMA fifo. This
1359 * function clears the fifos and flushes any packets that came in as rx was
1360 * being enabled.
1361 **/
1362 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1363 {
1364 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1365 int i, ms_wait;
1366
1367 if (hw->mac.type != e1000_82575 ||
1368 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1369 return;
1370
1371 /* Disable all RX queues */
1372 for (i = 0; i < 4; i++) {
1373 rxdctl[i] = rd32(E1000_RXDCTL(i));
1374 wr32(E1000_RXDCTL(i),
1375 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1376 }
1377 /* Poll all queues to verify they have shut down */
1378 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1379 msleep(1);
1380 rx_enabled = 0;
1381 for (i = 0; i < 4; i++)
1382 rx_enabled |= rd32(E1000_RXDCTL(i));
1383 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1384 break;
1385 }
1386
1387 if (ms_wait == 10)
1388 hw_dbg("Queue disable timed out after 10ms\n");
1389
1390 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1391 * incoming packets are rejected. Set enable and wait 2ms so that
1392 * any packet that was coming in as RCTL.EN was set is flushed
1393 */
1394 rfctl = rd32(E1000_RFCTL);
1395 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1396
1397 rlpml = rd32(E1000_RLPML);
1398 wr32(E1000_RLPML, 0);
1399
1400 rctl = rd32(E1000_RCTL);
1401 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1402 temp_rctl |= E1000_RCTL_LPE;
1403
1404 wr32(E1000_RCTL, temp_rctl);
1405 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1406 wrfl();
1407 msleep(2);
1408
1409 /* Enable RX queues that were previously enabled and restore our
1410 * previous state
1411 */
1412 for (i = 0; i < 4; i++)
1413 wr32(E1000_RXDCTL(i), rxdctl[i]);
1414 wr32(E1000_RCTL, rctl);
1415 wrfl();
1416
1417 wr32(E1000_RLPML, rlpml);
1418 wr32(E1000_RFCTL, rfctl);
1419
1420 /* Flush receive errors generated by workaround */
1421 rd32(E1000_ROC);
1422 rd32(E1000_RNBC);
1423 rd32(E1000_MPC);
1424 }
1425
1426 /**
1427 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1428 * @hw: pointer to the hardware struct
1429 * @enable: state to enter, either enabled or disabled
1430 *
1431 * enables/disables L2 switch loopback functionality.
1432 **/
1433 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1434 {
1435 u32 dtxswc = rd32(E1000_DTXSWC);
1436
1437 if (enable)
1438 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1439 else
1440 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1441
1442 wr32(E1000_DTXSWC, dtxswc);
1443 }
1444
1445 /**
1446 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1447 * @hw: pointer to the hardware struct
1448 * @enable: state to enter, either enabled or disabled
1449 *
1450 * enables/disables replication of packets across multiple pools.
1451 **/
1452 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1453 {
1454 u32 vt_ctl = rd32(E1000_VT_CTL);
1455
1456 if (enable)
1457 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1458 else
1459 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1460
1461 wr32(E1000_VT_CTL, vt_ctl);
1462 }
1463
1464 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1465 .reset_hw = igb_reset_hw_82575,
1466 .init_hw = igb_init_hw_82575,
1467 .check_for_link = igb_check_for_link_82575,
1468 .rar_set = igb_rar_set,
1469 .read_mac_addr = igb_read_mac_addr_82575,
1470 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1471 };
1472
1473 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1474 .acquire = igb_acquire_phy_82575,
1475 .get_cfg_done = igb_get_cfg_done_82575,
1476 .release = igb_release_phy_82575,
1477 };
1478
1479 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1480 .acquire = igb_acquire_nvm_82575,
1481 .read = igb_read_nvm_eerd,
1482 .release = igb_release_nvm_82575,
1483 .write = igb_write_nvm_spi,
1484 };
1485
1486 const struct e1000_info e1000_82575_info = {
1487 .get_invariants = igb_get_invariants_82575,
1488 .mac_ops = &e1000_mac_ops_82575,
1489 .phy_ops = &e1000_phy_ops_82575,
1490 .nvm_ops = &e1000_nvm_ops_82575,
1491 };
1492
This page took 0.062159 seconds and 6 git commands to generate.