137269daeb2e39ff71ee82d1da719b30836b7f2b
[deliverable/linux.git] / drivers / net / igb / e1000_mac.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 #include <linux/pci.h>
31 #include <linux/netdevice.h>
32
33 #include "e1000_mac.h"
34
35 #include "igb.h"
36
37 static s32 igb_set_default_fc(struct e1000_hw *hw);
38 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
39
40 /**
41 * igb_remove_device - Free device specific structure
42 * @hw: pointer to the HW structure
43 *
44 * If a device specific structure was allocated, this function will
45 * free it.
46 **/
47 void igb_remove_device(struct e1000_hw *hw)
48 {
49 /* Freeing the dev_spec member of e1000_hw structure */
50 kfree(hw->dev_spec);
51 }
52
53 static void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
54 {
55 struct igb_adapter *adapter = hw->back;
56
57 pci_read_config_word(adapter->pdev, reg, value);
58 }
59
60 static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
61 {
62 struct igb_adapter *adapter = hw->back;
63 u16 cap_offset;
64
65 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
66 if (!cap_offset)
67 return -E1000_ERR_CONFIG;
68
69 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
70
71 return 0;
72 }
73
74 /**
75 * igb_get_bus_info_pcie - Get PCIe bus information
76 * @hw: pointer to the HW structure
77 *
78 * Determines and stores the system bus information for a particular
79 * network interface. The following bus information is determined and stored:
80 * bus speed, bus width, type (PCIe), and PCIe function.
81 **/
82 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
83 {
84 struct e1000_bus_info *bus = &hw->bus;
85 s32 ret_val;
86 u32 reg;
87 u16 pcie_link_status;
88
89 bus->type = e1000_bus_type_pci_express;
90 bus->speed = e1000_bus_speed_2500;
91
92 ret_val = igb_read_pcie_cap_reg(hw,
93 PCIE_LINK_STATUS,
94 &pcie_link_status);
95 if (ret_val)
96 bus->width = e1000_bus_width_unknown;
97 else
98 bus->width = (enum e1000_bus_width)((pcie_link_status &
99 PCIE_LINK_WIDTH_MASK) >>
100 PCIE_LINK_WIDTH_SHIFT);
101
102 reg = rd32(E1000_STATUS);
103 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
104
105 return 0;
106 }
107
108 /**
109 * igb_clear_vfta - Clear VLAN filter table
110 * @hw: pointer to the HW structure
111 *
112 * Clears the register array which contains the VLAN filter table by
113 * setting all the values to 0.
114 **/
115 void igb_clear_vfta(struct e1000_hw *hw)
116 {
117 u32 offset;
118
119 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
120 array_wr32(E1000_VFTA, offset, 0);
121 wrfl();
122 }
123 }
124
125 /**
126 * igb_write_vfta - Write value to VLAN filter table
127 * @hw: pointer to the HW structure
128 * @offset: register offset in VLAN filter table
129 * @value: register value written to VLAN filter table
130 *
131 * Writes value at the given offset in the register array which stores
132 * the VLAN filter table.
133 **/
134 void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
135 {
136 array_wr32(E1000_VFTA, offset, value);
137 wrfl();
138 }
139
140 /**
141 * igb_check_alt_mac_addr - Check for alternate MAC addr
142 * @hw: pointer to the HW structure
143 *
144 * Checks the nvm for an alternate MAC address. An alternate MAC address
145 * can be setup by pre-boot software and must be treated like a permanent
146 * address and must override the actual permanent MAC address. If an
147 * alternate MAC address is fopund it is saved in the hw struct and
148 * prgrammed into RAR0 and the cuntion returns success, otherwise the
149 * fucntion returns an error.
150 **/
151 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
152 {
153 u32 i;
154 s32 ret_val = 0;
155 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
156 u8 alt_mac_addr[ETH_ALEN];
157
158 ret_val = hw->nvm.ops.read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
159 &nvm_alt_mac_addr_offset);
160 if (ret_val) {
161 hw_dbg("NVM Read Error\n");
162 goto out;
163 }
164
165 if (nvm_alt_mac_addr_offset == 0xFFFF) {
166 ret_val = -(E1000_NOT_IMPLEMENTED);
167 goto out;
168 }
169
170 if (hw->bus.func == E1000_FUNC_1)
171 nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16);
172
173 for (i = 0; i < ETH_ALEN; i += 2) {
174 offset = nvm_alt_mac_addr_offset + (i >> 1);
175 ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data);
176 if (ret_val) {
177 hw_dbg("NVM Read Error\n");
178 goto out;
179 }
180
181 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
182 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
183 }
184
185 /* if multicast bit is set, the alternate address will not be used */
186 if (alt_mac_addr[0] & 0x01) {
187 ret_val = -(E1000_NOT_IMPLEMENTED);
188 goto out;
189 }
190
191 for (i = 0; i < ETH_ALEN; i++)
192 hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];
193
194 hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0);
195
196 out:
197 return ret_val;
198 }
199
200 /**
201 * igb_rar_set - Set receive address register
202 * @hw: pointer to the HW structure
203 * @addr: pointer to the receive address
204 * @index: receive address array register
205 *
206 * Sets the receive address array register at index to the address passed
207 * in by addr.
208 **/
209 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
210 {
211 u32 rar_low, rar_high;
212
213 /*
214 * HW expects these in little endian so we reverse the byte order
215 * from network order (big endian) to little endian
216 */
217 rar_low = ((u32) addr[0] |
218 ((u32) addr[1] << 8) |
219 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
220
221 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
222
223 if (!hw->mac.disable_av)
224 rar_high |= E1000_RAH_AV;
225
226 wr32(E1000_RAL(index), rar_low);
227 wr32(E1000_RAH(index), rar_high);
228 }
229
230 /**
231 * igb_mta_set - Set multicast filter table address
232 * @hw: pointer to the HW structure
233 * @hash_value: determines the MTA register and bit to set
234 *
235 * The multicast table address is a register array of 32-bit registers.
236 * The hash_value is used to determine what register the bit is in, the
237 * current value is read, the new bit is OR'd in and the new value is
238 * written back into the register.
239 **/
240 void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
241 {
242 u32 hash_bit, hash_reg, mta;
243
244 /*
245 * The MTA is a register array of 32-bit registers. It is
246 * treated like an array of (32*mta_reg_count) bits. We want to
247 * set bit BitArray[hash_value]. So we figure out what register
248 * the bit is in, read it, OR in the new bit, then write
249 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
250 * mask to bits 31:5 of the hash value which gives us the
251 * register we're modifying. The hash bit within that register
252 * is determined by the lower 5 bits of the hash value.
253 */
254 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
255 hash_bit = hash_value & 0x1F;
256
257 mta = array_rd32(E1000_MTA, hash_reg);
258
259 mta |= (1 << hash_bit);
260
261 array_wr32(E1000_MTA, hash_reg, mta);
262 wrfl();
263 }
264
265 /**
266 * igb_hash_mc_addr - Generate a multicast hash value
267 * @hw: pointer to the HW structure
268 * @mc_addr: pointer to a multicast address
269 *
270 * Generates a multicast address hash value which is used to determine
271 * the multicast filter table array address and new table value. See
272 * igb_mta_set()
273 **/
274 u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
275 {
276 u32 hash_value, hash_mask;
277 u8 bit_shift = 0;
278
279 /* Register count multiplied by bits per register */
280 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
281
282 /*
283 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
284 * where 0xFF would still fall within the hash mask.
285 */
286 while (hash_mask >> bit_shift != 0xFF)
287 bit_shift++;
288
289 /*
290 * The portion of the address that is used for the hash table
291 * is determined by the mc_filter_type setting.
292 * The algorithm is such that there is a total of 8 bits of shifting.
293 * The bit_shift for a mc_filter_type of 0 represents the number of
294 * left-shifts where the MSB of mc_addr[5] would still fall within
295 * the hash_mask. Case 0 does this exactly. Since there are a total
296 * of 8 bits of shifting, then mc_addr[4] will shift right the
297 * remaining number of bits. Thus 8 - bit_shift. The rest of the
298 * cases are a variation of this algorithm...essentially raising the
299 * number of bits to shift mc_addr[5] left, while still keeping the
300 * 8-bit shifting total.
301 *
302 * For example, given the following Destination MAC Address and an
303 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
304 * we can see that the bit_shift for case 0 is 4. These are the hash
305 * values resulting from each mc_filter_type...
306 * [0] [1] [2] [3] [4] [5]
307 * 01 AA 00 12 34 56
308 * LSB MSB
309 *
310 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
311 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
312 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
313 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
314 */
315 switch (hw->mac.mc_filter_type) {
316 default:
317 case 0:
318 break;
319 case 1:
320 bit_shift += 1;
321 break;
322 case 2:
323 bit_shift += 2;
324 break;
325 case 3:
326 bit_shift += 4;
327 break;
328 }
329
330 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
331 (((u16) mc_addr[5]) << bit_shift)));
332
333 return hash_value;
334 }
335
336 /**
337 * igb_clear_hw_cntrs_base - Clear base hardware counters
338 * @hw: pointer to the HW structure
339 *
340 * Clears the base hardware counters by reading the counter registers.
341 **/
342 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
343 {
344 u32 temp;
345
346 temp = rd32(E1000_CRCERRS);
347 temp = rd32(E1000_SYMERRS);
348 temp = rd32(E1000_MPC);
349 temp = rd32(E1000_SCC);
350 temp = rd32(E1000_ECOL);
351 temp = rd32(E1000_MCC);
352 temp = rd32(E1000_LATECOL);
353 temp = rd32(E1000_COLC);
354 temp = rd32(E1000_DC);
355 temp = rd32(E1000_SEC);
356 temp = rd32(E1000_RLEC);
357 temp = rd32(E1000_XONRXC);
358 temp = rd32(E1000_XONTXC);
359 temp = rd32(E1000_XOFFRXC);
360 temp = rd32(E1000_XOFFTXC);
361 temp = rd32(E1000_FCRUC);
362 temp = rd32(E1000_GPRC);
363 temp = rd32(E1000_BPRC);
364 temp = rd32(E1000_MPRC);
365 temp = rd32(E1000_GPTC);
366 temp = rd32(E1000_GORCL);
367 temp = rd32(E1000_GORCH);
368 temp = rd32(E1000_GOTCL);
369 temp = rd32(E1000_GOTCH);
370 temp = rd32(E1000_RNBC);
371 temp = rd32(E1000_RUC);
372 temp = rd32(E1000_RFC);
373 temp = rd32(E1000_ROC);
374 temp = rd32(E1000_RJC);
375 temp = rd32(E1000_TORL);
376 temp = rd32(E1000_TORH);
377 temp = rd32(E1000_TOTL);
378 temp = rd32(E1000_TOTH);
379 temp = rd32(E1000_TPR);
380 temp = rd32(E1000_TPT);
381 temp = rd32(E1000_MPTC);
382 temp = rd32(E1000_BPTC);
383 }
384
385 /**
386 * igb_check_for_copper_link - Check for link (Copper)
387 * @hw: pointer to the HW structure
388 *
389 * Checks to see of the link status of the hardware has changed. If a
390 * change in link status has been detected, then we read the PHY registers
391 * to get the current speed/duplex if link exists.
392 **/
393 s32 igb_check_for_copper_link(struct e1000_hw *hw)
394 {
395 struct e1000_mac_info *mac = &hw->mac;
396 s32 ret_val;
397 bool link;
398
399 /*
400 * We only want to go out to the PHY registers to see if Auto-Neg
401 * has completed and/or if our link status has changed. The
402 * get_link_status flag is set upon receiving a Link Status
403 * Change or Rx Sequence Error interrupt.
404 */
405 if (!mac->get_link_status) {
406 ret_val = 0;
407 goto out;
408 }
409
410 /*
411 * First we want to see if the MII Status Register reports
412 * link. If so, then we want to get the current speed/duplex
413 * of the PHY.
414 */
415 ret_val = igb_phy_has_link(hw, 1, 0, &link);
416 if (ret_val)
417 goto out;
418
419 if (!link)
420 goto out; /* No link detected */
421
422 mac->get_link_status = false;
423
424 /*
425 * Check if there was DownShift, must be checked
426 * immediately after link-up
427 */
428 igb_check_downshift(hw);
429
430 /*
431 * If we are forcing speed/duplex, then we simply return since
432 * we have already determined whether we have link or not.
433 */
434 if (!mac->autoneg) {
435 ret_val = -E1000_ERR_CONFIG;
436 goto out;
437 }
438
439 /*
440 * Auto-Neg is enabled. Auto Speed Detection takes care
441 * of MAC speed/duplex configuration. So we only need to
442 * configure Collision Distance in the MAC.
443 */
444 igb_config_collision_dist(hw);
445
446 /*
447 * Configure Flow Control now that Auto-Neg has completed.
448 * First, we need to restore the desired flow control
449 * settings because we may have had to re-autoneg with a
450 * different link partner.
451 */
452 ret_val = igb_config_fc_after_link_up(hw);
453 if (ret_val)
454 hw_dbg("Error configuring flow control\n");
455
456 out:
457 return ret_val;
458 }
459
460 /**
461 * igb_setup_link - Setup flow control and link settings
462 * @hw: pointer to the HW structure
463 *
464 * Determines which flow control settings to use, then configures flow
465 * control. Calls the appropriate media-specific link configuration
466 * function. Assuming the adapter has a valid link partner, a valid link
467 * should be established. Assumes the hardware has previously been reset
468 * and the transmitter and receiver are not enabled.
469 **/
470 s32 igb_setup_link(struct e1000_hw *hw)
471 {
472 s32 ret_val = 0;
473
474 /*
475 * In the case of the phy reset being blocked, we already have a link.
476 * We do not need to set it up again.
477 */
478 if (igb_check_reset_block(hw))
479 goto out;
480
481 ret_val = igb_set_default_fc(hw);
482 if (ret_val)
483 goto out;
484
485 /*
486 * We want to save off the original Flow Control configuration just
487 * in case we get disconnected and then reconnected into a different
488 * hub or switch with different Flow Control capabilities.
489 */
490 hw->fc.original_type = hw->fc.type;
491
492 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.type);
493
494 /* Call the necessary media_type subroutine to configure the link. */
495 ret_val = hw->mac.ops.setup_physical_interface(hw);
496 if (ret_val)
497 goto out;
498
499 /*
500 * Initialize the flow control address, type, and PAUSE timer
501 * registers to their default values. This is done even if flow
502 * control is disabled, because it does not hurt anything to
503 * initialize these registers.
504 */
505 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
506 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
507 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
508 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
509
510 wr32(E1000_FCTTV, hw->fc.pause_time);
511
512 ret_val = igb_set_fc_watermarks(hw);
513
514 out:
515 return ret_val;
516 }
517
518 /**
519 * igb_config_collision_dist - Configure collision distance
520 * @hw: pointer to the HW structure
521 *
522 * Configures the collision distance to the default value and is used
523 * during link setup. Currently no func pointer exists and all
524 * implementations are handled in the generic version of this function.
525 **/
526 void igb_config_collision_dist(struct e1000_hw *hw)
527 {
528 u32 tctl;
529
530 tctl = rd32(E1000_TCTL);
531
532 tctl &= ~E1000_TCTL_COLD;
533 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
534
535 wr32(E1000_TCTL, tctl);
536 wrfl();
537 }
538
539 /**
540 * igb_set_fc_watermarks - Set flow control high/low watermarks
541 * @hw: pointer to the HW structure
542 *
543 * Sets the flow control high/low threshold (watermark) registers. If
544 * flow control XON frame transmission is enabled, then set XON frame
545 * tansmission as well.
546 **/
547 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
548 {
549 s32 ret_val = 0;
550 u32 fcrtl = 0, fcrth = 0;
551
552 /*
553 * Set the flow control receive threshold registers. Normally,
554 * these registers will be set to a default threshold that may be
555 * adjusted later by the driver's runtime code. However, if the
556 * ability to transmit pause frames is not enabled, then these
557 * registers will be set to 0.
558 */
559 if (hw->fc.type & e1000_fc_tx_pause) {
560 /*
561 * We need to set up the Receive Threshold high and low water
562 * marks as well as (optionally) enabling the transmission of
563 * XON frames.
564 */
565 fcrtl = hw->fc.low_water;
566 if (hw->fc.send_xon)
567 fcrtl |= E1000_FCRTL_XONE;
568
569 fcrth = hw->fc.high_water;
570 }
571 wr32(E1000_FCRTL, fcrtl);
572 wr32(E1000_FCRTH, fcrth);
573
574 return ret_val;
575 }
576
577 /**
578 * igb_set_default_fc - Set flow control default values
579 * @hw: pointer to the HW structure
580 *
581 * Read the EEPROM for the default values for flow control and store the
582 * values.
583 **/
584 static s32 igb_set_default_fc(struct e1000_hw *hw)
585 {
586 s32 ret_val = 0;
587 u16 nvm_data;
588
589 /*
590 * Read and store word 0x0F of the EEPROM. This word contains bits
591 * that determine the hardware's default PAUSE (flow control) mode,
592 * a bit that determines whether the HW defaults to enabling or
593 * disabling auto-negotiation, and the direction of the
594 * SW defined pins. If there is no SW over-ride of the flow
595 * control setting, then the variable hw->fc will
596 * be initialized based on a value in the EEPROM.
597 */
598 ret_val = hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL2_REG, 1,
599 &nvm_data);
600
601 if (ret_val) {
602 hw_dbg("NVM Read Error\n");
603 goto out;
604 }
605
606 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
607 hw->fc.type = e1000_fc_none;
608 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
609 NVM_WORD0F_ASM_DIR)
610 hw->fc.type = e1000_fc_tx_pause;
611 else
612 hw->fc.type = e1000_fc_full;
613
614 out:
615 return ret_val;
616 }
617
618 /**
619 * igb_force_mac_fc - Force the MAC's flow control settings
620 * @hw: pointer to the HW structure
621 *
622 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
623 * device control register to reflect the adapter settings. TFCE and RFCE
624 * need to be explicitly set by software when a copper PHY is used because
625 * autonegotiation is managed by the PHY rather than the MAC. Software must
626 * also configure these bits when link is forced on a fiber connection.
627 **/
628 s32 igb_force_mac_fc(struct e1000_hw *hw)
629 {
630 u32 ctrl;
631 s32 ret_val = 0;
632
633 ctrl = rd32(E1000_CTRL);
634
635 /*
636 * Because we didn't get link via the internal auto-negotiation
637 * mechanism (we either forced link or we got link via PHY
638 * auto-neg), we have to manually enable/disable transmit an
639 * receive flow control.
640 *
641 * The "Case" statement below enables/disable flow control
642 * according to the "hw->fc.type" parameter.
643 *
644 * The possible values of the "fc" parameter are:
645 * 0: Flow control is completely disabled
646 * 1: Rx flow control is enabled (we can receive pause
647 * frames but not send pause frames).
648 * 2: Tx flow control is enabled (we can send pause frames
649 * frames but we do not receive pause frames).
650 * 3: Both Rx and TX flow control (symmetric) is enabled.
651 * other: No other values should be possible at this point.
652 */
653 hw_dbg("hw->fc.type = %u\n", hw->fc.type);
654
655 switch (hw->fc.type) {
656 case e1000_fc_none:
657 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
658 break;
659 case e1000_fc_rx_pause:
660 ctrl &= (~E1000_CTRL_TFCE);
661 ctrl |= E1000_CTRL_RFCE;
662 break;
663 case e1000_fc_tx_pause:
664 ctrl &= (~E1000_CTRL_RFCE);
665 ctrl |= E1000_CTRL_TFCE;
666 break;
667 case e1000_fc_full:
668 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
669 break;
670 default:
671 hw_dbg("Flow control param set incorrectly\n");
672 ret_val = -E1000_ERR_CONFIG;
673 goto out;
674 }
675
676 wr32(E1000_CTRL, ctrl);
677
678 out:
679 return ret_val;
680 }
681
682 /**
683 * igb_config_fc_after_link_up - Configures flow control after link
684 * @hw: pointer to the HW structure
685 *
686 * Checks the status of auto-negotiation after link up to ensure that the
687 * speed and duplex were not forced. If the link needed to be forced, then
688 * flow control needs to be forced also. If auto-negotiation is enabled
689 * and did not fail, then we configure flow control based on our link
690 * partner.
691 **/
692 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
693 {
694 struct e1000_mac_info *mac = &hw->mac;
695 s32 ret_val = 0;
696 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
697 u16 speed, duplex;
698
699 /*
700 * Check for the case where we have fiber media and auto-neg failed
701 * so we had to force link. In this case, we need to force the
702 * configuration of the MAC to match the "fc" parameter.
703 */
704 if (mac->autoneg_failed) {
705 if (hw->phy.media_type == e1000_media_type_fiber ||
706 hw->phy.media_type == e1000_media_type_internal_serdes)
707 ret_val = igb_force_mac_fc(hw);
708 } else {
709 if (hw->phy.media_type == e1000_media_type_copper)
710 ret_val = igb_force_mac_fc(hw);
711 }
712
713 if (ret_val) {
714 hw_dbg("Error forcing flow control settings\n");
715 goto out;
716 }
717
718 /*
719 * Check for the case where we have copper media and auto-neg is
720 * enabled. In this case, we need to check and see if Auto-Neg
721 * has completed, and if so, how the PHY and link partner has
722 * flow control configured.
723 */
724 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
725 /*
726 * Read the MII Status Register and check to see if AutoNeg
727 * has completed. We read this twice because this reg has
728 * some "sticky" (latched) bits.
729 */
730 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS,
731 &mii_status_reg);
732 if (ret_val)
733 goto out;
734 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS,
735 &mii_status_reg);
736 if (ret_val)
737 goto out;
738
739 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
740 hw_dbg("Copper PHY and Auto Neg "
741 "has not completed.\n");
742 goto out;
743 }
744
745 /*
746 * The AutoNeg process has completed, so we now need to
747 * read both the Auto Negotiation Advertisement
748 * Register (Address 4) and the Auto_Negotiation Base
749 * Page Ability Register (Address 5) to determine how
750 * flow control was negotiated.
751 */
752 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV,
753 &mii_nway_adv_reg);
754 if (ret_val)
755 goto out;
756 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_LP_ABILITY,
757 &mii_nway_lp_ability_reg);
758 if (ret_val)
759 goto out;
760
761 /*
762 * Two bits in the Auto Negotiation Advertisement Register
763 * (Address 4) and two bits in the Auto Negotiation Base
764 * Page Ability Register (Address 5) determine flow control
765 * for both the PHY and the link partner. The following
766 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
767 * 1999, describes these PAUSE resolution bits and how flow
768 * control is determined based upon these settings.
769 * NOTE: DC = Don't Care
770 *
771 * LOCAL DEVICE | LINK PARTNER
772 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
773 *-------|---------|-------|---------|--------------------
774 * 0 | 0 | DC | DC | e1000_fc_none
775 * 0 | 1 | 0 | DC | e1000_fc_none
776 * 0 | 1 | 1 | 0 | e1000_fc_none
777 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
778 * 1 | 0 | 0 | DC | e1000_fc_none
779 * 1 | DC | 1 | DC | e1000_fc_full
780 * 1 | 1 | 0 | 0 | e1000_fc_none
781 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
782 *
783 * Are both PAUSE bits set to 1? If so, this implies
784 * Symmetric Flow Control is enabled at both ends. The
785 * ASM_DIR bits are irrelevant per the spec.
786 *
787 * For Symmetric Flow Control:
788 *
789 * LOCAL DEVICE | LINK PARTNER
790 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
791 *-------|---------|-------|---------|--------------------
792 * 1 | DC | 1 | DC | E1000_fc_full
793 *
794 */
795 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
796 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
797 /*
798 * Now we need to check if the user selected RX ONLY
799 * of pause frames. In this case, we had to advertise
800 * FULL flow control because we could not advertise RX
801 * ONLY. Hence, we must now check to see if we need to
802 * turn OFF the TRANSMISSION of PAUSE frames.
803 */
804 if (hw->fc.original_type == e1000_fc_full) {
805 hw->fc.type = e1000_fc_full;
806 hw_dbg("Flow Control = FULL.\r\n");
807 } else {
808 hw->fc.type = e1000_fc_rx_pause;
809 hw_dbg("Flow Control = "
810 "RX PAUSE frames only.\r\n");
811 }
812 }
813 /*
814 * For receiving PAUSE frames ONLY.
815 *
816 * LOCAL DEVICE | LINK PARTNER
817 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
818 *-------|---------|-------|---------|--------------------
819 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
820 */
821 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
822 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
823 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
824 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
825 hw->fc.type = e1000_fc_tx_pause;
826 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
827 }
828 /*
829 * For transmitting PAUSE frames ONLY.
830 *
831 * LOCAL DEVICE | LINK PARTNER
832 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
833 *-------|---------|-------|---------|--------------------
834 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
835 */
836 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
837 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
838 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
839 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
840 hw->fc.type = e1000_fc_rx_pause;
841 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
842 }
843 /*
844 * Per the IEEE spec, at this point flow control should be
845 * disabled. However, we want to consider that we could
846 * be connected to a legacy switch that doesn't advertise
847 * desired flow control, but can be forced on the link
848 * partner. So if we advertised no flow control, that is
849 * what we will resolve to. If we advertised some kind of
850 * receive capability (Rx Pause Only or Full Flow Control)
851 * and the link partner advertised none, we will configure
852 * ourselves to enable Rx Flow Control only. We can do
853 * this safely for two reasons: If the link partner really
854 * didn't want flow control enabled, and we enable Rx, no
855 * harm done since we won't be receiving any PAUSE frames
856 * anyway. If the intent on the link partner was to have
857 * flow control enabled, then by us enabling RX only, we
858 * can at least receive pause frames and process them.
859 * This is a good idea because in most cases, since we are
860 * predominantly a server NIC, more times than not we will
861 * be asked to delay transmission of packets than asking
862 * our link partner to pause transmission of frames.
863 */
864 else if ((hw->fc.original_type == e1000_fc_none ||
865 hw->fc.original_type == e1000_fc_tx_pause) ||
866 hw->fc.strict_ieee) {
867 hw->fc.type = e1000_fc_none;
868 hw_dbg("Flow Control = NONE.\r\n");
869 } else {
870 hw->fc.type = e1000_fc_rx_pause;
871 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
872 }
873
874 /*
875 * Now we need to do one last check... If we auto-
876 * negotiated to HALF DUPLEX, flow control should not be
877 * enabled per IEEE 802.3 spec.
878 */
879 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
880 if (ret_val) {
881 hw_dbg("Error getting link speed and duplex\n");
882 goto out;
883 }
884
885 if (duplex == HALF_DUPLEX)
886 hw->fc.type = e1000_fc_none;
887
888 /*
889 * Now we call a subroutine to actually force the MAC
890 * controller to use the correct flow control settings.
891 */
892 ret_val = igb_force_mac_fc(hw);
893 if (ret_val) {
894 hw_dbg("Error forcing flow control settings\n");
895 goto out;
896 }
897 }
898
899 out:
900 return ret_val;
901 }
902
903 /**
904 * igb_get_speed_and_duplex_copper - Retreive current speed/duplex
905 * @hw: pointer to the HW structure
906 * @speed: stores the current speed
907 * @duplex: stores the current duplex
908 *
909 * Read the status register for the current speed/duplex and store the current
910 * speed and duplex for copper connections.
911 **/
912 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
913 u16 *duplex)
914 {
915 u32 status;
916
917 status = rd32(E1000_STATUS);
918 if (status & E1000_STATUS_SPEED_1000) {
919 *speed = SPEED_1000;
920 hw_dbg("1000 Mbs, ");
921 } else if (status & E1000_STATUS_SPEED_100) {
922 *speed = SPEED_100;
923 hw_dbg("100 Mbs, ");
924 } else {
925 *speed = SPEED_10;
926 hw_dbg("10 Mbs, ");
927 }
928
929 if (status & E1000_STATUS_FD) {
930 *duplex = FULL_DUPLEX;
931 hw_dbg("Full Duplex\n");
932 } else {
933 *duplex = HALF_DUPLEX;
934 hw_dbg("Half Duplex\n");
935 }
936
937 return 0;
938 }
939
940 /**
941 * igb_get_hw_semaphore - Acquire hardware semaphore
942 * @hw: pointer to the HW structure
943 *
944 * Acquire the HW semaphore to access the PHY or NVM
945 **/
946 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
947 {
948 u32 swsm;
949 s32 ret_val = 0;
950 s32 timeout = hw->nvm.word_size + 1;
951 s32 i = 0;
952
953 /* Get the SW semaphore */
954 while (i < timeout) {
955 swsm = rd32(E1000_SWSM);
956 if (!(swsm & E1000_SWSM_SMBI))
957 break;
958
959 udelay(50);
960 i++;
961 }
962
963 if (i == timeout) {
964 hw_dbg("Driver can't access device - SMBI bit is set.\n");
965 ret_val = -E1000_ERR_NVM;
966 goto out;
967 }
968
969 /* Get the FW semaphore. */
970 for (i = 0; i < timeout; i++) {
971 swsm = rd32(E1000_SWSM);
972 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
973
974 /* Semaphore acquired if bit latched */
975 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
976 break;
977
978 udelay(50);
979 }
980
981 if (i == timeout) {
982 /* Release semaphores */
983 igb_put_hw_semaphore(hw);
984 hw_dbg("Driver can't access the NVM\n");
985 ret_val = -E1000_ERR_NVM;
986 goto out;
987 }
988
989 out:
990 return ret_val;
991 }
992
993 /**
994 * igb_put_hw_semaphore - Release hardware semaphore
995 * @hw: pointer to the HW structure
996 *
997 * Release hardware semaphore used to access the PHY or NVM
998 **/
999 void igb_put_hw_semaphore(struct e1000_hw *hw)
1000 {
1001 u32 swsm;
1002
1003 swsm = rd32(E1000_SWSM);
1004
1005 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1006
1007 wr32(E1000_SWSM, swsm);
1008 }
1009
1010 /**
1011 * igb_get_auto_rd_done - Check for auto read completion
1012 * @hw: pointer to the HW structure
1013 *
1014 * Check EEPROM for Auto Read done bit.
1015 **/
1016 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1017 {
1018 s32 i = 0;
1019 s32 ret_val = 0;
1020
1021
1022 while (i < AUTO_READ_DONE_TIMEOUT) {
1023 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1024 break;
1025 msleep(1);
1026 i++;
1027 }
1028
1029 if (i == AUTO_READ_DONE_TIMEOUT) {
1030 hw_dbg("Auto read by HW from NVM has not completed.\n");
1031 ret_val = -E1000_ERR_RESET;
1032 goto out;
1033 }
1034
1035 out:
1036 return ret_val;
1037 }
1038
1039 /**
1040 * igb_valid_led_default - Verify a valid default LED config
1041 * @hw: pointer to the HW structure
1042 * @data: pointer to the NVM (EEPROM)
1043 *
1044 * Read the EEPROM for the current default LED configuration. If the
1045 * LED configuration is not valid, set to a valid LED configuration.
1046 **/
1047 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1048 {
1049 s32 ret_val;
1050
1051 ret_val = hw->nvm.ops.read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1052 if (ret_val) {
1053 hw_dbg("NVM Read Error\n");
1054 goto out;
1055 }
1056
1057 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1058 *data = ID_LED_DEFAULT;
1059
1060 out:
1061 return ret_val;
1062 }
1063
1064 /**
1065 * igb_id_led_init -
1066 * @hw: pointer to the HW structure
1067 *
1068 **/
1069 s32 igb_id_led_init(struct e1000_hw *hw)
1070 {
1071 struct e1000_mac_info *mac = &hw->mac;
1072 s32 ret_val;
1073 const u32 ledctl_mask = 0x000000FF;
1074 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1075 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1076 u16 data, i, temp;
1077 const u16 led_mask = 0x0F;
1078
1079 ret_val = igb_valid_led_default(hw, &data);
1080 if (ret_val)
1081 goto out;
1082
1083 mac->ledctl_default = rd32(E1000_LEDCTL);
1084 mac->ledctl_mode1 = mac->ledctl_default;
1085 mac->ledctl_mode2 = mac->ledctl_default;
1086
1087 for (i = 0; i < 4; i++) {
1088 temp = (data >> (i << 2)) & led_mask;
1089 switch (temp) {
1090 case ID_LED_ON1_DEF2:
1091 case ID_LED_ON1_ON2:
1092 case ID_LED_ON1_OFF2:
1093 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1094 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1095 break;
1096 case ID_LED_OFF1_DEF2:
1097 case ID_LED_OFF1_ON2:
1098 case ID_LED_OFF1_OFF2:
1099 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1100 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1101 break;
1102 default:
1103 /* Do nothing */
1104 break;
1105 }
1106 switch (temp) {
1107 case ID_LED_DEF1_ON2:
1108 case ID_LED_ON1_ON2:
1109 case ID_LED_OFF1_ON2:
1110 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1111 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1112 break;
1113 case ID_LED_DEF1_OFF2:
1114 case ID_LED_ON1_OFF2:
1115 case ID_LED_OFF1_OFF2:
1116 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1117 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1118 break;
1119 default:
1120 /* Do nothing */
1121 break;
1122 }
1123 }
1124
1125 out:
1126 return ret_val;
1127 }
1128
1129 /**
1130 * igb_cleanup_led - Set LED config to default operation
1131 * @hw: pointer to the HW structure
1132 *
1133 * Remove the current LED configuration and set the LED configuration
1134 * to the default value, saved from the EEPROM.
1135 **/
1136 s32 igb_cleanup_led(struct e1000_hw *hw)
1137 {
1138 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1139 return 0;
1140 }
1141
1142 /**
1143 * igb_blink_led - Blink LED
1144 * @hw: pointer to the HW structure
1145 *
1146 * Blink the led's which are set to be on.
1147 **/
1148 s32 igb_blink_led(struct e1000_hw *hw)
1149 {
1150 u32 ledctl_blink = 0;
1151 u32 i;
1152
1153 if (hw->phy.media_type == e1000_media_type_fiber) {
1154 /* always blink LED0 for PCI-E fiber */
1155 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1156 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1157 } else {
1158 /*
1159 * set the blink bit for each LED that's "on" (0x0E)
1160 * in ledctl_mode2
1161 */
1162 ledctl_blink = hw->mac.ledctl_mode2;
1163 for (i = 0; i < 4; i++)
1164 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1165 E1000_LEDCTL_MODE_LED_ON)
1166 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1167 (i * 8));
1168 }
1169
1170 wr32(E1000_LEDCTL, ledctl_blink);
1171
1172 return 0;
1173 }
1174
1175 /**
1176 * igb_led_off - Turn LED off
1177 * @hw: pointer to the HW structure
1178 *
1179 * Turn LED off.
1180 **/
1181 s32 igb_led_off(struct e1000_hw *hw)
1182 {
1183 u32 ctrl;
1184
1185 switch (hw->phy.media_type) {
1186 case e1000_media_type_fiber:
1187 ctrl = rd32(E1000_CTRL);
1188 ctrl |= E1000_CTRL_SWDPIN0;
1189 ctrl |= E1000_CTRL_SWDPIO0;
1190 wr32(E1000_CTRL, ctrl);
1191 break;
1192 case e1000_media_type_copper:
1193 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1194 break;
1195 default:
1196 break;
1197 }
1198
1199 return 0;
1200 }
1201
1202 /**
1203 * igb_disable_pcie_master - Disables PCI-express master access
1204 * @hw: pointer to the HW structure
1205 *
1206 * Returns 0 (0) if successful, else returns -10
1207 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1208 * the master requests to be disabled.
1209 *
1210 * Disables PCI-Express master access and verifies there are no pending
1211 * requests.
1212 **/
1213 s32 igb_disable_pcie_master(struct e1000_hw *hw)
1214 {
1215 u32 ctrl;
1216 s32 timeout = MASTER_DISABLE_TIMEOUT;
1217 s32 ret_val = 0;
1218
1219 if (hw->bus.type != e1000_bus_type_pci_express)
1220 goto out;
1221
1222 ctrl = rd32(E1000_CTRL);
1223 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1224 wr32(E1000_CTRL, ctrl);
1225
1226 while (timeout) {
1227 if (!(rd32(E1000_STATUS) &
1228 E1000_STATUS_GIO_MASTER_ENABLE))
1229 break;
1230 udelay(100);
1231 timeout--;
1232 }
1233
1234 if (!timeout) {
1235 hw_dbg("Master requests are pending.\n");
1236 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1237 goto out;
1238 }
1239
1240 out:
1241 return ret_val;
1242 }
1243
1244 /**
1245 * igb_reset_adaptive - Reset Adaptive Interframe Spacing
1246 * @hw: pointer to the HW structure
1247 *
1248 * Reset the Adaptive Interframe Spacing throttle to default values.
1249 **/
1250 void igb_reset_adaptive(struct e1000_hw *hw)
1251 {
1252 struct e1000_mac_info *mac = &hw->mac;
1253
1254 if (!mac->adaptive_ifs) {
1255 hw_dbg("Not in Adaptive IFS mode!\n");
1256 goto out;
1257 }
1258
1259 if (!mac->ifs_params_forced) {
1260 mac->current_ifs_val = 0;
1261 mac->ifs_min_val = IFS_MIN;
1262 mac->ifs_max_val = IFS_MAX;
1263 mac->ifs_step_size = IFS_STEP;
1264 mac->ifs_ratio = IFS_RATIO;
1265 }
1266
1267 mac->in_ifs_mode = false;
1268 wr32(E1000_AIT, 0);
1269 out:
1270 return;
1271 }
1272
1273 /**
1274 * igb_update_adaptive - Update Adaptive Interframe Spacing
1275 * @hw: pointer to the HW structure
1276 *
1277 * Update the Adaptive Interframe Spacing Throttle value based on the
1278 * time between transmitted packets and time between collisions.
1279 **/
1280 void igb_update_adaptive(struct e1000_hw *hw)
1281 {
1282 struct e1000_mac_info *mac = &hw->mac;
1283
1284 if (!mac->adaptive_ifs) {
1285 hw_dbg("Not in Adaptive IFS mode!\n");
1286 goto out;
1287 }
1288
1289 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1290 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1291 mac->in_ifs_mode = true;
1292 if (mac->current_ifs_val < mac->ifs_max_val) {
1293 if (!mac->current_ifs_val)
1294 mac->current_ifs_val = mac->ifs_min_val;
1295 else
1296 mac->current_ifs_val +=
1297 mac->ifs_step_size;
1298 wr32(E1000_AIT,
1299 mac->current_ifs_val);
1300 }
1301 }
1302 } else {
1303 if (mac->in_ifs_mode &&
1304 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1305 mac->current_ifs_val = 0;
1306 mac->in_ifs_mode = false;
1307 wr32(E1000_AIT, 0);
1308 }
1309 }
1310 out:
1311 return;
1312 }
1313
1314 /**
1315 * igb_validate_mdi_setting - Verify MDI/MDIx settings
1316 * @hw: pointer to the HW structure
1317 *
1318 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1319 * set, which is forced to MDI mode only.
1320 **/
1321 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1322 {
1323 s32 ret_val = 0;
1324
1325 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1326 hw_dbg("Invalid MDI setting detected\n");
1327 hw->phy.mdix = 1;
1328 ret_val = -E1000_ERR_CONFIG;
1329 goto out;
1330 }
1331
1332 out:
1333 return ret_val;
1334 }
1335
1336 /**
1337 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1338 * @hw: pointer to the HW structure
1339 * @reg: 32bit register offset such as E1000_SCTL
1340 * @offset: register offset to write to
1341 * @data: data to write at register offset
1342 *
1343 * Writes an address/data control type register. There are several of these
1344 * and they all have the format address << 8 | data and bit 31 is polled for
1345 * completion.
1346 **/
1347 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1348 u32 offset, u8 data)
1349 {
1350 u32 i, regvalue = 0;
1351 s32 ret_val = 0;
1352
1353 /* Set up the address and data */
1354 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1355 wr32(reg, regvalue);
1356
1357 /* Poll the ready bit to see if the MDI read completed */
1358 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1359 udelay(5);
1360 regvalue = rd32(reg);
1361 if (regvalue & E1000_GEN_CTL_READY)
1362 break;
1363 }
1364 if (!(regvalue & E1000_GEN_CTL_READY)) {
1365 hw_dbg("Reg %08x did not indicate ready\n", reg);
1366 ret_val = -E1000_ERR_PHY;
1367 goto out;
1368 }
1369
1370 out:
1371 return ret_val;
1372 }
1373
1374 /**
1375 * igb_enable_mng_pass_thru - Enable processing of ARP's
1376 * @hw: pointer to the HW structure
1377 *
1378 * Verifies the hardware needs to allow ARPs to be processed by the host.
1379 **/
1380 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1381 {
1382 u32 manc;
1383 u32 fwsm, factps;
1384 bool ret_val = false;
1385
1386 if (!hw->mac.asf_firmware_present)
1387 goto out;
1388
1389 manc = rd32(E1000_MANC);
1390
1391 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
1392 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
1393 goto out;
1394
1395 if (hw->mac.arc_subsystem_valid) {
1396 fwsm = rd32(E1000_FWSM);
1397 factps = rd32(E1000_FACTPS);
1398
1399 if (!(factps & E1000_FACTPS_MNGCG) &&
1400 ((fwsm & E1000_FWSM_MODE_MASK) ==
1401 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1402 ret_val = true;
1403 goto out;
1404 }
1405 } else {
1406 if ((manc & E1000_MANC_SMBUS_EN) &&
1407 !(manc & E1000_MANC_ASF_EN)) {
1408 ret_val = true;
1409 goto out;
1410 }
1411 }
1412
1413 out:
1414 return ret_val;
1415 }
This page took 0.070294 seconds and 5 git commands to generate.