Merge branch 'fix/asoc' into for-linus
[deliverable/linux.git] / drivers / net / igb / e1000_phy.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
33
34 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 u16 *phy_ctrl);
37 static s32 igb_wait_autoneg(struct e1000_hw *hw);
38
39 /* Cable length tables */
40 static const u16 e1000_m88_cable_length_table[] =
41 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
42
43 static const u16 e1000_igp_2_cable_length_table[] =
44 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
45 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
46 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
47 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
48 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
49 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
50 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
51 104, 109, 114, 118, 121, 124};
52 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
53 (sizeof(e1000_igp_2_cable_length_table) / \
54 sizeof(e1000_igp_2_cable_length_table[0]))
55
56 /**
57 * igb_check_reset_block - Check if PHY reset is blocked
58 * @hw: pointer to the HW structure
59 *
60 * Read the PHY management control register and check whether a PHY reset
61 * is blocked. If a reset is not blocked return 0, otherwise
62 * return E1000_BLK_PHY_RESET (12).
63 **/
64 s32 igb_check_reset_block(struct e1000_hw *hw)
65 {
66 u32 manc;
67
68 manc = rd32(E1000_MANC);
69
70 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
71 E1000_BLK_PHY_RESET : 0;
72 }
73
74 /**
75 * igb_get_phy_id - Retrieve the PHY ID and revision
76 * @hw: pointer to the HW structure
77 *
78 * Reads the PHY registers and stores the PHY ID and possibly the PHY
79 * revision in the hardware structure.
80 **/
81 s32 igb_get_phy_id(struct e1000_hw *hw)
82 {
83 struct e1000_phy_info *phy = &hw->phy;
84 s32 ret_val = 0;
85 u16 phy_id;
86
87 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
88 if (ret_val)
89 goto out;
90
91 phy->id = (u32)(phy_id << 16);
92 udelay(20);
93 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
94 if (ret_val)
95 goto out;
96
97 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
98 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
99
100 out:
101 return ret_val;
102 }
103
104 /**
105 * igb_phy_reset_dsp - Reset PHY DSP
106 * @hw: pointer to the HW structure
107 *
108 * Reset the digital signal processor.
109 **/
110 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
111 {
112 s32 ret_val;
113
114 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
115 if (ret_val)
116 goto out;
117
118 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
119
120 out:
121 return ret_val;
122 }
123
124 /**
125 * igb_read_phy_reg_mdic - Read MDI control register
126 * @hw: pointer to the HW structure
127 * @offset: register offset to be read
128 * @data: pointer to the read data
129 *
130 * Reads the MDI control regsiter in the PHY at offset and stores the
131 * information read to data.
132 **/
133 static s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
134 {
135 struct e1000_phy_info *phy = &hw->phy;
136 u32 i, mdic = 0;
137 s32 ret_val = 0;
138
139 if (offset > MAX_PHY_REG_ADDRESS) {
140 hw_dbg("PHY Address %d is out of range\n", offset);
141 ret_val = -E1000_ERR_PARAM;
142 goto out;
143 }
144
145 /*
146 * Set up Op-code, Phy Address, and register offset in the MDI
147 * Control register. The MAC will take care of interfacing with the
148 * PHY to retrieve the desired data.
149 */
150 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
151 (phy->addr << E1000_MDIC_PHY_SHIFT) |
152 (E1000_MDIC_OP_READ));
153
154 wr32(E1000_MDIC, mdic);
155
156 /*
157 * Poll the ready bit to see if the MDI read completed
158 * Increasing the time out as testing showed failures with
159 * the lower time out
160 */
161 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
162 udelay(50);
163 mdic = rd32(E1000_MDIC);
164 if (mdic & E1000_MDIC_READY)
165 break;
166 }
167 if (!(mdic & E1000_MDIC_READY)) {
168 hw_dbg("MDI Read did not complete\n");
169 ret_val = -E1000_ERR_PHY;
170 goto out;
171 }
172 if (mdic & E1000_MDIC_ERROR) {
173 hw_dbg("MDI Error\n");
174 ret_val = -E1000_ERR_PHY;
175 goto out;
176 }
177 *data = (u16) mdic;
178
179 out:
180 return ret_val;
181 }
182
183 /**
184 * igb_write_phy_reg_mdic - Write MDI control register
185 * @hw: pointer to the HW structure
186 * @offset: register offset to write to
187 * @data: data to write to register at offset
188 *
189 * Writes data to MDI control register in the PHY at offset.
190 **/
191 static s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
192 {
193 struct e1000_phy_info *phy = &hw->phy;
194 u32 i, mdic = 0;
195 s32 ret_val = 0;
196
197 if (offset > MAX_PHY_REG_ADDRESS) {
198 hw_dbg("PHY Address %d is out of range\n", offset);
199 ret_val = -E1000_ERR_PARAM;
200 goto out;
201 }
202
203 /*
204 * Set up Op-code, Phy Address, and register offset in the MDI
205 * Control register. The MAC will take care of interfacing with the
206 * PHY to retrieve the desired data.
207 */
208 mdic = (((u32)data) |
209 (offset << E1000_MDIC_REG_SHIFT) |
210 (phy->addr << E1000_MDIC_PHY_SHIFT) |
211 (E1000_MDIC_OP_WRITE));
212
213 wr32(E1000_MDIC, mdic);
214
215 /*
216 * Poll the ready bit to see if the MDI read completed
217 * Increasing the time out as testing showed failures with
218 * the lower time out
219 */
220 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
221 udelay(50);
222 mdic = rd32(E1000_MDIC);
223 if (mdic & E1000_MDIC_READY)
224 break;
225 }
226 if (!(mdic & E1000_MDIC_READY)) {
227 hw_dbg("MDI Write did not complete\n");
228 ret_val = -E1000_ERR_PHY;
229 goto out;
230 }
231 if (mdic & E1000_MDIC_ERROR) {
232 hw_dbg("MDI Error\n");
233 ret_val = -E1000_ERR_PHY;
234 goto out;
235 }
236
237 out:
238 return ret_val;
239 }
240
241 /**
242 * igb_read_phy_reg_igp - Read igp PHY register
243 * @hw: pointer to the HW structure
244 * @offset: register offset to be read
245 * @data: pointer to the read data
246 *
247 * Acquires semaphore, if necessary, then reads the PHY register at offset
248 * and storing the retrieved information in data. Release any acquired
249 * semaphores before exiting.
250 **/
251 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
252 {
253 s32 ret_val = 0;
254
255 if (!(hw->phy.ops.acquire))
256 goto out;
257
258 ret_val = hw->phy.ops.acquire(hw);
259 if (ret_val)
260 goto out;
261
262 if (offset > MAX_PHY_MULTI_PAGE_REG) {
263 ret_val = igb_write_phy_reg_mdic(hw,
264 IGP01E1000_PHY_PAGE_SELECT,
265 (u16)offset);
266 if (ret_val) {
267 hw->phy.ops.release(hw);
268 goto out;
269 }
270 }
271
272 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
273 data);
274
275 hw->phy.ops.release(hw);
276
277 out:
278 return ret_val;
279 }
280
281 /**
282 * igb_write_phy_reg_igp - Write igp PHY register
283 * @hw: pointer to the HW structure
284 * @offset: register offset to write to
285 * @data: data to write at register offset
286 *
287 * Acquires semaphore, if necessary, then writes the data to PHY register
288 * at the offset. Release any acquired semaphores before exiting.
289 **/
290 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
291 {
292 s32 ret_val = 0;
293
294 if (!(hw->phy.ops.acquire))
295 goto out;
296
297 ret_val = hw->phy.ops.acquire(hw);
298 if (ret_val)
299 goto out;
300
301 if (offset > MAX_PHY_MULTI_PAGE_REG) {
302 ret_val = igb_write_phy_reg_mdic(hw,
303 IGP01E1000_PHY_PAGE_SELECT,
304 (u16)offset);
305 if (ret_val) {
306 hw->phy.ops.release(hw);
307 goto out;
308 }
309 }
310
311 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
312 data);
313
314 hw->phy.ops.release(hw);
315
316 out:
317 return ret_val;
318 }
319
320 /**
321 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
322 * @hw: pointer to the HW structure
323 *
324 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
325 * and downshift values are set also.
326 **/
327 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
328 {
329 struct e1000_phy_info *phy = &hw->phy;
330 s32 ret_val;
331 u16 phy_data;
332
333 if (phy->reset_disable) {
334 ret_val = 0;
335 goto out;
336 }
337
338 /* Enable CRS on TX. This must be set for half-duplex operation. */
339 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
340 if (ret_val)
341 goto out;
342
343 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
344
345 /*
346 * Options:
347 * MDI/MDI-X = 0 (default)
348 * 0 - Auto for all speeds
349 * 1 - MDI mode
350 * 2 - MDI-X mode
351 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
352 */
353 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
354
355 switch (phy->mdix) {
356 case 1:
357 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
358 break;
359 case 2:
360 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
361 break;
362 case 3:
363 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
364 break;
365 case 0:
366 default:
367 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
368 break;
369 }
370
371 /*
372 * Options:
373 * disable_polarity_correction = 0 (default)
374 * Automatic Correction for Reversed Cable Polarity
375 * 0 - Disabled
376 * 1 - Enabled
377 */
378 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
379 if (phy->disable_polarity_correction == 1)
380 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
381
382 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
383 if (ret_val)
384 goto out;
385
386 if (phy->revision < E1000_REVISION_4) {
387 /*
388 * Force TX_CLK in the Extended PHY Specific Control Register
389 * to 25MHz clock.
390 */
391 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
392 &phy_data);
393 if (ret_val)
394 goto out;
395
396 phy_data |= M88E1000_EPSCR_TX_CLK_25;
397
398 if ((phy->revision == E1000_REVISION_2) &&
399 (phy->id == M88E1111_I_PHY_ID)) {
400 /* 82573L PHY - set the downshift counter to 5x. */
401 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
402 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
403 } else {
404 /* Configure Master and Slave downshift values */
405 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
406 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
407 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
408 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
409 }
410 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
411 phy_data);
412 if (ret_val)
413 goto out;
414 }
415
416 /* Commit the changes. */
417 ret_val = igb_phy_sw_reset(hw);
418 if (ret_val) {
419 hw_dbg("Error committing the PHY changes\n");
420 goto out;
421 }
422
423 out:
424 return ret_val;
425 }
426
427 /**
428 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
429 * @hw: pointer to the HW structure
430 *
431 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
432 * igp PHY's.
433 **/
434 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
435 {
436 struct e1000_phy_info *phy = &hw->phy;
437 s32 ret_val;
438 u16 data;
439
440 if (phy->reset_disable) {
441 ret_val = 0;
442 goto out;
443 }
444
445 ret_val = phy->ops.reset(hw);
446 if (ret_val) {
447 hw_dbg("Error resetting the PHY.\n");
448 goto out;
449 }
450
451 /*
452 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
453 * timeout issues when LFS is enabled.
454 */
455 msleep(100);
456
457 /*
458 * The NVM settings will configure LPLU in D3 for
459 * non-IGP1 PHYs.
460 */
461 if (phy->type == e1000_phy_igp) {
462 /* disable lplu d3 during driver init */
463 if (phy->ops.set_d3_lplu_state)
464 ret_val = phy->ops.set_d3_lplu_state(hw, false);
465 if (ret_val) {
466 hw_dbg("Error Disabling LPLU D3\n");
467 goto out;
468 }
469 }
470
471 /* disable lplu d0 during driver init */
472 ret_val = phy->ops.set_d0_lplu_state(hw, false);
473 if (ret_val) {
474 hw_dbg("Error Disabling LPLU D0\n");
475 goto out;
476 }
477 /* Configure mdi-mdix settings */
478 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
479 if (ret_val)
480 goto out;
481
482 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
483
484 switch (phy->mdix) {
485 case 1:
486 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
487 break;
488 case 2:
489 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
490 break;
491 case 0:
492 default:
493 data |= IGP01E1000_PSCR_AUTO_MDIX;
494 break;
495 }
496 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
497 if (ret_val)
498 goto out;
499
500 /* set auto-master slave resolution settings */
501 if (hw->mac.autoneg) {
502 /*
503 * when autonegotiation advertisement is only 1000Mbps then we
504 * should disable SmartSpeed and enable Auto MasterSlave
505 * resolution as hardware default.
506 */
507 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
508 /* Disable SmartSpeed */
509 ret_val = phy->ops.read_reg(hw,
510 IGP01E1000_PHY_PORT_CONFIG,
511 &data);
512 if (ret_val)
513 goto out;
514
515 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
516 ret_val = phy->ops.write_reg(hw,
517 IGP01E1000_PHY_PORT_CONFIG,
518 data);
519 if (ret_val)
520 goto out;
521
522 /* Set auto Master/Slave resolution process */
523 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
524 if (ret_val)
525 goto out;
526
527 data &= ~CR_1000T_MS_ENABLE;
528 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
529 if (ret_val)
530 goto out;
531 }
532
533 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
534 if (ret_val)
535 goto out;
536
537 /* load defaults for future use */
538 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
539 ((data & CR_1000T_MS_VALUE) ?
540 e1000_ms_force_master :
541 e1000_ms_force_slave) :
542 e1000_ms_auto;
543
544 switch (phy->ms_type) {
545 case e1000_ms_force_master:
546 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
547 break;
548 case e1000_ms_force_slave:
549 data |= CR_1000T_MS_ENABLE;
550 data &= ~(CR_1000T_MS_VALUE);
551 break;
552 case e1000_ms_auto:
553 data &= ~CR_1000T_MS_ENABLE;
554 default:
555 break;
556 }
557 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
558 if (ret_val)
559 goto out;
560 }
561
562 out:
563 return ret_val;
564 }
565
566 /**
567 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
568 * @hw: pointer to the HW structure
569 *
570 * Performs initial bounds checking on autoneg advertisement parameter, then
571 * configure to advertise the full capability. Setup the PHY to autoneg
572 * and restart the negotiation process between the link partner. If
573 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
574 **/
575 s32 igb_copper_link_autoneg(struct e1000_hw *hw)
576 {
577 struct e1000_phy_info *phy = &hw->phy;
578 s32 ret_val;
579 u16 phy_ctrl;
580
581 /*
582 * Perform some bounds checking on the autoneg advertisement
583 * parameter.
584 */
585 phy->autoneg_advertised &= phy->autoneg_mask;
586
587 /*
588 * If autoneg_advertised is zero, we assume it was not defaulted
589 * by the calling code so we set to advertise full capability.
590 */
591 if (phy->autoneg_advertised == 0)
592 phy->autoneg_advertised = phy->autoneg_mask;
593
594 hw_dbg("Reconfiguring auto-neg advertisement params\n");
595 ret_val = igb_phy_setup_autoneg(hw);
596 if (ret_val) {
597 hw_dbg("Error Setting up Auto-Negotiation\n");
598 goto out;
599 }
600 hw_dbg("Restarting Auto-Neg\n");
601
602 /*
603 * Restart auto-negotiation by setting the Auto Neg Enable bit and
604 * the Auto Neg Restart bit in the PHY control register.
605 */
606 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
607 if (ret_val)
608 goto out;
609
610 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
611 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
612 if (ret_val)
613 goto out;
614
615 /*
616 * Does the user want to wait for Auto-Neg to complete here, or
617 * check at a later time (for example, callback routine).
618 */
619 if (phy->autoneg_wait_to_complete) {
620 ret_val = igb_wait_autoneg(hw);
621 if (ret_val) {
622 hw_dbg("Error while waiting for "
623 "autoneg to complete\n");
624 goto out;
625 }
626 }
627
628 hw->mac.get_link_status = true;
629
630 out:
631 return ret_val;
632 }
633
634 /**
635 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
636 * @hw: pointer to the HW structure
637 *
638 * Reads the MII auto-neg advertisement register and/or the 1000T control
639 * register and if the PHY is already setup for auto-negotiation, then
640 * return successful. Otherwise, setup advertisement and flow control to
641 * the appropriate values for the wanted auto-negotiation.
642 **/
643 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
644 {
645 struct e1000_phy_info *phy = &hw->phy;
646 s32 ret_val;
647 u16 mii_autoneg_adv_reg;
648 u16 mii_1000t_ctrl_reg = 0;
649
650 phy->autoneg_advertised &= phy->autoneg_mask;
651
652 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
653 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
654 if (ret_val)
655 goto out;
656
657 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
658 /* Read the MII 1000Base-T Control Register (Address 9). */
659 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
660 &mii_1000t_ctrl_reg);
661 if (ret_val)
662 goto out;
663 }
664
665 /*
666 * Need to parse both autoneg_advertised and fc and set up
667 * the appropriate PHY registers. First we will parse for
668 * autoneg_advertised software override. Since we can advertise
669 * a plethora of combinations, we need to check each bit
670 * individually.
671 */
672
673 /*
674 * First we clear all the 10/100 mb speed bits in the Auto-Neg
675 * Advertisement Register (Address 4) and the 1000 mb speed bits in
676 * the 1000Base-T Control Register (Address 9).
677 */
678 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
679 NWAY_AR_100TX_HD_CAPS |
680 NWAY_AR_10T_FD_CAPS |
681 NWAY_AR_10T_HD_CAPS);
682 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
683
684 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
685
686 /* Do we want to advertise 10 Mb Half Duplex? */
687 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
688 hw_dbg("Advertise 10mb Half duplex\n");
689 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
690 }
691
692 /* Do we want to advertise 10 Mb Full Duplex? */
693 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
694 hw_dbg("Advertise 10mb Full duplex\n");
695 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
696 }
697
698 /* Do we want to advertise 100 Mb Half Duplex? */
699 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
700 hw_dbg("Advertise 100mb Half duplex\n");
701 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
702 }
703
704 /* Do we want to advertise 100 Mb Full Duplex? */
705 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
706 hw_dbg("Advertise 100mb Full duplex\n");
707 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
708 }
709
710 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
711 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
712 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
713
714 /* Do we want to advertise 1000 Mb Full Duplex? */
715 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
716 hw_dbg("Advertise 1000mb Full duplex\n");
717 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
718 }
719
720 /*
721 * Check for a software override of the flow control settings, and
722 * setup the PHY advertisement registers accordingly. If
723 * auto-negotiation is enabled, then software will have to set the
724 * "PAUSE" bits to the correct value in the Auto-Negotiation
725 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
726 * negotiation.
727 *
728 * The possible values of the "fc" parameter are:
729 * 0: Flow control is completely disabled
730 * 1: Rx flow control is enabled (we can receive pause frames
731 * but not send pause frames).
732 * 2: Tx flow control is enabled (we can send pause frames
733 * but we do not support receiving pause frames).
734 * 3: Both Rx and TX flow control (symmetric) are enabled.
735 * other: No software override. The flow control configuration
736 * in the EEPROM is used.
737 */
738 switch (hw->fc.type) {
739 case e1000_fc_none:
740 /*
741 * Flow control (RX & TX) is completely disabled by a
742 * software over-ride.
743 */
744 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
745 break;
746 case e1000_fc_rx_pause:
747 /*
748 * RX Flow control is enabled, and TX Flow control is
749 * disabled, by a software over-ride.
750 *
751 * Since there really isn't a way to advertise that we are
752 * capable of RX Pause ONLY, we will advertise that we
753 * support both symmetric and asymmetric RX PAUSE. Later
754 * (in e1000_config_fc_after_link_up) we will disable the
755 * hw's ability to send PAUSE frames.
756 */
757 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
758 break;
759 case e1000_fc_tx_pause:
760 /*
761 * TX Flow control is enabled, and RX Flow control is
762 * disabled, by a software over-ride.
763 */
764 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
765 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
766 break;
767 case e1000_fc_full:
768 /*
769 * Flow control (both RX and TX) is enabled by a software
770 * over-ride.
771 */
772 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
773 break;
774 default:
775 hw_dbg("Flow control param set incorrectly\n");
776 ret_val = -E1000_ERR_CONFIG;
777 goto out;
778 }
779
780 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
781 if (ret_val)
782 goto out;
783
784 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
785
786 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
787 ret_val = phy->ops.write_reg(hw,
788 PHY_1000T_CTRL,
789 mii_1000t_ctrl_reg);
790 if (ret_val)
791 goto out;
792 }
793
794 out:
795 return ret_val;
796 }
797
798 /**
799 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
800 * @hw: pointer to the HW structure
801 *
802 * Calls the PHY setup function to force speed and duplex. Clears the
803 * auto-crossover to force MDI manually. Waits for link and returns
804 * successful if link up is successful, else -E1000_ERR_PHY (-2).
805 **/
806 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
807 {
808 struct e1000_phy_info *phy = &hw->phy;
809 s32 ret_val;
810 u16 phy_data;
811 bool link;
812
813 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
814 if (ret_val)
815 goto out;
816
817 igb_phy_force_speed_duplex_setup(hw, &phy_data);
818
819 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
820 if (ret_val)
821 goto out;
822
823 /*
824 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
825 * forced whenever speed and duplex are forced.
826 */
827 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
828 if (ret_val)
829 goto out;
830
831 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
832 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
833
834 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
835 if (ret_val)
836 goto out;
837
838 hw_dbg("IGP PSCR: %X\n", phy_data);
839
840 udelay(1);
841
842 if (phy->autoneg_wait_to_complete) {
843 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
844
845 ret_val = igb_phy_has_link(hw,
846 PHY_FORCE_LIMIT,
847 100000,
848 &link);
849 if (ret_val)
850 goto out;
851
852 if (!link)
853 hw_dbg("Link taking longer than expected.\n");
854
855 /* Try once more */
856 ret_val = igb_phy_has_link(hw,
857 PHY_FORCE_LIMIT,
858 100000,
859 &link);
860 if (ret_val)
861 goto out;
862 }
863
864 out:
865 return ret_val;
866 }
867
868 /**
869 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
870 * @hw: pointer to the HW structure
871 *
872 * Calls the PHY setup function to force speed and duplex. Clears the
873 * auto-crossover to force MDI manually. Resets the PHY to commit the
874 * changes. If time expires while waiting for link up, we reset the DSP.
875 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
876 * successful completion, else return corresponding error code.
877 **/
878 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
879 {
880 struct e1000_phy_info *phy = &hw->phy;
881 s32 ret_val;
882 u16 phy_data;
883 bool link;
884
885 /*
886 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
887 * forced whenever speed and duplex are forced.
888 */
889 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
890 if (ret_val)
891 goto out;
892
893 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
894 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
895 if (ret_val)
896 goto out;
897
898 hw_dbg("M88E1000 PSCR: %X\n", phy_data);
899
900 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
901 if (ret_val)
902 goto out;
903
904 igb_phy_force_speed_duplex_setup(hw, &phy_data);
905
906 /* Reset the phy to commit changes. */
907 phy_data |= MII_CR_RESET;
908
909 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
910 if (ret_val)
911 goto out;
912
913 udelay(1);
914
915 if (phy->autoneg_wait_to_complete) {
916 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
917
918 ret_val = igb_phy_has_link(hw,
919 PHY_FORCE_LIMIT,
920 100000,
921 &link);
922 if (ret_val)
923 goto out;
924
925 if (!link) {
926 /*
927 * We didn't get link.
928 * Reset the DSP and cross our fingers.
929 */
930 ret_val = phy->ops.write_reg(hw,
931 M88E1000_PHY_PAGE_SELECT,
932 0x001d);
933 if (ret_val)
934 goto out;
935 ret_val = igb_phy_reset_dsp(hw);
936 if (ret_val)
937 goto out;
938 }
939
940 /* Try once more */
941 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
942 100000, &link);
943 if (ret_val)
944 goto out;
945 }
946
947 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
948 if (ret_val)
949 goto out;
950
951 /*
952 * Resetting the phy means we need to re-force TX_CLK in the
953 * Extended PHY Specific Control Register to 25MHz clock from
954 * the reset value of 2.5MHz.
955 */
956 phy_data |= M88E1000_EPSCR_TX_CLK_25;
957 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
958 if (ret_val)
959 goto out;
960
961 /*
962 * In addition, we must re-enable CRS on Tx for both half and full
963 * duplex.
964 */
965 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
966 if (ret_val)
967 goto out;
968
969 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
970 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
971
972 out:
973 return ret_val;
974 }
975
976 /**
977 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
978 * @hw: pointer to the HW structure
979 * @phy_ctrl: pointer to current value of PHY_CONTROL
980 *
981 * Forces speed and duplex on the PHY by doing the following: disable flow
982 * control, force speed/duplex on the MAC, disable auto speed detection,
983 * disable auto-negotiation, configure duplex, configure speed, configure
984 * the collision distance, write configuration to CTRL register. The
985 * caller must write to the PHY_CONTROL register for these settings to
986 * take affect.
987 **/
988 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
989 u16 *phy_ctrl)
990 {
991 struct e1000_mac_info *mac = &hw->mac;
992 u32 ctrl;
993
994 /* Turn off flow control when forcing speed/duplex */
995 hw->fc.type = e1000_fc_none;
996
997 /* Force speed/duplex on the mac */
998 ctrl = rd32(E1000_CTRL);
999 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1000 ctrl &= ~E1000_CTRL_SPD_SEL;
1001
1002 /* Disable Auto Speed Detection */
1003 ctrl &= ~E1000_CTRL_ASDE;
1004
1005 /* Disable autoneg on the phy */
1006 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1007
1008 /* Forcing Full or Half Duplex? */
1009 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1010 ctrl &= ~E1000_CTRL_FD;
1011 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1012 hw_dbg("Half Duplex\n");
1013 } else {
1014 ctrl |= E1000_CTRL_FD;
1015 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1016 hw_dbg("Full Duplex\n");
1017 }
1018
1019 /* Forcing 10mb or 100mb? */
1020 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1021 ctrl |= E1000_CTRL_SPD_100;
1022 *phy_ctrl |= MII_CR_SPEED_100;
1023 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1024 hw_dbg("Forcing 100mb\n");
1025 } else {
1026 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1027 *phy_ctrl |= MII_CR_SPEED_10;
1028 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1029 hw_dbg("Forcing 10mb\n");
1030 }
1031
1032 igb_config_collision_dist(hw);
1033
1034 wr32(E1000_CTRL, ctrl);
1035 }
1036
1037 /**
1038 * igb_set_d3_lplu_state - Sets low power link up state for D3
1039 * @hw: pointer to the HW structure
1040 * @active: boolean used to enable/disable lplu
1041 *
1042 * Success returns 0, Failure returns 1
1043 *
1044 * The low power link up (lplu) state is set to the power management level D3
1045 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1046 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1047 * is used during Dx states where the power conservation is most important.
1048 * During driver activity, SmartSpeed should be enabled so performance is
1049 * maintained.
1050 **/
1051 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1052 {
1053 struct e1000_phy_info *phy = &hw->phy;
1054 s32 ret_val;
1055 u16 data;
1056
1057 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1058 if (ret_val)
1059 goto out;
1060
1061 if (!active) {
1062 data &= ~IGP02E1000_PM_D3_LPLU;
1063 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1064 data);
1065 if (ret_val)
1066 goto out;
1067 /*
1068 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1069 * during Dx states where the power conservation is most
1070 * important. During driver activity we should enable
1071 * SmartSpeed, so performance is maintained.
1072 */
1073 if (phy->smart_speed == e1000_smart_speed_on) {
1074 ret_val = phy->ops.read_reg(hw,
1075 IGP01E1000_PHY_PORT_CONFIG,
1076 &data);
1077 if (ret_val)
1078 goto out;
1079
1080 data |= IGP01E1000_PSCFR_SMART_SPEED;
1081 ret_val = phy->ops.write_reg(hw,
1082 IGP01E1000_PHY_PORT_CONFIG,
1083 data);
1084 if (ret_val)
1085 goto out;
1086 } else if (phy->smart_speed == e1000_smart_speed_off) {
1087 ret_val = phy->ops.read_reg(hw,
1088 IGP01E1000_PHY_PORT_CONFIG,
1089 &data);
1090 if (ret_val)
1091 goto out;
1092
1093 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1094 ret_val = phy->ops.write_reg(hw,
1095 IGP01E1000_PHY_PORT_CONFIG,
1096 data);
1097 if (ret_val)
1098 goto out;
1099 }
1100 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1101 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1102 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1103 data |= IGP02E1000_PM_D3_LPLU;
1104 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1105 data);
1106 if (ret_val)
1107 goto out;
1108
1109 /* When LPLU is enabled, we should disable SmartSpeed */
1110 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1111 &data);
1112 if (ret_val)
1113 goto out;
1114
1115 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1116 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1117 data);
1118 }
1119
1120 out:
1121 return ret_val;
1122 }
1123
1124 /**
1125 * igb_check_downshift - Checks whether a downshift in speed occured
1126 * @hw: pointer to the HW structure
1127 *
1128 * Success returns 0, Failure returns 1
1129 *
1130 * A downshift is detected by querying the PHY link health.
1131 **/
1132 s32 igb_check_downshift(struct e1000_hw *hw)
1133 {
1134 struct e1000_phy_info *phy = &hw->phy;
1135 s32 ret_val;
1136 u16 phy_data, offset, mask;
1137
1138 switch (phy->type) {
1139 case e1000_phy_m88:
1140 case e1000_phy_gg82563:
1141 offset = M88E1000_PHY_SPEC_STATUS;
1142 mask = M88E1000_PSSR_DOWNSHIFT;
1143 break;
1144 case e1000_phy_igp_2:
1145 case e1000_phy_igp:
1146 case e1000_phy_igp_3:
1147 offset = IGP01E1000_PHY_LINK_HEALTH;
1148 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1149 break;
1150 default:
1151 /* speed downshift not supported */
1152 phy->speed_downgraded = false;
1153 ret_val = 0;
1154 goto out;
1155 }
1156
1157 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1158
1159 if (!ret_val)
1160 phy->speed_downgraded = (phy_data & mask) ? true : false;
1161
1162 out:
1163 return ret_val;
1164 }
1165
1166 /**
1167 * igb_check_polarity_m88 - Checks the polarity.
1168 * @hw: pointer to the HW structure
1169 *
1170 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1171 *
1172 * Polarity is determined based on the PHY specific status register.
1173 **/
1174 static s32 igb_check_polarity_m88(struct e1000_hw *hw)
1175 {
1176 struct e1000_phy_info *phy = &hw->phy;
1177 s32 ret_val;
1178 u16 data;
1179
1180 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1181
1182 if (!ret_val)
1183 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1184 ? e1000_rev_polarity_reversed
1185 : e1000_rev_polarity_normal;
1186
1187 return ret_val;
1188 }
1189
1190 /**
1191 * igb_check_polarity_igp - Checks the polarity.
1192 * @hw: pointer to the HW structure
1193 *
1194 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1195 *
1196 * Polarity is determined based on the PHY port status register, and the
1197 * current speed (since there is no polarity at 100Mbps).
1198 **/
1199 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1200 {
1201 struct e1000_phy_info *phy = &hw->phy;
1202 s32 ret_val;
1203 u16 data, offset, mask;
1204
1205 /*
1206 * Polarity is determined based on the speed of
1207 * our connection.
1208 */
1209 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1210 if (ret_val)
1211 goto out;
1212
1213 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1214 IGP01E1000_PSSR_SPEED_1000MBPS) {
1215 offset = IGP01E1000_PHY_PCS_INIT_REG;
1216 mask = IGP01E1000_PHY_POLARITY_MASK;
1217 } else {
1218 /*
1219 * This really only applies to 10Mbps since
1220 * there is no polarity for 100Mbps (always 0).
1221 */
1222 offset = IGP01E1000_PHY_PORT_STATUS;
1223 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1224 }
1225
1226 ret_val = phy->ops.read_reg(hw, offset, &data);
1227
1228 if (!ret_val)
1229 phy->cable_polarity = (data & mask)
1230 ? e1000_rev_polarity_reversed
1231 : e1000_rev_polarity_normal;
1232
1233 out:
1234 return ret_val;
1235 }
1236
1237 /**
1238 * igb_wait_autoneg - Wait for auto-neg compeletion
1239 * @hw: pointer to the HW structure
1240 *
1241 * Waits for auto-negotiation to complete or for the auto-negotiation time
1242 * limit to expire, which ever happens first.
1243 **/
1244 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1245 {
1246 s32 ret_val = 0;
1247 u16 i, phy_status;
1248
1249 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1250 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1251 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1252 if (ret_val)
1253 break;
1254 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1255 if (ret_val)
1256 break;
1257 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1258 break;
1259 msleep(100);
1260 }
1261
1262 /*
1263 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1264 * has completed.
1265 */
1266 return ret_val;
1267 }
1268
1269 /**
1270 * igb_phy_has_link - Polls PHY for link
1271 * @hw: pointer to the HW structure
1272 * @iterations: number of times to poll for link
1273 * @usec_interval: delay between polling attempts
1274 * @success: pointer to whether polling was successful or not
1275 *
1276 * Polls the PHY status register for link, 'iterations' number of times.
1277 **/
1278 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1279 u32 usec_interval, bool *success)
1280 {
1281 s32 ret_val = 0;
1282 u16 i, phy_status;
1283
1284 for (i = 0; i < iterations; i++) {
1285 /*
1286 * Some PHYs require the PHY_STATUS register to be read
1287 * twice due to the link bit being sticky. No harm doing
1288 * it across the board.
1289 */
1290 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1291 if (ret_val)
1292 break;
1293 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1294 if (ret_val)
1295 break;
1296 if (phy_status & MII_SR_LINK_STATUS)
1297 break;
1298 if (usec_interval >= 1000)
1299 mdelay(usec_interval/1000);
1300 else
1301 udelay(usec_interval);
1302 }
1303
1304 *success = (i < iterations) ? true : false;
1305
1306 return ret_val;
1307 }
1308
1309 /**
1310 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1311 * @hw: pointer to the HW structure
1312 *
1313 * Reads the PHY specific status register to retrieve the cable length
1314 * information. The cable length is determined by averaging the minimum and
1315 * maximum values to get the "average" cable length. The m88 PHY has four
1316 * possible cable length values, which are:
1317 * Register Value Cable Length
1318 * 0 < 50 meters
1319 * 1 50 - 80 meters
1320 * 2 80 - 110 meters
1321 * 3 110 - 140 meters
1322 * 4 > 140 meters
1323 **/
1324 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1325 {
1326 struct e1000_phy_info *phy = &hw->phy;
1327 s32 ret_val;
1328 u16 phy_data, index;
1329
1330 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1331 if (ret_val)
1332 goto out;
1333
1334 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1335 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1336 phy->min_cable_length = e1000_m88_cable_length_table[index];
1337 phy->max_cable_length = e1000_m88_cable_length_table[index+1];
1338
1339 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1340
1341 out:
1342 return ret_val;
1343 }
1344
1345 /**
1346 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1347 * @hw: pointer to the HW structure
1348 *
1349 * The automatic gain control (agc) normalizes the amplitude of the
1350 * received signal, adjusting for the attenuation produced by the
1351 * cable. By reading the AGC registers, which represent the
1352 * combination of coarse and fine gain value, the value can be put
1353 * into a lookup table to obtain the approximate cable length
1354 * for each channel.
1355 **/
1356 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1357 {
1358 struct e1000_phy_info *phy = &hw->phy;
1359 s32 ret_val = 0;
1360 u16 phy_data, i, agc_value = 0;
1361 u16 cur_agc_index, max_agc_index = 0;
1362 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1363 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1364 {IGP02E1000_PHY_AGC_A,
1365 IGP02E1000_PHY_AGC_B,
1366 IGP02E1000_PHY_AGC_C,
1367 IGP02E1000_PHY_AGC_D};
1368
1369 /* Read the AGC registers for all channels */
1370 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1371 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1372 if (ret_val)
1373 goto out;
1374
1375 /*
1376 * Getting bits 15:9, which represent the combination of
1377 * coarse and fine gain values. The result is a number
1378 * that can be put into the lookup table to obtain the
1379 * approximate cable length.
1380 */
1381 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1382 IGP02E1000_AGC_LENGTH_MASK;
1383
1384 /* Array index bound check. */
1385 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1386 (cur_agc_index == 0)) {
1387 ret_val = -E1000_ERR_PHY;
1388 goto out;
1389 }
1390
1391 /* Remove min & max AGC values from calculation. */
1392 if (e1000_igp_2_cable_length_table[min_agc_index] >
1393 e1000_igp_2_cable_length_table[cur_agc_index])
1394 min_agc_index = cur_agc_index;
1395 if (e1000_igp_2_cable_length_table[max_agc_index] <
1396 e1000_igp_2_cable_length_table[cur_agc_index])
1397 max_agc_index = cur_agc_index;
1398
1399 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1400 }
1401
1402 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1403 e1000_igp_2_cable_length_table[max_agc_index]);
1404 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1405
1406 /* Calculate cable length with the error range of +/- 10 meters. */
1407 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1408 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1409 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1410
1411 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1412
1413 out:
1414 return ret_val;
1415 }
1416
1417 /**
1418 * igb_get_phy_info_m88 - Retrieve PHY information
1419 * @hw: pointer to the HW structure
1420 *
1421 * Valid for only copper links. Read the PHY status register (sticky read)
1422 * to verify that link is up. Read the PHY special control register to
1423 * determine the polarity and 10base-T extended distance. Read the PHY
1424 * special status register to determine MDI/MDIx and current speed. If
1425 * speed is 1000, then determine cable length, local and remote receiver.
1426 **/
1427 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1428 {
1429 struct e1000_phy_info *phy = &hw->phy;
1430 s32 ret_val;
1431 u16 phy_data;
1432 bool link;
1433
1434 if (phy->media_type != e1000_media_type_copper) {
1435 hw_dbg("Phy info is only valid for copper media\n");
1436 ret_val = -E1000_ERR_CONFIG;
1437 goto out;
1438 }
1439
1440 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1441 if (ret_val)
1442 goto out;
1443
1444 if (!link) {
1445 hw_dbg("Phy info is only valid if link is up\n");
1446 ret_val = -E1000_ERR_CONFIG;
1447 goto out;
1448 }
1449
1450 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1451 if (ret_val)
1452 goto out;
1453
1454 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1455 ? true : false;
1456
1457 ret_val = igb_check_polarity_m88(hw);
1458 if (ret_val)
1459 goto out;
1460
1461 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1462 if (ret_val)
1463 goto out;
1464
1465 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1466
1467 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1468 ret_val = phy->ops.get_cable_length(hw);
1469 if (ret_val)
1470 goto out;
1471
1472 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1473 if (ret_val)
1474 goto out;
1475
1476 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1477 ? e1000_1000t_rx_status_ok
1478 : e1000_1000t_rx_status_not_ok;
1479
1480 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1481 ? e1000_1000t_rx_status_ok
1482 : e1000_1000t_rx_status_not_ok;
1483 } else {
1484 /* Set values to "undefined" */
1485 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1486 phy->local_rx = e1000_1000t_rx_status_undefined;
1487 phy->remote_rx = e1000_1000t_rx_status_undefined;
1488 }
1489
1490 out:
1491 return ret_val;
1492 }
1493
1494 /**
1495 * igb_get_phy_info_igp - Retrieve igp PHY information
1496 * @hw: pointer to the HW structure
1497 *
1498 * Read PHY status to determine if link is up. If link is up, then
1499 * set/determine 10base-T extended distance and polarity correction. Read
1500 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1501 * determine on the cable length, local and remote receiver.
1502 **/
1503 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1504 {
1505 struct e1000_phy_info *phy = &hw->phy;
1506 s32 ret_val;
1507 u16 data;
1508 bool link;
1509
1510 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1511 if (ret_val)
1512 goto out;
1513
1514 if (!link) {
1515 hw_dbg("Phy info is only valid if link is up\n");
1516 ret_val = -E1000_ERR_CONFIG;
1517 goto out;
1518 }
1519
1520 phy->polarity_correction = true;
1521
1522 ret_val = igb_check_polarity_igp(hw);
1523 if (ret_val)
1524 goto out;
1525
1526 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1527 if (ret_val)
1528 goto out;
1529
1530 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1531
1532 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1533 IGP01E1000_PSSR_SPEED_1000MBPS) {
1534 ret_val = phy->ops.get_cable_length(hw);
1535 if (ret_val)
1536 goto out;
1537
1538 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1539 if (ret_val)
1540 goto out;
1541
1542 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1543 ? e1000_1000t_rx_status_ok
1544 : e1000_1000t_rx_status_not_ok;
1545
1546 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1547 ? e1000_1000t_rx_status_ok
1548 : e1000_1000t_rx_status_not_ok;
1549 } else {
1550 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1551 phy->local_rx = e1000_1000t_rx_status_undefined;
1552 phy->remote_rx = e1000_1000t_rx_status_undefined;
1553 }
1554
1555 out:
1556 return ret_val;
1557 }
1558
1559 /**
1560 * igb_phy_sw_reset - PHY software reset
1561 * @hw: pointer to the HW structure
1562 *
1563 * Does a software reset of the PHY by reading the PHY control register and
1564 * setting/write the control register reset bit to the PHY.
1565 **/
1566 s32 igb_phy_sw_reset(struct e1000_hw *hw)
1567 {
1568 s32 ret_val;
1569 u16 phy_ctrl;
1570
1571 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1572 if (ret_val)
1573 goto out;
1574
1575 phy_ctrl |= MII_CR_RESET;
1576 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1577 if (ret_val)
1578 goto out;
1579
1580 udelay(1);
1581
1582 out:
1583 return ret_val;
1584 }
1585
1586 /**
1587 * igb_phy_hw_reset - PHY hardware reset
1588 * @hw: pointer to the HW structure
1589 *
1590 * Verify the reset block is not blocking us from resetting. Acquire
1591 * semaphore (if necessary) and read/set/write the device control reset
1592 * bit in the PHY. Wait the appropriate delay time for the device to
1593 * reset and relase the semaphore (if necessary).
1594 **/
1595 s32 igb_phy_hw_reset(struct e1000_hw *hw)
1596 {
1597 struct e1000_phy_info *phy = &hw->phy;
1598 s32 ret_val;
1599 u32 ctrl;
1600
1601 ret_val = igb_check_reset_block(hw);
1602 if (ret_val) {
1603 ret_val = 0;
1604 goto out;
1605 }
1606
1607 ret_val = phy->ops.acquire(hw);
1608 if (ret_val)
1609 goto out;
1610
1611 ctrl = rd32(E1000_CTRL);
1612 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
1613 wrfl();
1614
1615 udelay(phy->reset_delay_us);
1616
1617 wr32(E1000_CTRL, ctrl);
1618 wrfl();
1619
1620 udelay(150);
1621
1622 phy->ops.release(hw);
1623
1624 ret_val = phy->ops.get_cfg_done(hw);
1625
1626 out:
1627 return ret_val;
1628 }
1629
1630 /**
1631 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
1632 * @hw: pointer to the HW structure
1633 *
1634 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
1635 **/
1636 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
1637 {
1638 hw_dbg("Running IGP 3 PHY init script\n");
1639
1640 /* PHY init IGP 3 */
1641 /* Enable rise/fall, 10-mode work in class-A */
1642 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
1643 /* Remove all caps from Replica path filter */
1644 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
1645 /* Bias trimming for ADC, AFE and Driver (Default) */
1646 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
1647 /* Increase Hybrid poly bias */
1648 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
1649 /* Add 4% to TX amplitude in Giga mode */
1650 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
1651 /* Disable trimming (TTT) */
1652 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
1653 /* Poly DC correction to 94.6% + 2% for all channels */
1654 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
1655 /* ABS DC correction to 95.9% */
1656 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
1657 /* BG temp curve trim */
1658 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
1659 /* Increasing ADC OPAMP stage 1 currents to max */
1660 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
1661 /* Force 1000 ( required for enabling PHY regs configuration) */
1662 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
1663 /* Set upd_freq to 6 */
1664 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
1665 /* Disable NPDFE */
1666 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
1667 /* Disable adaptive fixed FFE (Default) */
1668 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
1669 /* Enable FFE hysteresis */
1670 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
1671 /* Fixed FFE for short cable lengths */
1672 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
1673 /* Fixed FFE for medium cable lengths */
1674 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
1675 /* Fixed FFE for long cable lengths */
1676 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
1677 /* Enable Adaptive Clip Threshold */
1678 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
1679 /* AHT reset limit to 1 */
1680 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
1681 /* Set AHT master delay to 127 msec */
1682 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
1683 /* Set scan bits for AHT */
1684 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
1685 /* Set AHT Preset bits */
1686 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
1687 /* Change integ_factor of channel A to 3 */
1688 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
1689 /* Change prop_factor of channels BCD to 8 */
1690 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
1691 /* Change cg_icount + enable integbp for channels BCD */
1692 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
1693 /*
1694 * Change cg_icount + enable integbp + change prop_factor_master
1695 * to 8 for channel A
1696 */
1697 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
1698 /* Disable AHT in Slave mode on channel A */
1699 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
1700 /*
1701 * Enable LPLU and disable AN to 1000 in non-D0a states,
1702 * Enable SPD+B2B
1703 */
1704 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
1705 /* Enable restart AN on an1000_dis change */
1706 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
1707 /* Enable wh_fifo read clock in 10/100 modes */
1708 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
1709 /* Restart AN, Speed selection is 1000 */
1710 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
1711
1712 return 0;
1713 }
1714
This page took 0.066718 seconds and 5 git commands to generate.