drivers/net/igb: remove dead code (function 'igb_read_pci_cfg')
[deliverable/linux.git] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37
38 #include "igb.h"
39
40 struct igb_stats {
41 char stat_string[ETH_GSTRING_LEN];
42 int sizeof_stat;
43 int stat_offset;
44 };
45
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47 offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats[] = {
49 { "rx_packets", IGB_STAT(stats.gprc) },
50 { "tx_packets", IGB_STAT(stats.gptc) },
51 { "rx_bytes", IGB_STAT(stats.gorc) },
52 { "tx_bytes", IGB_STAT(stats.gotc) },
53 { "rx_broadcast", IGB_STAT(stats.bprc) },
54 { "tx_broadcast", IGB_STAT(stats.bptc) },
55 { "rx_multicast", IGB_STAT(stats.mprc) },
56 { "tx_multicast", IGB_STAT(stats.mptc) },
57 { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58 { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59 { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60 { "multicast", IGB_STAT(stats.mprc) },
61 { "collisions", IGB_STAT(stats.colc) },
62 { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63 { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65 { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67 { "rx_missed_errors", IGB_STAT(stats.mpc) },
68 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70 { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71 { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72 { "tx_window_errors", IGB_STAT(stats.latecol) },
73 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74 { "tx_deferred_ok", IGB_STAT(stats.dc) },
75 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78 { "tx_restart_queue", IGB_STAT(restart_queue) },
79 { "rx_long_length_errors", IGB_STAT(stats.roc) },
80 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89 { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
91 { "rx_header_split", IGB_STAT(rx_hdr_split) },
92 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93 { "tx_smbus", IGB_STAT(stats.mgptc) },
94 { "rx_smbus", IGB_STAT(stats.mgprc) },
95 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
96 #ifdef CONFIG_IGB_LRO
97 { "lro_aggregated", IGB_STAT(lro_aggregated) },
98 { "lro_flushed", IGB_STAT(lro_flushed) },
99 { "lro_no_desc", IGB_STAT(lro_no_desc) },
100 #endif
101 };
102
103 #define IGB_QUEUE_STATS_LEN \
104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues + \
105 ((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
106 (sizeof(struct igb_queue_stats) / sizeof(u64)))
107 #define IGB_GLOBAL_STATS_LEN \
108 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
109 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
110 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
111 "Register test (offline)", "Eeprom test (offline)",
112 "Interrupt test (offline)", "Loopback test (offline)",
113 "Link test (on/offline)"
114 };
115 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
116
117 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
118 {
119 struct igb_adapter *adapter = netdev_priv(netdev);
120 struct e1000_hw *hw = &adapter->hw;
121
122 if (hw->phy.media_type == e1000_media_type_copper) {
123
124 ecmd->supported = (SUPPORTED_10baseT_Half |
125 SUPPORTED_10baseT_Full |
126 SUPPORTED_100baseT_Half |
127 SUPPORTED_100baseT_Full |
128 SUPPORTED_1000baseT_Full|
129 SUPPORTED_Autoneg |
130 SUPPORTED_TP);
131 ecmd->advertising = ADVERTISED_TP;
132
133 if (hw->mac.autoneg == 1) {
134 ecmd->advertising |= ADVERTISED_Autoneg;
135 /* the e1000 autoneg seems to match ethtool nicely */
136 ecmd->advertising |= hw->phy.autoneg_advertised;
137 }
138
139 ecmd->port = PORT_TP;
140 ecmd->phy_address = hw->phy.addr;
141 } else {
142 ecmd->supported = (SUPPORTED_1000baseT_Full |
143 SUPPORTED_FIBRE |
144 SUPPORTED_Autoneg);
145
146 ecmd->advertising = (ADVERTISED_1000baseT_Full |
147 ADVERTISED_FIBRE |
148 ADVERTISED_Autoneg);
149
150 ecmd->port = PORT_FIBRE;
151 }
152
153 ecmd->transceiver = XCVR_INTERNAL;
154
155 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
156
157 adapter->hw.mac.ops.get_speed_and_duplex(hw,
158 &adapter->link_speed,
159 &adapter->link_duplex);
160 ecmd->speed = adapter->link_speed;
161
162 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
163 * and HALF_DUPLEX != DUPLEX_HALF */
164
165 if (adapter->link_duplex == FULL_DUPLEX)
166 ecmd->duplex = DUPLEX_FULL;
167 else
168 ecmd->duplex = DUPLEX_HALF;
169 } else {
170 ecmd->speed = -1;
171 ecmd->duplex = -1;
172 }
173
174 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
175 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176 return 0;
177 }
178
179 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
180 {
181 struct igb_adapter *adapter = netdev_priv(netdev);
182 struct e1000_hw *hw = &adapter->hw;
183
184 /* When SoL/IDER sessions are active, autoneg/speed/duplex
185 * cannot be changed */
186 if (igb_check_reset_block(hw)) {
187 dev_err(&adapter->pdev->dev, "Cannot change link "
188 "characteristics when SoL/IDER is active.\n");
189 return -EINVAL;
190 }
191
192 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
193 msleep(1);
194
195 if (ecmd->autoneg == AUTONEG_ENABLE) {
196 hw->mac.autoneg = 1;
197 if (hw->phy.media_type == e1000_media_type_fiber)
198 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
199 ADVERTISED_FIBRE |
200 ADVERTISED_Autoneg;
201 else
202 hw->phy.autoneg_advertised = ecmd->advertising |
203 ADVERTISED_TP |
204 ADVERTISED_Autoneg;
205 ecmd->advertising = hw->phy.autoneg_advertised;
206 } else
207 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
208 clear_bit(__IGB_RESETTING, &adapter->state);
209 return -EINVAL;
210 }
211
212 /* reset the link */
213
214 if (netif_running(adapter->netdev)) {
215 igb_down(adapter);
216 igb_up(adapter);
217 } else
218 igb_reset(adapter);
219
220 clear_bit(__IGB_RESETTING, &adapter->state);
221 return 0;
222 }
223
224 static void igb_get_pauseparam(struct net_device *netdev,
225 struct ethtool_pauseparam *pause)
226 {
227 struct igb_adapter *adapter = netdev_priv(netdev);
228 struct e1000_hw *hw = &adapter->hw;
229
230 pause->autoneg =
231 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
232
233 if (hw->fc.type == e1000_fc_rx_pause)
234 pause->rx_pause = 1;
235 else if (hw->fc.type == e1000_fc_tx_pause)
236 pause->tx_pause = 1;
237 else if (hw->fc.type == e1000_fc_full) {
238 pause->rx_pause = 1;
239 pause->tx_pause = 1;
240 }
241 }
242
243 static int igb_set_pauseparam(struct net_device *netdev,
244 struct ethtool_pauseparam *pause)
245 {
246 struct igb_adapter *adapter = netdev_priv(netdev);
247 struct e1000_hw *hw = &adapter->hw;
248 int retval = 0;
249
250 adapter->fc_autoneg = pause->autoneg;
251
252 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
253 msleep(1);
254
255 if (pause->rx_pause && pause->tx_pause)
256 hw->fc.type = e1000_fc_full;
257 else if (pause->rx_pause && !pause->tx_pause)
258 hw->fc.type = e1000_fc_rx_pause;
259 else if (!pause->rx_pause && pause->tx_pause)
260 hw->fc.type = e1000_fc_tx_pause;
261 else if (!pause->rx_pause && !pause->tx_pause)
262 hw->fc.type = e1000_fc_none;
263
264 hw->fc.original_type = hw->fc.type;
265
266 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
267 if (netif_running(adapter->netdev)) {
268 igb_down(adapter);
269 igb_up(adapter);
270 } else
271 igb_reset(adapter);
272 } else
273 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
274 igb_setup_link(hw) : igb_force_mac_fc(hw));
275
276 clear_bit(__IGB_RESETTING, &adapter->state);
277 return retval;
278 }
279
280 static u32 igb_get_rx_csum(struct net_device *netdev)
281 {
282 struct igb_adapter *adapter = netdev_priv(netdev);
283 return adapter->rx_csum;
284 }
285
286 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
287 {
288 struct igb_adapter *adapter = netdev_priv(netdev);
289 adapter->rx_csum = data;
290
291 return 0;
292 }
293
294 static u32 igb_get_tx_csum(struct net_device *netdev)
295 {
296 return (netdev->features & NETIF_F_HW_CSUM) != 0;
297 }
298
299 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
300 {
301 if (data)
302 netdev->features |= NETIF_F_HW_CSUM;
303 else
304 netdev->features &= ~NETIF_F_HW_CSUM;
305
306 return 0;
307 }
308
309 static int igb_set_tso(struct net_device *netdev, u32 data)
310 {
311 struct igb_adapter *adapter = netdev_priv(netdev);
312
313 if (data)
314 netdev->features |= NETIF_F_TSO;
315 else
316 netdev->features &= ~NETIF_F_TSO;
317
318 if (data)
319 netdev->features |= NETIF_F_TSO6;
320 else
321 netdev->features &= ~NETIF_F_TSO6;
322
323 dev_info(&adapter->pdev->dev, "TSO is %s\n",
324 data ? "Enabled" : "Disabled");
325 return 0;
326 }
327
328 static u32 igb_get_msglevel(struct net_device *netdev)
329 {
330 struct igb_adapter *adapter = netdev_priv(netdev);
331 return adapter->msg_enable;
332 }
333
334 static void igb_set_msglevel(struct net_device *netdev, u32 data)
335 {
336 struct igb_adapter *adapter = netdev_priv(netdev);
337 adapter->msg_enable = data;
338 }
339
340 static int igb_get_regs_len(struct net_device *netdev)
341 {
342 #define IGB_REGS_LEN 551
343 return IGB_REGS_LEN * sizeof(u32);
344 }
345
346 static void igb_get_regs(struct net_device *netdev,
347 struct ethtool_regs *regs, void *p)
348 {
349 struct igb_adapter *adapter = netdev_priv(netdev);
350 struct e1000_hw *hw = &adapter->hw;
351 u32 *regs_buff = p;
352 u8 i;
353
354 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
355
356 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
357
358 /* General Registers */
359 regs_buff[0] = rd32(E1000_CTRL);
360 regs_buff[1] = rd32(E1000_STATUS);
361 regs_buff[2] = rd32(E1000_CTRL_EXT);
362 regs_buff[3] = rd32(E1000_MDIC);
363 regs_buff[4] = rd32(E1000_SCTL);
364 regs_buff[5] = rd32(E1000_CONNSW);
365 regs_buff[6] = rd32(E1000_VET);
366 regs_buff[7] = rd32(E1000_LEDCTL);
367 regs_buff[8] = rd32(E1000_PBA);
368 regs_buff[9] = rd32(E1000_PBS);
369 regs_buff[10] = rd32(E1000_FRTIMER);
370 regs_buff[11] = rd32(E1000_TCPTIMER);
371
372 /* NVM Register */
373 regs_buff[12] = rd32(E1000_EECD);
374
375 /* Interrupt */
376 /* Reading EICS for EICR because they read the
377 * same but EICS does not clear on read */
378 regs_buff[13] = rd32(E1000_EICS);
379 regs_buff[14] = rd32(E1000_EICS);
380 regs_buff[15] = rd32(E1000_EIMS);
381 regs_buff[16] = rd32(E1000_EIMC);
382 regs_buff[17] = rd32(E1000_EIAC);
383 regs_buff[18] = rd32(E1000_EIAM);
384 /* Reading ICS for ICR because they read the
385 * same but ICS does not clear on read */
386 regs_buff[19] = rd32(E1000_ICS);
387 regs_buff[20] = rd32(E1000_ICS);
388 regs_buff[21] = rd32(E1000_IMS);
389 regs_buff[22] = rd32(E1000_IMC);
390 regs_buff[23] = rd32(E1000_IAC);
391 regs_buff[24] = rd32(E1000_IAM);
392 regs_buff[25] = rd32(E1000_IMIRVP);
393
394 /* Flow Control */
395 regs_buff[26] = rd32(E1000_FCAL);
396 regs_buff[27] = rd32(E1000_FCAH);
397 regs_buff[28] = rd32(E1000_FCTTV);
398 regs_buff[29] = rd32(E1000_FCRTL);
399 regs_buff[30] = rd32(E1000_FCRTH);
400 regs_buff[31] = rd32(E1000_FCRTV);
401
402 /* Receive */
403 regs_buff[32] = rd32(E1000_RCTL);
404 regs_buff[33] = rd32(E1000_RXCSUM);
405 regs_buff[34] = rd32(E1000_RLPML);
406 regs_buff[35] = rd32(E1000_RFCTL);
407 regs_buff[36] = rd32(E1000_MRQC);
408 regs_buff[37] = rd32(E1000_VMD_CTL);
409
410 /* Transmit */
411 regs_buff[38] = rd32(E1000_TCTL);
412 regs_buff[39] = rd32(E1000_TCTL_EXT);
413 regs_buff[40] = rd32(E1000_TIPG);
414 regs_buff[41] = rd32(E1000_DTXCTL);
415
416 /* Wake Up */
417 regs_buff[42] = rd32(E1000_WUC);
418 regs_buff[43] = rd32(E1000_WUFC);
419 regs_buff[44] = rd32(E1000_WUS);
420 regs_buff[45] = rd32(E1000_IPAV);
421 regs_buff[46] = rd32(E1000_WUPL);
422
423 /* MAC */
424 regs_buff[47] = rd32(E1000_PCS_CFG0);
425 regs_buff[48] = rd32(E1000_PCS_LCTL);
426 regs_buff[49] = rd32(E1000_PCS_LSTAT);
427 regs_buff[50] = rd32(E1000_PCS_ANADV);
428 regs_buff[51] = rd32(E1000_PCS_LPAB);
429 regs_buff[52] = rd32(E1000_PCS_NPTX);
430 regs_buff[53] = rd32(E1000_PCS_LPABNP);
431
432 /* Statistics */
433 regs_buff[54] = adapter->stats.crcerrs;
434 regs_buff[55] = adapter->stats.algnerrc;
435 regs_buff[56] = adapter->stats.symerrs;
436 regs_buff[57] = adapter->stats.rxerrc;
437 regs_buff[58] = adapter->stats.mpc;
438 regs_buff[59] = adapter->stats.scc;
439 regs_buff[60] = adapter->stats.ecol;
440 regs_buff[61] = adapter->stats.mcc;
441 regs_buff[62] = adapter->stats.latecol;
442 regs_buff[63] = adapter->stats.colc;
443 regs_buff[64] = adapter->stats.dc;
444 regs_buff[65] = adapter->stats.tncrs;
445 regs_buff[66] = adapter->stats.sec;
446 regs_buff[67] = adapter->stats.htdpmc;
447 regs_buff[68] = adapter->stats.rlec;
448 regs_buff[69] = adapter->stats.xonrxc;
449 regs_buff[70] = adapter->stats.xontxc;
450 regs_buff[71] = adapter->stats.xoffrxc;
451 regs_buff[72] = adapter->stats.xofftxc;
452 regs_buff[73] = adapter->stats.fcruc;
453 regs_buff[74] = adapter->stats.prc64;
454 regs_buff[75] = adapter->stats.prc127;
455 regs_buff[76] = adapter->stats.prc255;
456 regs_buff[77] = adapter->stats.prc511;
457 regs_buff[78] = adapter->stats.prc1023;
458 regs_buff[79] = adapter->stats.prc1522;
459 regs_buff[80] = adapter->stats.gprc;
460 regs_buff[81] = adapter->stats.bprc;
461 regs_buff[82] = adapter->stats.mprc;
462 regs_buff[83] = adapter->stats.gptc;
463 regs_buff[84] = adapter->stats.gorc;
464 regs_buff[86] = adapter->stats.gotc;
465 regs_buff[88] = adapter->stats.rnbc;
466 regs_buff[89] = adapter->stats.ruc;
467 regs_buff[90] = adapter->stats.rfc;
468 regs_buff[91] = adapter->stats.roc;
469 regs_buff[92] = adapter->stats.rjc;
470 regs_buff[93] = adapter->stats.mgprc;
471 regs_buff[94] = adapter->stats.mgpdc;
472 regs_buff[95] = adapter->stats.mgptc;
473 regs_buff[96] = adapter->stats.tor;
474 regs_buff[98] = adapter->stats.tot;
475 regs_buff[100] = adapter->stats.tpr;
476 regs_buff[101] = adapter->stats.tpt;
477 regs_buff[102] = adapter->stats.ptc64;
478 regs_buff[103] = adapter->stats.ptc127;
479 regs_buff[104] = adapter->stats.ptc255;
480 regs_buff[105] = adapter->stats.ptc511;
481 regs_buff[106] = adapter->stats.ptc1023;
482 regs_buff[107] = adapter->stats.ptc1522;
483 regs_buff[108] = adapter->stats.mptc;
484 regs_buff[109] = adapter->stats.bptc;
485 regs_buff[110] = adapter->stats.tsctc;
486 regs_buff[111] = adapter->stats.iac;
487 regs_buff[112] = adapter->stats.rpthc;
488 regs_buff[113] = adapter->stats.hgptc;
489 regs_buff[114] = adapter->stats.hgorc;
490 regs_buff[116] = adapter->stats.hgotc;
491 regs_buff[118] = adapter->stats.lenerrs;
492 regs_buff[119] = adapter->stats.scvpc;
493 regs_buff[120] = adapter->stats.hrmpc;
494
495 /* These should probably be added to e1000_regs.h instead */
496 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
497 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
498 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
499 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
500 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
501 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
502 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
503
504 for (i = 0; i < 4; i++)
505 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
506 for (i = 0; i < 4; i++)
507 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
508 for (i = 0; i < 4; i++)
509 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
510 for (i = 0; i < 4; i++)
511 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
512 for (i = 0; i < 4; i++)
513 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
514 for (i = 0; i < 4; i++)
515 regs_buff[141 + i] = rd32(E1000_RDH(i));
516 for (i = 0; i < 4; i++)
517 regs_buff[145 + i] = rd32(E1000_RDT(i));
518 for (i = 0; i < 4; i++)
519 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
520
521 for (i = 0; i < 10; i++)
522 regs_buff[153 + i] = rd32(E1000_EITR(i));
523 for (i = 0; i < 8; i++)
524 regs_buff[163 + i] = rd32(E1000_IMIR(i));
525 for (i = 0; i < 8; i++)
526 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
527 for (i = 0; i < 16; i++)
528 regs_buff[179 + i] = rd32(E1000_RAL(i));
529 for (i = 0; i < 16; i++)
530 regs_buff[195 + i] = rd32(E1000_RAH(i));
531
532 for (i = 0; i < 4; i++)
533 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
534 for (i = 0; i < 4; i++)
535 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
536 for (i = 0; i < 4; i++)
537 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
538 for (i = 0; i < 4; i++)
539 regs_buff[223 + i] = rd32(E1000_TDH(i));
540 for (i = 0; i < 4; i++)
541 regs_buff[227 + i] = rd32(E1000_TDT(i));
542 for (i = 0; i < 4; i++)
543 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
544 for (i = 0; i < 4; i++)
545 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
546 for (i = 0; i < 4; i++)
547 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
548 for (i = 0; i < 4; i++)
549 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
550
551 for (i = 0; i < 4; i++)
552 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
553 for (i = 0; i < 4; i++)
554 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
555 for (i = 0; i < 32; i++)
556 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
557 for (i = 0; i < 128; i++)
558 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
559 for (i = 0; i < 128; i++)
560 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
561 for (i = 0; i < 4; i++)
562 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
563
564 regs_buff[547] = rd32(E1000_TDFH);
565 regs_buff[548] = rd32(E1000_TDFT);
566 regs_buff[549] = rd32(E1000_TDFHS);
567 regs_buff[550] = rd32(E1000_TDFPC);
568
569 }
570
571 static int igb_get_eeprom_len(struct net_device *netdev)
572 {
573 struct igb_adapter *adapter = netdev_priv(netdev);
574 return adapter->hw.nvm.word_size * 2;
575 }
576
577 static int igb_get_eeprom(struct net_device *netdev,
578 struct ethtool_eeprom *eeprom, u8 *bytes)
579 {
580 struct igb_adapter *adapter = netdev_priv(netdev);
581 struct e1000_hw *hw = &adapter->hw;
582 u16 *eeprom_buff;
583 int first_word, last_word;
584 int ret_val = 0;
585 u16 i;
586
587 if (eeprom->len == 0)
588 return -EINVAL;
589
590 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
591
592 first_word = eeprom->offset >> 1;
593 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
594
595 eeprom_buff = kmalloc(sizeof(u16) *
596 (last_word - first_word + 1), GFP_KERNEL);
597 if (!eeprom_buff)
598 return -ENOMEM;
599
600 if (hw->nvm.type == e1000_nvm_eeprom_spi)
601 ret_val = hw->nvm.ops.read_nvm(hw, first_word,
602 last_word - first_word + 1,
603 eeprom_buff);
604 else {
605 for (i = 0; i < last_word - first_word + 1; i++) {
606 ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1,
607 &eeprom_buff[i]);
608 if (ret_val)
609 break;
610 }
611 }
612
613 /* Device's eeprom is always little-endian, word addressable */
614 for (i = 0; i < last_word - first_word + 1; i++)
615 le16_to_cpus(&eeprom_buff[i]);
616
617 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
618 eeprom->len);
619 kfree(eeprom_buff);
620
621 return ret_val;
622 }
623
624 static int igb_set_eeprom(struct net_device *netdev,
625 struct ethtool_eeprom *eeprom, u8 *bytes)
626 {
627 struct igb_adapter *adapter = netdev_priv(netdev);
628 struct e1000_hw *hw = &adapter->hw;
629 u16 *eeprom_buff;
630 void *ptr;
631 int max_len, first_word, last_word, ret_val = 0;
632 u16 i;
633
634 if (eeprom->len == 0)
635 return -EOPNOTSUPP;
636
637 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
638 return -EFAULT;
639
640 max_len = hw->nvm.word_size * 2;
641
642 first_word = eeprom->offset >> 1;
643 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
644 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
645 if (!eeprom_buff)
646 return -ENOMEM;
647
648 ptr = (void *)eeprom_buff;
649
650 if (eeprom->offset & 1) {
651 /* need read/modify/write of first changed EEPROM word */
652 /* only the second byte of the word is being modified */
653 ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1,
654 &eeprom_buff[0]);
655 ptr++;
656 }
657 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
658 /* need read/modify/write of last changed EEPROM word */
659 /* only the first byte of the word is being modified */
660 ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1,
661 &eeprom_buff[last_word - first_word]);
662 }
663
664 /* Device's eeprom is always little-endian, word addressable */
665 for (i = 0; i < last_word - first_word + 1; i++)
666 le16_to_cpus(&eeprom_buff[i]);
667
668 memcpy(ptr, bytes, eeprom->len);
669
670 for (i = 0; i < last_word - first_word + 1; i++)
671 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
672
673 ret_val = hw->nvm.ops.write_nvm(hw, first_word,
674 last_word - first_word + 1, eeprom_buff);
675
676 /* Update the checksum over the first part of the EEPROM if needed
677 * and flush shadow RAM for 82573 controllers */
678 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
679 igb_update_nvm_checksum(hw);
680
681 kfree(eeprom_buff);
682 return ret_val;
683 }
684
685 static void igb_get_drvinfo(struct net_device *netdev,
686 struct ethtool_drvinfo *drvinfo)
687 {
688 struct igb_adapter *adapter = netdev_priv(netdev);
689 char firmware_version[32];
690 u16 eeprom_data;
691
692 strncpy(drvinfo->driver, igb_driver_name, 32);
693 strncpy(drvinfo->version, igb_driver_version, 32);
694
695 /* EEPROM image version # is reported as firmware version # for
696 * 82575 controllers */
697 adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data);
698 sprintf(firmware_version, "%d.%d-%d",
699 (eeprom_data & 0xF000) >> 12,
700 (eeprom_data & 0x0FF0) >> 4,
701 eeprom_data & 0x000F);
702
703 strncpy(drvinfo->fw_version, firmware_version, 32);
704 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
705 drvinfo->n_stats = IGB_STATS_LEN;
706 drvinfo->testinfo_len = IGB_TEST_LEN;
707 drvinfo->regdump_len = igb_get_regs_len(netdev);
708 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
709 }
710
711 static void igb_get_ringparam(struct net_device *netdev,
712 struct ethtool_ringparam *ring)
713 {
714 struct igb_adapter *adapter = netdev_priv(netdev);
715
716 ring->rx_max_pending = IGB_MAX_RXD;
717 ring->tx_max_pending = IGB_MAX_TXD;
718 ring->rx_mini_max_pending = 0;
719 ring->rx_jumbo_max_pending = 0;
720 ring->rx_pending = adapter->rx_ring_count;
721 ring->tx_pending = adapter->tx_ring_count;
722 ring->rx_mini_pending = 0;
723 ring->rx_jumbo_pending = 0;
724 }
725
726 static int igb_set_ringparam(struct net_device *netdev,
727 struct ethtool_ringparam *ring)
728 {
729 struct igb_adapter *adapter = netdev_priv(netdev);
730 struct igb_ring *temp_ring;
731 int i, err;
732 u32 new_rx_count, new_tx_count;
733
734 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
735 return -EINVAL;
736
737 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
738 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
739 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
740
741 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
742 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
743 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
744
745 if ((new_tx_count == adapter->tx_ring_count) &&
746 (new_rx_count == adapter->rx_ring_count)) {
747 /* nothing to do */
748 return 0;
749 }
750
751 if (adapter->num_tx_queues > adapter->num_rx_queues)
752 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
753 else
754 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
755 if (!temp_ring)
756 return -ENOMEM;
757
758 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
759 msleep(1);
760
761 if (netif_running(adapter->netdev))
762 igb_down(adapter);
763
764 /*
765 * We can't just free everything and then setup again,
766 * because the ISRs in MSI-X mode get passed pointers
767 * to the tx and rx ring structs.
768 */
769 if (new_tx_count != adapter->tx_ring_count) {
770 memcpy(temp_ring, adapter->tx_ring,
771 adapter->num_tx_queues * sizeof(struct igb_ring));
772
773 for (i = 0; i < adapter->num_tx_queues; i++) {
774 temp_ring[i].count = new_tx_count;
775 err = igb_setup_tx_resources(adapter, &temp_ring[i]);
776 if (err) {
777 while (i) {
778 i--;
779 igb_free_tx_resources(&temp_ring[i]);
780 }
781 goto err_setup;
782 }
783 }
784
785 for (i = 0; i < adapter->num_tx_queues; i++)
786 igb_free_tx_resources(&adapter->tx_ring[i]);
787
788 memcpy(adapter->tx_ring, temp_ring,
789 adapter->num_tx_queues * sizeof(struct igb_ring));
790
791 adapter->tx_ring_count = new_tx_count;
792 }
793
794 if (new_rx_count != adapter->rx_ring->count) {
795 memcpy(temp_ring, adapter->rx_ring,
796 adapter->num_rx_queues * sizeof(struct igb_ring));
797
798 for (i = 0; i < adapter->num_rx_queues; i++) {
799 temp_ring[i].count = new_rx_count;
800 err = igb_setup_rx_resources(adapter, &temp_ring[i]);
801 if (err) {
802 while (i) {
803 i--;
804 igb_free_rx_resources(&temp_ring[i]);
805 }
806 goto err_setup;
807 }
808
809 }
810
811 for (i = 0; i < adapter->num_rx_queues; i++)
812 igb_free_rx_resources(&adapter->rx_ring[i]);
813
814 memcpy(adapter->rx_ring, temp_ring,
815 adapter->num_rx_queues * sizeof(struct igb_ring));
816
817 adapter->rx_ring_count = new_rx_count;
818 }
819
820 err = 0;
821 err_setup:
822 if (netif_running(adapter->netdev))
823 igb_up(adapter);
824
825 clear_bit(__IGB_RESETTING, &adapter->state);
826 vfree(temp_ring);
827 return err;
828 }
829
830 /* ethtool register test data */
831 struct igb_reg_test {
832 u16 reg;
833 u16 reg_offset;
834 u16 array_len;
835 u16 test_type;
836 u32 mask;
837 u32 write;
838 };
839
840 /* In the hardware, registers are laid out either singly, in arrays
841 * spaced 0x100 bytes apart, or in contiguous tables. We assume
842 * most tests take place on arrays or single registers (handled
843 * as a single-element array) and special-case the tables.
844 * Table tests are always pattern tests.
845 *
846 * We also make provision for some required setup steps by specifying
847 * registers to be written without any read-back testing.
848 */
849
850 #define PATTERN_TEST 1
851 #define SET_READ_TEST 2
852 #define WRITE_NO_TEST 3
853 #define TABLE32_TEST 4
854 #define TABLE64_TEST_LO 5
855 #define TABLE64_TEST_HI 6
856
857 /* 82576 reg test */
858 static struct igb_reg_test reg_test_82576[] = {
859 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
860 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
861 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
862 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
863 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
864 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
865 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
866 { E1000_RDBAL(4), 0x40, 8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
867 { E1000_RDBAH(4), 0x40, 8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
868 { E1000_RDLEN(4), 0x40, 8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
869 /* Enable all four RX queues before testing. */
870 { E1000_RXDCTL(0), 0x100, 1, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
871 /* RDH is read-only for 82576, only test RDT. */
872 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
873 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
874 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
875 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
876 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
877 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
878 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
879 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
880 { E1000_TDBAL(4), 0x40, 8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
881 { E1000_TDBAH(4), 0x40, 8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
882 { E1000_TDLEN(4), 0x40, 8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
883 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
884 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
885 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
886 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
887 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
888 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
889 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
890 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
891 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
892 { 0, 0, 0, 0 }
893 };
894
895 /* 82575 register test */
896 static struct igb_reg_test reg_test_82575[] = {
897 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
898 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
899 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
900 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
901 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
902 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
903 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
904 /* Enable all four RX queues before testing. */
905 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
906 /* RDH is read-only for 82575, only test RDT. */
907 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
908 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
909 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
910 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
911 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
912 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
913 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
914 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
915 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
916 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
917 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
918 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
919 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
920 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
921 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
922 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
923 { 0, 0, 0, 0 }
924 };
925
926 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
927 int reg, u32 mask, u32 write)
928 {
929 u32 pat, val;
930 u32 _test[] =
931 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
932 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
933 writel((_test[pat] & write), (adapter->hw.hw_addr + reg));
934 val = readl(adapter->hw.hw_addr + reg);
935 if (val != (_test[pat] & write & mask)) {
936 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
937 "failed: got 0x%08X expected 0x%08X\n",
938 reg, val, (_test[pat] & write & mask));
939 *data = reg;
940 return 1;
941 }
942 }
943 return 0;
944 }
945
946 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
947 int reg, u32 mask, u32 write)
948 {
949 u32 val;
950 writel((write & mask), (adapter->hw.hw_addr + reg));
951 val = readl(adapter->hw.hw_addr + reg);
952 if ((write & mask) != (val & mask)) {
953 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
954 " got 0x%08X expected 0x%08X\n", reg,
955 (val & mask), (write & mask));
956 *data = reg;
957 return 1;
958 }
959 return 0;
960 }
961
962 #define REG_PATTERN_TEST(reg, mask, write) \
963 do { \
964 if (reg_pattern_test(adapter, data, reg, mask, write)) \
965 return 1; \
966 } while (0)
967
968 #define REG_SET_AND_CHECK(reg, mask, write) \
969 do { \
970 if (reg_set_and_check(adapter, data, reg, mask, write)) \
971 return 1; \
972 } while (0)
973
974 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
975 {
976 struct e1000_hw *hw = &adapter->hw;
977 struct igb_reg_test *test;
978 u32 value, before, after;
979 u32 i, toggle;
980
981 toggle = 0x7FFFF3FF;
982
983 switch (adapter->hw.mac.type) {
984 case e1000_82576:
985 test = reg_test_82576;
986 break;
987 default:
988 test = reg_test_82575;
989 break;
990 }
991
992 /* Because the status register is such a special case,
993 * we handle it separately from the rest of the register
994 * tests. Some bits are read-only, some toggle, and some
995 * are writable on newer MACs.
996 */
997 before = rd32(E1000_STATUS);
998 value = (rd32(E1000_STATUS) & toggle);
999 wr32(E1000_STATUS, toggle);
1000 after = rd32(E1000_STATUS) & toggle;
1001 if (value != after) {
1002 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1003 "got: 0x%08X expected: 0x%08X\n", after, value);
1004 *data = 1;
1005 return 1;
1006 }
1007 /* restore previous status */
1008 wr32(E1000_STATUS, before);
1009
1010 /* Perform the remainder of the register test, looping through
1011 * the test table until we either fail or reach the null entry.
1012 */
1013 while (test->reg) {
1014 for (i = 0; i < test->array_len; i++) {
1015 switch (test->test_type) {
1016 case PATTERN_TEST:
1017 REG_PATTERN_TEST(test->reg + (i * test->reg_offset),
1018 test->mask,
1019 test->write);
1020 break;
1021 case SET_READ_TEST:
1022 REG_SET_AND_CHECK(test->reg + (i * test->reg_offset),
1023 test->mask,
1024 test->write);
1025 break;
1026 case WRITE_NO_TEST:
1027 writel(test->write,
1028 (adapter->hw.hw_addr + test->reg)
1029 + (i * test->reg_offset));
1030 break;
1031 case TABLE32_TEST:
1032 REG_PATTERN_TEST(test->reg + (i * 4),
1033 test->mask,
1034 test->write);
1035 break;
1036 case TABLE64_TEST_LO:
1037 REG_PATTERN_TEST(test->reg + (i * 8),
1038 test->mask,
1039 test->write);
1040 break;
1041 case TABLE64_TEST_HI:
1042 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1043 test->mask,
1044 test->write);
1045 break;
1046 }
1047 }
1048 test++;
1049 }
1050
1051 *data = 0;
1052 return 0;
1053 }
1054
1055 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1056 {
1057 u16 temp;
1058 u16 checksum = 0;
1059 u16 i;
1060
1061 *data = 0;
1062 /* Read and add up the contents of the EEPROM */
1063 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1064 if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp))
1065 < 0) {
1066 *data = 1;
1067 break;
1068 }
1069 checksum += temp;
1070 }
1071
1072 /* If Checksum is not Correct return error else test passed */
1073 if ((checksum != (u16) NVM_SUM) && !(*data))
1074 *data = 2;
1075
1076 return *data;
1077 }
1078
1079 static irqreturn_t igb_test_intr(int irq, void *data)
1080 {
1081 struct net_device *netdev = (struct net_device *) data;
1082 struct igb_adapter *adapter = netdev_priv(netdev);
1083 struct e1000_hw *hw = &adapter->hw;
1084
1085 adapter->test_icr |= rd32(E1000_ICR);
1086
1087 return IRQ_HANDLED;
1088 }
1089
1090 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1091 {
1092 struct e1000_hw *hw = &adapter->hw;
1093 struct net_device *netdev = adapter->netdev;
1094 u32 mask, i = 0, shared_int = true;
1095 u32 irq = adapter->pdev->irq;
1096
1097 *data = 0;
1098
1099 /* Hook up test interrupt handler just for this test */
1100 if (adapter->msix_entries) {
1101 /* NOTE: we don't test MSI-X interrupts here, yet */
1102 return 0;
1103 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1104 shared_int = false;
1105 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1106 *data = 1;
1107 return -1;
1108 }
1109 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1110 netdev->name, netdev)) {
1111 shared_int = false;
1112 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1113 netdev->name, netdev)) {
1114 *data = 1;
1115 return -1;
1116 }
1117 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1118 (shared_int ? "shared" : "unshared"));
1119
1120 /* Disable all the interrupts */
1121 wr32(E1000_IMC, 0xFFFFFFFF);
1122 msleep(10);
1123
1124 /* Test each interrupt */
1125 for (; i < 10; i++) {
1126 /* Interrupt to test */
1127 mask = 1 << i;
1128
1129 if (!shared_int) {
1130 /* Disable the interrupt to be reported in
1131 * the cause register and then force the same
1132 * interrupt and see if one gets posted. If
1133 * an interrupt was posted to the bus, the
1134 * test failed.
1135 */
1136 adapter->test_icr = 0;
1137 wr32(E1000_IMC, ~mask & 0x00007FFF);
1138 wr32(E1000_ICS, ~mask & 0x00007FFF);
1139 msleep(10);
1140
1141 if (adapter->test_icr & mask) {
1142 *data = 3;
1143 break;
1144 }
1145 }
1146
1147 /* Enable the interrupt to be reported in
1148 * the cause register and then force the same
1149 * interrupt and see if one gets posted. If
1150 * an interrupt was not posted to the bus, the
1151 * test failed.
1152 */
1153 adapter->test_icr = 0;
1154 wr32(E1000_IMS, mask);
1155 wr32(E1000_ICS, mask);
1156 msleep(10);
1157
1158 if (!(adapter->test_icr & mask)) {
1159 *data = 4;
1160 break;
1161 }
1162
1163 if (!shared_int) {
1164 /* Disable the other interrupts to be reported in
1165 * the cause register and then force the other
1166 * interrupts and see if any get posted. If
1167 * an interrupt was posted to the bus, the
1168 * test failed.
1169 */
1170 adapter->test_icr = 0;
1171 wr32(E1000_IMC, ~mask & 0x00007FFF);
1172 wr32(E1000_ICS, ~mask & 0x00007FFF);
1173 msleep(10);
1174
1175 if (adapter->test_icr) {
1176 *data = 5;
1177 break;
1178 }
1179 }
1180 }
1181
1182 /* Disable all the interrupts */
1183 wr32(E1000_IMC, 0xFFFFFFFF);
1184 msleep(10);
1185
1186 /* Unhook test interrupt handler */
1187 free_irq(irq, netdev);
1188
1189 return *data;
1190 }
1191
1192 static void igb_free_desc_rings(struct igb_adapter *adapter)
1193 {
1194 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1195 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1196 struct pci_dev *pdev = adapter->pdev;
1197 int i;
1198
1199 if (tx_ring->desc && tx_ring->buffer_info) {
1200 for (i = 0; i < tx_ring->count; i++) {
1201 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1202 if (buf->dma)
1203 pci_unmap_single(pdev, buf->dma, buf->length,
1204 PCI_DMA_TODEVICE);
1205 if (buf->skb)
1206 dev_kfree_skb(buf->skb);
1207 }
1208 }
1209
1210 if (rx_ring->desc && rx_ring->buffer_info) {
1211 for (i = 0; i < rx_ring->count; i++) {
1212 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1213 if (buf->dma)
1214 pci_unmap_single(pdev, buf->dma,
1215 IGB_RXBUFFER_2048,
1216 PCI_DMA_FROMDEVICE);
1217 if (buf->skb)
1218 dev_kfree_skb(buf->skb);
1219 }
1220 }
1221
1222 if (tx_ring->desc) {
1223 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1224 tx_ring->dma);
1225 tx_ring->desc = NULL;
1226 }
1227 if (rx_ring->desc) {
1228 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1229 rx_ring->dma);
1230 rx_ring->desc = NULL;
1231 }
1232
1233 kfree(tx_ring->buffer_info);
1234 tx_ring->buffer_info = NULL;
1235 kfree(rx_ring->buffer_info);
1236 rx_ring->buffer_info = NULL;
1237
1238 return;
1239 }
1240
1241 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1242 {
1243 struct e1000_hw *hw = &adapter->hw;
1244 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1245 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1246 struct pci_dev *pdev = adapter->pdev;
1247 u32 rctl;
1248 int i, ret_val;
1249
1250 /* Setup Tx descriptor ring and Tx buffers */
1251
1252 if (!tx_ring->count)
1253 tx_ring->count = IGB_DEFAULT_TXD;
1254
1255 tx_ring->buffer_info = kcalloc(tx_ring->count,
1256 sizeof(struct igb_buffer),
1257 GFP_KERNEL);
1258 if (!tx_ring->buffer_info) {
1259 ret_val = 1;
1260 goto err_nomem;
1261 }
1262
1263 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1264 tx_ring->size = ALIGN(tx_ring->size, 4096);
1265 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1266 &tx_ring->dma);
1267 if (!tx_ring->desc) {
1268 ret_val = 2;
1269 goto err_nomem;
1270 }
1271 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1272
1273 wr32(E1000_TDBAL(0),
1274 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1275 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1276 wr32(E1000_TDLEN(0),
1277 tx_ring->count * sizeof(struct e1000_tx_desc));
1278 wr32(E1000_TDH(0), 0);
1279 wr32(E1000_TDT(0), 0);
1280 wr32(E1000_TCTL,
1281 E1000_TCTL_PSP | E1000_TCTL_EN |
1282 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1283 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1284
1285 for (i = 0; i < tx_ring->count; i++) {
1286 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1287 struct sk_buff *skb;
1288 unsigned int size = 1024;
1289
1290 skb = alloc_skb(size, GFP_KERNEL);
1291 if (!skb) {
1292 ret_val = 3;
1293 goto err_nomem;
1294 }
1295 skb_put(skb, size);
1296 tx_ring->buffer_info[i].skb = skb;
1297 tx_ring->buffer_info[i].length = skb->len;
1298 tx_ring->buffer_info[i].dma =
1299 pci_map_single(pdev, skb->data, skb->len,
1300 PCI_DMA_TODEVICE);
1301 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1302 tx_desc->lower.data = cpu_to_le32(skb->len);
1303 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1304 E1000_TXD_CMD_IFCS |
1305 E1000_TXD_CMD_RS);
1306 tx_desc->upper.data = 0;
1307 }
1308
1309 /* Setup Rx descriptor ring and Rx buffers */
1310
1311 if (!rx_ring->count)
1312 rx_ring->count = IGB_DEFAULT_RXD;
1313
1314 rx_ring->buffer_info = kcalloc(rx_ring->count,
1315 sizeof(struct igb_buffer),
1316 GFP_KERNEL);
1317 if (!rx_ring->buffer_info) {
1318 ret_val = 4;
1319 goto err_nomem;
1320 }
1321
1322 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1323 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1324 &rx_ring->dma);
1325 if (!rx_ring->desc) {
1326 ret_val = 5;
1327 goto err_nomem;
1328 }
1329 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1330
1331 rctl = rd32(E1000_RCTL);
1332 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1333 wr32(E1000_RDBAL(0),
1334 ((u64) rx_ring->dma & 0xFFFFFFFF));
1335 wr32(E1000_RDBAH(0),
1336 ((u64) rx_ring->dma >> 32));
1337 wr32(E1000_RDLEN(0), rx_ring->size);
1338 wr32(E1000_RDH(0), 0);
1339 wr32(E1000_RDT(0), 0);
1340 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1341 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1342 E1000_RCTL_RDMTS_HALF |
1343 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1344 wr32(E1000_RCTL, rctl);
1345 wr32(E1000_SRRCTL(0), 0);
1346
1347 for (i = 0; i < rx_ring->count; i++) {
1348 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1349 struct sk_buff *skb;
1350
1351 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1352 GFP_KERNEL);
1353 if (!skb) {
1354 ret_val = 6;
1355 goto err_nomem;
1356 }
1357 skb_reserve(skb, NET_IP_ALIGN);
1358 rx_ring->buffer_info[i].skb = skb;
1359 rx_ring->buffer_info[i].dma =
1360 pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048,
1361 PCI_DMA_FROMDEVICE);
1362 rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma);
1363 memset(skb->data, 0x00, skb->len);
1364 }
1365
1366 return 0;
1367
1368 err_nomem:
1369 igb_free_desc_rings(adapter);
1370 return ret_val;
1371 }
1372
1373 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1374 {
1375 struct e1000_hw *hw = &adapter->hw;
1376
1377 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1378 igb_write_phy_reg(hw, 29, 0x001F);
1379 igb_write_phy_reg(hw, 30, 0x8FFC);
1380 igb_write_phy_reg(hw, 29, 0x001A);
1381 igb_write_phy_reg(hw, 30, 0x8FF0);
1382 }
1383
1384 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1385 {
1386 struct e1000_hw *hw = &adapter->hw;
1387 u32 ctrl_reg = 0;
1388 u32 stat_reg = 0;
1389
1390 hw->mac.autoneg = false;
1391
1392 if (hw->phy.type == e1000_phy_m88) {
1393 /* Auto-MDI/MDIX Off */
1394 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1395 /* reset to update Auto-MDI/MDIX */
1396 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1397 /* autoneg off */
1398 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1399 }
1400
1401 ctrl_reg = rd32(E1000_CTRL);
1402
1403 /* force 1000, set loopback */
1404 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1405
1406 /* Now set up the MAC to the same speed/duplex as the PHY. */
1407 ctrl_reg = rd32(E1000_CTRL);
1408 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1409 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1410 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1411 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1412 E1000_CTRL_FD); /* Force Duplex to FULL */
1413
1414 if (hw->phy.media_type == e1000_media_type_copper &&
1415 hw->phy.type == e1000_phy_m88)
1416 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1417 else {
1418 /* Set the ILOS bit on the fiber Nic if half duplex link is
1419 * detected. */
1420 stat_reg = rd32(E1000_STATUS);
1421 if ((stat_reg & E1000_STATUS_FD) == 0)
1422 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1423 }
1424
1425 wr32(E1000_CTRL, ctrl_reg);
1426
1427 /* Disable the receiver on the PHY so when a cable is plugged in, the
1428 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1429 */
1430 if (hw->phy.type == e1000_phy_m88)
1431 igb_phy_disable_receiver(adapter);
1432
1433 udelay(500);
1434
1435 return 0;
1436 }
1437
1438 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1439 {
1440 return igb_integrated_phy_loopback(adapter);
1441 }
1442
1443 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1444 {
1445 struct e1000_hw *hw = &adapter->hw;
1446 u32 reg;
1447
1448 if (hw->phy.media_type == e1000_media_type_fiber ||
1449 hw->phy.media_type == e1000_media_type_internal_serdes) {
1450 reg = rd32(E1000_RCTL);
1451 reg |= E1000_RCTL_LBM_TCVR;
1452 wr32(E1000_RCTL, reg);
1453
1454 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1455
1456 reg = rd32(E1000_CTRL);
1457 reg &= ~(E1000_CTRL_RFCE |
1458 E1000_CTRL_TFCE |
1459 E1000_CTRL_LRST);
1460 reg |= E1000_CTRL_SLU |
1461 E1000_CTRL_FD;
1462 wr32(E1000_CTRL, reg);
1463
1464 /* Unset switch control to serdes energy detect */
1465 reg = rd32(E1000_CONNSW);
1466 reg &= ~E1000_CONNSW_ENRGSRC;
1467 wr32(E1000_CONNSW, reg);
1468
1469 /* Set PCS register for forced speed */
1470 reg = rd32(E1000_PCS_LCTL);
1471 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1472 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1473 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1474 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1475 E1000_PCS_LCTL_FSD | /* Force Speed */
1476 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1477 wr32(E1000_PCS_LCTL, reg);
1478
1479 return 0;
1480 } else if (hw->phy.media_type == e1000_media_type_copper) {
1481 return igb_set_phy_loopback(adapter);
1482 }
1483
1484 return 7;
1485 }
1486
1487 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1488 {
1489 struct e1000_hw *hw = &adapter->hw;
1490 u32 rctl;
1491 u16 phy_reg;
1492
1493 rctl = rd32(E1000_RCTL);
1494 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1495 wr32(E1000_RCTL, rctl);
1496
1497 hw->mac.autoneg = true;
1498 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1499 if (phy_reg & MII_CR_LOOPBACK) {
1500 phy_reg &= ~MII_CR_LOOPBACK;
1501 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1502 igb_phy_sw_reset(hw);
1503 }
1504 }
1505
1506 static void igb_create_lbtest_frame(struct sk_buff *skb,
1507 unsigned int frame_size)
1508 {
1509 memset(skb->data, 0xFF, frame_size);
1510 frame_size &= ~1;
1511 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1512 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1513 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1514 }
1515
1516 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1517 {
1518 frame_size &= ~1;
1519 if (*(skb->data + 3) == 0xFF)
1520 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1521 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1522 return 0;
1523 return 13;
1524 }
1525
1526 static int igb_run_loopback_test(struct igb_adapter *adapter)
1527 {
1528 struct e1000_hw *hw = &adapter->hw;
1529 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1530 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1531 struct pci_dev *pdev = adapter->pdev;
1532 int i, j, k, l, lc, good_cnt;
1533 int ret_val = 0;
1534 unsigned long time;
1535
1536 wr32(E1000_RDT(0), rx_ring->count - 1);
1537
1538 /* Calculate the loop count based on the largest descriptor ring
1539 * The idea is to wrap the largest ring a number of times using 64
1540 * send/receive pairs during each loop
1541 */
1542
1543 if (rx_ring->count <= tx_ring->count)
1544 lc = ((tx_ring->count / 64) * 2) + 1;
1545 else
1546 lc = ((rx_ring->count / 64) * 2) + 1;
1547
1548 k = l = 0;
1549 for (j = 0; j <= lc; j++) { /* loop count loop */
1550 for (i = 0; i < 64; i++) { /* send the packets */
1551 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1552 1024);
1553 pci_dma_sync_single_for_device(pdev,
1554 tx_ring->buffer_info[k].dma,
1555 tx_ring->buffer_info[k].length,
1556 PCI_DMA_TODEVICE);
1557 k++;
1558 if (k == tx_ring->count)
1559 k = 0;
1560 }
1561 wr32(E1000_TDT(0), k);
1562 msleep(200);
1563 time = jiffies; /* set the start time for the receive */
1564 good_cnt = 0;
1565 do { /* receive the sent packets */
1566 pci_dma_sync_single_for_cpu(pdev,
1567 rx_ring->buffer_info[l].dma,
1568 IGB_RXBUFFER_2048,
1569 PCI_DMA_FROMDEVICE);
1570
1571 ret_val = igb_check_lbtest_frame(
1572 rx_ring->buffer_info[l].skb, 1024);
1573 if (!ret_val)
1574 good_cnt++;
1575 l++;
1576 if (l == rx_ring->count)
1577 l = 0;
1578 /* time + 20 msecs (200 msecs on 2.4) is more than
1579 * enough time to complete the receives, if it's
1580 * exceeded, break and error off
1581 */
1582 } while (good_cnt < 64 && jiffies < (time + 20));
1583 if (good_cnt != 64) {
1584 ret_val = 13; /* ret_val is the same as mis-compare */
1585 break;
1586 }
1587 if (jiffies >= (time + 20)) {
1588 ret_val = 14; /* error code for time out error */
1589 break;
1590 }
1591 } /* end loop count loop */
1592 return ret_val;
1593 }
1594
1595 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1596 {
1597 /* PHY loopback cannot be performed if SoL/IDER
1598 * sessions are active */
1599 if (igb_check_reset_block(&adapter->hw)) {
1600 dev_err(&adapter->pdev->dev,
1601 "Cannot do PHY loopback test "
1602 "when SoL/IDER is active.\n");
1603 *data = 0;
1604 goto out;
1605 }
1606 *data = igb_setup_desc_rings(adapter);
1607 if (*data)
1608 goto out;
1609 *data = igb_setup_loopback_test(adapter);
1610 if (*data)
1611 goto err_loopback;
1612 *data = igb_run_loopback_test(adapter);
1613 igb_loopback_cleanup(adapter);
1614
1615 err_loopback:
1616 igb_free_desc_rings(adapter);
1617 out:
1618 return *data;
1619 }
1620
1621 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1622 {
1623 struct e1000_hw *hw = &adapter->hw;
1624 *data = 0;
1625 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1626 int i = 0;
1627 hw->mac.serdes_has_link = false;
1628
1629 /* On some blade server designs, link establishment
1630 * could take as long as 2-3 minutes */
1631 do {
1632 hw->mac.ops.check_for_link(&adapter->hw);
1633 if (hw->mac.serdes_has_link)
1634 return *data;
1635 msleep(20);
1636 } while (i++ < 3750);
1637
1638 *data = 1;
1639 } else {
1640 hw->mac.ops.check_for_link(&adapter->hw);
1641 if (hw->mac.autoneg)
1642 msleep(4000);
1643
1644 if (!(rd32(E1000_STATUS) &
1645 E1000_STATUS_LU))
1646 *data = 1;
1647 }
1648 return *data;
1649 }
1650
1651 static void igb_diag_test(struct net_device *netdev,
1652 struct ethtool_test *eth_test, u64 *data)
1653 {
1654 struct igb_adapter *adapter = netdev_priv(netdev);
1655 u16 autoneg_advertised;
1656 u8 forced_speed_duplex, autoneg;
1657 bool if_running = netif_running(netdev);
1658
1659 set_bit(__IGB_TESTING, &adapter->state);
1660 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1661 /* Offline tests */
1662
1663 /* save speed, duplex, autoneg settings */
1664 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1665 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1666 autoneg = adapter->hw.mac.autoneg;
1667
1668 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1669
1670 /* Link test performed before hardware reset so autoneg doesn't
1671 * interfere with test result */
1672 if (igb_link_test(adapter, &data[4]))
1673 eth_test->flags |= ETH_TEST_FL_FAILED;
1674
1675 if (if_running)
1676 /* indicate we're in test mode */
1677 dev_close(netdev);
1678 else
1679 igb_reset(adapter);
1680
1681 if (igb_reg_test(adapter, &data[0]))
1682 eth_test->flags |= ETH_TEST_FL_FAILED;
1683
1684 igb_reset(adapter);
1685 if (igb_eeprom_test(adapter, &data[1]))
1686 eth_test->flags |= ETH_TEST_FL_FAILED;
1687
1688 igb_reset(adapter);
1689 if (igb_intr_test(adapter, &data[2]))
1690 eth_test->flags |= ETH_TEST_FL_FAILED;
1691
1692 igb_reset(adapter);
1693 if (igb_loopback_test(adapter, &data[3]))
1694 eth_test->flags |= ETH_TEST_FL_FAILED;
1695
1696 /* restore speed, duplex, autoneg settings */
1697 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1698 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1699 adapter->hw.mac.autoneg = autoneg;
1700
1701 /* force this routine to wait until autoneg complete/timeout */
1702 adapter->hw.phy.autoneg_wait_to_complete = true;
1703 igb_reset(adapter);
1704 adapter->hw.phy.autoneg_wait_to_complete = false;
1705
1706 clear_bit(__IGB_TESTING, &adapter->state);
1707 if (if_running)
1708 dev_open(netdev);
1709 } else {
1710 dev_info(&adapter->pdev->dev, "online testing starting\n");
1711 /* Online tests */
1712 if (igb_link_test(adapter, &data[4]))
1713 eth_test->flags |= ETH_TEST_FL_FAILED;
1714
1715 /* Online tests aren't run; pass by default */
1716 data[0] = 0;
1717 data[1] = 0;
1718 data[2] = 0;
1719 data[3] = 0;
1720
1721 clear_bit(__IGB_TESTING, &adapter->state);
1722 }
1723 msleep_interruptible(4 * 1000);
1724 }
1725
1726 static int igb_wol_exclusion(struct igb_adapter *adapter,
1727 struct ethtool_wolinfo *wol)
1728 {
1729 struct e1000_hw *hw = &adapter->hw;
1730 int retval = 1; /* fail by default */
1731
1732 switch (hw->device_id) {
1733 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1734 /* WoL not supported */
1735 wol->supported = 0;
1736 break;
1737 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1738 case E1000_DEV_ID_82576_FIBER:
1739 case E1000_DEV_ID_82576_SERDES:
1740 /* Wake events not supported on port B */
1741 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1742 wol->supported = 0;
1743 break;
1744 }
1745 /* return success for non excluded adapter ports */
1746 retval = 0;
1747 break;
1748 default:
1749 /* dual port cards only support WoL on port A from now on
1750 * unless it was enabled in the eeprom for port B
1751 * so exclude FUNC_1 ports from having WoL enabled */
1752 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1753 !adapter->eeprom_wol) {
1754 wol->supported = 0;
1755 break;
1756 }
1757
1758 retval = 0;
1759 }
1760
1761 return retval;
1762 }
1763
1764 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1765 {
1766 struct igb_adapter *adapter = netdev_priv(netdev);
1767
1768 wol->supported = WAKE_UCAST | WAKE_MCAST |
1769 WAKE_BCAST | WAKE_MAGIC;
1770 wol->wolopts = 0;
1771
1772 /* this function will set ->supported = 0 and return 1 if wol is not
1773 * supported by this hardware */
1774 if (igb_wol_exclusion(adapter, wol) ||
1775 !device_can_wakeup(&adapter->pdev->dev))
1776 return;
1777
1778 /* apply any specific unsupported masks here */
1779 switch (adapter->hw.device_id) {
1780 default:
1781 break;
1782 }
1783
1784 if (adapter->wol & E1000_WUFC_EX)
1785 wol->wolopts |= WAKE_UCAST;
1786 if (adapter->wol & E1000_WUFC_MC)
1787 wol->wolopts |= WAKE_MCAST;
1788 if (adapter->wol & E1000_WUFC_BC)
1789 wol->wolopts |= WAKE_BCAST;
1790 if (adapter->wol & E1000_WUFC_MAG)
1791 wol->wolopts |= WAKE_MAGIC;
1792
1793 return;
1794 }
1795
1796 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1797 {
1798 struct igb_adapter *adapter = netdev_priv(netdev);
1799 struct e1000_hw *hw = &adapter->hw;
1800
1801 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1802 return -EOPNOTSUPP;
1803
1804 if (igb_wol_exclusion(adapter, wol) ||
1805 !device_can_wakeup(&adapter->pdev->dev))
1806 return wol->wolopts ? -EOPNOTSUPP : 0;
1807
1808 switch (hw->device_id) {
1809 default:
1810 break;
1811 }
1812
1813 /* these settings will always override what we currently have */
1814 adapter->wol = 0;
1815
1816 if (wol->wolopts & WAKE_UCAST)
1817 adapter->wol |= E1000_WUFC_EX;
1818 if (wol->wolopts & WAKE_MCAST)
1819 adapter->wol |= E1000_WUFC_MC;
1820 if (wol->wolopts & WAKE_BCAST)
1821 adapter->wol |= E1000_WUFC_BC;
1822 if (wol->wolopts & WAKE_MAGIC)
1823 adapter->wol |= E1000_WUFC_MAG;
1824
1825 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1826
1827 return 0;
1828 }
1829
1830 /* toggle LED 4 times per second = 2 "blinks" per second */
1831 #define IGB_ID_INTERVAL (HZ/4)
1832
1833 /* bit defines for adapter->led_status */
1834 #define IGB_LED_ON 0
1835
1836 static int igb_phys_id(struct net_device *netdev, u32 data)
1837 {
1838 struct igb_adapter *adapter = netdev_priv(netdev);
1839 struct e1000_hw *hw = &adapter->hw;
1840
1841 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1842 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1843
1844 igb_blink_led(hw);
1845 msleep_interruptible(data * 1000);
1846
1847 igb_led_off(hw);
1848 clear_bit(IGB_LED_ON, &adapter->led_status);
1849 igb_cleanup_led(hw);
1850
1851 return 0;
1852 }
1853
1854 static int igb_set_coalesce(struct net_device *netdev,
1855 struct ethtool_coalesce *ec)
1856 {
1857 struct igb_adapter *adapter = netdev_priv(netdev);
1858 struct e1000_hw *hw = &adapter->hw;
1859 int i;
1860
1861 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1862 ((ec->rx_coalesce_usecs > 3) &&
1863 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1864 (ec->rx_coalesce_usecs == 2))
1865 return -EINVAL;
1866
1867 /* convert to rate of irq's per second */
1868 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1869 adapter->itr_setting = ec->rx_coalesce_usecs;
1870 adapter->itr = IGB_START_ITR;
1871 } else {
1872 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1873 adapter->itr = adapter->itr_setting;
1874 }
1875
1876 for (i = 0; i < adapter->num_rx_queues; i++)
1877 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
1878
1879 return 0;
1880 }
1881
1882 static int igb_get_coalesce(struct net_device *netdev,
1883 struct ethtool_coalesce *ec)
1884 {
1885 struct igb_adapter *adapter = netdev_priv(netdev);
1886
1887 if (adapter->itr_setting <= 3)
1888 ec->rx_coalesce_usecs = adapter->itr_setting;
1889 else
1890 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1891
1892 return 0;
1893 }
1894
1895
1896 static int igb_nway_reset(struct net_device *netdev)
1897 {
1898 struct igb_adapter *adapter = netdev_priv(netdev);
1899 if (netif_running(netdev))
1900 igb_reinit_locked(adapter);
1901 return 0;
1902 }
1903
1904 static int igb_get_sset_count(struct net_device *netdev, int sset)
1905 {
1906 switch (sset) {
1907 case ETH_SS_STATS:
1908 return IGB_STATS_LEN;
1909 case ETH_SS_TEST:
1910 return IGB_TEST_LEN;
1911 default:
1912 return -ENOTSUPP;
1913 }
1914 }
1915
1916 static void igb_get_ethtool_stats(struct net_device *netdev,
1917 struct ethtool_stats *stats, u64 *data)
1918 {
1919 struct igb_adapter *adapter = netdev_priv(netdev);
1920 u64 *queue_stat;
1921 int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1922 int j;
1923 int i;
1924 #ifdef CONFIG_IGB_LRO
1925 int aggregated = 0, flushed = 0, no_desc = 0;
1926
1927 for (i = 0; i < adapter->num_rx_queues; i++) {
1928 aggregated += adapter->rx_ring[i].lro_mgr.stats.aggregated;
1929 flushed += adapter->rx_ring[i].lro_mgr.stats.flushed;
1930 no_desc += adapter->rx_ring[i].lro_mgr.stats.no_desc;
1931 }
1932 adapter->lro_aggregated = aggregated;
1933 adapter->lro_flushed = flushed;
1934 adapter->lro_no_desc = no_desc;
1935 #endif
1936
1937 igb_update_stats(adapter);
1938 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1939 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1940 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1941 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1942 }
1943 for (j = 0; j < adapter->num_tx_queues; j++) {
1944 int k;
1945 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1946 for (k = 0; k < stat_count; k++)
1947 data[i + k] = queue_stat[k];
1948 i += k;
1949 }
1950 for (j = 0; j < adapter->num_rx_queues; j++) {
1951 int k;
1952 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1953 for (k = 0; k < stat_count; k++)
1954 data[i + k] = queue_stat[k];
1955 i += k;
1956 }
1957 }
1958
1959 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1960 {
1961 struct igb_adapter *adapter = netdev_priv(netdev);
1962 u8 *p = data;
1963 int i;
1964
1965 switch (stringset) {
1966 case ETH_SS_TEST:
1967 memcpy(data, *igb_gstrings_test,
1968 IGB_TEST_LEN*ETH_GSTRING_LEN);
1969 break;
1970 case ETH_SS_STATS:
1971 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1972 memcpy(p, igb_gstrings_stats[i].stat_string,
1973 ETH_GSTRING_LEN);
1974 p += ETH_GSTRING_LEN;
1975 }
1976 for (i = 0; i < adapter->num_tx_queues; i++) {
1977 sprintf(p, "tx_queue_%u_packets", i);
1978 p += ETH_GSTRING_LEN;
1979 sprintf(p, "tx_queue_%u_bytes", i);
1980 p += ETH_GSTRING_LEN;
1981 }
1982 for (i = 0; i < adapter->num_rx_queues; i++) {
1983 sprintf(p, "rx_queue_%u_packets", i);
1984 p += ETH_GSTRING_LEN;
1985 sprintf(p, "rx_queue_%u_bytes", i);
1986 p += ETH_GSTRING_LEN;
1987 }
1988 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1989 break;
1990 }
1991 }
1992
1993 static struct ethtool_ops igb_ethtool_ops = {
1994 .get_settings = igb_get_settings,
1995 .set_settings = igb_set_settings,
1996 .get_drvinfo = igb_get_drvinfo,
1997 .get_regs_len = igb_get_regs_len,
1998 .get_regs = igb_get_regs,
1999 .get_wol = igb_get_wol,
2000 .set_wol = igb_set_wol,
2001 .get_msglevel = igb_get_msglevel,
2002 .set_msglevel = igb_set_msglevel,
2003 .nway_reset = igb_nway_reset,
2004 .get_link = ethtool_op_get_link,
2005 .get_eeprom_len = igb_get_eeprom_len,
2006 .get_eeprom = igb_get_eeprom,
2007 .set_eeprom = igb_set_eeprom,
2008 .get_ringparam = igb_get_ringparam,
2009 .set_ringparam = igb_set_ringparam,
2010 .get_pauseparam = igb_get_pauseparam,
2011 .set_pauseparam = igb_set_pauseparam,
2012 .get_rx_csum = igb_get_rx_csum,
2013 .set_rx_csum = igb_set_rx_csum,
2014 .get_tx_csum = igb_get_tx_csum,
2015 .set_tx_csum = igb_set_tx_csum,
2016 .get_sg = ethtool_op_get_sg,
2017 .set_sg = ethtool_op_set_sg,
2018 .get_tso = ethtool_op_get_tso,
2019 .set_tso = igb_set_tso,
2020 .self_test = igb_diag_test,
2021 .get_strings = igb_get_strings,
2022 .phys_id = igb_phys_id,
2023 .get_sset_count = igb_get_sset_count,
2024 .get_ethtool_stats = igb_get_ethtool_stats,
2025 .get_coalesce = igb_get_coalesce,
2026 .set_coalesce = igb_set_coalesce,
2027 };
2028
2029 void igb_set_ethtool_ops(struct net_device *netdev)
2030 {
2031 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2032 }
This page took 0.111433 seconds and 5 git commands to generate.