88e13f7e566fb79dd65d6dad330bcb096336625d
[deliverable/linux.git] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38
39 #include "igb.h"
40
41 struct igb_stats {
42 char stat_string[ETH_GSTRING_LEN];
43 int sizeof_stat;
44 int stat_offset;
45 };
46
47 #define IGB_STAT(_name, _stat) { \
48 .stat_string = _name, \
49 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50 .stat_offset = offsetof(struct igb_adapter, _stat) \
51 }
52 static const struct igb_stats igb_gstrings_stats[] = {
53 IGB_STAT("rx_packets", stats.gprc),
54 IGB_STAT("tx_packets", stats.gptc),
55 IGB_STAT("rx_bytes", stats.gorc),
56 IGB_STAT("tx_bytes", stats.gotc),
57 IGB_STAT("rx_broadcast", stats.bprc),
58 IGB_STAT("tx_broadcast", stats.bptc),
59 IGB_STAT("rx_multicast", stats.mprc),
60 IGB_STAT("tx_multicast", stats.mptc),
61 IGB_STAT("multicast", stats.mprc),
62 IGB_STAT("collisions", stats.colc),
63 IGB_STAT("rx_crc_errors", stats.crcerrs),
64 IGB_STAT("rx_no_buffer_count", stats.rnbc),
65 IGB_STAT("rx_missed_errors", stats.mpc),
66 IGB_STAT("tx_aborted_errors", stats.ecol),
67 IGB_STAT("tx_carrier_errors", stats.tncrs),
68 IGB_STAT("tx_window_errors", stats.latecol),
69 IGB_STAT("tx_abort_late_coll", stats.latecol),
70 IGB_STAT("tx_deferred_ok", stats.dc),
71 IGB_STAT("tx_single_coll_ok", stats.scc),
72 IGB_STAT("tx_multi_coll_ok", stats.mcc),
73 IGB_STAT("tx_timeout_count", tx_timeout_count),
74 IGB_STAT("rx_long_length_errors", stats.roc),
75 IGB_STAT("rx_short_length_errors", stats.ruc),
76 IGB_STAT("rx_align_errors", stats.algnerrc),
77 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81 IGB_STAT("tx_flow_control_xon", stats.xontxc),
82 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83 IGB_STAT("rx_long_byte_count", stats.gorc),
84 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85 IGB_STAT("tx_smbus", stats.mgptc),
86 IGB_STAT("rx_smbus", stats.mgprc),
87 IGB_STAT("dropped_smbus", stats.mgpdc),
88 };
89
90 #define IGB_NETDEV_STAT(_net_stat) { \
91 .stat_string = __stringify(_net_stat), \
92 .sizeof_stat = FIELD_SIZEOF(struct net_device_stats, _net_stat), \
93 .stat_offset = offsetof(struct net_device_stats, _net_stat) \
94 }
95 static const struct igb_stats igb_gstrings_net_stats[] = {
96 IGB_NETDEV_STAT(rx_errors),
97 IGB_NETDEV_STAT(tx_errors),
98 IGB_NETDEV_STAT(tx_dropped),
99 IGB_NETDEV_STAT(rx_length_errors),
100 IGB_NETDEV_STAT(rx_over_errors),
101 IGB_NETDEV_STAT(rx_frame_errors),
102 IGB_NETDEV_STAT(rx_fifo_errors),
103 IGB_NETDEV_STAT(tx_fifo_errors),
104 IGB_NETDEV_STAT(tx_heartbeat_errors)
105 };
106
107 #define IGB_GLOBAL_STATS_LEN \
108 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
109 #define IGB_NETDEV_STATS_LEN \
110 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
111 #define IGB_RX_QUEUE_STATS_LEN \
112 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
113 #define IGB_TX_QUEUE_STATS_LEN \
114 (sizeof(struct igb_tx_queue_stats) / sizeof(u64))
115 #define IGB_QUEUE_STATS_LEN \
116 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
117 IGB_RX_QUEUE_STATS_LEN) + \
118 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
119 IGB_TX_QUEUE_STATS_LEN))
120 #define IGB_STATS_LEN \
121 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
122
123 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
124 "Register test (offline)", "Eeprom test (offline)",
125 "Interrupt test (offline)", "Loopback test (offline)",
126 "Link test (on/offline)"
127 };
128 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
129
130 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
131 {
132 struct igb_adapter *adapter = netdev_priv(netdev);
133 struct e1000_hw *hw = &adapter->hw;
134 u32 status;
135
136 if (hw->phy.media_type == e1000_media_type_copper) {
137
138 ecmd->supported = (SUPPORTED_10baseT_Half |
139 SUPPORTED_10baseT_Full |
140 SUPPORTED_100baseT_Half |
141 SUPPORTED_100baseT_Full |
142 SUPPORTED_1000baseT_Full|
143 SUPPORTED_Autoneg |
144 SUPPORTED_TP);
145 ecmd->advertising = ADVERTISED_TP;
146
147 if (hw->mac.autoneg == 1) {
148 ecmd->advertising |= ADVERTISED_Autoneg;
149 /* the e1000 autoneg seems to match ethtool nicely */
150 ecmd->advertising |= hw->phy.autoneg_advertised;
151 }
152
153 ecmd->port = PORT_TP;
154 ecmd->phy_address = hw->phy.addr;
155 } else {
156 ecmd->supported = (SUPPORTED_1000baseT_Full |
157 SUPPORTED_FIBRE |
158 SUPPORTED_Autoneg);
159
160 ecmd->advertising = (ADVERTISED_1000baseT_Full |
161 ADVERTISED_FIBRE |
162 ADVERTISED_Autoneg);
163
164 ecmd->port = PORT_FIBRE;
165 }
166
167 ecmd->transceiver = XCVR_INTERNAL;
168
169 status = rd32(E1000_STATUS);
170
171 if (status & E1000_STATUS_LU) {
172
173 if ((status & E1000_STATUS_SPEED_1000) ||
174 hw->phy.media_type != e1000_media_type_copper)
175 ecmd->speed = SPEED_1000;
176 else if (status & E1000_STATUS_SPEED_100)
177 ecmd->speed = SPEED_100;
178 else
179 ecmd->speed = SPEED_10;
180
181 if ((status & E1000_STATUS_FD) ||
182 hw->phy.media_type != e1000_media_type_copper)
183 ecmd->duplex = DUPLEX_FULL;
184 else
185 ecmd->duplex = DUPLEX_HALF;
186 } else {
187 ecmd->speed = -1;
188 ecmd->duplex = -1;
189 }
190
191 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
192 return 0;
193 }
194
195 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
196 {
197 struct igb_adapter *adapter = netdev_priv(netdev);
198 struct e1000_hw *hw = &adapter->hw;
199
200 /* When SoL/IDER sessions are active, autoneg/speed/duplex
201 * cannot be changed */
202 if (igb_check_reset_block(hw)) {
203 dev_err(&adapter->pdev->dev, "Cannot change link "
204 "characteristics when SoL/IDER is active.\n");
205 return -EINVAL;
206 }
207
208 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
209 msleep(1);
210
211 if (ecmd->autoneg == AUTONEG_ENABLE) {
212 hw->mac.autoneg = 1;
213 hw->phy.autoneg_advertised = ecmd->advertising |
214 ADVERTISED_TP |
215 ADVERTISED_Autoneg;
216 ecmd->advertising = hw->phy.autoneg_advertised;
217 if (adapter->fc_autoneg)
218 hw->fc.requested_mode = e1000_fc_default;
219 } else {
220 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
221 clear_bit(__IGB_RESETTING, &adapter->state);
222 return -EINVAL;
223 }
224 }
225
226 /* reset the link */
227 if (netif_running(adapter->netdev)) {
228 igb_down(adapter);
229 igb_up(adapter);
230 } else
231 igb_reset(adapter);
232
233 clear_bit(__IGB_RESETTING, &adapter->state);
234 return 0;
235 }
236
237 static void igb_get_pauseparam(struct net_device *netdev,
238 struct ethtool_pauseparam *pause)
239 {
240 struct igb_adapter *adapter = netdev_priv(netdev);
241 struct e1000_hw *hw = &adapter->hw;
242
243 pause->autoneg =
244 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
245
246 if (hw->fc.current_mode == e1000_fc_rx_pause)
247 pause->rx_pause = 1;
248 else if (hw->fc.current_mode == e1000_fc_tx_pause)
249 pause->tx_pause = 1;
250 else if (hw->fc.current_mode == e1000_fc_full) {
251 pause->rx_pause = 1;
252 pause->tx_pause = 1;
253 }
254 }
255
256 static int igb_set_pauseparam(struct net_device *netdev,
257 struct ethtool_pauseparam *pause)
258 {
259 struct igb_adapter *adapter = netdev_priv(netdev);
260 struct e1000_hw *hw = &adapter->hw;
261 int retval = 0;
262
263 adapter->fc_autoneg = pause->autoneg;
264
265 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
266 msleep(1);
267
268 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
269 hw->fc.requested_mode = e1000_fc_default;
270 if (netif_running(adapter->netdev)) {
271 igb_down(adapter);
272 igb_up(adapter);
273 } else {
274 igb_reset(adapter);
275 }
276 } else {
277 if (pause->rx_pause && pause->tx_pause)
278 hw->fc.requested_mode = e1000_fc_full;
279 else if (pause->rx_pause && !pause->tx_pause)
280 hw->fc.requested_mode = e1000_fc_rx_pause;
281 else if (!pause->rx_pause && pause->tx_pause)
282 hw->fc.requested_mode = e1000_fc_tx_pause;
283 else if (!pause->rx_pause && !pause->tx_pause)
284 hw->fc.requested_mode = e1000_fc_none;
285
286 hw->fc.current_mode = hw->fc.requested_mode;
287
288 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
289 igb_force_mac_fc(hw) : igb_setup_link(hw));
290 }
291
292 clear_bit(__IGB_RESETTING, &adapter->state);
293 return retval;
294 }
295
296 static u32 igb_get_rx_csum(struct net_device *netdev)
297 {
298 struct igb_adapter *adapter = netdev_priv(netdev);
299 return !!(adapter->rx_ring[0].flags & IGB_RING_FLAG_RX_CSUM);
300 }
301
302 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
303 {
304 struct igb_adapter *adapter = netdev_priv(netdev);
305 int i;
306
307 for (i = 0; i < adapter->num_rx_queues; i++) {
308 if (data)
309 adapter->rx_ring[i].flags |= IGB_RING_FLAG_RX_CSUM;
310 else
311 adapter->rx_ring[i].flags &= ~IGB_RING_FLAG_RX_CSUM;
312 }
313
314 return 0;
315 }
316
317 static u32 igb_get_tx_csum(struct net_device *netdev)
318 {
319 return (netdev->features & NETIF_F_IP_CSUM) != 0;
320 }
321
322 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
323 {
324 struct igb_adapter *adapter = netdev_priv(netdev);
325
326 if (data) {
327 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
328 if (adapter->hw.mac.type >= e1000_82576)
329 netdev->features |= NETIF_F_SCTP_CSUM;
330 } else {
331 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
332 NETIF_F_SCTP_CSUM);
333 }
334
335 return 0;
336 }
337
338 static int igb_set_tso(struct net_device *netdev, u32 data)
339 {
340 struct igb_adapter *adapter = netdev_priv(netdev);
341
342 if (data) {
343 netdev->features |= NETIF_F_TSO;
344 netdev->features |= NETIF_F_TSO6;
345 } else {
346 netdev->features &= ~NETIF_F_TSO;
347 netdev->features &= ~NETIF_F_TSO6;
348 }
349
350 dev_info(&adapter->pdev->dev, "TSO is %s\n",
351 data ? "Enabled" : "Disabled");
352 return 0;
353 }
354
355 static u32 igb_get_msglevel(struct net_device *netdev)
356 {
357 struct igb_adapter *adapter = netdev_priv(netdev);
358 return adapter->msg_enable;
359 }
360
361 static void igb_set_msglevel(struct net_device *netdev, u32 data)
362 {
363 struct igb_adapter *adapter = netdev_priv(netdev);
364 adapter->msg_enable = data;
365 }
366
367 static int igb_get_regs_len(struct net_device *netdev)
368 {
369 #define IGB_REGS_LEN 551
370 return IGB_REGS_LEN * sizeof(u32);
371 }
372
373 static void igb_get_regs(struct net_device *netdev,
374 struct ethtool_regs *regs, void *p)
375 {
376 struct igb_adapter *adapter = netdev_priv(netdev);
377 struct e1000_hw *hw = &adapter->hw;
378 u32 *regs_buff = p;
379 u8 i;
380
381 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
382
383 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
384
385 /* General Registers */
386 regs_buff[0] = rd32(E1000_CTRL);
387 regs_buff[1] = rd32(E1000_STATUS);
388 regs_buff[2] = rd32(E1000_CTRL_EXT);
389 regs_buff[3] = rd32(E1000_MDIC);
390 regs_buff[4] = rd32(E1000_SCTL);
391 regs_buff[5] = rd32(E1000_CONNSW);
392 regs_buff[6] = rd32(E1000_VET);
393 regs_buff[7] = rd32(E1000_LEDCTL);
394 regs_buff[8] = rd32(E1000_PBA);
395 regs_buff[9] = rd32(E1000_PBS);
396 regs_buff[10] = rd32(E1000_FRTIMER);
397 regs_buff[11] = rd32(E1000_TCPTIMER);
398
399 /* NVM Register */
400 regs_buff[12] = rd32(E1000_EECD);
401
402 /* Interrupt */
403 /* Reading EICS for EICR because they read the
404 * same but EICS does not clear on read */
405 regs_buff[13] = rd32(E1000_EICS);
406 regs_buff[14] = rd32(E1000_EICS);
407 regs_buff[15] = rd32(E1000_EIMS);
408 regs_buff[16] = rd32(E1000_EIMC);
409 regs_buff[17] = rd32(E1000_EIAC);
410 regs_buff[18] = rd32(E1000_EIAM);
411 /* Reading ICS for ICR because they read the
412 * same but ICS does not clear on read */
413 regs_buff[19] = rd32(E1000_ICS);
414 regs_buff[20] = rd32(E1000_ICS);
415 regs_buff[21] = rd32(E1000_IMS);
416 regs_buff[22] = rd32(E1000_IMC);
417 regs_buff[23] = rd32(E1000_IAC);
418 regs_buff[24] = rd32(E1000_IAM);
419 regs_buff[25] = rd32(E1000_IMIRVP);
420
421 /* Flow Control */
422 regs_buff[26] = rd32(E1000_FCAL);
423 regs_buff[27] = rd32(E1000_FCAH);
424 regs_buff[28] = rd32(E1000_FCTTV);
425 regs_buff[29] = rd32(E1000_FCRTL);
426 regs_buff[30] = rd32(E1000_FCRTH);
427 regs_buff[31] = rd32(E1000_FCRTV);
428
429 /* Receive */
430 regs_buff[32] = rd32(E1000_RCTL);
431 regs_buff[33] = rd32(E1000_RXCSUM);
432 regs_buff[34] = rd32(E1000_RLPML);
433 regs_buff[35] = rd32(E1000_RFCTL);
434 regs_buff[36] = rd32(E1000_MRQC);
435 regs_buff[37] = rd32(E1000_VT_CTL);
436
437 /* Transmit */
438 regs_buff[38] = rd32(E1000_TCTL);
439 regs_buff[39] = rd32(E1000_TCTL_EXT);
440 regs_buff[40] = rd32(E1000_TIPG);
441 regs_buff[41] = rd32(E1000_DTXCTL);
442
443 /* Wake Up */
444 regs_buff[42] = rd32(E1000_WUC);
445 regs_buff[43] = rd32(E1000_WUFC);
446 regs_buff[44] = rd32(E1000_WUS);
447 regs_buff[45] = rd32(E1000_IPAV);
448 regs_buff[46] = rd32(E1000_WUPL);
449
450 /* MAC */
451 regs_buff[47] = rd32(E1000_PCS_CFG0);
452 regs_buff[48] = rd32(E1000_PCS_LCTL);
453 regs_buff[49] = rd32(E1000_PCS_LSTAT);
454 regs_buff[50] = rd32(E1000_PCS_ANADV);
455 regs_buff[51] = rd32(E1000_PCS_LPAB);
456 regs_buff[52] = rd32(E1000_PCS_NPTX);
457 regs_buff[53] = rd32(E1000_PCS_LPABNP);
458
459 /* Statistics */
460 regs_buff[54] = adapter->stats.crcerrs;
461 regs_buff[55] = adapter->stats.algnerrc;
462 regs_buff[56] = adapter->stats.symerrs;
463 regs_buff[57] = adapter->stats.rxerrc;
464 regs_buff[58] = adapter->stats.mpc;
465 regs_buff[59] = adapter->stats.scc;
466 regs_buff[60] = adapter->stats.ecol;
467 regs_buff[61] = adapter->stats.mcc;
468 regs_buff[62] = adapter->stats.latecol;
469 regs_buff[63] = adapter->stats.colc;
470 regs_buff[64] = adapter->stats.dc;
471 regs_buff[65] = adapter->stats.tncrs;
472 regs_buff[66] = adapter->stats.sec;
473 regs_buff[67] = adapter->stats.htdpmc;
474 regs_buff[68] = adapter->stats.rlec;
475 regs_buff[69] = adapter->stats.xonrxc;
476 regs_buff[70] = adapter->stats.xontxc;
477 regs_buff[71] = adapter->stats.xoffrxc;
478 regs_buff[72] = adapter->stats.xofftxc;
479 regs_buff[73] = adapter->stats.fcruc;
480 regs_buff[74] = adapter->stats.prc64;
481 regs_buff[75] = adapter->stats.prc127;
482 regs_buff[76] = adapter->stats.prc255;
483 regs_buff[77] = adapter->stats.prc511;
484 regs_buff[78] = adapter->stats.prc1023;
485 regs_buff[79] = adapter->stats.prc1522;
486 regs_buff[80] = adapter->stats.gprc;
487 regs_buff[81] = adapter->stats.bprc;
488 regs_buff[82] = adapter->stats.mprc;
489 regs_buff[83] = adapter->stats.gptc;
490 regs_buff[84] = adapter->stats.gorc;
491 regs_buff[86] = adapter->stats.gotc;
492 regs_buff[88] = adapter->stats.rnbc;
493 regs_buff[89] = adapter->stats.ruc;
494 regs_buff[90] = adapter->stats.rfc;
495 regs_buff[91] = adapter->stats.roc;
496 regs_buff[92] = adapter->stats.rjc;
497 regs_buff[93] = adapter->stats.mgprc;
498 regs_buff[94] = adapter->stats.mgpdc;
499 regs_buff[95] = adapter->stats.mgptc;
500 regs_buff[96] = adapter->stats.tor;
501 regs_buff[98] = adapter->stats.tot;
502 regs_buff[100] = adapter->stats.tpr;
503 regs_buff[101] = adapter->stats.tpt;
504 regs_buff[102] = adapter->stats.ptc64;
505 regs_buff[103] = adapter->stats.ptc127;
506 regs_buff[104] = adapter->stats.ptc255;
507 regs_buff[105] = adapter->stats.ptc511;
508 regs_buff[106] = adapter->stats.ptc1023;
509 regs_buff[107] = adapter->stats.ptc1522;
510 regs_buff[108] = adapter->stats.mptc;
511 regs_buff[109] = adapter->stats.bptc;
512 regs_buff[110] = adapter->stats.tsctc;
513 regs_buff[111] = adapter->stats.iac;
514 regs_buff[112] = adapter->stats.rpthc;
515 regs_buff[113] = adapter->stats.hgptc;
516 regs_buff[114] = adapter->stats.hgorc;
517 regs_buff[116] = adapter->stats.hgotc;
518 regs_buff[118] = adapter->stats.lenerrs;
519 regs_buff[119] = adapter->stats.scvpc;
520 regs_buff[120] = adapter->stats.hrmpc;
521
522 for (i = 0; i < 4; i++)
523 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
524 for (i = 0; i < 4; i++)
525 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
526 for (i = 0; i < 4; i++)
527 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
528 for (i = 0; i < 4; i++)
529 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
530 for (i = 0; i < 4; i++)
531 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
532 for (i = 0; i < 4; i++)
533 regs_buff[141 + i] = rd32(E1000_RDH(i));
534 for (i = 0; i < 4; i++)
535 regs_buff[145 + i] = rd32(E1000_RDT(i));
536 for (i = 0; i < 4; i++)
537 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
538
539 for (i = 0; i < 10; i++)
540 regs_buff[153 + i] = rd32(E1000_EITR(i));
541 for (i = 0; i < 8; i++)
542 regs_buff[163 + i] = rd32(E1000_IMIR(i));
543 for (i = 0; i < 8; i++)
544 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
545 for (i = 0; i < 16; i++)
546 regs_buff[179 + i] = rd32(E1000_RAL(i));
547 for (i = 0; i < 16; i++)
548 regs_buff[195 + i] = rd32(E1000_RAH(i));
549
550 for (i = 0; i < 4; i++)
551 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
552 for (i = 0; i < 4; i++)
553 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
554 for (i = 0; i < 4; i++)
555 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
556 for (i = 0; i < 4; i++)
557 regs_buff[223 + i] = rd32(E1000_TDH(i));
558 for (i = 0; i < 4; i++)
559 regs_buff[227 + i] = rd32(E1000_TDT(i));
560 for (i = 0; i < 4; i++)
561 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
562 for (i = 0; i < 4; i++)
563 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
564 for (i = 0; i < 4; i++)
565 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
566 for (i = 0; i < 4; i++)
567 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
568
569 for (i = 0; i < 4; i++)
570 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
571 for (i = 0; i < 4; i++)
572 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
573 for (i = 0; i < 32; i++)
574 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
575 for (i = 0; i < 128; i++)
576 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
577 for (i = 0; i < 128; i++)
578 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
579 for (i = 0; i < 4; i++)
580 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
581
582 regs_buff[547] = rd32(E1000_TDFH);
583 regs_buff[548] = rd32(E1000_TDFT);
584 regs_buff[549] = rd32(E1000_TDFHS);
585 regs_buff[550] = rd32(E1000_TDFPC);
586
587 }
588
589 static int igb_get_eeprom_len(struct net_device *netdev)
590 {
591 struct igb_adapter *adapter = netdev_priv(netdev);
592 return adapter->hw.nvm.word_size * 2;
593 }
594
595 static int igb_get_eeprom(struct net_device *netdev,
596 struct ethtool_eeprom *eeprom, u8 *bytes)
597 {
598 struct igb_adapter *adapter = netdev_priv(netdev);
599 struct e1000_hw *hw = &adapter->hw;
600 u16 *eeprom_buff;
601 int first_word, last_word;
602 int ret_val = 0;
603 u16 i;
604
605 if (eeprom->len == 0)
606 return -EINVAL;
607
608 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
609
610 first_word = eeprom->offset >> 1;
611 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
612
613 eeprom_buff = kmalloc(sizeof(u16) *
614 (last_word - first_word + 1), GFP_KERNEL);
615 if (!eeprom_buff)
616 return -ENOMEM;
617
618 if (hw->nvm.type == e1000_nvm_eeprom_spi)
619 ret_val = hw->nvm.ops.read(hw, first_word,
620 last_word - first_word + 1,
621 eeprom_buff);
622 else {
623 for (i = 0; i < last_word - first_word + 1; i++) {
624 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
625 &eeprom_buff[i]);
626 if (ret_val)
627 break;
628 }
629 }
630
631 /* Device's eeprom is always little-endian, word addressable */
632 for (i = 0; i < last_word - first_word + 1; i++)
633 le16_to_cpus(&eeprom_buff[i]);
634
635 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
636 eeprom->len);
637 kfree(eeprom_buff);
638
639 return ret_val;
640 }
641
642 static int igb_set_eeprom(struct net_device *netdev,
643 struct ethtool_eeprom *eeprom, u8 *bytes)
644 {
645 struct igb_adapter *adapter = netdev_priv(netdev);
646 struct e1000_hw *hw = &adapter->hw;
647 u16 *eeprom_buff;
648 void *ptr;
649 int max_len, first_word, last_word, ret_val = 0;
650 u16 i;
651
652 if (eeprom->len == 0)
653 return -EOPNOTSUPP;
654
655 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
656 return -EFAULT;
657
658 max_len = hw->nvm.word_size * 2;
659
660 first_word = eeprom->offset >> 1;
661 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
662 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
663 if (!eeprom_buff)
664 return -ENOMEM;
665
666 ptr = (void *)eeprom_buff;
667
668 if (eeprom->offset & 1) {
669 /* need read/modify/write of first changed EEPROM word */
670 /* only the second byte of the word is being modified */
671 ret_val = hw->nvm.ops.read(hw, first_word, 1,
672 &eeprom_buff[0]);
673 ptr++;
674 }
675 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
676 /* need read/modify/write of last changed EEPROM word */
677 /* only the first byte of the word is being modified */
678 ret_val = hw->nvm.ops.read(hw, last_word, 1,
679 &eeprom_buff[last_word - first_word]);
680 }
681
682 /* Device's eeprom is always little-endian, word addressable */
683 for (i = 0; i < last_word - first_word + 1; i++)
684 le16_to_cpus(&eeprom_buff[i]);
685
686 memcpy(ptr, bytes, eeprom->len);
687
688 for (i = 0; i < last_word - first_word + 1; i++)
689 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
690
691 ret_val = hw->nvm.ops.write(hw, first_word,
692 last_word - first_word + 1, eeprom_buff);
693
694 /* Update the checksum over the first part of the EEPROM if needed
695 * and flush shadow RAM for 82573 controllers */
696 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
697 igb_update_nvm_checksum(hw);
698
699 kfree(eeprom_buff);
700 return ret_val;
701 }
702
703 static void igb_get_drvinfo(struct net_device *netdev,
704 struct ethtool_drvinfo *drvinfo)
705 {
706 struct igb_adapter *adapter = netdev_priv(netdev);
707 char firmware_version[32];
708 u16 eeprom_data;
709
710 strncpy(drvinfo->driver, igb_driver_name, 32);
711 strncpy(drvinfo->version, igb_driver_version, 32);
712
713 /* EEPROM image version # is reported as firmware version # for
714 * 82575 controllers */
715 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
716 sprintf(firmware_version, "%d.%d-%d",
717 (eeprom_data & 0xF000) >> 12,
718 (eeprom_data & 0x0FF0) >> 4,
719 eeprom_data & 0x000F);
720
721 strncpy(drvinfo->fw_version, firmware_version, 32);
722 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
723 drvinfo->n_stats = IGB_STATS_LEN;
724 drvinfo->testinfo_len = IGB_TEST_LEN;
725 drvinfo->regdump_len = igb_get_regs_len(netdev);
726 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
727 }
728
729 static void igb_get_ringparam(struct net_device *netdev,
730 struct ethtool_ringparam *ring)
731 {
732 struct igb_adapter *adapter = netdev_priv(netdev);
733
734 ring->rx_max_pending = IGB_MAX_RXD;
735 ring->tx_max_pending = IGB_MAX_TXD;
736 ring->rx_mini_max_pending = 0;
737 ring->rx_jumbo_max_pending = 0;
738 ring->rx_pending = adapter->rx_ring_count;
739 ring->tx_pending = adapter->tx_ring_count;
740 ring->rx_mini_pending = 0;
741 ring->rx_jumbo_pending = 0;
742 }
743
744 static int igb_set_ringparam(struct net_device *netdev,
745 struct ethtool_ringparam *ring)
746 {
747 struct igb_adapter *adapter = netdev_priv(netdev);
748 struct igb_ring *temp_ring;
749 int i, err = 0;
750 u16 new_rx_count, new_tx_count;
751
752 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
753 return -EINVAL;
754
755 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
756 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
757 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
758
759 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
760 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
761 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
762
763 if ((new_tx_count == adapter->tx_ring_count) &&
764 (new_rx_count == adapter->rx_ring_count)) {
765 /* nothing to do */
766 return 0;
767 }
768
769 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
770 msleep(1);
771
772 if (!netif_running(adapter->netdev)) {
773 for (i = 0; i < adapter->num_tx_queues; i++)
774 adapter->tx_ring[i].count = new_tx_count;
775 for (i = 0; i < adapter->num_rx_queues; i++)
776 adapter->rx_ring[i].count = new_rx_count;
777 adapter->tx_ring_count = new_tx_count;
778 adapter->rx_ring_count = new_rx_count;
779 goto clear_reset;
780 }
781
782 if (adapter->num_tx_queues > adapter->num_rx_queues)
783 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
784 else
785 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
786
787 if (!temp_ring) {
788 err = -ENOMEM;
789 goto clear_reset;
790 }
791
792 igb_down(adapter);
793
794 /*
795 * We can't just free everything and then setup again,
796 * because the ISRs in MSI-X mode get passed pointers
797 * to the tx and rx ring structs.
798 */
799 if (new_tx_count != adapter->tx_ring_count) {
800 memcpy(temp_ring, adapter->tx_ring,
801 adapter->num_tx_queues * sizeof(struct igb_ring));
802
803 for (i = 0; i < adapter->num_tx_queues; i++) {
804 temp_ring[i].count = new_tx_count;
805 err = igb_setup_tx_resources(&temp_ring[i]);
806 if (err) {
807 while (i) {
808 i--;
809 igb_free_tx_resources(&temp_ring[i]);
810 }
811 goto err_setup;
812 }
813 }
814
815 for (i = 0; i < adapter->num_tx_queues; i++)
816 igb_free_tx_resources(&adapter->tx_ring[i]);
817
818 memcpy(adapter->tx_ring, temp_ring,
819 adapter->num_tx_queues * sizeof(struct igb_ring));
820
821 adapter->tx_ring_count = new_tx_count;
822 }
823
824 if (new_rx_count != adapter->rx_ring->count) {
825 memcpy(temp_ring, adapter->rx_ring,
826 adapter->num_rx_queues * sizeof(struct igb_ring));
827
828 for (i = 0; i < adapter->num_rx_queues; i++) {
829 temp_ring[i].count = new_rx_count;
830 err = igb_setup_rx_resources(&temp_ring[i]);
831 if (err) {
832 while (i) {
833 i--;
834 igb_free_rx_resources(&temp_ring[i]);
835 }
836 goto err_setup;
837 }
838
839 }
840
841 for (i = 0; i < adapter->num_rx_queues; i++)
842 igb_free_rx_resources(&adapter->rx_ring[i]);
843
844 memcpy(adapter->rx_ring, temp_ring,
845 adapter->num_rx_queues * sizeof(struct igb_ring));
846
847 adapter->rx_ring_count = new_rx_count;
848 }
849 err_setup:
850 igb_up(adapter);
851 vfree(temp_ring);
852 clear_reset:
853 clear_bit(__IGB_RESETTING, &adapter->state);
854 return err;
855 }
856
857 /* ethtool register test data */
858 struct igb_reg_test {
859 u16 reg;
860 u16 reg_offset;
861 u16 array_len;
862 u16 test_type;
863 u32 mask;
864 u32 write;
865 };
866
867 /* In the hardware, registers are laid out either singly, in arrays
868 * spaced 0x100 bytes apart, or in contiguous tables. We assume
869 * most tests take place on arrays or single registers (handled
870 * as a single-element array) and special-case the tables.
871 * Table tests are always pattern tests.
872 *
873 * We also make provision for some required setup steps by specifying
874 * registers to be written without any read-back testing.
875 */
876
877 #define PATTERN_TEST 1
878 #define SET_READ_TEST 2
879 #define WRITE_NO_TEST 3
880 #define TABLE32_TEST 4
881 #define TABLE64_TEST_LO 5
882 #define TABLE64_TEST_HI 6
883
884 /* 82576 reg test */
885 static struct igb_reg_test reg_test_82576[] = {
886 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
887 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
888 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
889 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
890 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
891 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
892 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
893 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
894 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
895 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
896 /* Enable all RX queues before testing. */
897 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
898 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
899 /* RDH is read-only for 82576, only test RDT. */
900 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
901 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
902 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
903 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
904 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
905 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
906 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
907 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
908 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
909 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
910 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
911 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
912 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
913 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
914 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
915 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
916 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
917 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
918 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
919 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
920 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
921 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
922 { 0, 0, 0, 0 }
923 };
924
925 /* 82575 register test */
926 static struct igb_reg_test reg_test_82575[] = {
927 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
928 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
929 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
930 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
931 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
932 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
933 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
934 /* Enable all four RX queues before testing. */
935 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
936 /* RDH is read-only for 82575, only test RDT. */
937 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
938 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
939 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
940 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
941 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
942 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
943 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
944 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
945 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
946 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
947 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
948 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
949 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
950 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
951 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
952 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
953 { 0, 0, 0, 0 }
954 };
955
956 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
957 int reg, u32 mask, u32 write)
958 {
959 struct e1000_hw *hw = &adapter->hw;
960 u32 pat, val;
961 static const u32 _test[] =
962 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
963 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
964 wr32(reg, (_test[pat] & write));
965 val = rd32(reg);
966 if (val != (_test[pat] & write & mask)) {
967 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
968 "failed: got 0x%08X expected 0x%08X\n",
969 reg, val, (_test[pat] & write & mask));
970 *data = reg;
971 return 1;
972 }
973 }
974
975 return 0;
976 }
977
978 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
979 int reg, u32 mask, u32 write)
980 {
981 struct e1000_hw *hw = &adapter->hw;
982 u32 val;
983 wr32(reg, write & mask);
984 val = rd32(reg);
985 if ((write & mask) != (val & mask)) {
986 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
987 " got 0x%08X expected 0x%08X\n", reg,
988 (val & mask), (write & mask));
989 *data = reg;
990 return 1;
991 }
992
993 return 0;
994 }
995
996 #define REG_PATTERN_TEST(reg, mask, write) \
997 do { \
998 if (reg_pattern_test(adapter, data, reg, mask, write)) \
999 return 1; \
1000 } while (0)
1001
1002 #define REG_SET_AND_CHECK(reg, mask, write) \
1003 do { \
1004 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1005 return 1; \
1006 } while (0)
1007
1008 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1009 {
1010 struct e1000_hw *hw = &adapter->hw;
1011 struct igb_reg_test *test;
1012 u32 value, before, after;
1013 u32 i, toggle;
1014
1015 switch (adapter->hw.mac.type) {
1016 case e1000_82576:
1017 test = reg_test_82576;
1018 toggle = 0x7FFFF3FF;
1019 break;
1020 default:
1021 test = reg_test_82575;
1022 toggle = 0x7FFFF3FF;
1023 break;
1024 }
1025
1026 /* Because the status register is such a special case,
1027 * we handle it separately from the rest of the register
1028 * tests. Some bits are read-only, some toggle, and some
1029 * are writable on newer MACs.
1030 */
1031 before = rd32(E1000_STATUS);
1032 value = (rd32(E1000_STATUS) & toggle);
1033 wr32(E1000_STATUS, toggle);
1034 after = rd32(E1000_STATUS) & toggle;
1035 if (value != after) {
1036 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1037 "got: 0x%08X expected: 0x%08X\n", after, value);
1038 *data = 1;
1039 return 1;
1040 }
1041 /* restore previous status */
1042 wr32(E1000_STATUS, before);
1043
1044 /* Perform the remainder of the register test, looping through
1045 * the test table until we either fail or reach the null entry.
1046 */
1047 while (test->reg) {
1048 for (i = 0; i < test->array_len; i++) {
1049 switch (test->test_type) {
1050 case PATTERN_TEST:
1051 REG_PATTERN_TEST(test->reg +
1052 (i * test->reg_offset),
1053 test->mask,
1054 test->write);
1055 break;
1056 case SET_READ_TEST:
1057 REG_SET_AND_CHECK(test->reg +
1058 (i * test->reg_offset),
1059 test->mask,
1060 test->write);
1061 break;
1062 case WRITE_NO_TEST:
1063 writel(test->write,
1064 (adapter->hw.hw_addr + test->reg)
1065 + (i * test->reg_offset));
1066 break;
1067 case TABLE32_TEST:
1068 REG_PATTERN_TEST(test->reg + (i * 4),
1069 test->mask,
1070 test->write);
1071 break;
1072 case TABLE64_TEST_LO:
1073 REG_PATTERN_TEST(test->reg + (i * 8),
1074 test->mask,
1075 test->write);
1076 break;
1077 case TABLE64_TEST_HI:
1078 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1079 test->mask,
1080 test->write);
1081 break;
1082 }
1083 }
1084 test++;
1085 }
1086
1087 *data = 0;
1088 return 0;
1089 }
1090
1091 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1092 {
1093 u16 temp;
1094 u16 checksum = 0;
1095 u16 i;
1096
1097 *data = 0;
1098 /* Read and add up the contents of the EEPROM */
1099 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1100 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
1101 *data = 1;
1102 break;
1103 }
1104 checksum += temp;
1105 }
1106
1107 /* If Checksum is not Correct return error else test passed */
1108 if ((checksum != (u16) NVM_SUM) && !(*data))
1109 *data = 2;
1110
1111 return *data;
1112 }
1113
1114 static irqreturn_t igb_test_intr(int irq, void *data)
1115 {
1116 struct igb_adapter *adapter = (struct igb_adapter *) data;
1117 struct e1000_hw *hw = &adapter->hw;
1118
1119 adapter->test_icr |= rd32(E1000_ICR);
1120
1121 return IRQ_HANDLED;
1122 }
1123
1124 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1125 {
1126 struct e1000_hw *hw = &adapter->hw;
1127 struct net_device *netdev = adapter->netdev;
1128 u32 mask, ics_mask, i = 0, shared_int = true;
1129 u32 irq = adapter->pdev->irq;
1130
1131 *data = 0;
1132
1133 /* Hook up test interrupt handler just for this test */
1134 if (adapter->msix_entries) {
1135 if (request_irq(adapter->msix_entries[0].vector,
1136 &igb_test_intr, 0, netdev->name, adapter)) {
1137 *data = 1;
1138 return -1;
1139 }
1140 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1141 shared_int = false;
1142 if (request_irq(irq,
1143 &igb_test_intr, 0, netdev->name, adapter)) {
1144 *data = 1;
1145 return -1;
1146 }
1147 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1148 netdev->name, adapter)) {
1149 shared_int = false;
1150 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1151 netdev->name, adapter)) {
1152 *data = 1;
1153 return -1;
1154 }
1155 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1156 (shared_int ? "shared" : "unshared"));
1157
1158 /* Disable all the interrupts */
1159 wr32(E1000_IMC, ~0);
1160 msleep(10);
1161
1162 /* Define all writable bits for ICS */
1163 switch (hw->mac.type) {
1164 case e1000_82575:
1165 ics_mask = 0x37F47EDD;
1166 break;
1167 case e1000_82576:
1168 ics_mask = 0x77D4FBFD;
1169 break;
1170 default:
1171 ics_mask = 0x7FFFFFFF;
1172 break;
1173 }
1174
1175 /* Test each interrupt */
1176 for (; i < 31; i++) {
1177 /* Interrupt to test */
1178 mask = 1 << i;
1179
1180 if (!(mask & ics_mask))
1181 continue;
1182
1183 if (!shared_int) {
1184 /* Disable the interrupt to be reported in
1185 * the cause register and then force the same
1186 * interrupt and see if one gets posted. If
1187 * an interrupt was posted to the bus, the
1188 * test failed.
1189 */
1190 adapter->test_icr = 0;
1191
1192 /* Flush any pending interrupts */
1193 wr32(E1000_ICR, ~0);
1194
1195 wr32(E1000_IMC, mask);
1196 wr32(E1000_ICS, mask);
1197 msleep(10);
1198
1199 if (adapter->test_icr & mask) {
1200 *data = 3;
1201 break;
1202 }
1203 }
1204
1205 /* Enable the interrupt to be reported in
1206 * the cause register and then force the same
1207 * interrupt and see if one gets posted. If
1208 * an interrupt was not posted to the bus, the
1209 * test failed.
1210 */
1211 adapter->test_icr = 0;
1212
1213 /* Flush any pending interrupts */
1214 wr32(E1000_ICR, ~0);
1215
1216 wr32(E1000_IMS, mask);
1217 wr32(E1000_ICS, mask);
1218 msleep(10);
1219
1220 if (!(adapter->test_icr & mask)) {
1221 *data = 4;
1222 break;
1223 }
1224
1225 if (!shared_int) {
1226 /* Disable the other interrupts to be reported in
1227 * the cause register and then force the other
1228 * interrupts and see if any get posted. If
1229 * an interrupt was posted to the bus, the
1230 * test failed.
1231 */
1232 adapter->test_icr = 0;
1233
1234 /* Flush any pending interrupts */
1235 wr32(E1000_ICR, ~0);
1236
1237 wr32(E1000_IMC, ~mask);
1238 wr32(E1000_ICS, ~mask);
1239 msleep(10);
1240
1241 if (adapter->test_icr & mask) {
1242 *data = 5;
1243 break;
1244 }
1245 }
1246 }
1247
1248 /* Disable all the interrupts */
1249 wr32(E1000_IMC, ~0);
1250 msleep(10);
1251
1252 /* Unhook test interrupt handler */
1253 if (adapter->msix_entries)
1254 free_irq(adapter->msix_entries[0].vector, adapter);
1255 else
1256 free_irq(irq, adapter);
1257
1258 return *data;
1259 }
1260
1261 static void igb_free_desc_rings(struct igb_adapter *adapter)
1262 {
1263 igb_free_tx_resources(&adapter->test_tx_ring);
1264 igb_free_rx_resources(&adapter->test_rx_ring);
1265 }
1266
1267 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1268 {
1269 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1270 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1271 struct e1000_hw *hw = &adapter->hw;
1272 int ret_val;
1273
1274 /* Setup Tx descriptor ring and Tx buffers */
1275 tx_ring->count = IGB_DEFAULT_TXD;
1276 tx_ring->pdev = adapter->pdev;
1277 tx_ring->netdev = adapter->netdev;
1278 tx_ring->reg_idx = adapter->vfs_allocated_count;
1279
1280 if (igb_setup_tx_resources(tx_ring)) {
1281 ret_val = 1;
1282 goto err_nomem;
1283 }
1284
1285 igb_setup_tctl(adapter);
1286 igb_configure_tx_ring(adapter, tx_ring);
1287
1288 /* Setup Rx descriptor ring and Rx buffers */
1289 rx_ring->count = IGB_DEFAULT_RXD;
1290 rx_ring->pdev = adapter->pdev;
1291 rx_ring->netdev = adapter->netdev;
1292 rx_ring->rx_buffer_len = IGB_RXBUFFER_2048;
1293 rx_ring->reg_idx = adapter->vfs_allocated_count;
1294
1295 if (igb_setup_rx_resources(rx_ring)) {
1296 ret_val = 3;
1297 goto err_nomem;
1298 }
1299
1300 /* set the default queue to queue 0 of PF */
1301 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1302
1303 /* enable receive ring */
1304 igb_setup_rctl(adapter);
1305 igb_configure_rx_ring(adapter, rx_ring);
1306
1307 igb_alloc_rx_buffers_adv(rx_ring, igb_desc_unused(rx_ring));
1308
1309 return 0;
1310
1311 err_nomem:
1312 igb_free_desc_rings(adapter);
1313 return ret_val;
1314 }
1315
1316 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1317 {
1318 struct e1000_hw *hw = &adapter->hw;
1319
1320 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1321 igb_write_phy_reg(hw, 29, 0x001F);
1322 igb_write_phy_reg(hw, 30, 0x8FFC);
1323 igb_write_phy_reg(hw, 29, 0x001A);
1324 igb_write_phy_reg(hw, 30, 0x8FF0);
1325 }
1326
1327 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1328 {
1329 struct e1000_hw *hw = &adapter->hw;
1330 u32 ctrl_reg = 0;
1331
1332 hw->mac.autoneg = false;
1333
1334 if (hw->phy.type == e1000_phy_m88) {
1335 /* Auto-MDI/MDIX Off */
1336 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1337 /* reset to update Auto-MDI/MDIX */
1338 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1339 /* autoneg off */
1340 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1341 }
1342
1343 ctrl_reg = rd32(E1000_CTRL);
1344
1345 /* force 1000, set loopback */
1346 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1347
1348 /* Now set up the MAC to the same speed/duplex as the PHY. */
1349 ctrl_reg = rd32(E1000_CTRL);
1350 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1351 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1352 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1353 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1354 E1000_CTRL_FD | /* Force Duplex to FULL */
1355 E1000_CTRL_SLU); /* Set link up enable bit */
1356
1357 if (hw->phy.type == e1000_phy_m88)
1358 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1359
1360 wr32(E1000_CTRL, ctrl_reg);
1361
1362 /* Disable the receiver on the PHY so when a cable is plugged in, the
1363 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1364 */
1365 if (hw->phy.type == e1000_phy_m88)
1366 igb_phy_disable_receiver(adapter);
1367
1368 udelay(500);
1369
1370 return 0;
1371 }
1372
1373 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1374 {
1375 return igb_integrated_phy_loopback(adapter);
1376 }
1377
1378 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1379 {
1380 struct e1000_hw *hw = &adapter->hw;
1381 u32 reg;
1382
1383 reg = rd32(E1000_CTRL_EXT);
1384
1385 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1386 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1387 reg = rd32(E1000_RCTL);
1388 reg |= E1000_RCTL_LBM_TCVR;
1389 wr32(E1000_RCTL, reg);
1390
1391 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1392
1393 reg = rd32(E1000_CTRL);
1394 reg &= ~(E1000_CTRL_RFCE |
1395 E1000_CTRL_TFCE |
1396 E1000_CTRL_LRST);
1397 reg |= E1000_CTRL_SLU |
1398 E1000_CTRL_FD;
1399 wr32(E1000_CTRL, reg);
1400
1401 /* Unset switch control to serdes energy detect */
1402 reg = rd32(E1000_CONNSW);
1403 reg &= ~E1000_CONNSW_ENRGSRC;
1404 wr32(E1000_CONNSW, reg);
1405
1406 /* Set PCS register for forced speed */
1407 reg = rd32(E1000_PCS_LCTL);
1408 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1409 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1410 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1411 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1412 E1000_PCS_LCTL_FSD | /* Force Speed */
1413 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1414 wr32(E1000_PCS_LCTL, reg);
1415
1416 return 0;
1417 }
1418
1419 return igb_set_phy_loopback(adapter);
1420 }
1421
1422 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1423 {
1424 struct e1000_hw *hw = &adapter->hw;
1425 u32 rctl;
1426 u16 phy_reg;
1427
1428 rctl = rd32(E1000_RCTL);
1429 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1430 wr32(E1000_RCTL, rctl);
1431
1432 hw->mac.autoneg = true;
1433 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1434 if (phy_reg & MII_CR_LOOPBACK) {
1435 phy_reg &= ~MII_CR_LOOPBACK;
1436 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1437 igb_phy_sw_reset(hw);
1438 }
1439 }
1440
1441 static void igb_create_lbtest_frame(struct sk_buff *skb,
1442 unsigned int frame_size)
1443 {
1444 memset(skb->data, 0xFF, frame_size);
1445 frame_size /= 2;
1446 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1447 memset(&skb->data[frame_size + 10], 0xBE, 1);
1448 memset(&skb->data[frame_size + 12], 0xAF, 1);
1449 }
1450
1451 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1452 {
1453 frame_size /= 2;
1454 if (*(skb->data + 3) == 0xFF) {
1455 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1456 (*(skb->data + frame_size + 12) == 0xAF)) {
1457 return 0;
1458 }
1459 }
1460 return 13;
1461 }
1462
1463 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1464 struct igb_ring *tx_ring,
1465 unsigned int size)
1466 {
1467 union e1000_adv_rx_desc *rx_desc;
1468 struct igb_buffer *buffer_info;
1469 int rx_ntc, tx_ntc, count = 0;
1470 u32 staterr;
1471
1472 /* initialize next to clean and descriptor values */
1473 rx_ntc = rx_ring->next_to_clean;
1474 tx_ntc = tx_ring->next_to_clean;
1475 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1476 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1477
1478 while (staterr & E1000_RXD_STAT_DD) {
1479 /* check rx buffer */
1480 buffer_info = &rx_ring->buffer_info[rx_ntc];
1481
1482 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1483 pci_unmap_single(rx_ring->pdev,
1484 buffer_info->dma,
1485 rx_ring->rx_buffer_len,
1486 PCI_DMA_FROMDEVICE);
1487 buffer_info->dma = 0;
1488
1489 /* verify contents of skb */
1490 if (!igb_check_lbtest_frame(buffer_info->skb, size))
1491 count++;
1492
1493 /* unmap buffer on tx side */
1494 buffer_info = &tx_ring->buffer_info[tx_ntc];
1495 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
1496
1497 /* increment rx/tx next to clean counters */
1498 rx_ntc++;
1499 if (rx_ntc == rx_ring->count)
1500 rx_ntc = 0;
1501 tx_ntc++;
1502 if (tx_ntc == tx_ring->count)
1503 tx_ntc = 0;
1504
1505 /* fetch next descriptor */
1506 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1507 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1508 }
1509
1510 /* re-map buffers to ring, store next to clean values */
1511 igb_alloc_rx_buffers_adv(rx_ring, count);
1512 rx_ring->next_to_clean = rx_ntc;
1513 tx_ring->next_to_clean = tx_ntc;
1514
1515 return count;
1516 }
1517
1518 static int igb_run_loopback_test(struct igb_adapter *adapter)
1519 {
1520 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1521 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1522 int i, j, lc, good_cnt, ret_val = 0;
1523 unsigned int size = 1024;
1524 netdev_tx_t tx_ret_val;
1525 struct sk_buff *skb;
1526
1527 /* allocate test skb */
1528 skb = alloc_skb(size, GFP_KERNEL);
1529 if (!skb)
1530 return 11;
1531
1532 /* place data into test skb */
1533 igb_create_lbtest_frame(skb, size);
1534 skb_put(skb, size);
1535
1536 /*
1537 * Calculate the loop count based on the largest descriptor ring
1538 * The idea is to wrap the largest ring a number of times using 64
1539 * send/receive pairs during each loop
1540 */
1541
1542 if (rx_ring->count <= tx_ring->count)
1543 lc = ((tx_ring->count / 64) * 2) + 1;
1544 else
1545 lc = ((rx_ring->count / 64) * 2) + 1;
1546
1547 for (j = 0; j <= lc; j++) { /* loop count loop */
1548 /* reset count of good packets */
1549 good_cnt = 0;
1550
1551 /* place 64 packets on the transmit queue*/
1552 for (i = 0; i < 64; i++) {
1553 skb_get(skb);
1554 tx_ret_val = igb_xmit_frame_ring_adv(skb, tx_ring);
1555 if (tx_ret_val == NETDEV_TX_OK)
1556 good_cnt++;
1557 }
1558
1559 if (good_cnt != 64) {
1560 ret_val = 12;
1561 break;
1562 }
1563
1564 /* allow 200 milliseconds for packets to go from tx to rx */
1565 msleep(200);
1566
1567 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1568 if (good_cnt != 64) {
1569 ret_val = 13;
1570 break;
1571 }
1572 } /* end loop count loop */
1573
1574 /* free the original skb */
1575 kfree_skb(skb);
1576
1577 return ret_val;
1578 }
1579
1580 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1581 {
1582 /* PHY loopback cannot be performed if SoL/IDER
1583 * sessions are active */
1584 if (igb_check_reset_block(&adapter->hw)) {
1585 dev_err(&adapter->pdev->dev,
1586 "Cannot do PHY loopback test "
1587 "when SoL/IDER is active.\n");
1588 *data = 0;
1589 goto out;
1590 }
1591 *data = igb_setup_desc_rings(adapter);
1592 if (*data)
1593 goto out;
1594 *data = igb_setup_loopback_test(adapter);
1595 if (*data)
1596 goto err_loopback;
1597 *data = igb_run_loopback_test(adapter);
1598 igb_loopback_cleanup(adapter);
1599
1600 err_loopback:
1601 igb_free_desc_rings(adapter);
1602 out:
1603 return *data;
1604 }
1605
1606 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1607 {
1608 struct e1000_hw *hw = &adapter->hw;
1609 *data = 0;
1610 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1611 int i = 0;
1612 hw->mac.serdes_has_link = false;
1613
1614 /* On some blade server designs, link establishment
1615 * could take as long as 2-3 minutes */
1616 do {
1617 hw->mac.ops.check_for_link(&adapter->hw);
1618 if (hw->mac.serdes_has_link)
1619 return *data;
1620 msleep(20);
1621 } while (i++ < 3750);
1622
1623 *data = 1;
1624 } else {
1625 hw->mac.ops.check_for_link(&adapter->hw);
1626 if (hw->mac.autoneg)
1627 msleep(4000);
1628
1629 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1630 *data = 1;
1631 }
1632 return *data;
1633 }
1634
1635 static void igb_diag_test(struct net_device *netdev,
1636 struct ethtool_test *eth_test, u64 *data)
1637 {
1638 struct igb_adapter *adapter = netdev_priv(netdev);
1639 u16 autoneg_advertised;
1640 u8 forced_speed_duplex, autoneg;
1641 bool if_running = netif_running(netdev);
1642
1643 set_bit(__IGB_TESTING, &adapter->state);
1644 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1645 /* Offline tests */
1646
1647 /* save speed, duplex, autoneg settings */
1648 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1649 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1650 autoneg = adapter->hw.mac.autoneg;
1651
1652 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1653
1654 /* Link test performed before hardware reset so autoneg doesn't
1655 * interfere with test result */
1656 if (igb_link_test(adapter, &data[4]))
1657 eth_test->flags |= ETH_TEST_FL_FAILED;
1658
1659 if (if_running)
1660 /* indicate we're in test mode */
1661 dev_close(netdev);
1662 else
1663 igb_reset(adapter);
1664
1665 if (igb_reg_test(adapter, &data[0]))
1666 eth_test->flags |= ETH_TEST_FL_FAILED;
1667
1668 igb_reset(adapter);
1669 if (igb_eeprom_test(adapter, &data[1]))
1670 eth_test->flags |= ETH_TEST_FL_FAILED;
1671
1672 igb_reset(adapter);
1673 if (igb_intr_test(adapter, &data[2]))
1674 eth_test->flags |= ETH_TEST_FL_FAILED;
1675
1676 igb_reset(adapter);
1677 if (igb_loopback_test(adapter, &data[3]))
1678 eth_test->flags |= ETH_TEST_FL_FAILED;
1679
1680 /* restore speed, duplex, autoneg settings */
1681 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1682 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1683 adapter->hw.mac.autoneg = autoneg;
1684
1685 /* force this routine to wait until autoneg complete/timeout */
1686 adapter->hw.phy.autoneg_wait_to_complete = true;
1687 igb_reset(adapter);
1688 adapter->hw.phy.autoneg_wait_to_complete = false;
1689
1690 clear_bit(__IGB_TESTING, &adapter->state);
1691 if (if_running)
1692 dev_open(netdev);
1693 } else {
1694 dev_info(&adapter->pdev->dev, "online testing starting\n");
1695 /* Online tests */
1696 if (igb_link_test(adapter, &data[4]))
1697 eth_test->flags |= ETH_TEST_FL_FAILED;
1698
1699 /* Online tests aren't run; pass by default */
1700 data[0] = 0;
1701 data[1] = 0;
1702 data[2] = 0;
1703 data[3] = 0;
1704
1705 clear_bit(__IGB_TESTING, &adapter->state);
1706 }
1707 msleep_interruptible(4 * 1000);
1708 }
1709
1710 static int igb_wol_exclusion(struct igb_adapter *adapter,
1711 struct ethtool_wolinfo *wol)
1712 {
1713 struct e1000_hw *hw = &adapter->hw;
1714 int retval = 1; /* fail by default */
1715
1716 switch (hw->device_id) {
1717 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1718 /* WoL not supported */
1719 wol->supported = 0;
1720 break;
1721 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1722 case E1000_DEV_ID_82576_FIBER:
1723 case E1000_DEV_ID_82576_SERDES:
1724 /* Wake events not supported on port B */
1725 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1726 wol->supported = 0;
1727 break;
1728 }
1729 /* return success for non excluded adapter ports */
1730 retval = 0;
1731 break;
1732 case E1000_DEV_ID_82576_QUAD_COPPER:
1733 /* quad port adapters only support WoL on port A */
1734 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1735 wol->supported = 0;
1736 break;
1737 }
1738 /* return success for non excluded adapter ports */
1739 retval = 0;
1740 break;
1741 default:
1742 /* dual port cards only support WoL on port A from now on
1743 * unless it was enabled in the eeprom for port B
1744 * so exclude FUNC_1 ports from having WoL enabled */
1745 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1746 !adapter->eeprom_wol) {
1747 wol->supported = 0;
1748 break;
1749 }
1750
1751 retval = 0;
1752 }
1753
1754 return retval;
1755 }
1756
1757 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1758 {
1759 struct igb_adapter *adapter = netdev_priv(netdev);
1760
1761 wol->supported = WAKE_UCAST | WAKE_MCAST |
1762 WAKE_BCAST | WAKE_MAGIC;
1763 wol->wolopts = 0;
1764
1765 /* this function will set ->supported = 0 and return 1 if wol is not
1766 * supported by this hardware */
1767 if (igb_wol_exclusion(adapter, wol) ||
1768 !device_can_wakeup(&adapter->pdev->dev))
1769 return;
1770
1771 /* apply any specific unsupported masks here */
1772 switch (adapter->hw.device_id) {
1773 default:
1774 break;
1775 }
1776
1777 if (adapter->wol & E1000_WUFC_EX)
1778 wol->wolopts |= WAKE_UCAST;
1779 if (adapter->wol & E1000_WUFC_MC)
1780 wol->wolopts |= WAKE_MCAST;
1781 if (adapter->wol & E1000_WUFC_BC)
1782 wol->wolopts |= WAKE_BCAST;
1783 if (adapter->wol & E1000_WUFC_MAG)
1784 wol->wolopts |= WAKE_MAGIC;
1785
1786 return;
1787 }
1788
1789 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1790 {
1791 struct igb_adapter *adapter = netdev_priv(netdev);
1792
1793 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1794 return -EOPNOTSUPP;
1795
1796 if (igb_wol_exclusion(adapter, wol) ||
1797 !device_can_wakeup(&adapter->pdev->dev))
1798 return wol->wolopts ? -EOPNOTSUPP : 0;
1799
1800 /* these settings will always override what we currently have */
1801 adapter->wol = 0;
1802
1803 if (wol->wolopts & WAKE_UCAST)
1804 adapter->wol |= E1000_WUFC_EX;
1805 if (wol->wolopts & WAKE_MCAST)
1806 adapter->wol |= E1000_WUFC_MC;
1807 if (wol->wolopts & WAKE_BCAST)
1808 adapter->wol |= E1000_WUFC_BC;
1809 if (wol->wolopts & WAKE_MAGIC)
1810 adapter->wol |= E1000_WUFC_MAG;
1811 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1812
1813 return 0;
1814 }
1815
1816 /* bit defines for adapter->led_status */
1817 #define IGB_LED_ON 0
1818
1819 static int igb_phys_id(struct net_device *netdev, u32 data)
1820 {
1821 struct igb_adapter *adapter = netdev_priv(netdev);
1822 struct e1000_hw *hw = &adapter->hw;
1823 unsigned long timeout;
1824
1825 timeout = data * 1000;
1826
1827 /*
1828 * msleep_interruptable only accepts unsigned int so we are limited
1829 * in how long a duration we can wait
1830 */
1831 if (!timeout || timeout > UINT_MAX)
1832 timeout = UINT_MAX;
1833
1834 igb_blink_led(hw);
1835 msleep_interruptible(timeout);
1836
1837 igb_led_off(hw);
1838 clear_bit(IGB_LED_ON, &adapter->led_status);
1839 igb_cleanup_led(hw);
1840
1841 return 0;
1842 }
1843
1844 static int igb_set_coalesce(struct net_device *netdev,
1845 struct ethtool_coalesce *ec)
1846 {
1847 struct igb_adapter *adapter = netdev_priv(netdev);
1848 int i;
1849
1850 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1851 ((ec->rx_coalesce_usecs > 3) &&
1852 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1853 (ec->rx_coalesce_usecs == 2))
1854 return -EINVAL;
1855
1856 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1857 ((ec->tx_coalesce_usecs > 3) &&
1858 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1859 (ec->tx_coalesce_usecs == 2))
1860 return -EINVAL;
1861
1862 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
1863 return -EINVAL;
1864
1865 /* convert to rate of irq's per second */
1866 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
1867 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
1868 else
1869 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
1870
1871 /* convert to rate of irq's per second */
1872 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
1873 adapter->tx_itr_setting = adapter->rx_itr_setting;
1874 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
1875 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
1876 else
1877 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
1878
1879 for (i = 0; i < adapter->num_q_vectors; i++) {
1880 struct igb_q_vector *q_vector = adapter->q_vector[i];
1881 if (q_vector->rx_ring)
1882 q_vector->itr_val = adapter->rx_itr_setting;
1883 else
1884 q_vector->itr_val = adapter->tx_itr_setting;
1885 if (q_vector->itr_val && q_vector->itr_val <= 3)
1886 q_vector->itr_val = IGB_START_ITR;
1887 q_vector->set_itr = 1;
1888 }
1889
1890 return 0;
1891 }
1892
1893 static int igb_get_coalesce(struct net_device *netdev,
1894 struct ethtool_coalesce *ec)
1895 {
1896 struct igb_adapter *adapter = netdev_priv(netdev);
1897
1898 if (adapter->rx_itr_setting <= 3)
1899 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
1900 else
1901 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
1902
1903 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
1904 if (adapter->tx_itr_setting <= 3)
1905 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
1906 else
1907 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
1908 }
1909
1910 return 0;
1911 }
1912
1913 static int igb_nway_reset(struct net_device *netdev)
1914 {
1915 struct igb_adapter *adapter = netdev_priv(netdev);
1916 if (netif_running(netdev))
1917 igb_reinit_locked(adapter);
1918 return 0;
1919 }
1920
1921 static int igb_get_sset_count(struct net_device *netdev, int sset)
1922 {
1923 switch (sset) {
1924 case ETH_SS_STATS:
1925 return IGB_STATS_LEN;
1926 case ETH_SS_TEST:
1927 return IGB_TEST_LEN;
1928 default:
1929 return -ENOTSUPP;
1930 }
1931 }
1932
1933 static void igb_get_ethtool_stats(struct net_device *netdev,
1934 struct ethtool_stats *stats, u64 *data)
1935 {
1936 struct igb_adapter *adapter = netdev_priv(netdev);
1937 struct net_device_stats *net_stats = &netdev->stats;
1938 u64 *queue_stat;
1939 int i, j, k;
1940 char *p;
1941
1942 igb_update_stats(adapter);
1943
1944 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1945 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
1946 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1947 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1948 }
1949 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
1950 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
1951 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
1952 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1953 }
1954 for (j = 0; j < adapter->num_tx_queues; j++) {
1955 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1956 for (k = 0; k < IGB_TX_QUEUE_STATS_LEN; k++, i++)
1957 data[i] = queue_stat[k];
1958 }
1959 for (j = 0; j < adapter->num_rx_queues; j++) {
1960 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1961 for (k = 0; k < IGB_RX_QUEUE_STATS_LEN; k++, i++)
1962 data[i] = queue_stat[k];
1963 }
1964 }
1965
1966 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1967 {
1968 struct igb_adapter *adapter = netdev_priv(netdev);
1969 u8 *p = data;
1970 int i;
1971
1972 switch (stringset) {
1973 case ETH_SS_TEST:
1974 memcpy(data, *igb_gstrings_test,
1975 IGB_TEST_LEN*ETH_GSTRING_LEN);
1976 break;
1977 case ETH_SS_STATS:
1978 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1979 memcpy(p, igb_gstrings_stats[i].stat_string,
1980 ETH_GSTRING_LEN);
1981 p += ETH_GSTRING_LEN;
1982 }
1983 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
1984 memcpy(p, igb_gstrings_net_stats[i].stat_string,
1985 ETH_GSTRING_LEN);
1986 p += ETH_GSTRING_LEN;
1987 }
1988 for (i = 0; i < adapter->num_tx_queues; i++) {
1989 sprintf(p, "tx_queue_%u_packets", i);
1990 p += ETH_GSTRING_LEN;
1991 sprintf(p, "tx_queue_%u_bytes", i);
1992 p += ETH_GSTRING_LEN;
1993 sprintf(p, "tx_queue_%u_restart", i);
1994 p += ETH_GSTRING_LEN;
1995 }
1996 for (i = 0; i < adapter->num_rx_queues; i++) {
1997 sprintf(p, "rx_queue_%u_packets", i);
1998 p += ETH_GSTRING_LEN;
1999 sprintf(p, "rx_queue_%u_bytes", i);
2000 p += ETH_GSTRING_LEN;
2001 sprintf(p, "rx_queue_%u_drops", i);
2002 p += ETH_GSTRING_LEN;
2003 sprintf(p, "rx_queue_%u_csum_err", i);
2004 p += ETH_GSTRING_LEN;
2005 sprintf(p, "rx_queue_%u_alloc_failed", i);
2006 p += ETH_GSTRING_LEN;
2007 }
2008 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2009 break;
2010 }
2011 }
2012
2013 static const struct ethtool_ops igb_ethtool_ops = {
2014 .get_settings = igb_get_settings,
2015 .set_settings = igb_set_settings,
2016 .get_drvinfo = igb_get_drvinfo,
2017 .get_regs_len = igb_get_regs_len,
2018 .get_regs = igb_get_regs,
2019 .get_wol = igb_get_wol,
2020 .set_wol = igb_set_wol,
2021 .get_msglevel = igb_get_msglevel,
2022 .set_msglevel = igb_set_msglevel,
2023 .nway_reset = igb_nway_reset,
2024 .get_link = ethtool_op_get_link,
2025 .get_eeprom_len = igb_get_eeprom_len,
2026 .get_eeprom = igb_get_eeprom,
2027 .set_eeprom = igb_set_eeprom,
2028 .get_ringparam = igb_get_ringparam,
2029 .set_ringparam = igb_set_ringparam,
2030 .get_pauseparam = igb_get_pauseparam,
2031 .set_pauseparam = igb_set_pauseparam,
2032 .get_rx_csum = igb_get_rx_csum,
2033 .set_rx_csum = igb_set_rx_csum,
2034 .get_tx_csum = igb_get_tx_csum,
2035 .set_tx_csum = igb_set_tx_csum,
2036 .get_sg = ethtool_op_get_sg,
2037 .set_sg = ethtool_op_set_sg,
2038 .get_tso = ethtool_op_get_tso,
2039 .set_tso = igb_set_tso,
2040 .self_test = igb_diag_test,
2041 .get_strings = igb_get_strings,
2042 .phys_id = igb_phys_id,
2043 .get_sset_count = igb_get_sset_count,
2044 .get_ethtool_stats = igb_get_ethtool_stats,
2045 .get_coalesce = igb_get_coalesce,
2046 .set_coalesce = igb_set_coalesce,
2047 };
2048
2049 void igb_set_ethtool_ops(struct net_device *netdev)
2050 {
2051 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2052 }
This page took 0.072179 seconds and 4 git commands to generate.