igb: loopback bits not correctly cleared from RCTL register
[deliverable/linux.git] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37
38 #include "igb.h"
39
40 struct igb_stats {
41 char stat_string[ETH_GSTRING_LEN];
42 int sizeof_stat;
43 int stat_offset;
44 };
45
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47 offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats[] = {
49 { "rx_packets", IGB_STAT(stats.gprc) },
50 { "tx_packets", IGB_STAT(stats.gptc) },
51 { "rx_bytes", IGB_STAT(stats.gorc) },
52 { "tx_bytes", IGB_STAT(stats.gotc) },
53 { "rx_broadcast", IGB_STAT(stats.bprc) },
54 { "tx_broadcast", IGB_STAT(stats.bptc) },
55 { "rx_multicast", IGB_STAT(stats.mprc) },
56 { "tx_multicast", IGB_STAT(stats.mptc) },
57 { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58 { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59 { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60 { "multicast", IGB_STAT(stats.mprc) },
61 { "collisions", IGB_STAT(stats.colc) },
62 { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63 { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65 { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67 { "rx_missed_errors", IGB_STAT(stats.mpc) },
68 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70 { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71 { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72 { "tx_window_errors", IGB_STAT(stats.latecol) },
73 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74 { "tx_deferred_ok", IGB_STAT(stats.dc) },
75 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78 { "tx_restart_queue", IGB_STAT(restart_queue) },
79 { "rx_long_length_errors", IGB_STAT(stats.roc) },
80 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89 { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
91 { "rx_header_split", IGB_STAT(rx_hdr_split) },
92 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93 { "tx_smbus", IGB_STAT(stats.mgptc) },
94 { "rx_smbus", IGB_STAT(stats.mgprc) },
95 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
96 #ifdef CONFIG_IGB_LRO
97 { "lro_aggregated", IGB_STAT(lro_aggregated) },
98 { "lro_flushed", IGB_STAT(lro_flushed) },
99 { "lro_no_desc", IGB_STAT(lro_no_desc) },
100 #endif
101 };
102
103 #define IGB_QUEUE_STATS_LEN \
104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues + \
105 ((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
106 (sizeof(struct igb_queue_stats) / sizeof(u64)))
107 #define IGB_GLOBAL_STATS_LEN \
108 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
109 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
110 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
111 "Register test (offline)", "Eeprom test (offline)",
112 "Interrupt test (offline)", "Loopback test (offline)",
113 "Link test (on/offline)"
114 };
115 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
116
117 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
118 {
119 struct igb_adapter *adapter = netdev_priv(netdev);
120 struct e1000_hw *hw = &adapter->hw;
121
122 if (hw->phy.media_type == e1000_media_type_copper) {
123
124 ecmd->supported = (SUPPORTED_10baseT_Half |
125 SUPPORTED_10baseT_Full |
126 SUPPORTED_100baseT_Half |
127 SUPPORTED_100baseT_Full |
128 SUPPORTED_1000baseT_Full|
129 SUPPORTED_Autoneg |
130 SUPPORTED_TP);
131 ecmd->advertising = ADVERTISED_TP;
132
133 if (hw->mac.autoneg == 1) {
134 ecmd->advertising |= ADVERTISED_Autoneg;
135 /* the e1000 autoneg seems to match ethtool nicely */
136 ecmd->advertising |= hw->phy.autoneg_advertised;
137 }
138
139 ecmd->port = PORT_TP;
140 ecmd->phy_address = hw->phy.addr;
141 } else {
142 ecmd->supported = (SUPPORTED_1000baseT_Full |
143 SUPPORTED_FIBRE |
144 SUPPORTED_Autoneg);
145
146 ecmd->advertising = (ADVERTISED_1000baseT_Full |
147 ADVERTISED_FIBRE |
148 ADVERTISED_Autoneg);
149
150 ecmd->port = PORT_FIBRE;
151 }
152
153 ecmd->transceiver = XCVR_INTERNAL;
154
155 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
156
157 adapter->hw.mac.ops.get_speed_and_duplex(hw,
158 &adapter->link_speed,
159 &adapter->link_duplex);
160 ecmd->speed = adapter->link_speed;
161
162 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
163 * and HALF_DUPLEX != DUPLEX_HALF */
164
165 if (adapter->link_duplex == FULL_DUPLEX)
166 ecmd->duplex = DUPLEX_FULL;
167 else
168 ecmd->duplex = DUPLEX_HALF;
169 } else {
170 ecmd->speed = -1;
171 ecmd->duplex = -1;
172 }
173
174 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
175 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176 return 0;
177 }
178
179 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
180 {
181 struct igb_adapter *adapter = netdev_priv(netdev);
182 struct e1000_hw *hw = &adapter->hw;
183
184 /* When SoL/IDER sessions are active, autoneg/speed/duplex
185 * cannot be changed */
186 if (igb_check_reset_block(hw)) {
187 dev_err(&adapter->pdev->dev, "Cannot change link "
188 "characteristics when SoL/IDER is active.\n");
189 return -EINVAL;
190 }
191
192 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
193 msleep(1);
194
195 if (ecmd->autoneg == AUTONEG_ENABLE) {
196 hw->mac.autoneg = 1;
197 if (hw->phy.media_type == e1000_media_type_fiber)
198 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
199 ADVERTISED_FIBRE |
200 ADVERTISED_Autoneg;
201 else
202 hw->phy.autoneg_advertised = ecmd->advertising |
203 ADVERTISED_TP |
204 ADVERTISED_Autoneg;
205 ecmd->advertising = hw->phy.autoneg_advertised;
206 } else
207 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
208 clear_bit(__IGB_RESETTING, &adapter->state);
209 return -EINVAL;
210 }
211
212 /* reset the link */
213
214 if (netif_running(adapter->netdev)) {
215 igb_down(adapter);
216 igb_up(adapter);
217 } else
218 igb_reset(adapter);
219
220 clear_bit(__IGB_RESETTING, &adapter->state);
221 return 0;
222 }
223
224 static void igb_get_pauseparam(struct net_device *netdev,
225 struct ethtool_pauseparam *pause)
226 {
227 struct igb_adapter *adapter = netdev_priv(netdev);
228 struct e1000_hw *hw = &adapter->hw;
229
230 pause->autoneg =
231 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
232
233 if (hw->fc.type == e1000_fc_rx_pause)
234 pause->rx_pause = 1;
235 else if (hw->fc.type == e1000_fc_tx_pause)
236 pause->tx_pause = 1;
237 else if (hw->fc.type == e1000_fc_full) {
238 pause->rx_pause = 1;
239 pause->tx_pause = 1;
240 }
241 }
242
243 static int igb_set_pauseparam(struct net_device *netdev,
244 struct ethtool_pauseparam *pause)
245 {
246 struct igb_adapter *adapter = netdev_priv(netdev);
247 struct e1000_hw *hw = &adapter->hw;
248 int retval = 0;
249
250 adapter->fc_autoneg = pause->autoneg;
251
252 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
253 msleep(1);
254
255 if (pause->rx_pause && pause->tx_pause)
256 hw->fc.type = e1000_fc_full;
257 else if (pause->rx_pause && !pause->tx_pause)
258 hw->fc.type = e1000_fc_rx_pause;
259 else if (!pause->rx_pause && pause->tx_pause)
260 hw->fc.type = e1000_fc_tx_pause;
261 else if (!pause->rx_pause && !pause->tx_pause)
262 hw->fc.type = e1000_fc_none;
263
264 hw->fc.original_type = hw->fc.type;
265
266 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
267 if (netif_running(adapter->netdev)) {
268 igb_down(adapter);
269 igb_up(adapter);
270 } else
271 igb_reset(adapter);
272 } else
273 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
274 igb_setup_link(hw) : igb_force_mac_fc(hw));
275
276 clear_bit(__IGB_RESETTING, &adapter->state);
277 return retval;
278 }
279
280 static u32 igb_get_rx_csum(struct net_device *netdev)
281 {
282 struct igb_adapter *adapter = netdev_priv(netdev);
283 return adapter->rx_csum;
284 }
285
286 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
287 {
288 struct igb_adapter *adapter = netdev_priv(netdev);
289 adapter->rx_csum = data;
290
291 return 0;
292 }
293
294 static u32 igb_get_tx_csum(struct net_device *netdev)
295 {
296 return (netdev->features & NETIF_F_HW_CSUM) != 0;
297 }
298
299 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
300 {
301 if (data)
302 netdev->features |= NETIF_F_HW_CSUM;
303 else
304 netdev->features &= ~NETIF_F_HW_CSUM;
305
306 return 0;
307 }
308
309 static int igb_set_tso(struct net_device *netdev, u32 data)
310 {
311 struct igb_adapter *adapter = netdev_priv(netdev);
312
313 if (data)
314 netdev->features |= NETIF_F_TSO;
315 else
316 netdev->features &= ~NETIF_F_TSO;
317
318 if (data)
319 netdev->features |= NETIF_F_TSO6;
320 else
321 netdev->features &= ~NETIF_F_TSO6;
322
323 dev_info(&adapter->pdev->dev, "TSO is %s\n",
324 data ? "Enabled" : "Disabled");
325 return 0;
326 }
327
328 static u32 igb_get_msglevel(struct net_device *netdev)
329 {
330 struct igb_adapter *adapter = netdev_priv(netdev);
331 return adapter->msg_enable;
332 }
333
334 static void igb_set_msglevel(struct net_device *netdev, u32 data)
335 {
336 struct igb_adapter *adapter = netdev_priv(netdev);
337 adapter->msg_enable = data;
338 }
339
340 static int igb_get_regs_len(struct net_device *netdev)
341 {
342 #define IGB_REGS_LEN 551
343 return IGB_REGS_LEN * sizeof(u32);
344 }
345
346 static void igb_get_regs(struct net_device *netdev,
347 struct ethtool_regs *regs, void *p)
348 {
349 struct igb_adapter *adapter = netdev_priv(netdev);
350 struct e1000_hw *hw = &adapter->hw;
351 u32 *regs_buff = p;
352 u8 i;
353
354 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
355
356 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
357
358 /* General Registers */
359 regs_buff[0] = rd32(E1000_CTRL);
360 regs_buff[1] = rd32(E1000_STATUS);
361 regs_buff[2] = rd32(E1000_CTRL_EXT);
362 regs_buff[3] = rd32(E1000_MDIC);
363 regs_buff[4] = rd32(E1000_SCTL);
364 regs_buff[5] = rd32(E1000_CONNSW);
365 regs_buff[6] = rd32(E1000_VET);
366 regs_buff[7] = rd32(E1000_LEDCTL);
367 regs_buff[8] = rd32(E1000_PBA);
368 regs_buff[9] = rd32(E1000_PBS);
369 regs_buff[10] = rd32(E1000_FRTIMER);
370 regs_buff[11] = rd32(E1000_TCPTIMER);
371
372 /* NVM Register */
373 regs_buff[12] = rd32(E1000_EECD);
374
375 /* Interrupt */
376 /* Reading EICS for EICR because they read the
377 * same but EICS does not clear on read */
378 regs_buff[13] = rd32(E1000_EICS);
379 regs_buff[14] = rd32(E1000_EICS);
380 regs_buff[15] = rd32(E1000_EIMS);
381 regs_buff[16] = rd32(E1000_EIMC);
382 regs_buff[17] = rd32(E1000_EIAC);
383 regs_buff[18] = rd32(E1000_EIAM);
384 /* Reading ICS for ICR because they read the
385 * same but ICS does not clear on read */
386 regs_buff[19] = rd32(E1000_ICS);
387 regs_buff[20] = rd32(E1000_ICS);
388 regs_buff[21] = rd32(E1000_IMS);
389 regs_buff[22] = rd32(E1000_IMC);
390 regs_buff[23] = rd32(E1000_IAC);
391 regs_buff[24] = rd32(E1000_IAM);
392 regs_buff[25] = rd32(E1000_IMIRVP);
393
394 /* Flow Control */
395 regs_buff[26] = rd32(E1000_FCAL);
396 regs_buff[27] = rd32(E1000_FCAH);
397 regs_buff[28] = rd32(E1000_FCTTV);
398 regs_buff[29] = rd32(E1000_FCRTL);
399 regs_buff[30] = rd32(E1000_FCRTH);
400 regs_buff[31] = rd32(E1000_FCRTV);
401
402 /* Receive */
403 regs_buff[32] = rd32(E1000_RCTL);
404 regs_buff[33] = rd32(E1000_RXCSUM);
405 regs_buff[34] = rd32(E1000_RLPML);
406 regs_buff[35] = rd32(E1000_RFCTL);
407 regs_buff[36] = rd32(E1000_MRQC);
408 regs_buff[37] = rd32(E1000_VMD_CTL);
409
410 /* Transmit */
411 regs_buff[38] = rd32(E1000_TCTL);
412 regs_buff[39] = rd32(E1000_TCTL_EXT);
413 regs_buff[40] = rd32(E1000_TIPG);
414 regs_buff[41] = rd32(E1000_DTXCTL);
415
416 /* Wake Up */
417 regs_buff[42] = rd32(E1000_WUC);
418 regs_buff[43] = rd32(E1000_WUFC);
419 regs_buff[44] = rd32(E1000_WUS);
420 regs_buff[45] = rd32(E1000_IPAV);
421 regs_buff[46] = rd32(E1000_WUPL);
422
423 /* MAC */
424 regs_buff[47] = rd32(E1000_PCS_CFG0);
425 regs_buff[48] = rd32(E1000_PCS_LCTL);
426 regs_buff[49] = rd32(E1000_PCS_LSTAT);
427 regs_buff[50] = rd32(E1000_PCS_ANADV);
428 regs_buff[51] = rd32(E1000_PCS_LPAB);
429 regs_buff[52] = rd32(E1000_PCS_NPTX);
430 regs_buff[53] = rd32(E1000_PCS_LPABNP);
431
432 /* Statistics */
433 regs_buff[54] = adapter->stats.crcerrs;
434 regs_buff[55] = adapter->stats.algnerrc;
435 regs_buff[56] = adapter->stats.symerrs;
436 regs_buff[57] = adapter->stats.rxerrc;
437 regs_buff[58] = adapter->stats.mpc;
438 regs_buff[59] = adapter->stats.scc;
439 regs_buff[60] = adapter->stats.ecol;
440 regs_buff[61] = adapter->stats.mcc;
441 regs_buff[62] = adapter->stats.latecol;
442 regs_buff[63] = adapter->stats.colc;
443 regs_buff[64] = adapter->stats.dc;
444 regs_buff[65] = adapter->stats.tncrs;
445 regs_buff[66] = adapter->stats.sec;
446 regs_buff[67] = adapter->stats.htdpmc;
447 regs_buff[68] = adapter->stats.rlec;
448 regs_buff[69] = adapter->stats.xonrxc;
449 regs_buff[70] = adapter->stats.xontxc;
450 regs_buff[71] = adapter->stats.xoffrxc;
451 regs_buff[72] = adapter->stats.xofftxc;
452 regs_buff[73] = adapter->stats.fcruc;
453 regs_buff[74] = adapter->stats.prc64;
454 regs_buff[75] = adapter->stats.prc127;
455 regs_buff[76] = adapter->stats.prc255;
456 regs_buff[77] = adapter->stats.prc511;
457 regs_buff[78] = adapter->stats.prc1023;
458 regs_buff[79] = adapter->stats.prc1522;
459 regs_buff[80] = adapter->stats.gprc;
460 regs_buff[81] = adapter->stats.bprc;
461 regs_buff[82] = adapter->stats.mprc;
462 regs_buff[83] = adapter->stats.gptc;
463 regs_buff[84] = adapter->stats.gorc;
464 regs_buff[86] = adapter->stats.gotc;
465 regs_buff[88] = adapter->stats.rnbc;
466 regs_buff[89] = adapter->stats.ruc;
467 regs_buff[90] = adapter->stats.rfc;
468 regs_buff[91] = adapter->stats.roc;
469 regs_buff[92] = adapter->stats.rjc;
470 regs_buff[93] = adapter->stats.mgprc;
471 regs_buff[94] = adapter->stats.mgpdc;
472 regs_buff[95] = adapter->stats.mgptc;
473 regs_buff[96] = adapter->stats.tor;
474 regs_buff[98] = adapter->stats.tot;
475 regs_buff[100] = adapter->stats.tpr;
476 regs_buff[101] = adapter->stats.tpt;
477 regs_buff[102] = adapter->stats.ptc64;
478 regs_buff[103] = adapter->stats.ptc127;
479 regs_buff[104] = adapter->stats.ptc255;
480 regs_buff[105] = adapter->stats.ptc511;
481 regs_buff[106] = adapter->stats.ptc1023;
482 regs_buff[107] = adapter->stats.ptc1522;
483 regs_buff[108] = adapter->stats.mptc;
484 regs_buff[109] = adapter->stats.bptc;
485 regs_buff[110] = adapter->stats.tsctc;
486 regs_buff[111] = adapter->stats.iac;
487 regs_buff[112] = adapter->stats.rpthc;
488 regs_buff[113] = adapter->stats.hgptc;
489 regs_buff[114] = adapter->stats.hgorc;
490 regs_buff[116] = adapter->stats.hgotc;
491 regs_buff[118] = adapter->stats.lenerrs;
492 regs_buff[119] = adapter->stats.scvpc;
493 regs_buff[120] = adapter->stats.hrmpc;
494
495 /* These should probably be added to e1000_regs.h instead */
496 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
497 #define E1000_RAL(_i) (0x05400 + ((_i) * 8))
498 #define E1000_RAH(_i) (0x05404 + ((_i) * 8))
499 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
500 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
501 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
502 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
503 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
504 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
505
506 for (i = 0; i < 4; i++)
507 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
508 for (i = 0; i < 4; i++)
509 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
510 for (i = 0; i < 4; i++)
511 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
512 for (i = 0; i < 4; i++)
513 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
514 for (i = 0; i < 4; i++)
515 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
516 for (i = 0; i < 4; i++)
517 regs_buff[141 + i] = rd32(E1000_RDH(i));
518 for (i = 0; i < 4; i++)
519 regs_buff[145 + i] = rd32(E1000_RDT(i));
520 for (i = 0; i < 4; i++)
521 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
522
523 for (i = 0; i < 10; i++)
524 regs_buff[153 + i] = rd32(E1000_EITR(i));
525 for (i = 0; i < 8; i++)
526 regs_buff[163 + i] = rd32(E1000_IMIR(i));
527 for (i = 0; i < 8; i++)
528 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
529 for (i = 0; i < 16; i++)
530 regs_buff[179 + i] = rd32(E1000_RAL(i));
531 for (i = 0; i < 16; i++)
532 regs_buff[195 + i] = rd32(E1000_RAH(i));
533
534 for (i = 0; i < 4; i++)
535 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
536 for (i = 0; i < 4; i++)
537 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
538 for (i = 0; i < 4; i++)
539 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
540 for (i = 0; i < 4; i++)
541 regs_buff[223 + i] = rd32(E1000_TDH(i));
542 for (i = 0; i < 4; i++)
543 regs_buff[227 + i] = rd32(E1000_TDT(i));
544 for (i = 0; i < 4; i++)
545 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
546 for (i = 0; i < 4; i++)
547 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
548 for (i = 0; i < 4; i++)
549 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
550 for (i = 0; i < 4; i++)
551 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
552
553 for (i = 0; i < 4; i++)
554 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
555 for (i = 0; i < 4; i++)
556 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
557 for (i = 0; i < 32; i++)
558 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
559 for (i = 0; i < 128; i++)
560 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
561 for (i = 0; i < 128; i++)
562 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
563 for (i = 0; i < 4; i++)
564 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
565
566 regs_buff[547] = rd32(E1000_TDFH);
567 regs_buff[548] = rd32(E1000_TDFT);
568 regs_buff[549] = rd32(E1000_TDFHS);
569 regs_buff[550] = rd32(E1000_TDFPC);
570
571 }
572
573 static int igb_get_eeprom_len(struct net_device *netdev)
574 {
575 struct igb_adapter *adapter = netdev_priv(netdev);
576 return adapter->hw.nvm.word_size * 2;
577 }
578
579 static int igb_get_eeprom(struct net_device *netdev,
580 struct ethtool_eeprom *eeprom, u8 *bytes)
581 {
582 struct igb_adapter *adapter = netdev_priv(netdev);
583 struct e1000_hw *hw = &adapter->hw;
584 u16 *eeprom_buff;
585 int first_word, last_word;
586 int ret_val = 0;
587 u16 i;
588
589 if (eeprom->len == 0)
590 return -EINVAL;
591
592 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
593
594 first_word = eeprom->offset >> 1;
595 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
596
597 eeprom_buff = kmalloc(sizeof(u16) *
598 (last_word - first_word + 1), GFP_KERNEL);
599 if (!eeprom_buff)
600 return -ENOMEM;
601
602 if (hw->nvm.type == e1000_nvm_eeprom_spi)
603 ret_val = hw->nvm.ops.read_nvm(hw, first_word,
604 last_word - first_word + 1,
605 eeprom_buff);
606 else {
607 for (i = 0; i < last_word - first_word + 1; i++) {
608 ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1,
609 &eeprom_buff[i]);
610 if (ret_val)
611 break;
612 }
613 }
614
615 /* Device's eeprom is always little-endian, word addressable */
616 for (i = 0; i < last_word - first_word + 1; i++)
617 le16_to_cpus(&eeprom_buff[i]);
618
619 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
620 eeprom->len);
621 kfree(eeprom_buff);
622
623 return ret_val;
624 }
625
626 static int igb_set_eeprom(struct net_device *netdev,
627 struct ethtool_eeprom *eeprom, u8 *bytes)
628 {
629 struct igb_adapter *adapter = netdev_priv(netdev);
630 struct e1000_hw *hw = &adapter->hw;
631 u16 *eeprom_buff;
632 void *ptr;
633 int max_len, first_word, last_word, ret_val = 0;
634 u16 i;
635
636 if (eeprom->len == 0)
637 return -EOPNOTSUPP;
638
639 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
640 return -EFAULT;
641
642 max_len = hw->nvm.word_size * 2;
643
644 first_word = eeprom->offset >> 1;
645 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
646 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
647 if (!eeprom_buff)
648 return -ENOMEM;
649
650 ptr = (void *)eeprom_buff;
651
652 if (eeprom->offset & 1) {
653 /* need read/modify/write of first changed EEPROM word */
654 /* only the second byte of the word is being modified */
655 ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1,
656 &eeprom_buff[0]);
657 ptr++;
658 }
659 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
660 /* need read/modify/write of last changed EEPROM word */
661 /* only the first byte of the word is being modified */
662 ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1,
663 &eeprom_buff[last_word - first_word]);
664 }
665
666 /* Device's eeprom is always little-endian, word addressable */
667 for (i = 0; i < last_word - first_word + 1; i++)
668 le16_to_cpus(&eeprom_buff[i]);
669
670 memcpy(ptr, bytes, eeprom->len);
671
672 for (i = 0; i < last_word - first_word + 1; i++)
673 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
674
675 ret_val = hw->nvm.ops.write_nvm(hw, first_word,
676 last_word - first_word + 1, eeprom_buff);
677
678 /* Update the checksum over the first part of the EEPROM if needed
679 * and flush shadow RAM for 82573 controllers */
680 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
681 igb_update_nvm_checksum(hw);
682
683 kfree(eeprom_buff);
684 return ret_val;
685 }
686
687 static void igb_get_drvinfo(struct net_device *netdev,
688 struct ethtool_drvinfo *drvinfo)
689 {
690 struct igb_adapter *adapter = netdev_priv(netdev);
691 char firmware_version[32];
692 u16 eeprom_data;
693
694 strncpy(drvinfo->driver, igb_driver_name, 32);
695 strncpy(drvinfo->version, igb_driver_version, 32);
696
697 /* EEPROM image version # is reported as firmware version # for
698 * 82575 controllers */
699 adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data);
700 sprintf(firmware_version, "%d.%d-%d",
701 (eeprom_data & 0xF000) >> 12,
702 (eeprom_data & 0x0FF0) >> 4,
703 eeprom_data & 0x000F);
704
705 strncpy(drvinfo->fw_version, firmware_version, 32);
706 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
707 drvinfo->n_stats = IGB_STATS_LEN;
708 drvinfo->testinfo_len = IGB_TEST_LEN;
709 drvinfo->regdump_len = igb_get_regs_len(netdev);
710 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
711 }
712
713 static void igb_get_ringparam(struct net_device *netdev,
714 struct ethtool_ringparam *ring)
715 {
716 struct igb_adapter *adapter = netdev_priv(netdev);
717
718 ring->rx_max_pending = IGB_MAX_RXD;
719 ring->tx_max_pending = IGB_MAX_TXD;
720 ring->rx_mini_max_pending = 0;
721 ring->rx_jumbo_max_pending = 0;
722 ring->rx_pending = adapter->rx_ring_count;
723 ring->tx_pending = adapter->tx_ring_count;
724 ring->rx_mini_pending = 0;
725 ring->rx_jumbo_pending = 0;
726 }
727
728 static int igb_set_ringparam(struct net_device *netdev,
729 struct ethtool_ringparam *ring)
730 {
731 struct igb_adapter *adapter = netdev_priv(netdev);
732 struct igb_ring *temp_ring;
733 int i, err;
734 u32 new_rx_count, new_tx_count;
735
736 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
737 return -EINVAL;
738
739 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
740 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
741 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
742
743 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
744 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
745 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
746
747 if ((new_tx_count == adapter->tx_ring_count) &&
748 (new_rx_count == adapter->rx_ring_count)) {
749 /* nothing to do */
750 return 0;
751 }
752
753 if (adapter->num_tx_queues > adapter->num_rx_queues)
754 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
755 else
756 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
757 if (!temp_ring)
758 return -ENOMEM;
759
760 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
761 msleep(1);
762
763 if (netif_running(adapter->netdev))
764 igb_down(adapter);
765
766 /*
767 * We can't just free everything and then setup again,
768 * because the ISRs in MSI-X mode get passed pointers
769 * to the tx and rx ring structs.
770 */
771 if (new_tx_count != adapter->tx_ring_count) {
772 memcpy(temp_ring, adapter->tx_ring,
773 adapter->num_tx_queues * sizeof(struct igb_ring));
774
775 for (i = 0; i < adapter->num_tx_queues; i++) {
776 temp_ring[i].count = new_tx_count;
777 err = igb_setup_tx_resources(adapter, &temp_ring[i]);
778 if (err) {
779 while (i) {
780 i--;
781 igb_free_tx_resources(&temp_ring[i]);
782 }
783 goto err_setup;
784 }
785 }
786
787 for (i = 0; i < adapter->num_tx_queues; i++)
788 igb_free_tx_resources(&adapter->tx_ring[i]);
789
790 memcpy(adapter->tx_ring, temp_ring,
791 adapter->num_tx_queues * sizeof(struct igb_ring));
792
793 adapter->tx_ring_count = new_tx_count;
794 }
795
796 if (new_rx_count != adapter->rx_ring->count) {
797 memcpy(temp_ring, adapter->rx_ring,
798 adapter->num_rx_queues * sizeof(struct igb_ring));
799
800 for (i = 0; i < adapter->num_rx_queues; i++) {
801 temp_ring[i].count = new_rx_count;
802 err = igb_setup_rx_resources(adapter, &temp_ring[i]);
803 if (err) {
804 while (i) {
805 i--;
806 igb_free_rx_resources(&temp_ring[i]);
807 }
808 goto err_setup;
809 }
810
811 }
812
813 for (i = 0; i < adapter->num_rx_queues; i++)
814 igb_free_rx_resources(&adapter->rx_ring[i]);
815
816 memcpy(adapter->rx_ring, temp_ring,
817 adapter->num_rx_queues * sizeof(struct igb_ring));
818
819 adapter->rx_ring_count = new_rx_count;
820 }
821
822 err = 0;
823 err_setup:
824 if (netif_running(adapter->netdev))
825 igb_up(adapter);
826
827 clear_bit(__IGB_RESETTING, &adapter->state);
828 vfree(temp_ring);
829 return err;
830 }
831
832 /* ethtool register test data */
833 struct igb_reg_test {
834 u16 reg;
835 u16 reg_offset;
836 u16 array_len;
837 u16 test_type;
838 u32 mask;
839 u32 write;
840 };
841
842 /* In the hardware, registers are laid out either singly, in arrays
843 * spaced 0x100 bytes apart, or in contiguous tables. We assume
844 * most tests take place on arrays or single registers (handled
845 * as a single-element array) and special-case the tables.
846 * Table tests are always pattern tests.
847 *
848 * We also make provision for some required setup steps by specifying
849 * registers to be written without any read-back testing.
850 */
851
852 #define PATTERN_TEST 1
853 #define SET_READ_TEST 2
854 #define WRITE_NO_TEST 3
855 #define TABLE32_TEST 4
856 #define TABLE64_TEST_LO 5
857 #define TABLE64_TEST_HI 6
858
859 /* 82576 reg test */
860 static struct igb_reg_test reg_test_82576[] = {
861 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
862 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
863 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
864 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
865 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
866 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
867 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
868 { E1000_RDBAL(4), 0x40, 8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
869 { E1000_RDBAH(4), 0x40, 8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
870 { E1000_RDLEN(4), 0x40, 8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
871 /* Enable all four RX queues before testing. */
872 { E1000_RXDCTL(0), 0x100, 1, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
873 /* RDH is read-only for 82576, only test RDT. */
874 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
875 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
876 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
877 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
878 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
879 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
880 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
881 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
882 { E1000_TDBAL(4), 0x40, 8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
883 { E1000_TDBAH(4), 0x40, 8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
884 { E1000_TDLEN(4), 0x40, 8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
885 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
886 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
887 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
888 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
889 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
890 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
891 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
892 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
893 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
894 { 0, 0, 0, 0 }
895 };
896
897 /* 82575 register test */
898 static struct igb_reg_test reg_test_82575[] = {
899 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
900 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
901 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
902 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
903 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
904 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
905 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
906 /* Enable all four RX queues before testing. */
907 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
908 /* RDH is read-only for 82575, only test RDT. */
909 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
910 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
911 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
912 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
913 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
914 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
915 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
916 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
917 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
918 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
919 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
920 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
921 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
922 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
923 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
924 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
925 { 0, 0, 0, 0 }
926 };
927
928 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
929 int reg, u32 mask, u32 write)
930 {
931 u32 pat, val;
932 u32 _test[] =
933 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
934 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
935 writel((_test[pat] & write), (adapter->hw.hw_addr + reg));
936 val = readl(adapter->hw.hw_addr + reg);
937 if (val != (_test[pat] & write & mask)) {
938 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
939 "failed: got 0x%08X expected 0x%08X\n",
940 reg, val, (_test[pat] & write & mask));
941 *data = reg;
942 return 1;
943 }
944 }
945 return 0;
946 }
947
948 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
949 int reg, u32 mask, u32 write)
950 {
951 u32 val;
952 writel((write & mask), (adapter->hw.hw_addr + reg));
953 val = readl(adapter->hw.hw_addr + reg);
954 if ((write & mask) != (val & mask)) {
955 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
956 " got 0x%08X expected 0x%08X\n", reg,
957 (val & mask), (write & mask));
958 *data = reg;
959 return 1;
960 }
961 return 0;
962 }
963
964 #define REG_PATTERN_TEST(reg, mask, write) \
965 do { \
966 if (reg_pattern_test(adapter, data, reg, mask, write)) \
967 return 1; \
968 } while (0)
969
970 #define REG_SET_AND_CHECK(reg, mask, write) \
971 do { \
972 if (reg_set_and_check(adapter, data, reg, mask, write)) \
973 return 1; \
974 } while (0)
975
976 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
977 {
978 struct e1000_hw *hw = &adapter->hw;
979 struct igb_reg_test *test;
980 u32 value, before, after;
981 u32 i, toggle;
982
983 toggle = 0x7FFFF3FF;
984
985 switch (adapter->hw.mac.type) {
986 case e1000_82576:
987 test = reg_test_82576;
988 break;
989 default:
990 test = reg_test_82575;
991 break;
992 }
993
994 /* Because the status register is such a special case,
995 * we handle it separately from the rest of the register
996 * tests. Some bits are read-only, some toggle, and some
997 * are writable on newer MACs.
998 */
999 before = rd32(E1000_STATUS);
1000 value = (rd32(E1000_STATUS) & toggle);
1001 wr32(E1000_STATUS, toggle);
1002 after = rd32(E1000_STATUS) & toggle;
1003 if (value != after) {
1004 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1005 "got: 0x%08X expected: 0x%08X\n", after, value);
1006 *data = 1;
1007 return 1;
1008 }
1009 /* restore previous status */
1010 wr32(E1000_STATUS, before);
1011
1012 /* Perform the remainder of the register test, looping through
1013 * the test table until we either fail or reach the null entry.
1014 */
1015 while (test->reg) {
1016 for (i = 0; i < test->array_len; i++) {
1017 switch (test->test_type) {
1018 case PATTERN_TEST:
1019 REG_PATTERN_TEST(test->reg + (i * test->reg_offset),
1020 test->mask,
1021 test->write);
1022 break;
1023 case SET_READ_TEST:
1024 REG_SET_AND_CHECK(test->reg + (i * test->reg_offset),
1025 test->mask,
1026 test->write);
1027 break;
1028 case WRITE_NO_TEST:
1029 writel(test->write,
1030 (adapter->hw.hw_addr + test->reg)
1031 + (i * test->reg_offset));
1032 break;
1033 case TABLE32_TEST:
1034 REG_PATTERN_TEST(test->reg + (i * 4),
1035 test->mask,
1036 test->write);
1037 break;
1038 case TABLE64_TEST_LO:
1039 REG_PATTERN_TEST(test->reg + (i * 8),
1040 test->mask,
1041 test->write);
1042 break;
1043 case TABLE64_TEST_HI:
1044 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1045 test->mask,
1046 test->write);
1047 break;
1048 }
1049 }
1050 test++;
1051 }
1052
1053 *data = 0;
1054 return 0;
1055 }
1056
1057 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1058 {
1059 u16 temp;
1060 u16 checksum = 0;
1061 u16 i;
1062
1063 *data = 0;
1064 /* Read and add up the contents of the EEPROM */
1065 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1066 if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp))
1067 < 0) {
1068 *data = 1;
1069 break;
1070 }
1071 checksum += temp;
1072 }
1073
1074 /* If Checksum is not Correct return error else test passed */
1075 if ((checksum != (u16) NVM_SUM) && !(*data))
1076 *data = 2;
1077
1078 return *data;
1079 }
1080
1081 static irqreturn_t igb_test_intr(int irq, void *data)
1082 {
1083 struct net_device *netdev = (struct net_device *) data;
1084 struct igb_adapter *adapter = netdev_priv(netdev);
1085 struct e1000_hw *hw = &adapter->hw;
1086
1087 adapter->test_icr |= rd32(E1000_ICR);
1088
1089 return IRQ_HANDLED;
1090 }
1091
1092 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1093 {
1094 struct e1000_hw *hw = &adapter->hw;
1095 struct net_device *netdev = adapter->netdev;
1096 u32 mask, i = 0, shared_int = true;
1097 u32 irq = adapter->pdev->irq;
1098
1099 *data = 0;
1100
1101 /* Hook up test interrupt handler just for this test */
1102 if (adapter->msix_entries) {
1103 /* NOTE: we don't test MSI-X interrupts here, yet */
1104 return 0;
1105 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1106 shared_int = false;
1107 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1108 *data = 1;
1109 return -1;
1110 }
1111 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1112 netdev->name, netdev)) {
1113 shared_int = false;
1114 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1115 netdev->name, netdev)) {
1116 *data = 1;
1117 return -1;
1118 }
1119 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1120 (shared_int ? "shared" : "unshared"));
1121
1122 /* Disable all the interrupts */
1123 wr32(E1000_IMC, 0xFFFFFFFF);
1124 msleep(10);
1125
1126 /* Test each interrupt */
1127 for (; i < 10; i++) {
1128 /* Interrupt to test */
1129 mask = 1 << i;
1130
1131 if (!shared_int) {
1132 /* Disable the interrupt to be reported in
1133 * the cause register and then force the same
1134 * interrupt and see if one gets posted. If
1135 * an interrupt was posted to the bus, the
1136 * test failed.
1137 */
1138 adapter->test_icr = 0;
1139 wr32(E1000_IMC, ~mask & 0x00007FFF);
1140 wr32(E1000_ICS, ~mask & 0x00007FFF);
1141 msleep(10);
1142
1143 if (adapter->test_icr & mask) {
1144 *data = 3;
1145 break;
1146 }
1147 }
1148
1149 /* Enable the interrupt to be reported in
1150 * the cause register and then force the same
1151 * interrupt and see if one gets posted. If
1152 * an interrupt was not posted to the bus, the
1153 * test failed.
1154 */
1155 adapter->test_icr = 0;
1156 wr32(E1000_IMS, mask);
1157 wr32(E1000_ICS, mask);
1158 msleep(10);
1159
1160 if (!(adapter->test_icr & mask)) {
1161 *data = 4;
1162 break;
1163 }
1164
1165 if (!shared_int) {
1166 /* Disable the other interrupts to be reported in
1167 * the cause register and then force the other
1168 * interrupts and see if any get posted. If
1169 * an interrupt was posted to the bus, the
1170 * test failed.
1171 */
1172 adapter->test_icr = 0;
1173 wr32(E1000_IMC, ~mask & 0x00007FFF);
1174 wr32(E1000_ICS, ~mask & 0x00007FFF);
1175 msleep(10);
1176
1177 if (adapter->test_icr) {
1178 *data = 5;
1179 break;
1180 }
1181 }
1182 }
1183
1184 /* Disable all the interrupts */
1185 wr32(E1000_IMC, 0xFFFFFFFF);
1186 msleep(10);
1187
1188 /* Unhook test interrupt handler */
1189 free_irq(irq, netdev);
1190
1191 return *data;
1192 }
1193
1194 static void igb_free_desc_rings(struct igb_adapter *adapter)
1195 {
1196 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1197 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1198 struct pci_dev *pdev = adapter->pdev;
1199 int i;
1200
1201 if (tx_ring->desc && tx_ring->buffer_info) {
1202 for (i = 0; i < tx_ring->count; i++) {
1203 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1204 if (buf->dma)
1205 pci_unmap_single(pdev, buf->dma, buf->length,
1206 PCI_DMA_TODEVICE);
1207 if (buf->skb)
1208 dev_kfree_skb(buf->skb);
1209 }
1210 }
1211
1212 if (rx_ring->desc && rx_ring->buffer_info) {
1213 for (i = 0; i < rx_ring->count; i++) {
1214 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1215 if (buf->dma)
1216 pci_unmap_single(pdev, buf->dma,
1217 IGB_RXBUFFER_2048,
1218 PCI_DMA_FROMDEVICE);
1219 if (buf->skb)
1220 dev_kfree_skb(buf->skb);
1221 }
1222 }
1223
1224 if (tx_ring->desc) {
1225 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1226 tx_ring->dma);
1227 tx_ring->desc = NULL;
1228 }
1229 if (rx_ring->desc) {
1230 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1231 rx_ring->dma);
1232 rx_ring->desc = NULL;
1233 }
1234
1235 kfree(tx_ring->buffer_info);
1236 tx_ring->buffer_info = NULL;
1237 kfree(rx_ring->buffer_info);
1238 rx_ring->buffer_info = NULL;
1239
1240 return;
1241 }
1242
1243 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1244 {
1245 struct e1000_hw *hw = &adapter->hw;
1246 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1247 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1248 struct pci_dev *pdev = adapter->pdev;
1249 u32 rctl;
1250 int i, ret_val;
1251
1252 /* Setup Tx descriptor ring and Tx buffers */
1253
1254 if (!tx_ring->count)
1255 tx_ring->count = IGB_DEFAULT_TXD;
1256
1257 tx_ring->buffer_info = kcalloc(tx_ring->count,
1258 sizeof(struct igb_buffer),
1259 GFP_KERNEL);
1260 if (!tx_ring->buffer_info) {
1261 ret_val = 1;
1262 goto err_nomem;
1263 }
1264
1265 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1266 tx_ring->size = ALIGN(tx_ring->size, 4096);
1267 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1268 &tx_ring->dma);
1269 if (!tx_ring->desc) {
1270 ret_val = 2;
1271 goto err_nomem;
1272 }
1273 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1274
1275 wr32(E1000_TDBAL(0),
1276 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1277 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1278 wr32(E1000_TDLEN(0),
1279 tx_ring->count * sizeof(struct e1000_tx_desc));
1280 wr32(E1000_TDH(0), 0);
1281 wr32(E1000_TDT(0), 0);
1282 wr32(E1000_TCTL,
1283 E1000_TCTL_PSP | E1000_TCTL_EN |
1284 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1285 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1286
1287 for (i = 0; i < tx_ring->count; i++) {
1288 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1289 struct sk_buff *skb;
1290 unsigned int size = 1024;
1291
1292 skb = alloc_skb(size, GFP_KERNEL);
1293 if (!skb) {
1294 ret_val = 3;
1295 goto err_nomem;
1296 }
1297 skb_put(skb, size);
1298 tx_ring->buffer_info[i].skb = skb;
1299 tx_ring->buffer_info[i].length = skb->len;
1300 tx_ring->buffer_info[i].dma =
1301 pci_map_single(pdev, skb->data, skb->len,
1302 PCI_DMA_TODEVICE);
1303 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1304 tx_desc->lower.data = cpu_to_le32(skb->len);
1305 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1306 E1000_TXD_CMD_IFCS |
1307 E1000_TXD_CMD_RS);
1308 tx_desc->upper.data = 0;
1309 }
1310
1311 /* Setup Rx descriptor ring and Rx buffers */
1312
1313 if (!rx_ring->count)
1314 rx_ring->count = IGB_DEFAULT_RXD;
1315
1316 rx_ring->buffer_info = kcalloc(rx_ring->count,
1317 sizeof(struct igb_buffer),
1318 GFP_KERNEL);
1319 if (!rx_ring->buffer_info) {
1320 ret_val = 4;
1321 goto err_nomem;
1322 }
1323
1324 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1325 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1326 &rx_ring->dma);
1327 if (!rx_ring->desc) {
1328 ret_val = 5;
1329 goto err_nomem;
1330 }
1331 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1332
1333 rctl = rd32(E1000_RCTL);
1334 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1335 wr32(E1000_RDBAL(0),
1336 ((u64) rx_ring->dma & 0xFFFFFFFF));
1337 wr32(E1000_RDBAH(0),
1338 ((u64) rx_ring->dma >> 32));
1339 wr32(E1000_RDLEN(0), rx_ring->size);
1340 wr32(E1000_RDH(0), 0);
1341 wr32(E1000_RDT(0), 0);
1342 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1343 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1344 E1000_RCTL_RDMTS_HALF |
1345 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1346 wr32(E1000_RCTL, rctl);
1347 wr32(E1000_SRRCTL(0), 0);
1348
1349 for (i = 0; i < rx_ring->count; i++) {
1350 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1351 struct sk_buff *skb;
1352
1353 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1354 GFP_KERNEL);
1355 if (!skb) {
1356 ret_val = 6;
1357 goto err_nomem;
1358 }
1359 skb_reserve(skb, NET_IP_ALIGN);
1360 rx_ring->buffer_info[i].skb = skb;
1361 rx_ring->buffer_info[i].dma =
1362 pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048,
1363 PCI_DMA_FROMDEVICE);
1364 rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma);
1365 memset(skb->data, 0x00, skb->len);
1366 }
1367
1368 return 0;
1369
1370 err_nomem:
1371 igb_free_desc_rings(adapter);
1372 return ret_val;
1373 }
1374
1375 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1376 {
1377 struct e1000_hw *hw = &adapter->hw;
1378
1379 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1380 igb_write_phy_reg(hw, 29, 0x001F);
1381 igb_write_phy_reg(hw, 30, 0x8FFC);
1382 igb_write_phy_reg(hw, 29, 0x001A);
1383 igb_write_phy_reg(hw, 30, 0x8FF0);
1384 }
1385
1386 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1387 {
1388 struct e1000_hw *hw = &adapter->hw;
1389 u32 ctrl_reg = 0;
1390 u32 stat_reg = 0;
1391
1392 hw->mac.autoneg = false;
1393
1394 if (hw->phy.type == e1000_phy_m88) {
1395 /* Auto-MDI/MDIX Off */
1396 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1397 /* reset to update Auto-MDI/MDIX */
1398 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1399 /* autoneg off */
1400 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1401 }
1402
1403 ctrl_reg = rd32(E1000_CTRL);
1404
1405 /* force 1000, set loopback */
1406 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1407
1408 /* Now set up the MAC to the same speed/duplex as the PHY. */
1409 ctrl_reg = rd32(E1000_CTRL);
1410 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1411 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1412 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1413 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1414 E1000_CTRL_FD); /* Force Duplex to FULL */
1415
1416 if (hw->phy.media_type == e1000_media_type_copper &&
1417 hw->phy.type == e1000_phy_m88)
1418 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1419 else {
1420 /* Set the ILOS bit on the fiber Nic if half duplex link is
1421 * detected. */
1422 stat_reg = rd32(E1000_STATUS);
1423 if ((stat_reg & E1000_STATUS_FD) == 0)
1424 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1425 }
1426
1427 wr32(E1000_CTRL, ctrl_reg);
1428
1429 /* Disable the receiver on the PHY so when a cable is plugged in, the
1430 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1431 */
1432 if (hw->phy.type == e1000_phy_m88)
1433 igb_phy_disable_receiver(adapter);
1434
1435 udelay(500);
1436
1437 return 0;
1438 }
1439
1440 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1441 {
1442 return igb_integrated_phy_loopback(adapter);
1443 }
1444
1445 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1446 {
1447 struct e1000_hw *hw = &adapter->hw;
1448 u32 reg;
1449
1450 if (hw->phy.media_type == e1000_media_type_fiber ||
1451 hw->phy.media_type == e1000_media_type_internal_serdes) {
1452 reg = rd32(E1000_RCTL);
1453 reg |= E1000_RCTL_LBM_TCVR;
1454 wr32(E1000_RCTL, reg);
1455
1456 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1457
1458 reg = rd32(E1000_CTRL);
1459 reg &= ~(E1000_CTRL_RFCE |
1460 E1000_CTRL_TFCE |
1461 E1000_CTRL_LRST);
1462 reg |= E1000_CTRL_SLU |
1463 E1000_CTRL_FD;
1464 wr32(E1000_CTRL, reg);
1465
1466 /* Unset switch control to serdes energy detect */
1467 reg = rd32(E1000_CONNSW);
1468 reg &= ~E1000_CONNSW_ENRGSRC;
1469 wr32(E1000_CONNSW, reg);
1470
1471 /* Set PCS register for forced speed */
1472 reg = rd32(E1000_PCS_LCTL);
1473 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1474 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1475 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1476 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1477 E1000_PCS_LCTL_FSD | /* Force Speed */
1478 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1479 wr32(E1000_PCS_LCTL, reg);
1480
1481 return 0;
1482 } else if (hw->phy.media_type == e1000_media_type_copper) {
1483 return igb_set_phy_loopback(adapter);
1484 }
1485
1486 return 7;
1487 }
1488
1489 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1490 {
1491 struct e1000_hw *hw = &adapter->hw;
1492 u32 rctl;
1493 u16 phy_reg;
1494
1495 rctl = rd32(E1000_RCTL);
1496 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1497 wr32(E1000_RCTL, rctl);
1498
1499 hw->mac.autoneg = true;
1500 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1501 if (phy_reg & MII_CR_LOOPBACK) {
1502 phy_reg &= ~MII_CR_LOOPBACK;
1503 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1504 igb_phy_sw_reset(hw);
1505 }
1506 }
1507
1508 static void igb_create_lbtest_frame(struct sk_buff *skb,
1509 unsigned int frame_size)
1510 {
1511 memset(skb->data, 0xFF, frame_size);
1512 frame_size &= ~1;
1513 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1514 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1515 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1516 }
1517
1518 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1519 {
1520 frame_size &= ~1;
1521 if (*(skb->data + 3) == 0xFF)
1522 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1523 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1524 return 0;
1525 return 13;
1526 }
1527
1528 static int igb_run_loopback_test(struct igb_adapter *adapter)
1529 {
1530 struct e1000_hw *hw = &adapter->hw;
1531 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1532 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1533 struct pci_dev *pdev = adapter->pdev;
1534 int i, j, k, l, lc, good_cnt;
1535 int ret_val = 0;
1536 unsigned long time;
1537
1538 wr32(E1000_RDT(0), rx_ring->count - 1);
1539
1540 /* Calculate the loop count based on the largest descriptor ring
1541 * The idea is to wrap the largest ring a number of times using 64
1542 * send/receive pairs during each loop
1543 */
1544
1545 if (rx_ring->count <= tx_ring->count)
1546 lc = ((tx_ring->count / 64) * 2) + 1;
1547 else
1548 lc = ((rx_ring->count / 64) * 2) + 1;
1549
1550 k = l = 0;
1551 for (j = 0; j <= lc; j++) { /* loop count loop */
1552 for (i = 0; i < 64; i++) { /* send the packets */
1553 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1554 1024);
1555 pci_dma_sync_single_for_device(pdev,
1556 tx_ring->buffer_info[k].dma,
1557 tx_ring->buffer_info[k].length,
1558 PCI_DMA_TODEVICE);
1559 k++;
1560 if (k == tx_ring->count)
1561 k = 0;
1562 }
1563 wr32(E1000_TDT(0), k);
1564 msleep(200);
1565 time = jiffies; /* set the start time for the receive */
1566 good_cnt = 0;
1567 do { /* receive the sent packets */
1568 pci_dma_sync_single_for_cpu(pdev,
1569 rx_ring->buffer_info[l].dma,
1570 IGB_RXBUFFER_2048,
1571 PCI_DMA_FROMDEVICE);
1572
1573 ret_val = igb_check_lbtest_frame(
1574 rx_ring->buffer_info[l].skb, 1024);
1575 if (!ret_val)
1576 good_cnt++;
1577 l++;
1578 if (l == rx_ring->count)
1579 l = 0;
1580 /* time + 20 msecs (200 msecs on 2.4) is more than
1581 * enough time to complete the receives, if it's
1582 * exceeded, break and error off
1583 */
1584 } while (good_cnt < 64 && jiffies < (time + 20));
1585 if (good_cnt != 64) {
1586 ret_val = 13; /* ret_val is the same as mis-compare */
1587 break;
1588 }
1589 if (jiffies >= (time + 20)) {
1590 ret_val = 14; /* error code for time out error */
1591 break;
1592 }
1593 } /* end loop count loop */
1594 return ret_val;
1595 }
1596
1597 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1598 {
1599 /* PHY loopback cannot be performed if SoL/IDER
1600 * sessions are active */
1601 if (igb_check_reset_block(&adapter->hw)) {
1602 dev_err(&adapter->pdev->dev,
1603 "Cannot do PHY loopback test "
1604 "when SoL/IDER is active.\n");
1605 *data = 0;
1606 goto out;
1607 }
1608 *data = igb_setup_desc_rings(adapter);
1609 if (*data)
1610 goto out;
1611 *data = igb_setup_loopback_test(adapter);
1612 if (*data)
1613 goto err_loopback;
1614 *data = igb_run_loopback_test(adapter);
1615 igb_loopback_cleanup(adapter);
1616
1617 err_loopback:
1618 igb_free_desc_rings(adapter);
1619 out:
1620 return *data;
1621 }
1622
1623 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1624 {
1625 struct e1000_hw *hw = &adapter->hw;
1626 *data = 0;
1627 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1628 int i = 0;
1629 hw->mac.serdes_has_link = false;
1630
1631 /* On some blade server designs, link establishment
1632 * could take as long as 2-3 minutes */
1633 do {
1634 hw->mac.ops.check_for_link(&adapter->hw);
1635 if (hw->mac.serdes_has_link)
1636 return *data;
1637 msleep(20);
1638 } while (i++ < 3750);
1639
1640 *data = 1;
1641 } else {
1642 hw->mac.ops.check_for_link(&adapter->hw);
1643 if (hw->mac.autoneg)
1644 msleep(4000);
1645
1646 if (!(rd32(E1000_STATUS) &
1647 E1000_STATUS_LU))
1648 *data = 1;
1649 }
1650 return *data;
1651 }
1652
1653 static void igb_diag_test(struct net_device *netdev,
1654 struct ethtool_test *eth_test, u64 *data)
1655 {
1656 struct igb_adapter *adapter = netdev_priv(netdev);
1657 u16 autoneg_advertised;
1658 u8 forced_speed_duplex, autoneg;
1659 bool if_running = netif_running(netdev);
1660
1661 set_bit(__IGB_TESTING, &adapter->state);
1662 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1663 /* Offline tests */
1664
1665 /* save speed, duplex, autoneg settings */
1666 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1667 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1668 autoneg = adapter->hw.mac.autoneg;
1669
1670 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1671
1672 /* Link test performed before hardware reset so autoneg doesn't
1673 * interfere with test result */
1674 if (igb_link_test(adapter, &data[4]))
1675 eth_test->flags |= ETH_TEST_FL_FAILED;
1676
1677 if (if_running)
1678 /* indicate we're in test mode */
1679 dev_close(netdev);
1680 else
1681 igb_reset(adapter);
1682
1683 if (igb_reg_test(adapter, &data[0]))
1684 eth_test->flags |= ETH_TEST_FL_FAILED;
1685
1686 igb_reset(adapter);
1687 if (igb_eeprom_test(adapter, &data[1]))
1688 eth_test->flags |= ETH_TEST_FL_FAILED;
1689
1690 igb_reset(adapter);
1691 if (igb_intr_test(adapter, &data[2]))
1692 eth_test->flags |= ETH_TEST_FL_FAILED;
1693
1694 igb_reset(adapter);
1695 if (igb_loopback_test(adapter, &data[3]))
1696 eth_test->flags |= ETH_TEST_FL_FAILED;
1697
1698 /* restore speed, duplex, autoneg settings */
1699 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1700 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1701 adapter->hw.mac.autoneg = autoneg;
1702
1703 /* force this routine to wait until autoneg complete/timeout */
1704 adapter->hw.phy.autoneg_wait_to_complete = true;
1705 igb_reset(adapter);
1706 adapter->hw.phy.autoneg_wait_to_complete = false;
1707
1708 clear_bit(__IGB_TESTING, &adapter->state);
1709 if (if_running)
1710 dev_open(netdev);
1711 } else {
1712 dev_info(&adapter->pdev->dev, "online testing starting\n");
1713 /* Online tests */
1714 if (igb_link_test(adapter, &data[4]))
1715 eth_test->flags |= ETH_TEST_FL_FAILED;
1716
1717 /* Online tests aren't run; pass by default */
1718 data[0] = 0;
1719 data[1] = 0;
1720 data[2] = 0;
1721 data[3] = 0;
1722
1723 clear_bit(__IGB_TESTING, &adapter->state);
1724 }
1725 msleep_interruptible(4 * 1000);
1726 }
1727
1728 static int igb_wol_exclusion(struct igb_adapter *adapter,
1729 struct ethtool_wolinfo *wol)
1730 {
1731 struct e1000_hw *hw = &adapter->hw;
1732 int retval = 1; /* fail by default */
1733
1734 switch (hw->device_id) {
1735 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1736 /* WoL not supported */
1737 wol->supported = 0;
1738 break;
1739 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1740 case E1000_DEV_ID_82576_FIBER:
1741 case E1000_DEV_ID_82576_SERDES:
1742 /* Wake events not supported on port B */
1743 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1744 wol->supported = 0;
1745 break;
1746 }
1747 /* return success for non excluded adapter ports */
1748 retval = 0;
1749 break;
1750 default:
1751 /* dual port cards only support WoL on port A from now on
1752 * unless it was enabled in the eeprom for port B
1753 * so exclude FUNC_1 ports from having WoL enabled */
1754 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1755 !adapter->eeprom_wol) {
1756 wol->supported = 0;
1757 break;
1758 }
1759
1760 retval = 0;
1761 }
1762
1763 return retval;
1764 }
1765
1766 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1767 {
1768 struct igb_adapter *adapter = netdev_priv(netdev);
1769
1770 wol->supported = WAKE_UCAST | WAKE_MCAST |
1771 WAKE_BCAST | WAKE_MAGIC;
1772 wol->wolopts = 0;
1773
1774 /* this function will set ->supported = 0 and return 1 if wol is not
1775 * supported by this hardware */
1776 if (igb_wol_exclusion(adapter, wol) ||
1777 !device_can_wakeup(&adapter->pdev->dev))
1778 return;
1779
1780 /* apply any specific unsupported masks here */
1781 switch (adapter->hw.device_id) {
1782 default:
1783 break;
1784 }
1785
1786 if (adapter->wol & E1000_WUFC_EX)
1787 wol->wolopts |= WAKE_UCAST;
1788 if (adapter->wol & E1000_WUFC_MC)
1789 wol->wolopts |= WAKE_MCAST;
1790 if (adapter->wol & E1000_WUFC_BC)
1791 wol->wolopts |= WAKE_BCAST;
1792 if (adapter->wol & E1000_WUFC_MAG)
1793 wol->wolopts |= WAKE_MAGIC;
1794
1795 return;
1796 }
1797
1798 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1799 {
1800 struct igb_adapter *adapter = netdev_priv(netdev);
1801 struct e1000_hw *hw = &adapter->hw;
1802
1803 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1804 return -EOPNOTSUPP;
1805
1806 if (igb_wol_exclusion(adapter, wol) ||
1807 !device_can_wakeup(&adapter->pdev->dev))
1808 return wol->wolopts ? -EOPNOTSUPP : 0;
1809
1810 switch (hw->device_id) {
1811 default:
1812 break;
1813 }
1814
1815 /* these settings will always override what we currently have */
1816 adapter->wol = 0;
1817
1818 if (wol->wolopts & WAKE_UCAST)
1819 adapter->wol |= E1000_WUFC_EX;
1820 if (wol->wolopts & WAKE_MCAST)
1821 adapter->wol |= E1000_WUFC_MC;
1822 if (wol->wolopts & WAKE_BCAST)
1823 adapter->wol |= E1000_WUFC_BC;
1824 if (wol->wolopts & WAKE_MAGIC)
1825 adapter->wol |= E1000_WUFC_MAG;
1826
1827 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1828
1829 return 0;
1830 }
1831
1832 /* toggle LED 4 times per second = 2 "blinks" per second */
1833 #define IGB_ID_INTERVAL (HZ/4)
1834
1835 /* bit defines for adapter->led_status */
1836 #define IGB_LED_ON 0
1837
1838 static int igb_phys_id(struct net_device *netdev, u32 data)
1839 {
1840 struct igb_adapter *adapter = netdev_priv(netdev);
1841 struct e1000_hw *hw = &adapter->hw;
1842
1843 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1844 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1845
1846 igb_blink_led(hw);
1847 msleep_interruptible(data * 1000);
1848
1849 igb_led_off(hw);
1850 clear_bit(IGB_LED_ON, &adapter->led_status);
1851 igb_cleanup_led(hw);
1852
1853 return 0;
1854 }
1855
1856 static int igb_set_coalesce(struct net_device *netdev,
1857 struct ethtool_coalesce *ec)
1858 {
1859 struct igb_adapter *adapter = netdev_priv(netdev);
1860 struct e1000_hw *hw = &adapter->hw;
1861 int i;
1862
1863 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1864 ((ec->rx_coalesce_usecs > 3) &&
1865 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1866 (ec->rx_coalesce_usecs == 2))
1867 return -EINVAL;
1868
1869 /* convert to rate of irq's per second */
1870 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1871 adapter->itr_setting = ec->rx_coalesce_usecs;
1872 adapter->itr = IGB_START_ITR;
1873 } else {
1874 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1875 adapter->itr = adapter->itr_setting;
1876 }
1877
1878 for (i = 0; i < adapter->num_rx_queues; i++)
1879 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
1880
1881 return 0;
1882 }
1883
1884 static int igb_get_coalesce(struct net_device *netdev,
1885 struct ethtool_coalesce *ec)
1886 {
1887 struct igb_adapter *adapter = netdev_priv(netdev);
1888
1889 if (adapter->itr_setting <= 3)
1890 ec->rx_coalesce_usecs = adapter->itr_setting;
1891 else
1892 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1893
1894 return 0;
1895 }
1896
1897
1898 static int igb_nway_reset(struct net_device *netdev)
1899 {
1900 struct igb_adapter *adapter = netdev_priv(netdev);
1901 if (netif_running(netdev))
1902 igb_reinit_locked(adapter);
1903 return 0;
1904 }
1905
1906 static int igb_get_sset_count(struct net_device *netdev, int sset)
1907 {
1908 switch (sset) {
1909 case ETH_SS_STATS:
1910 return IGB_STATS_LEN;
1911 case ETH_SS_TEST:
1912 return IGB_TEST_LEN;
1913 default:
1914 return -ENOTSUPP;
1915 }
1916 }
1917
1918 static void igb_get_ethtool_stats(struct net_device *netdev,
1919 struct ethtool_stats *stats, u64 *data)
1920 {
1921 struct igb_adapter *adapter = netdev_priv(netdev);
1922 u64 *queue_stat;
1923 int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1924 int j;
1925 int i;
1926 #ifdef CONFIG_IGB_LRO
1927 int aggregated = 0, flushed = 0, no_desc = 0;
1928
1929 for (i = 0; i < adapter->num_rx_queues; i++) {
1930 aggregated += adapter->rx_ring[i].lro_mgr.stats.aggregated;
1931 flushed += adapter->rx_ring[i].lro_mgr.stats.flushed;
1932 no_desc += adapter->rx_ring[i].lro_mgr.stats.no_desc;
1933 }
1934 adapter->lro_aggregated = aggregated;
1935 adapter->lro_flushed = flushed;
1936 adapter->lro_no_desc = no_desc;
1937 #endif
1938
1939 igb_update_stats(adapter);
1940 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1941 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1942 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1943 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1944 }
1945 for (j = 0; j < adapter->num_tx_queues; j++) {
1946 int k;
1947 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1948 for (k = 0; k < stat_count; k++)
1949 data[i + k] = queue_stat[k];
1950 i += k;
1951 }
1952 for (j = 0; j < adapter->num_rx_queues; j++) {
1953 int k;
1954 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1955 for (k = 0; k < stat_count; k++)
1956 data[i + k] = queue_stat[k];
1957 i += k;
1958 }
1959 }
1960
1961 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1962 {
1963 struct igb_adapter *adapter = netdev_priv(netdev);
1964 u8 *p = data;
1965 int i;
1966
1967 switch (stringset) {
1968 case ETH_SS_TEST:
1969 memcpy(data, *igb_gstrings_test,
1970 IGB_TEST_LEN*ETH_GSTRING_LEN);
1971 break;
1972 case ETH_SS_STATS:
1973 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1974 memcpy(p, igb_gstrings_stats[i].stat_string,
1975 ETH_GSTRING_LEN);
1976 p += ETH_GSTRING_LEN;
1977 }
1978 for (i = 0; i < adapter->num_tx_queues; i++) {
1979 sprintf(p, "tx_queue_%u_packets", i);
1980 p += ETH_GSTRING_LEN;
1981 sprintf(p, "tx_queue_%u_bytes", i);
1982 p += ETH_GSTRING_LEN;
1983 }
1984 for (i = 0; i < adapter->num_rx_queues; i++) {
1985 sprintf(p, "rx_queue_%u_packets", i);
1986 p += ETH_GSTRING_LEN;
1987 sprintf(p, "rx_queue_%u_bytes", i);
1988 p += ETH_GSTRING_LEN;
1989 }
1990 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1991 break;
1992 }
1993 }
1994
1995 static struct ethtool_ops igb_ethtool_ops = {
1996 .get_settings = igb_get_settings,
1997 .set_settings = igb_set_settings,
1998 .get_drvinfo = igb_get_drvinfo,
1999 .get_regs_len = igb_get_regs_len,
2000 .get_regs = igb_get_regs,
2001 .get_wol = igb_get_wol,
2002 .set_wol = igb_set_wol,
2003 .get_msglevel = igb_get_msglevel,
2004 .set_msglevel = igb_set_msglevel,
2005 .nway_reset = igb_nway_reset,
2006 .get_link = ethtool_op_get_link,
2007 .get_eeprom_len = igb_get_eeprom_len,
2008 .get_eeprom = igb_get_eeprom,
2009 .set_eeprom = igb_set_eeprom,
2010 .get_ringparam = igb_get_ringparam,
2011 .set_ringparam = igb_set_ringparam,
2012 .get_pauseparam = igb_get_pauseparam,
2013 .set_pauseparam = igb_set_pauseparam,
2014 .get_rx_csum = igb_get_rx_csum,
2015 .set_rx_csum = igb_set_rx_csum,
2016 .get_tx_csum = igb_get_tx_csum,
2017 .set_tx_csum = igb_set_tx_csum,
2018 .get_sg = ethtool_op_get_sg,
2019 .set_sg = ethtool_op_set_sg,
2020 .get_tso = ethtool_op_get_tso,
2021 .set_tso = igb_set_tso,
2022 .self_test = igb_diag_test,
2023 .get_strings = igb_get_strings,
2024 .phys_id = igb_phys_id,
2025 .get_sset_count = igb_get_sset_count,
2026 .get_ethtool_stats = igb_get_ethtool_stats,
2027 .get_coalesce = igb_get_coalesce,
2028 .set_coalesce = igb_set_coalesce,
2029 };
2030
2031 void igb_set_ethtool_ops(struct net_device *netdev)
2032 {
2033 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2034 }
This page took 0.075778 seconds and 5 git commands to generate.