drivers/net: return operator cleanup
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/net_tstamp.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/if_ether.h>
47 #include <linux/aer.h>
48 #ifdef CONFIG_IGB_DCA
49 #include <linux/dca.h>
50 #endif
51 #include "igb.h"
52
53 #define DRV_VERSION "2.1.0-k2"
54 char igb_driver_name[] = "igb";
55 char igb_driver_version[] = DRV_VERSION;
56 static const char igb_driver_string[] =
57 "Intel(R) Gigabit Ethernet Network Driver";
58 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59
60 static const struct e1000_info *igb_info_tbl[] = {
61 [board_82575] = &e1000_82575_info,
62 };
63
64 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
87 /* required last entry */
88 {0, }
89 };
90
91 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
92
93 void igb_reset(struct igb_adapter *);
94 static int igb_setup_all_tx_resources(struct igb_adapter *);
95 static int igb_setup_all_rx_resources(struct igb_adapter *);
96 static void igb_free_all_tx_resources(struct igb_adapter *);
97 static void igb_free_all_rx_resources(struct igb_adapter *);
98 static void igb_setup_mrqc(struct igb_adapter *);
99 void igb_update_stats(struct igb_adapter *);
100 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
101 static void __devexit igb_remove(struct pci_dev *pdev);
102 static int igb_sw_init(struct igb_adapter *);
103 static int igb_open(struct net_device *);
104 static int igb_close(struct net_device *);
105 static void igb_configure_tx(struct igb_adapter *);
106 static void igb_configure_rx(struct igb_adapter *);
107 static void igb_clean_all_tx_rings(struct igb_adapter *);
108 static void igb_clean_all_rx_rings(struct igb_adapter *);
109 static void igb_clean_tx_ring(struct igb_ring *);
110 static void igb_clean_rx_ring(struct igb_ring *);
111 static void igb_set_rx_mode(struct net_device *);
112 static void igb_update_phy_info(unsigned long);
113 static void igb_watchdog(unsigned long);
114 static void igb_watchdog_task(struct work_struct *);
115 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
116 static struct net_device_stats *igb_get_stats(struct net_device *);
117 static int igb_change_mtu(struct net_device *, int);
118 static int igb_set_mac(struct net_device *, void *);
119 static void igb_set_uta(struct igb_adapter *adapter);
120 static irqreturn_t igb_intr(int irq, void *);
121 static irqreturn_t igb_intr_msi(int irq, void *);
122 static irqreturn_t igb_msix_other(int irq, void *);
123 static irqreturn_t igb_msix_ring(int irq, void *);
124 #ifdef CONFIG_IGB_DCA
125 static void igb_update_dca(struct igb_q_vector *);
126 static void igb_setup_dca(struct igb_adapter *);
127 #endif /* CONFIG_IGB_DCA */
128 static bool igb_clean_tx_irq(struct igb_q_vector *);
129 static int igb_poll(struct napi_struct *, int);
130 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
131 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
132 static void igb_tx_timeout(struct net_device *);
133 static void igb_reset_task(struct work_struct *);
134 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
135 static void igb_vlan_rx_add_vid(struct net_device *, u16);
136 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
137 static void igb_restore_vlan(struct igb_adapter *);
138 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
139 static void igb_ping_all_vfs(struct igb_adapter *);
140 static void igb_msg_task(struct igb_adapter *);
141 static void igb_vmm_control(struct igb_adapter *);
142 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
143 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
144 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
145 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
146 int vf, u16 vlan, u8 qos);
147 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
148 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
149 struct ifla_vf_info *ivi);
150
151 #ifdef CONFIG_PM
152 static int igb_suspend(struct pci_dev *, pm_message_t);
153 static int igb_resume(struct pci_dev *);
154 #endif
155 static void igb_shutdown(struct pci_dev *);
156 #ifdef CONFIG_IGB_DCA
157 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
158 static struct notifier_block dca_notifier = {
159 .notifier_call = igb_notify_dca,
160 .next = NULL,
161 .priority = 0
162 };
163 #endif
164 #ifdef CONFIG_NET_POLL_CONTROLLER
165 /* for netdump / net console */
166 static void igb_netpoll(struct net_device *);
167 #endif
168 #ifdef CONFIG_PCI_IOV
169 static unsigned int max_vfs = 0;
170 module_param(max_vfs, uint, 0);
171 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
172 "per physical function");
173 #endif /* CONFIG_PCI_IOV */
174
175 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
176 pci_channel_state_t);
177 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
178 static void igb_io_resume(struct pci_dev *);
179
180 static struct pci_error_handlers igb_err_handler = {
181 .error_detected = igb_io_error_detected,
182 .slot_reset = igb_io_slot_reset,
183 .resume = igb_io_resume,
184 };
185
186
187 static struct pci_driver igb_driver = {
188 .name = igb_driver_name,
189 .id_table = igb_pci_tbl,
190 .probe = igb_probe,
191 .remove = __devexit_p(igb_remove),
192 #ifdef CONFIG_PM
193 /* Power Managment Hooks */
194 .suspend = igb_suspend,
195 .resume = igb_resume,
196 #endif
197 .shutdown = igb_shutdown,
198 .err_handler = &igb_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
202 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 struct igb_reg_info {
207 u32 ofs;
208 char *name;
209 };
210
211 static const struct igb_reg_info igb_reg_info_tbl[] = {
212
213 /* General Registers */
214 {E1000_CTRL, "CTRL"},
215 {E1000_STATUS, "STATUS"},
216 {E1000_CTRL_EXT, "CTRL_EXT"},
217
218 /* Interrupt Registers */
219 {E1000_ICR, "ICR"},
220
221 /* RX Registers */
222 {E1000_RCTL, "RCTL"},
223 {E1000_RDLEN(0), "RDLEN"},
224 {E1000_RDH(0), "RDH"},
225 {E1000_RDT(0), "RDT"},
226 {E1000_RXDCTL(0), "RXDCTL"},
227 {E1000_RDBAL(0), "RDBAL"},
228 {E1000_RDBAH(0), "RDBAH"},
229
230 /* TX Registers */
231 {E1000_TCTL, "TCTL"},
232 {E1000_TDBAL(0), "TDBAL"},
233 {E1000_TDBAH(0), "TDBAH"},
234 {E1000_TDLEN(0), "TDLEN"},
235 {E1000_TDH(0), "TDH"},
236 {E1000_TDT(0), "TDT"},
237 {E1000_TXDCTL(0), "TXDCTL"},
238 {E1000_TDFH, "TDFH"},
239 {E1000_TDFT, "TDFT"},
240 {E1000_TDFHS, "TDFHS"},
241 {E1000_TDFPC, "TDFPC"},
242
243 /* List Terminator */
244 {}
245 };
246
247 /*
248 * igb_regdump - register printout routine
249 */
250 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
251 {
252 int n = 0;
253 char rname[16];
254 u32 regs[8];
255
256 switch (reginfo->ofs) {
257 case E1000_RDLEN(0):
258 for (n = 0; n < 4; n++)
259 regs[n] = rd32(E1000_RDLEN(n));
260 break;
261 case E1000_RDH(0):
262 for (n = 0; n < 4; n++)
263 regs[n] = rd32(E1000_RDH(n));
264 break;
265 case E1000_RDT(0):
266 for (n = 0; n < 4; n++)
267 regs[n] = rd32(E1000_RDT(n));
268 break;
269 case E1000_RXDCTL(0):
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RXDCTL(n));
272 break;
273 case E1000_RDBAL(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RDBAL(n));
276 break;
277 case E1000_RDBAH(0):
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDBAH(n));
280 break;
281 case E1000_TDBAL(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RDBAL(n));
284 break;
285 case E1000_TDBAH(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_TDBAH(n));
288 break;
289 case E1000_TDLEN(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_TDLEN(n));
292 break;
293 case E1000_TDH(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_TDH(n));
296 break;
297 case E1000_TDT(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDT(n));
300 break;
301 case E1000_TXDCTL(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TXDCTL(n));
304 break;
305 default:
306 printk(KERN_INFO "%-15s %08x\n",
307 reginfo->name, rd32(reginfo->ofs));
308 return;
309 }
310
311 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
312 printk(KERN_INFO "%-15s ", rname);
313 for (n = 0; n < 4; n++)
314 printk(KERN_CONT "%08x ", regs[n]);
315 printk(KERN_CONT "\n");
316 }
317
318 /*
319 * igb_dump - Print registers, tx-rings and rx-rings
320 */
321 static void igb_dump(struct igb_adapter *adapter)
322 {
323 struct net_device *netdev = adapter->netdev;
324 struct e1000_hw *hw = &adapter->hw;
325 struct igb_reg_info *reginfo;
326 int n = 0;
327 struct igb_ring *tx_ring;
328 union e1000_adv_tx_desc *tx_desc;
329 struct my_u0 { u64 a; u64 b; } *u0;
330 struct igb_buffer *buffer_info;
331 struct igb_ring *rx_ring;
332 union e1000_adv_rx_desc *rx_desc;
333 u32 staterr;
334 int i = 0;
335
336 if (!netif_msg_hw(adapter))
337 return;
338
339 /* Print netdevice Info */
340 if (netdev) {
341 dev_info(&adapter->pdev->dev, "Net device Info\n");
342 printk(KERN_INFO "Device Name state "
343 "trans_start last_rx\n");
344 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
345 netdev->name,
346 netdev->state,
347 netdev->trans_start,
348 netdev->last_rx);
349 }
350
351 /* Print Registers */
352 dev_info(&adapter->pdev->dev, "Register Dump\n");
353 printk(KERN_INFO " Register Name Value\n");
354 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
355 reginfo->name; reginfo++) {
356 igb_regdump(hw, reginfo);
357 }
358
359 /* Print TX Ring Summary */
360 if (!netdev || !netif_running(netdev))
361 goto exit;
362
363 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
364 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
365 " leng ntw timestamp\n");
366 for (n = 0; n < adapter->num_tx_queues; n++) {
367 tx_ring = adapter->tx_ring[n];
368 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
369 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
370 n, tx_ring->next_to_use, tx_ring->next_to_clean,
371 (u64)buffer_info->dma,
372 buffer_info->length,
373 buffer_info->next_to_watch,
374 (u64)buffer_info->time_stamp);
375 }
376
377 /* Print TX Rings */
378 if (!netif_msg_tx_done(adapter))
379 goto rx_ring_summary;
380
381 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
382
383 /* Transmit Descriptor Formats
384 *
385 * Advanced Transmit Descriptor
386 * +--------------------------------------------------------------+
387 * 0 | Buffer Address [63:0] |
388 * +--------------------------------------------------------------+
389 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
390 * +--------------------------------------------------------------+
391 * 63 46 45 40 39 38 36 35 32 31 24 15 0
392 */
393
394 for (n = 0; n < adapter->num_tx_queues; n++) {
395 tx_ring = adapter->tx_ring[n];
396 printk(KERN_INFO "------------------------------------\n");
397 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
398 printk(KERN_INFO "------------------------------------\n");
399 printk(KERN_INFO "T [desc] [address 63:0 ] "
400 "[PlPOCIStDDM Ln] [bi->dma ] "
401 "leng ntw timestamp bi->skb\n");
402
403 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
404 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
405 buffer_info = &tx_ring->buffer_info[i];
406 u0 = (struct my_u0 *)tx_desc;
407 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
408 " %04X %3X %016llX %p", i,
409 le64_to_cpu(u0->a),
410 le64_to_cpu(u0->b),
411 (u64)buffer_info->dma,
412 buffer_info->length,
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp,
415 buffer_info->skb);
416 if (i == tx_ring->next_to_use &&
417 i == tx_ring->next_to_clean)
418 printk(KERN_CONT " NTC/U\n");
419 else if (i == tx_ring->next_to_use)
420 printk(KERN_CONT " NTU\n");
421 else if (i == tx_ring->next_to_clean)
422 printk(KERN_CONT " NTC\n");
423 else
424 printk(KERN_CONT "\n");
425
426 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
427 print_hex_dump(KERN_INFO, "",
428 DUMP_PREFIX_ADDRESS,
429 16, 1, phys_to_virt(buffer_info->dma),
430 buffer_info->length, true);
431 }
432 }
433
434 /* Print RX Rings Summary */
435 rx_ring_summary:
436 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
437 printk(KERN_INFO "Queue [NTU] [NTC]\n");
438 for (n = 0; n < adapter->num_rx_queues; n++) {
439 rx_ring = adapter->rx_ring[n];
440 printk(KERN_INFO " %5d %5X %5X\n", n,
441 rx_ring->next_to_use, rx_ring->next_to_clean);
442 }
443
444 /* Print RX Rings */
445 if (!netif_msg_rx_status(adapter))
446 goto exit;
447
448 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
449
450 /* Advanced Receive Descriptor (Read) Format
451 * 63 1 0
452 * +-----------------------------------------------------+
453 * 0 | Packet Buffer Address [63:1] |A0/NSE|
454 * +----------------------------------------------+------+
455 * 8 | Header Buffer Address [63:1] | DD |
456 * +-----------------------------------------------------+
457 *
458 *
459 * Advanced Receive Descriptor (Write-Back) Format
460 *
461 * 63 48 47 32 31 30 21 20 17 16 4 3 0
462 * +------------------------------------------------------+
463 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
464 * | Checksum Ident | | | | Type | Type |
465 * +------------------------------------------------------+
466 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
467 * +------------------------------------------------------+
468 * 63 48 47 32 31 20 19 0
469 */
470
471 for (n = 0; n < adapter->num_rx_queues; n++) {
472 rx_ring = adapter->rx_ring[n];
473 printk(KERN_INFO "------------------------------------\n");
474 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
475 printk(KERN_INFO "------------------------------------\n");
476 printk(KERN_INFO "R [desc] [ PktBuf A0] "
477 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
478 "<-- Adv Rx Read format\n");
479 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
480 "[vl er S cks ln] ---------------- [bi->skb] "
481 "<-- Adv Rx Write-Back format\n");
482
483 for (i = 0; i < rx_ring->count; i++) {
484 buffer_info = &rx_ring->buffer_info[i];
485 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
486 u0 = (struct my_u0 *)rx_desc;
487 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
488 if (staterr & E1000_RXD_STAT_DD) {
489 /* Descriptor Done */
490 printk(KERN_INFO "RWB[0x%03X] %016llX "
491 "%016llX ---------------- %p", i,
492 le64_to_cpu(u0->a),
493 le64_to_cpu(u0->b),
494 buffer_info->skb);
495 } else {
496 printk(KERN_INFO "R [0x%03X] %016llX "
497 "%016llX %016llX %p", i,
498 le64_to_cpu(u0->a),
499 le64_to_cpu(u0->b),
500 (u64)buffer_info->dma,
501 buffer_info->skb);
502
503 if (netif_msg_pktdata(adapter)) {
504 print_hex_dump(KERN_INFO, "",
505 DUMP_PREFIX_ADDRESS,
506 16, 1,
507 phys_to_virt(buffer_info->dma),
508 rx_ring->rx_buffer_len, true);
509 if (rx_ring->rx_buffer_len
510 < IGB_RXBUFFER_1024)
511 print_hex_dump(KERN_INFO, "",
512 DUMP_PREFIX_ADDRESS,
513 16, 1,
514 phys_to_virt(
515 buffer_info->page_dma +
516 buffer_info->page_offset),
517 PAGE_SIZE/2, true);
518 }
519 }
520
521 if (i == rx_ring->next_to_use)
522 printk(KERN_CONT " NTU\n");
523 else if (i == rx_ring->next_to_clean)
524 printk(KERN_CONT " NTC\n");
525 else
526 printk(KERN_CONT "\n");
527
528 }
529 }
530
531 exit:
532 return;
533 }
534
535
536 /**
537 * igb_read_clock - read raw cycle counter (to be used by time counter)
538 */
539 static cycle_t igb_read_clock(const struct cyclecounter *tc)
540 {
541 struct igb_adapter *adapter =
542 container_of(tc, struct igb_adapter, cycles);
543 struct e1000_hw *hw = &adapter->hw;
544 u64 stamp = 0;
545 int shift = 0;
546
547 /*
548 * The timestamp latches on lowest register read. For the 82580
549 * the lowest register is SYSTIMR instead of SYSTIML. However we never
550 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
551 */
552 if (hw->mac.type == e1000_82580) {
553 stamp = rd32(E1000_SYSTIMR) >> 8;
554 shift = IGB_82580_TSYNC_SHIFT;
555 }
556
557 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
558 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
559 return stamp;
560 }
561
562 /**
563 * igb_get_hw_dev - return device
564 * used by hardware layer to print debugging information
565 **/
566 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
567 {
568 struct igb_adapter *adapter = hw->back;
569 return adapter->netdev;
570 }
571
572 /**
573 * igb_init_module - Driver Registration Routine
574 *
575 * igb_init_module is the first routine called when the driver is
576 * loaded. All it does is register with the PCI subsystem.
577 **/
578 static int __init igb_init_module(void)
579 {
580 int ret;
581 printk(KERN_INFO "%s - version %s\n",
582 igb_driver_string, igb_driver_version);
583
584 printk(KERN_INFO "%s\n", igb_copyright);
585
586 #ifdef CONFIG_IGB_DCA
587 dca_register_notify(&dca_notifier);
588 #endif
589 ret = pci_register_driver(&igb_driver);
590 return ret;
591 }
592
593 module_init(igb_init_module);
594
595 /**
596 * igb_exit_module - Driver Exit Cleanup Routine
597 *
598 * igb_exit_module is called just before the driver is removed
599 * from memory.
600 **/
601 static void __exit igb_exit_module(void)
602 {
603 #ifdef CONFIG_IGB_DCA
604 dca_unregister_notify(&dca_notifier);
605 #endif
606 pci_unregister_driver(&igb_driver);
607 }
608
609 module_exit(igb_exit_module);
610
611 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
612 /**
613 * igb_cache_ring_register - Descriptor ring to register mapping
614 * @adapter: board private structure to initialize
615 *
616 * Once we know the feature-set enabled for the device, we'll cache
617 * the register offset the descriptor ring is assigned to.
618 **/
619 static void igb_cache_ring_register(struct igb_adapter *adapter)
620 {
621 int i = 0, j = 0;
622 u32 rbase_offset = adapter->vfs_allocated_count;
623
624 switch (adapter->hw.mac.type) {
625 case e1000_82576:
626 /* The queues are allocated for virtualization such that VF 0
627 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
628 * In order to avoid collision we start at the first free queue
629 * and continue consuming queues in the same sequence
630 */
631 if (adapter->vfs_allocated_count) {
632 for (; i < adapter->rss_queues; i++)
633 adapter->rx_ring[i]->reg_idx = rbase_offset +
634 Q_IDX_82576(i);
635 }
636 case e1000_82575:
637 case e1000_82580:
638 case e1000_i350:
639 default:
640 for (; i < adapter->num_rx_queues; i++)
641 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
642 for (; j < adapter->num_tx_queues; j++)
643 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
644 break;
645 }
646 }
647
648 static void igb_free_queues(struct igb_adapter *adapter)
649 {
650 int i;
651
652 for (i = 0; i < adapter->num_tx_queues; i++) {
653 kfree(adapter->tx_ring[i]);
654 adapter->tx_ring[i] = NULL;
655 }
656 for (i = 0; i < adapter->num_rx_queues; i++) {
657 kfree(adapter->rx_ring[i]);
658 adapter->rx_ring[i] = NULL;
659 }
660 adapter->num_rx_queues = 0;
661 adapter->num_tx_queues = 0;
662 }
663
664 /**
665 * igb_alloc_queues - Allocate memory for all rings
666 * @adapter: board private structure to initialize
667 *
668 * We allocate one ring per queue at run-time since we don't know the
669 * number of queues at compile-time.
670 **/
671 static int igb_alloc_queues(struct igb_adapter *adapter)
672 {
673 struct igb_ring *ring;
674 int i;
675
676 for (i = 0; i < adapter->num_tx_queues; i++) {
677 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
678 if (!ring)
679 goto err;
680 ring->count = adapter->tx_ring_count;
681 ring->queue_index = i;
682 ring->dev = &adapter->pdev->dev;
683 ring->netdev = adapter->netdev;
684 /* For 82575, context index must be unique per ring. */
685 if (adapter->hw.mac.type == e1000_82575)
686 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
687 adapter->tx_ring[i] = ring;
688 }
689
690 for (i = 0; i < adapter->num_rx_queues; i++) {
691 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
692 if (!ring)
693 goto err;
694 ring->count = adapter->rx_ring_count;
695 ring->queue_index = i;
696 ring->dev = &adapter->pdev->dev;
697 ring->netdev = adapter->netdev;
698 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
699 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
700 /* set flag indicating ring supports SCTP checksum offload */
701 if (adapter->hw.mac.type >= e1000_82576)
702 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
703 adapter->rx_ring[i] = ring;
704 }
705
706 igb_cache_ring_register(adapter);
707
708 return 0;
709
710 err:
711 igb_free_queues(adapter);
712
713 return -ENOMEM;
714 }
715
716 #define IGB_N0_QUEUE -1
717 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
718 {
719 u32 msixbm = 0;
720 struct igb_adapter *adapter = q_vector->adapter;
721 struct e1000_hw *hw = &adapter->hw;
722 u32 ivar, index;
723 int rx_queue = IGB_N0_QUEUE;
724 int tx_queue = IGB_N0_QUEUE;
725
726 if (q_vector->rx_ring)
727 rx_queue = q_vector->rx_ring->reg_idx;
728 if (q_vector->tx_ring)
729 tx_queue = q_vector->tx_ring->reg_idx;
730
731 switch (hw->mac.type) {
732 case e1000_82575:
733 /* The 82575 assigns vectors using a bitmask, which matches the
734 bitmask for the EICR/EIMS/EIMC registers. To assign one
735 or more queues to a vector, we write the appropriate bits
736 into the MSIXBM register for that vector. */
737 if (rx_queue > IGB_N0_QUEUE)
738 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
739 if (tx_queue > IGB_N0_QUEUE)
740 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
741 if (!adapter->msix_entries && msix_vector == 0)
742 msixbm |= E1000_EIMS_OTHER;
743 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
744 q_vector->eims_value = msixbm;
745 break;
746 case e1000_82576:
747 /* 82576 uses a table-based method for assigning vectors.
748 Each queue has a single entry in the table to which we write
749 a vector number along with a "valid" bit. Sadly, the layout
750 of the table is somewhat counterintuitive. */
751 if (rx_queue > IGB_N0_QUEUE) {
752 index = (rx_queue & 0x7);
753 ivar = array_rd32(E1000_IVAR0, index);
754 if (rx_queue < 8) {
755 /* vector goes into low byte of register */
756 ivar = ivar & 0xFFFFFF00;
757 ivar |= msix_vector | E1000_IVAR_VALID;
758 } else {
759 /* vector goes into third byte of register */
760 ivar = ivar & 0xFF00FFFF;
761 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
762 }
763 array_wr32(E1000_IVAR0, index, ivar);
764 }
765 if (tx_queue > IGB_N0_QUEUE) {
766 index = (tx_queue & 0x7);
767 ivar = array_rd32(E1000_IVAR0, index);
768 if (tx_queue < 8) {
769 /* vector goes into second byte of register */
770 ivar = ivar & 0xFFFF00FF;
771 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
772 } else {
773 /* vector goes into high byte of register */
774 ivar = ivar & 0x00FFFFFF;
775 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
776 }
777 array_wr32(E1000_IVAR0, index, ivar);
778 }
779 q_vector->eims_value = 1 << msix_vector;
780 break;
781 case e1000_82580:
782 case e1000_i350:
783 /* 82580 uses the same table-based approach as 82576 but has fewer
784 entries as a result we carry over for queues greater than 4. */
785 if (rx_queue > IGB_N0_QUEUE) {
786 index = (rx_queue >> 1);
787 ivar = array_rd32(E1000_IVAR0, index);
788 if (rx_queue & 0x1) {
789 /* vector goes into third byte of register */
790 ivar = ivar & 0xFF00FFFF;
791 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
792 } else {
793 /* vector goes into low byte of register */
794 ivar = ivar & 0xFFFFFF00;
795 ivar |= msix_vector | E1000_IVAR_VALID;
796 }
797 array_wr32(E1000_IVAR0, index, ivar);
798 }
799 if (tx_queue > IGB_N0_QUEUE) {
800 index = (tx_queue >> 1);
801 ivar = array_rd32(E1000_IVAR0, index);
802 if (tx_queue & 0x1) {
803 /* vector goes into high byte of register */
804 ivar = ivar & 0x00FFFFFF;
805 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
806 } else {
807 /* vector goes into second byte of register */
808 ivar = ivar & 0xFFFF00FF;
809 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
810 }
811 array_wr32(E1000_IVAR0, index, ivar);
812 }
813 q_vector->eims_value = 1 << msix_vector;
814 break;
815 default:
816 BUG();
817 break;
818 }
819
820 /* add q_vector eims value to global eims_enable_mask */
821 adapter->eims_enable_mask |= q_vector->eims_value;
822
823 /* configure q_vector to set itr on first interrupt */
824 q_vector->set_itr = 1;
825 }
826
827 /**
828 * igb_configure_msix - Configure MSI-X hardware
829 *
830 * igb_configure_msix sets up the hardware to properly
831 * generate MSI-X interrupts.
832 **/
833 static void igb_configure_msix(struct igb_adapter *adapter)
834 {
835 u32 tmp;
836 int i, vector = 0;
837 struct e1000_hw *hw = &adapter->hw;
838
839 adapter->eims_enable_mask = 0;
840
841 /* set vector for other causes, i.e. link changes */
842 switch (hw->mac.type) {
843 case e1000_82575:
844 tmp = rd32(E1000_CTRL_EXT);
845 /* enable MSI-X PBA support*/
846 tmp |= E1000_CTRL_EXT_PBA_CLR;
847
848 /* Auto-Mask interrupts upon ICR read. */
849 tmp |= E1000_CTRL_EXT_EIAME;
850 tmp |= E1000_CTRL_EXT_IRCA;
851
852 wr32(E1000_CTRL_EXT, tmp);
853
854 /* enable msix_other interrupt */
855 array_wr32(E1000_MSIXBM(0), vector++,
856 E1000_EIMS_OTHER);
857 adapter->eims_other = E1000_EIMS_OTHER;
858
859 break;
860
861 case e1000_82576:
862 case e1000_82580:
863 case e1000_i350:
864 /* Turn on MSI-X capability first, or our settings
865 * won't stick. And it will take days to debug. */
866 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
867 E1000_GPIE_PBA | E1000_GPIE_EIAME |
868 E1000_GPIE_NSICR);
869
870 /* enable msix_other interrupt */
871 adapter->eims_other = 1 << vector;
872 tmp = (vector++ | E1000_IVAR_VALID) << 8;
873
874 wr32(E1000_IVAR_MISC, tmp);
875 break;
876 default:
877 /* do nothing, since nothing else supports MSI-X */
878 break;
879 } /* switch (hw->mac.type) */
880
881 adapter->eims_enable_mask |= adapter->eims_other;
882
883 for (i = 0; i < adapter->num_q_vectors; i++)
884 igb_assign_vector(adapter->q_vector[i], vector++);
885
886 wrfl();
887 }
888
889 /**
890 * igb_request_msix - Initialize MSI-X interrupts
891 *
892 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
893 * kernel.
894 **/
895 static int igb_request_msix(struct igb_adapter *adapter)
896 {
897 struct net_device *netdev = adapter->netdev;
898 struct e1000_hw *hw = &adapter->hw;
899 int i, err = 0, vector = 0;
900
901 err = request_irq(adapter->msix_entries[vector].vector,
902 igb_msix_other, 0, netdev->name, adapter);
903 if (err)
904 goto out;
905 vector++;
906
907 for (i = 0; i < adapter->num_q_vectors; i++) {
908 struct igb_q_vector *q_vector = adapter->q_vector[i];
909
910 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
911
912 if (q_vector->rx_ring && q_vector->tx_ring)
913 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
914 q_vector->rx_ring->queue_index);
915 else if (q_vector->tx_ring)
916 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
917 q_vector->tx_ring->queue_index);
918 else if (q_vector->rx_ring)
919 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
920 q_vector->rx_ring->queue_index);
921 else
922 sprintf(q_vector->name, "%s-unused", netdev->name);
923
924 err = request_irq(adapter->msix_entries[vector].vector,
925 igb_msix_ring, 0, q_vector->name,
926 q_vector);
927 if (err)
928 goto out;
929 vector++;
930 }
931
932 igb_configure_msix(adapter);
933 return 0;
934 out:
935 return err;
936 }
937
938 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
939 {
940 if (adapter->msix_entries) {
941 pci_disable_msix(adapter->pdev);
942 kfree(adapter->msix_entries);
943 adapter->msix_entries = NULL;
944 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
945 pci_disable_msi(adapter->pdev);
946 }
947 }
948
949 /**
950 * igb_free_q_vectors - Free memory allocated for interrupt vectors
951 * @adapter: board private structure to initialize
952 *
953 * This function frees the memory allocated to the q_vectors. In addition if
954 * NAPI is enabled it will delete any references to the NAPI struct prior
955 * to freeing the q_vector.
956 **/
957 static void igb_free_q_vectors(struct igb_adapter *adapter)
958 {
959 int v_idx;
960
961 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
962 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
963 adapter->q_vector[v_idx] = NULL;
964 if (!q_vector)
965 continue;
966 netif_napi_del(&q_vector->napi);
967 kfree(q_vector);
968 }
969 adapter->num_q_vectors = 0;
970 }
971
972 /**
973 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
974 *
975 * This function resets the device so that it has 0 rx queues, tx queues, and
976 * MSI-X interrupts allocated.
977 */
978 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
979 {
980 igb_free_queues(adapter);
981 igb_free_q_vectors(adapter);
982 igb_reset_interrupt_capability(adapter);
983 }
984
985 /**
986 * igb_set_interrupt_capability - set MSI or MSI-X if supported
987 *
988 * Attempt to configure interrupts using the best available
989 * capabilities of the hardware and kernel.
990 **/
991 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
992 {
993 int err;
994 int numvecs, i;
995
996 /* Number of supported queues. */
997 adapter->num_rx_queues = adapter->rss_queues;
998 if (adapter->vfs_allocated_count)
999 adapter->num_tx_queues = 1;
1000 else
1001 adapter->num_tx_queues = adapter->rss_queues;
1002
1003 /* start with one vector for every rx queue */
1004 numvecs = adapter->num_rx_queues;
1005
1006 /* if tx handler is separate add 1 for every tx queue */
1007 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1008 numvecs += adapter->num_tx_queues;
1009
1010 /* store the number of vectors reserved for queues */
1011 adapter->num_q_vectors = numvecs;
1012
1013 /* add 1 vector for link status interrupts */
1014 numvecs++;
1015 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1016 GFP_KERNEL);
1017 if (!adapter->msix_entries)
1018 goto msi_only;
1019
1020 for (i = 0; i < numvecs; i++)
1021 adapter->msix_entries[i].entry = i;
1022
1023 err = pci_enable_msix(adapter->pdev,
1024 adapter->msix_entries,
1025 numvecs);
1026 if (err == 0)
1027 goto out;
1028
1029 igb_reset_interrupt_capability(adapter);
1030
1031 /* If we can't do MSI-X, try MSI */
1032 msi_only:
1033 #ifdef CONFIG_PCI_IOV
1034 /* disable SR-IOV for non MSI-X configurations */
1035 if (adapter->vf_data) {
1036 struct e1000_hw *hw = &adapter->hw;
1037 /* disable iov and allow time for transactions to clear */
1038 pci_disable_sriov(adapter->pdev);
1039 msleep(500);
1040
1041 kfree(adapter->vf_data);
1042 adapter->vf_data = NULL;
1043 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1044 msleep(100);
1045 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1046 }
1047 #endif
1048 adapter->vfs_allocated_count = 0;
1049 adapter->rss_queues = 1;
1050 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1051 adapter->num_rx_queues = 1;
1052 adapter->num_tx_queues = 1;
1053 adapter->num_q_vectors = 1;
1054 if (!pci_enable_msi(adapter->pdev))
1055 adapter->flags |= IGB_FLAG_HAS_MSI;
1056 out:
1057 /* Notify the stack of the (possibly) reduced Tx Queue count. */
1058 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
1059 }
1060
1061 /**
1062 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1063 * @adapter: board private structure to initialize
1064 *
1065 * We allocate one q_vector per queue interrupt. If allocation fails we
1066 * return -ENOMEM.
1067 **/
1068 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1069 {
1070 struct igb_q_vector *q_vector;
1071 struct e1000_hw *hw = &adapter->hw;
1072 int v_idx;
1073
1074 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1075 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1076 if (!q_vector)
1077 goto err_out;
1078 q_vector->adapter = adapter;
1079 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1080 q_vector->itr_val = IGB_START_ITR;
1081 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1082 adapter->q_vector[v_idx] = q_vector;
1083 }
1084 return 0;
1085
1086 err_out:
1087 igb_free_q_vectors(adapter);
1088 return -ENOMEM;
1089 }
1090
1091 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1092 int ring_idx, int v_idx)
1093 {
1094 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1095
1096 q_vector->rx_ring = adapter->rx_ring[ring_idx];
1097 q_vector->rx_ring->q_vector = q_vector;
1098 q_vector->itr_val = adapter->rx_itr_setting;
1099 if (q_vector->itr_val && q_vector->itr_val <= 3)
1100 q_vector->itr_val = IGB_START_ITR;
1101 }
1102
1103 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1104 int ring_idx, int v_idx)
1105 {
1106 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1107
1108 q_vector->tx_ring = adapter->tx_ring[ring_idx];
1109 q_vector->tx_ring->q_vector = q_vector;
1110 q_vector->itr_val = adapter->tx_itr_setting;
1111 if (q_vector->itr_val && q_vector->itr_val <= 3)
1112 q_vector->itr_val = IGB_START_ITR;
1113 }
1114
1115 /**
1116 * igb_map_ring_to_vector - maps allocated queues to vectors
1117 *
1118 * This function maps the recently allocated queues to vectors.
1119 **/
1120 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1121 {
1122 int i;
1123 int v_idx = 0;
1124
1125 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1126 (adapter->num_q_vectors < adapter->num_tx_queues))
1127 return -ENOMEM;
1128
1129 if (adapter->num_q_vectors >=
1130 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1131 for (i = 0; i < adapter->num_rx_queues; i++)
1132 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1133 for (i = 0; i < adapter->num_tx_queues; i++)
1134 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1135 } else {
1136 for (i = 0; i < adapter->num_rx_queues; i++) {
1137 if (i < adapter->num_tx_queues)
1138 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1139 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1140 }
1141 for (; i < adapter->num_tx_queues; i++)
1142 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1143 }
1144 return 0;
1145 }
1146
1147 /**
1148 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1149 *
1150 * This function initializes the interrupts and allocates all of the queues.
1151 **/
1152 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1153 {
1154 struct pci_dev *pdev = adapter->pdev;
1155 int err;
1156
1157 igb_set_interrupt_capability(adapter);
1158
1159 err = igb_alloc_q_vectors(adapter);
1160 if (err) {
1161 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1162 goto err_alloc_q_vectors;
1163 }
1164
1165 err = igb_alloc_queues(adapter);
1166 if (err) {
1167 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1168 goto err_alloc_queues;
1169 }
1170
1171 err = igb_map_ring_to_vector(adapter);
1172 if (err) {
1173 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1174 goto err_map_queues;
1175 }
1176
1177
1178 return 0;
1179 err_map_queues:
1180 igb_free_queues(adapter);
1181 err_alloc_queues:
1182 igb_free_q_vectors(adapter);
1183 err_alloc_q_vectors:
1184 igb_reset_interrupt_capability(adapter);
1185 return err;
1186 }
1187
1188 /**
1189 * igb_request_irq - initialize interrupts
1190 *
1191 * Attempts to configure interrupts using the best available
1192 * capabilities of the hardware and kernel.
1193 **/
1194 static int igb_request_irq(struct igb_adapter *adapter)
1195 {
1196 struct net_device *netdev = adapter->netdev;
1197 struct pci_dev *pdev = adapter->pdev;
1198 int err = 0;
1199
1200 if (adapter->msix_entries) {
1201 err = igb_request_msix(adapter);
1202 if (!err)
1203 goto request_done;
1204 /* fall back to MSI */
1205 igb_clear_interrupt_scheme(adapter);
1206 if (!pci_enable_msi(adapter->pdev))
1207 adapter->flags |= IGB_FLAG_HAS_MSI;
1208 igb_free_all_tx_resources(adapter);
1209 igb_free_all_rx_resources(adapter);
1210 adapter->num_tx_queues = 1;
1211 adapter->num_rx_queues = 1;
1212 adapter->num_q_vectors = 1;
1213 err = igb_alloc_q_vectors(adapter);
1214 if (err) {
1215 dev_err(&pdev->dev,
1216 "Unable to allocate memory for vectors\n");
1217 goto request_done;
1218 }
1219 err = igb_alloc_queues(adapter);
1220 if (err) {
1221 dev_err(&pdev->dev,
1222 "Unable to allocate memory for queues\n");
1223 igb_free_q_vectors(adapter);
1224 goto request_done;
1225 }
1226 igb_setup_all_tx_resources(adapter);
1227 igb_setup_all_rx_resources(adapter);
1228 } else {
1229 igb_assign_vector(adapter->q_vector[0], 0);
1230 }
1231
1232 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1233 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1234 netdev->name, adapter);
1235 if (!err)
1236 goto request_done;
1237
1238 /* fall back to legacy interrupts */
1239 igb_reset_interrupt_capability(adapter);
1240 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1241 }
1242
1243 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1244 netdev->name, adapter);
1245
1246 if (err)
1247 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1248 err);
1249
1250 request_done:
1251 return err;
1252 }
1253
1254 static void igb_free_irq(struct igb_adapter *adapter)
1255 {
1256 if (adapter->msix_entries) {
1257 int vector = 0, i;
1258
1259 free_irq(adapter->msix_entries[vector++].vector, adapter);
1260
1261 for (i = 0; i < adapter->num_q_vectors; i++) {
1262 struct igb_q_vector *q_vector = adapter->q_vector[i];
1263 free_irq(adapter->msix_entries[vector++].vector,
1264 q_vector);
1265 }
1266 } else {
1267 free_irq(adapter->pdev->irq, adapter);
1268 }
1269 }
1270
1271 /**
1272 * igb_irq_disable - Mask off interrupt generation on the NIC
1273 * @adapter: board private structure
1274 **/
1275 static void igb_irq_disable(struct igb_adapter *adapter)
1276 {
1277 struct e1000_hw *hw = &adapter->hw;
1278
1279 /*
1280 * we need to be careful when disabling interrupts. The VFs are also
1281 * mapped into these registers and so clearing the bits can cause
1282 * issues on the VF drivers so we only need to clear what we set
1283 */
1284 if (adapter->msix_entries) {
1285 u32 regval = rd32(E1000_EIAM);
1286 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1287 wr32(E1000_EIMC, adapter->eims_enable_mask);
1288 regval = rd32(E1000_EIAC);
1289 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1290 }
1291
1292 wr32(E1000_IAM, 0);
1293 wr32(E1000_IMC, ~0);
1294 wrfl();
1295 if (adapter->msix_entries) {
1296 int i;
1297 for (i = 0; i < adapter->num_q_vectors; i++)
1298 synchronize_irq(adapter->msix_entries[i].vector);
1299 } else {
1300 synchronize_irq(adapter->pdev->irq);
1301 }
1302 }
1303
1304 /**
1305 * igb_irq_enable - Enable default interrupt generation settings
1306 * @adapter: board private structure
1307 **/
1308 static void igb_irq_enable(struct igb_adapter *adapter)
1309 {
1310 struct e1000_hw *hw = &adapter->hw;
1311
1312 if (adapter->msix_entries) {
1313 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1314 u32 regval = rd32(E1000_EIAC);
1315 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1316 regval = rd32(E1000_EIAM);
1317 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1318 wr32(E1000_EIMS, adapter->eims_enable_mask);
1319 if (adapter->vfs_allocated_count) {
1320 wr32(E1000_MBVFIMR, 0xFF);
1321 ims |= E1000_IMS_VMMB;
1322 }
1323 if (adapter->hw.mac.type == e1000_82580)
1324 ims |= E1000_IMS_DRSTA;
1325
1326 wr32(E1000_IMS, ims);
1327 } else {
1328 wr32(E1000_IMS, IMS_ENABLE_MASK |
1329 E1000_IMS_DRSTA);
1330 wr32(E1000_IAM, IMS_ENABLE_MASK |
1331 E1000_IMS_DRSTA);
1332 }
1333 }
1334
1335 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1336 {
1337 struct e1000_hw *hw = &adapter->hw;
1338 u16 vid = adapter->hw.mng_cookie.vlan_id;
1339 u16 old_vid = adapter->mng_vlan_id;
1340
1341 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1342 /* add VID to filter table */
1343 igb_vfta_set(hw, vid, true);
1344 adapter->mng_vlan_id = vid;
1345 } else {
1346 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1347 }
1348
1349 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1350 (vid != old_vid) &&
1351 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1352 /* remove VID from filter table */
1353 igb_vfta_set(hw, old_vid, false);
1354 }
1355 }
1356
1357 /**
1358 * igb_release_hw_control - release control of the h/w to f/w
1359 * @adapter: address of board private structure
1360 *
1361 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1362 * For ASF and Pass Through versions of f/w this means that the
1363 * driver is no longer loaded.
1364 *
1365 **/
1366 static void igb_release_hw_control(struct igb_adapter *adapter)
1367 {
1368 struct e1000_hw *hw = &adapter->hw;
1369 u32 ctrl_ext;
1370
1371 /* Let firmware take over control of h/w */
1372 ctrl_ext = rd32(E1000_CTRL_EXT);
1373 wr32(E1000_CTRL_EXT,
1374 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1375 }
1376
1377 /**
1378 * igb_get_hw_control - get control of the h/w from f/w
1379 * @adapter: address of board private structure
1380 *
1381 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1382 * For ASF and Pass Through versions of f/w this means that
1383 * the driver is loaded.
1384 *
1385 **/
1386 static void igb_get_hw_control(struct igb_adapter *adapter)
1387 {
1388 struct e1000_hw *hw = &adapter->hw;
1389 u32 ctrl_ext;
1390
1391 /* Let firmware know the driver has taken over */
1392 ctrl_ext = rd32(E1000_CTRL_EXT);
1393 wr32(E1000_CTRL_EXT,
1394 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1395 }
1396
1397 /**
1398 * igb_configure - configure the hardware for RX and TX
1399 * @adapter: private board structure
1400 **/
1401 static void igb_configure(struct igb_adapter *adapter)
1402 {
1403 struct net_device *netdev = adapter->netdev;
1404 int i;
1405
1406 igb_get_hw_control(adapter);
1407 igb_set_rx_mode(netdev);
1408
1409 igb_restore_vlan(adapter);
1410
1411 igb_setup_tctl(adapter);
1412 igb_setup_mrqc(adapter);
1413 igb_setup_rctl(adapter);
1414
1415 igb_configure_tx(adapter);
1416 igb_configure_rx(adapter);
1417
1418 igb_rx_fifo_flush_82575(&adapter->hw);
1419
1420 /* call igb_desc_unused which always leaves
1421 * at least 1 descriptor unused to make sure
1422 * next_to_use != next_to_clean */
1423 for (i = 0; i < adapter->num_rx_queues; i++) {
1424 struct igb_ring *ring = adapter->rx_ring[i];
1425 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1426 }
1427 }
1428
1429 /**
1430 * igb_power_up_link - Power up the phy/serdes link
1431 * @adapter: address of board private structure
1432 **/
1433 void igb_power_up_link(struct igb_adapter *adapter)
1434 {
1435 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1436 igb_power_up_phy_copper(&adapter->hw);
1437 else
1438 igb_power_up_serdes_link_82575(&adapter->hw);
1439 }
1440
1441 /**
1442 * igb_power_down_link - Power down the phy/serdes link
1443 * @adapter: address of board private structure
1444 */
1445 static void igb_power_down_link(struct igb_adapter *adapter)
1446 {
1447 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1448 igb_power_down_phy_copper_82575(&adapter->hw);
1449 else
1450 igb_shutdown_serdes_link_82575(&adapter->hw);
1451 }
1452
1453 /**
1454 * igb_up - Open the interface and prepare it to handle traffic
1455 * @adapter: board private structure
1456 **/
1457 int igb_up(struct igb_adapter *adapter)
1458 {
1459 struct e1000_hw *hw = &adapter->hw;
1460 int i;
1461
1462 /* hardware has been reset, we need to reload some things */
1463 igb_configure(adapter);
1464
1465 clear_bit(__IGB_DOWN, &adapter->state);
1466
1467 for (i = 0; i < adapter->num_q_vectors; i++) {
1468 struct igb_q_vector *q_vector = adapter->q_vector[i];
1469 napi_enable(&q_vector->napi);
1470 }
1471 if (adapter->msix_entries)
1472 igb_configure_msix(adapter);
1473 else
1474 igb_assign_vector(adapter->q_vector[0], 0);
1475
1476 /* Clear any pending interrupts. */
1477 rd32(E1000_ICR);
1478 igb_irq_enable(adapter);
1479
1480 /* notify VFs that reset has been completed */
1481 if (adapter->vfs_allocated_count) {
1482 u32 reg_data = rd32(E1000_CTRL_EXT);
1483 reg_data |= E1000_CTRL_EXT_PFRSTD;
1484 wr32(E1000_CTRL_EXT, reg_data);
1485 }
1486
1487 netif_tx_start_all_queues(adapter->netdev);
1488
1489 /* start the watchdog. */
1490 hw->mac.get_link_status = 1;
1491 schedule_work(&adapter->watchdog_task);
1492
1493 return 0;
1494 }
1495
1496 void igb_down(struct igb_adapter *adapter)
1497 {
1498 struct net_device *netdev = adapter->netdev;
1499 struct e1000_hw *hw = &adapter->hw;
1500 u32 tctl, rctl;
1501 int i;
1502
1503 /* signal that we're down so the interrupt handler does not
1504 * reschedule our watchdog timer */
1505 set_bit(__IGB_DOWN, &adapter->state);
1506
1507 /* disable receives in the hardware */
1508 rctl = rd32(E1000_RCTL);
1509 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1510 /* flush and sleep below */
1511
1512 netif_tx_stop_all_queues(netdev);
1513
1514 /* disable transmits in the hardware */
1515 tctl = rd32(E1000_TCTL);
1516 tctl &= ~E1000_TCTL_EN;
1517 wr32(E1000_TCTL, tctl);
1518 /* flush both disables and wait for them to finish */
1519 wrfl();
1520 msleep(10);
1521
1522 for (i = 0; i < adapter->num_q_vectors; i++) {
1523 struct igb_q_vector *q_vector = adapter->q_vector[i];
1524 napi_disable(&q_vector->napi);
1525 }
1526
1527 igb_irq_disable(adapter);
1528
1529 del_timer_sync(&adapter->watchdog_timer);
1530 del_timer_sync(&adapter->phy_info_timer);
1531
1532 netif_carrier_off(netdev);
1533
1534 /* record the stats before reset*/
1535 igb_update_stats(adapter);
1536
1537 adapter->link_speed = 0;
1538 adapter->link_duplex = 0;
1539
1540 if (!pci_channel_offline(adapter->pdev))
1541 igb_reset(adapter);
1542 igb_clean_all_tx_rings(adapter);
1543 igb_clean_all_rx_rings(adapter);
1544 #ifdef CONFIG_IGB_DCA
1545
1546 /* since we reset the hardware DCA settings were cleared */
1547 igb_setup_dca(adapter);
1548 #endif
1549 }
1550
1551 void igb_reinit_locked(struct igb_adapter *adapter)
1552 {
1553 WARN_ON(in_interrupt());
1554 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1555 msleep(1);
1556 igb_down(adapter);
1557 igb_up(adapter);
1558 clear_bit(__IGB_RESETTING, &adapter->state);
1559 }
1560
1561 void igb_reset(struct igb_adapter *adapter)
1562 {
1563 struct pci_dev *pdev = adapter->pdev;
1564 struct e1000_hw *hw = &adapter->hw;
1565 struct e1000_mac_info *mac = &hw->mac;
1566 struct e1000_fc_info *fc = &hw->fc;
1567 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1568 u16 hwm;
1569
1570 /* Repartition Pba for greater than 9k mtu
1571 * To take effect CTRL.RST is required.
1572 */
1573 switch (mac->type) {
1574 case e1000_i350:
1575 case e1000_82580:
1576 pba = rd32(E1000_RXPBS);
1577 pba = igb_rxpbs_adjust_82580(pba);
1578 break;
1579 case e1000_82576:
1580 pba = rd32(E1000_RXPBS);
1581 pba &= E1000_RXPBS_SIZE_MASK_82576;
1582 break;
1583 case e1000_82575:
1584 default:
1585 pba = E1000_PBA_34K;
1586 break;
1587 }
1588
1589 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1590 (mac->type < e1000_82576)) {
1591 /* adjust PBA for jumbo frames */
1592 wr32(E1000_PBA, pba);
1593
1594 /* To maintain wire speed transmits, the Tx FIFO should be
1595 * large enough to accommodate two full transmit packets,
1596 * rounded up to the next 1KB and expressed in KB. Likewise,
1597 * the Rx FIFO should be large enough to accommodate at least
1598 * one full receive packet and is similarly rounded up and
1599 * expressed in KB. */
1600 pba = rd32(E1000_PBA);
1601 /* upper 16 bits has Tx packet buffer allocation size in KB */
1602 tx_space = pba >> 16;
1603 /* lower 16 bits has Rx packet buffer allocation size in KB */
1604 pba &= 0xffff;
1605 /* the tx fifo also stores 16 bytes of information about the tx
1606 * but don't include ethernet FCS because hardware appends it */
1607 min_tx_space = (adapter->max_frame_size +
1608 sizeof(union e1000_adv_tx_desc) -
1609 ETH_FCS_LEN) * 2;
1610 min_tx_space = ALIGN(min_tx_space, 1024);
1611 min_tx_space >>= 10;
1612 /* software strips receive CRC, so leave room for it */
1613 min_rx_space = adapter->max_frame_size;
1614 min_rx_space = ALIGN(min_rx_space, 1024);
1615 min_rx_space >>= 10;
1616
1617 /* If current Tx allocation is less than the min Tx FIFO size,
1618 * and the min Tx FIFO size is less than the current Rx FIFO
1619 * allocation, take space away from current Rx allocation */
1620 if (tx_space < min_tx_space &&
1621 ((min_tx_space - tx_space) < pba)) {
1622 pba = pba - (min_tx_space - tx_space);
1623
1624 /* if short on rx space, rx wins and must trump tx
1625 * adjustment */
1626 if (pba < min_rx_space)
1627 pba = min_rx_space;
1628 }
1629 wr32(E1000_PBA, pba);
1630 }
1631
1632 /* flow control settings */
1633 /* The high water mark must be low enough to fit one full frame
1634 * (or the size used for early receive) above it in the Rx FIFO.
1635 * Set it to the lower of:
1636 * - 90% of the Rx FIFO size, or
1637 * - the full Rx FIFO size minus one full frame */
1638 hwm = min(((pba << 10) * 9 / 10),
1639 ((pba << 10) - 2 * adapter->max_frame_size));
1640
1641 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1642 fc->low_water = fc->high_water - 16;
1643 fc->pause_time = 0xFFFF;
1644 fc->send_xon = 1;
1645 fc->current_mode = fc->requested_mode;
1646
1647 /* disable receive for all VFs and wait one second */
1648 if (adapter->vfs_allocated_count) {
1649 int i;
1650 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1651 adapter->vf_data[i].flags = 0;
1652
1653 /* ping all the active vfs to let them know we are going down */
1654 igb_ping_all_vfs(adapter);
1655
1656 /* disable transmits and receives */
1657 wr32(E1000_VFRE, 0);
1658 wr32(E1000_VFTE, 0);
1659 }
1660
1661 /* Allow time for pending master requests to run */
1662 hw->mac.ops.reset_hw(hw);
1663 wr32(E1000_WUC, 0);
1664
1665 if (hw->mac.ops.init_hw(hw))
1666 dev_err(&pdev->dev, "Hardware Error\n");
1667
1668 if (hw->mac.type == e1000_82580) {
1669 u32 reg = rd32(E1000_PCIEMISC);
1670 wr32(E1000_PCIEMISC,
1671 reg & ~E1000_PCIEMISC_LX_DECISION);
1672 }
1673 if (!netif_running(adapter->netdev))
1674 igb_power_down_link(adapter);
1675
1676 igb_update_mng_vlan(adapter);
1677
1678 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1679 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1680
1681 igb_get_phy_info(hw);
1682 }
1683
1684 static const struct net_device_ops igb_netdev_ops = {
1685 .ndo_open = igb_open,
1686 .ndo_stop = igb_close,
1687 .ndo_start_xmit = igb_xmit_frame_adv,
1688 .ndo_get_stats = igb_get_stats,
1689 .ndo_set_rx_mode = igb_set_rx_mode,
1690 .ndo_set_multicast_list = igb_set_rx_mode,
1691 .ndo_set_mac_address = igb_set_mac,
1692 .ndo_change_mtu = igb_change_mtu,
1693 .ndo_do_ioctl = igb_ioctl,
1694 .ndo_tx_timeout = igb_tx_timeout,
1695 .ndo_validate_addr = eth_validate_addr,
1696 .ndo_vlan_rx_register = igb_vlan_rx_register,
1697 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1698 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1699 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1700 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1701 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1702 .ndo_get_vf_config = igb_ndo_get_vf_config,
1703 #ifdef CONFIG_NET_POLL_CONTROLLER
1704 .ndo_poll_controller = igb_netpoll,
1705 #endif
1706 };
1707
1708 /**
1709 * igb_probe - Device Initialization Routine
1710 * @pdev: PCI device information struct
1711 * @ent: entry in igb_pci_tbl
1712 *
1713 * Returns 0 on success, negative on failure
1714 *
1715 * igb_probe initializes an adapter identified by a pci_dev structure.
1716 * The OS initialization, configuring of the adapter private structure,
1717 * and a hardware reset occur.
1718 **/
1719 static int __devinit igb_probe(struct pci_dev *pdev,
1720 const struct pci_device_id *ent)
1721 {
1722 struct net_device *netdev;
1723 struct igb_adapter *adapter;
1724 struct e1000_hw *hw;
1725 u16 eeprom_data = 0;
1726 static int global_quad_port_a; /* global quad port a indication */
1727 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1728 unsigned long mmio_start, mmio_len;
1729 int err, pci_using_dac;
1730 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1731 u32 part_num;
1732
1733 /* Catch broken hardware that put the wrong VF device ID in
1734 * the PCIe SR-IOV capability.
1735 */
1736 if (pdev->is_virtfn) {
1737 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1738 pci_name(pdev), pdev->vendor, pdev->device);
1739 return -EINVAL;
1740 }
1741
1742 err = pci_enable_device_mem(pdev);
1743 if (err)
1744 return err;
1745
1746 pci_using_dac = 0;
1747 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1748 if (!err) {
1749 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1750 if (!err)
1751 pci_using_dac = 1;
1752 } else {
1753 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1754 if (err) {
1755 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1756 if (err) {
1757 dev_err(&pdev->dev, "No usable DMA "
1758 "configuration, aborting\n");
1759 goto err_dma;
1760 }
1761 }
1762 }
1763
1764 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1765 IORESOURCE_MEM),
1766 igb_driver_name);
1767 if (err)
1768 goto err_pci_reg;
1769
1770 pci_enable_pcie_error_reporting(pdev);
1771
1772 pci_set_master(pdev);
1773 pci_save_state(pdev);
1774
1775 err = -ENOMEM;
1776 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1777 IGB_ABS_MAX_TX_QUEUES);
1778 if (!netdev)
1779 goto err_alloc_etherdev;
1780
1781 SET_NETDEV_DEV(netdev, &pdev->dev);
1782
1783 pci_set_drvdata(pdev, netdev);
1784 adapter = netdev_priv(netdev);
1785 adapter->netdev = netdev;
1786 adapter->pdev = pdev;
1787 hw = &adapter->hw;
1788 hw->back = adapter;
1789 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1790
1791 mmio_start = pci_resource_start(pdev, 0);
1792 mmio_len = pci_resource_len(pdev, 0);
1793
1794 err = -EIO;
1795 hw->hw_addr = ioremap(mmio_start, mmio_len);
1796 if (!hw->hw_addr)
1797 goto err_ioremap;
1798
1799 netdev->netdev_ops = &igb_netdev_ops;
1800 igb_set_ethtool_ops(netdev);
1801 netdev->watchdog_timeo = 5 * HZ;
1802
1803 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1804
1805 netdev->mem_start = mmio_start;
1806 netdev->mem_end = mmio_start + mmio_len;
1807
1808 /* PCI config space info */
1809 hw->vendor_id = pdev->vendor;
1810 hw->device_id = pdev->device;
1811 hw->revision_id = pdev->revision;
1812 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1813 hw->subsystem_device_id = pdev->subsystem_device;
1814
1815 /* Copy the default MAC, PHY and NVM function pointers */
1816 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1817 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1818 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1819 /* Initialize skew-specific constants */
1820 err = ei->get_invariants(hw);
1821 if (err)
1822 goto err_sw_init;
1823
1824 /* setup the private structure */
1825 err = igb_sw_init(adapter);
1826 if (err)
1827 goto err_sw_init;
1828
1829 igb_get_bus_info_pcie(hw);
1830
1831 hw->phy.autoneg_wait_to_complete = false;
1832
1833 /* Copper options */
1834 if (hw->phy.media_type == e1000_media_type_copper) {
1835 hw->phy.mdix = AUTO_ALL_MODES;
1836 hw->phy.disable_polarity_correction = false;
1837 hw->phy.ms_type = e1000_ms_hw_default;
1838 }
1839
1840 if (igb_check_reset_block(hw))
1841 dev_info(&pdev->dev,
1842 "PHY reset is blocked due to SOL/IDER session.\n");
1843
1844 netdev->features = NETIF_F_SG |
1845 NETIF_F_IP_CSUM |
1846 NETIF_F_HW_VLAN_TX |
1847 NETIF_F_HW_VLAN_RX |
1848 NETIF_F_HW_VLAN_FILTER;
1849
1850 netdev->features |= NETIF_F_IPV6_CSUM;
1851 netdev->features |= NETIF_F_TSO;
1852 netdev->features |= NETIF_F_TSO6;
1853 netdev->features |= NETIF_F_GRO;
1854
1855 netdev->vlan_features |= NETIF_F_TSO;
1856 netdev->vlan_features |= NETIF_F_TSO6;
1857 netdev->vlan_features |= NETIF_F_IP_CSUM;
1858 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1859 netdev->vlan_features |= NETIF_F_SG;
1860
1861 if (pci_using_dac) {
1862 netdev->features |= NETIF_F_HIGHDMA;
1863 netdev->vlan_features |= NETIF_F_HIGHDMA;
1864 }
1865
1866 if (hw->mac.type >= e1000_82576)
1867 netdev->features |= NETIF_F_SCTP_CSUM;
1868
1869 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1870
1871 /* before reading the NVM, reset the controller to put the device in a
1872 * known good starting state */
1873 hw->mac.ops.reset_hw(hw);
1874
1875 /* make sure the NVM is good */
1876 if (igb_validate_nvm_checksum(hw) < 0) {
1877 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1878 err = -EIO;
1879 goto err_eeprom;
1880 }
1881
1882 /* copy the MAC address out of the NVM */
1883 if (hw->mac.ops.read_mac_addr(hw))
1884 dev_err(&pdev->dev, "NVM Read Error\n");
1885
1886 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1887 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1888
1889 if (!is_valid_ether_addr(netdev->perm_addr)) {
1890 dev_err(&pdev->dev, "Invalid MAC Address\n");
1891 err = -EIO;
1892 goto err_eeprom;
1893 }
1894
1895 setup_timer(&adapter->watchdog_timer, igb_watchdog,
1896 (unsigned long) adapter);
1897 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
1898 (unsigned long) adapter);
1899
1900 INIT_WORK(&adapter->reset_task, igb_reset_task);
1901 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1902
1903 /* Initialize link properties that are user-changeable */
1904 adapter->fc_autoneg = true;
1905 hw->mac.autoneg = true;
1906 hw->phy.autoneg_advertised = 0x2f;
1907
1908 hw->fc.requested_mode = e1000_fc_default;
1909 hw->fc.current_mode = e1000_fc_default;
1910
1911 igb_validate_mdi_setting(hw);
1912
1913 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1914 * enable the ACPI Magic Packet filter
1915 */
1916
1917 if (hw->bus.func == 0)
1918 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1919 else if (hw->mac.type == e1000_82580)
1920 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1921 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1922 &eeprom_data);
1923 else if (hw->bus.func == 1)
1924 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1925
1926 if (eeprom_data & eeprom_apme_mask)
1927 adapter->eeprom_wol |= E1000_WUFC_MAG;
1928
1929 /* now that we have the eeprom settings, apply the special cases where
1930 * the eeprom may be wrong or the board simply won't support wake on
1931 * lan on a particular port */
1932 switch (pdev->device) {
1933 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1934 adapter->eeprom_wol = 0;
1935 break;
1936 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1937 case E1000_DEV_ID_82576_FIBER:
1938 case E1000_DEV_ID_82576_SERDES:
1939 /* Wake events only supported on port A for dual fiber
1940 * regardless of eeprom setting */
1941 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1942 adapter->eeprom_wol = 0;
1943 break;
1944 case E1000_DEV_ID_82576_QUAD_COPPER:
1945 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1946 /* if quad port adapter, disable WoL on all but port A */
1947 if (global_quad_port_a != 0)
1948 adapter->eeprom_wol = 0;
1949 else
1950 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1951 /* Reset for multiple quad port adapters */
1952 if (++global_quad_port_a == 4)
1953 global_quad_port_a = 0;
1954 break;
1955 }
1956
1957 /* initialize the wol settings based on the eeprom settings */
1958 adapter->wol = adapter->eeprom_wol;
1959 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1960
1961 /* reset the hardware with the new settings */
1962 igb_reset(adapter);
1963
1964 /* let the f/w know that the h/w is now under the control of the
1965 * driver. */
1966 igb_get_hw_control(adapter);
1967
1968 strcpy(netdev->name, "eth%d");
1969 err = register_netdev(netdev);
1970 if (err)
1971 goto err_register;
1972
1973 /* carrier off reporting is important to ethtool even BEFORE open */
1974 netif_carrier_off(netdev);
1975
1976 #ifdef CONFIG_IGB_DCA
1977 if (dca_add_requester(&pdev->dev) == 0) {
1978 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1979 dev_info(&pdev->dev, "DCA enabled\n");
1980 igb_setup_dca(adapter);
1981 }
1982
1983 #endif
1984 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1985 /* print bus type/speed/width info */
1986 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1987 netdev->name,
1988 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1989 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
1990 "unknown"),
1991 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1992 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1993 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1994 "unknown"),
1995 netdev->dev_addr);
1996
1997 igb_read_part_num(hw, &part_num);
1998 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1999 (part_num >> 8), (part_num & 0xff));
2000
2001 dev_info(&pdev->dev,
2002 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2003 adapter->msix_entries ? "MSI-X" :
2004 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2005 adapter->num_rx_queues, adapter->num_tx_queues);
2006
2007 return 0;
2008
2009 err_register:
2010 igb_release_hw_control(adapter);
2011 err_eeprom:
2012 if (!igb_check_reset_block(hw))
2013 igb_reset_phy(hw);
2014
2015 if (hw->flash_address)
2016 iounmap(hw->flash_address);
2017 err_sw_init:
2018 igb_clear_interrupt_scheme(adapter);
2019 iounmap(hw->hw_addr);
2020 err_ioremap:
2021 free_netdev(netdev);
2022 err_alloc_etherdev:
2023 pci_release_selected_regions(pdev,
2024 pci_select_bars(pdev, IORESOURCE_MEM));
2025 err_pci_reg:
2026 err_dma:
2027 pci_disable_device(pdev);
2028 return err;
2029 }
2030
2031 /**
2032 * igb_remove - Device Removal Routine
2033 * @pdev: PCI device information struct
2034 *
2035 * igb_remove is called by the PCI subsystem to alert the driver
2036 * that it should release a PCI device. The could be caused by a
2037 * Hot-Plug event, or because the driver is going to be removed from
2038 * memory.
2039 **/
2040 static void __devexit igb_remove(struct pci_dev *pdev)
2041 {
2042 struct net_device *netdev = pci_get_drvdata(pdev);
2043 struct igb_adapter *adapter = netdev_priv(netdev);
2044 struct e1000_hw *hw = &adapter->hw;
2045
2046 /* flush_scheduled work may reschedule our watchdog task, so
2047 * explicitly disable watchdog tasks from being rescheduled */
2048 set_bit(__IGB_DOWN, &adapter->state);
2049 del_timer_sync(&adapter->watchdog_timer);
2050 del_timer_sync(&adapter->phy_info_timer);
2051
2052 flush_scheduled_work();
2053
2054 #ifdef CONFIG_IGB_DCA
2055 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2056 dev_info(&pdev->dev, "DCA disabled\n");
2057 dca_remove_requester(&pdev->dev);
2058 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2059 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2060 }
2061 #endif
2062
2063 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2064 * would have already happened in close and is redundant. */
2065 igb_release_hw_control(adapter);
2066
2067 unregister_netdev(netdev);
2068
2069 igb_clear_interrupt_scheme(adapter);
2070
2071 #ifdef CONFIG_PCI_IOV
2072 /* reclaim resources allocated to VFs */
2073 if (adapter->vf_data) {
2074 /* disable iov and allow time for transactions to clear */
2075 pci_disable_sriov(pdev);
2076 msleep(500);
2077
2078 kfree(adapter->vf_data);
2079 adapter->vf_data = NULL;
2080 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2081 msleep(100);
2082 dev_info(&pdev->dev, "IOV Disabled\n");
2083 }
2084 #endif
2085
2086 iounmap(hw->hw_addr);
2087 if (hw->flash_address)
2088 iounmap(hw->flash_address);
2089 pci_release_selected_regions(pdev,
2090 pci_select_bars(pdev, IORESOURCE_MEM));
2091
2092 free_netdev(netdev);
2093
2094 pci_disable_pcie_error_reporting(pdev);
2095
2096 pci_disable_device(pdev);
2097 }
2098
2099 /**
2100 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2101 * @adapter: board private structure to initialize
2102 *
2103 * This function initializes the vf specific data storage and then attempts to
2104 * allocate the VFs. The reason for ordering it this way is because it is much
2105 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2106 * the memory for the VFs.
2107 **/
2108 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2109 {
2110 #ifdef CONFIG_PCI_IOV
2111 struct pci_dev *pdev = adapter->pdev;
2112
2113 if (adapter->vfs_allocated_count) {
2114 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2115 sizeof(struct vf_data_storage),
2116 GFP_KERNEL);
2117 /* if allocation failed then we do not support SR-IOV */
2118 if (!adapter->vf_data) {
2119 adapter->vfs_allocated_count = 0;
2120 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2121 "Data Storage\n");
2122 }
2123 }
2124
2125 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2126 kfree(adapter->vf_data);
2127 adapter->vf_data = NULL;
2128 #endif /* CONFIG_PCI_IOV */
2129 adapter->vfs_allocated_count = 0;
2130 #ifdef CONFIG_PCI_IOV
2131 } else {
2132 unsigned char mac_addr[ETH_ALEN];
2133 int i;
2134 dev_info(&pdev->dev, "%d vfs allocated\n",
2135 adapter->vfs_allocated_count);
2136 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2137 random_ether_addr(mac_addr);
2138 igb_set_vf_mac(adapter, i, mac_addr);
2139 }
2140 }
2141 #endif /* CONFIG_PCI_IOV */
2142 }
2143
2144
2145 /**
2146 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2147 * @adapter: board private structure to initialize
2148 *
2149 * igb_init_hw_timer initializes the function pointer and values for the hw
2150 * timer found in hardware.
2151 **/
2152 static void igb_init_hw_timer(struct igb_adapter *adapter)
2153 {
2154 struct e1000_hw *hw = &adapter->hw;
2155
2156 switch (hw->mac.type) {
2157 case e1000_i350:
2158 case e1000_82580:
2159 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2160 adapter->cycles.read = igb_read_clock;
2161 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2162 adapter->cycles.mult = 1;
2163 /*
2164 * The 82580 timesync updates the system timer every 8ns by 8ns
2165 * and the value cannot be shifted. Instead we need to shift
2166 * the registers to generate a 64bit timer value. As a result
2167 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2168 * 24 in order to generate a larger value for synchronization.
2169 */
2170 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2171 /* disable system timer temporarily by setting bit 31 */
2172 wr32(E1000_TSAUXC, 0x80000000);
2173 wrfl();
2174
2175 /* Set registers so that rollover occurs soon to test this. */
2176 wr32(E1000_SYSTIMR, 0x00000000);
2177 wr32(E1000_SYSTIML, 0x80000000);
2178 wr32(E1000_SYSTIMH, 0x000000FF);
2179 wrfl();
2180
2181 /* enable system timer by clearing bit 31 */
2182 wr32(E1000_TSAUXC, 0x0);
2183 wrfl();
2184
2185 timecounter_init(&adapter->clock,
2186 &adapter->cycles,
2187 ktime_to_ns(ktime_get_real()));
2188 /*
2189 * Synchronize our NIC clock against system wall clock. NIC
2190 * time stamp reading requires ~3us per sample, each sample
2191 * was pretty stable even under load => only require 10
2192 * samples for each offset comparison.
2193 */
2194 memset(&adapter->compare, 0, sizeof(adapter->compare));
2195 adapter->compare.source = &adapter->clock;
2196 adapter->compare.target = ktime_get_real;
2197 adapter->compare.num_samples = 10;
2198 timecompare_update(&adapter->compare, 0);
2199 break;
2200 case e1000_82576:
2201 /*
2202 * Initialize hardware timer: we keep it running just in case
2203 * that some program needs it later on.
2204 */
2205 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2206 adapter->cycles.read = igb_read_clock;
2207 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2208 adapter->cycles.mult = 1;
2209 /**
2210 * Scale the NIC clock cycle by a large factor so that
2211 * relatively small clock corrections can be added or
2212 * substracted at each clock tick. The drawbacks of a large
2213 * factor are a) that the clock register overflows more quickly
2214 * (not such a big deal) and b) that the increment per tick has
2215 * to fit into 24 bits. As a result we need to use a shift of
2216 * 19 so we can fit a value of 16 into the TIMINCA register.
2217 */
2218 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2219 wr32(E1000_TIMINCA,
2220 (1 << E1000_TIMINCA_16NS_SHIFT) |
2221 (16 << IGB_82576_TSYNC_SHIFT));
2222
2223 /* Set registers so that rollover occurs soon to test this. */
2224 wr32(E1000_SYSTIML, 0x00000000);
2225 wr32(E1000_SYSTIMH, 0xFF800000);
2226 wrfl();
2227
2228 timecounter_init(&adapter->clock,
2229 &adapter->cycles,
2230 ktime_to_ns(ktime_get_real()));
2231 /*
2232 * Synchronize our NIC clock against system wall clock. NIC
2233 * time stamp reading requires ~3us per sample, each sample
2234 * was pretty stable even under load => only require 10
2235 * samples for each offset comparison.
2236 */
2237 memset(&adapter->compare, 0, sizeof(adapter->compare));
2238 adapter->compare.source = &adapter->clock;
2239 adapter->compare.target = ktime_get_real;
2240 adapter->compare.num_samples = 10;
2241 timecompare_update(&adapter->compare, 0);
2242 break;
2243 case e1000_82575:
2244 /* 82575 does not support timesync */
2245 default:
2246 break;
2247 }
2248
2249 }
2250
2251 /**
2252 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2253 * @adapter: board private structure to initialize
2254 *
2255 * igb_sw_init initializes the Adapter private data structure.
2256 * Fields are initialized based on PCI device information and
2257 * OS network device settings (MTU size).
2258 **/
2259 static int __devinit igb_sw_init(struct igb_adapter *adapter)
2260 {
2261 struct e1000_hw *hw = &adapter->hw;
2262 struct net_device *netdev = adapter->netdev;
2263 struct pci_dev *pdev = adapter->pdev;
2264
2265 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2266
2267 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2268 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2269 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2270 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2271
2272 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2273 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2274
2275 #ifdef CONFIG_PCI_IOV
2276 if (hw->mac.type == e1000_82576)
2277 adapter->vfs_allocated_count = (max_vfs > 7) ? 7 : max_vfs;
2278
2279 #endif /* CONFIG_PCI_IOV */
2280 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2281
2282 /*
2283 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2284 * then we should combine the queues into a queue pair in order to
2285 * conserve interrupts due to limited supply
2286 */
2287 if ((adapter->rss_queues > 4) ||
2288 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2289 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2290
2291 /* This call may decrease the number of queues */
2292 if (igb_init_interrupt_scheme(adapter)) {
2293 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2294 return -ENOMEM;
2295 }
2296
2297 igb_init_hw_timer(adapter);
2298 igb_probe_vfs(adapter);
2299
2300 /* Explicitly disable IRQ since the NIC can be in any state. */
2301 igb_irq_disable(adapter);
2302
2303 set_bit(__IGB_DOWN, &adapter->state);
2304 return 0;
2305 }
2306
2307 /**
2308 * igb_open - Called when a network interface is made active
2309 * @netdev: network interface device structure
2310 *
2311 * Returns 0 on success, negative value on failure
2312 *
2313 * The open entry point is called when a network interface is made
2314 * active by the system (IFF_UP). At this point all resources needed
2315 * for transmit and receive operations are allocated, the interrupt
2316 * handler is registered with the OS, the watchdog timer is started,
2317 * and the stack is notified that the interface is ready.
2318 **/
2319 static int igb_open(struct net_device *netdev)
2320 {
2321 struct igb_adapter *adapter = netdev_priv(netdev);
2322 struct e1000_hw *hw = &adapter->hw;
2323 int err;
2324 int i;
2325
2326 /* disallow open during test */
2327 if (test_bit(__IGB_TESTING, &adapter->state))
2328 return -EBUSY;
2329
2330 netif_carrier_off(netdev);
2331
2332 /* allocate transmit descriptors */
2333 err = igb_setup_all_tx_resources(adapter);
2334 if (err)
2335 goto err_setup_tx;
2336
2337 /* allocate receive descriptors */
2338 err = igb_setup_all_rx_resources(adapter);
2339 if (err)
2340 goto err_setup_rx;
2341
2342 igb_power_up_link(adapter);
2343
2344 /* before we allocate an interrupt, we must be ready to handle it.
2345 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2346 * as soon as we call pci_request_irq, so we have to setup our
2347 * clean_rx handler before we do so. */
2348 igb_configure(adapter);
2349
2350 err = igb_request_irq(adapter);
2351 if (err)
2352 goto err_req_irq;
2353
2354 /* From here on the code is the same as igb_up() */
2355 clear_bit(__IGB_DOWN, &adapter->state);
2356
2357 for (i = 0; i < adapter->num_q_vectors; i++) {
2358 struct igb_q_vector *q_vector = adapter->q_vector[i];
2359 napi_enable(&q_vector->napi);
2360 }
2361
2362 /* Clear any pending interrupts. */
2363 rd32(E1000_ICR);
2364
2365 igb_irq_enable(adapter);
2366
2367 /* notify VFs that reset has been completed */
2368 if (adapter->vfs_allocated_count) {
2369 u32 reg_data = rd32(E1000_CTRL_EXT);
2370 reg_data |= E1000_CTRL_EXT_PFRSTD;
2371 wr32(E1000_CTRL_EXT, reg_data);
2372 }
2373
2374 netif_tx_start_all_queues(netdev);
2375
2376 /* start the watchdog. */
2377 hw->mac.get_link_status = 1;
2378 schedule_work(&adapter->watchdog_task);
2379
2380 return 0;
2381
2382 err_req_irq:
2383 igb_release_hw_control(adapter);
2384 igb_power_down_link(adapter);
2385 igb_free_all_rx_resources(adapter);
2386 err_setup_rx:
2387 igb_free_all_tx_resources(adapter);
2388 err_setup_tx:
2389 igb_reset(adapter);
2390
2391 return err;
2392 }
2393
2394 /**
2395 * igb_close - Disables a network interface
2396 * @netdev: network interface device structure
2397 *
2398 * Returns 0, this is not allowed to fail
2399 *
2400 * The close entry point is called when an interface is de-activated
2401 * by the OS. The hardware is still under the driver's control, but
2402 * needs to be disabled. A global MAC reset is issued to stop the
2403 * hardware, and all transmit and receive resources are freed.
2404 **/
2405 static int igb_close(struct net_device *netdev)
2406 {
2407 struct igb_adapter *adapter = netdev_priv(netdev);
2408
2409 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2410 igb_down(adapter);
2411
2412 igb_free_irq(adapter);
2413
2414 igb_free_all_tx_resources(adapter);
2415 igb_free_all_rx_resources(adapter);
2416
2417 return 0;
2418 }
2419
2420 /**
2421 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2422 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2423 *
2424 * Return 0 on success, negative on failure
2425 **/
2426 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2427 {
2428 struct device *dev = tx_ring->dev;
2429 int size;
2430
2431 size = sizeof(struct igb_buffer) * tx_ring->count;
2432 tx_ring->buffer_info = vmalloc(size);
2433 if (!tx_ring->buffer_info)
2434 goto err;
2435 memset(tx_ring->buffer_info, 0, size);
2436
2437 /* round up to nearest 4K */
2438 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2439 tx_ring->size = ALIGN(tx_ring->size, 4096);
2440
2441 tx_ring->desc = dma_alloc_coherent(dev,
2442 tx_ring->size,
2443 &tx_ring->dma,
2444 GFP_KERNEL);
2445
2446 if (!tx_ring->desc)
2447 goto err;
2448
2449 tx_ring->next_to_use = 0;
2450 tx_ring->next_to_clean = 0;
2451 return 0;
2452
2453 err:
2454 vfree(tx_ring->buffer_info);
2455 dev_err(dev,
2456 "Unable to allocate memory for the transmit descriptor ring\n");
2457 return -ENOMEM;
2458 }
2459
2460 /**
2461 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2462 * (Descriptors) for all queues
2463 * @adapter: board private structure
2464 *
2465 * Return 0 on success, negative on failure
2466 **/
2467 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2468 {
2469 struct pci_dev *pdev = adapter->pdev;
2470 int i, err = 0;
2471
2472 for (i = 0; i < adapter->num_tx_queues; i++) {
2473 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2474 if (err) {
2475 dev_err(&pdev->dev,
2476 "Allocation for Tx Queue %u failed\n", i);
2477 for (i--; i >= 0; i--)
2478 igb_free_tx_resources(adapter->tx_ring[i]);
2479 break;
2480 }
2481 }
2482
2483 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2484 int r_idx = i % adapter->num_tx_queues;
2485 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
2486 }
2487 return err;
2488 }
2489
2490 /**
2491 * igb_setup_tctl - configure the transmit control registers
2492 * @adapter: Board private structure
2493 **/
2494 void igb_setup_tctl(struct igb_adapter *adapter)
2495 {
2496 struct e1000_hw *hw = &adapter->hw;
2497 u32 tctl;
2498
2499 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2500 wr32(E1000_TXDCTL(0), 0);
2501
2502 /* Program the Transmit Control Register */
2503 tctl = rd32(E1000_TCTL);
2504 tctl &= ~E1000_TCTL_CT;
2505 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2506 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2507
2508 igb_config_collision_dist(hw);
2509
2510 /* Enable transmits */
2511 tctl |= E1000_TCTL_EN;
2512
2513 wr32(E1000_TCTL, tctl);
2514 }
2515
2516 /**
2517 * igb_configure_tx_ring - Configure transmit ring after Reset
2518 * @adapter: board private structure
2519 * @ring: tx ring to configure
2520 *
2521 * Configure a transmit ring after a reset.
2522 **/
2523 void igb_configure_tx_ring(struct igb_adapter *adapter,
2524 struct igb_ring *ring)
2525 {
2526 struct e1000_hw *hw = &adapter->hw;
2527 u32 txdctl;
2528 u64 tdba = ring->dma;
2529 int reg_idx = ring->reg_idx;
2530
2531 /* disable the queue */
2532 txdctl = rd32(E1000_TXDCTL(reg_idx));
2533 wr32(E1000_TXDCTL(reg_idx),
2534 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2535 wrfl();
2536 mdelay(10);
2537
2538 wr32(E1000_TDLEN(reg_idx),
2539 ring->count * sizeof(union e1000_adv_tx_desc));
2540 wr32(E1000_TDBAL(reg_idx),
2541 tdba & 0x00000000ffffffffULL);
2542 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2543
2544 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2545 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2546 writel(0, ring->head);
2547 writel(0, ring->tail);
2548
2549 txdctl |= IGB_TX_PTHRESH;
2550 txdctl |= IGB_TX_HTHRESH << 8;
2551 txdctl |= IGB_TX_WTHRESH << 16;
2552
2553 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2554 wr32(E1000_TXDCTL(reg_idx), txdctl);
2555 }
2556
2557 /**
2558 * igb_configure_tx - Configure transmit Unit after Reset
2559 * @adapter: board private structure
2560 *
2561 * Configure the Tx unit of the MAC after a reset.
2562 **/
2563 static void igb_configure_tx(struct igb_adapter *adapter)
2564 {
2565 int i;
2566
2567 for (i = 0; i < adapter->num_tx_queues; i++)
2568 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2569 }
2570
2571 /**
2572 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2573 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2574 *
2575 * Returns 0 on success, negative on failure
2576 **/
2577 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2578 {
2579 struct device *dev = rx_ring->dev;
2580 int size, desc_len;
2581
2582 size = sizeof(struct igb_buffer) * rx_ring->count;
2583 rx_ring->buffer_info = vmalloc(size);
2584 if (!rx_ring->buffer_info)
2585 goto err;
2586 memset(rx_ring->buffer_info, 0, size);
2587
2588 desc_len = sizeof(union e1000_adv_rx_desc);
2589
2590 /* Round up to nearest 4K */
2591 rx_ring->size = rx_ring->count * desc_len;
2592 rx_ring->size = ALIGN(rx_ring->size, 4096);
2593
2594 rx_ring->desc = dma_alloc_coherent(dev,
2595 rx_ring->size,
2596 &rx_ring->dma,
2597 GFP_KERNEL);
2598
2599 if (!rx_ring->desc)
2600 goto err;
2601
2602 rx_ring->next_to_clean = 0;
2603 rx_ring->next_to_use = 0;
2604
2605 return 0;
2606
2607 err:
2608 vfree(rx_ring->buffer_info);
2609 rx_ring->buffer_info = NULL;
2610 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2611 " ring\n");
2612 return -ENOMEM;
2613 }
2614
2615 /**
2616 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2617 * (Descriptors) for all queues
2618 * @adapter: board private structure
2619 *
2620 * Return 0 on success, negative on failure
2621 **/
2622 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2623 {
2624 struct pci_dev *pdev = adapter->pdev;
2625 int i, err = 0;
2626
2627 for (i = 0; i < adapter->num_rx_queues; i++) {
2628 err = igb_setup_rx_resources(adapter->rx_ring[i]);
2629 if (err) {
2630 dev_err(&pdev->dev,
2631 "Allocation for Rx Queue %u failed\n", i);
2632 for (i--; i >= 0; i--)
2633 igb_free_rx_resources(adapter->rx_ring[i]);
2634 break;
2635 }
2636 }
2637
2638 return err;
2639 }
2640
2641 /**
2642 * igb_setup_mrqc - configure the multiple receive queue control registers
2643 * @adapter: Board private structure
2644 **/
2645 static void igb_setup_mrqc(struct igb_adapter *adapter)
2646 {
2647 struct e1000_hw *hw = &adapter->hw;
2648 u32 mrqc, rxcsum;
2649 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2650 union e1000_reta {
2651 u32 dword;
2652 u8 bytes[4];
2653 } reta;
2654 static const u8 rsshash[40] = {
2655 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2656 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2657 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2658 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2659
2660 /* Fill out hash function seeds */
2661 for (j = 0; j < 10; j++) {
2662 u32 rsskey = rsshash[(j * 4)];
2663 rsskey |= rsshash[(j * 4) + 1] << 8;
2664 rsskey |= rsshash[(j * 4) + 2] << 16;
2665 rsskey |= rsshash[(j * 4) + 3] << 24;
2666 array_wr32(E1000_RSSRK(0), j, rsskey);
2667 }
2668
2669 num_rx_queues = adapter->rss_queues;
2670
2671 if (adapter->vfs_allocated_count) {
2672 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2673 switch (hw->mac.type) {
2674 case e1000_i350:
2675 case e1000_82580:
2676 num_rx_queues = 1;
2677 shift = 0;
2678 break;
2679 case e1000_82576:
2680 shift = 3;
2681 num_rx_queues = 2;
2682 break;
2683 case e1000_82575:
2684 shift = 2;
2685 shift2 = 6;
2686 default:
2687 break;
2688 }
2689 } else {
2690 if (hw->mac.type == e1000_82575)
2691 shift = 6;
2692 }
2693
2694 for (j = 0; j < (32 * 4); j++) {
2695 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2696 if (shift2)
2697 reta.bytes[j & 3] |= num_rx_queues << shift2;
2698 if ((j & 3) == 3)
2699 wr32(E1000_RETA(j >> 2), reta.dword);
2700 }
2701
2702 /*
2703 * Disable raw packet checksumming so that RSS hash is placed in
2704 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2705 * offloads as they are enabled by default
2706 */
2707 rxcsum = rd32(E1000_RXCSUM);
2708 rxcsum |= E1000_RXCSUM_PCSD;
2709
2710 if (adapter->hw.mac.type >= e1000_82576)
2711 /* Enable Receive Checksum Offload for SCTP */
2712 rxcsum |= E1000_RXCSUM_CRCOFL;
2713
2714 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2715 wr32(E1000_RXCSUM, rxcsum);
2716
2717 /* If VMDq is enabled then we set the appropriate mode for that, else
2718 * we default to RSS so that an RSS hash is calculated per packet even
2719 * if we are only using one queue */
2720 if (adapter->vfs_allocated_count) {
2721 if (hw->mac.type > e1000_82575) {
2722 /* Set the default pool for the PF's first queue */
2723 u32 vtctl = rd32(E1000_VT_CTL);
2724 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2725 E1000_VT_CTL_DISABLE_DEF_POOL);
2726 vtctl |= adapter->vfs_allocated_count <<
2727 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2728 wr32(E1000_VT_CTL, vtctl);
2729 }
2730 if (adapter->rss_queues > 1)
2731 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2732 else
2733 mrqc = E1000_MRQC_ENABLE_VMDQ;
2734 } else {
2735 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2736 }
2737 igb_vmm_control(adapter);
2738
2739 /*
2740 * Generate RSS hash based on TCP port numbers and/or
2741 * IPv4/v6 src and dst addresses since UDP cannot be
2742 * hashed reliably due to IP fragmentation
2743 */
2744 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2745 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2746 E1000_MRQC_RSS_FIELD_IPV6 |
2747 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2748 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2749
2750 wr32(E1000_MRQC, mrqc);
2751 }
2752
2753 /**
2754 * igb_setup_rctl - configure the receive control registers
2755 * @adapter: Board private structure
2756 **/
2757 void igb_setup_rctl(struct igb_adapter *adapter)
2758 {
2759 struct e1000_hw *hw = &adapter->hw;
2760 u32 rctl;
2761
2762 rctl = rd32(E1000_RCTL);
2763
2764 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2765 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2766
2767 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2768 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2769
2770 /*
2771 * enable stripping of CRC. It's unlikely this will break BMC
2772 * redirection as it did with e1000. Newer features require
2773 * that the HW strips the CRC.
2774 */
2775 rctl |= E1000_RCTL_SECRC;
2776
2777 /* disable store bad packets and clear size bits. */
2778 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2779
2780 /* enable LPE to prevent packets larger than max_frame_size */
2781 rctl |= E1000_RCTL_LPE;
2782
2783 /* disable queue 0 to prevent tail write w/o re-config */
2784 wr32(E1000_RXDCTL(0), 0);
2785
2786 /* Attention!!! For SR-IOV PF driver operations you must enable
2787 * queue drop for all VF and PF queues to prevent head of line blocking
2788 * if an un-trusted VF does not provide descriptors to hardware.
2789 */
2790 if (adapter->vfs_allocated_count) {
2791 /* set all queue drop enable bits */
2792 wr32(E1000_QDE, ALL_QUEUES);
2793 }
2794
2795 wr32(E1000_RCTL, rctl);
2796 }
2797
2798 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2799 int vfn)
2800 {
2801 struct e1000_hw *hw = &adapter->hw;
2802 u32 vmolr;
2803
2804 /* if it isn't the PF check to see if VFs are enabled and
2805 * increase the size to support vlan tags */
2806 if (vfn < adapter->vfs_allocated_count &&
2807 adapter->vf_data[vfn].vlans_enabled)
2808 size += VLAN_TAG_SIZE;
2809
2810 vmolr = rd32(E1000_VMOLR(vfn));
2811 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2812 vmolr |= size | E1000_VMOLR_LPE;
2813 wr32(E1000_VMOLR(vfn), vmolr);
2814
2815 return 0;
2816 }
2817
2818 /**
2819 * igb_rlpml_set - set maximum receive packet size
2820 * @adapter: board private structure
2821 *
2822 * Configure maximum receivable packet size.
2823 **/
2824 static void igb_rlpml_set(struct igb_adapter *adapter)
2825 {
2826 u32 max_frame_size = adapter->max_frame_size;
2827 struct e1000_hw *hw = &adapter->hw;
2828 u16 pf_id = adapter->vfs_allocated_count;
2829
2830 if (adapter->vlgrp)
2831 max_frame_size += VLAN_TAG_SIZE;
2832
2833 /* if vfs are enabled we set RLPML to the largest possible request
2834 * size and set the VMOLR RLPML to the size we need */
2835 if (pf_id) {
2836 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2837 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2838 }
2839
2840 wr32(E1000_RLPML, max_frame_size);
2841 }
2842
2843 static inline void igb_set_vmolr(struct igb_adapter *adapter,
2844 int vfn, bool aupe)
2845 {
2846 struct e1000_hw *hw = &adapter->hw;
2847 u32 vmolr;
2848
2849 /*
2850 * This register exists only on 82576 and newer so if we are older then
2851 * we should exit and do nothing
2852 */
2853 if (hw->mac.type < e1000_82576)
2854 return;
2855
2856 vmolr = rd32(E1000_VMOLR(vfn));
2857 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2858 if (aupe)
2859 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2860 else
2861 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
2862
2863 /* clear all bits that might not be set */
2864 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2865
2866 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2867 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2868 /*
2869 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2870 * multicast packets
2871 */
2872 if (vfn <= adapter->vfs_allocated_count)
2873 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2874
2875 wr32(E1000_VMOLR(vfn), vmolr);
2876 }
2877
2878 /**
2879 * igb_configure_rx_ring - Configure a receive ring after Reset
2880 * @adapter: board private structure
2881 * @ring: receive ring to be configured
2882 *
2883 * Configure the Rx unit of the MAC after a reset.
2884 **/
2885 void igb_configure_rx_ring(struct igb_adapter *adapter,
2886 struct igb_ring *ring)
2887 {
2888 struct e1000_hw *hw = &adapter->hw;
2889 u64 rdba = ring->dma;
2890 int reg_idx = ring->reg_idx;
2891 u32 srrctl, rxdctl;
2892
2893 /* disable the queue */
2894 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2895 wr32(E1000_RXDCTL(reg_idx),
2896 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2897
2898 /* Set DMA base address registers */
2899 wr32(E1000_RDBAL(reg_idx),
2900 rdba & 0x00000000ffffffffULL);
2901 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2902 wr32(E1000_RDLEN(reg_idx),
2903 ring->count * sizeof(union e1000_adv_rx_desc));
2904
2905 /* initialize head and tail */
2906 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2907 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2908 writel(0, ring->head);
2909 writel(0, ring->tail);
2910
2911 /* set descriptor configuration */
2912 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2913 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2914 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2915 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2916 srrctl |= IGB_RXBUFFER_16384 >>
2917 E1000_SRRCTL_BSIZEPKT_SHIFT;
2918 #else
2919 srrctl |= (PAGE_SIZE / 2) >>
2920 E1000_SRRCTL_BSIZEPKT_SHIFT;
2921 #endif
2922 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2923 } else {
2924 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2925 E1000_SRRCTL_BSIZEPKT_SHIFT;
2926 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2927 }
2928 if (hw->mac.type == e1000_82580)
2929 srrctl |= E1000_SRRCTL_TIMESTAMP;
2930 /* Only set Drop Enable if we are supporting multiple queues */
2931 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
2932 srrctl |= E1000_SRRCTL_DROP_EN;
2933
2934 wr32(E1000_SRRCTL(reg_idx), srrctl);
2935
2936 /* set filtering for VMDQ pools */
2937 igb_set_vmolr(adapter, reg_idx & 0x7, true);
2938
2939 /* enable receive descriptor fetching */
2940 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2941 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2942 rxdctl &= 0xFFF00000;
2943 rxdctl |= IGB_RX_PTHRESH;
2944 rxdctl |= IGB_RX_HTHRESH << 8;
2945 rxdctl |= IGB_RX_WTHRESH << 16;
2946 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2947 }
2948
2949 /**
2950 * igb_configure_rx - Configure receive Unit after Reset
2951 * @adapter: board private structure
2952 *
2953 * Configure the Rx unit of the MAC after a reset.
2954 **/
2955 static void igb_configure_rx(struct igb_adapter *adapter)
2956 {
2957 int i;
2958
2959 /* set UTA to appropriate mode */
2960 igb_set_uta(adapter);
2961
2962 /* set the correct pool for the PF default MAC address in entry 0 */
2963 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2964 adapter->vfs_allocated_count);
2965
2966 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2967 * the Base and Length of the Rx Descriptor Ring */
2968 for (i = 0; i < adapter->num_rx_queues; i++)
2969 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
2970 }
2971
2972 /**
2973 * igb_free_tx_resources - Free Tx Resources per Queue
2974 * @tx_ring: Tx descriptor ring for a specific queue
2975 *
2976 * Free all transmit software resources
2977 **/
2978 void igb_free_tx_resources(struct igb_ring *tx_ring)
2979 {
2980 igb_clean_tx_ring(tx_ring);
2981
2982 vfree(tx_ring->buffer_info);
2983 tx_ring->buffer_info = NULL;
2984
2985 /* if not set, then don't free */
2986 if (!tx_ring->desc)
2987 return;
2988
2989 dma_free_coherent(tx_ring->dev, tx_ring->size,
2990 tx_ring->desc, tx_ring->dma);
2991
2992 tx_ring->desc = NULL;
2993 }
2994
2995 /**
2996 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2997 * @adapter: board private structure
2998 *
2999 * Free all transmit software resources
3000 **/
3001 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3002 {
3003 int i;
3004
3005 for (i = 0; i < adapter->num_tx_queues; i++)
3006 igb_free_tx_resources(adapter->tx_ring[i]);
3007 }
3008
3009 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3010 struct igb_buffer *buffer_info)
3011 {
3012 if (buffer_info->dma) {
3013 if (buffer_info->mapped_as_page)
3014 dma_unmap_page(tx_ring->dev,
3015 buffer_info->dma,
3016 buffer_info->length,
3017 DMA_TO_DEVICE);
3018 else
3019 dma_unmap_single(tx_ring->dev,
3020 buffer_info->dma,
3021 buffer_info->length,
3022 DMA_TO_DEVICE);
3023 buffer_info->dma = 0;
3024 }
3025 if (buffer_info->skb) {
3026 dev_kfree_skb_any(buffer_info->skb);
3027 buffer_info->skb = NULL;
3028 }
3029 buffer_info->time_stamp = 0;
3030 buffer_info->length = 0;
3031 buffer_info->next_to_watch = 0;
3032 buffer_info->mapped_as_page = false;
3033 }
3034
3035 /**
3036 * igb_clean_tx_ring - Free Tx Buffers
3037 * @tx_ring: ring to be cleaned
3038 **/
3039 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3040 {
3041 struct igb_buffer *buffer_info;
3042 unsigned long size;
3043 unsigned int i;
3044
3045 if (!tx_ring->buffer_info)
3046 return;
3047 /* Free all the Tx ring sk_buffs */
3048
3049 for (i = 0; i < tx_ring->count; i++) {
3050 buffer_info = &tx_ring->buffer_info[i];
3051 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3052 }
3053
3054 size = sizeof(struct igb_buffer) * tx_ring->count;
3055 memset(tx_ring->buffer_info, 0, size);
3056
3057 /* Zero out the descriptor ring */
3058 memset(tx_ring->desc, 0, tx_ring->size);
3059
3060 tx_ring->next_to_use = 0;
3061 tx_ring->next_to_clean = 0;
3062 }
3063
3064 /**
3065 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3066 * @adapter: board private structure
3067 **/
3068 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3069 {
3070 int i;
3071
3072 for (i = 0; i < adapter->num_tx_queues; i++)
3073 igb_clean_tx_ring(adapter->tx_ring[i]);
3074 }
3075
3076 /**
3077 * igb_free_rx_resources - Free Rx Resources
3078 * @rx_ring: ring to clean the resources from
3079 *
3080 * Free all receive software resources
3081 **/
3082 void igb_free_rx_resources(struct igb_ring *rx_ring)
3083 {
3084 igb_clean_rx_ring(rx_ring);
3085
3086 vfree(rx_ring->buffer_info);
3087 rx_ring->buffer_info = NULL;
3088
3089 /* if not set, then don't free */
3090 if (!rx_ring->desc)
3091 return;
3092
3093 dma_free_coherent(rx_ring->dev, rx_ring->size,
3094 rx_ring->desc, rx_ring->dma);
3095
3096 rx_ring->desc = NULL;
3097 }
3098
3099 /**
3100 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3101 * @adapter: board private structure
3102 *
3103 * Free all receive software resources
3104 **/
3105 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3106 {
3107 int i;
3108
3109 for (i = 0; i < adapter->num_rx_queues; i++)
3110 igb_free_rx_resources(adapter->rx_ring[i]);
3111 }
3112
3113 /**
3114 * igb_clean_rx_ring - Free Rx Buffers per Queue
3115 * @rx_ring: ring to free buffers from
3116 **/
3117 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3118 {
3119 struct igb_buffer *buffer_info;
3120 unsigned long size;
3121 unsigned int i;
3122
3123 if (!rx_ring->buffer_info)
3124 return;
3125
3126 /* Free all the Rx ring sk_buffs */
3127 for (i = 0; i < rx_ring->count; i++) {
3128 buffer_info = &rx_ring->buffer_info[i];
3129 if (buffer_info->dma) {
3130 dma_unmap_single(rx_ring->dev,
3131 buffer_info->dma,
3132 rx_ring->rx_buffer_len,
3133 DMA_FROM_DEVICE);
3134 buffer_info->dma = 0;
3135 }
3136
3137 if (buffer_info->skb) {
3138 dev_kfree_skb(buffer_info->skb);
3139 buffer_info->skb = NULL;
3140 }
3141 if (buffer_info->page_dma) {
3142 dma_unmap_page(rx_ring->dev,
3143 buffer_info->page_dma,
3144 PAGE_SIZE / 2,
3145 DMA_FROM_DEVICE);
3146 buffer_info->page_dma = 0;
3147 }
3148 if (buffer_info->page) {
3149 put_page(buffer_info->page);
3150 buffer_info->page = NULL;
3151 buffer_info->page_offset = 0;
3152 }
3153 }
3154
3155 size = sizeof(struct igb_buffer) * rx_ring->count;
3156 memset(rx_ring->buffer_info, 0, size);
3157
3158 /* Zero out the descriptor ring */
3159 memset(rx_ring->desc, 0, rx_ring->size);
3160
3161 rx_ring->next_to_clean = 0;
3162 rx_ring->next_to_use = 0;
3163 }
3164
3165 /**
3166 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3167 * @adapter: board private structure
3168 **/
3169 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3170 {
3171 int i;
3172
3173 for (i = 0; i < adapter->num_rx_queues; i++)
3174 igb_clean_rx_ring(adapter->rx_ring[i]);
3175 }
3176
3177 /**
3178 * igb_set_mac - Change the Ethernet Address of the NIC
3179 * @netdev: network interface device structure
3180 * @p: pointer to an address structure
3181 *
3182 * Returns 0 on success, negative on failure
3183 **/
3184 static int igb_set_mac(struct net_device *netdev, void *p)
3185 {
3186 struct igb_adapter *adapter = netdev_priv(netdev);
3187 struct e1000_hw *hw = &adapter->hw;
3188 struct sockaddr *addr = p;
3189
3190 if (!is_valid_ether_addr(addr->sa_data))
3191 return -EADDRNOTAVAIL;
3192
3193 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3194 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3195
3196 /* set the correct pool for the new PF MAC address in entry 0 */
3197 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3198 adapter->vfs_allocated_count);
3199
3200 return 0;
3201 }
3202
3203 /**
3204 * igb_write_mc_addr_list - write multicast addresses to MTA
3205 * @netdev: network interface device structure
3206 *
3207 * Writes multicast address list to the MTA hash table.
3208 * Returns: -ENOMEM on failure
3209 * 0 on no addresses written
3210 * X on writing X addresses to MTA
3211 **/
3212 static int igb_write_mc_addr_list(struct net_device *netdev)
3213 {
3214 struct igb_adapter *adapter = netdev_priv(netdev);
3215 struct e1000_hw *hw = &adapter->hw;
3216 struct netdev_hw_addr *ha;
3217 u8 *mta_list;
3218 int i;
3219
3220 if (netdev_mc_empty(netdev)) {
3221 /* nothing to program, so clear mc list */
3222 igb_update_mc_addr_list(hw, NULL, 0);
3223 igb_restore_vf_multicasts(adapter);
3224 return 0;
3225 }
3226
3227 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3228 if (!mta_list)
3229 return -ENOMEM;
3230
3231 /* The shared function expects a packed array of only addresses. */
3232 i = 0;
3233 netdev_for_each_mc_addr(ha, netdev)
3234 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3235
3236 igb_update_mc_addr_list(hw, mta_list, i);
3237 kfree(mta_list);
3238
3239 return netdev_mc_count(netdev);
3240 }
3241
3242 /**
3243 * igb_write_uc_addr_list - write unicast addresses to RAR table
3244 * @netdev: network interface device structure
3245 *
3246 * Writes unicast address list to the RAR table.
3247 * Returns: -ENOMEM on failure/insufficient address space
3248 * 0 on no addresses written
3249 * X on writing X addresses to the RAR table
3250 **/
3251 static int igb_write_uc_addr_list(struct net_device *netdev)
3252 {
3253 struct igb_adapter *adapter = netdev_priv(netdev);
3254 struct e1000_hw *hw = &adapter->hw;
3255 unsigned int vfn = adapter->vfs_allocated_count;
3256 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3257 int count = 0;
3258
3259 /* return ENOMEM indicating insufficient memory for addresses */
3260 if (netdev_uc_count(netdev) > rar_entries)
3261 return -ENOMEM;
3262
3263 if (!netdev_uc_empty(netdev) && rar_entries) {
3264 struct netdev_hw_addr *ha;
3265
3266 netdev_for_each_uc_addr(ha, netdev) {
3267 if (!rar_entries)
3268 break;
3269 igb_rar_set_qsel(adapter, ha->addr,
3270 rar_entries--,
3271 vfn);
3272 count++;
3273 }
3274 }
3275 /* write the addresses in reverse order to avoid write combining */
3276 for (; rar_entries > 0 ; rar_entries--) {
3277 wr32(E1000_RAH(rar_entries), 0);
3278 wr32(E1000_RAL(rar_entries), 0);
3279 }
3280 wrfl();
3281
3282 return count;
3283 }
3284
3285 /**
3286 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3287 * @netdev: network interface device structure
3288 *
3289 * The set_rx_mode entry point is called whenever the unicast or multicast
3290 * address lists or the network interface flags are updated. This routine is
3291 * responsible for configuring the hardware for proper unicast, multicast,
3292 * promiscuous mode, and all-multi behavior.
3293 **/
3294 static void igb_set_rx_mode(struct net_device *netdev)
3295 {
3296 struct igb_adapter *adapter = netdev_priv(netdev);
3297 struct e1000_hw *hw = &adapter->hw;
3298 unsigned int vfn = adapter->vfs_allocated_count;
3299 u32 rctl, vmolr = 0;
3300 int count;
3301
3302 /* Check for Promiscuous and All Multicast modes */
3303 rctl = rd32(E1000_RCTL);
3304
3305 /* clear the effected bits */
3306 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3307
3308 if (netdev->flags & IFF_PROMISC) {
3309 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3310 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3311 } else {
3312 if (netdev->flags & IFF_ALLMULTI) {
3313 rctl |= E1000_RCTL_MPE;
3314 vmolr |= E1000_VMOLR_MPME;
3315 } else {
3316 /*
3317 * Write addresses to the MTA, if the attempt fails
3318 * then we should just turn on promiscous mode so
3319 * that we can at least receive multicast traffic
3320 */
3321 count = igb_write_mc_addr_list(netdev);
3322 if (count < 0) {
3323 rctl |= E1000_RCTL_MPE;
3324 vmolr |= E1000_VMOLR_MPME;
3325 } else if (count) {
3326 vmolr |= E1000_VMOLR_ROMPE;
3327 }
3328 }
3329 /*
3330 * Write addresses to available RAR registers, if there is not
3331 * sufficient space to store all the addresses then enable
3332 * unicast promiscous mode
3333 */
3334 count = igb_write_uc_addr_list(netdev);
3335 if (count < 0) {
3336 rctl |= E1000_RCTL_UPE;
3337 vmolr |= E1000_VMOLR_ROPE;
3338 }
3339 rctl |= E1000_RCTL_VFE;
3340 }
3341 wr32(E1000_RCTL, rctl);
3342
3343 /*
3344 * In order to support SR-IOV and eventually VMDq it is necessary to set
3345 * the VMOLR to enable the appropriate modes. Without this workaround
3346 * we will have issues with VLAN tag stripping not being done for frames
3347 * that are only arriving because we are the default pool
3348 */
3349 if (hw->mac.type < e1000_82576)
3350 return;
3351
3352 vmolr |= rd32(E1000_VMOLR(vfn)) &
3353 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3354 wr32(E1000_VMOLR(vfn), vmolr);
3355 igb_restore_vf_multicasts(adapter);
3356 }
3357
3358 /* Need to wait a few seconds after link up to get diagnostic information from
3359 * the phy */
3360 static void igb_update_phy_info(unsigned long data)
3361 {
3362 struct igb_adapter *adapter = (struct igb_adapter *) data;
3363 igb_get_phy_info(&adapter->hw);
3364 }
3365
3366 /**
3367 * igb_has_link - check shared code for link and determine up/down
3368 * @adapter: pointer to driver private info
3369 **/
3370 bool igb_has_link(struct igb_adapter *adapter)
3371 {
3372 struct e1000_hw *hw = &adapter->hw;
3373 bool link_active = false;
3374 s32 ret_val = 0;
3375
3376 /* get_link_status is set on LSC (link status) interrupt or
3377 * rx sequence error interrupt. get_link_status will stay
3378 * false until the e1000_check_for_link establishes link
3379 * for copper adapters ONLY
3380 */
3381 switch (hw->phy.media_type) {
3382 case e1000_media_type_copper:
3383 if (hw->mac.get_link_status) {
3384 ret_val = hw->mac.ops.check_for_link(hw);
3385 link_active = !hw->mac.get_link_status;
3386 } else {
3387 link_active = true;
3388 }
3389 break;
3390 case e1000_media_type_internal_serdes:
3391 ret_val = hw->mac.ops.check_for_link(hw);
3392 link_active = hw->mac.serdes_has_link;
3393 break;
3394 default:
3395 case e1000_media_type_unknown:
3396 break;
3397 }
3398
3399 return link_active;
3400 }
3401
3402 /**
3403 * igb_watchdog - Timer Call-back
3404 * @data: pointer to adapter cast into an unsigned long
3405 **/
3406 static void igb_watchdog(unsigned long data)
3407 {
3408 struct igb_adapter *adapter = (struct igb_adapter *)data;
3409 /* Do the rest outside of interrupt context */
3410 schedule_work(&adapter->watchdog_task);
3411 }
3412
3413 static void igb_watchdog_task(struct work_struct *work)
3414 {
3415 struct igb_adapter *adapter = container_of(work,
3416 struct igb_adapter,
3417 watchdog_task);
3418 struct e1000_hw *hw = &adapter->hw;
3419 struct net_device *netdev = adapter->netdev;
3420 u32 link;
3421 int i;
3422
3423 link = igb_has_link(adapter);
3424 if (link) {
3425 if (!netif_carrier_ok(netdev)) {
3426 u32 ctrl;
3427 hw->mac.ops.get_speed_and_duplex(hw,
3428 &adapter->link_speed,
3429 &adapter->link_duplex);
3430
3431 ctrl = rd32(E1000_CTRL);
3432 /* Links status message must follow this format */
3433 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3434 "Flow Control: %s\n",
3435 netdev->name,
3436 adapter->link_speed,
3437 adapter->link_duplex == FULL_DUPLEX ?
3438 "Full Duplex" : "Half Duplex",
3439 ((ctrl & E1000_CTRL_TFCE) &&
3440 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3441 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3442 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
3443
3444 /* adjust timeout factor according to speed/duplex */
3445 adapter->tx_timeout_factor = 1;
3446 switch (adapter->link_speed) {
3447 case SPEED_10:
3448 adapter->tx_timeout_factor = 14;
3449 break;
3450 case SPEED_100:
3451 /* maybe add some timeout factor ? */
3452 break;
3453 }
3454
3455 netif_carrier_on(netdev);
3456
3457 igb_ping_all_vfs(adapter);
3458
3459 /* link state has changed, schedule phy info update */
3460 if (!test_bit(__IGB_DOWN, &adapter->state))
3461 mod_timer(&adapter->phy_info_timer,
3462 round_jiffies(jiffies + 2 * HZ));
3463 }
3464 } else {
3465 if (netif_carrier_ok(netdev)) {
3466 adapter->link_speed = 0;
3467 adapter->link_duplex = 0;
3468 /* Links status message must follow this format */
3469 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3470 netdev->name);
3471 netif_carrier_off(netdev);
3472
3473 igb_ping_all_vfs(adapter);
3474
3475 /* link state has changed, schedule phy info update */
3476 if (!test_bit(__IGB_DOWN, &adapter->state))
3477 mod_timer(&adapter->phy_info_timer,
3478 round_jiffies(jiffies + 2 * HZ));
3479 }
3480 }
3481
3482 igb_update_stats(adapter);
3483
3484 for (i = 0; i < adapter->num_tx_queues; i++) {
3485 struct igb_ring *tx_ring = adapter->tx_ring[i];
3486 if (!netif_carrier_ok(netdev)) {
3487 /* We've lost link, so the controller stops DMA,
3488 * but we've got queued Tx work that's never going
3489 * to get done, so reset controller to flush Tx.
3490 * (Do the reset outside of interrupt context). */
3491 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3492 adapter->tx_timeout_count++;
3493 schedule_work(&adapter->reset_task);
3494 /* return immediately since reset is imminent */
3495 return;
3496 }
3497 }
3498
3499 /* Force detection of hung controller every watchdog period */
3500 tx_ring->detect_tx_hung = true;
3501 }
3502
3503 /* Cause software interrupt to ensure rx ring is cleaned */
3504 if (adapter->msix_entries) {
3505 u32 eics = 0;
3506 for (i = 0; i < adapter->num_q_vectors; i++) {
3507 struct igb_q_vector *q_vector = adapter->q_vector[i];
3508 eics |= q_vector->eims_value;
3509 }
3510 wr32(E1000_EICS, eics);
3511 } else {
3512 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3513 }
3514
3515 /* Reset the timer */
3516 if (!test_bit(__IGB_DOWN, &adapter->state))
3517 mod_timer(&adapter->watchdog_timer,
3518 round_jiffies(jiffies + 2 * HZ));
3519 }
3520
3521 enum latency_range {
3522 lowest_latency = 0,
3523 low_latency = 1,
3524 bulk_latency = 2,
3525 latency_invalid = 255
3526 };
3527
3528 /**
3529 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3530 *
3531 * Stores a new ITR value based on strictly on packet size. This
3532 * algorithm is less sophisticated than that used in igb_update_itr,
3533 * due to the difficulty of synchronizing statistics across multiple
3534 * receive rings. The divisors and thresholds used by this fuction
3535 * were determined based on theoretical maximum wire speed and testing
3536 * data, in order to minimize response time while increasing bulk
3537 * throughput.
3538 * This functionality is controlled by the InterruptThrottleRate module
3539 * parameter (see igb_param.c)
3540 * NOTE: This function is called only when operating in a multiqueue
3541 * receive environment.
3542 * @q_vector: pointer to q_vector
3543 **/
3544 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3545 {
3546 int new_val = q_vector->itr_val;
3547 int avg_wire_size = 0;
3548 struct igb_adapter *adapter = q_vector->adapter;
3549
3550 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3551 * ints/sec - ITR timer value of 120 ticks.
3552 */
3553 if (adapter->link_speed != SPEED_1000) {
3554 new_val = 976;
3555 goto set_itr_val;
3556 }
3557
3558 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3559 struct igb_ring *ring = q_vector->rx_ring;
3560 avg_wire_size = ring->total_bytes / ring->total_packets;
3561 }
3562
3563 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3564 struct igb_ring *ring = q_vector->tx_ring;
3565 avg_wire_size = max_t(u32, avg_wire_size,
3566 (ring->total_bytes /
3567 ring->total_packets));
3568 }
3569
3570 /* if avg_wire_size isn't set no work was done */
3571 if (!avg_wire_size)
3572 goto clear_counts;
3573
3574 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3575 avg_wire_size += 24;
3576
3577 /* Don't starve jumbo frames */
3578 avg_wire_size = min(avg_wire_size, 3000);
3579
3580 /* Give a little boost to mid-size frames */
3581 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3582 new_val = avg_wire_size / 3;
3583 else
3584 new_val = avg_wire_size / 2;
3585
3586 /* when in itr mode 3 do not exceed 20K ints/sec */
3587 if (adapter->rx_itr_setting == 3 && new_val < 196)
3588 new_val = 196;
3589
3590 set_itr_val:
3591 if (new_val != q_vector->itr_val) {
3592 q_vector->itr_val = new_val;
3593 q_vector->set_itr = 1;
3594 }
3595 clear_counts:
3596 if (q_vector->rx_ring) {
3597 q_vector->rx_ring->total_bytes = 0;
3598 q_vector->rx_ring->total_packets = 0;
3599 }
3600 if (q_vector->tx_ring) {
3601 q_vector->tx_ring->total_bytes = 0;
3602 q_vector->tx_ring->total_packets = 0;
3603 }
3604 }
3605
3606 /**
3607 * igb_update_itr - update the dynamic ITR value based on statistics
3608 * Stores a new ITR value based on packets and byte
3609 * counts during the last interrupt. The advantage of per interrupt
3610 * computation is faster updates and more accurate ITR for the current
3611 * traffic pattern. Constants in this function were computed
3612 * based on theoretical maximum wire speed and thresholds were set based
3613 * on testing data as well as attempting to minimize response time
3614 * while increasing bulk throughput.
3615 * this functionality is controlled by the InterruptThrottleRate module
3616 * parameter (see igb_param.c)
3617 * NOTE: These calculations are only valid when operating in a single-
3618 * queue environment.
3619 * @adapter: pointer to adapter
3620 * @itr_setting: current q_vector->itr_val
3621 * @packets: the number of packets during this measurement interval
3622 * @bytes: the number of bytes during this measurement interval
3623 **/
3624 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3625 int packets, int bytes)
3626 {
3627 unsigned int retval = itr_setting;
3628
3629 if (packets == 0)
3630 goto update_itr_done;
3631
3632 switch (itr_setting) {
3633 case lowest_latency:
3634 /* handle TSO and jumbo frames */
3635 if (bytes/packets > 8000)
3636 retval = bulk_latency;
3637 else if ((packets < 5) && (bytes > 512))
3638 retval = low_latency;
3639 break;
3640 case low_latency: /* 50 usec aka 20000 ints/s */
3641 if (bytes > 10000) {
3642 /* this if handles the TSO accounting */
3643 if (bytes/packets > 8000) {
3644 retval = bulk_latency;
3645 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3646 retval = bulk_latency;
3647 } else if ((packets > 35)) {
3648 retval = lowest_latency;
3649 }
3650 } else if (bytes/packets > 2000) {
3651 retval = bulk_latency;
3652 } else if (packets <= 2 && bytes < 512) {
3653 retval = lowest_latency;
3654 }
3655 break;
3656 case bulk_latency: /* 250 usec aka 4000 ints/s */
3657 if (bytes > 25000) {
3658 if (packets > 35)
3659 retval = low_latency;
3660 } else if (bytes < 1500) {
3661 retval = low_latency;
3662 }
3663 break;
3664 }
3665
3666 update_itr_done:
3667 return retval;
3668 }
3669
3670 static void igb_set_itr(struct igb_adapter *adapter)
3671 {
3672 struct igb_q_vector *q_vector = adapter->q_vector[0];
3673 u16 current_itr;
3674 u32 new_itr = q_vector->itr_val;
3675
3676 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3677 if (adapter->link_speed != SPEED_1000) {
3678 current_itr = 0;
3679 new_itr = 4000;
3680 goto set_itr_now;
3681 }
3682
3683 adapter->rx_itr = igb_update_itr(adapter,
3684 adapter->rx_itr,
3685 q_vector->rx_ring->total_packets,
3686 q_vector->rx_ring->total_bytes);
3687
3688 adapter->tx_itr = igb_update_itr(adapter,
3689 adapter->tx_itr,
3690 q_vector->tx_ring->total_packets,
3691 q_vector->tx_ring->total_bytes);
3692 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3693
3694 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3695 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3696 current_itr = low_latency;
3697
3698 switch (current_itr) {
3699 /* counts and packets in update_itr are dependent on these numbers */
3700 case lowest_latency:
3701 new_itr = 56; /* aka 70,000 ints/sec */
3702 break;
3703 case low_latency:
3704 new_itr = 196; /* aka 20,000 ints/sec */
3705 break;
3706 case bulk_latency:
3707 new_itr = 980; /* aka 4,000 ints/sec */
3708 break;
3709 default:
3710 break;
3711 }
3712
3713 set_itr_now:
3714 q_vector->rx_ring->total_bytes = 0;
3715 q_vector->rx_ring->total_packets = 0;
3716 q_vector->tx_ring->total_bytes = 0;
3717 q_vector->tx_ring->total_packets = 0;
3718
3719 if (new_itr != q_vector->itr_val) {
3720 /* this attempts to bias the interrupt rate towards Bulk
3721 * by adding intermediate steps when interrupt rate is
3722 * increasing */
3723 new_itr = new_itr > q_vector->itr_val ?
3724 max((new_itr * q_vector->itr_val) /
3725 (new_itr + (q_vector->itr_val >> 2)),
3726 new_itr) :
3727 new_itr;
3728 /* Don't write the value here; it resets the adapter's
3729 * internal timer, and causes us to delay far longer than
3730 * we should between interrupts. Instead, we write the ITR
3731 * value at the beginning of the next interrupt so the timing
3732 * ends up being correct.
3733 */
3734 q_vector->itr_val = new_itr;
3735 q_vector->set_itr = 1;
3736 }
3737 }
3738
3739 #define IGB_TX_FLAGS_CSUM 0x00000001
3740 #define IGB_TX_FLAGS_VLAN 0x00000002
3741 #define IGB_TX_FLAGS_TSO 0x00000004
3742 #define IGB_TX_FLAGS_IPV4 0x00000008
3743 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3744 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3745 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3746
3747 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3748 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3749 {
3750 struct e1000_adv_tx_context_desc *context_desc;
3751 unsigned int i;
3752 int err;
3753 struct igb_buffer *buffer_info;
3754 u32 info = 0, tu_cmd = 0;
3755 u32 mss_l4len_idx;
3756 u8 l4len;
3757
3758 if (skb_header_cloned(skb)) {
3759 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3760 if (err)
3761 return err;
3762 }
3763
3764 l4len = tcp_hdrlen(skb);
3765 *hdr_len += l4len;
3766
3767 if (skb->protocol == htons(ETH_P_IP)) {
3768 struct iphdr *iph = ip_hdr(skb);
3769 iph->tot_len = 0;
3770 iph->check = 0;
3771 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3772 iph->daddr, 0,
3773 IPPROTO_TCP,
3774 0);
3775 } else if (skb_is_gso_v6(skb)) {
3776 ipv6_hdr(skb)->payload_len = 0;
3777 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3778 &ipv6_hdr(skb)->daddr,
3779 0, IPPROTO_TCP, 0);
3780 }
3781
3782 i = tx_ring->next_to_use;
3783
3784 buffer_info = &tx_ring->buffer_info[i];
3785 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3786 /* VLAN MACLEN IPLEN */
3787 if (tx_flags & IGB_TX_FLAGS_VLAN)
3788 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3789 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3790 *hdr_len += skb_network_offset(skb);
3791 info |= skb_network_header_len(skb);
3792 *hdr_len += skb_network_header_len(skb);
3793 context_desc->vlan_macip_lens = cpu_to_le32(info);
3794
3795 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3796 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3797
3798 if (skb->protocol == htons(ETH_P_IP))
3799 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3800 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3801
3802 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3803
3804 /* MSS L4LEN IDX */
3805 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3806 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3807
3808 /* For 82575, context index must be unique per ring. */
3809 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3810 mss_l4len_idx |= tx_ring->reg_idx << 4;
3811
3812 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3813 context_desc->seqnum_seed = 0;
3814
3815 buffer_info->time_stamp = jiffies;
3816 buffer_info->next_to_watch = i;
3817 buffer_info->dma = 0;
3818 i++;
3819 if (i == tx_ring->count)
3820 i = 0;
3821
3822 tx_ring->next_to_use = i;
3823
3824 return true;
3825 }
3826
3827 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3828 struct sk_buff *skb, u32 tx_flags)
3829 {
3830 struct e1000_adv_tx_context_desc *context_desc;
3831 struct device *dev = tx_ring->dev;
3832 struct igb_buffer *buffer_info;
3833 u32 info = 0, tu_cmd = 0;
3834 unsigned int i;
3835
3836 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3837 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3838 i = tx_ring->next_to_use;
3839 buffer_info = &tx_ring->buffer_info[i];
3840 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3841
3842 if (tx_flags & IGB_TX_FLAGS_VLAN)
3843 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3844
3845 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3846 if (skb->ip_summed == CHECKSUM_PARTIAL)
3847 info |= skb_network_header_len(skb);
3848
3849 context_desc->vlan_macip_lens = cpu_to_le32(info);
3850
3851 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3852
3853 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3854 __be16 protocol;
3855
3856 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3857 const struct vlan_ethhdr *vhdr =
3858 (const struct vlan_ethhdr*)skb->data;
3859
3860 protocol = vhdr->h_vlan_encapsulated_proto;
3861 } else {
3862 protocol = skb->protocol;
3863 }
3864
3865 switch (protocol) {
3866 case cpu_to_be16(ETH_P_IP):
3867 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3868 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3869 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3870 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3871 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3872 break;
3873 case cpu_to_be16(ETH_P_IPV6):
3874 /* XXX what about other V6 headers?? */
3875 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3876 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3877 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3878 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3879 break;
3880 default:
3881 if (unlikely(net_ratelimit()))
3882 dev_warn(dev,
3883 "partial checksum but proto=%x!\n",
3884 skb->protocol);
3885 break;
3886 }
3887 }
3888
3889 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3890 context_desc->seqnum_seed = 0;
3891 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3892 context_desc->mss_l4len_idx =
3893 cpu_to_le32(tx_ring->reg_idx << 4);
3894
3895 buffer_info->time_stamp = jiffies;
3896 buffer_info->next_to_watch = i;
3897 buffer_info->dma = 0;
3898
3899 i++;
3900 if (i == tx_ring->count)
3901 i = 0;
3902 tx_ring->next_to_use = i;
3903
3904 return true;
3905 }
3906 return false;
3907 }
3908
3909 #define IGB_MAX_TXD_PWR 16
3910 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3911
3912 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3913 unsigned int first)
3914 {
3915 struct igb_buffer *buffer_info;
3916 struct device *dev = tx_ring->dev;
3917 unsigned int hlen = skb_headlen(skb);
3918 unsigned int count = 0, i;
3919 unsigned int f;
3920 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
3921
3922 i = tx_ring->next_to_use;
3923
3924 buffer_info = &tx_ring->buffer_info[i];
3925 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
3926 buffer_info->length = hlen;
3927 /* set time_stamp *before* dma to help avoid a possible race */
3928 buffer_info->time_stamp = jiffies;
3929 buffer_info->next_to_watch = i;
3930 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
3931 DMA_TO_DEVICE);
3932 if (dma_mapping_error(dev, buffer_info->dma))
3933 goto dma_error;
3934
3935 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3936 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
3937 unsigned int len = frag->size;
3938
3939 count++;
3940 i++;
3941 if (i == tx_ring->count)
3942 i = 0;
3943
3944 buffer_info = &tx_ring->buffer_info[i];
3945 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3946 buffer_info->length = len;
3947 buffer_info->time_stamp = jiffies;
3948 buffer_info->next_to_watch = i;
3949 buffer_info->mapped_as_page = true;
3950 buffer_info->dma = dma_map_page(dev,
3951 frag->page,
3952 frag->page_offset,
3953 len,
3954 DMA_TO_DEVICE);
3955 if (dma_mapping_error(dev, buffer_info->dma))
3956 goto dma_error;
3957
3958 }
3959
3960 tx_ring->buffer_info[i].skb = skb;
3961 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
3962 /* multiply data chunks by size of headers */
3963 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
3964 tx_ring->buffer_info[i].gso_segs = gso_segs;
3965 tx_ring->buffer_info[first].next_to_watch = i;
3966
3967 return ++count;
3968
3969 dma_error:
3970 dev_err(dev, "TX DMA map failed\n");
3971
3972 /* clear timestamp and dma mappings for failed buffer_info mapping */
3973 buffer_info->dma = 0;
3974 buffer_info->time_stamp = 0;
3975 buffer_info->length = 0;
3976 buffer_info->next_to_watch = 0;
3977 buffer_info->mapped_as_page = false;
3978
3979 /* clear timestamp and dma mappings for remaining portion of packet */
3980 while (count--) {
3981 if (i == 0)
3982 i = tx_ring->count;
3983 i--;
3984 buffer_info = &tx_ring->buffer_info[i];
3985 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3986 }
3987
3988 return 0;
3989 }
3990
3991 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3992 u32 tx_flags, int count, u32 paylen,
3993 u8 hdr_len)
3994 {
3995 union e1000_adv_tx_desc *tx_desc;
3996 struct igb_buffer *buffer_info;
3997 u32 olinfo_status = 0, cmd_type_len;
3998 unsigned int i = tx_ring->next_to_use;
3999
4000 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4001 E1000_ADVTXD_DCMD_DEXT);
4002
4003 if (tx_flags & IGB_TX_FLAGS_VLAN)
4004 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4005
4006 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4007 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4008
4009 if (tx_flags & IGB_TX_FLAGS_TSO) {
4010 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4011
4012 /* insert tcp checksum */
4013 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4014
4015 /* insert ip checksum */
4016 if (tx_flags & IGB_TX_FLAGS_IPV4)
4017 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4018
4019 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4020 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4021 }
4022
4023 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4024 (tx_flags & (IGB_TX_FLAGS_CSUM |
4025 IGB_TX_FLAGS_TSO |
4026 IGB_TX_FLAGS_VLAN)))
4027 olinfo_status |= tx_ring->reg_idx << 4;
4028
4029 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4030
4031 do {
4032 buffer_info = &tx_ring->buffer_info[i];
4033 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4034 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4035 tx_desc->read.cmd_type_len =
4036 cpu_to_le32(cmd_type_len | buffer_info->length);
4037 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4038 count--;
4039 i++;
4040 if (i == tx_ring->count)
4041 i = 0;
4042 } while (count > 0);
4043
4044 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
4045 /* Force memory writes to complete before letting h/w
4046 * know there are new descriptors to fetch. (Only
4047 * applicable for weak-ordered memory model archs,
4048 * such as IA-64). */
4049 wmb();
4050
4051 tx_ring->next_to_use = i;
4052 writel(i, tx_ring->tail);
4053 /* we need this if more than one processor can write to our tail
4054 * at a time, it syncronizes IO on IA64/Altix systems */
4055 mmiowb();
4056 }
4057
4058 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4059 {
4060 struct net_device *netdev = tx_ring->netdev;
4061
4062 netif_stop_subqueue(netdev, tx_ring->queue_index);
4063
4064 /* Herbert's original patch had:
4065 * smp_mb__after_netif_stop_queue();
4066 * but since that doesn't exist yet, just open code it. */
4067 smp_mb();
4068
4069 /* We need to check again in a case another CPU has just
4070 * made room available. */
4071 if (igb_desc_unused(tx_ring) < size)
4072 return -EBUSY;
4073
4074 /* A reprieve! */
4075 netif_wake_subqueue(netdev, tx_ring->queue_index);
4076 tx_ring->tx_stats.restart_queue++;
4077 return 0;
4078 }
4079
4080 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4081 {
4082 if (igb_desc_unused(tx_ring) >= size)
4083 return 0;
4084 return __igb_maybe_stop_tx(tx_ring, size);
4085 }
4086
4087 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4088 struct igb_ring *tx_ring)
4089 {
4090 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4091 int tso = 0, count;
4092 u32 tx_flags = 0;
4093 u16 first;
4094 u8 hdr_len = 0;
4095
4096 /* need: 1 descriptor per page,
4097 * + 2 desc gap to keep tail from touching head,
4098 * + 1 desc for skb->data,
4099 * + 1 desc for context descriptor,
4100 * otherwise try next time */
4101 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4102 /* this is a hard error */
4103 return NETDEV_TX_BUSY;
4104 }
4105
4106 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4107 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4108 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4109 }
4110
4111 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
4112 tx_flags |= IGB_TX_FLAGS_VLAN;
4113 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4114 }
4115
4116 if (skb->protocol == htons(ETH_P_IP))
4117 tx_flags |= IGB_TX_FLAGS_IPV4;
4118
4119 first = tx_ring->next_to_use;
4120 if (skb_is_gso(skb)) {
4121 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
4122
4123 if (tso < 0) {
4124 dev_kfree_skb_any(skb);
4125 return NETDEV_TX_OK;
4126 }
4127 }
4128
4129 if (tso)
4130 tx_flags |= IGB_TX_FLAGS_TSO;
4131 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
4132 (skb->ip_summed == CHECKSUM_PARTIAL))
4133 tx_flags |= IGB_TX_FLAGS_CSUM;
4134
4135 /*
4136 * count reflects descriptors mapped, if 0 or less then mapping error
4137 * has occured and we need to rewind the descriptor queue
4138 */
4139 count = igb_tx_map_adv(tx_ring, skb, first);
4140 if (!count) {
4141 dev_kfree_skb_any(skb);
4142 tx_ring->buffer_info[first].time_stamp = 0;
4143 tx_ring->next_to_use = first;
4144 return NETDEV_TX_OK;
4145 }
4146
4147 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4148
4149 /* Make sure there is space in the ring for the next send. */
4150 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4151
4152 return NETDEV_TX_OK;
4153 }
4154
4155 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4156 struct net_device *netdev)
4157 {
4158 struct igb_adapter *adapter = netdev_priv(netdev);
4159 struct igb_ring *tx_ring;
4160 int r_idx = 0;
4161
4162 if (test_bit(__IGB_DOWN, &adapter->state)) {
4163 dev_kfree_skb_any(skb);
4164 return NETDEV_TX_OK;
4165 }
4166
4167 if (skb->len <= 0) {
4168 dev_kfree_skb_any(skb);
4169 return NETDEV_TX_OK;
4170 }
4171
4172 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
4173 tx_ring = adapter->multi_tx_table[r_idx];
4174
4175 /* This goes back to the question of how to logically map a tx queue
4176 * to a flow. Right now, performance is impacted slightly negatively
4177 * if using multiple tx queues. If the stack breaks away from a
4178 * single qdisc implementation, we can look at this again. */
4179 return igb_xmit_frame_ring_adv(skb, tx_ring);
4180 }
4181
4182 /**
4183 * igb_tx_timeout - Respond to a Tx Hang
4184 * @netdev: network interface device structure
4185 **/
4186 static void igb_tx_timeout(struct net_device *netdev)
4187 {
4188 struct igb_adapter *adapter = netdev_priv(netdev);
4189 struct e1000_hw *hw = &adapter->hw;
4190
4191 /* Do the reset outside of interrupt context */
4192 adapter->tx_timeout_count++;
4193
4194 if (hw->mac.type == e1000_82580)
4195 hw->dev_spec._82575.global_device_reset = true;
4196
4197 schedule_work(&adapter->reset_task);
4198 wr32(E1000_EICS,
4199 (adapter->eims_enable_mask & ~adapter->eims_other));
4200 }
4201
4202 static void igb_reset_task(struct work_struct *work)
4203 {
4204 struct igb_adapter *adapter;
4205 adapter = container_of(work, struct igb_adapter, reset_task);
4206
4207 igb_dump(adapter);
4208 netdev_err(adapter->netdev, "Reset adapter\n");
4209 igb_reinit_locked(adapter);
4210 }
4211
4212 /**
4213 * igb_get_stats - Get System Network Statistics
4214 * @netdev: network interface device structure
4215 *
4216 * Returns the address of the device statistics structure.
4217 * The statistics are actually updated from the timer callback.
4218 **/
4219 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
4220 {
4221 /* only return the current stats */
4222 return &netdev->stats;
4223 }
4224
4225 /**
4226 * igb_change_mtu - Change the Maximum Transfer Unit
4227 * @netdev: network interface device structure
4228 * @new_mtu: new value for maximum frame size
4229 *
4230 * Returns 0 on success, negative on failure
4231 **/
4232 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4233 {
4234 struct igb_adapter *adapter = netdev_priv(netdev);
4235 struct pci_dev *pdev = adapter->pdev;
4236 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4237 u32 rx_buffer_len, i;
4238
4239 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4240 dev_err(&pdev->dev, "Invalid MTU setting\n");
4241 return -EINVAL;
4242 }
4243
4244 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4245 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4246 return -EINVAL;
4247 }
4248
4249 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4250 msleep(1);
4251
4252 /* igb_down has a dependency on max_frame_size */
4253 adapter->max_frame_size = max_frame;
4254
4255 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4256 * means we reserve 2 more, this pushes us to allocate from the next
4257 * larger slab size.
4258 * i.e. RXBUFFER_2048 --> size-4096 slab
4259 */
4260
4261 if (adapter->hw.mac.type == e1000_82580)
4262 max_frame += IGB_TS_HDR_LEN;
4263
4264 if (max_frame <= IGB_RXBUFFER_1024)
4265 rx_buffer_len = IGB_RXBUFFER_1024;
4266 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4267 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
4268 else
4269 rx_buffer_len = IGB_RXBUFFER_128;
4270
4271 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4272 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4273 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4274
4275 if ((adapter->hw.mac.type == e1000_82580) &&
4276 (rx_buffer_len == IGB_RXBUFFER_128))
4277 rx_buffer_len += IGB_RXBUFFER_64;
4278
4279 if (netif_running(netdev))
4280 igb_down(adapter);
4281
4282 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4283 netdev->mtu, new_mtu);
4284 netdev->mtu = new_mtu;
4285
4286 for (i = 0; i < adapter->num_rx_queues; i++)
4287 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4288
4289 if (netif_running(netdev))
4290 igb_up(adapter);
4291 else
4292 igb_reset(adapter);
4293
4294 clear_bit(__IGB_RESETTING, &adapter->state);
4295
4296 return 0;
4297 }
4298
4299 /**
4300 * igb_update_stats - Update the board statistics counters
4301 * @adapter: board private structure
4302 **/
4303
4304 void igb_update_stats(struct igb_adapter *adapter)
4305 {
4306 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
4307 struct e1000_hw *hw = &adapter->hw;
4308 struct pci_dev *pdev = adapter->pdev;
4309 u32 reg, mpc;
4310 u16 phy_tmp;
4311 int i;
4312 u64 bytes, packets;
4313
4314 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4315
4316 /*
4317 * Prevent stats update while adapter is being reset, or if the pci
4318 * connection is down.
4319 */
4320 if (adapter->link_speed == 0)
4321 return;
4322 if (pci_channel_offline(pdev))
4323 return;
4324
4325 bytes = 0;
4326 packets = 0;
4327 for (i = 0; i < adapter->num_rx_queues; i++) {
4328 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4329 struct igb_ring *ring = adapter->rx_ring[i];
4330 ring->rx_stats.drops += rqdpc_tmp;
4331 net_stats->rx_fifo_errors += rqdpc_tmp;
4332 bytes += ring->rx_stats.bytes;
4333 packets += ring->rx_stats.packets;
4334 }
4335
4336 net_stats->rx_bytes = bytes;
4337 net_stats->rx_packets = packets;
4338
4339 bytes = 0;
4340 packets = 0;
4341 for (i = 0; i < adapter->num_tx_queues; i++) {
4342 struct igb_ring *ring = adapter->tx_ring[i];
4343 bytes += ring->tx_stats.bytes;
4344 packets += ring->tx_stats.packets;
4345 }
4346 net_stats->tx_bytes = bytes;
4347 net_stats->tx_packets = packets;
4348
4349 /* read stats registers */
4350 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4351 adapter->stats.gprc += rd32(E1000_GPRC);
4352 adapter->stats.gorc += rd32(E1000_GORCL);
4353 rd32(E1000_GORCH); /* clear GORCL */
4354 adapter->stats.bprc += rd32(E1000_BPRC);
4355 adapter->stats.mprc += rd32(E1000_MPRC);
4356 adapter->stats.roc += rd32(E1000_ROC);
4357
4358 adapter->stats.prc64 += rd32(E1000_PRC64);
4359 adapter->stats.prc127 += rd32(E1000_PRC127);
4360 adapter->stats.prc255 += rd32(E1000_PRC255);
4361 adapter->stats.prc511 += rd32(E1000_PRC511);
4362 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4363 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4364 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4365 adapter->stats.sec += rd32(E1000_SEC);
4366
4367 mpc = rd32(E1000_MPC);
4368 adapter->stats.mpc += mpc;
4369 net_stats->rx_fifo_errors += mpc;
4370 adapter->stats.scc += rd32(E1000_SCC);
4371 adapter->stats.ecol += rd32(E1000_ECOL);
4372 adapter->stats.mcc += rd32(E1000_MCC);
4373 adapter->stats.latecol += rd32(E1000_LATECOL);
4374 adapter->stats.dc += rd32(E1000_DC);
4375 adapter->stats.rlec += rd32(E1000_RLEC);
4376 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4377 adapter->stats.xontxc += rd32(E1000_XONTXC);
4378 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4379 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4380 adapter->stats.fcruc += rd32(E1000_FCRUC);
4381 adapter->stats.gptc += rd32(E1000_GPTC);
4382 adapter->stats.gotc += rd32(E1000_GOTCL);
4383 rd32(E1000_GOTCH); /* clear GOTCL */
4384 adapter->stats.rnbc += rd32(E1000_RNBC);
4385 adapter->stats.ruc += rd32(E1000_RUC);
4386 adapter->stats.rfc += rd32(E1000_RFC);
4387 adapter->stats.rjc += rd32(E1000_RJC);
4388 adapter->stats.tor += rd32(E1000_TORH);
4389 adapter->stats.tot += rd32(E1000_TOTH);
4390 adapter->stats.tpr += rd32(E1000_TPR);
4391
4392 adapter->stats.ptc64 += rd32(E1000_PTC64);
4393 adapter->stats.ptc127 += rd32(E1000_PTC127);
4394 adapter->stats.ptc255 += rd32(E1000_PTC255);
4395 adapter->stats.ptc511 += rd32(E1000_PTC511);
4396 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4397 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4398
4399 adapter->stats.mptc += rd32(E1000_MPTC);
4400 adapter->stats.bptc += rd32(E1000_BPTC);
4401
4402 adapter->stats.tpt += rd32(E1000_TPT);
4403 adapter->stats.colc += rd32(E1000_COLC);
4404
4405 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4406 /* read internal phy specific stats */
4407 reg = rd32(E1000_CTRL_EXT);
4408 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4409 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4410 adapter->stats.tncrs += rd32(E1000_TNCRS);
4411 }
4412
4413 adapter->stats.tsctc += rd32(E1000_TSCTC);
4414 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4415
4416 adapter->stats.iac += rd32(E1000_IAC);
4417 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4418 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4419 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4420 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4421 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4422 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4423 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4424 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4425
4426 /* Fill out the OS statistics structure */
4427 net_stats->multicast = adapter->stats.mprc;
4428 net_stats->collisions = adapter->stats.colc;
4429
4430 /* Rx Errors */
4431
4432 /* RLEC on some newer hardware can be incorrect so build
4433 * our own version based on RUC and ROC */
4434 net_stats->rx_errors = adapter->stats.rxerrc +
4435 adapter->stats.crcerrs + adapter->stats.algnerrc +
4436 adapter->stats.ruc + adapter->stats.roc +
4437 adapter->stats.cexterr;
4438 net_stats->rx_length_errors = adapter->stats.ruc +
4439 adapter->stats.roc;
4440 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4441 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4442 net_stats->rx_missed_errors = adapter->stats.mpc;
4443
4444 /* Tx Errors */
4445 net_stats->tx_errors = adapter->stats.ecol +
4446 adapter->stats.latecol;
4447 net_stats->tx_aborted_errors = adapter->stats.ecol;
4448 net_stats->tx_window_errors = adapter->stats.latecol;
4449 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4450
4451 /* Tx Dropped needs to be maintained elsewhere */
4452
4453 /* Phy Stats */
4454 if (hw->phy.media_type == e1000_media_type_copper) {
4455 if ((adapter->link_speed == SPEED_1000) &&
4456 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4457 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4458 adapter->phy_stats.idle_errors += phy_tmp;
4459 }
4460 }
4461
4462 /* Management Stats */
4463 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4464 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4465 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4466 }
4467
4468 static irqreturn_t igb_msix_other(int irq, void *data)
4469 {
4470 struct igb_adapter *adapter = data;
4471 struct e1000_hw *hw = &adapter->hw;
4472 u32 icr = rd32(E1000_ICR);
4473 /* reading ICR causes bit 31 of EICR to be cleared */
4474
4475 if (icr & E1000_ICR_DRSTA)
4476 schedule_work(&adapter->reset_task);
4477
4478 if (icr & E1000_ICR_DOUTSYNC) {
4479 /* HW is reporting DMA is out of sync */
4480 adapter->stats.doosync++;
4481 }
4482
4483 /* Check for a mailbox event */
4484 if (icr & E1000_ICR_VMMB)
4485 igb_msg_task(adapter);
4486
4487 if (icr & E1000_ICR_LSC) {
4488 hw->mac.get_link_status = 1;
4489 /* guard against interrupt when we're going down */
4490 if (!test_bit(__IGB_DOWN, &adapter->state))
4491 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4492 }
4493
4494 if (adapter->vfs_allocated_count)
4495 wr32(E1000_IMS, E1000_IMS_LSC |
4496 E1000_IMS_VMMB |
4497 E1000_IMS_DOUTSYNC);
4498 else
4499 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4500 wr32(E1000_EIMS, adapter->eims_other);
4501
4502 return IRQ_HANDLED;
4503 }
4504
4505 static void igb_write_itr(struct igb_q_vector *q_vector)
4506 {
4507 struct igb_adapter *adapter = q_vector->adapter;
4508 u32 itr_val = q_vector->itr_val & 0x7FFC;
4509
4510 if (!q_vector->set_itr)
4511 return;
4512
4513 if (!itr_val)
4514 itr_val = 0x4;
4515
4516 if (adapter->hw.mac.type == e1000_82575)
4517 itr_val |= itr_val << 16;
4518 else
4519 itr_val |= 0x8000000;
4520
4521 writel(itr_val, q_vector->itr_register);
4522 q_vector->set_itr = 0;
4523 }
4524
4525 static irqreturn_t igb_msix_ring(int irq, void *data)
4526 {
4527 struct igb_q_vector *q_vector = data;
4528
4529 /* Write the ITR value calculated from the previous interrupt. */
4530 igb_write_itr(q_vector);
4531
4532 napi_schedule(&q_vector->napi);
4533
4534 return IRQ_HANDLED;
4535 }
4536
4537 #ifdef CONFIG_IGB_DCA
4538 static void igb_update_dca(struct igb_q_vector *q_vector)
4539 {
4540 struct igb_adapter *adapter = q_vector->adapter;
4541 struct e1000_hw *hw = &adapter->hw;
4542 int cpu = get_cpu();
4543
4544 if (q_vector->cpu == cpu)
4545 goto out_no_update;
4546
4547 if (q_vector->tx_ring) {
4548 int q = q_vector->tx_ring->reg_idx;
4549 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4550 if (hw->mac.type == e1000_82575) {
4551 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4552 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4553 } else {
4554 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4555 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4556 E1000_DCA_TXCTRL_CPUID_SHIFT;
4557 }
4558 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4559 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4560 }
4561 if (q_vector->rx_ring) {
4562 int q = q_vector->rx_ring->reg_idx;
4563 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4564 if (hw->mac.type == e1000_82575) {
4565 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4566 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4567 } else {
4568 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4569 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4570 E1000_DCA_RXCTRL_CPUID_SHIFT;
4571 }
4572 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4573 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4574 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4575 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4576 }
4577 q_vector->cpu = cpu;
4578 out_no_update:
4579 put_cpu();
4580 }
4581
4582 static void igb_setup_dca(struct igb_adapter *adapter)
4583 {
4584 struct e1000_hw *hw = &adapter->hw;
4585 int i;
4586
4587 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4588 return;
4589
4590 /* Always use CB2 mode, difference is masked in the CB driver. */
4591 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4592
4593 for (i = 0; i < adapter->num_q_vectors; i++) {
4594 adapter->q_vector[i]->cpu = -1;
4595 igb_update_dca(adapter->q_vector[i]);
4596 }
4597 }
4598
4599 static int __igb_notify_dca(struct device *dev, void *data)
4600 {
4601 struct net_device *netdev = dev_get_drvdata(dev);
4602 struct igb_adapter *adapter = netdev_priv(netdev);
4603 struct pci_dev *pdev = adapter->pdev;
4604 struct e1000_hw *hw = &adapter->hw;
4605 unsigned long event = *(unsigned long *)data;
4606
4607 switch (event) {
4608 case DCA_PROVIDER_ADD:
4609 /* if already enabled, don't do it again */
4610 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4611 break;
4612 if (dca_add_requester(dev) == 0) {
4613 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4614 dev_info(&pdev->dev, "DCA enabled\n");
4615 igb_setup_dca(adapter);
4616 break;
4617 }
4618 /* Fall Through since DCA is disabled. */
4619 case DCA_PROVIDER_REMOVE:
4620 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4621 /* without this a class_device is left
4622 * hanging around in the sysfs model */
4623 dca_remove_requester(dev);
4624 dev_info(&pdev->dev, "DCA disabled\n");
4625 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4626 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4627 }
4628 break;
4629 }
4630
4631 return 0;
4632 }
4633
4634 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4635 void *p)
4636 {
4637 int ret_val;
4638
4639 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4640 __igb_notify_dca);
4641
4642 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4643 }
4644 #endif /* CONFIG_IGB_DCA */
4645
4646 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4647 {
4648 struct e1000_hw *hw = &adapter->hw;
4649 u32 ping;
4650 int i;
4651
4652 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4653 ping = E1000_PF_CONTROL_MSG;
4654 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4655 ping |= E1000_VT_MSGTYPE_CTS;
4656 igb_write_mbx(hw, &ping, 1, i);
4657 }
4658 }
4659
4660 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4661 {
4662 struct e1000_hw *hw = &adapter->hw;
4663 u32 vmolr = rd32(E1000_VMOLR(vf));
4664 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4665
4666 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4667 IGB_VF_FLAG_MULTI_PROMISC);
4668 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4669
4670 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4671 vmolr |= E1000_VMOLR_MPME;
4672 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4673 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4674 } else {
4675 /*
4676 * if we have hashes and we are clearing a multicast promisc
4677 * flag we need to write the hashes to the MTA as this step
4678 * was previously skipped
4679 */
4680 if (vf_data->num_vf_mc_hashes > 30) {
4681 vmolr |= E1000_VMOLR_MPME;
4682 } else if (vf_data->num_vf_mc_hashes) {
4683 int j;
4684 vmolr |= E1000_VMOLR_ROMPE;
4685 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4686 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4687 }
4688 }
4689
4690 wr32(E1000_VMOLR(vf), vmolr);
4691
4692 /* there are flags left unprocessed, likely not supported */
4693 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4694 return -EINVAL;
4695
4696 return 0;
4697
4698 }
4699
4700 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4701 u32 *msgbuf, u32 vf)
4702 {
4703 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4704 u16 *hash_list = (u16 *)&msgbuf[1];
4705 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4706 int i;
4707
4708 /* salt away the number of multicast addresses assigned
4709 * to this VF for later use to restore when the PF multi cast
4710 * list changes
4711 */
4712 vf_data->num_vf_mc_hashes = n;
4713
4714 /* only up to 30 hash values supported */
4715 if (n > 30)
4716 n = 30;
4717
4718 /* store the hashes for later use */
4719 for (i = 0; i < n; i++)
4720 vf_data->vf_mc_hashes[i] = hash_list[i];
4721
4722 /* Flush and reset the mta with the new values */
4723 igb_set_rx_mode(adapter->netdev);
4724
4725 return 0;
4726 }
4727
4728 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4729 {
4730 struct e1000_hw *hw = &adapter->hw;
4731 struct vf_data_storage *vf_data;
4732 int i, j;
4733
4734 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4735 u32 vmolr = rd32(E1000_VMOLR(i));
4736 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4737
4738 vf_data = &adapter->vf_data[i];
4739
4740 if ((vf_data->num_vf_mc_hashes > 30) ||
4741 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4742 vmolr |= E1000_VMOLR_MPME;
4743 } else if (vf_data->num_vf_mc_hashes) {
4744 vmolr |= E1000_VMOLR_ROMPE;
4745 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4746 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4747 }
4748 wr32(E1000_VMOLR(i), vmolr);
4749 }
4750 }
4751
4752 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4753 {
4754 struct e1000_hw *hw = &adapter->hw;
4755 u32 pool_mask, reg, vid;
4756 int i;
4757
4758 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4759
4760 /* Find the vlan filter for this id */
4761 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4762 reg = rd32(E1000_VLVF(i));
4763
4764 /* remove the vf from the pool */
4765 reg &= ~pool_mask;
4766
4767 /* if pool is empty then remove entry from vfta */
4768 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4769 (reg & E1000_VLVF_VLANID_ENABLE)) {
4770 reg = 0;
4771 vid = reg & E1000_VLVF_VLANID_MASK;
4772 igb_vfta_set(hw, vid, false);
4773 }
4774
4775 wr32(E1000_VLVF(i), reg);
4776 }
4777
4778 adapter->vf_data[vf].vlans_enabled = 0;
4779 }
4780
4781 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4782 {
4783 struct e1000_hw *hw = &adapter->hw;
4784 u32 reg, i;
4785
4786 /* The vlvf table only exists on 82576 hardware and newer */
4787 if (hw->mac.type < e1000_82576)
4788 return -1;
4789
4790 /* we only need to do this if VMDq is enabled */
4791 if (!adapter->vfs_allocated_count)
4792 return -1;
4793
4794 /* Find the vlan filter for this id */
4795 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4796 reg = rd32(E1000_VLVF(i));
4797 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4798 vid == (reg & E1000_VLVF_VLANID_MASK))
4799 break;
4800 }
4801
4802 if (add) {
4803 if (i == E1000_VLVF_ARRAY_SIZE) {
4804 /* Did not find a matching VLAN ID entry that was
4805 * enabled. Search for a free filter entry, i.e.
4806 * one without the enable bit set
4807 */
4808 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4809 reg = rd32(E1000_VLVF(i));
4810 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4811 break;
4812 }
4813 }
4814 if (i < E1000_VLVF_ARRAY_SIZE) {
4815 /* Found an enabled/available entry */
4816 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4817
4818 /* if !enabled we need to set this up in vfta */
4819 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4820 /* add VID to filter table */
4821 igb_vfta_set(hw, vid, true);
4822 reg |= E1000_VLVF_VLANID_ENABLE;
4823 }
4824 reg &= ~E1000_VLVF_VLANID_MASK;
4825 reg |= vid;
4826 wr32(E1000_VLVF(i), reg);
4827
4828 /* do not modify RLPML for PF devices */
4829 if (vf >= adapter->vfs_allocated_count)
4830 return 0;
4831
4832 if (!adapter->vf_data[vf].vlans_enabled) {
4833 u32 size;
4834 reg = rd32(E1000_VMOLR(vf));
4835 size = reg & E1000_VMOLR_RLPML_MASK;
4836 size += 4;
4837 reg &= ~E1000_VMOLR_RLPML_MASK;
4838 reg |= size;
4839 wr32(E1000_VMOLR(vf), reg);
4840 }
4841
4842 adapter->vf_data[vf].vlans_enabled++;
4843 return 0;
4844 }
4845 } else {
4846 if (i < E1000_VLVF_ARRAY_SIZE) {
4847 /* remove vf from the pool */
4848 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4849 /* if pool is empty then remove entry from vfta */
4850 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4851 reg = 0;
4852 igb_vfta_set(hw, vid, false);
4853 }
4854 wr32(E1000_VLVF(i), reg);
4855
4856 /* do not modify RLPML for PF devices */
4857 if (vf >= adapter->vfs_allocated_count)
4858 return 0;
4859
4860 adapter->vf_data[vf].vlans_enabled--;
4861 if (!adapter->vf_data[vf].vlans_enabled) {
4862 u32 size;
4863 reg = rd32(E1000_VMOLR(vf));
4864 size = reg & E1000_VMOLR_RLPML_MASK;
4865 size -= 4;
4866 reg &= ~E1000_VMOLR_RLPML_MASK;
4867 reg |= size;
4868 wr32(E1000_VMOLR(vf), reg);
4869 }
4870 }
4871 }
4872 return 0;
4873 }
4874
4875 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4876 {
4877 struct e1000_hw *hw = &adapter->hw;
4878
4879 if (vid)
4880 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4881 else
4882 wr32(E1000_VMVIR(vf), 0);
4883 }
4884
4885 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4886 int vf, u16 vlan, u8 qos)
4887 {
4888 int err = 0;
4889 struct igb_adapter *adapter = netdev_priv(netdev);
4890
4891 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4892 return -EINVAL;
4893 if (vlan || qos) {
4894 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4895 if (err)
4896 goto out;
4897 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4898 igb_set_vmolr(adapter, vf, !vlan);
4899 adapter->vf_data[vf].pf_vlan = vlan;
4900 adapter->vf_data[vf].pf_qos = qos;
4901 dev_info(&adapter->pdev->dev,
4902 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4903 if (test_bit(__IGB_DOWN, &adapter->state)) {
4904 dev_warn(&adapter->pdev->dev,
4905 "The VF VLAN has been set,"
4906 " but the PF device is not up.\n");
4907 dev_warn(&adapter->pdev->dev,
4908 "Bring the PF device up before"
4909 " attempting to use the VF device.\n");
4910 }
4911 } else {
4912 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
4913 false, vf);
4914 igb_set_vmvir(adapter, vlan, vf);
4915 igb_set_vmolr(adapter, vf, true);
4916 adapter->vf_data[vf].pf_vlan = 0;
4917 adapter->vf_data[vf].pf_qos = 0;
4918 }
4919 out:
4920 return err;
4921 }
4922
4923 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4924 {
4925 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4926 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4927
4928 return igb_vlvf_set(adapter, vid, add, vf);
4929 }
4930
4931 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4932 {
4933 /* clear flags */
4934 adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
4935 adapter->vf_data[vf].last_nack = jiffies;
4936
4937 /* reset offloads to defaults */
4938 igb_set_vmolr(adapter, vf, true);
4939
4940 /* reset vlans for device */
4941 igb_clear_vf_vfta(adapter, vf);
4942 if (adapter->vf_data[vf].pf_vlan)
4943 igb_ndo_set_vf_vlan(adapter->netdev, vf,
4944 adapter->vf_data[vf].pf_vlan,
4945 adapter->vf_data[vf].pf_qos);
4946 else
4947 igb_clear_vf_vfta(adapter, vf);
4948
4949 /* reset multicast table array for vf */
4950 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4951
4952 /* Flush and reset the mta with the new values */
4953 igb_set_rx_mode(adapter->netdev);
4954 }
4955
4956 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4957 {
4958 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4959
4960 /* generate a new mac address as we were hotplug removed/added */
4961 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
4962 random_ether_addr(vf_mac);
4963
4964 /* process remaining reset events */
4965 igb_vf_reset(adapter, vf);
4966 }
4967
4968 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4969 {
4970 struct e1000_hw *hw = &adapter->hw;
4971 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4972 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4973 u32 reg, msgbuf[3];
4974 u8 *addr = (u8 *)(&msgbuf[1]);
4975
4976 /* process all the same items cleared in a function level reset */
4977 igb_vf_reset(adapter, vf);
4978
4979 /* set vf mac address */
4980 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4981
4982 /* enable transmit and receive for vf */
4983 reg = rd32(E1000_VFTE);
4984 wr32(E1000_VFTE, reg | (1 << vf));
4985 reg = rd32(E1000_VFRE);
4986 wr32(E1000_VFRE, reg | (1 << vf));
4987
4988 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4989
4990 /* reply to reset with ack and vf mac address */
4991 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4992 memcpy(addr, vf_mac, 6);
4993 igb_write_mbx(hw, msgbuf, 3, vf);
4994 }
4995
4996 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4997 {
4998 /*
4999 * The VF MAC Address is stored in a packed array of bytes
5000 * starting at the second 32 bit word of the msg array
5001 */
5002 unsigned char *addr = (char *)&msg[1];
5003 int err = -1;
5004
5005 if (is_valid_ether_addr(addr))
5006 err = igb_set_vf_mac(adapter, vf, addr);
5007
5008 return err;
5009 }
5010
5011 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5012 {
5013 struct e1000_hw *hw = &adapter->hw;
5014 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5015 u32 msg = E1000_VT_MSGTYPE_NACK;
5016
5017 /* if device isn't clear to send it shouldn't be reading either */
5018 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5019 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5020 igb_write_mbx(hw, &msg, 1, vf);
5021 vf_data->last_nack = jiffies;
5022 }
5023 }
5024
5025 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5026 {
5027 struct pci_dev *pdev = adapter->pdev;
5028 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5029 struct e1000_hw *hw = &adapter->hw;
5030 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5031 s32 retval;
5032
5033 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5034
5035 if (retval) {
5036 /* if receive failed revoke VF CTS stats and restart init */
5037 dev_err(&pdev->dev, "Error receiving message from VF\n");
5038 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5039 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5040 return;
5041 goto out;
5042 }
5043
5044 /* this is a message we already processed, do nothing */
5045 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5046 return;
5047
5048 /*
5049 * until the vf completes a reset it should not be
5050 * allowed to start any configuration.
5051 */
5052
5053 if (msgbuf[0] == E1000_VF_RESET) {
5054 igb_vf_reset_msg(adapter, vf);
5055 return;
5056 }
5057
5058 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5059 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5060 return;
5061 retval = -1;
5062 goto out;
5063 }
5064
5065 switch ((msgbuf[0] & 0xFFFF)) {
5066 case E1000_VF_SET_MAC_ADDR:
5067 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5068 break;
5069 case E1000_VF_SET_PROMISC:
5070 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5071 break;
5072 case E1000_VF_SET_MULTICAST:
5073 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5074 break;
5075 case E1000_VF_SET_LPE:
5076 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5077 break;
5078 case E1000_VF_SET_VLAN:
5079 if (adapter->vf_data[vf].pf_vlan)
5080 retval = -1;
5081 else
5082 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5083 break;
5084 default:
5085 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5086 retval = -1;
5087 break;
5088 }
5089
5090 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5091 out:
5092 /* notify the VF of the results of what it sent us */
5093 if (retval)
5094 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5095 else
5096 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5097
5098 igb_write_mbx(hw, msgbuf, 1, vf);
5099 }
5100
5101 static void igb_msg_task(struct igb_adapter *adapter)
5102 {
5103 struct e1000_hw *hw = &adapter->hw;
5104 u32 vf;
5105
5106 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5107 /* process any reset requests */
5108 if (!igb_check_for_rst(hw, vf))
5109 igb_vf_reset_event(adapter, vf);
5110
5111 /* process any messages pending */
5112 if (!igb_check_for_msg(hw, vf))
5113 igb_rcv_msg_from_vf(adapter, vf);
5114
5115 /* process any acks */
5116 if (!igb_check_for_ack(hw, vf))
5117 igb_rcv_ack_from_vf(adapter, vf);
5118 }
5119 }
5120
5121 /**
5122 * igb_set_uta - Set unicast filter table address
5123 * @adapter: board private structure
5124 *
5125 * The unicast table address is a register array of 32-bit registers.
5126 * The table is meant to be used in a way similar to how the MTA is used
5127 * however due to certain limitations in the hardware it is necessary to
5128 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
5129 * enable bit to allow vlan tag stripping when promiscous mode is enabled
5130 **/
5131 static void igb_set_uta(struct igb_adapter *adapter)
5132 {
5133 struct e1000_hw *hw = &adapter->hw;
5134 int i;
5135
5136 /* The UTA table only exists on 82576 hardware and newer */
5137 if (hw->mac.type < e1000_82576)
5138 return;
5139
5140 /* we only need to do this if VMDq is enabled */
5141 if (!adapter->vfs_allocated_count)
5142 return;
5143
5144 for (i = 0; i < hw->mac.uta_reg_count; i++)
5145 array_wr32(E1000_UTA, i, ~0);
5146 }
5147
5148 /**
5149 * igb_intr_msi - Interrupt Handler
5150 * @irq: interrupt number
5151 * @data: pointer to a network interface device structure
5152 **/
5153 static irqreturn_t igb_intr_msi(int irq, void *data)
5154 {
5155 struct igb_adapter *adapter = data;
5156 struct igb_q_vector *q_vector = adapter->q_vector[0];
5157 struct e1000_hw *hw = &adapter->hw;
5158 /* read ICR disables interrupts using IAM */
5159 u32 icr = rd32(E1000_ICR);
5160
5161 igb_write_itr(q_vector);
5162
5163 if (icr & E1000_ICR_DRSTA)
5164 schedule_work(&adapter->reset_task);
5165
5166 if (icr & E1000_ICR_DOUTSYNC) {
5167 /* HW is reporting DMA is out of sync */
5168 adapter->stats.doosync++;
5169 }
5170
5171 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5172 hw->mac.get_link_status = 1;
5173 if (!test_bit(__IGB_DOWN, &adapter->state))
5174 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5175 }
5176
5177 napi_schedule(&q_vector->napi);
5178
5179 return IRQ_HANDLED;
5180 }
5181
5182 /**
5183 * igb_intr - Legacy Interrupt Handler
5184 * @irq: interrupt number
5185 * @data: pointer to a network interface device structure
5186 **/
5187 static irqreturn_t igb_intr(int irq, void *data)
5188 {
5189 struct igb_adapter *adapter = data;
5190 struct igb_q_vector *q_vector = adapter->q_vector[0];
5191 struct e1000_hw *hw = &adapter->hw;
5192 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5193 * need for the IMC write */
5194 u32 icr = rd32(E1000_ICR);
5195 if (!icr)
5196 return IRQ_NONE; /* Not our interrupt */
5197
5198 igb_write_itr(q_vector);
5199
5200 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5201 * not set, then the adapter didn't send an interrupt */
5202 if (!(icr & E1000_ICR_INT_ASSERTED))
5203 return IRQ_NONE;
5204
5205 if (icr & E1000_ICR_DRSTA)
5206 schedule_work(&adapter->reset_task);
5207
5208 if (icr & E1000_ICR_DOUTSYNC) {
5209 /* HW is reporting DMA is out of sync */
5210 adapter->stats.doosync++;
5211 }
5212
5213 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5214 hw->mac.get_link_status = 1;
5215 /* guard against interrupt when we're going down */
5216 if (!test_bit(__IGB_DOWN, &adapter->state))
5217 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5218 }
5219
5220 napi_schedule(&q_vector->napi);
5221
5222 return IRQ_HANDLED;
5223 }
5224
5225 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5226 {
5227 struct igb_adapter *adapter = q_vector->adapter;
5228 struct e1000_hw *hw = &adapter->hw;
5229
5230 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5231 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5232 if (!adapter->msix_entries)
5233 igb_set_itr(adapter);
5234 else
5235 igb_update_ring_itr(q_vector);
5236 }
5237
5238 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5239 if (adapter->msix_entries)
5240 wr32(E1000_EIMS, q_vector->eims_value);
5241 else
5242 igb_irq_enable(adapter);
5243 }
5244 }
5245
5246 /**
5247 * igb_poll - NAPI Rx polling callback
5248 * @napi: napi polling structure
5249 * @budget: count of how many packets we should handle
5250 **/
5251 static int igb_poll(struct napi_struct *napi, int budget)
5252 {
5253 struct igb_q_vector *q_vector = container_of(napi,
5254 struct igb_q_vector,
5255 napi);
5256 int tx_clean_complete = 1, work_done = 0;
5257
5258 #ifdef CONFIG_IGB_DCA
5259 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5260 igb_update_dca(q_vector);
5261 #endif
5262 if (q_vector->tx_ring)
5263 tx_clean_complete = igb_clean_tx_irq(q_vector);
5264
5265 if (q_vector->rx_ring)
5266 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5267
5268 if (!tx_clean_complete)
5269 work_done = budget;
5270
5271 /* If not enough Rx work done, exit the polling mode */
5272 if (work_done < budget) {
5273 napi_complete(napi);
5274 igb_ring_irq_enable(q_vector);
5275 }
5276
5277 return work_done;
5278 }
5279
5280 /**
5281 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5282 * @adapter: board private structure
5283 * @shhwtstamps: timestamp structure to update
5284 * @regval: unsigned 64bit system time value.
5285 *
5286 * We need to convert the system time value stored in the RX/TXSTMP registers
5287 * into a hwtstamp which can be used by the upper level timestamping functions
5288 */
5289 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5290 struct skb_shared_hwtstamps *shhwtstamps,
5291 u64 regval)
5292 {
5293 u64 ns;
5294
5295 /*
5296 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5297 * 24 to match clock shift we setup earlier.
5298 */
5299 if (adapter->hw.mac.type == e1000_82580)
5300 regval <<= IGB_82580_TSYNC_SHIFT;
5301
5302 ns = timecounter_cyc2time(&adapter->clock, regval);
5303 timecompare_update(&adapter->compare, ns);
5304 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5305 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5306 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5307 }
5308
5309 /**
5310 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5311 * @q_vector: pointer to q_vector containing needed info
5312 * @buffer: pointer to igb_buffer structure
5313 *
5314 * If we were asked to do hardware stamping and such a time stamp is
5315 * available, then it must have been for this skb here because we only
5316 * allow only one such packet into the queue.
5317 */
5318 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
5319 {
5320 struct igb_adapter *adapter = q_vector->adapter;
5321 struct e1000_hw *hw = &adapter->hw;
5322 struct skb_shared_hwtstamps shhwtstamps;
5323 u64 regval;
5324
5325 /* if skb does not support hw timestamp or TX stamp not valid exit */
5326 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
5327 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5328 return;
5329
5330 regval = rd32(E1000_TXSTMPL);
5331 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5332
5333 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5334 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5335 }
5336
5337 /**
5338 * igb_clean_tx_irq - Reclaim resources after transmit completes
5339 * @q_vector: pointer to q_vector containing needed info
5340 * returns true if ring is completely cleaned
5341 **/
5342 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5343 {
5344 struct igb_adapter *adapter = q_vector->adapter;
5345 struct igb_ring *tx_ring = q_vector->tx_ring;
5346 struct net_device *netdev = tx_ring->netdev;
5347 struct e1000_hw *hw = &adapter->hw;
5348 struct igb_buffer *buffer_info;
5349 union e1000_adv_tx_desc *tx_desc, *eop_desc;
5350 unsigned int total_bytes = 0, total_packets = 0;
5351 unsigned int i, eop, count = 0;
5352 bool cleaned = false;
5353
5354 i = tx_ring->next_to_clean;
5355 eop = tx_ring->buffer_info[i].next_to_watch;
5356 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5357
5358 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5359 (count < tx_ring->count)) {
5360 rmb(); /* read buffer_info after eop_desc status */
5361 for (cleaned = false; !cleaned; count++) {
5362 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
5363 buffer_info = &tx_ring->buffer_info[i];
5364 cleaned = (i == eop);
5365
5366 if (buffer_info->skb) {
5367 total_bytes += buffer_info->bytecount;
5368 /* gso_segs is currently only valid for tcp */
5369 total_packets += buffer_info->gso_segs;
5370 igb_tx_hwtstamp(q_vector, buffer_info);
5371 }
5372
5373 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
5374 tx_desc->wb.status = 0;
5375
5376 i++;
5377 if (i == tx_ring->count)
5378 i = 0;
5379 }
5380 eop = tx_ring->buffer_info[i].next_to_watch;
5381 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5382 }
5383
5384 tx_ring->next_to_clean = i;
5385
5386 if (unlikely(count &&
5387 netif_carrier_ok(netdev) &&
5388 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5389 /* Make sure that anybody stopping the queue after this
5390 * sees the new next_to_clean.
5391 */
5392 smp_mb();
5393 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5394 !(test_bit(__IGB_DOWN, &adapter->state))) {
5395 netif_wake_subqueue(netdev, tx_ring->queue_index);
5396 tx_ring->tx_stats.restart_queue++;
5397 }
5398 }
5399
5400 if (tx_ring->detect_tx_hung) {
5401 /* Detect a transmit hang in hardware, this serializes the
5402 * check with the clearing of time_stamp and movement of i */
5403 tx_ring->detect_tx_hung = false;
5404 if (tx_ring->buffer_info[i].time_stamp &&
5405 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5406 (adapter->tx_timeout_factor * HZ)) &&
5407 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5408
5409 /* detected Tx unit hang */
5410 dev_err(tx_ring->dev,
5411 "Detected Tx Unit Hang\n"
5412 " Tx Queue <%d>\n"
5413 " TDH <%x>\n"
5414 " TDT <%x>\n"
5415 " next_to_use <%x>\n"
5416 " next_to_clean <%x>\n"
5417 "buffer_info[next_to_clean]\n"
5418 " time_stamp <%lx>\n"
5419 " next_to_watch <%x>\n"
5420 " jiffies <%lx>\n"
5421 " desc.status <%x>\n",
5422 tx_ring->queue_index,
5423 readl(tx_ring->head),
5424 readl(tx_ring->tail),
5425 tx_ring->next_to_use,
5426 tx_ring->next_to_clean,
5427 tx_ring->buffer_info[eop].time_stamp,
5428 eop,
5429 jiffies,
5430 eop_desc->wb.status);
5431 netif_stop_subqueue(netdev, tx_ring->queue_index);
5432 }
5433 }
5434 tx_ring->total_bytes += total_bytes;
5435 tx_ring->total_packets += total_packets;
5436 tx_ring->tx_stats.bytes += total_bytes;
5437 tx_ring->tx_stats.packets += total_packets;
5438 return count < tx_ring->count;
5439 }
5440
5441 /**
5442 * igb_receive_skb - helper function to handle rx indications
5443 * @q_vector: structure containing interrupt and ring information
5444 * @skb: packet to send up
5445 * @vlan_tag: vlan tag for packet
5446 **/
5447 static void igb_receive_skb(struct igb_q_vector *q_vector,
5448 struct sk_buff *skb,
5449 u16 vlan_tag)
5450 {
5451 struct igb_adapter *adapter = q_vector->adapter;
5452
5453 if (vlan_tag && adapter->vlgrp)
5454 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5455 vlan_tag, skb);
5456 else
5457 napi_gro_receive(&q_vector->napi, skb);
5458 }
5459
5460 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5461 u32 status_err, struct sk_buff *skb)
5462 {
5463 skb_checksum_none_assert(skb);
5464
5465 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5466 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5467 (status_err & E1000_RXD_STAT_IXSM))
5468 return;
5469
5470 /* TCP/UDP checksum error bit is set */
5471 if (status_err &
5472 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5473 /*
5474 * work around errata with sctp packets where the TCPE aka
5475 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5476 * packets, (aka let the stack check the crc32c)
5477 */
5478 if ((skb->len == 60) &&
5479 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5480 ring->rx_stats.csum_err++;
5481
5482 /* let the stack verify checksum errors */
5483 return;
5484 }
5485 /* It must be a TCP or UDP packet with a valid checksum */
5486 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5487 skb->ip_summed = CHECKSUM_UNNECESSARY;
5488
5489 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5490 }
5491
5492 static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5493 struct sk_buff *skb)
5494 {
5495 struct igb_adapter *adapter = q_vector->adapter;
5496 struct e1000_hw *hw = &adapter->hw;
5497 u64 regval;
5498
5499 /*
5500 * If this bit is set, then the RX registers contain the time stamp. No
5501 * other packet will be time stamped until we read these registers, so
5502 * read the registers to make them available again. Because only one
5503 * packet can be time stamped at a time, we know that the register
5504 * values must belong to this one here and therefore we don't need to
5505 * compare any of the additional attributes stored for it.
5506 *
5507 * If nothing went wrong, then it should have a shared tx_flags that we
5508 * can turn into a skb_shared_hwtstamps.
5509 */
5510 if (staterr & E1000_RXDADV_STAT_TSIP) {
5511 u32 *stamp = (u32 *)skb->data;
5512 regval = le32_to_cpu(*(stamp + 2));
5513 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5514 skb_pull(skb, IGB_TS_HDR_LEN);
5515 } else {
5516 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5517 return;
5518
5519 regval = rd32(E1000_RXSTMPL);
5520 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5521 }
5522
5523 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5524 }
5525 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5526 union e1000_adv_rx_desc *rx_desc)
5527 {
5528 /* HW will not DMA in data larger than the given buffer, even if it
5529 * parses the (NFS, of course) header to be larger. In that case, it
5530 * fills the header buffer and spills the rest into the page.
5531 */
5532 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5533 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5534 if (hlen > rx_ring->rx_buffer_len)
5535 hlen = rx_ring->rx_buffer_len;
5536 return hlen;
5537 }
5538
5539 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5540 int *work_done, int budget)
5541 {
5542 struct igb_ring *rx_ring = q_vector->rx_ring;
5543 struct net_device *netdev = rx_ring->netdev;
5544 struct device *dev = rx_ring->dev;
5545 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5546 struct igb_buffer *buffer_info , *next_buffer;
5547 struct sk_buff *skb;
5548 bool cleaned = false;
5549 int cleaned_count = 0;
5550 int current_node = numa_node_id();
5551 unsigned int total_bytes = 0, total_packets = 0;
5552 unsigned int i;
5553 u32 staterr;
5554 u16 length;
5555 u16 vlan_tag;
5556
5557 i = rx_ring->next_to_clean;
5558 buffer_info = &rx_ring->buffer_info[i];
5559 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5560 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5561
5562 while (staterr & E1000_RXD_STAT_DD) {
5563 if (*work_done >= budget)
5564 break;
5565 (*work_done)++;
5566 rmb(); /* read descriptor and rx_buffer_info after status DD */
5567
5568 skb = buffer_info->skb;
5569 prefetch(skb->data - NET_IP_ALIGN);
5570 buffer_info->skb = NULL;
5571
5572 i++;
5573 if (i == rx_ring->count)
5574 i = 0;
5575
5576 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5577 prefetch(next_rxd);
5578 next_buffer = &rx_ring->buffer_info[i];
5579
5580 length = le16_to_cpu(rx_desc->wb.upper.length);
5581 cleaned = true;
5582 cleaned_count++;
5583
5584 if (buffer_info->dma) {
5585 dma_unmap_single(dev, buffer_info->dma,
5586 rx_ring->rx_buffer_len,
5587 DMA_FROM_DEVICE);
5588 buffer_info->dma = 0;
5589 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5590 skb_put(skb, length);
5591 goto send_up;
5592 }
5593 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5594 }
5595
5596 if (length) {
5597 dma_unmap_page(dev, buffer_info->page_dma,
5598 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5599 buffer_info->page_dma = 0;
5600
5601 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5602 buffer_info->page,
5603 buffer_info->page_offset,
5604 length);
5605
5606 if ((page_count(buffer_info->page) != 1) ||
5607 (page_to_nid(buffer_info->page) != current_node))
5608 buffer_info->page = NULL;
5609 else
5610 get_page(buffer_info->page);
5611
5612 skb->len += length;
5613 skb->data_len += length;
5614 skb->truesize += length;
5615 }
5616
5617 if (!(staterr & E1000_RXD_STAT_EOP)) {
5618 buffer_info->skb = next_buffer->skb;
5619 buffer_info->dma = next_buffer->dma;
5620 next_buffer->skb = skb;
5621 next_buffer->dma = 0;
5622 goto next_desc;
5623 }
5624 send_up:
5625 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5626 dev_kfree_skb_irq(skb);
5627 goto next_desc;
5628 }
5629
5630 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5631 igb_rx_hwtstamp(q_vector, staterr, skb);
5632 total_bytes += skb->len;
5633 total_packets++;
5634
5635 igb_rx_checksum_adv(rx_ring, staterr, skb);
5636
5637 skb->protocol = eth_type_trans(skb, netdev);
5638 skb_record_rx_queue(skb, rx_ring->queue_index);
5639
5640 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5641 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5642
5643 igb_receive_skb(q_vector, skb, vlan_tag);
5644
5645 next_desc:
5646 rx_desc->wb.upper.status_error = 0;
5647
5648 /* return some buffers to hardware, one at a time is too slow */
5649 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5650 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5651 cleaned_count = 0;
5652 }
5653
5654 /* use prefetched values */
5655 rx_desc = next_rxd;
5656 buffer_info = next_buffer;
5657 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5658 }
5659
5660 rx_ring->next_to_clean = i;
5661 cleaned_count = igb_desc_unused(rx_ring);
5662
5663 if (cleaned_count)
5664 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5665
5666 rx_ring->total_packets += total_packets;
5667 rx_ring->total_bytes += total_bytes;
5668 rx_ring->rx_stats.packets += total_packets;
5669 rx_ring->rx_stats.bytes += total_bytes;
5670 return cleaned;
5671 }
5672
5673 /**
5674 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5675 * @adapter: address of board private structure
5676 **/
5677 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5678 {
5679 struct net_device *netdev = rx_ring->netdev;
5680 union e1000_adv_rx_desc *rx_desc;
5681 struct igb_buffer *buffer_info;
5682 struct sk_buff *skb;
5683 unsigned int i;
5684 int bufsz;
5685
5686 i = rx_ring->next_to_use;
5687 buffer_info = &rx_ring->buffer_info[i];
5688
5689 bufsz = rx_ring->rx_buffer_len;
5690
5691 while (cleaned_count--) {
5692 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5693
5694 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5695 if (!buffer_info->page) {
5696 buffer_info->page = netdev_alloc_page(netdev);
5697 if (!buffer_info->page) {
5698 rx_ring->rx_stats.alloc_failed++;
5699 goto no_buffers;
5700 }
5701 buffer_info->page_offset = 0;
5702 } else {
5703 buffer_info->page_offset ^= PAGE_SIZE / 2;
5704 }
5705 buffer_info->page_dma =
5706 dma_map_page(rx_ring->dev, buffer_info->page,
5707 buffer_info->page_offset,
5708 PAGE_SIZE / 2,
5709 DMA_FROM_DEVICE);
5710 if (dma_mapping_error(rx_ring->dev,
5711 buffer_info->page_dma)) {
5712 buffer_info->page_dma = 0;
5713 rx_ring->rx_stats.alloc_failed++;
5714 goto no_buffers;
5715 }
5716 }
5717
5718 skb = buffer_info->skb;
5719 if (!skb) {
5720 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5721 if (!skb) {
5722 rx_ring->rx_stats.alloc_failed++;
5723 goto no_buffers;
5724 }
5725
5726 buffer_info->skb = skb;
5727 }
5728 if (!buffer_info->dma) {
5729 buffer_info->dma = dma_map_single(rx_ring->dev,
5730 skb->data,
5731 bufsz,
5732 DMA_FROM_DEVICE);
5733 if (dma_mapping_error(rx_ring->dev,
5734 buffer_info->dma)) {
5735 buffer_info->dma = 0;
5736 rx_ring->rx_stats.alloc_failed++;
5737 goto no_buffers;
5738 }
5739 }
5740 /* Refresh the desc even if buffer_addrs didn't change because
5741 * each write-back erases this info. */
5742 if (bufsz < IGB_RXBUFFER_1024) {
5743 rx_desc->read.pkt_addr =
5744 cpu_to_le64(buffer_info->page_dma);
5745 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5746 } else {
5747 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5748 rx_desc->read.hdr_addr = 0;
5749 }
5750
5751 i++;
5752 if (i == rx_ring->count)
5753 i = 0;
5754 buffer_info = &rx_ring->buffer_info[i];
5755 }
5756
5757 no_buffers:
5758 if (rx_ring->next_to_use != i) {
5759 rx_ring->next_to_use = i;
5760 if (i == 0)
5761 i = (rx_ring->count - 1);
5762 else
5763 i--;
5764
5765 /* Force memory writes to complete before letting h/w
5766 * know there are new descriptors to fetch. (Only
5767 * applicable for weak-ordered memory model archs,
5768 * such as IA-64). */
5769 wmb();
5770 writel(i, rx_ring->tail);
5771 }
5772 }
5773
5774 /**
5775 * igb_mii_ioctl -
5776 * @netdev:
5777 * @ifreq:
5778 * @cmd:
5779 **/
5780 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5781 {
5782 struct igb_adapter *adapter = netdev_priv(netdev);
5783 struct mii_ioctl_data *data = if_mii(ifr);
5784
5785 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5786 return -EOPNOTSUPP;
5787
5788 switch (cmd) {
5789 case SIOCGMIIPHY:
5790 data->phy_id = adapter->hw.phy.addr;
5791 break;
5792 case SIOCGMIIREG:
5793 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5794 &data->val_out))
5795 return -EIO;
5796 break;
5797 case SIOCSMIIREG:
5798 default:
5799 return -EOPNOTSUPP;
5800 }
5801 return 0;
5802 }
5803
5804 /**
5805 * igb_hwtstamp_ioctl - control hardware time stamping
5806 * @netdev:
5807 * @ifreq:
5808 * @cmd:
5809 *
5810 * Outgoing time stamping can be enabled and disabled. Play nice and
5811 * disable it when requested, although it shouldn't case any overhead
5812 * when no packet needs it. At most one packet in the queue may be
5813 * marked for time stamping, otherwise it would be impossible to tell
5814 * for sure to which packet the hardware time stamp belongs.
5815 *
5816 * Incoming time stamping has to be configured via the hardware
5817 * filters. Not all combinations are supported, in particular event
5818 * type has to be specified. Matching the kind of event packet is
5819 * not supported, with the exception of "all V2 events regardless of
5820 * level 2 or 4".
5821 *
5822 **/
5823 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5824 struct ifreq *ifr, int cmd)
5825 {
5826 struct igb_adapter *adapter = netdev_priv(netdev);
5827 struct e1000_hw *hw = &adapter->hw;
5828 struct hwtstamp_config config;
5829 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5830 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5831 u32 tsync_rx_cfg = 0;
5832 bool is_l4 = false;
5833 bool is_l2 = false;
5834 u32 regval;
5835
5836 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5837 return -EFAULT;
5838
5839 /* reserved for future extensions */
5840 if (config.flags)
5841 return -EINVAL;
5842
5843 switch (config.tx_type) {
5844 case HWTSTAMP_TX_OFF:
5845 tsync_tx_ctl = 0;
5846 case HWTSTAMP_TX_ON:
5847 break;
5848 default:
5849 return -ERANGE;
5850 }
5851
5852 switch (config.rx_filter) {
5853 case HWTSTAMP_FILTER_NONE:
5854 tsync_rx_ctl = 0;
5855 break;
5856 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5857 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5858 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5859 case HWTSTAMP_FILTER_ALL:
5860 /*
5861 * register TSYNCRXCFG must be set, therefore it is not
5862 * possible to time stamp both Sync and Delay_Req messages
5863 * => fall back to time stamping all packets
5864 */
5865 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5866 config.rx_filter = HWTSTAMP_FILTER_ALL;
5867 break;
5868 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5869 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5870 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5871 is_l4 = true;
5872 break;
5873 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5874 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5875 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5876 is_l4 = true;
5877 break;
5878 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5879 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5880 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5881 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5882 is_l2 = true;
5883 is_l4 = true;
5884 config.rx_filter = HWTSTAMP_FILTER_SOME;
5885 break;
5886 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5887 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5888 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5889 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5890 is_l2 = true;
5891 is_l4 = true;
5892 config.rx_filter = HWTSTAMP_FILTER_SOME;
5893 break;
5894 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5895 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5896 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5897 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5898 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5899 is_l2 = true;
5900 break;
5901 default:
5902 return -ERANGE;
5903 }
5904
5905 if (hw->mac.type == e1000_82575) {
5906 if (tsync_rx_ctl | tsync_tx_ctl)
5907 return -EINVAL;
5908 return 0;
5909 }
5910
5911 /*
5912 * Per-packet timestamping only works if all packets are
5913 * timestamped, so enable timestamping in all packets as
5914 * long as one rx filter was configured.
5915 */
5916 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
5917 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5918 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5919 }
5920
5921 /* enable/disable TX */
5922 regval = rd32(E1000_TSYNCTXCTL);
5923 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5924 regval |= tsync_tx_ctl;
5925 wr32(E1000_TSYNCTXCTL, regval);
5926
5927 /* enable/disable RX */
5928 regval = rd32(E1000_TSYNCRXCTL);
5929 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5930 regval |= tsync_rx_ctl;
5931 wr32(E1000_TSYNCRXCTL, regval);
5932
5933 /* define which PTP packets are time stamped */
5934 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5935
5936 /* define ethertype filter for timestamped packets */
5937 if (is_l2)
5938 wr32(E1000_ETQF(3),
5939 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5940 E1000_ETQF_1588 | /* enable timestamping */
5941 ETH_P_1588)); /* 1588 eth protocol type */
5942 else
5943 wr32(E1000_ETQF(3), 0);
5944
5945 #define PTP_PORT 319
5946 /* L4 Queue Filter[3]: filter by destination port and protocol */
5947 if (is_l4) {
5948 u32 ftqf = (IPPROTO_UDP /* UDP */
5949 | E1000_FTQF_VF_BP /* VF not compared */
5950 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5951 | E1000_FTQF_MASK); /* mask all inputs */
5952 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5953
5954 wr32(E1000_IMIR(3), htons(PTP_PORT));
5955 wr32(E1000_IMIREXT(3),
5956 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5957 if (hw->mac.type == e1000_82576) {
5958 /* enable source port check */
5959 wr32(E1000_SPQF(3), htons(PTP_PORT));
5960 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5961 }
5962 wr32(E1000_FTQF(3), ftqf);
5963 } else {
5964 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5965 }
5966 wrfl();
5967
5968 adapter->hwtstamp_config = config;
5969
5970 /* clear TX/RX time stamp registers, just to be sure */
5971 regval = rd32(E1000_TXSTMPH);
5972 regval = rd32(E1000_RXSTMPH);
5973
5974 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5975 -EFAULT : 0;
5976 }
5977
5978 /**
5979 * igb_ioctl -
5980 * @netdev:
5981 * @ifreq:
5982 * @cmd:
5983 **/
5984 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5985 {
5986 switch (cmd) {
5987 case SIOCGMIIPHY:
5988 case SIOCGMIIREG:
5989 case SIOCSMIIREG:
5990 return igb_mii_ioctl(netdev, ifr, cmd);
5991 case SIOCSHWTSTAMP:
5992 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5993 default:
5994 return -EOPNOTSUPP;
5995 }
5996 }
5997
5998 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5999 {
6000 struct igb_adapter *adapter = hw->back;
6001 u16 cap_offset;
6002
6003 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6004 if (!cap_offset)
6005 return -E1000_ERR_CONFIG;
6006
6007 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6008
6009 return 0;
6010 }
6011
6012 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6013 {
6014 struct igb_adapter *adapter = hw->back;
6015 u16 cap_offset;
6016
6017 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6018 if (!cap_offset)
6019 return -E1000_ERR_CONFIG;
6020
6021 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6022
6023 return 0;
6024 }
6025
6026 static void igb_vlan_rx_register(struct net_device *netdev,
6027 struct vlan_group *grp)
6028 {
6029 struct igb_adapter *adapter = netdev_priv(netdev);
6030 struct e1000_hw *hw = &adapter->hw;
6031 u32 ctrl, rctl;
6032
6033 igb_irq_disable(adapter);
6034 adapter->vlgrp = grp;
6035
6036 if (grp) {
6037 /* enable VLAN tag insert/strip */
6038 ctrl = rd32(E1000_CTRL);
6039 ctrl |= E1000_CTRL_VME;
6040 wr32(E1000_CTRL, ctrl);
6041
6042 /* Disable CFI check */
6043 rctl = rd32(E1000_RCTL);
6044 rctl &= ~E1000_RCTL_CFIEN;
6045 wr32(E1000_RCTL, rctl);
6046 } else {
6047 /* disable VLAN tag insert/strip */
6048 ctrl = rd32(E1000_CTRL);
6049 ctrl &= ~E1000_CTRL_VME;
6050 wr32(E1000_CTRL, ctrl);
6051 }
6052
6053 igb_rlpml_set(adapter);
6054
6055 if (!test_bit(__IGB_DOWN, &adapter->state))
6056 igb_irq_enable(adapter);
6057 }
6058
6059 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6060 {
6061 struct igb_adapter *adapter = netdev_priv(netdev);
6062 struct e1000_hw *hw = &adapter->hw;
6063 int pf_id = adapter->vfs_allocated_count;
6064
6065 /* attempt to add filter to vlvf array */
6066 igb_vlvf_set(adapter, vid, true, pf_id);
6067
6068 /* add the filter since PF can receive vlans w/o entry in vlvf */
6069 igb_vfta_set(hw, vid, true);
6070 }
6071
6072 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6073 {
6074 struct igb_adapter *adapter = netdev_priv(netdev);
6075 struct e1000_hw *hw = &adapter->hw;
6076 int pf_id = adapter->vfs_allocated_count;
6077 s32 err;
6078
6079 igb_irq_disable(adapter);
6080 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6081
6082 if (!test_bit(__IGB_DOWN, &adapter->state))
6083 igb_irq_enable(adapter);
6084
6085 /* remove vlan from VLVF table array */
6086 err = igb_vlvf_set(adapter, vid, false, pf_id);
6087
6088 /* if vid was not present in VLVF just remove it from table */
6089 if (err)
6090 igb_vfta_set(hw, vid, false);
6091 }
6092
6093 static void igb_restore_vlan(struct igb_adapter *adapter)
6094 {
6095 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6096
6097 if (adapter->vlgrp) {
6098 u16 vid;
6099 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
6100 if (!vlan_group_get_device(adapter->vlgrp, vid))
6101 continue;
6102 igb_vlan_rx_add_vid(adapter->netdev, vid);
6103 }
6104 }
6105 }
6106
6107 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
6108 {
6109 struct pci_dev *pdev = adapter->pdev;
6110 struct e1000_mac_info *mac = &adapter->hw.mac;
6111
6112 mac->autoneg = 0;
6113
6114 switch (spddplx) {
6115 case SPEED_10 + DUPLEX_HALF:
6116 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6117 break;
6118 case SPEED_10 + DUPLEX_FULL:
6119 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6120 break;
6121 case SPEED_100 + DUPLEX_HALF:
6122 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6123 break;
6124 case SPEED_100 + DUPLEX_FULL:
6125 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6126 break;
6127 case SPEED_1000 + DUPLEX_FULL:
6128 mac->autoneg = 1;
6129 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6130 break;
6131 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6132 default:
6133 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6134 return -EINVAL;
6135 }
6136 return 0;
6137 }
6138
6139 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6140 {
6141 struct net_device *netdev = pci_get_drvdata(pdev);
6142 struct igb_adapter *adapter = netdev_priv(netdev);
6143 struct e1000_hw *hw = &adapter->hw;
6144 u32 ctrl, rctl, status;
6145 u32 wufc = adapter->wol;
6146 #ifdef CONFIG_PM
6147 int retval = 0;
6148 #endif
6149
6150 netif_device_detach(netdev);
6151
6152 if (netif_running(netdev))
6153 igb_close(netdev);
6154
6155 igb_clear_interrupt_scheme(adapter);
6156
6157 #ifdef CONFIG_PM
6158 retval = pci_save_state(pdev);
6159 if (retval)
6160 return retval;
6161 #endif
6162
6163 status = rd32(E1000_STATUS);
6164 if (status & E1000_STATUS_LU)
6165 wufc &= ~E1000_WUFC_LNKC;
6166
6167 if (wufc) {
6168 igb_setup_rctl(adapter);
6169 igb_set_rx_mode(netdev);
6170
6171 /* turn on all-multi mode if wake on multicast is enabled */
6172 if (wufc & E1000_WUFC_MC) {
6173 rctl = rd32(E1000_RCTL);
6174 rctl |= E1000_RCTL_MPE;
6175 wr32(E1000_RCTL, rctl);
6176 }
6177
6178 ctrl = rd32(E1000_CTRL);
6179 /* advertise wake from D3Cold */
6180 #define E1000_CTRL_ADVD3WUC 0x00100000
6181 /* phy power management enable */
6182 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6183 ctrl |= E1000_CTRL_ADVD3WUC;
6184 wr32(E1000_CTRL, ctrl);
6185
6186 /* Allow time for pending master requests to run */
6187 igb_disable_pcie_master(hw);
6188
6189 wr32(E1000_WUC, E1000_WUC_PME_EN);
6190 wr32(E1000_WUFC, wufc);
6191 } else {
6192 wr32(E1000_WUC, 0);
6193 wr32(E1000_WUFC, 0);
6194 }
6195
6196 *enable_wake = wufc || adapter->en_mng_pt;
6197 if (!*enable_wake)
6198 igb_power_down_link(adapter);
6199 else
6200 igb_power_up_link(adapter);
6201
6202 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6203 * would have already happened in close and is redundant. */
6204 igb_release_hw_control(adapter);
6205
6206 pci_disable_device(pdev);
6207
6208 return 0;
6209 }
6210
6211 #ifdef CONFIG_PM
6212 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6213 {
6214 int retval;
6215 bool wake;
6216
6217 retval = __igb_shutdown(pdev, &wake);
6218 if (retval)
6219 return retval;
6220
6221 if (wake) {
6222 pci_prepare_to_sleep(pdev);
6223 } else {
6224 pci_wake_from_d3(pdev, false);
6225 pci_set_power_state(pdev, PCI_D3hot);
6226 }
6227
6228 return 0;
6229 }
6230
6231 static int igb_resume(struct pci_dev *pdev)
6232 {
6233 struct net_device *netdev = pci_get_drvdata(pdev);
6234 struct igb_adapter *adapter = netdev_priv(netdev);
6235 struct e1000_hw *hw = &adapter->hw;
6236 u32 err;
6237
6238 pci_set_power_state(pdev, PCI_D0);
6239 pci_restore_state(pdev);
6240 pci_save_state(pdev);
6241
6242 err = pci_enable_device_mem(pdev);
6243 if (err) {
6244 dev_err(&pdev->dev,
6245 "igb: Cannot enable PCI device from suspend\n");
6246 return err;
6247 }
6248 pci_set_master(pdev);
6249
6250 pci_enable_wake(pdev, PCI_D3hot, 0);
6251 pci_enable_wake(pdev, PCI_D3cold, 0);
6252
6253 if (igb_init_interrupt_scheme(adapter)) {
6254 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6255 return -ENOMEM;
6256 }
6257
6258 igb_reset(adapter);
6259
6260 /* let the f/w know that the h/w is now under the control of the
6261 * driver. */
6262 igb_get_hw_control(adapter);
6263
6264 wr32(E1000_WUS, ~0);
6265
6266 if (netif_running(netdev)) {
6267 err = igb_open(netdev);
6268 if (err)
6269 return err;
6270 }
6271
6272 netif_device_attach(netdev);
6273
6274 return 0;
6275 }
6276 #endif
6277
6278 static void igb_shutdown(struct pci_dev *pdev)
6279 {
6280 bool wake;
6281
6282 __igb_shutdown(pdev, &wake);
6283
6284 if (system_state == SYSTEM_POWER_OFF) {
6285 pci_wake_from_d3(pdev, wake);
6286 pci_set_power_state(pdev, PCI_D3hot);
6287 }
6288 }
6289
6290 #ifdef CONFIG_NET_POLL_CONTROLLER
6291 /*
6292 * Polling 'interrupt' - used by things like netconsole to send skbs
6293 * without having to re-enable interrupts. It's not called while
6294 * the interrupt routine is executing.
6295 */
6296 static void igb_netpoll(struct net_device *netdev)
6297 {
6298 struct igb_adapter *adapter = netdev_priv(netdev);
6299 struct e1000_hw *hw = &adapter->hw;
6300 int i;
6301
6302 if (!adapter->msix_entries) {
6303 struct igb_q_vector *q_vector = adapter->q_vector[0];
6304 igb_irq_disable(adapter);
6305 napi_schedule(&q_vector->napi);
6306 return;
6307 }
6308
6309 for (i = 0; i < adapter->num_q_vectors; i++) {
6310 struct igb_q_vector *q_vector = adapter->q_vector[i];
6311 wr32(E1000_EIMC, q_vector->eims_value);
6312 napi_schedule(&q_vector->napi);
6313 }
6314 }
6315 #endif /* CONFIG_NET_POLL_CONTROLLER */
6316
6317 /**
6318 * igb_io_error_detected - called when PCI error is detected
6319 * @pdev: Pointer to PCI device
6320 * @state: The current pci connection state
6321 *
6322 * This function is called after a PCI bus error affecting
6323 * this device has been detected.
6324 */
6325 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6326 pci_channel_state_t state)
6327 {
6328 struct net_device *netdev = pci_get_drvdata(pdev);
6329 struct igb_adapter *adapter = netdev_priv(netdev);
6330
6331 netif_device_detach(netdev);
6332
6333 if (state == pci_channel_io_perm_failure)
6334 return PCI_ERS_RESULT_DISCONNECT;
6335
6336 if (netif_running(netdev))
6337 igb_down(adapter);
6338 pci_disable_device(pdev);
6339
6340 /* Request a slot slot reset. */
6341 return PCI_ERS_RESULT_NEED_RESET;
6342 }
6343
6344 /**
6345 * igb_io_slot_reset - called after the pci bus has been reset.
6346 * @pdev: Pointer to PCI device
6347 *
6348 * Restart the card from scratch, as if from a cold-boot. Implementation
6349 * resembles the first-half of the igb_resume routine.
6350 */
6351 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6352 {
6353 struct net_device *netdev = pci_get_drvdata(pdev);
6354 struct igb_adapter *adapter = netdev_priv(netdev);
6355 struct e1000_hw *hw = &adapter->hw;
6356 pci_ers_result_t result;
6357 int err;
6358
6359 if (pci_enable_device_mem(pdev)) {
6360 dev_err(&pdev->dev,
6361 "Cannot re-enable PCI device after reset.\n");
6362 result = PCI_ERS_RESULT_DISCONNECT;
6363 } else {
6364 pci_set_master(pdev);
6365 pci_restore_state(pdev);
6366 pci_save_state(pdev);
6367
6368 pci_enable_wake(pdev, PCI_D3hot, 0);
6369 pci_enable_wake(pdev, PCI_D3cold, 0);
6370
6371 igb_reset(adapter);
6372 wr32(E1000_WUS, ~0);
6373 result = PCI_ERS_RESULT_RECOVERED;
6374 }
6375
6376 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6377 if (err) {
6378 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6379 "failed 0x%0x\n", err);
6380 /* non-fatal, continue */
6381 }
6382
6383 return result;
6384 }
6385
6386 /**
6387 * igb_io_resume - called when traffic can start flowing again.
6388 * @pdev: Pointer to PCI device
6389 *
6390 * This callback is called when the error recovery driver tells us that
6391 * its OK to resume normal operation. Implementation resembles the
6392 * second-half of the igb_resume routine.
6393 */
6394 static void igb_io_resume(struct pci_dev *pdev)
6395 {
6396 struct net_device *netdev = pci_get_drvdata(pdev);
6397 struct igb_adapter *adapter = netdev_priv(netdev);
6398
6399 if (netif_running(netdev)) {
6400 if (igb_up(adapter)) {
6401 dev_err(&pdev->dev, "igb_up failed after reset\n");
6402 return;
6403 }
6404 }
6405
6406 netif_device_attach(netdev);
6407
6408 /* let the f/w know that the h/w is now under the control of the
6409 * driver. */
6410 igb_get_hw_control(adapter);
6411 }
6412
6413 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6414 u8 qsel)
6415 {
6416 u32 rar_low, rar_high;
6417 struct e1000_hw *hw = &adapter->hw;
6418
6419 /* HW expects these in little endian so we reverse the byte order
6420 * from network order (big endian) to little endian
6421 */
6422 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6423 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6424 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6425
6426 /* Indicate to hardware the Address is Valid. */
6427 rar_high |= E1000_RAH_AV;
6428
6429 if (hw->mac.type == e1000_82575)
6430 rar_high |= E1000_RAH_POOL_1 * qsel;
6431 else
6432 rar_high |= E1000_RAH_POOL_1 << qsel;
6433
6434 wr32(E1000_RAL(index), rar_low);
6435 wrfl();
6436 wr32(E1000_RAH(index), rar_high);
6437 wrfl();
6438 }
6439
6440 static int igb_set_vf_mac(struct igb_adapter *adapter,
6441 int vf, unsigned char *mac_addr)
6442 {
6443 struct e1000_hw *hw = &adapter->hw;
6444 /* VF MAC addresses start at end of receive addresses and moves
6445 * torwards the first, as a result a collision should not be possible */
6446 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6447
6448 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6449
6450 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6451
6452 return 0;
6453 }
6454
6455 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6456 {
6457 struct igb_adapter *adapter = netdev_priv(netdev);
6458 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6459 return -EINVAL;
6460 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6461 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6462 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6463 " change effective.");
6464 if (test_bit(__IGB_DOWN, &adapter->state)) {
6465 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6466 " but the PF device is not up.\n");
6467 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6468 " attempting to use the VF device.\n");
6469 }
6470 return igb_set_vf_mac(adapter, vf, mac);
6471 }
6472
6473 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6474 {
6475 return -EOPNOTSUPP;
6476 }
6477
6478 static int igb_ndo_get_vf_config(struct net_device *netdev,
6479 int vf, struct ifla_vf_info *ivi)
6480 {
6481 struct igb_adapter *adapter = netdev_priv(netdev);
6482 if (vf >= adapter->vfs_allocated_count)
6483 return -EINVAL;
6484 ivi->vf = vf;
6485 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6486 ivi->tx_rate = 0;
6487 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6488 ivi->qos = adapter->vf_data[vf].pf_qos;
6489 return 0;
6490 }
6491
6492 static void igb_vmm_control(struct igb_adapter *adapter)
6493 {
6494 struct e1000_hw *hw = &adapter->hw;
6495 u32 reg;
6496
6497 switch (hw->mac.type) {
6498 case e1000_82575:
6499 default:
6500 /* replication is not supported for 82575 */
6501 return;
6502 case e1000_82576:
6503 /* notify HW that the MAC is adding vlan tags */
6504 reg = rd32(E1000_DTXCTL);
6505 reg |= E1000_DTXCTL_VLAN_ADDED;
6506 wr32(E1000_DTXCTL, reg);
6507 case e1000_82580:
6508 /* enable replication vlan tag stripping */
6509 reg = rd32(E1000_RPLOLR);
6510 reg |= E1000_RPLOLR_STRVLAN;
6511 wr32(E1000_RPLOLR, reg);
6512 case e1000_i350:
6513 /* none of the above registers are supported by i350 */
6514 break;
6515 }
6516
6517 if (adapter->vfs_allocated_count) {
6518 igb_vmdq_set_loopback_pf(hw, true);
6519 igb_vmdq_set_replication_pf(hw, true);
6520 } else {
6521 igb_vmdq_set_loopback_pf(hw, false);
6522 igb_vmdq_set_replication_pf(hw, false);
6523 }
6524 }
6525
6526 /* igb_main.c */
This page took 0.182074 seconds and 5 git commands to generate.