igb: make dev_spec a union and remove dynamic allocation
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
50
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
60 };
61
62 static struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69 /* required last entry */
70 {0, }
71 };
72
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98 struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125
126 static int igb_suspend(struct pci_dev *, pm_message_t);
127 #ifdef CONFIG_PM
128 static int igb_resume(struct pci_dev *);
129 #endif
130 static void igb_shutdown(struct pci_dev *);
131 #ifdef CONFIG_IGB_DCA
132 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
133 static struct notifier_block dca_notifier = {
134 .notifier_call = igb_notify_dca,
135 .next = NULL,
136 .priority = 0
137 };
138 #endif
139
140 #ifdef CONFIG_NET_POLL_CONTROLLER
141 /* for netdump / net console */
142 static void igb_netpoll(struct net_device *);
143 #endif
144
145 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
146 pci_channel_state_t);
147 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
148 static void igb_io_resume(struct pci_dev *);
149
150 static struct pci_error_handlers igb_err_handler = {
151 .error_detected = igb_io_error_detected,
152 .slot_reset = igb_io_slot_reset,
153 .resume = igb_io_resume,
154 };
155
156
157 static struct pci_driver igb_driver = {
158 .name = igb_driver_name,
159 .id_table = igb_pci_tbl,
160 .probe = igb_probe,
161 .remove = __devexit_p(igb_remove),
162 #ifdef CONFIG_PM
163 /* Power Managment Hooks */
164 .suspend = igb_suspend,
165 .resume = igb_resume,
166 #endif
167 .shutdown = igb_shutdown,
168 .err_handler = &igb_err_handler
169 };
170
171 static int global_quad_port_a; /* global quad port a indication */
172
173 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177
178 #ifdef DEBUG
179 /**
180 * igb_get_hw_dev_name - return device name string
181 * used by hardware layer to print debugging information
182 **/
183 char *igb_get_hw_dev_name(struct e1000_hw *hw)
184 {
185 struct igb_adapter *adapter = hw->back;
186 return adapter->netdev->name;
187 }
188 #endif
189
190 /**
191 * igb_init_module - Driver Registration Routine
192 *
193 * igb_init_module is the first routine called when the driver is
194 * loaded. All it does is register with the PCI subsystem.
195 **/
196 static int __init igb_init_module(void)
197 {
198 int ret;
199 printk(KERN_INFO "%s - version %s\n",
200 igb_driver_string, igb_driver_version);
201
202 printk(KERN_INFO "%s\n", igb_copyright);
203
204 global_quad_port_a = 0;
205
206 #ifdef CONFIG_IGB_DCA
207 dca_register_notify(&dca_notifier);
208 #endif
209
210 ret = pci_register_driver(&igb_driver);
211 return ret;
212 }
213
214 module_init(igb_init_module);
215
216 /**
217 * igb_exit_module - Driver Exit Cleanup Routine
218 *
219 * igb_exit_module is called just before the driver is removed
220 * from memory.
221 **/
222 static void __exit igb_exit_module(void)
223 {
224 #ifdef CONFIG_IGB_DCA
225 dca_unregister_notify(&dca_notifier);
226 #endif
227 pci_unregister_driver(&igb_driver);
228 }
229
230 module_exit(igb_exit_module);
231
232 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
233 /**
234 * igb_cache_ring_register - Descriptor ring to register mapping
235 * @adapter: board private structure to initialize
236 *
237 * Once we know the feature-set enabled for the device, we'll cache
238 * the register offset the descriptor ring is assigned to.
239 **/
240 static void igb_cache_ring_register(struct igb_adapter *adapter)
241 {
242 int i;
243
244 switch (adapter->hw.mac.type) {
245 case e1000_82576:
246 /* The queues are allocated for virtualization such that VF 0
247 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
248 * In order to avoid collision we start at the first free queue
249 * and continue consuming queues in the same sequence
250 */
251 for (i = 0; i < adapter->num_rx_queues; i++)
252 adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
253 for (i = 0; i < adapter->num_tx_queues; i++)
254 adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
255 break;
256 case e1000_82575:
257 default:
258 for (i = 0; i < adapter->num_rx_queues; i++)
259 adapter->rx_ring[i].reg_idx = i;
260 for (i = 0; i < adapter->num_tx_queues; i++)
261 adapter->tx_ring[i].reg_idx = i;
262 break;
263 }
264 }
265
266 /**
267 * igb_alloc_queues - Allocate memory for all rings
268 * @adapter: board private structure to initialize
269 *
270 * We allocate one ring per queue at run-time since we don't know the
271 * number of queues at compile-time.
272 **/
273 static int igb_alloc_queues(struct igb_adapter *adapter)
274 {
275 int i;
276
277 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
278 sizeof(struct igb_ring), GFP_KERNEL);
279 if (!adapter->tx_ring)
280 return -ENOMEM;
281
282 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
283 sizeof(struct igb_ring), GFP_KERNEL);
284 if (!adapter->rx_ring) {
285 kfree(adapter->tx_ring);
286 return -ENOMEM;
287 }
288
289 adapter->rx_ring->buddy = adapter->tx_ring;
290
291 for (i = 0; i < adapter->num_tx_queues; i++) {
292 struct igb_ring *ring = &(adapter->tx_ring[i]);
293 ring->count = adapter->tx_ring_count;
294 ring->adapter = adapter;
295 ring->queue_index = i;
296 }
297 for (i = 0; i < adapter->num_rx_queues; i++) {
298 struct igb_ring *ring = &(adapter->rx_ring[i]);
299 ring->count = adapter->rx_ring_count;
300 ring->adapter = adapter;
301 ring->queue_index = i;
302 ring->itr_register = E1000_ITR;
303
304 /* set a default napi handler for each rx_ring */
305 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
306 }
307
308 igb_cache_ring_register(adapter);
309 return 0;
310 }
311
312 static void igb_free_queues(struct igb_adapter *adapter)
313 {
314 int i;
315
316 for (i = 0; i < adapter->num_rx_queues; i++)
317 netif_napi_del(&adapter->rx_ring[i].napi);
318
319 kfree(adapter->tx_ring);
320 kfree(adapter->rx_ring);
321 }
322
323 #define IGB_N0_QUEUE -1
324 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
325 int tx_queue, int msix_vector)
326 {
327 u32 msixbm = 0;
328 struct e1000_hw *hw = &adapter->hw;
329 u32 ivar, index;
330
331 switch (hw->mac.type) {
332 case e1000_82575:
333 /* The 82575 assigns vectors using a bitmask, which matches the
334 bitmask for the EICR/EIMS/EIMC registers. To assign one
335 or more queues to a vector, we write the appropriate bits
336 into the MSIXBM register for that vector. */
337 if (rx_queue > IGB_N0_QUEUE) {
338 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
339 adapter->rx_ring[rx_queue].eims_value = msixbm;
340 }
341 if (tx_queue > IGB_N0_QUEUE) {
342 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
343 adapter->tx_ring[tx_queue].eims_value =
344 E1000_EICR_TX_QUEUE0 << tx_queue;
345 }
346 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
347 break;
348 case e1000_82576:
349 /* 82576 uses a table-based method for assigning vectors.
350 Each queue has a single entry in the table to which we write
351 a vector number along with a "valid" bit. Sadly, the layout
352 of the table is somewhat counterintuitive. */
353 if (rx_queue > IGB_N0_QUEUE) {
354 index = (rx_queue >> 1);
355 ivar = array_rd32(E1000_IVAR0, index);
356 if (rx_queue & 0x1) {
357 /* vector goes into third byte of register */
358 ivar = ivar & 0xFF00FFFF;
359 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
360 } else {
361 /* vector goes into low byte of register */
362 ivar = ivar & 0xFFFFFF00;
363 ivar |= msix_vector | E1000_IVAR_VALID;
364 }
365 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
366 array_wr32(E1000_IVAR0, index, ivar);
367 }
368 if (tx_queue > IGB_N0_QUEUE) {
369 index = (tx_queue >> 1);
370 ivar = array_rd32(E1000_IVAR0, index);
371 if (tx_queue & 0x1) {
372 /* vector goes into high byte of register */
373 ivar = ivar & 0x00FFFFFF;
374 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
375 } else {
376 /* vector goes into second byte of register */
377 ivar = ivar & 0xFFFF00FF;
378 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
379 }
380 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
381 array_wr32(E1000_IVAR0, index, ivar);
382 }
383 break;
384 default:
385 BUG();
386 break;
387 }
388 }
389
390 /**
391 * igb_configure_msix - Configure MSI-X hardware
392 *
393 * igb_configure_msix sets up the hardware to properly
394 * generate MSI-X interrupts.
395 **/
396 static void igb_configure_msix(struct igb_adapter *adapter)
397 {
398 u32 tmp;
399 int i, vector = 0;
400 struct e1000_hw *hw = &adapter->hw;
401
402 adapter->eims_enable_mask = 0;
403 if (hw->mac.type == e1000_82576)
404 /* Turn on MSI-X capability first, or our settings
405 * won't stick. And it will take days to debug. */
406 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
407 E1000_GPIE_PBA | E1000_GPIE_EIAME |
408 E1000_GPIE_NSICR);
409
410 for (i = 0; i < adapter->num_tx_queues; i++) {
411 struct igb_ring *tx_ring = &adapter->tx_ring[i];
412 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
413 adapter->eims_enable_mask |= tx_ring->eims_value;
414 if (tx_ring->itr_val)
415 writel(tx_ring->itr_val,
416 hw->hw_addr + tx_ring->itr_register);
417 else
418 writel(1, hw->hw_addr + tx_ring->itr_register);
419 }
420
421 for (i = 0; i < adapter->num_rx_queues; i++) {
422 struct igb_ring *rx_ring = &adapter->rx_ring[i];
423 rx_ring->buddy = NULL;
424 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
425 adapter->eims_enable_mask |= rx_ring->eims_value;
426 if (rx_ring->itr_val)
427 writel(rx_ring->itr_val,
428 hw->hw_addr + rx_ring->itr_register);
429 else
430 writel(1, hw->hw_addr + rx_ring->itr_register);
431 }
432
433
434 /* set vector for other causes, i.e. link changes */
435 switch (hw->mac.type) {
436 case e1000_82575:
437 array_wr32(E1000_MSIXBM(0), vector++,
438 E1000_EIMS_OTHER);
439
440 tmp = rd32(E1000_CTRL_EXT);
441 /* enable MSI-X PBA support*/
442 tmp |= E1000_CTRL_EXT_PBA_CLR;
443
444 /* Auto-Mask interrupts upon ICR read. */
445 tmp |= E1000_CTRL_EXT_EIAME;
446 tmp |= E1000_CTRL_EXT_IRCA;
447
448 wr32(E1000_CTRL_EXT, tmp);
449 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
450 adapter->eims_other = E1000_EIMS_OTHER;
451
452 break;
453
454 case e1000_82576:
455 tmp = (vector++ | E1000_IVAR_VALID) << 8;
456 wr32(E1000_IVAR_MISC, tmp);
457
458 adapter->eims_enable_mask = (1 << (vector)) - 1;
459 adapter->eims_other = 1 << (vector - 1);
460 break;
461 default:
462 /* do nothing, since nothing else supports MSI-X */
463 break;
464 } /* switch (hw->mac.type) */
465 wrfl();
466 }
467
468 /**
469 * igb_request_msix - Initialize MSI-X interrupts
470 *
471 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
472 * kernel.
473 **/
474 static int igb_request_msix(struct igb_adapter *adapter)
475 {
476 struct net_device *netdev = adapter->netdev;
477 int i, err = 0, vector = 0;
478
479 vector = 0;
480
481 for (i = 0; i < adapter->num_tx_queues; i++) {
482 struct igb_ring *ring = &(adapter->tx_ring[i]);
483 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
484 err = request_irq(adapter->msix_entries[vector].vector,
485 &igb_msix_tx, 0, ring->name,
486 &(adapter->tx_ring[i]));
487 if (err)
488 goto out;
489 ring->itr_register = E1000_EITR(0) + (vector << 2);
490 ring->itr_val = 976; /* ~4000 ints/sec */
491 vector++;
492 }
493 for (i = 0; i < adapter->num_rx_queues; i++) {
494 struct igb_ring *ring = &(adapter->rx_ring[i]);
495 if (strlen(netdev->name) < (IFNAMSIZ - 5))
496 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
497 else
498 memcpy(ring->name, netdev->name, IFNAMSIZ);
499 err = request_irq(adapter->msix_entries[vector].vector,
500 &igb_msix_rx, 0, ring->name,
501 &(adapter->rx_ring[i]));
502 if (err)
503 goto out;
504 ring->itr_register = E1000_EITR(0) + (vector << 2);
505 ring->itr_val = adapter->itr;
506 /* overwrite the poll routine for MSIX, we've already done
507 * netif_napi_add */
508 ring->napi.poll = &igb_clean_rx_ring_msix;
509 vector++;
510 }
511
512 err = request_irq(adapter->msix_entries[vector].vector,
513 &igb_msix_other, 0, netdev->name, netdev);
514 if (err)
515 goto out;
516
517 igb_configure_msix(adapter);
518 return 0;
519 out:
520 return err;
521 }
522
523 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
524 {
525 if (adapter->msix_entries) {
526 pci_disable_msix(adapter->pdev);
527 kfree(adapter->msix_entries);
528 adapter->msix_entries = NULL;
529 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
530 pci_disable_msi(adapter->pdev);
531 return;
532 }
533
534
535 /**
536 * igb_set_interrupt_capability - set MSI or MSI-X if supported
537 *
538 * Attempt to configure interrupts using the best available
539 * capabilities of the hardware and kernel.
540 **/
541 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
542 {
543 int err;
544 int numvecs, i;
545
546 /* Number of supported queues. */
547 /* Having more queues than CPUs doesn't make sense. */
548 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
549 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
550
551 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
552 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
553 GFP_KERNEL);
554 if (!adapter->msix_entries)
555 goto msi_only;
556
557 for (i = 0; i < numvecs; i++)
558 adapter->msix_entries[i].entry = i;
559
560 err = pci_enable_msix(adapter->pdev,
561 adapter->msix_entries,
562 numvecs);
563 if (err == 0)
564 goto out;
565
566 igb_reset_interrupt_capability(adapter);
567
568 /* If we can't do MSI-X, try MSI */
569 msi_only:
570 adapter->num_rx_queues = 1;
571 adapter->num_tx_queues = 1;
572 if (!pci_enable_msi(adapter->pdev))
573 adapter->flags |= IGB_FLAG_HAS_MSI;
574 out:
575 /* Notify the stack of the (possibly) reduced Tx Queue count. */
576 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
577 return;
578 }
579
580 /**
581 * igb_request_irq - initialize interrupts
582 *
583 * Attempts to configure interrupts using the best available
584 * capabilities of the hardware and kernel.
585 **/
586 static int igb_request_irq(struct igb_adapter *adapter)
587 {
588 struct net_device *netdev = adapter->netdev;
589 struct e1000_hw *hw = &adapter->hw;
590 int err = 0;
591
592 if (adapter->msix_entries) {
593 err = igb_request_msix(adapter);
594 if (!err)
595 goto request_done;
596 /* fall back to MSI */
597 igb_reset_interrupt_capability(adapter);
598 if (!pci_enable_msi(adapter->pdev))
599 adapter->flags |= IGB_FLAG_HAS_MSI;
600 igb_free_all_tx_resources(adapter);
601 igb_free_all_rx_resources(adapter);
602 adapter->num_rx_queues = 1;
603 igb_alloc_queues(adapter);
604 } else {
605 switch (hw->mac.type) {
606 case e1000_82575:
607 wr32(E1000_MSIXBM(0),
608 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
609 break;
610 case e1000_82576:
611 wr32(E1000_IVAR0, E1000_IVAR_VALID);
612 break;
613 default:
614 break;
615 }
616 }
617
618 if (adapter->flags & IGB_FLAG_HAS_MSI) {
619 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
620 netdev->name, netdev);
621 if (!err)
622 goto request_done;
623 /* fall back to legacy interrupts */
624 igb_reset_interrupt_capability(adapter);
625 adapter->flags &= ~IGB_FLAG_HAS_MSI;
626 }
627
628 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
629 netdev->name, netdev);
630
631 if (err)
632 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
633 err);
634
635 request_done:
636 return err;
637 }
638
639 static void igb_free_irq(struct igb_adapter *adapter)
640 {
641 struct net_device *netdev = adapter->netdev;
642
643 if (adapter->msix_entries) {
644 int vector = 0, i;
645
646 for (i = 0; i < adapter->num_tx_queues; i++)
647 free_irq(adapter->msix_entries[vector++].vector,
648 &(adapter->tx_ring[i]));
649 for (i = 0; i < adapter->num_rx_queues; i++)
650 free_irq(adapter->msix_entries[vector++].vector,
651 &(adapter->rx_ring[i]));
652
653 free_irq(adapter->msix_entries[vector++].vector, netdev);
654 return;
655 }
656
657 free_irq(adapter->pdev->irq, netdev);
658 }
659
660 /**
661 * igb_irq_disable - Mask off interrupt generation on the NIC
662 * @adapter: board private structure
663 **/
664 static void igb_irq_disable(struct igb_adapter *adapter)
665 {
666 struct e1000_hw *hw = &adapter->hw;
667
668 if (adapter->msix_entries) {
669 wr32(E1000_EIAM, 0);
670 wr32(E1000_EIMC, ~0);
671 wr32(E1000_EIAC, 0);
672 }
673
674 wr32(E1000_IAM, 0);
675 wr32(E1000_IMC, ~0);
676 wrfl();
677 synchronize_irq(adapter->pdev->irq);
678 }
679
680 /**
681 * igb_irq_enable - Enable default interrupt generation settings
682 * @adapter: board private structure
683 **/
684 static void igb_irq_enable(struct igb_adapter *adapter)
685 {
686 struct e1000_hw *hw = &adapter->hw;
687
688 if (adapter->msix_entries) {
689 wr32(E1000_EIAC, adapter->eims_enable_mask);
690 wr32(E1000_EIAM, adapter->eims_enable_mask);
691 wr32(E1000_EIMS, adapter->eims_enable_mask);
692 wr32(E1000_IMS, E1000_IMS_LSC);
693 } else {
694 wr32(E1000_IMS, IMS_ENABLE_MASK);
695 wr32(E1000_IAM, IMS_ENABLE_MASK);
696 }
697 }
698
699 static void igb_update_mng_vlan(struct igb_adapter *adapter)
700 {
701 struct net_device *netdev = adapter->netdev;
702 u16 vid = adapter->hw.mng_cookie.vlan_id;
703 u16 old_vid = adapter->mng_vlan_id;
704 if (adapter->vlgrp) {
705 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
706 if (adapter->hw.mng_cookie.status &
707 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
708 igb_vlan_rx_add_vid(netdev, vid);
709 adapter->mng_vlan_id = vid;
710 } else
711 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
712
713 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
714 (vid != old_vid) &&
715 !vlan_group_get_device(adapter->vlgrp, old_vid))
716 igb_vlan_rx_kill_vid(netdev, old_vid);
717 } else
718 adapter->mng_vlan_id = vid;
719 }
720 }
721
722 /**
723 * igb_release_hw_control - release control of the h/w to f/w
724 * @adapter: address of board private structure
725 *
726 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
727 * For ASF and Pass Through versions of f/w this means that the
728 * driver is no longer loaded.
729 *
730 **/
731 static void igb_release_hw_control(struct igb_adapter *adapter)
732 {
733 struct e1000_hw *hw = &adapter->hw;
734 u32 ctrl_ext;
735
736 /* Let firmware take over control of h/w */
737 ctrl_ext = rd32(E1000_CTRL_EXT);
738 wr32(E1000_CTRL_EXT,
739 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
740 }
741
742
743 /**
744 * igb_get_hw_control - get control of the h/w from f/w
745 * @adapter: address of board private structure
746 *
747 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
748 * For ASF and Pass Through versions of f/w this means that
749 * the driver is loaded.
750 *
751 **/
752 static void igb_get_hw_control(struct igb_adapter *adapter)
753 {
754 struct e1000_hw *hw = &adapter->hw;
755 u32 ctrl_ext;
756
757 /* Let firmware know the driver has taken over */
758 ctrl_ext = rd32(E1000_CTRL_EXT);
759 wr32(E1000_CTRL_EXT,
760 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
761 }
762
763 /**
764 * igb_configure - configure the hardware for RX and TX
765 * @adapter: private board structure
766 **/
767 static void igb_configure(struct igb_adapter *adapter)
768 {
769 struct net_device *netdev = adapter->netdev;
770 int i;
771
772 igb_get_hw_control(adapter);
773 igb_set_multi(netdev);
774
775 igb_restore_vlan(adapter);
776
777 igb_configure_tx(adapter);
778 igb_setup_rctl(adapter);
779 igb_configure_rx(adapter);
780
781 igb_rx_fifo_flush_82575(&adapter->hw);
782
783 /* call IGB_DESC_UNUSED which always leaves
784 * at least 1 descriptor unused to make sure
785 * next_to_use != next_to_clean */
786 for (i = 0; i < adapter->num_rx_queues; i++) {
787 struct igb_ring *ring = &adapter->rx_ring[i];
788 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
789 }
790
791
792 adapter->tx_queue_len = netdev->tx_queue_len;
793 }
794
795
796 /**
797 * igb_up - Open the interface and prepare it to handle traffic
798 * @adapter: board private structure
799 **/
800
801 int igb_up(struct igb_adapter *adapter)
802 {
803 struct e1000_hw *hw = &adapter->hw;
804 int i;
805
806 /* hardware has been reset, we need to reload some things */
807 igb_configure(adapter);
808
809 clear_bit(__IGB_DOWN, &adapter->state);
810
811 for (i = 0; i < adapter->num_rx_queues; i++)
812 napi_enable(&adapter->rx_ring[i].napi);
813 if (adapter->msix_entries)
814 igb_configure_msix(adapter);
815
816 /* Clear any pending interrupts. */
817 rd32(E1000_ICR);
818 igb_irq_enable(adapter);
819
820 /* Fire a link change interrupt to start the watchdog. */
821 wr32(E1000_ICS, E1000_ICS_LSC);
822 return 0;
823 }
824
825 void igb_down(struct igb_adapter *adapter)
826 {
827 struct e1000_hw *hw = &adapter->hw;
828 struct net_device *netdev = adapter->netdev;
829 u32 tctl, rctl;
830 int i;
831
832 /* signal that we're down so the interrupt handler does not
833 * reschedule our watchdog timer */
834 set_bit(__IGB_DOWN, &adapter->state);
835
836 /* disable receives in the hardware */
837 rctl = rd32(E1000_RCTL);
838 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
839 /* flush and sleep below */
840
841 netif_tx_stop_all_queues(netdev);
842
843 /* disable transmits in the hardware */
844 tctl = rd32(E1000_TCTL);
845 tctl &= ~E1000_TCTL_EN;
846 wr32(E1000_TCTL, tctl);
847 /* flush both disables and wait for them to finish */
848 wrfl();
849 msleep(10);
850
851 for (i = 0; i < adapter->num_rx_queues; i++)
852 napi_disable(&adapter->rx_ring[i].napi);
853
854 igb_irq_disable(adapter);
855
856 del_timer_sync(&adapter->watchdog_timer);
857 del_timer_sync(&adapter->phy_info_timer);
858
859 netdev->tx_queue_len = adapter->tx_queue_len;
860 netif_carrier_off(netdev);
861 adapter->link_speed = 0;
862 adapter->link_duplex = 0;
863
864 if (!pci_channel_offline(adapter->pdev))
865 igb_reset(adapter);
866 igb_clean_all_tx_rings(adapter);
867 igb_clean_all_rx_rings(adapter);
868 }
869
870 void igb_reinit_locked(struct igb_adapter *adapter)
871 {
872 WARN_ON(in_interrupt());
873 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
874 msleep(1);
875 igb_down(adapter);
876 igb_up(adapter);
877 clear_bit(__IGB_RESETTING, &adapter->state);
878 }
879
880 void igb_reset(struct igb_adapter *adapter)
881 {
882 struct e1000_hw *hw = &adapter->hw;
883 struct e1000_mac_info *mac = &hw->mac;
884 struct e1000_fc_info *fc = &hw->fc;
885 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
886 u16 hwm;
887
888 /* Repartition Pba for greater than 9k mtu
889 * To take effect CTRL.RST is required.
890 */
891 if (mac->type != e1000_82576) {
892 pba = E1000_PBA_34K;
893 }
894 else {
895 pba = E1000_PBA_64K;
896 }
897
898 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
899 (mac->type < e1000_82576)) {
900 /* adjust PBA for jumbo frames */
901 wr32(E1000_PBA, pba);
902
903 /* To maintain wire speed transmits, the Tx FIFO should be
904 * large enough to accommodate two full transmit packets,
905 * rounded up to the next 1KB and expressed in KB. Likewise,
906 * the Rx FIFO should be large enough to accommodate at least
907 * one full receive packet and is similarly rounded up and
908 * expressed in KB. */
909 pba = rd32(E1000_PBA);
910 /* upper 16 bits has Tx packet buffer allocation size in KB */
911 tx_space = pba >> 16;
912 /* lower 16 bits has Rx packet buffer allocation size in KB */
913 pba &= 0xffff;
914 /* the tx fifo also stores 16 bytes of information about the tx
915 * but don't include ethernet FCS because hardware appends it */
916 min_tx_space = (adapter->max_frame_size +
917 sizeof(struct e1000_tx_desc) -
918 ETH_FCS_LEN) * 2;
919 min_tx_space = ALIGN(min_tx_space, 1024);
920 min_tx_space >>= 10;
921 /* software strips receive CRC, so leave room for it */
922 min_rx_space = adapter->max_frame_size;
923 min_rx_space = ALIGN(min_rx_space, 1024);
924 min_rx_space >>= 10;
925
926 /* If current Tx allocation is less than the min Tx FIFO size,
927 * and the min Tx FIFO size is less than the current Rx FIFO
928 * allocation, take space away from current Rx allocation */
929 if (tx_space < min_tx_space &&
930 ((min_tx_space - tx_space) < pba)) {
931 pba = pba - (min_tx_space - tx_space);
932
933 /* if short on rx space, rx wins and must trump tx
934 * adjustment */
935 if (pba < min_rx_space)
936 pba = min_rx_space;
937 }
938 wr32(E1000_PBA, pba);
939 }
940
941 /* flow control settings */
942 /* The high water mark must be low enough to fit one full frame
943 * (or the size used for early receive) above it in the Rx FIFO.
944 * Set it to the lower of:
945 * - 90% of the Rx FIFO size, or
946 * - the full Rx FIFO size minus one full frame */
947 hwm = min(((pba << 10) * 9 / 10),
948 ((pba << 10) - 2 * adapter->max_frame_size));
949
950 if (mac->type < e1000_82576) {
951 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
952 fc->low_water = fc->high_water - 8;
953 } else {
954 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
955 fc->low_water = fc->high_water - 16;
956 }
957 fc->pause_time = 0xFFFF;
958 fc->send_xon = 1;
959 fc->type = fc->original_type;
960
961 /* Allow time for pending master requests to run */
962 adapter->hw.mac.ops.reset_hw(&adapter->hw);
963 wr32(E1000_WUC, 0);
964
965 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
966 dev_err(&adapter->pdev->dev, "Hardware Error\n");
967
968 igb_update_mng_vlan(adapter);
969
970 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
971 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
972
973 igb_reset_adaptive(&adapter->hw);
974 igb_get_phy_info(&adapter->hw);
975 }
976
977 static const struct net_device_ops igb_netdev_ops = {
978 .ndo_open = igb_open,
979 .ndo_stop = igb_close,
980 .ndo_start_xmit = igb_xmit_frame_adv,
981 .ndo_get_stats = igb_get_stats,
982 .ndo_set_multicast_list = igb_set_multi,
983 .ndo_set_mac_address = igb_set_mac,
984 .ndo_change_mtu = igb_change_mtu,
985 .ndo_do_ioctl = igb_ioctl,
986 .ndo_tx_timeout = igb_tx_timeout,
987 .ndo_validate_addr = eth_validate_addr,
988 .ndo_vlan_rx_register = igb_vlan_rx_register,
989 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
990 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
991 #ifdef CONFIG_NET_POLL_CONTROLLER
992 .ndo_poll_controller = igb_netpoll,
993 #endif
994 };
995
996 /**
997 * igb_probe - Device Initialization Routine
998 * @pdev: PCI device information struct
999 * @ent: entry in igb_pci_tbl
1000 *
1001 * Returns 0 on success, negative on failure
1002 *
1003 * igb_probe initializes an adapter identified by a pci_dev structure.
1004 * The OS initialization, configuring of the adapter private structure,
1005 * and a hardware reset occur.
1006 **/
1007 static int __devinit igb_probe(struct pci_dev *pdev,
1008 const struct pci_device_id *ent)
1009 {
1010 struct net_device *netdev;
1011 struct igb_adapter *adapter;
1012 struct e1000_hw *hw;
1013 struct pci_dev *us_dev;
1014 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1015 unsigned long mmio_start, mmio_len;
1016 int i, err, pci_using_dac, pos;
1017 u16 eeprom_data = 0, state = 0;
1018 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1019 u32 part_num;
1020
1021 err = pci_enable_device_mem(pdev);
1022 if (err)
1023 return err;
1024
1025 pci_using_dac = 0;
1026 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1027 if (!err) {
1028 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1029 if (!err)
1030 pci_using_dac = 1;
1031 } else {
1032 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1033 if (err) {
1034 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1035 if (err) {
1036 dev_err(&pdev->dev, "No usable DMA "
1037 "configuration, aborting\n");
1038 goto err_dma;
1039 }
1040 }
1041 }
1042
1043 /* 82575 requires that the pci-e link partner disable the L0s state */
1044 switch (pdev->device) {
1045 case E1000_DEV_ID_82575EB_COPPER:
1046 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1047 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1048 us_dev = pdev->bus->self;
1049 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1050 if (pos) {
1051 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1052 &state);
1053 state &= ~PCIE_LINK_STATE_L0S;
1054 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1055 state);
1056 dev_info(&pdev->dev,
1057 "Disabling ASPM L0s upstream switch port %s\n",
1058 pci_name(us_dev));
1059 }
1060 default:
1061 break;
1062 }
1063
1064 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1065 IORESOURCE_MEM),
1066 igb_driver_name);
1067 if (err)
1068 goto err_pci_reg;
1069
1070 err = pci_enable_pcie_error_reporting(pdev);
1071 if (err) {
1072 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1073 "0x%x\n", err);
1074 /* non-fatal, continue */
1075 }
1076
1077 pci_set_master(pdev);
1078 pci_save_state(pdev);
1079
1080 err = -ENOMEM;
1081 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1082 if (!netdev)
1083 goto err_alloc_etherdev;
1084
1085 SET_NETDEV_DEV(netdev, &pdev->dev);
1086
1087 pci_set_drvdata(pdev, netdev);
1088 adapter = netdev_priv(netdev);
1089 adapter->netdev = netdev;
1090 adapter->pdev = pdev;
1091 hw = &adapter->hw;
1092 hw->back = adapter;
1093 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1094
1095 mmio_start = pci_resource_start(pdev, 0);
1096 mmio_len = pci_resource_len(pdev, 0);
1097
1098 err = -EIO;
1099 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1100 if (!adapter->hw.hw_addr)
1101 goto err_ioremap;
1102
1103 netdev->netdev_ops = &igb_netdev_ops;
1104 igb_set_ethtool_ops(netdev);
1105 netdev->watchdog_timeo = 5 * HZ;
1106
1107 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1108
1109 netdev->mem_start = mmio_start;
1110 netdev->mem_end = mmio_start + mmio_len;
1111
1112 /* PCI config space info */
1113 hw->vendor_id = pdev->vendor;
1114 hw->device_id = pdev->device;
1115 hw->revision_id = pdev->revision;
1116 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1117 hw->subsystem_device_id = pdev->subsystem_device;
1118
1119 /* setup the private structure */
1120 hw->back = adapter;
1121 /* Copy the default MAC, PHY and NVM function pointers */
1122 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1123 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1124 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1125 /* Initialize skew-specific constants */
1126 err = ei->get_invariants(hw);
1127 if (err)
1128 goto err_hw_init;
1129
1130 err = igb_sw_init(adapter);
1131 if (err)
1132 goto err_sw_init;
1133
1134 igb_get_bus_info_pcie(hw);
1135
1136 /* set flags */
1137 switch (hw->mac.type) {
1138 case e1000_82575:
1139 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1140 break;
1141 case e1000_82576:
1142 default:
1143 break;
1144 }
1145
1146 hw->phy.autoneg_wait_to_complete = false;
1147 hw->mac.adaptive_ifs = true;
1148
1149 /* Copper options */
1150 if (hw->phy.media_type == e1000_media_type_copper) {
1151 hw->phy.mdix = AUTO_ALL_MODES;
1152 hw->phy.disable_polarity_correction = false;
1153 hw->phy.ms_type = e1000_ms_hw_default;
1154 }
1155
1156 if (igb_check_reset_block(hw))
1157 dev_info(&pdev->dev,
1158 "PHY reset is blocked due to SOL/IDER session.\n");
1159
1160 netdev->features = NETIF_F_SG |
1161 NETIF_F_HW_CSUM |
1162 NETIF_F_HW_VLAN_TX |
1163 NETIF_F_HW_VLAN_RX |
1164 NETIF_F_HW_VLAN_FILTER;
1165
1166 netdev->features |= NETIF_F_TSO;
1167 netdev->features |= NETIF_F_TSO6;
1168
1169 #ifdef CONFIG_IGB_LRO
1170 netdev->features |= NETIF_F_GRO;
1171 #endif
1172
1173 netdev->vlan_features |= NETIF_F_TSO;
1174 netdev->vlan_features |= NETIF_F_TSO6;
1175 netdev->vlan_features |= NETIF_F_HW_CSUM;
1176 netdev->vlan_features |= NETIF_F_SG;
1177
1178 if (pci_using_dac)
1179 netdev->features |= NETIF_F_HIGHDMA;
1180
1181 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1182
1183 /* before reading the NVM, reset the controller to put the device in a
1184 * known good starting state */
1185 hw->mac.ops.reset_hw(hw);
1186
1187 /* make sure the NVM is good */
1188 if (igb_validate_nvm_checksum(hw) < 0) {
1189 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1190 err = -EIO;
1191 goto err_eeprom;
1192 }
1193
1194 /* copy the MAC address out of the NVM */
1195 if (hw->mac.ops.read_mac_addr(hw))
1196 dev_err(&pdev->dev, "NVM Read Error\n");
1197
1198 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1199 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1200
1201 if (!is_valid_ether_addr(netdev->perm_addr)) {
1202 dev_err(&pdev->dev, "Invalid MAC Address\n");
1203 err = -EIO;
1204 goto err_eeprom;
1205 }
1206
1207 init_timer(&adapter->watchdog_timer);
1208 adapter->watchdog_timer.function = &igb_watchdog;
1209 adapter->watchdog_timer.data = (unsigned long) adapter;
1210
1211 init_timer(&adapter->phy_info_timer);
1212 adapter->phy_info_timer.function = &igb_update_phy_info;
1213 adapter->phy_info_timer.data = (unsigned long) adapter;
1214
1215 INIT_WORK(&adapter->reset_task, igb_reset_task);
1216 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1217
1218 /* Initialize link & ring properties that are user-changeable */
1219 adapter->tx_ring->count = 256;
1220 for (i = 0; i < adapter->num_tx_queues; i++)
1221 adapter->tx_ring[i].count = adapter->tx_ring->count;
1222 adapter->rx_ring->count = 256;
1223 for (i = 0; i < adapter->num_rx_queues; i++)
1224 adapter->rx_ring[i].count = adapter->rx_ring->count;
1225
1226 adapter->fc_autoneg = true;
1227 hw->mac.autoneg = true;
1228 hw->phy.autoneg_advertised = 0x2f;
1229
1230 hw->fc.original_type = e1000_fc_default;
1231 hw->fc.type = e1000_fc_default;
1232
1233 adapter->itr_setting = 3;
1234 adapter->itr = IGB_START_ITR;
1235
1236 igb_validate_mdi_setting(hw);
1237
1238 adapter->rx_csum = 1;
1239
1240 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1241 * enable the ACPI Magic Packet filter
1242 */
1243
1244 if (hw->bus.func == 0 ||
1245 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1246 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1247 &eeprom_data);
1248
1249 if (eeprom_data & eeprom_apme_mask)
1250 adapter->eeprom_wol |= E1000_WUFC_MAG;
1251
1252 /* now that we have the eeprom settings, apply the special cases where
1253 * the eeprom may be wrong or the board simply won't support wake on
1254 * lan on a particular port */
1255 switch (pdev->device) {
1256 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1257 adapter->eeprom_wol = 0;
1258 break;
1259 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1260 case E1000_DEV_ID_82576_FIBER:
1261 case E1000_DEV_ID_82576_SERDES:
1262 /* Wake events only supported on port A for dual fiber
1263 * regardless of eeprom setting */
1264 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1265 adapter->eeprom_wol = 0;
1266 break;
1267 }
1268
1269 /* initialize the wol settings based on the eeprom settings */
1270 adapter->wol = adapter->eeprom_wol;
1271 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1272
1273 /* reset the hardware with the new settings */
1274 igb_reset(adapter);
1275
1276 /* let the f/w know that the h/w is now under the control of the
1277 * driver. */
1278 igb_get_hw_control(adapter);
1279
1280 /* tell the stack to leave us alone until igb_open() is called */
1281 netif_carrier_off(netdev);
1282 netif_tx_stop_all_queues(netdev);
1283
1284 strcpy(netdev->name, "eth%d");
1285 err = register_netdev(netdev);
1286 if (err)
1287 goto err_register;
1288
1289 #ifdef CONFIG_IGB_DCA
1290 if (dca_add_requester(&pdev->dev) == 0) {
1291 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1292 dev_info(&pdev->dev, "DCA enabled\n");
1293 /* Always use CB2 mode, difference is masked
1294 * in the CB driver. */
1295 wr32(E1000_DCA_CTRL, 2);
1296 igb_setup_dca(adapter);
1297 }
1298 #endif
1299
1300 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1301 /* print bus type/speed/width info */
1302 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1303 netdev->name,
1304 ((hw->bus.speed == e1000_bus_speed_2500)
1305 ? "2.5Gb/s" : "unknown"),
1306 ((hw->bus.width == e1000_bus_width_pcie_x4)
1307 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1308 ? "Width x1" : "unknown"),
1309 netdev->dev_addr);
1310
1311 igb_read_part_num(hw, &part_num);
1312 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1313 (part_num >> 8), (part_num & 0xff));
1314
1315 dev_info(&pdev->dev,
1316 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1317 adapter->msix_entries ? "MSI-X" :
1318 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1319 adapter->num_rx_queues, adapter->num_tx_queues);
1320
1321 return 0;
1322
1323 err_register:
1324 igb_release_hw_control(adapter);
1325 err_eeprom:
1326 if (!igb_check_reset_block(hw))
1327 igb_reset_phy(hw);
1328
1329 if (hw->flash_address)
1330 iounmap(hw->flash_address);
1331
1332 igb_free_queues(adapter);
1333 err_sw_init:
1334 err_hw_init:
1335 iounmap(hw->hw_addr);
1336 err_ioremap:
1337 free_netdev(netdev);
1338 err_alloc_etherdev:
1339 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1340 IORESOURCE_MEM));
1341 err_pci_reg:
1342 err_dma:
1343 pci_disable_device(pdev);
1344 return err;
1345 }
1346
1347 /**
1348 * igb_remove - Device Removal Routine
1349 * @pdev: PCI device information struct
1350 *
1351 * igb_remove is called by the PCI subsystem to alert the driver
1352 * that it should release a PCI device. The could be caused by a
1353 * Hot-Plug event, or because the driver is going to be removed from
1354 * memory.
1355 **/
1356 static void __devexit igb_remove(struct pci_dev *pdev)
1357 {
1358 struct net_device *netdev = pci_get_drvdata(pdev);
1359 struct igb_adapter *adapter = netdev_priv(netdev);
1360 #ifdef CONFIG_IGB_DCA
1361 struct e1000_hw *hw = &adapter->hw;
1362 #endif
1363 int err;
1364
1365 /* flush_scheduled work may reschedule our watchdog task, so
1366 * explicitly disable watchdog tasks from being rescheduled */
1367 set_bit(__IGB_DOWN, &adapter->state);
1368 del_timer_sync(&adapter->watchdog_timer);
1369 del_timer_sync(&adapter->phy_info_timer);
1370
1371 flush_scheduled_work();
1372
1373 #ifdef CONFIG_IGB_DCA
1374 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1375 dev_info(&pdev->dev, "DCA disabled\n");
1376 dca_remove_requester(&pdev->dev);
1377 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1378 wr32(E1000_DCA_CTRL, 1);
1379 }
1380 #endif
1381
1382 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1383 * would have already happened in close and is redundant. */
1384 igb_release_hw_control(adapter);
1385
1386 unregister_netdev(netdev);
1387
1388 if (!igb_check_reset_block(&adapter->hw))
1389 igb_reset_phy(&adapter->hw);
1390
1391 igb_reset_interrupt_capability(adapter);
1392
1393 igb_free_queues(adapter);
1394
1395 iounmap(adapter->hw.hw_addr);
1396 if (adapter->hw.flash_address)
1397 iounmap(adapter->hw.flash_address);
1398 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1399 IORESOURCE_MEM));
1400
1401 free_netdev(netdev);
1402
1403 err = pci_disable_pcie_error_reporting(pdev);
1404 if (err)
1405 dev_err(&pdev->dev,
1406 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1407
1408 pci_disable_device(pdev);
1409 }
1410
1411 /**
1412 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1413 * @adapter: board private structure to initialize
1414 *
1415 * igb_sw_init initializes the Adapter private data structure.
1416 * Fields are initialized based on PCI device information and
1417 * OS network device settings (MTU size).
1418 **/
1419 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1420 {
1421 struct e1000_hw *hw = &adapter->hw;
1422 struct net_device *netdev = adapter->netdev;
1423 struct pci_dev *pdev = adapter->pdev;
1424
1425 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1426
1427 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1428 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1429 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1430 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1431 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1432 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1433
1434 /* This call may decrease the number of queues depending on
1435 * interrupt mode. */
1436 igb_set_interrupt_capability(adapter);
1437
1438 if (igb_alloc_queues(adapter)) {
1439 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1440 return -ENOMEM;
1441 }
1442
1443 /* Explicitly disable IRQ since the NIC can be in any state. */
1444 igb_irq_disable(adapter);
1445
1446 set_bit(__IGB_DOWN, &adapter->state);
1447 return 0;
1448 }
1449
1450 /**
1451 * igb_open - Called when a network interface is made active
1452 * @netdev: network interface device structure
1453 *
1454 * Returns 0 on success, negative value on failure
1455 *
1456 * The open entry point is called when a network interface is made
1457 * active by the system (IFF_UP). At this point all resources needed
1458 * for transmit and receive operations are allocated, the interrupt
1459 * handler is registered with the OS, the watchdog timer is started,
1460 * and the stack is notified that the interface is ready.
1461 **/
1462 static int igb_open(struct net_device *netdev)
1463 {
1464 struct igb_adapter *adapter = netdev_priv(netdev);
1465 struct e1000_hw *hw = &adapter->hw;
1466 int err;
1467 int i;
1468
1469 /* disallow open during test */
1470 if (test_bit(__IGB_TESTING, &adapter->state))
1471 return -EBUSY;
1472
1473 /* allocate transmit descriptors */
1474 err = igb_setup_all_tx_resources(adapter);
1475 if (err)
1476 goto err_setup_tx;
1477
1478 /* allocate receive descriptors */
1479 err = igb_setup_all_rx_resources(adapter);
1480 if (err)
1481 goto err_setup_rx;
1482
1483 /* e1000_power_up_phy(adapter); */
1484
1485 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1486 if ((adapter->hw.mng_cookie.status &
1487 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1488 igb_update_mng_vlan(adapter);
1489
1490 /* before we allocate an interrupt, we must be ready to handle it.
1491 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1492 * as soon as we call pci_request_irq, so we have to setup our
1493 * clean_rx handler before we do so. */
1494 igb_configure(adapter);
1495
1496 err = igb_request_irq(adapter);
1497 if (err)
1498 goto err_req_irq;
1499
1500 /* From here on the code is the same as igb_up() */
1501 clear_bit(__IGB_DOWN, &adapter->state);
1502
1503 for (i = 0; i < adapter->num_rx_queues; i++)
1504 napi_enable(&adapter->rx_ring[i].napi);
1505
1506 /* Clear any pending interrupts. */
1507 rd32(E1000_ICR);
1508
1509 igb_irq_enable(adapter);
1510
1511 netif_tx_start_all_queues(netdev);
1512
1513 /* Fire a link status change interrupt to start the watchdog. */
1514 wr32(E1000_ICS, E1000_ICS_LSC);
1515
1516 return 0;
1517
1518 err_req_irq:
1519 igb_release_hw_control(adapter);
1520 /* e1000_power_down_phy(adapter); */
1521 igb_free_all_rx_resources(adapter);
1522 err_setup_rx:
1523 igb_free_all_tx_resources(adapter);
1524 err_setup_tx:
1525 igb_reset(adapter);
1526
1527 return err;
1528 }
1529
1530 /**
1531 * igb_close - Disables a network interface
1532 * @netdev: network interface device structure
1533 *
1534 * Returns 0, this is not allowed to fail
1535 *
1536 * The close entry point is called when an interface is de-activated
1537 * by the OS. The hardware is still under the driver's control, but
1538 * needs to be disabled. A global MAC reset is issued to stop the
1539 * hardware, and all transmit and receive resources are freed.
1540 **/
1541 static int igb_close(struct net_device *netdev)
1542 {
1543 struct igb_adapter *adapter = netdev_priv(netdev);
1544
1545 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1546 igb_down(adapter);
1547
1548 igb_free_irq(adapter);
1549
1550 igb_free_all_tx_resources(adapter);
1551 igb_free_all_rx_resources(adapter);
1552
1553 /* kill manageability vlan ID if supported, but not if a vlan with
1554 * the same ID is registered on the host OS (let 8021q kill it) */
1555 if ((adapter->hw.mng_cookie.status &
1556 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1557 !(adapter->vlgrp &&
1558 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1559 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1560
1561 return 0;
1562 }
1563
1564 /**
1565 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1566 * @adapter: board private structure
1567 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1568 *
1569 * Return 0 on success, negative on failure
1570 **/
1571
1572 int igb_setup_tx_resources(struct igb_adapter *adapter,
1573 struct igb_ring *tx_ring)
1574 {
1575 struct pci_dev *pdev = adapter->pdev;
1576 int size;
1577
1578 size = sizeof(struct igb_buffer) * tx_ring->count;
1579 tx_ring->buffer_info = vmalloc(size);
1580 if (!tx_ring->buffer_info)
1581 goto err;
1582 memset(tx_ring->buffer_info, 0, size);
1583
1584 /* round up to nearest 4K */
1585 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1586 tx_ring->size = ALIGN(tx_ring->size, 4096);
1587
1588 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1589 &tx_ring->dma);
1590
1591 if (!tx_ring->desc)
1592 goto err;
1593
1594 tx_ring->adapter = adapter;
1595 tx_ring->next_to_use = 0;
1596 tx_ring->next_to_clean = 0;
1597 return 0;
1598
1599 err:
1600 vfree(tx_ring->buffer_info);
1601 dev_err(&adapter->pdev->dev,
1602 "Unable to allocate memory for the transmit descriptor ring\n");
1603 return -ENOMEM;
1604 }
1605
1606 /**
1607 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1608 * (Descriptors) for all queues
1609 * @adapter: board private structure
1610 *
1611 * Return 0 on success, negative on failure
1612 **/
1613 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1614 {
1615 int i, err = 0;
1616 int r_idx;
1617
1618 for (i = 0; i < adapter->num_tx_queues; i++) {
1619 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1620 if (err) {
1621 dev_err(&adapter->pdev->dev,
1622 "Allocation for Tx Queue %u failed\n", i);
1623 for (i--; i >= 0; i--)
1624 igb_free_tx_resources(&adapter->tx_ring[i]);
1625 break;
1626 }
1627 }
1628
1629 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1630 r_idx = i % adapter->num_tx_queues;
1631 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1632 }
1633 return err;
1634 }
1635
1636 /**
1637 * igb_configure_tx - Configure transmit Unit after Reset
1638 * @adapter: board private structure
1639 *
1640 * Configure the Tx unit of the MAC after a reset.
1641 **/
1642 static void igb_configure_tx(struct igb_adapter *adapter)
1643 {
1644 u64 tdba;
1645 struct e1000_hw *hw = &adapter->hw;
1646 u32 tctl;
1647 u32 txdctl, txctrl;
1648 int i, j;
1649
1650 for (i = 0; i < adapter->num_tx_queues; i++) {
1651 struct igb_ring *ring = &(adapter->tx_ring[i]);
1652 j = ring->reg_idx;
1653 wr32(E1000_TDLEN(j),
1654 ring->count * sizeof(struct e1000_tx_desc));
1655 tdba = ring->dma;
1656 wr32(E1000_TDBAL(j),
1657 tdba & 0x00000000ffffffffULL);
1658 wr32(E1000_TDBAH(j), tdba >> 32);
1659
1660 ring->head = E1000_TDH(j);
1661 ring->tail = E1000_TDT(j);
1662 writel(0, hw->hw_addr + ring->tail);
1663 writel(0, hw->hw_addr + ring->head);
1664 txdctl = rd32(E1000_TXDCTL(j));
1665 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1666 wr32(E1000_TXDCTL(j), txdctl);
1667
1668 /* Turn off Relaxed Ordering on head write-backs. The
1669 * writebacks MUST be delivered in order or it will
1670 * completely screw up our bookeeping.
1671 */
1672 txctrl = rd32(E1000_DCA_TXCTRL(j));
1673 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1674 wr32(E1000_DCA_TXCTRL(j), txctrl);
1675 }
1676
1677
1678
1679 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1680
1681 /* Program the Transmit Control Register */
1682
1683 tctl = rd32(E1000_TCTL);
1684 tctl &= ~E1000_TCTL_CT;
1685 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1686 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1687
1688 igb_config_collision_dist(hw);
1689
1690 /* Setup Transmit Descriptor Settings for eop descriptor */
1691 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1692
1693 /* Enable transmits */
1694 tctl |= E1000_TCTL_EN;
1695
1696 wr32(E1000_TCTL, tctl);
1697 }
1698
1699 /**
1700 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1701 * @adapter: board private structure
1702 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1703 *
1704 * Returns 0 on success, negative on failure
1705 **/
1706
1707 int igb_setup_rx_resources(struct igb_adapter *adapter,
1708 struct igb_ring *rx_ring)
1709 {
1710 struct pci_dev *pdev = adapter->pdev;
1711 int size, desc_len;
1712
1713 size = sizeof(struct igb_buffer) * rx_ring->count;
1714 rx_ring->buffer_info = vmalloc(size);
1715 if (!rx_ring->buffer_info)
1716 goto err;
1717 memset(rx_ring->buffer_info, 0, size);
1718
1719 desc_len = sizeof(union e1000_adv_rx_desc);
1720
1721 /* Round up to nearest 4K */
1722 rx_ring->size = rx_ring->count * desc_len;
1723 rx_ring->size = ALIGN(rx_ring->size, 4096);
1724
1725 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1726 &rx_ring->dma);
1727
1728 if (!rx_ring->desc)
1729 goto err;
1730
1731 rx_ring->next_to_clean = 0;
1732 rx_ring->next_to_use = 0;
1733
1734 rx_ring->adapter = adapter;
1735
1736 return 0;
1737
1738 err:
1739 vfree(rx_ring->buffer_info);
1740 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1741 "the receive descriptor ring\n");
1742 return -ENOMEM;
1743 }
1744
1745 /**
1746 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1747 * (Descriptors) for all queues
1748 * @adapter: board private structure
1749 *
1750 * Return 0 on success, negative on failure
1751 **/
1752 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1753 {
1754 int i, err = 0;
1755
1756 for (i = 0; i < adapter->num_rx_queues; i++) {
1757 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1758 if (err) {
1759 dev_err(&adapter->pdev->dev,
1760 "Allocation for Rx Queue %u failed\n", i);
1761 for (i--; i >= 0; i--)
1762 igb_free_rx_resources(&adapter->rx_ring[i]);
1763 break;
1764 }
1765 }
1766
1767 return err;
1768 }
1769
1770 /**
1771 * igb_setup_rctl - configure the receive control registers
1772 * @adapter: Board private structure
1773 **/
1774 static void igb_setup_rctl(struct igb_adapter *adapter)
1775 {
1776 struct e1000_hw *hw = &adapter->hw;
1777 u32 rctl;
1778 u32 srrctl = 0;
1779 int i, j;
1780
1781 rctl = rd32(E1000_RCTL);
1782
1783 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1784 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1785
1786 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1787 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1788
1789 /*
1790 * enable stripping of CRC. It's unlikely this will break BMC
1791 * redirection as it did with e1000. Newer features require
1792 * that the HW strips the CRC.
1793 */
1794 rctl |= E1000_RCTL_SECRC;
1795
1796 /*
1797 * disable store bad packets and clear size bits.
1798 */
1799 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1800
1801 /* enable LPE when to prevent packets larger than max_frame_size */
1802 rctl |= E1000_RCTL_LPE;
1803
1804 /* Setup buffer sizes */
1805 switch (adapter->rx_buffer_len) {
1806 case IGB_RXBUFFER_256:
1807 rctl |= E1000_RCTL_SZ_256;
1808 break;
1809 case IGB_RXBUFFER_512:
1810 rctl |= E1000_RCTL_SZ_512;
1811 break;
1812 default:
1813 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1814 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1815 break;
1816 }
1817
1818 /* 82575 and greater support packet-split where the protocol
1819 * header is placed in skb->data and the packet data is
1820 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1821 * In the case of a non-split, skb->data is linearly filled,
1822 * followed by the page buffers. Therefore, skb->data is
1823 * sized to hold the largest protocol header.
1824 */
1825 /* allocations using alloc_page take too long for regular MTU
1826 * so only enable packet split for jumbo frames */
1827 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1828 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1829 srrctl |= adapter->rx_ps_hdr_size <<
1830 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1831 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1832 } else {
1833 adapter->rx_ps_hdr_size = 0;
1834 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1835 }
1836
1837 for (i = 0; i < adapter->num_rx_queues; i++) {
1838 j = adapter->rx_ring[i].reg_idx;
1839 wr32(E1000_SRRCTL(j), srrctl);
1840 }
1841
1842 wr32(E1000_RCTL, rctl);
1843 }
1844
1845 /**
1846 * igb_configure_rx - Configure receive Unit after Reset
1847 * @adapter: board private structure
1848 *
1849 * Configure the Rx unit of the MAC after a reset.
1850 **/
1851 static void igb_configure_rx(struct igb_adapter *adapter)
1852 {
1853 u64 rdba;
1854 struct e1000_hw *hw = &adapter->hw;
1855 u32 rctl, rxcsum;
1856 u32 rxdctl;
1857 int i, j;
1858
1859 /* disable receives while setting up the descriptors */
1860 rctl = rd32(E1000_RCTL);
1861 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1862 wrfl();
1863 mdelay(10);
1864
1865 if (adapter->itr_setting > 3)
1866 wr32(E1000_ITR, adapter->itr);
1867
1868 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1869 * the Base and Length of the Rx Descriptor Ring */
1870 for (i = 0; i < adapter->num_rx_queues; i++) {
1871 struct igb_ring *ring = &(adapter->rx_ring[i]);
1872 j = ring->reg_idx;
1873 rdba = ring->dma;
1874 wr32(E1000_RDBAL(j),
1875 rdba & 0x00000000ffffffffULL);
1876 wr32(E1000_RDBAH(j), rdba >> 32);
1877 wr32(E1000_RDLEN(j),
1878 ring->count * sizeof(union e1000_adv_rx_desc));
1879
1880 ring->head = E1000_RDH(j);
1881 ring->tail = E1000_RDT(j);
1882 writel(0, hw->hw_addr + ring->tail);
1883 writel(0, hw->hw_addr + ring->head);
1884
1885 rxdctl = rd32(E1000_RXDCTL(j));
1886 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1887 rxdctl &= 0xFFF00000;
1888 rxdctl |= IGB_RX_PTHRESH;
1889 rxdctl |= IGB_RX_HTHRESH << 8;
1890 rxdctl |= IGB_RX_WTHRESH << 16;
1891 wr32(E1000_RXDCTL(j), rxdctl);
1892 }
1893
1894 if (adapter->num_rx_queues > 1) {
1895 u32 random[10];
1896 u32 mrqc;
1897 u32 j, shift;
1898 union e1000_reta {
1899 u32 dword;
1900 u8 bytes[4];
1901 } reta;
1902
1903 get_random_bytes(&random[0], 40);
1904
1905 if (hw->mac.type >= e1000_82576)
1906 shift = 0;
1907 else
1908 shift = 6;
1909 for (j = 0; j < (32 * 4); j++) {
1910 reta.bytes[j & 3] =
1911 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1912 if ((j & 3) == 3)
1913 writel(reta.dword,
1914 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1915 }
1916 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1917
1918 /* Fill out hash function seeds */
1919 for (j = 0; j < 10; j++)
1920 array_wr32(E1000_RSSRK(0), j, random[j]);
1921
1922 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1923 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1924 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1925 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1926 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1927 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1928 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1929 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1930
1931
1932 wr32(E1000_MRQC, mrqc);
1933
1934 /* Multiqueue and raw packet checksumming are mutually
1935 * exclusive. Note that this not the same as TCP/IP
1936 * checksumming, which works fine. */
1937 rxcsum = rd32(E1000_RXCSUM);
1938 rxcsum |= E1000_RXCSUM_PCSD;
1939 wr32(E1000_RXCSUM, rxcsum);
1940 } else {
1941 /* Enable Receive Checksum Offload for TCP and UDP */
1942 rxcsum = rd32(E1000_RXCSUM);
1943 if (adapter->rx_csum) {
1944 rxcsum |= E1000_RXCSUM_TUOFL;
1945
1946 /* Enable IPv4 payload checksum for UDP fragments
1947 * Must be used in conjunction with packet-split. */
1948 if (adapter->rx_ps_hdr_size)
1949 rxcsum |= E1000_RXCSUM_IPPCSE;
1950 } else {
1951 rxcsum &= ~E1000_RXCSUM_TUOFL;
1952 /* don't need to clear IPPCSE as it defaults to 0 */
1953 }
1954 wr32(E1000_RXCSUM, rxcsum);
1955 }
1956
1957 if (adapter->vlgrp)
1958 wr32(E1000_RLPML,
1959 adapter->max_frame_size + VLAN_TAG_SIZE);
1960 else
1961 wr32(E1000_RLPML, adapter->max_frame_size);
1962
1963 /* Enable Receives */
1964 wr32(E1000_RCTL, rctl);
1965 }
1966
1967 /**
1968 * igb_free_tx_resources - Free Tx Resources per Queue
1969 * @tx_ring: Tx descriptor ring for a specific queue
1970 *
1971 * Free all transmit software resources
1972 **/
1973 void igb_free_tx_resources(struct igb_ring *tx_ring)
1974 {
1975 struct pci_dev *pdev = tx_ring->adapter->pdev;
1976
1977 igb_clean_tx_ring(tx_ring);
1978
1979 vfree(tx_ring->buffer_info);
1980 tx_ring->buffer_info = NULL;
1981
1982 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1983
1984 tx_ring->desc = NULL;
1985 }
1986
1987 /**
1988 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1989 * @adapter: board private structure
1990 *
1991 * Free all transmit software resources
1992 **/
1993 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1994 {
1995 int i;
1996
1997 for (i = 0; i < adapter->num_tx_queues; i++)
1998 igb_free_tx_resources(&adapter->tx_ring[i]);
1999 }
2000
2001 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2002 struct igb_buffer *buffer_info)
2003 {
2004 if (buffer_info->dma) {
2005 pci_unmap_page(adapter->pdev,
2006 buffer_info->dma,
2007 buffer_info->length,
2008 PCI_DMA_TODEVICE);
2009 buffer_info->dma = 0;
2010 }
2011 if (buffer_info->skb) {
2012 dev_kfree_skb_any(buffer_info->skb);
2013 buffer_info->skb = NULL;
2014 }
2015 buffer_info->time_stamp = 0;
2016 /* buffer_info must be completely set up in the transmit path */
2017 }
2018
2019 /**
2020 * igb_clean_tx_ring - Free Tx Buffers
2021 * @tx_ring: ring to be cleaned
2022 **/
2023 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2024 {
2025 struct igb_adapter *adapter = tx_ring->adapter;
2026 struct igb_buffer *buffer_info;
2027 unsigned long size;
2028 unsigned int i;
2029
2030 if (!tx_ring->buffer_info)
2031 return;
2032 /* Free all the Tx ring sk_buffs */
2033
2034 for (i = 0; i < tx_ring->count; i++) {
2035 buffer_info = &tx_ring->buffer_info[i];
2036 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2037 }
2038
2039 size = sizeof(struct igb_buffer) * tx_ring->count;
2040 memset(tx_ring->buffer_info, 0, size);
2041
2042 /* Zero out the descriptor ring */
2043
2044 memset(tx_ring->desc, 0, tx_ring->size);
2045
2046 tx_ring->next_to_use = 0;
2047 tx_ring->next_to_clean = 0;
2048
2049 writel(0, adapter->hw.hw_addr + tx_ring->head);
2050 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2051 }
2052
2053 /**
2054 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2055 * @adapter: board private structure
2056 **/
2057 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2058 {
2059 int i;
2060
2061 for (i = 0; i < adapter->num_tx_queues; i++)
2062 igb_clean_tx_ring(&adapter->tx_ring[i]);
2063 }
2064
2065 /**
2066 * igb_free_rx_resources - Free Rx Resources
2067 * @rx_ring: ring to clean the resources from
2068 *
2069 * Free all receive software resources
2070 **/
2071 void igb_free_rx_resources(struct igb_ring *rx_ring)
2072 {
2073 struct pci_dev *pdev = rx_ring->adapter->pdev;
2074
2075 igb_clean_rx_ring(rx_ring);
2076
2077 vfree(rx_ring->buffer_info);
2078 rx_ring->buffer_info = NULL;
2079
2080 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2081
2082 rx_ring->desc = NULL;
2083 }
2084
2085 /**
2086 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2087 * @adapter: board private structure
2088 *
2089 * Free all receive software resources
2090 **/
2091 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2092 {
2093 int i;
2094
2095 for (i = 0; i < adapter->num_rx_queues; i++)
2096 igb_free_rx_resources(&adapter->rx_ring[i]);
2097 }
2098
2099 /**
2100 * igb_clean_rx_ring - Free Rx Buffers per Queue
2101 * @rx_ring: ring to free buffers from
2102 **/
2103 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2104 {
2105 struct igb_adapter *adapter = rx_ring->adapter;
2106 struct igb_buffer *buffer_info;
2107 struct pci_dev *pdev = adapter->pdev;
2108 unsigned long size;
2109 unsigned int i;
2110
2111 if (!rx_ring->buffer_info)
2112 return;
2113 /* Free all the Rx ring sk_buffs */
2114 for (i = 0; i < rx_ring->count; i++) {
2115 buffer_info = &rx_ring->buffer_info[i];
2116 if (buffer_info->dma) {
2117 if (adapter->rx_ps_hdr_size)
2118 pci_unmap_single(pdev, buffer_info->dma,
2119 adapter->rx_ps_hdr_size,
2120 PCI_DMA_FROMDEVICE);
2121 else
2122 pci_unmap_single(pdev, buffer_info->dma,
2123 adapter->rx_buffer_len,
2124 PCI_DMA_FROMDEVICE);
2125 buffer_info->dma = 0;
2126 }
2127
2128 if (buffer_info->skb) {
2129 dev_kfree_skb(buffer_info->skb);
2130 buffer_info->skb = NULL;
2131 }
2132 if (buffer_info->page) {
2133 if (buffer_info->page_dma)
2134 pci_unmap_page(pdev, buffer_info->page_dma,
2135 PAGE_SIZE / 2,
2136 PCI_DMA_FROMDEVICE);
2137 put_page(buffer_info->page);
2138 buffer_info->page = NULL;
2139 buffer_info->page_dma = 0;
2140 buffer_info->page_offset = 0;
2141 }
2142 }
2143
2144 size = sizeof(struct igb_buffer) * rx_ring->count;
2145 memset(rx_ring->buffer_info, 0, size);
2146
2147 /* Zero out the descriptor ring */
2148 memset(rx_ring->desc, 0, rx_ring->size);
2149
2150 rx_ring->next_to_clean = 0;
2151 rx_ring->next_to_use = 0;
2152
2153 writel(0, adapter->hw.hw_addr + rx_ring->head);
2154 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2155 }
2156
2157 /**
2158 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2159 * @adapter: board private structure
2160 **/
2161 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2162 {
2163 int i;
2164
2165 for (i = 0; i < adapter->num_rx_queues; i++)
2166 igb_clean_rx_ring(&adapter->rx_ring[i]);
2167 }
2168
2169 /**
2170 * igb_set_mac - Change the Ethernet Address of the NIC
2171 * @netdev: network interface device structure
2172 * @p: pointer to an address structure
2173 *
2174 * Returns 0 on success, negative on failure
2175 **/
2176 static int igb_set_mac(struct net_device *netdev, void *p)
2177 {
2178 struct igb_adapter *adapter = netdev_priv(netdev);
2179 struct sockaddr *addr = p;
2180
2181 if (!is_valid_ether_addr(addr->sa_data))
2182 return -EADDRNOTAVAIL;
2183
2184 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2185 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2186
2187 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2188
2189 return 0;
2190 }
2191
2192 /**
2193 * igb_set_multi - Multicast and Promiscuous mode set
2194 * @netdev: network interface device structure
2195 *
2196 * The set_multi entry point is called whenever the multicast address
2197 * list or the network interface flags are updated. This routine is
2198 * responsible for configuring the hardware for proper multicast,
2199 * promiscuous mode, and all-multi behavior.
2200 **/
2201 static void igb_set_multi(struct net_device *netdev)
2202 {
2203 struct igb_adapter *adapter = netdev_priv(netdev);
2204 struct e1000_hw *hw = &adapter->hw;
2205 struct e1000_mac_info *mac = &hw->mac;
2206 struct dev_mc_list *mc_ptr;
2207 u8 *mta_list;
2208 u32 rctl;
2209 int i;
2210
2211 /* Check for Promiscuous and All Multicast modes */
2212
2213 rctl = rd32(E1000_RCTL);
2214
2215 if (netdev->flags & IFF_PROMISC) {
2216 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2217 rctl &= ~E1000_RCTL_VFE;
2218 } else {
2219 if (netdev->flags & IFF_ALLMULTI) {
2220 rctl |= E1000_RCTL_MPE;
2221 rctl &= ~E1000_RCTL_UPE;
2222 } else
2223 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2224 rctl |= E1000_RCTL_VFE;
2225 }
2226 wr32(E1000_RCTL, rctl);
2227
2228 if (!netdev->mc_count) {
2229 /* nothing to program, so clear mc list */
2230 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2231 mac->rar_entry_count);
2232 return;
2233 }
2234
2235 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2236 if (!mta_list)
2237 return;
2238
2239 /* The shared function expects a packed array of only addresses. */
2240 mc_ptr = netdev->mc_list;
2241
2242 for (i = 0; i < netdev->mc_count; i++) {
2243 if (!mc_ptr)
2244 break;
2245 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2246 mc_ptr = mc_ptr->next;
2247 }
2248 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2249 mac->rar_entry_count);
2250 kfree(mta_list);
2251 }
2252
2253 /* Need to wait a few seconds after link up to get diagnostic information from
2254 * the phy */
2255 static void igb_update_phy_info(unsigned long data)
2256 {
2257 struct igb_adapter *adapter = (struct igb_adapter *) data;
2258 igb_get_phy_info(&adapter->hw);
2259 }
2260
2261 /**
2262 * igb_has_link - check shared code for link and determine up/down
2263 * @adapter: pointer to driver private info
2264 **/
2265 static bool igb_has_link(struct igb_adapter *adapter)
2266 {
2267 struct e1000_hw *hw = &adapter->hw;
2268 bool link_active = false;
2269 s32 ret_val = 0;
2270
2271 /* get_link_status is set on LSC (link status) interrupt or
2272 * rx sequence error interrupt. get_link_status will stay
2273 * false until the e1000_check_for_link establishes link
2274 * for copper adapters ONLY
2275 */
2276 switch (hw->phy.media_type) {
2277 case e1000_media_type_copper:
2278 if (hw->mac.get_link_status) {
2279 ret_val = hw->mac.ops.check_for_link(hw);
2280 link_active = !hw->mac.get_link_status;
2281 } else {
2282 link_active = true;
2283 }
2284 break;
2285 case e1000_media_type_fiber:
2286 ret_val = hw->mac.ops.check_for_link(hw);
2287 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2288 break;
2289 case e1000_media_type_internal_serdes:
2290 ret_val = hw->mac.ops.check_for_link(hw);
2291 link_active = hw->mac.serdes_has_link;
2292 break;
2293 default:
2294 case e1000_media_type_unknown:
2295 break;
2296 }
2297
2298 return link_active;
2299 }
2300
2301 /**
2302 * igb_watchdog - Timer Call-back
2303 * @data: pointer to adapter cast into an unsigned long
2304 **/
2305 static void igb_watchdog(unsigned long data)
2306 {
2307 struct igb_adapter *adapter = (struct igb_adapter *)data;
2308 /* Do the rest outside of interrupt context */
2309 schedule_work(&adapter->watchdog_task);
2310 }
2311
2312 static void igb_watchdog_task(struct work_struct *work)
2313 {
2314 struct igb_adapter *adapter = container_of(work,
2315 struct igb_adapter, watchdog_task);
2316 struct e1000_hw *hw = &adapter->hw;
2317
2318 struct net_device *netdev = adapter->netdev;
2319 struct igb_ring *tx_ring = adapter->tx_ring;
2320 struct e1000_mac_info *mac = &adapter->hw.mac;
2321 u32 link;
2322 u32 eics = 0;
2323 s32 ret_val;
2324 int i;
2325
2326 link = igb_has_link(adapter);
2327 if ((netif_carrier_ok(netdev)) && link)
2328 goto link_up;
2329
2330 if (link) {
2331 if (!netif_carrier_ok(netdev)) {
2332 u32 ctrl;
2333 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2334 &adapter->link_speed,
2335 &adapter->link_duplex);
2336
2337 ctrl = rd32(E1000_CTRL);
2338 /* Links status message must follow this format */
2339 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2340 "Flow Control: %s\n",
2341 netdev->name,
2342 adapter->link_speed,
2343 adapter->link_duplex == FULL_DUPLEX ?
2344 "Full Duplex" : "Half Duplex",
2345 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2346 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2347 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2348 E1000_CTRL_TFCE) ? "TX" : "None")));
2349
2350 /* tweak tx_queue_len according to speed/duplex and
2351 * adjust the timeout factor */
2352 netdev->tx_queue_len = adapter->tx_queue_len;
2353 adapter->tx_timeout_factor = 1;
2354 switch (adapter->link_speed) {
2355 case SPEED_10:
2356 netdev->tx_queue_len = 10;
2357 adapter->tx_timeout_factor = 14;
2358 break;
2359 case SPEED_100:
2360 netdev->tx_queue_len = 100;
2361 /* maybe add some timeout factor ? */
2362 break;
2363 }
2364
2365 netif_carrier_on(netdev);
2366 netif_tx_wake_all_queues(netdev);
2367
2368 if (!test_bit(__IGB_DOWN, &adapter->state))
2369 mod_timer(&adapter->phy_info_timer,
2370 round_jiffies(jiffies + 2 * HZ));
2371 }
2372 } else {
2373 if (netif_carrier_ok(netdev)) {
2374 adapter->link_speed = 0;
2375 adapter->link_duplex = 0;
2376 /* Links status message must follow this format */
2377 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2378 netdev->name);
2379 netif_carrier_off(netdev);
2380 netif_tx_stop_all_queues(netdev);
2381 if (!test_bit(__IGB_DOWN, &adapter->state))
2382 mod_timer(&adapter->phy_info_timer,
2383 round_jiffies(jiffies + 2 * HZ));
2384 }
2385 }
2386
2387 link_up:
2388 igb_update_stats(adapter);
2389
2390 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2391 adapter->tpt_old = adapter->stats.tpt;
2392 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2393 adapter->colc_old = adapter->stats.colc;
2394
2395 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2396 adapter->gorc_old = adapter->stats.gorc;
2397 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2398 adapter->gotc_old = adapter->stats.gotc;
2399
2400 igb_update_adaptive(&adapter->hw);
2401
2402 if (!netif_carrier_ok(netdev)) {
2403 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2404 /* We've lost link, so the controller stops DMA,
2405 * but we've got queued Tx work that's never going
2406 * to get done, so reset controller to flush Tx.
2407 * (Do the reset outside of interrupt context). */
2408 adapter->tx_timeout_count++;
2409 schedule_work(&adapter->reset_task);
2410 }
2411 }
2412
2413 /* Cause software interrupt to ensure rx ring is cleaned */
2414 if (adapter->msix_entries) {
2415 for (i = 0; i < adapter->num_rx_queues; i++)
2416 eics |= adapter->rx_ring[i].eims_value;
2417 wr32(E1000_EICS, eics);
2418 } else {
2419 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2420 }
2421
2422 /* Force detection of hung controller every watchdog period */
2423 tx_ring->detect_tx_hung = true;
2424
2425 /* Reset the timer */
2426 if (!test_bit(__IGB_DOWN, &adapter->state))
2427 mod_timer(&adapter->watchdog_timer,
2428 round_jiffies(jiffies + 2 * HZ));
2429 }
2430
2431 enum latency_range {
2432 lowest_latency = 0,
2433 low_latency = 1,
2434 bulk_latency = 2,
2435 latency_invalid = 255
2436 };
2437
2438
2439 /**
2440 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2441 *
2442 * Stores a new ITR value based on strictly on packet size. This
2443 * algorithm is less sophisticated than that used in igb_update_itr,
2444 * due to the difficulty of synchronizing statistics across multiple
2445 * receive rings. The divisors and thresholds used by this fuction
2446 * were determined based on theoretical maximum wire speed and testing
2447 * data, in order to minimize response time while increasing bulk
2448 * throughput.
2449 * This functionality is controlled by the InterruptThrottleRate module
2450 * parameter (see igb_param.c)
2451 * NOTE: This function is called only when operating in a multiqueue
2452 * receive environment.
2453 * @rx_ring: pointer to ring
2454 **/
2455 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2456 {
2457 int new_val = rx_ring->itr_val;
2458 int avg_wire_size = 0;
2459 struct igb_adapter *adapter = rx_ring->adapter;
2460
2461 if (!rx_ring->total_packets)
2462 goto clear_counts; /* no packets, so don't do anything */
2463
2464 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2465 * ints/sec - ITR timer value of 120 ticks.
2466 */
2467 if (adapter->link_speed != SPEED_1000) {
2468 new_val = 120;
2469 goto set_itr_val;
2470 }
2471 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2472
2473 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2474 avg_wire_size += 24;
2475
2476 /* Don't starve jumbo frames */
2477 avg_wire_size = min(avg_wire_size, 3000);
2478
2479 /* Give a little boost to mid-size frames */
2480 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2481 new_val = avg_wire_size / 3;
2482 else
2483 new_val = avg_wire_size / 2;
2484
2485 set_itr_val:
2486 if (new_val != rx_ring->itr_val) {
2487 rx_ring->itr_val = new_val;
2488 rx_ring->set_itr = 1;
2489 }
2490 clear_counts:
2491 rx_ring->total_bytes = 0;
2492 rx_ring->total_packets = 0;
2493 }
2494
2495 /**
2496 * igb_update_itr - update the dynamic ITR value based on statistics
2497 * Stores a new ITR value based on packets and byte
2498 * counts during the last interrupt. The advantage of per interrupt
2499 * computation is faster updates and more accurate ITR for the current
2500 * traffic pattern. Constants in this function were computed
2501 * based on theoretical maximum wire speed and thresholds were set based
2502 * on testing data as well as attempting to minimize response time
2503 * while increasing bulk throughput.
2504 * this functionality is controlled by the InterruptThrottleRate module
2505 * parameter (see igb_param.c)
2506 * NOTE: These calculations are only valid when operating in a single-
2507 * queue environment.
2508 * @adapter: pointer to adapter
2509 * @itr_setting: current adapter->itr
2510 * @packets: the number of packets during this measurement interval
2511 * @bytes: the number of bytes during this measurement interval
2512 **/
2513 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2514 int packets, int bytes)
2515 {
2516 unsigned int retval = itr_setting;
2517
2518 if (packets == 0)
2519 goto update_itr_done;
2520
2521 switch (itr_setting) {
2522 case lowest_latency:
2523 /* handle TSO and jumbo frames */
2524 if (bytes/packets > 8000)
2525 retval = bulk_latency;
2526 else if ((packets < 5) && (bytes > 512))
2527 retval = low_latency;
2528 break;
2529 case low_latency: /* 50 usec aka 20000 ints/s */
2530 if (bytes > 10000) {
2531 /* this if handles the TSO accounting */
2532 if (bytes/packets > 8000) {
2533 retval = bulk_latency;
2534 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2535 retval = bulk_latency;
2536 } else if ((packets > 35)) {
2537 retval = lowest_latency;
2538 }
2539 } else if (bytes/packets > 2000) {
2540 retval = bulk_latency;
2541 } else if (packets <= 2 && bytes < 512) {
2542 retval = lowest_latency;
2543 }
2544 break;
2545 case bulk_latency: /* 250 usec aka 4000 ints/s */
2546 if (bytes > 25000) {
2547 if (packets > 35)
2548 retval = low_latency;
2549 } else if (bytes < 6000) {
2550 retval = low_latency;
2551 }
2552 break;
2553 }
2554
2555 update_itr_done:
2556 return retval;
2557 }
2558
2559 static void igb_set_itr(struct igb_adapter *adapter)
2560 {
2561 u16 current_itr;
2562 u32 new_itr = adapter->itr;
2563
2564 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2565 if (adapter->link_speed != SPEED_1000) {
2566 current_itr = 0;
2567 new_itr = 4000;
2568 goto set_itr_now;
2569 }
2570
2571 adapter->rx_itr = igb_update_itr(adapter,
2572 adapter->rx_itr,
2573 adapter->rx_ring->total_packets,
2574 adapter->rx_ring->total_bytes);
2575
2576 if (adapter->rx_ring->buddy) {
2577 adapter->tx_itr = igb_update_itr(adapter,
2578 adapter->tx_itr,
2579 adapter->tx_ring->total_packets,
2580 adapter->tx_ring->total_bytes);
2581
2582 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2583 } else {
2584 current_itr = adapter->rx_itr;
2585 }
2586
2587 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2588 if (adapter->itr_setting == 3 &&
2589 current_itr == lowest_latency)
2590 current_itr = low_latency;
2591
2592 switch (current_itr) {
2593 /* counts and packets in update_itr are dependent on these numbers */
2594 case lowest_latency:
2595 new_itr = 70000;
2596 break;
2597 case low_latency:
2598 new_itr = 20000; /* aka hwitr = ~200 */
2599 break;
2600 case bulk_latency:
2601 new_itr = 4000;
2602 break;
2603 default:
2604 break;
2605 }
2606
2607 set_itr_now:
2608 adapter->rx_ring->total_bytes = 0;
2609 adapter->rx_ring->total_packets = 0;
2610 if (adapter->rx_ring->buddy) {
2611 adapter->rx_ring->buddy->total_bytes = 0;
2612 adapter->rx_ring->buddy->total_packets = 0;
2613 }
2614
2615 if (new_itr != adapter->itr) {
2616 /* this attempts to bias the interrupt rate towards Bulk
2617 * by adding intermediate steps when interrupt rate is
2618 * increasing */
2619 new_itr = new_itr > adapter->itr ?
2620 min(adapter->itr + (new_itr >> 2), new_itr) :
2621 new_itr;
2622 /* Don't write the value here; it resets the adapter's
2623 * internal timer, and causes us to delay far longer than
2624 * we should between interrupts. Instead, we write the ITR
2625 * value at the beginning of the next interrupt so the timing
2626 * ends up being correct.
2627 */
2628 adapter->itr = new_itr;
2629 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2630 adapter->rx_ring->set_itr = 1;
2631 }
2632
2633 return;
2634 }
2635
2636
2637 #define IGB_TX_FLAGS_CSUM 0x00000001
2638 #define IGB_TX_FLAGS_VLAN 0x00000002
2639 #define IGB_TX_FLAGS_TSO 0x00000004
2640 #define IGB_TX_FLAGS_IPV4 0x00000008
2641 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2642 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2643
2644 static inline int igb_tso_adv(struct igb_adapter *adapter,
2645 struct igb_ring *tx_ring,
2646 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2647 {
2648 struct e1000_adv_tx_context_desc *context_desc;
2649 unsigned int i;
2650 int err;
2651 struct igb_buffer *buffer_info;
2652 u32 info = 0, tu_cmd = 0;
2653 u32 mss_l4len_idx, l4len;
2654 *hdr_len = 0;
2655
2656 if (skb_header_cloned(skb)) {
2657 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2658 if (err)
2659 return err;
2660 }
2661
2662 l4len = tcp_hdrlen(skb);
2663 *hdr_len += l4len;
2664
2665 if (skb->protocol == htons(ETH_P_IP)) {
2666 struct iphdr *iph = ip_hdr(skb);
2667 iph->tot_len = 0;
2668 iph->check = 0;
2669 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2670 iph->daddr, 0,
2671 IPPROTO_TCP,
2672 0);
2673 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2674 ipv6_hdr(skb)->payload_len = 0;
2675 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2676 &ipv6_hdr(skb)->daddr,
2677 0, IPPROTO_TCP, 0);
2678 }
2679
2680 i = tx_ring->next_to_use;
2681
2682 buffer_info = &tx_ring->buffer_info[i];
2683 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2684 /* VLAN MACLEN IPLEN */
2685 if (tx_flags & IGB_TX_FLAGS_VLAN)
2686 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2687 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2688 *hdr_len += skb_network_offset(skb);
2689 info |= skb_network_header_len(skb);
2690 *hdr_len += skb_network_header_len(skb);
2691 context_desc->vlan_macip_lens = cpu_to_le32(info);
2692
2693 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2694 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2695
2696 if (skb->protocol == htons(ETH_P_IP))
2697 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2698 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2699
2700 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2701
2702 /* MSS L4LEN IDX */
2703 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2704 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2705
2706 /* Context index must be unique per ring. */
2707 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2708 mss_l4len_idx |= tx_ring->queue_index << 4;
2709
2710 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2711 context_desc->seqnum_seed = 0;
2712
2713 buffer_info->time_stamp = jiffies;
2714 buffer_info->next_to_watch = i;
2715 buffer_info->dma = 0;
2716 i++;
2717 if (i == tx_ring->count)
2718 i = 0;
2719
2720 tx_ring->next_to_use = i;
2721
2722 return true;
2723 }
2724
2725 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2726 struct igb_ring *tx_ring,
2727 struct sk_buff *skb, u32 tx_flags)
2728 {
2729 struct e1000_adv_tx_context_desc *context_desc;
2730 unsigned int i;
2731 struct igb_buffer *buffer_info;
2732 u32 info = 0, tu_cmd = 0;
2733
2734 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2735 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2736 i = tx_ring->next_to_use;
2737 buffer_info = &tx_ring->buffer_info[i];
2738 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2739
2740 if (tx_flags & IGB_TX_FLAGS_VLAN)
2741 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2742 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2743 if (skb->ip_summed == CHECKSUM_PARTIAL)
2744 info |= skb_network_header_len(skb);
2745
2746 context_desc->vlan_macip_lens = cpu_to_le32(info);
2747
2748 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2749
2750 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2751 switch (skb->protocol) {
2752 case cpu_to_be16(ETH_P_IP):
2753 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2754 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2755 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2756 break;
2757 case cpu_to_be16(ETH_P_IPV6):
2758 /* XXX what about other V6 headers?? */
2759 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2760 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2761 break;
2762 default:
2763 if (unlikely(net_ratelimit()))
2764 dev_warn(&adapter->pdev->dev,
2765 "partial checksum but proto=%x!\n",
2766 skb->protocol);
2767 break;
2768 }
2769 }
2770
2771 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2772 context_desc->seqnum_seed = 0;
2773 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2774 context_desc->mss_l4len_idx =
2775 cpu_to_le32(tx_ring->queue_index << 4);
2776
2777 buffer_info->time_stamp = jiffies;
2778 buffer_info->next_to_watch = i;
2779 buffer_info->dma = 0;
2780
2781 i++;
2782 if (i == tx_ring->count)
2783 i = 0;
2784 tx_ring->next_to_use = i;
2785
2786 return true;
2787 }
2788
2789
2790 return false;
2791 }
2792
2793 #define IGB_MAX_TXD_PWR 16
2794 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2795
2796 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2797 struct igb_ring *tx_ring, struct sk_buff *skb,
2798 unsigned int first)
2799 {
2800 struct igb_buffer *buffer_info;
2801 unsigned int len = skb_headlen(skb);
2802 unsigned int count = 0, i;
2803 unsigned int f;
2804
2805 i = tx_ring->next_to_use;
2806
2807 buffer_info = &tx_ring->buffer_info[i];
2808 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2809 buffer_info->length = len;
2810 /* set time_stamp *before* dma to help avoid a possible race */
2811 buffer_info->time_stamp = jiffies;
2812 buffer_info->next_to_watch = i;
2813 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2814 PCI_DMA_TODEVICE);
2815 count++;
2816 i++;
2817 if (i == tx_ring->count)
2818 i = 0;
2819
2820 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2821 struct skb_frag_struct *frag;
2822
2823 frag = &skb_shinfo(skb)->frags[f];
2824 len = frag->size;
2825
2826 buffer_info = &tx_ring->buffer_info[i];
2827 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2828 buffer_info->length = len;
2829 buffer_info->time_stamp = jiffies;
2830 buffer_info->next_to_watch = i;
2831 buffer_info->dma = pci_map_page(adapter->pdev,
2832 frag->page,
2833 frag->page_offset,
2834 len,
2835 PCI_DMA_TODEVICE);
2836
2837 count++;
2838 i++;
2839 if (i == tx_ring->count)
2840 i = 0;
2841 }
2842
2843 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2844 tx_ring->buffer_info[i].skb = skb;
2845 tx_ring->buffer_info[first].next_to_watch = i;
2846
2847 return count;
2848 }
2849
2850 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2851 struct igb_ring *tx_ring,
2852 int tx_flags, int count, u32 paylen,
2853 u8 hdr_len)
2854 {
2855 union e1000_adv_tx_desc *tx_desc = NULL;
2856 struct igb_buffer *buffer_info;
2857 u32 olinfo_status = 0, cmd_type_len;
2858 unsigned int i;
2859
2860 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2861 E1000_ADVTXD_DCMD_DEXT);
2862
2863 if (tx_flags & IGB_TX_FLAGS_VLAN)
2864 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2865
2866 if (tx_flags & IGB_TX_FLAGS_TSO) {
2867 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2868
2869 /* insert tcp checksum */
2870 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2871
2872 /* insert ip checksum */
2873 if (tx_flags & IGB_TX_FLAGS_IPV4)
2874 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2875
2876 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2877 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2878 }
2879
2880 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2881 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2882 IGB_TX_FLAGS_VLAN)))
2883 olinfo_status |= tx_ring->queue_index << 4;
2884
2885 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2886
2887 i = tx_ring->next_to_use;
2888 while (count--) {
2889 buffer_info = &tx_ring->buffer_info[i];
2890 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2891 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2892 tx_desc->read.cmd_type_len =
2893 cpu_to_le32(cmd_type_len | buffer_info->length);
2894 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2895 i++;
2896 if (i == tx_ring->count)
2897 i = 0;
2898 }
2899
2900 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2901 /* Force memory writes to complete before letting h/w
2902 * know there are new descriptors to fetch. (Only
2903 * applicable for weak-ordered memory model archs,
2904 * such as IA-64). */
2905 wmb();
2906
2907 tx_ring->next_to_use = i;
2908 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2909 /* we need this if more than one processor can write to our tail
2910 * at a time, it syncronizes IO on IA64/Altix systems */
2911 mmiowb();
2912 }
2913
2914 static int __igb_maybe_stop_tx(struct net_device *netdev,
2915 struct igb_ring *tx_ring, int size)
2916 {
2917 struct igb_adapter *adapter = netdev_priv(netdev);
2918
2919 netif_stop_subqueue(netdev, tx_ring->queue_index);
2920
2921 /* Herbert's original patch had:
2922 * smp_mb__after_netif_stop_queue();
2923 * but since that doesn't exist yet, just open code it. */
2924 smp_mb();
2925
2926 /* We need to check again in a case another CPU has just
2927 * made room available. */
2928 if (IGB_DESC_UNUSED(tx_ring) < size)
2929 return -EBUSY;
2930
2931 /* A reprieve! */
2932 netif_wake_subqueue(netdev, tx_ring->queue_index);
2933 ++adapter->restart_queue;
2934 return 0;
2935 }
2936
2937 static int igb_maybe_stop_tx(struct net_device *netdev,
2938 struct igb_ring *tx_ring, int size)
2939 {
2940 if (IGB_DESC_UNUSED(tx_ring) >= size)
2941 return 0;
2942 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2943 }
2944
2945 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2946
2947 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2948 struct net_device *netdev,
2949 struct igb_ring *tx_ring)
2950 {
2951 struct igb_adapter *adapter = netdev_priv(netdev);
2952 unsigned int first;
2953 unsigned int tx_flags = 0;
2954 unsigned int len;
2955 u8 hdr_len = 0;
2956 int tso = 0;
2957
2958 len = skb_headlen(skb);
2959
2960 if (test_bit(__IGB_DOWN, &adapter->state)) {
2961 dev_kfree_skb_any(skb);
2962 return NETDEV_TX_OK;
2963 }
2964
2965 if (skb->len <= 0) {
2966 dev_kfree_skb_any(skb);
2967 return NETDEV_TX_OK;
2968 }
2969
2970 /* need: 1 descriptor per page,
2971 * + 2 desc gap to keep tail from touching head,
2972 * + 1 desc for skb->data,
2973 * + 1 desc for context descriptor,
2974 * otherwise try next time */
2975 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2976 /* this is a hard error */
2977 return NETDEV_TX_BUSY;
2978 }
2979 skb_orphan(skb);
2980
2981 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2982 tx_flags |= IGB_TX_FLAGS_VLAN;
2983 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2984 }
2985
2986 if (skb->protocol == htons(ETH_P_IP))
2987 tx_flags |= IGB_TX_FLAGS_IPV4;
2988
2989 first = tx_ring->next_to_use;
2990
2991 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2992 &hdr_len) : 0;
2993
2994 if (tso < 0) {
2995 dev_kfree_skb_any(skb);
2996 return NETDEV_TX_OK;
2997 }
2998
2999 if (tso)
3000 tx_flags |= IGB_TX_FLAGS_TSO;
3001 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3002 if (skb->ip_summed == CHECKSUM_PARTIAL)
3003 tx_flags |= IGB_TX_FLAGS_CSUM;
3004
3005 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3006 igb_tx_map_adv(adapter, tx_ring, skb, first),
3007 skb->len, hdr_len);
3008
3009 netdev->trans_start = jiffies;
3010
3011 /* Make sure there is space in the ring for the next send. */
3012 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3013
3014 return NETDEV_TX_OK;
3015 }
3016
3017 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3018 {
3019 struct igb_adapter *adapter = netdev_priv(netdev);
3020 struct igb_ring *tx_ring;
3021
3022 int r_idx = 0;
3023 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3024 tx_ring = adapter->multi_tx_table[r_idx];
3025
3026 /* This goes back to the question of how to logically map a tx queue
3027 * to a flow. Right now, performance is impacted slightly negatively
3028 * if using multiple tx queues. If the stack breaks away from a
3029 * single qdisc implementation, we can look at this again. */
3030 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3031 }
3032
3033 /**
3034 * igb_tx_timeout - Respond to a Tx Hang
3035 * @netdev: network interface device structure
3036 **/
3037 static void igb_tx_timeout(struct net_device *netdev)
3038 {
3039 struct igb_adapter *adapter = netdev_priv(netdev);
3040 struct e1000_hw *hw = &adapter->hw;
3041
3042 /* Do the reset outside of interrupt context */
3043 adapter->tx_timeout_count++;
3044 schedule_work(&adapter->reset_task);
3045 wr32(E1000_EICS, adapter->eims_enable_mask &
3046 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3047 }
3048
3049 static void igb_reset_task(struct work_struct *work)
3050 {
3051 struct igb_adapter *adapter;
3052 adapter = container_of(work, struct igb_adapter, reset_task);
3053
3054 igb_reinit_locked(adapter);
3055 }
3056
3057 /**
3058 * igb_get_stats - Get System Network Statistics
3059 * @netdev: network interface device structure
3060 *
3061 * Returns the address of the device statistics structure.
3062 * The statistics are actually updated from the timer callback.
3063 **/
3064 static struct net_device_stats *
3065 igb_get_stats(struct net_device *netdev)
3066 {
3067 struct igb_adapter *adapter = netdev_priv(netdev);
3068
3069 /* only return the current stats */
3070 return &adapter->net_stats;
3071 }
3072
3073 /**
3074 * igb_change_mtu - Change the Maximum Transfer Unit
3075 * @netdev: network interface device structure
3076 * @new_mtu: new value for maximum frame size
3077 *
3078 * Returns 0 on success, negative on failure
3079 **/
3080 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3081 {
3082 struct igb_adapter *adapter = netdev_priv(netdev);
3083 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3084
3085 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3086 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3087 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3088 return -EINVAL;
3089 }
3090
3091 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3092 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3093 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3094 return -EINVAL;
3095 }
3096
3097 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3098 msleep(1);
3099 /* igb_down has a dependency on max_frame_size */
3100 adapter->max_frame_size = max_frame;
3101 if (netif_running(netdev))
3102 igb_down(adapter);
3103
3104 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3105 * means we reserve 2 more, this pushes us to allocate from the next
3106 * larger slab size.
3107 * i.e. RXBUFFER_2048 --> size-4096 slab
3108 */
3109
3110 if (max_frame <= IGB_RXBUFFER_256)
3111 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3112 else if (max_frame <= IGB_RXBUFFER_512)
3113 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3114 else if (max_frame <= IGB_RXBUFFER_1024)
3115 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3116 else if (max_frame <= IGB_RXBUFFER_2048)
3117 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3118 else
3119 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3120 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3121 #else
3122 adapter->rx_buffer_len = PAGE_SIZE / 2;
3123 #endif
3124 /* adjust allocation if LPE protects us, and we aren't using SBP */
3125 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3126 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3127 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3128
3129 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3130 netdev->mtu, new_mtu);
3131 netdev->mtu = new_mtu;
3132
3133 if (netif_running(netdev))
3134 igb_up(adapter);
3135 else
3136 igb_reset(adapter);
3137
3138 clear_bit(__IGB_RESETTING, &adapter->state);
3139
3140 return 0;
3141 }
3142
3143 /**
3144 * igb_update_stats - Update the board statistics counters
3145 * @adapter: board private structure
3146 **/
3147
3148 void igb_update_stats(struct igb_adapter *adapter)
3149 {
3150 struct e1000_hw *hw = &adapter->hw;
3151 struct pci_dev *pdev = adapter->pdev;
3152 u16 phy_tmp;
3153
3154 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3155
3156 /*
3157 * Prevent stats update while adapter is being reset, or if the pci
3158 * connection is down.
3159 */
3160 if (adapter->link_speed == 0)
3161 return;
3162 if (pci_channel_offline(pdev))
3163 return;
3164
3165 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3166 adapter->stats.gprc += rd32(E1000_GPRC);
3167 adapter->stats.gorc += rd32(E1000_GORCL);
3168 rd32(E1000_GORCH); /* clear GORCL */
3169 adapter->stats.bprc += rd32(E1000_BPRC);
3170 adapter->stats.mprc += rd32(E1000_MPRC);
3171 adapter->stats.roc += rd32(E1000_ROC);
3172
3173 adapter->stats.prc64 += rd32(E1000_PRC64);
3174 adapter->stats.prc127 += rd32(E1000_PRC127);
3175 adapter->stats.prc255 += rd32(E1000_PRC255);
3176 adapter->stats.prc511 += rd32(E1000_PRC511);
3177 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3178 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3179 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3180 adapter->stats.sec += rd32(E1000_SEC);
3181
3182 adapter->stats.mpc += rd32(E1000_MPC);
3183 adapter->stats.scc += rd32(E1000_SCC);
3184 adapter->stats.ecol += rd32(E1000_ECOL);
3185 adapter->stats.mcc += rd32(E1000_MCC);
3186 adapter->stats.latecol += rd32(E1000_LATECOL);
3187 adapter->stats.dc += rd32(E1000_DC);
3188 adapter->stats.rlec += rd32(E1000_RLEC);
3189 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3190 adapter->stats.xontxc += rd32(E1000_XONTXC);
3191 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3192 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3193 adapter->stats.fcruc += rd32(E1000_FCRUC);
3194 adapter->stats.gptc += rd32(E1000_GPTC);
3195 adapter->stats.gotc += rd32(E1000_GOTCL);
3196 rd32(E1000_GOTCH); /* clear GOTCL */
3197 adapter->stats.rnbc += rd32(E1000_RNBC);
3198 adapter->stats.ruc += rd32(E1000_RUC);
3199 adapter->stats.rfc += rd32(E1000_RFC);
3200 adapter->stats.rjc += rd32(E1000_RJC);
3201 adapter->stats.tor += rd32(E1000_TORH);
3202 adapter->stats.tot += rd32(E1000_TOTH);
3203 adapter->stats.tpr += rd32(E1000_TPR);
3204
3205 adapter->stats.ptc64 += rd32(E1000_PTC64);
3206 adapter->stats.ptc127 += rd32(E1000_PTC127);
3207 adapter->stats.ptc255 += rd32(E1000_PTC255);
3208 adapter->stats.ptc511 += rd32(E1000_PTC511);
3209 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3210 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3211
3212 adapter->stats.mptc += rd32(E1000_MPTC);
3213 adapter->stats.bptc += rd32(E1000_BPTC);
3214
3215 /* used for adaptive IFS */
3216
3217 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3218 adapter->stats.tpt += hw->mac.tx_packet_delta;
3219 hw->mac.collision_delta = rd32(E1000_COLC);
3220 adapter->stats.colc += hw->mac.collision_delta;
3221
3222 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3223 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3224 adapter->stats.tncrs += rd32(E1000_TNCRS);
3225 adapter->stats.tsctc += rd32(E1000_TSCTC);
3226 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3227
3228 adapter->stats.iac += rd32(E1000_IAC);
3229 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3230 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3231 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3232 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3233 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3234 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3235 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3236 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3237
3238 /* Fill out the OS statistics structure */
3239 adapter->net_stats.multicast = adapter->stats.mprc;
3240 adapter->net_stats.collisions = adapter->stats.colc;
3241
3242 /* Rx Errors */
3243
3244 /* RLEC on some newer hardware can be incorrect so build
3245 * our own version based on RUC and ROC */
3246 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3247 adapter->stats.crcerrs + adapter->stats.algnerrc +
3248 adapter->stats.ruc + adapter->stats.roc +
3249 adapter->stats.cexterr;
3250 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3251 adapter->stats.roc;
3252 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3253 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3254 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3255
3256 /* Tx Errors */
3257 adapter->net_stats.tx_errors = adapter->stats.ecol +
3258 adapter->stats.latecol;
3259 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3260 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3261 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3262
3263 /* Tx Dropped needs to be maintained elsewhere */
3264
3265 /* Phy Stats */
3266 if (hw->phy.media_type == e1000_media_type_copper) {
3267 if ((adapter->link_speed == SPEED_1000) &&
3268 (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3269 &phy_tmp))) {
3270 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3271 adapter->phy_stats.idle_errors += phy_tmp;
3272 }
3273 }
3274
3275 /* Management Stats */
3276 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3277 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3278 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3279 }
3280
3281
3282 static irqreturn_t igb_msix_other(int irq, void *data)
3283 {
3284 struct net_device *netdev = data;
3285 struct igb_adapter *adapter = netdev_priv(netdev);
3286 struct e1000_hw *hw = &adapter->hw;
3287 u32 icr = rd32(E1000_ICR);
3288
3289 /* reading ICR causes bit 31 of EICR to be cleared */
3290 if (!(icr & E1000_ICR_LSC))
3291 goto no_link_interrupt;
3292 hw->mac.get_link_status = 1;
3293 /* guard against interrupt when we're going down */
3294 if (!test_bit(__IGB_DOWN, &adapter->state))
3295 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3296
3297 no_link_interrupt:
3298 wr32(E1000_IMS, E1000_IMS_LSC);
3299 wr32(E1000_EIMS, adapter->eims_other);
3300
3301 return IRQ_HANDLED;
3302 }
3303
3304 static irqreturn_t igb_msix_tx(int irq, void *data)
3305 {
3306 struct igb_ring *tx_ring = data;
3307 struct igb_adapter *adapter = tx_ring->adapter;
3308 struct e1000_hw *hw = &adapter->hw;
3309
3310 #ifdef CONFIG_IGB_DCA
3311 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3312 igb_update_tx_dca(tx_ring);
3313 #endif
3314 tx_ring->total_bytes = 0;
3315 tx_ring->total_packets = 0;
3316
3317 /* auto mask will automatically reenable the interrupt when we write
3318 * EICS */
3319 if (!igb_clean_tx_irq(tx_ring))
3320 /* Ring was not completely cleaned, so fire another interrupt */
3321 wr32(E1000_EICS, tx_ring->eims_value);
3322 else
3323 wr32(E1000_EIMS, tx_ring->eims_value);
3324
3325 return IRQ_HANDLED;
3326 }
3327
3328 static void igb_write_itr(struct igb_ring *ring)
3329 {
3330 struct e1000_hw *hw = &ring->adapter->hw;
3331 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3332 switch (hw->mac.type) {
3333 case e1000_82576:
3334 wr32(ring->itr_register,
3335 ring->itr_val |
3336 0x80000000);
3337 break;
3338 default:
3339 wr32(ring->itr_register,
3340 ring->itr_val |
3341 (ring->itr_val << 16));
3342 break;
3343 }
3344 ring->set_itr = 0;
3345 }
3346 }
3347
3348 static irqreturn_t igb_msix_rx(int irq, void *data)
3349 {
3350 struct igb_ring *rx_ring = data;
3351
3352 /* Write the ITR value calculated at the end of the
3353 * previous interrupt.
3354 */
3355
3356 igb_write_itr(rx_ring);
3357
3358 if (napi_schedule_prep(&rx_ring->napi))
3359 __napi_schedule(&rx_ring->napi);
3360
3361 #ifdef CONFIG_IGB_DCA
3362 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3363 igb_update_rx_dca(rx_ring);
3364 #endif
3365 return IRQ_HANDLED;
3366 }
3367
3368 #ifdef CONFIG_IGB_DCA
3369 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3370 {
3371 u32 dca_rxctrl;
3372 struct igb_adapter *adapter = rx_ring->adapter;
3373 struct e1000_hw *hw = &adapter->hw;
3374 int cpu = get_cpu();
3375 int q = rx_ring->reg_idx;
3376
3377 if (rx_ring->cpu != cpu) {
3378 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3379 if (hw->mac.type == e1000_82576) {
3380 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3381 dca_rxctrl |= dca_get_tag(cpu) <<
3382 E1000_DCA_RXCTRL_CPUID_SHIFT;
3383 } else {
3384 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3385 dca_rxctrl |= dca_get_tag(cpu);
3386 }
3387 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3388 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3389 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3390 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3391 rx_ring->cpu = cpu;
3392 }
3393 put_cpu();
3394 }
3395
3396 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3397 {
3398 u32 dca_txctrl;
3399 struct igb_adapter *adapter = tx_ring->adapter;
3400 struct e1000_hw *hw = &adapter->hw;
3401 int cpu = get_cpu();
3402 int q = tx_ring->reg_idx;
3403
3404 if (tx_ring->cpu != cpu) {
3405 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3406 if (hw->mac.type == e1000_82576) {
3407 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3408 dca_txctrl |= dca_get_tag(cpu) <<
3409 E1000_DCA_TXCTRL_CPUID_SHIFT;
3410 } else {
3411 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3412 dca_txctrl |= dca_get_tag(cpu);
3413 }
3414 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3415 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3416 tx_ring->cpu = cpu;
3417 }
3418 put_cpu();
3419 }
3420
3421 static void igb_setup_dca(struct igb_adapter *adapter)
3422 {
3423 int i;
3424
3425 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3426 return;
3427
3428 for (i = 0; i < adapter->num_tx_queues; i++) {
3429 adapter->tx_ring[i].cpu = -1;
3430 igb_update_tx_dca(&adapter->tx_ring[i]);
3431 }
3432 for (i = 0; i < adapter->num_rx_queues; i++) {
3433 adapter->rx_ring[i].cpu = -1;
3434 igb_update_rx_dca(&adapter->rx_ring[i]);
3435 }
3436 }
3437
3438 static int __igb_notify_dca(struct device *dev, void *data)
3439 {
3440 struct net_device *netdev = dev_get_drvdata(dev);
3441 struct igb_adapter *adapter = netdev_priv(netdev);
3442 struct e1000_hw *hw = &adapter->hw;
3443 unsigned long event = *(unsigned long *)data;
3444
3445 switch (event) {
3446 case DCA_PROVIDER_ADD:
3447 /* if already enabled, don't do it again */
3448 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3449 break;
3450 /* Always use CB2 mode, difference is masked
3451 * in the CB driver. */
3452 wr32(E1000_DCA_CTRL, 2);
3453 if (dca_add_requester(dev) == 0) {
3454 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3455 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3456 igb_setup_dca(adapter);
3457 break;
3458 }
3459 /* Fall Through since DCA is disabled. */
3460 case DCA_PROVIDER_REMOVE:
3461 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3462 /* without this a class_device is left
3463 * hanging around in the sysfs model */
3464 dca_remove_requester(dev);
3465 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3466 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3467 wr32(E1000_DCA_CTRL, 1);
3468 }
3469 break;
3470 }
3471
3472 return 0;
3473 }
3474
3475 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3476 void *p)
3477 {
3478 int ret_val;
3479
3480 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3481 __igb_notify_dca);
3482
3483 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3484 }
3485 #endif /* CONFIG_IGB_DCA */
3486
3487 /**
3488 * igb_intr_msi - Interrupt Handler
3489 * @irq: interrupt number
3490 * @data: pointer to a network interface device structure
3491 **/
3492 static irqreturn_t igb_intr_msi(int irq, void *data)
3493 {
3494 struct net_device *netdev = data;
3495 struct igb_adapter *adapter = netdev_priv(netdev);
3496 struct e1000_hw *hw = &adapter->hw;
3497 /* read ICR disables interrupts using IAM */
3498 u32 icr = rd32(E1000_ICR);
3499
3500 igb_write_itr(adapter->rx_ring);
3501
3502 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3503 hw->mac.get_link_status = 1;
3504 if (!test_bit(__IGB_DOWN, &adapter->state))
3505 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3506 }
3507
3508 napi_schedule(&adapter->rx_ring[0].napi);
3509
3510 return IRQ_HANDLED;
3511 }
3512
3513 /**
3514 * igb_intr - Interrupt Handler
3515 * @irq: interrupt number
3516 * @data: pointer to a network interface device structure
3517 **/
3518 static irqreturn_t igb_intr(int irq, void *data)
3519 {
3520 struct net_device *netdev = data;
3521 struct igb_adapter *adapter = netdev_priv(netdev);
3522 struct e1000_hw *hw = &adapter->hw;
3523 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3524 * need for the IMC write */
3525 u32 icr = rd32(E1000_ICR);
3526 u32 eicr = 0;
3527 if (!icr)
3528 return IRQ_NONE; /* Not our interrupt */
3529
3530 igb_write_itr(adapter->rx_ring);
3531
3532 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3533 * not set, then the adapter didn't send an interrupt */
3534 if (!(icr & E1000_ICR_INT_ASSERTED))
3535 return IRQ_NONE;
3536
3537 eicr = rd32(E1000_EICR);
3538
3539 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3540 hw->mac.get_link_status = 1;
3541 /* guard against interrupt when we're going down */
3542 if (!test_bit(__IGB_DOWN, &adapter->state))
3543 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3544 }
3545
3546 napi_schedule(&adapter->rx_ring[0].napi);
3547
3548 return IRQ_HANDLED;
3549 }
3550
3551 /**
3552 * igb_poll - NAPI Rx polling callback
3553 * @napi: napi polling structure
3554 * @budget: count of how many packets we should handle
3555 **/
3556 static int igb_poll(struct napi_struct *napi, int budget)
3557 {
3558 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3559 struct igb_adapter *adapter = rx_ring->adapter;
3560 struct net_device *netdev = adapter->netdev;
3561 int tx_clean_complete, work_done = 0;
3562
3563 /* this poll routine only supports one tx and one rx queue */
3564 #ifdef CONFIG_IGB_DCA
3565 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3566 igb_update_tx_dca(&adapter->tx_ring[0]);
3567 #endif
3568 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3569
3570 #ifdef CONFIG_IGB_DCA
3571 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3572 igb_update_rx_dca(&adapter->rx_ring[0]);
3573 #endif
3574 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3575
3576 /* If no Tx and not enough Rx work done, exit the polling mode */
3577 if ((tx_clean_complete && (work_done < budget)) ||
3578 !netif_running(netdev)) {
3579 if (adapter->itr_setting & 3)
3580 igb_set_itr(adapter);
3581 napi_complete(napi);
3582 if (!test_bit(__IGB_DOWN, &adapter->state))
3583 igb_irq_enable(adapter);
3584 return 0;
3585 }
3586
3587 return 1;
3588 }
3589
3590 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3591 {
3592 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3593 struct igb_adapter *adapter = rx_ring->adapter;
3594 struct e1000_hw *hw = &adapter->hw;
3595 struct net_device *netdev = adapter->netdev;
3596 int work_done = 0;
3597
3598 #ifdef CONFIG_IGB_DCA
3599 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3600 igb_update_rx_dca(rx_ring);
3601 #endif
3602 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3603
3604
3605 /* If not enough Rx work done, exit the polling mode */
3606 if ((work_done == 0) || !netif_running(netdev)) {
3607 napi_complete(napi);
3608
3609 if (adapter->itr_setting & 3) {
3610 if (adapter->num_rx_queues == 1)
3611 igb_set_itr(adapter);
3612 else
3613 igb_update_ring_itr(rx_ring);
3614 }
3615
3616 if (!test_bit(__IGB_DOWN, &adapter->state))
3617 wr32(E1000_EIMS, rx_ring->eims_value);
3618
3619 return 0;
3620 }
3621
3622 return 1;
3623 }
3624
3625 /**
3626 * igb_clean_tx_irq - Reclaim resources after transmit completes
3627 * @adapter: board private structure
3628 * returns true if ring is completely cleaned
3629 **/
3630 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3631 {
3632 struct igb_adapter *adapter = tx_ring->adapter;
3633 struct net_device *netdev = adapter->netdev;
3634 struct e1000_hw *hw = &adapter->hw;
3635 struct igb_buffer *buffer_info;
3636 struct sk_buff *skb;
3637 union e1000_adv_tx_desc *tx_desc, *eop_desc;
3638 unsigned int total_bytes = 0, total_packets = 0;
3639 unsigned int i, eop, count = 0;
3640 bool cleaned = false;
3641
3642 i = tx_ring->next_to_clean;
3643 eop = tx_ring->buffer_info[i].next_to_watch;
3644 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3645
3646 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3647 (count < tx_ring->count)) {
3648 for (cleaned = false; !cleaned; count++) {
3649 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3650 buffer_info = &tx_ring->buffer_info[i];
3651 cleaned = (i == eop);
3652 skb = buffer_info->skb;
3653
3654 if (skb) {
3655 unsigned int segs, bytecount;
3656 /* gso_segs is currently only valid for tcp */
3657 segs = skb_shinfo(skb)->gso_segs ?: 1;
3658 /* multiply data chunks by size of headers */
3659 bytecount = ((segs - 1) * skb_headlen(skb)) +
3660 skb->len;
3661 total_packets += segs;
3662 total_bytes += bytecount;
3663 }
3664
3665 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3666 tx_desc->wb.status = 0;
3667
3668 i++;
3669 if (i == tx_ring->count)
3670 i = 0;
3671 }
3672
3673 eop = tx_ring->buffer_info[i].next_to_watch;
3674 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3675 }
3676
3677 tx_ring->next_to_clean = i;
3678
3679 if (unlikely(count &&
3680 netif_carrier_ok(netdev) &&
3681 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3682 /* Make sure that anybody stopping the queue after this
3683 * sees the new next_to_clean.
3684 */
3685 smp_mb();
3686 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3687 !(test_bit(__IGB_DOWN, &adapter->state))) {
3688 netif_wake_subqueue(netdev, tx_ring->queue_index);
3689 ++adapter->restart_queue;
3690 }
3691 }
3692
3693 if (tx_ring->detect_tx_hung) {
3694 /* Detect a transmit hang in hardware, this serializes the
3695 * check with the clearing of time_stamp and movement of i */
3696 tx_ring->detect_tx_hung = false;
3697 if (tx_ring->buffer_info[i].time_stamp &&
3698 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3699 (adapter->tx_timeout_factor * HZ))
3700 && !(rd32(E1000_STATUS) &
3701 E1000_STATUS_TXOFF)) {
3702
3703 /* detected Tx unit hang */
3704 dev_err(&adapter->pdev->dev,
3705 "Detected Tx Unit Hang\n"
3706 " Tx Queue <%d>\n"
3707 " TDH <%x>\n"
3708 " TDT <%x>\n"
3709 " next_to_use <%x>\n"
3710 " next_to_clean <%x>\n"
3711 "buffer_info[next_to_clean]\n"
3712 " time_stamp <%lx>\n"
3713 " next_to_watch <%x>\n"
3714 " jiffies <%lx>\n"
3715 " desc.status <%x>\n",
3716 tx_ring->queue_index,
3717 readl(adapter->hw.hw_addr + tx_ring->head),
3718 readl(adapter->hw.hw_addr + tx_ring->tail),
3719 tx_ring->next_to_use,
3720 tx_ring->next_to_clean,
3721 tx_ring->buffer_info[i].time_stamp,
3722 eop,
3723 jiffies,
3724 eop_desc->wb.status);
3725 netif_stop_subqueue(netdev, tx_ring->queue_index);
3726 }
3727 }
3728 tx_ring->total_bytes += total_bytes;
3729 tx_ring->total_packets += total_packets;
3730 tx_ring->tx_stats.bytes += total_bytes;
3731 tx_ring->tx_stats.packets += total_packets;
3732 adapter->net_stats.tx_bytes += total_bytes;
3733 adapter->net_stats.tx_packets += total_packets;
3734 return (count < tx_ring->count);
3735 }
3736
3737 /**
3738 * igb_receive_skb - helper function to handle rx indications
3739 * @ring: pointer to receive ring receving this packet
3740 * @status: descriptor status field as written by hardware
3741 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3742 * @skb: pointer to sk_buff to be indicated to stack
3743 **/
3744 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3745 union e1000_adv_rx_desc * rx_desc,
3746 struct sk_buff *skb)
3747 {
3748 struct igb_adapter * adapter = ring->adapter;
3749 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3750
3751 skb_record_rx_queue(skb, ring->queue_index);
3752 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3753 if (vlan_extracted)
3754 vlan_gro_receive(&ring->napi, adapter->vlgrp,
3755 le16_to_cpu(rx_desc->wb.upper.vlan),
3756 skb);
3757 else
3758 napi_gro_receive(&ring->napi, skb);
3759 } else {
3760 if (vlan_extracted)
3761 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3762 le16_to_cpu(rx_desc->wb.upper.vlan));
3763 else
3764 netif_receive_skb(skb);
3765 }
3766 }
3767
3768
3769 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3770 u32 status_err, struct sk_buff *skb)
3771 {
3772 skb->ip_summed = CHECKSUM_NONE;
3773
3774 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3775 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3776 return;
3777 /* TCP/UDP checksum error bit is set */
3778 if (status_err &
3779 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3780 /* let the stack verify checksum errors */
3781 adapter->hw_csum_err++;
3782 return;
3783 }
3784 /* It must be a TCP or UDP packet with a valid checksum */
3785 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3786 skb->ip_summed = CHECKSUM_UNNECESSARY;
3787
3788 adapter->hw_csum_good++;
3789 }
3790
3791 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3792 int *work_done, int budget)
3793 {
3794 struct igb_adapter *adapter = rx_ring->adapter;
3795 struct net_device *netdev = adapter->netdev;
3796 struct pci_dev *pdev = adapter->pdev;
3797 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3798 struct igb_buffer *buffer_info , *next_buffer;
3799 struct sk_buff *skb;
3800 unsigned int i;
3801 u32 length, hlen, staterr;
3802 bool cleaned = false;
3803 int cleaned_count = 0;
3804 unsigned int total_bytes = 0, total_packets = 0;
3805
3806 i = rx_ring->next_to_clean;
3807 buffer_info = &rx_ring->buffer_info[i];
3808 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3809 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3810
3811 while (staterr & E1000_RXD_STAT_DD) {
3812 if (*work_done >= budget)
3813 break;
3814 (*work_done)++;
3815
3816 skb = buffer_info->skb;
3817 prefetch(skb->data - NET_IP_ALIGN);
3818 buffer_info->skb = NULL;
3819
3820 i++;
3821 if (i == rx_ring->count)
3822 i = 0;
3823 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3824 prefetch(next_rxd);
3825 next_buffer = &rx_ring->buffer_info[i];
3826
3827 length = le16_to_cpu(rx_desc->wb.upper.length);
3828 cleaned = true;
3829 cleaned_count++;
3830
3831 if (!adapter->rx_ps_hdr_size) {
3832 pci_unmap_single(pdev, buffer_info->dma,
3833 adapter->rx_buffer_len +
3834 NET_IP_ALIGN,
3835 PCI_DMA_FROMDEVICE);
3836 skb_put(skb, length);
3837 goto send_up;
3838 }
3839
3840 /* HW will not DMA in data larger than the given buffer, even
3841 * if it parses the (NFS, of course) header to be larger. In
3842 * that case, it fills the header buffer and spills the rest
3843 * into the page.
3844 */
3845 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3846 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3847 if (hlen > adapter->rx_ps_hdr_size)
3848 hlen = adapter->rx_ps_hdr_size;
3849
3850 if (!skb_shinfo(skb)->nr_frags) {
3851 pci_unmap_single(pdev, buffer_info->dma,
3852 adapter->rx_ps_hdr_size +
3853 NET_IP_ALIGN,
3854 PCI_DMA_FROMDEVICE);
3855 skb_put(skb, hlen);
3856 }
3857
3858 if (length) {
3859 pci_unmap_page(pdev, buffer_info->page_dma,
3860 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3861 buffer_info->page_dma = 0;
3862
3863 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3864 buffer_info->page,
3865 buffer_info->page_offset,
3866 length);
3867
3868 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3869 (page_count(buffer_info->page) != 1))
3870 buffer_info->page = NULL;
3871 else
3872 get_page(buffer_info->page);
3873
3874 skb->len += length;
3875 skb->data_len += length;
3876
3877 skb->truesize += length;
3878 }
3879
3880 if (!(staterr & E1000_RXD_STAT_EOP)) {
3881 buffer_info->skb = next_buffer->skb;
3882 buffer_info->dma = next_buffer->dma;
3883 next_buffer->skb = skb;
3884 next_buffer->dma = 0;
3885 goto next_desc;
3886 }
3887 send_up:
3888 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3889 dev_kfree_skb_irq(skb);
3890 goto next_desc;
3891 }
3892
3893 total_bytes += skb->len;
3894 total_packets++;
3895
3896 igb_rx_checksum_adv(adapter, staterr, skb);
3897
3898 skb->protocol = eth_type_trans(skb, netdev);
3899
3900 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3901
3902 next_desc:
3903 rx_desc->wb.upper.status_error = 0;
3904
3905 /* return some buffers to hardware, one at a time is too slow */
3906 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3907 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3908 cleaned_count = 0;
3909 }
3910
3911 /* use prefetched values */
3912 rx_desc = next_rxd;
3913 buffer_info = next_buffer;
3914 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3915 }
3916
3917 rx_ring->next_to_clean = i;
3918 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3919
3920 if (cleaned_count)
3921 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3922
3923 rx_ring->total_packets += total_packets;
3924 rx_ring->total_bytes += total_bytes;
3925 rx_ring->rx_stats.packets += total_packets;
3926 rx_ring->rx_stats.bytes += total_bytes;
3927 adapter->net_stats.rx_bytes += total_bytes;
3928 adapter->net_stats.rx_packets += total_packets;
3929 return cleaned;
3930 }
3931
3932
3933 /**
3934 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3935 * @adapter: address of board private structure
3936 **/
3937 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3938 int cleaned_count)
3939 {
3940 struct igb_adapter *adapter = rx_ring->adapter;
3941 struct net_device *netdev = adapter->netdev;
3942 struct pci_dev *pdev = adapter->pdev;
3943 union e1000_adv_rx_desc *rx_desc;
3944 struct igb_buffer *buffer_info;
3945 struct sk_buff *skb;
3946 unsigned int i;
3947 int bufsz;
3948
3949 i = rx_ring->next_to_use;
3950 buffer_info = &rx_ring->buffer_info[i];
3951
3952 if (adapter->rx_ps_hdr_size)
3953 bufsz = adapter->rx_ps_hdr_size;
3954 else
3955 bufsz = adapter->rx_buffer_len;
3956 bufsz += NET_IP_ALIGN;
3957
3958 while (cleaned_count--) {
3959 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3960
3961 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3962 if (!buffer_info->page) {
3963 buffer_info->page = alloc_page(GFP_ATOMIC);
3964 if (!buffer_info->page) {
3965 adapter->alloc_rx_buff_failed++;
3966 goto no_buffers;
3967 }
3968 buffer_info->page_offset = 0;
3969 } else {
3970 buffer_info->page_offset ^= PAGE_SIZE / 2;
3971 }
3972 buffer_info->page_dma =
3973 pci_map_page(pdev, buffer_info->page,
3974 buffer_info->page_offset,
3975 PAGE_SIZE / 2,
3976 PCI_DMA_FROMDEVICE);
3977 }
3978
3979 if (!buffer_info->skb) {
3980 skb = netdev_alloc_skb(netdev, bufsz);
3981 if (!skb) {
3982 adapter->alloc_rx_buff_failed++;
3983 goto no_buffers;
3984 }
3985
3986 /* Make buffer alignment 2 beyond a 16 byte boundary
3987 * this will result in a 16 byte aligned IP header after
3988 * the 14 byte MAC header is removed
3989 */
3990 skb_reserve(skb, NET_IP_ALIGN);
3991
3992 buffer_info->skb = skb;
3993 buffer_info->dma = pci_map_single(pdev, skb->data,
3994 bufsz,
3995 PCI_DMA_FROMDEVICE);
3996 }
3997 /* Refresh the desc even if buffer_addrs didn't change because
3998 * each write-back erases this info. */
3999 if (adapter->rx_ps_hdr_size) {
4000 rx_desc->read.pkt_addr =
4001 cpu_to_le64(buffer_info->page_dma);
4002 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4003 } else {
4004 rx_desc->read.pkt_addr =
4005 cpu_to_le64(buffer_info->dma);
4006 rx_desc->read.hdr_addr = 0;
4007 }
4008
4009 i++;
4010 if (i == rx_ring->count)
4011 i = 0;
4012 buffer_info = &rx_ring->buffer_info[i];
4013 }
4014
4015 no_buffers:
4016 if (rx_ring->next_to_use != i) {
4017 rx_ring->next_to_use = i;
4018 if (i == 0)
4019 i = (rx_ring->count - 1);
4020 else
4021 i--;
4022
4023 /* Force memory writes to complete before letting h/w
4024 * know there are new descriptors to fetch. (Only
4025 * applicable for weak-ordered memory model archs,
4026 * such as IA-64). */
4027 wmb();
4028 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4029 }
4030 }
4031
4032 /**
4033 * igb_mii_ioctl -
4034 * @netdev:
4035 * @ifreq:
4036 * @cmd:
4037 **/
4038 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4039 {
4040 struct igb_adapter *adapter = netdev_priv(netdev);
4041 struct mii_ioctl_data *data = if_mii(ifr);
4042
4043 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4044 return -EOPNOTSUPP;
4045
4046 switch (cmd) {
4047 case SIOCGMIIPHY:
4048 data->phy_id = adapter->hw.phy.addr;
4049 break;
4050 case SIOCGMIIREG:
4051 if (!capable(CAP_NET_ADMIN))
4052 return -EPERM;
4053 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4054 &data->val_out))
4055 return -EIO;
4056 break;
4057 case SIOCSMIIREG:
4058 default:
4059 return -EOPNOTSUPP;
4060 }
4061 return 0;
4062 }
4063
4064 /**
4065 * igb_ioctl -
4066 * @netdev:
4067 * @ifreq:
4068 * @cmd:
4069 **/
4070 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4071 {
4072 switch (cmd) {
4073 case SIOCGMIIPHY:
4074 case SIOCGMIIREG:
4075 case SIOCSMIIREG:
4076 return igb_mii_ioctl(netdev, ifr, cmd);
4077 default:
4078 return -EOPNOTSUPP;
4079 }
4080 }
4081
4082 static void igb_vlan_rx_register(struct net_device *netdev,
4083 struct vlan_group *grp)
4084 {
4085 struct igb_adapter *adapter = netdev_priv(netdev);
4086 struct e1000_hw *hw = &adapter->hw;
4087 u32 ctrl, rctl;
4088
4089 igb_irq_disable(adapter);
4090 adapter->vlgrp = grp;
4091
4092 if (grp) {
4093 /* enable VLAN tag insert/strip */
4094 ctrl = rd32(E1000_CTRL);
4095 ctrl |= E1000_CTRL_VME;
4096 wr32(E1000_CTRL, ctrl);
4097
4098 /* enable VLAN receive filtering */
4099 rctl = rd32(E1000_RCTL);
4100 rctl &= ~E1000_RCTL_CFIEN;
4101 wr32(E1000_RCTL, rctl);
4102 igb_update_mng_vlan(adapter);
4103 wr32(E1000_RLPML,
4104 adapter->max_frame_size + VLAN_TAG_SIZE);
4105 } else {
4106 /* disable VLAN tag insert/strip */
4107 ctrl = rd32(E1000_CTRL);
4108 ctrl &= ~E1000_CTRL_VME;
4109 wr32(E1000_CTRL, ctrl);
4110
4111 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4112 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4113 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4114 }
4115 wr32(E1000_RLPML,
4116 adapter->max_frame_size);
4117 }
4118
4119 if (!test_bit(__IGB_DOWN, &adapter->state))
4120 igb_irq_enable(adapter);
4121 }
4122
4123 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4124 {
4125 struct igb_adapter *adapter = netdev_priv(netdev);
4126 struct e1000_hw *hw = &adapter->hw;
4127 u32 vfta, index;
4128
4129 if ((adapter->hw.mng_cookie.status &
4130 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4131 (vid == adapter->mng_vlan_id))
4132 return;
4133 /* add VID to filter table */
4134 index = (vid >> 5) & 0x7F;
4135 vfta = array_rd32(E1000_VFTA, index);
4136 vfta |= (1 << (vid & 0x1F));
4137 igb_write_vfta(&adapter->hw, index, vfta);
4138 }
4139
4140 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4141 {
4142 struct igb_adapter *adapter = netdev_priv(netdev);
4143 struct e1000_hw *hw = &adapter->hw;
4144 u32 vfta, index;
4145
4146 igb_irq_disable(adapter);
4147 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4148
4149 if (!test_bit(__IGB_DOWN, &adapter->state))
4150 igb_irq_enable(adapter);
4151
4152 if ((adapter->hw.mng_cookie.status &
4153 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4154 (vid == adapter->mng_vlan_id)) {
4155 /* release control to f/w */
4156 igb_release_hw_control(adapter);
4157 return;
4158 }
4159
4160 /* remove VID from filter table */
4161 index = (vid >> 5) & 0x7F;
4162 vfta = array_rd32(E1000_VFTA, index);
4163 vfta &= ~(1 << (vid & 0x1F));
4164 igb_write_vfta(&adapter->hw, index, vfta);
4165 }
4166
4167 static void igb_restore_vlan(struct igb_adapter *adapter)
4168 {
4169 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4170
4171 if (adapter->vlgrp) {
4172 u16 vid;
4173 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4174 if (!vlan_group_get_device(adapter->vlgrp, vid))
4175 continue;
4176 igb_vlan_rx_add_vid(adapter->netdev, vid);
4177 }
4178 }
4179 }
4180
4181 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4182 {
4183 struct e1000_mac_info *mac = &adapter->hw.mac;
4184
4185 mac->autoneg = 0;
4186
4187 /* Fiber NICs only allow 1000 gbps Full duplex */
4188 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4189 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4190 dev_err(&adapter->pdev->dev,
4191 "Unsupported Speed/Duplex configuration\n");
4192 return -EINVAL;
4193 }
4194
4195 switch (spddplx) {
4196 case SPEED_10 + DUPLEX_HALF:
4197 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4198 break;
4199 case SPEED_10 + DUPLEX_FULL:
4200 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4201 break;
4202 case SPEED_100 + DUPLEX_HALF:
4203 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4204 break;
4205 case SPEED_100 + DUPLEX_FULL:
4206 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4207 break;
4208 case SPEED_1000 + DUPLEX_FULL:
4209 mac->autoneg = 1;
4210 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4211 break;
4212 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4213 default:
4214 dev_err(&adapter->pdev->dev,
4215 "Unsupported Speed/Duplex configuration\n");
4216 return -EINVAL;
4217 }
4218 return 0;
4219 }
4220
4221
4222 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4223 {
4224 struct net_device *netdev = pci_get_drvdata(pdev);
4225 struct igb_adapter *adapter = netdev_priv(netdev);
4226 struct e1000_hw *hw = &adapter->hw;
4227 u32 ctrl, rctl, status;
4228 u32 wufc = adapter->wol;
4229 #ifdef CONFIG_PM
4230 int retval = 0;
4231 #endif
4232
4233 netif_device_detach(netdev);
4234
4235 if (netif_running(netdev))
4236 igb_close(netdev);
4237
4238 igb_reset_interrupt_capability(adapter);
4239
4240 igb_free_queues(adapter);
4241
4242 #ifdef CONFIG_PM
4243 retval = pci_save_state(pdev);
4244 if (retval)
4245 return retval;
4246 #endif
4247
4248 status = rd32(E1000_STATUS);
4249 if (status & E1000_STATUS_LU)
4250 wufc &= ~E1000_WUFC_LNKC;
4251
4252 if (wufc) {
4253 igb_setup_rctl(adapter);
4254 igb_set_multi(netdev);
4255
4256 /* turn on all-multi mode if wake on multicast is enabled */
4257 if (wufc & E1000_WUFC_MC) {
4258 rctl = rd32(E1000_RCTL);
4259 rctl |= E1000_RCTL_MPE;
4260 wr32(E1000_RCTL, rctl);
4261 }
4262
4263 ctrl = rd32(E1000_CTRL);
4264 /* advertise wake from D3Cold */
4265 #define E1000_CTRL_ADVD3WUC 0x00100000
4266 /* phy power management enable */
4267 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4268 ctrl |= E1000_CTRL_ADVD3WUC;
4269 wr32(E1000_CTRL, ctrl);
4270
4271 /* Allow time for pending master requests to run */
4272 igb_disable_pcie_master(&adapter->hw);
4273
4274 wr32(E1000_WUC, E1000_WUC_PME_EN);
4275 wr32(E1000_WUFC, wufc);
4276 } else {
4277 wr32(E1000_WUC, 0);
4278 wr32(E1000_WUFC, 0);
4279 }
4280
4281 /* make sure adapter isn't asleep if manageability/wol is enabled */
4282 if (wufc || adapter->en_mng_pt) {
4283 pci_enable_wake(pdev, PCI_D3hot, 1);
4284 pci_enable_wake(pdev, PCI_D3cold, 1);
4285 } else {
4286 igb_shutdown_fiber_serdes_link_82575(hw);
4287 pci_enable_wake(pdev, PCI_D3hot, 0);
4288 pci_enable_wake(pdev, PCI_D3cold, 0);
4289 }
4290
4291 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4292 * would have already happened in close and is redundant. */
4293 igb_release_hw_control(adapter);
4294
4295 pci_disable_device(pdev);
4296
4297 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4298
4299 return 0;
4300 }
4301
4302 #ifdef CONFIG_PM
4303 static int igb_resume(struct pci_dev *pdev)
4304 {
4305 struct net_device *netdev = pci_get_drvdata(pdev);
4306 struct igb_adapter *adapter = netdev_priv(netdev);
4307 struct e1000_hw *hw = &adapter->hw;
4308 u32 err;
4309
4310 pci_set_power_state(pdev, PCI_D0);
4311 pci_restore_state(pdev);
4312
4313 err = pci_enable_device_mem(pdev);
4314 if (err) {
4315 dev_err(&pdev->dev,
4316 "igb: Cannot enable PCI device from suspend\n");
4317 return err;
4318 }
4319 pci_set_master(pdev);
4320
4321 pci_enable_wake(pdev, PCI_D3hot, 0);
4322 pci_enable_wake(pdev, PCI_D3cold, 0);
4323
4324 igb_set_interrupt_capability(adapter);
4325
4326 if (igb_alloc_queues(adapter)) {
4327 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4328 return -ENOMEM;
4329 }
4330
4331 /* e1000_power_up_phy(adapter); */
4332
4333 igb_reset(adapter);
4334 wr32(E1000_WUS, ~0);
4335
4336 if (netif_running(netdev)) {
4337 err = igb_open(netdev);
4338 if (err)
4339 return err;
4340 }
4341
4342 netif_device_attach(netdev);
4343
4344 /* let the f/w know that the h/w is now under the control of the
4345 * driver. */
4346 igb_get_hw_control(adapter);
4347
4348 return 0;
4349 }
4350 #endif
4351
4352 static void igb_shutdown(struct pci_dev *pdev)
4353 {
4354 igb_suspend(pdev, PMSG_SUSPEND);
4355 }
4356
4357 #ifdef CONFIG_NET_POLL_CONTROLLER
4358 /*
4359 * Polling 'interrupt' - used by things like netconsole to send skbs
4360 * without having to re-enable interrupts. It's not called while
4361 * the interrupt routine is executing.
4362 */
4363 static void igb_netpoll(struct net_device *netdev)
4364 {
4365 struct igb_adapter *adapter = netdev_priv(netdev);
4366 int i;
4367 int work_done = 0;
4368
4369 igb_irq_disable(adapter);
4370 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4371
4372 for (i = 0; i < adapter->num_tx_queues; i++)
4373 igb_clean_tx_irq(&adapter->tx_ring[i]);
4374
4375 for (i = 0; i < adapter->num_rx_queues; i++)
4376 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4377 &work_done,
4378 adapter->rx_ring[i].napi.weight);
4379
4380 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4381 igb_irq_enable(adapter);
4382 }
4383 #endif /* CONFIG_NET_POLL_CONTROLLER */
4384
4385 /**
4386 * igb_io_error_detected - called when PCI error is detected
4387 * @pdev: Pointer to PCI device
4388 * @state: The current pci connection state
4389 *
4390 * This function is called after a PCI bus error affecting
4391 * this device has been detected.
4392 */
4393 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4394 pci_channel_state_t state)
4395 {
4396 struct net_device *netdev = pci_get_drvdata(pdev);
4397 struct igb_adapter *adapter = netdev_priv(netdev);
4398
4399 netif_device_detach(netdev);
4400
4401 if (netif_running(netdev))
4402 igb_down(adapter);
4403 pci_disable_device(pdev);
4404
4405 /* Request a slot slot reset. */
4406 return PCI_ERS_RESULT_NEED_RESET;
4407 }
4408
4409 /**
4410 * igb_io_slot_reset - called after the pci bus has been reset.
4411 * @pdev: Pointer to PCI device
4412 *
4413 * Restart the card from scratch, as if from a cold-boot. Implementation
4414 * resembles the first-half of the igb_resume routine.
4415 */
4416 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4417 {
4418 struct net_device *netdev = pci_get_drvdata(pdev);
4419 struct igb_adapter *adapter = netdev_priv(netdev);
4420 struct e1000_hw *hw = &adapter->hw;
4421 pci_ers_result_t result;
4422 int err;
4423
4424 if (pci_enable_device_mem(pdev)) {
4425 dev_err(&pdev->dev,
4426 "Cannot re-enable PCI device after reset.\n");
4427 result = PCI_ERS_RESULT_DISCONNECT;
4428 } else {
4429 pci_set_master(pdev);
4430 pci_restore_state(pdev);
4431
4432 pci_enable_wake(pdev, PCI_D3hot, 0);
4433 pci_enable_wake(pdev, PCI_D3cold, 0);
4434
4435 igb_reset(adapter);
4436 wr32(E1000_WUS, ~0);
4437 result = PCI_ERS_RESULT_RECOVERED;
4438 }
4439
4440 err = pci_cleanup_aer_uncorrect_error_status(pdev);
4441 if (err) {
4442 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4443 "failed 0x%0x\n", err);
4444 /* non-fatal, continue */
4445 }
4446
4447 return result;
4448 }
4449
4450 /**
4451 * igb_io_resume - called when traffic can start flowing again.
4452 * @pdev: Pointer to PCI device
4453 *
4454 * This callback is called when the error recovery driver tells us that
4455 * its OK to resume normal operation. Implementation resembles the
4456 * second-half of the igb_resume routine.
4457 */
4458 static void igb_io_resume(struct pci_dev *pdev)
4459 {
4460 struct net_device *netdev = pci_get_drvdata(pdev);
4461 struct igb_adapter *adapter = netdev_priv(netdev);
4462
4463 if (netif_running(netdev)) {
4464 if (igb_up(adapter)) {
4465 dev_err(&pdev->dev, "igb_up failed after reset\n");
4466 return;
4467 }
4468 }
4469
4470 netif_device_attach(netdev);
4471
4472 /* let the f/w know that the h/w is now under the control of the
4473 * driver. */
4474 igb_get_hw_control(adapter);
4475 }
4476
4477 /* igb_main.c */
This page took 0.128341 seconds and 5 git commands to generate.