hwmon: (max6650) Add support for alarms
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
72 /* required last entry */
73 {0, }
74 };
75
76 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
77
78 void igb_reset(struct igb_adapter *);
79 static int igb_setup_all_tx_resources(struct igb_adapter *);
80 static int igb_setup_all_rx_resources(struct igb_adapter *);
81 static void igb_free_all_tx_resources(struct igb_adapter *);
82 static void igb_free_all_rx_resources(struct igb_adapter *);
83 void igb_update_stats(struct igb_adapter *);
84 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
85 static void __devexit igb_remove(struct pci_dev *pdev);
86 static int igb_sw_init(struct igb_adapter *);
87 static int igb_open(struct net_device *);
88 static int igb_close(struct net_device *);
89 static void igb_configure_tx(struct igb_adapter *);
90 static void igb_configure_rx(struct igb_adapter *);
91 static void igb_setup_rctl(struct igb_adapter *);
92 static void igb_clean_all_tx_rings(struct igb_adapter *);
93 static void igb_clean_all_rx_rings(struct igb_adapter *);
94 static void igb_clean_tx_ring(struct igb_ring *);
95 static void igb_clean_rx_ring(struct igb_ring *);
96 static void igb_set_multi(struct net_device *);
97 static void igb_update_phy_info(unsigned long);
98 static void igb_watchdog(unsigned long);
99 static void igb_watchdog_task(struct work_struct *);
100 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
101 struct igb_ring *);
102 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static irqreturn_t igb_intr(int irq, void *);
107 static irqreturn_t igb_intr_msi(int irq, void *);
108 static irqreturn_t igb_msix_other(int irq, void *);
109 static irqreturn_t igb_msix_rx(int irq, void *);
110 static irqreturn_t igb_msix_tx(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_rx_dca(struct igb_ring *);
113 static void igb_update_tx_dca(struct igb_ring *);
114 static void igb_setup_dca(struct igb_adapter *);
115 #endif /* CONFIG_IGB_DCA */
116 static bool igb_clean_tx_irq(struct igb_ring *);
117 static int igb_poll(struct napi_struct *, int);
118 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
119 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
120 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121 static void igb_tx_timeout(struct net_device *);
122 static void igb_reset_task(struct work_struct *);
123 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124 static void igb_vlan_rx_add_vid(struct net_device *, u16);
125 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126 static void igb_restore_vlan(struct igb_adapter *);
127 static void igb_ping_all_vfs(struct igb_adapter *);
128 static void igb_msg_task(struct igb_adapter *);
129 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
130 static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
131 static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
132 static void igb_vmm_control(struct igb_adapter *);
133 static inline void igb_set_vmolr(struct e1000_hw *, int);
134 static inline int igb_set_vf_rlpml(struct igb_adapter *, int, int);
135 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
136 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
137
138 #ifdef CONFIG_PM
139 static int igb_suspend(struct pci_dev *, pm_message_t);
140 static int igb_resume(struct pci_dev *);
141 #endif
142 static void igb_shutdown(struct pci_dev *);
143 #ifdef CONFIG_IGB_DCA
144 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
145 static struct notifier_block dca_notifier = {
146 .notifier_call = igb_notify_dca,
147 .next = NULL,
148 .priority = 0
149 };
150 #endif
151 #ifdef CONFIG_NET_POLL_CONTROLLER
152 /* for netdump / net console */
153 static void igb_netpoll(struct net_device *);
154 #endif
155 #ifdef CONFIG_PCI_IOV
156 static unsigned int max_vfs = 0;
157 module_param(max_vfs, uint, 0);
158 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
159 "per physical function");
160 #endif /* CONFIG_PCI_IOV */
161
162 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
163 pci_channel_state_t);
164 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
165 static void igb_io_resume(struct pci_dev *);
166
167 static struct pci_error_handlers igb_err_handler = {
168 .error_detected = igb_io_error_detected,
169 .slot_reset = igb_io_slot_reset,
170 .resume = igb_io_resume,
171 };
172
173
174 static struct pci_driver igb_driver = {
175 .name = igb_driver_name,
176 .id_table = igb_pci_tbl,
177 .probe = igb_probe,
178 .remove = __devexit_p(igb_remove),
179 #ifdef CONFIG_PM
180 /* Power Managment Hooks */
181 .suspend = igb_suspend,
182 .resume = igb_resume,
183 #endif
184 .shutdown = igb_shutdown,
185 .err_handler = &igb_err_handler
186 };
187
188 static int global_quad_port_a; /* global quad port a indication */
189
190 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
191 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
192 MODULE_LICENSE("GPL");
193 MODULE_VERSION(DRV_VERSION);
194
195 /**
196 * Scale the NIC clock cycle by a large factor so that
197 * relatively small clock corrections can be added or
198 * substracted at each clock tick. The drawbacks of a
199 * large factor are a) that the clock register overflows
200 * more quickly (not such a big deal) and b) that the
201 * increment per tick has to fit into 24 bits.
202 *
203 * Note that
204 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
205 * IGB_TSYNC_SCALE
206 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
207 *
208 * The base scale factor is intentionally a power of two
209 * so that the division in %struct timecounter can be done with
210 * a shift.
211 */
212 #define IGB_TSYNC_SHIFT (19)
213 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
214
215 /**
216 * The duration of one clock cycle of the NIC.
217 *
218 * @todo This hard-coded value is part of the specification and might change
219 * in future hardware revisions. Add revision check.
220 */
221 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
222
223 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
224 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
225 #endif
226
227 /**
228 * igb_read_clock - read raw cycle counter (to be used by time counter)
229 */
230 static cycle_t igb_read_clock(const struct cyclecounter *tc)
231 {
232 struct igb_adapter *adapter =
233 container_of(tc, struct igb_adapter, cycles);
234 struct e1000_hw *hw = &adapter->hw;
235 u64 stamp;
236
237 stamp = rd32(E1000_SYSTIML);
238 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
239
240 return stamp;
241 }
242
243 #ifdef DEBUG
244 /**
245 * igb_get_hw_dev_name - return device name string
246 * used by hardware layer to print debugging information
247 **/
248 char *igb_get_hw_dev_name(struct e1000_hw *hw)
249 {
250 struct igb_adapter *adapter = hw->back;
251 return adapter->netdev->name;
252 }
253
254 /**
255 * igb_get_time_str - format current NIC and system time as string
256 */
257 static char *igb_get_time_str(struct igb_adapter *adapter,
258 char buffer[160])
259 {
260 cycle_t hw = adapter->cycles.read(&adapter->cycles);
261 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
262 struct timespec sys;
263 struct timespec delta;
264 getnstimeofday(&sys);
265
266 delta = timespec_sub(nic, sys);
267
268 sprintf(buffer,
269 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
270 hw,
271 (long)nic.tv_sec, nic.tv_nsec,
272 (long)sys.tv_sec, sys.tv_nsec,
273 (long)delta.tv_sec, delta.tv_nsec);
274
275 return buffer;
276 }
277 #endif
278
279 /**
280 * igb_desc_unused - calculate if we have unused descriptors
281 **/
282 static int igb_desc_unused(struct igb_ring *ring)
283 {
284 if (ring->next_to_clean > ring->next_to_use)
285 return ring->next_to_clean - ring->next_to_use - 1;
286
287 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
288 }
289
290 /**
291 * igb_init_module - Driver Registration Routine
292 *
293 * igb_init_module is the first routine called when the driver is
294 * loaded. All it does is register with the PCI subsystem.
295 **/
296 static int __init igb_init_module(void)
297 {
298 int ret;
299 printk(KERN_INFO "%s - version %s\n",
300 igb_driver_string, igb_driver_version);
301
302 printk(KERN_INFO "%s\n", igb_copyright);
303
304 global_quad_port_a = 0;
305
306 #ifdef CONFIG_IGB_DCA
307 dca_register_notify(&dca_notifier);
308 #endif
309
310 ret = pci_register_driver(&igb_driver);
311 return ret;
312 }
313
314 module_init(igb_init_module);
315
316 /**
317 * igb_exit_module - Driver Exit Cleanup Routine
318 *
319 * igb_exit_module is called just before the driver is removed
320 * from memory.
321 **/
322 static void __exit igb_exit_module(void)
323 {
324 #ifdef CONFIG_IGB_DCA
325 dca_unregister_notify(&dca_notifier);
326 #endif
327 pci_unregister_driver(&igb_driver);
328 }
329
330 module_exit(igb_exit_module);
331
332 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
333 /**
334 * igb_cache_ring_register - Descriptor ring to register mapping
335 * @adapter: board private structure to initialize
336 *
337 * Once we know the feature-set enabled for the device, we'll cache
338 * the register offset the descriptor ring is assigned to.
339 **/
340 static void igb_cache_ring_register(struct igb_adapter *adapter)
341 {
342 int i;
343 unsigned int rbase_offset = adapter->vfs_allocated_count;
344
345 switch (adapter->hw.mac.type) {
346 case e1000_82576:
347 /* The queues are allocated for virtualization such that VF 0
348 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
349 * In order to avoid collision we start at the first free queue
350 * and continue consuming queues in the same sequence
351 */
352 for (i = 0; i < adapter->num_rx_queues; i++)
353 adapter->rx_ring[i].reg_idx = rbase_offset +
354 Q_IDX_82576(i);
355 for (i = 0; i < adapter->num_tx_queues; i++)
356 adapter->tx_ring[i].reg_idx = rbase_offset +
357 Q_IDX_82576(i);
358 break;
359 case e1000_82575:
360 default:
361 for (i = 0; i < adapter->num_rx_queues; i++)
362 adapter->rx_ring[i].reg_idx = i;
363 for (i = 0; i < adapter->num_tx_queues; i++)
364 adapter->tx_ring[i].reg_idx = i;
365 break;
366 }
367 }
368
369 /**
370 * igb_alloc_queues - Allocate memory for all rings
371 * @adapter: board private structure to initialize
372 *
373 * We allocate one ring per queue at run-time since we don't know the
374 * number of queues at compile-time.
375 **/
376 static int igb_alloc_queues(struct igb_adapter *adapter)
377 {
378 int i;
379
380 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
381 sizeof(struct igb_ring), GFP_KERNEL);
382 if (!adapter->tx_ring)
383 return -ENOMEM;
384
385 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
386 sizeof(struct igb_ring), GFP_KERNEL);
387 if (!adapter->rx_ring) {
388 kfree(adapter->tx_ring);
389 return -ENOMEM;
390 }
391
392 adapter->rx_ring->buddy = adapter->tx_ring;
393
394 for (i = 0; i < adapter->num_tx_queues; i++) {
395 struct igb_ring *ring = &(adapter->tx_ring[i]);
396 ring->count = adapter->tx_ring_count;
397 ring->adapter = adapter;
398 ring->queue_index = i;
399 }
400 for (i = 0; i < adapter->num_rx_queues; i++) {
401 struct igb_ring *ring = &(adapter->rx_ring[i]);
402 ring->count = adapter->rx_ring_count;
403 ring->adapter = adapter;
404 ring->queue_index = i;
405 ring->itr_register = E1000_ITR;
406
407 /* set a default napi handler for each rx_ring */
408 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
409 }
410
411 igb_cache_ring_register(adapter);
412 return 0;
413 }
414
415 static void igb_free_queues(struct igb_adapter *adapter)
416 {
417 int i;
418
419 for (i = 0; i < adapter->num_rx_queues; i++)
420 netif_napi_del(&adapter->rx_ring[i].napi);
421
422 adapter->num_rx_queues = 0;
423 adapter->num_tx_queues = 0;
424
425 kfree(adapter->tx_ring);
426 kfree(adapter->rx_ring);
427 }
428
429 #define IGB_N0_QUEUE -1
430 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
431 int tx_queue, int msix_vector)
432 {
433 u32 msixbm = 0;
434 struct e1000_hw *hw = &adapter->hw;
435 u32 ivar, index;
436
437 switch (hw->mac.type) {
438 case e1000_82575:
439 /* The 82575 assigns vectors using a bitmask, which matches the
440 bitmask for the EICR/EIMS/EIMC registers. To assign one
441 or more queues to a vector, we write the appropriate bits
442 into the MSIXBM register for that vector. */
443 if (rx_queue > IGB_N0_QUEUE) {
444 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
445 adapter->rx_ring[rx_queue].eims_value = msixbm;
446 }
447 if (tx_queue > IGB_N0_QUEUE) {
448 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
449 adapter->tx_ring[tx_queue].eims_value =
450 E1000_EICR_TX_QUEUE0 << tx_queue;
451 }
452 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
453 break;
454 case e1000_82576:
455 /* 82576 uses a table-based method for assigning vectors.
456 Each queue has a single entry in the table to which we write
457 a vector number along with a "valid" bit. Sadly, the layout
458 of the table is somewhat counterintuitive. */
459 if (rx_queue > IGB_N0_QUEUE) {
460 index = (rx_queue >> 1) + adapter->vfs_allocated_count;
461 ivar = array_rd32(E1000_IVAR0, index);
462 if (rx_queue & 0x1) {
463 /* vector goes into third byte of register */
464 ivar = ivar & 0xFF00FFFF;
465 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
466 } else {
467 /* vector goes into low byte of register */
468 ivar = ivar & 0xFFFFFF00;
469 ivar |= msix_vector | E1000_IVAR_VALID;
470 }
471 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
472 array_wr32(E1000_IVAR0, index, ivar);
473 }
474 if (tx_queue > IGB_N0_QUEUE) {
475 index = (tx_queue >> 1) + adapter->vfs_allocated_count;
476 ivar = array_rd32(E1000_IVAR0, index);
477 if (tx_queue & 0x1) {
478 /* vector goes into high byte of register */
479 ivar = ivar & 0x00FFFFFF;
480 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
481 } else {
482 /* vector goes into second byte of register */
483 ivar = ivar & 0xFFFF00FF;
484 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
485 }
486 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
487 array_wr32(E1000_IVAR0, index, ivar);
488 }
489 break;
490 default:
491 BUG();
492 break;
493 }
494 }
495
496 /**
497 * igb_configure_msix - Configure MSI-X hardware
498 *
499 * igb_configure_msix sets up the hardware to properly
500 * generate MSI-X interrupts.
501 **/
502 static void igb_configure_msix(struct igb_adapter *adapter)
503 {
504 u32 tmp;
505 int i, vector = 0;
506 struct e1000_hw *hw = &adapter->hw;
507
508 adapter->eims_enable_mask = 0;
509 if (hw->mac.type == e1000_82576)
510 /* Turn on MSI-X capability first, or our settings
511 * won't stick. And it will take days to debug. */
512 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
513 E1000_GPIE_PBA | E1000_GPIE_EIAME |
514 E1000_GPIE_NSICR);
515
516 for (i = 0; i < adapter->num_tx_queues; i++) {
517 struct igb_ring *tx_ring = &adapter->tx_ring[i];
518 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
519 adapter->eims_enable_mask |= tx_ring->eims_value;
520 if (tx_ring->itr_val)
521 writel(tx_ring->itr_val,
522 hw->hw_addr + tx_ring->itr_register);
523 else
524 writel(1, hw->hw_addr + tx_ring->itr_register);
525 }
526
527 for (i = 0; i < adapter->num_rx_queues; i++) {
528 struct igb_ring *rx_ring = &adapter->rx_ring[i];
529 rx_ring->buddy = NULL;
530 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
531 adapter->eims_enable_mask |= rx_ring->eims_value;
532 if (rx_ring->itr_val)
533 writel(rx_ring->itr_val,
534 hw->hw_addr + rx_ring->itr_register);
535 else
536 writel(1, hw->hw_addr + rx_ring->itr_register);
537 }
538
539
540 /* set vector for other causes, i.e. link changes */
541 switch (hw->mac.type) {
542 case e1000_82575:
543 array_wr32(E1000_MSIXBM(0), vector++,
544 E1000_EIMS_OTHER);
545
546 tmp = rd32(E1000_CTRL_EXT);
547 /* enable MSI-X PBA support*/
548 tmp |= E1000_CTRL_EXT_PBA_CLR;
549
550 /* Auto-Mask interrupts upon ICR read. */
551 tmp |= E1000_CTRL_EXT_EIAME;
552 tmp |= E1000_CTRL_EXT_IRCA;
553
554 wr32(E1000_CTRL_EXT, tmp);
555 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
556 adapter->eims_other = E1000_EIMS_OTHER;
557
558 break;
559
560 case e1000_82576:
561 tmp = (vector++ | E1000_IVAR_VALID) << 8;
562 wr32(E1000_IVAR_MISC, tmp);
563
564 adapter->eims_enable_mask = (1 << (vector)) - 1;
565 adapter->eims_other = 1 << (vector - 1);
566 break;
567 default:
568 /* do nothing, since nothing else supports MSI-X */
569 break;
570 } /* switch (hw->mac.type) */
571 wrfl();
572 }
573
574 /**
575 * igb_request_msix - Initialize MSI-X interrupts
576 *
577 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
578 * kernel.
579 **/
580 static int igb_request_msix(struct igb_adapter *adapter)
581 {
582 struct net_device *netdev = adapter->netdev;
583 int i, err = 0, vector = 0;
584
585 vector = 0;
586
587 for (i = 0; i < adapter->num_tx_queues; i++) {
588 struct igb_ring *ring = &(adapter->tx_ring[i]);
589 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
590 err = request_irq(adapter->msix_entries[vector].vector,
591 &igb_msix_tx, 0, ring->name,
592 &(adapter->tx_ring[i]));
593 if (err)
594 goto out;
595 ring->itr_register = E1000_EITR(0) + (vector << 2);
596 ring->itr_val = 976; /* ~4000 ints/sec */
597 vector++;
598 }
599 for (i = 0; i < adapter->num_rx_queues; i++) {
600 struct igb_ring *ring = &(adapter->rx_ring[i]);
601 if (strlen(netdev->name) < (IFNAMSIZ - 5))
602 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
603 else
604 memcpy(ring->name, netdev->name, IFNAMSIZ);
605 err = request_irq(adapter->msix_entries[vector].vector,
606 &igb_msix_rx, 0, ring->name,
607 &(adapter->rx_ring[i]));
608 if (err)
609 goto out;
610 ring->itr_register = E1000_EITR(0) + (vector << 2);
611 ring->itr_val = adapter->itr;
612 vector++;
613 }
614
615 err = request_irq(adapter->msix_entries[vector].vector,
616 &igb_msix_other, 0, netdev->name, netdev);
617 if (err)
618 goto out;
619
620 igb_configure_msix(adapter);
621 return 0;
622 out:
623 return err;
624 }
625
626 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
627 {
628 if (adapter->msix_entries) {
629 pci_disable_msix(adapter->pdev);
630 kfree(adapter->msix_entries);
631 adapter->msix_entries = NULL;
632 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
633 pci_disable_msi(adapter->pdev);
634 return;
635 }
636
637
638 /**
639 * igb_set_interrupt_capability - set MSI or MSI-X if supported
640 *
641 * Attempt to configure interrupts using the best available
642 * capabilities of the hardware and kernel.
643 **/
644 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
645 {
646 int err;
647 int numvecs, i;
648
649 /* Number of supported queues. */
650 /* Having more queues than CPUs doesn't make sense. */
651 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
652 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
653
654 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
655 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
656 GFP_KERNEL);
657 if (!adapter->msix_entries)
658 goto msi_only;
659
660 for (i = 0; i < numvecs; i++)
661 adapter->msix_entries[i].entry = i;
662
663 err = pci_enable_msix(adapter->pdev,
664 adapter->msix_entries,
665 numvecs);
666 if (err == 0)
667 goto out;
668
669 igb_reset_interrupt_capability(adapter);
670
671 /* If we can't do MSI-X, try MSI */
672 msi_only:
673 #ifdef CONFIG_PCI_IOV
674 /* disable SR-IOV for non MSI-X configurations */
675 if (adapter->vf_data) {
676 struct e1000_hw *hw = &adapter->hw;
677 /* disable iov and allow time for transactions to clear */
678 pci_disable_sriov(adapter->pdev);
679 msleep(500);
680
681 kfree(adapter->vf_data);
682 adapter->vf_data = NULL;
683 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
684 msleep(100);
685 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
686 }
687 #endif
688 adapter->num_rx_queues = 1;
689 adapter->num_tx_queues = 1;
690 if (!pci_enable_msi(adapter->pdev))
691 adapter->flags |= IGB_FLAG_HAS_MSI;
692 out:
693 /* Notify the stack of the (possibly) reduced Tx Queue count. */
694 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
695 return;
696 }
697
698 /**
699 * igb_request_irq - initialize interrupts
700 *
701 * Attempts to configure interrupts using the best available
702 * capabilities of the hardware and kernel.
703 **/
704 static int igb_request_irq(struct igb_adapter *adapter)
705 {
706 struct net_device *netdev = adapter->netdev;
707 struct e1000_hw *hw = &adapter->hw;
708 int err = 0;
709
710 if (adapter->msix_entries) {
711 err = igb_request_msix(adapter);
712 if (!err)
713 goto request_done;
714 /* fall back to MSI */
715 igb_reset_interrupt_capability(adapter);
716 if (!pci_enable_msi(adapter->pdev))
717 adapter->flags |= IGB_FLAG_HAS_MSI;
718 igb_free_all_tx_resources(adapter);
719 igb_free_all_rx_resources(adapter);
720 adapter->num_rx_queues = 1;
721 igb_alloc_queues(adapter);
722 } else {
723 switch (hw->mac.type) {
724 case e1000_82575:
725 wr32(E1000_MSIXBM(0),
726 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
727 break;
728 case e1000_82576:
729 wr32(E1000_IVAR0, E1000_IVAR_VALID);
730 break;
731 default:
732 break;
733 }
734 }
735
736 if (adapter->flags & IGB_FLAG_HAS_MSI) {
737 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
738 netdev->name, netdev);
739 if (!err)
740 goto request_done;
741 /* fall back to legacy interrupts */
742 igb_reset_interrupt_capability(adapter);
743 adapter->flags &= ~IGB_FLAG_HAS_MSI;
744 }
745
746 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
747 netdev->name, netdev);
748
749 if (err)
750 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
751 err);
752
753 request_done:
754 return err;
755 }
756
757 static void igb_free_irq(struct igb_adapter *adapter)
758 {
759 struct net_device *netdev = adapter->netdev;
760
761 if (adapter->msix_entries) {
762 int vector = 0, i;
763
764 for (i = 0; i < adapter->num_tx_queues; i++)
765 free_irq(adapter->msix_entries[vector++].vector,
766 &(adapter->tx_ring[i]));
767 for (i = 0; i < adapter->num_rx_queues; i++)
768 free_irq(adapter->msix_entries[vector++].vector,
769 &(adapter->rx_ring[i]));
770
771 free_irq(adapter->msix_entries[vector++].vector, netdev);
772 return;
773 }
774
775 free_irq(adapter->pdev->irq, netdev);
776 }
777
778 /**
779 * igb_irq_disable - Mask off interrupt generation on the NIC
780 * @adapter: board private structure
781 **/
782 static void igb_irq_disable(struct igb_adapter *adapter)
783 {
784 struct e1000_hw *hw = &adapter->hw;
785
786 if (adapter->msix_entries) {
787 wr32(E1000_EIAM, 0);
788 wr32(E1000_EIMC, ~0);
789 wr32(E1000_EIAC, 0);
790 }
791
792 wr32(E1000_IAM, 0);
793 wr32(E1000_IMC, ~0);
794 wrfl();
795 synchronize_irq(adapter->pdev->irq);
796 }
797
798 /**
799 * igb_irq_enable - Enable default interrupt generation settings
800 * @adapter: board private structure
801 **/
802 static void igb_irq_enable(struct igb_adapter *adapter)
803 {
804 struct e1000_hw *hw = &adapter->hw;
805
806 if (adapter->msix_entries) {
807 wr32(E1000_EIAC, adapter->eims_enable_mask);
808 wr32(E1000_EIAM, adapter->eims_enable_mask);
809 wr32(E1000_EIMS, adapter->eims_enable_mask);
810 if (adapter->vfs_allocated_count)
811 wr32(E1000_MBVFIMR, 0xFF);
812 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
813 E1000_IMS_DOUTSYNC));
814 } else {
815 wr32(E1000_IMS, IMS_ENABLE_MASK);
816 wr32(E1000_IAM, IMS_ENABLE_MASK);
817 }
818 }
819
820 static void igb_update_mng_vlan(struct igb_adapter *adapter)
821 {
822 struct net_device *netdev = adapter->netdev;
823 u16 vid = adapter->hw.mng_cookie.vlan_id;
824 u16 old_vid = adapter->mng_vlan_id;
825 if (adapter->vlgrp) {
826 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
827 if (adapter->hw.mng_cookie.status &
828 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
829 igb_vlan_rx_add_vid(netdev, vid);
830 adapter->mng_vlan_id = vid;
831 } else
832 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
833
834 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
835 (vid != old_vid) &&
836 !vlan_group_get_device(adapter->vlgrp, old_vid))
837 igb_vlan_rx_kill_vid(netdev, old_vid);
838 } else
839 adapter->mng_vlan_id = vid;
840 }
841 }
842
843 /**
844 * igb_release_hw_control - release control of the h/w to f/w
845 * @adapter: address of board private structure
846 *
847 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
848 * For ASF and Pass Through versions of f/w this means that the
849 * driver is no longer loaded.
850 *
851 **/
852 static void igb_release_hw_control(struct igb_adapter *adapter)
853 {
854 struct e1000_hw *hw = &adapter->hw;
855 u32 ctrl_ext;
856
857 /* Let firmware take over control of h/w */
858 ctrl_ext = rd32(E1000_CTRL_EXT);
859 wr32(E1000_CTRL_EXT,
860 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
861 }
862
863
864 /**
865 * igb_get_hw_control - get control of the h/w from f/w
866 * @adapter: address of board private structure
867 *
868 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
869 * For ASF and Pass Through versions of f/w this means that
870 * the driver is loaded.
871 *
872 **/
873 static void igb_get_hw_control(struct igb_adapter *adapter)
874 {
875 struct e1000_hw *hw = &adapter->hw;
876 u32 ctrl_ext;
877
878 /* Let firmware know the driver has taken over */
879 ctrl_ext = rd32(E1000_CTRL_EXT);
880 wr32(E1000_CTRL_EXT,
881 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
882 }
883
884 /**
885 * igb_configure - configure the hardware for RX and TX
886 * @adapter: private board structure
887 **/
888 static void igb_configure(struct igb_adapter *adapter)
889 {
890 struct net_device *netdev = adapter->netdev;
891 int i;
892
893 igb_get_hw_control(adapter);
894 igb_set_multi(netdev);
895
896 igb_restore_vlan(adapter);
897
898 igb_configure_tx(adapter);
899 igb_setup_rctl(adapter);
900 igb_configure_rx(adapter);
901
902 igb_rx_fifo_flush_82575(&adapter->hw);
903
904 /* call igb_desc_unused which always leaves
905 * at least 1 descriptor unused to make sure
906 * next_to_use != next_to_clean */
907 for (i = 0; i < adapter->num_rx_queues; i++) {
908 struct igb_ring *ring = &adapter->rx_ring[i];
909 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
910 }
911
912
913 adapter->tx_queue_len = netdev->tx_queue_len;
914 }
915
916
917 /**
918 * igb_up - Open the interface and prepare it to handle traffic
919 * @adapter: board private structure
920 **/
921
922 int igb_up(struct igb_adapter *adapter)
923 {
924 struct e1000_hw *hw = &adapter->hw;
925 int i;
926
927 /* hardware has been reset, we need to reload some things */
928 igb_configure(adapter);
929
930 clear_bit(__IGB_DOWN, &adapter->state);
931
932 for (i = 0; i < adapter->num_rx_queues; i++)
933 napi_enable(&adapter->rx_ring[i].napi);
934 if (adapter->msix_entries)
935 igb_configure_msix(adapter);
936
937 igb_vmm_control(adapter);
938 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
939 igb_set_vmolr(hw, adapter->vfs_allocated_count);
940
941 /* Clear any pending interrupts. */
942 rd32(E1000_ICR);
943 igb_irq_enable(adapter);
944
945 /* Fire a link change interrupt to start the watchdog. */
946 wr32(E1000_ICS, E1000_ICS_LSC);
947 return 0;
948 }
949
950 void igb_down(struct igb_adapter *adapter)
951 {
952 struct e1000_hw *hw = &adapter->hw;
953 struct net_device *netdev = adapter->netdev;
954 u32 tctl, rctl;
955 int i;
956
957 /* signal that we're down so the interrupt handler does not
958 * reschedule our watchdog timer */
959 set_bit(__IGB_DOWN, &adapter->state);
960
961 /* disable receives in the hardware */
962 rctl = rd32(E1000_RCTL);
963 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
964 /* flush and sleep below */
965
966 netif_tx_stop_all_queues(netdev);
967
968 /* disable transmits in the hardware */
969 tctl = rd32(E1000_TCTL);
970 tctl &= ~E1000_TCTL_EN;
971 wr32(E1000_TCTL, tctl);
972 /* flush both disables and wait for them to finish */
973 wrfl();
974 msleep(10);
975
976 for (i = 0; i < adapter->num_rx_queues; i++)
977 napi_disable(&adapter->rx_ring[i].napi);
978
979 igb_irq_disable(adapter);
980
981 del_timer_sync(&adapter->watchdog_timer);
982 del_timer_sync(&adapter->phy_info_timer);
983
984 netdev->tx_queue_len = adapter->tx_queue_len;
985 netif_carrier_off(netdev);
986
987 /* record the stats before reset*/
988 igb_update_stats(adapter);
989
990 adapter->link_speed = 0;
991 adapter->link_duplex = 0;
992
993 if (!pci_channel_offline(adapter->pdev))
994 igb_reset(adapter);
995 igb_clean_all_tx_rings(adapter);
996 igb_clean_all_rx_rings(adapter);
997 }
998
999 void igb_reinit_locked(struct igb_adapter *adapter)
1000 {
1001 WARN_ON(in_interrupt());
1002 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1003 msleep(1);
1004 igb_down(adapter);
1005 igb_up(adapter);
1006 clear_bit(__IGB_RESETTING, &adapter->state);
1007 }
1008
1009 void igb_reset(struct igb_adapter *adapter)
1010 {
1011 struct e1000_hw *hw = &adapter->hw;
1012 struct e1000_mac_info *mac = &hw->mac;
1013 struct e1000_fc_info *fc = &hw->fc;
1014 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1015 u16 hwm;
1016
1017 /* Repartition Pba for greater than 9k mtu
1018 * To take effect CTRL.RST is required.
1019 */
1020 switch (mac->type) {
1021 case e1000_82576:
1022 pba = E1000_PBA_64K;
1023 break;
1024 case e1000_82575:
1025 default:
1026 pba = E1000_PBA_34K;
1027 break;
1028 }
1029
1030 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1031 (mac->type < e1000_82576)) {
1032 /* adjust PBA for jumbo frames */
1033 wr32(E1000_PBA, pba);
1034
1035 /* To maintain wire speed transmits, the Tx FIFO should be
1036 * large enough to accommodate two full transmit packets,
1037 * rounded up to the next 1KB and expressed in KB. Likewise,
1038 * the Rx FIFO should be large enough to accommodate at least
1039 * one full receive packet and is similarly rounded up and
1040 * expressed in KB. */
1041 pba = rd32(E1000_PBA);
1042 /* upper 16 bits has Tx packet buffer allocation size in KB */
1043 tx_space = pba >> 16;
1044 /* lower 16 bits has Rx packet buffer allocation size in KB */
1045 pba &= 0xffff;
1046 /* the tx fifo also stores 16 bytes of information about the tx
1047 * but don't include ethernet FCS because hardware appends it */
1048 min_tx_space = (adapter->max_frame_size +
1049 sizeof(union e1000_adv_tx_desc) -
1050 ETH_FCS_LEN) * 2;
1051 min_tx_space = ALIGN(min_tx_space, 1024);
1052 min_tx_space >>= 10;
1053 /* software strips receive CRC, so leave room for it */
1054 min_rx_space = adapter->max_frame_size;
1055 min_rx_space = ALIGN(min_rx_space, 1024);
1056 min_rx_space >>= 10;
1057
1058 /* If current Tx allocation is less than the min Tx FIFO size,
1059 * and the min Tx FIFO size is less than the current Rx FIFO
1060 * allocation, take space away from current Rx allocation */
1061 if (tx_space < min_tx_space &&
1062 ((min_tx_space - tx_space) < pba)) {
1063 pba = pba - (min_tx_space - tx_space);
1064
1065 /* if short on rx space, rx wins and must trump tx
1066 * adjustment */
1067 if (pba < min_rx_space)
1068 pba = min_rx_space;
1069 }
1070 wr32(E1000_PBA, pba);
1071 }
1072
1073 /* flow control settings */
1074 /* The high water mark must be low enough to fit one full frame
1075 * (or the size used for early receive) above it in the Rx FIFO.
1076 * Set it to the lower of:
1077 * - 90% of the Rx FIFO size, or
1078 * - the full Rx FIFO size minus one full frame */
1079 hwm = min(((pba << 10) * 9 / 10),
1080 ((pba << 10) - 2 * adapter->max_frame_size));
1081
1082 if (mac->type < e1000_82576) {
1083 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1084 fc->low_water = fc->high_water - 8;
1085 } else {
1086 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1087 fc->low_water = fc->high_water - 16;
1088 }
1089 fc->pause_time = 0xFFFF;
1090 fc->send_xon = 1;
1091 fc->type = fc->original_type;
1092
1093 /* disable receive for all VFs and wait one second */
1094 if (adapter->vfs_allocated_count) {
1095 int i;
1096 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1097 adapter->vf_data[i].clear_to_send = false;
1098
1099 /* ping all the active vfs to let them know we are going down */
1100 igb_ping_all_vfs(adapter);
1101
1102 /* disable transmits and receives */
1103 wr32(E1000_VFRE, 0);
1104 wr32(E1000_VFTE, 0);
1105 }
1106
1107 /* Allow time for pending master requests to run */
1108 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1109 wr32(E1000_WUC, 0);
1110
1111 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1112 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1113
1114 igb_update_mng_vlan(adapter);
1115
1116 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1117 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1118
1119 igb_reset_adaptive(&adapter->hw);
1120 igb_get_phy_info(&adapter->hw);
1121 }
1122
1123 static const struct net_device_ops igb_netdev_ops = {
1124 .ndo_open = igb_open,
1125 .ndo_stop = igb_close,
1126 .ndo_start_xmit = igb_xmit_frame_adv,
1127 .ndo_get_stats = igb_get_stats,
1128 .ndo_set_multicast_list = igb_set_multi,
1129 .ndo_set_mac_address = igb_set_mac,
1130 .ndo_change_mtu = igb_change_mtu,
1131 .ndo_do_ioctl = igb_ioctl,
1132 .ndo_tx_timeout = igb_tx_timeout,
1133 .ndo_validate_addr = eth_validate_addr,
1134 .ndo_vlan_rx_register = igb_vlan_rx_register,
1135 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1136 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1137 #ifdef CONFIG_NET_POLL_CONTROLLER
1138 .ndo_poll_controller = igb_netpoll,
1139 #endif
1140 };
1141
1142 /**
1143 * igb_probe - Device Initialization Routine
1144 * @pdev: PCI device information struct
1145 * @ent: entry in igb_pci_tbl
1146 *
1147 * Returns 0 on success, negative on failure
1148 *
1149 * igb_probe initializes an adapter identified by a pci_dev structure.
1150 * The OS initialization, configuring of the adapter private structure,
1151 * and a hardware reset occur.
1152 **/
1153 static int __devinit igb_probe(struct pci_dev *pdev,
1154 const struct pci_device_id *ent)
1155 {
1156 struct net_device *netdev;
1157 struct igb_adapter *adapter;
1158 struct e1000_hw *hw;
1159 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1160 unsigned long mmio_start, mmio_len;
1161 int err, pci_using_dac;
1162 u16 eeprom_data = 0;
1163 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1164 u32 part_num;
1165
1166 err = pci_enable_device_mem(pdev);
1167 if (err)
1168 return err;
1169
1170 pci_using_dac = 0;
1171 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1172 if (!err) {
1173 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1174 if (!err)
1175 pci_using_dac = 1;
1176 } else {
1177 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1178 if (err) {
1179 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1180 if (err) {
1181 dev_err(&pdev->dev, "No usable DMA "
1182 "configuration, aborting\n");
1183 goto err_dma;
1184 }
1185 }
1186 }
1187
1188 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1189 IORESOURCE_MEM),
1190 igb_driver_name);
1191 if (err)
1192 goto err_pci_reg;
1193
1194 err = pci_enable_pcie_error_reporting(pdev);
1195 if (err) {
1196 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1197 "0x%x\n", err);
1198 /* non-fatal, continue */
1199 }
1200
1201 pci_set_master(pdev);
1202 pci_save_state(pdev);
1203
1204 err = -ENOMEM;
1205 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1206 IGB_ABS_MAX_TX_QUEUES);
1207 if (!netdev)
1208 goto err_alloc_etherdev;
1209
1210 SET_NETDEV_DEV(netdev, &pdev->dev);
1211
1212 pci_set_drvdata(pdev, netdev);
1213 adapter = netdev_priv(netdev);
1214 adapter->netdev = netdev;
1215 adapter->pdev = pdev;
1216 hw = &adapter->hw;
1217 hw->back = adapter;
1218 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1219
1220 mmio_start = pci_resource_start(pdev, 0);
1221 mmio_len = pci_resource_len(pdev, 0);
1222
1223 err = -EIO;
1224 hw->hw_addr = ioremap(mmio_start, mmio_len);
1225 if (!hw->hw_addr)
1226 goto err_ioremap;
1227
1228 netdev->netdev_ops = &igb_netdev_ops;
1229 igb_set_ethtool_ops(netdev);
1230 netdev->watchdog_timeo = 5 * HZ;
1231
1232 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1233
1234 netdev->mem_start = mmio_start;
1235 netdev->mem_end = mmio_start + mmio_len;
1236
1237 /* PCI config space info */
1238 hw->vendor_id = pdev->vendor;
1239 hw->device_id = pdev->device;
1240 hw->revision_id = pdev->revision;
1241 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1242 hw->subsystem_device_id = pdev->subsystem_device;
1243
1244 /* setup the private structure */
1245 hw->back = adapter;
1246 /* Copy the default MAC, PHY and NVM function pointers */
1247 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1248 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1249 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1250 /* Initialize skew-specific constants */
1251 err = ei->get_invariants(hw);
1252 if (err)
1253 goto err_sw_init;
1254
1255 #ifdef CONFIG_PCI_IOV
1256 /* since iov functionality isn't critical to base device function we
1257 * can accept failure. If it fails we don't allow iov to be enabled */
1258 if (hw->mac.type == e1000_82576) {
1259 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1260 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1261 int i;
1262 unsigned char mac_addr[ETH_ALEN];
1263
1264 if (num_vfs) {
1265 adapter->vf_data = kcalloc(num_vfs,
1266 sizeof(struct vf_data_storage),
1267 GFP_KERNEL);
1268 if (!adapter->vf_data) {
1269 dev_err(&pdev->dev,
1270 "Could not allocate VF private data - "
1271 "IOV enable failed\n");
1272 } else {
1273 err = pci_enable_sriov(pdev, num_vfs);
1274 if (!err) {
1275 adapter->vfs_allocated_count = num_vfs;
1276 dev_info(&pdev->dev,
1277 "%d vfs allocated\n",
1278 num_vfs);
1279 for (i = 0;
1280 i < adapter->vfs_allocated_count;
1281 i++) {
1282 random_ether_addr(mac_addr);
1283 igb_set_vf_mac(adapter, i,
1284 mac_addr);
1285 }
1286 } else {
1287 kfree(adapter->vf_data);
1288 adapter->vf_data = NULL;
1289 }
1290 }
1291 }
1292 }
1293
1294 #endif
1295 /* setup the private structure */
1296 err = igb_sw_init(adapter);
1297 if (err)
1298 goto err_sw_init;
1299
1300 igb_get_bus_info_pcie(hw);
1301
1302 /* set flags */
1303 switch (hw->mac.type) {
1304 case e1000_82575:
1305 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1306 break;
1307 case e1000_82576:
1308 default:
1309 break;
1310 }
1311
1312 hw->phy.autoneg_wait_to_complete = false;
1313 hw->mac.adaptive_ifs = true;
1314
1315 /* Copper options */
1316 if (hw->phy.media_type == e1000_media_type_copper) {
1317 hw->phy.mdix = AUTO_ALL_MODES;
1318 hw->phy.disable_polarity_correction = false;
1319 hw->phy.ms_type = e1000_ms_hw_default;
1320 }
1321
1322 if (igb_check_reset_block(hw))
1323 dev_info(&pdev->dev,
1324 "PHY reset is blocked due to SOL/IDER session.\n");
1325
1326 netdev->features = NETIF_F_SG |
1327 NETIF_F_IP_CSUM |
1328 NETIF_F_HW_VLAN_TX |
1329 NETIF_F_HW_VLAN_RX |
1330 NETIF_F_HW_VLAN_FILTER;
1331
1332 netdev->features |= NETIF_F_IPV6_CSUM;
1333 netdev->features |= NETIF_F_TSO;
1334 netdev->features |= NETIF_F_TSO6;
1335
1336 netdev->features |= NETIF_F_GRO;
1337
1338 netdev->vlan_features |= NETIF_F_TSO;
1339 netdev->vlan_features |= NETIF_F_TSO6;
1340 netdev->vlan_features |= NETIF_F_IP_CSUM;
1341 netdev->vlan_features |= NETIF_F_SG;
1342
1343 if (pci_using_dac)
1344 netdev->features |= NETIF_F_HIGHDMA;
1345
1346 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1347
1348 /* before reading the NVM, reset the controller to put the device in a
1349 * known good starting state */
1350 hw->mac.ops.reset_hw(hw);
1351
1352 /* make sure the NVM is good */
1353 if (igb_validate_nvm_checksum(hw) < 0) {
1354 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1355 err = -EIO;
1356 goto err_eeprom;
1357 }
1358
1359 /* copy the MAC address out of the NVM */
1360 if (hw->mac.ops.read_mac_addr(hw))
1361 dev_err(&pdev->dev, "NVM Read Error\n");
1362
1363 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1364 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1365
1366 if (!is_valid_ether_addr(netdev->perm_addr)) {
1367 dev_err(&pdev->dev, "Invalid MAC Address\n");
1368 err = -EIO;
1369 goto err_eeprom;
1370 }
1371
1372 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1373 (unsigned long) adapter);
1374 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1375 (unsigned long) adapter);
1376
1377 INIT_WORK(&adapter->reset_task, igb_reset_task);
1378 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1379
1380 /* Initialize link properties that are user-changeable */
1381 adapter->fc_autoneg = true;
1382 hw->mac.autoneg = true;
1383 hw->phy.autoneg_advertised = 0x2f;
1384
1385 hw->fc.original_type = e1000_fc_default;
1386 hw->fc.type = e1000_fc_default;
1387
1388 adapter->itr_setting = IGB_DEFAULT_ITR;
1389 adapter->itr = IGB_START_ITR;
1390
1391 igb_validate_mdi_setting(hw);
1392
1393 adapter->rx_csum = 1;
1394
1395 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1396 * enable the ACPI Magic Packet filter
1397 */
1398
1399 if (hw->bus.func == 0)
1400 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1401 else if (hw->bus.func == 1)
1402 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1403
1404 if (eeprom_data & eeprom_apme_mask)
1405 adapter->eeprom_wol |= E1000_WUFC_MAG;
1406
1407 /* now that we have the eeprom settings, apply the special cases where
1408 * the eeprom may be wrong or the board simply won't support wake on
1409 * lan on a particular port */
1410 switch (pdev->device) {
1411 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1412 adapter->eeprom_wol = 0;
1413 break;
1414 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1415 case E1000_DEV_ID_82576_FIBER:
1416 case E1000_DEV_ID_82576_SERDES:
1417 /* Wake events only supported on port A for dual fiber
1418 * regardless of eeprom setting */
1419 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1420 adapter->eeprom_wol = 0;
1421 break;
1422 case E1000_DEV_ID_82576_QUAD_COPPER:
1423 /* if quad port adapter, disable WoL on all but port A */
1424 if (global_quad_port_a != 0)
1425 adapter->eeprom_wol = 0;
1426 else
1427 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1428 /* Reset for multiple quad port adapters */
1429 if (++global_quad_port_a == 4)
1430 global_quad_port_a = 0;
1431 break;
1432 }
1433
1434 /* initialize the wol settings based on the eeprom settings */
1435 adapter->wol = adapter->eeprom_wol;
1436 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1437
1438 /* reset the hardware with the new settings */
1439 igb_reset(adapter);
1440
1441 /* let the f/w know that the h/w is now under the control of the
1442 * driver. */
1443 igb_get_hw_control(adapter);
1444
1445 /* tell the stack to leave us alone until igb_open() is called */
1446 netif_carrier_off(netdev);
1447 netif_tx_stop_all_queues(netdev);
1448
1449 strcpy(netdev->name, "eth%d");
1450 err = register_netdev(netdev);
1451 if (err)
1452 goto err_register;
1453
1454 #ifdef CONFIG_IGB_DCA
1455 if (dca_add_requester(&pdev->dev) == 0) {
1456 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1457 dev_info(&pdev->dev, "DCA enabled\n");
1458 /* Always use CB2 mode, difference is masked
1459 * in the CB driver. */
1460 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
1461 igb_setup_dca(adapter);
1462 }
1463 #endif
1464
1465 /*
1466 * Initialize hardware timer: we keep it running just in case
1467 * that some program needs it later on.
1468 */
1469 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1470 adapter->cycles.read = igb_read_clock;
1471 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1472 adapter->cycles.mult = 1;
1473 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1474 wr32(E1000_TIMINCA,
1475 (1<<24) |
1476 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1477 #if 0
1478 /*
1479 * Avoid rollover while we initialize by resetting the time counter.
1480 */
1481 wr32(E1000_SYSTIML, 0x00000000);
1482 wr32(E1000_SYSTIMH, 0x00000000);
1483 #else
1484 /*
1485 * Set registers so that rollover occurs soon to test this.
1486 */
1487 wr32(E1000_SYSTIML, 0x00000000);
1488 wr32(E1000_SYSTIMH, 0xFF800000);
1489 #endif
1490 wrfl();
1491 timecounter_init(&adapter->clock,
1492 &adapter->cycles,
1493 ktime_to_ns(ktime_get_real()));
1494
1495 /*
1496 * Synchronize our NIC clock against system wall clock. NIC
1497 * time stamp reading requires ~3us per sample, each sample
1498 * was pretty stable even under load => only require 10
1499 * samples for each offset comparison.
1500 */
1501 memset(&adapter->compare, 0, sizeof(adapter->compare));
1502 adapter->compare.source = &adapter->clock;
1503 adapter->compare.target = ktime_get_real;
1504 adapter->compare.num_samples = 10;
1505 timecompare_update(&adapter->compare, 0);
1506
1507 #ifdef DEBUG
1508 {
1509 char buffer[160];
1510 printk(KERN_DEBUG
1511 "igb: %s: hw %p initialized timer\n",
1512 igb_get_time_str(adapter, buffer),
1513 &adapter->hw);
1514 }
1515 #endif
1516
1517 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1518 /* print bus type/speed/width info */
1519 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1520 netdev->name,
1521 ((hw->bus.speed == e1000_bus_speed_2500)
1522 ? "2.5Gb/s" : "unknown"),
1523 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1524 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1525 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1526 "unknown"),
1527 netdev->dev_addr);
1528
1529 igb_read_part_num(hw, &part_num);
1530 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1531 (part_num >> 8), (part_num & 0xff));
1532
1533 dev_info(&pdev->dev,
1534 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1535 adapter->msix_entries ? "MSI-X" :
1536 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1537 adapter->num_rx_queues, adapter->num_tx_queues);
1538
1539 return 0;
1540
1541 err_register:
1542 igb_release_hw_control(adapter);
1543 err_eeprom:
1544 if (!igb_check_reset_block(hw))
1545 igb_reset_phy(hw);
1546
1547 if (hw->flash_address)
1548 iounmap(hw->flash_address);
1549
1550 igb_free_queues(adapter);
1551 err_sw_init:
1552 iounmap(hw->hw_addr);
1553 err_ioremap:
1554 free_netdev(netdev);
1555 err_alloc_etherdev:
1556 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1557 IORESOURCE_MEM));
1558 err_pci_reg:
1559 err_dma:
1560 pci_disable_device(pdev);
1561 return err;
1562 }
1563
1564 /**
1565 * igb_remove - Device Removal Routine
1566 * @pdev: PCI device information struct
1567 *
1568 * igb_remove is called by the PCI subsystem to alert the driver
1569 * that it should release a PCI device. The could be caused by a
1570 * Hot-Plug event, or because the driver is going to be removed from
1571 * memory.
1572 **/
1573 static void __devexit igb_remove(struct pci_dev *pdev)
1574 {
1575 struct net_device *netdev = pci_get_drvdata(pdev);
1576 struct igb_adapter *adapter = netdev_priv(netdev);
1577 struct e1000_hw *hw = &adapter->hw;
1578 int err;
1579
1580 /* flush_scheduled work may reschedule our watchdog task, so
1581 * explicitly disable watchdog tasks from being rescheduled */
1582 set_bit(__IGB_DOWN, &adapter->state);
1583 del_timer_sync(&adapter->watchdog_timer);
1584 del_timer_sync(&adapter->phy_info_timer);
1585
1586 flush_scheduled_work();
1587
1588 #ifdef CONFIG_IGB_DCA
1589 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1590 dev_info(&pdev->dev, "DCA disabled\n");
1591 dca_remove_requester(&pdev->dev);
1592 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1593 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1594 }
1595 #endif
1596
1597 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1598 * would have already happened in close and is redundant. */
1599 igb_release_hw_control(adapter);
1600
1601 unregister_netdev(netdev);
1602
1603 if (!igb_check_reset_block(&adapter->hw))
1604 igb_reset_phy(&adapter->hw);
1605
1606 igb_reset_interrupt_capability(adapter);
1607
1608 igb_free_queues(adapter);
1609
1610 #ifdef CONFIG_PCI_IOV
1611 /* reclaim resources allocated to VFs */
1612 if (adapter->vf_data) {
1613 /* disable iov and allow time for transactions to clear */
1614 pci_disable_sriov(pdev);
1615 msleep(500);
1616
1617 kfree(adapter->vf_data);
1618 adapter->vf_data = NULL;
1619 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1620 msleep(100);
1621 dev_info(&pdev->dev, "IOV Disabled\n");
1622 }
1623 #endif
1624 iounmap(hw->hw_addr);
1625 if (hw->flash_address)
1626 iounmap(hw->flash_address);
1627 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1628 IORESOURCE_MEM));
1629
1630 free_netdev(netdev);
1631
1632 err = pci_disable_pcie_error_reporting(pdev);
1633 if (err)
1634 dev_err(&pdev->dev,
1635 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1636
1637 pci_disable_device(pdev);
1638 }
1639
1640 /**
1641 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1642 * @adapter: board private structure to initialize
1643 *
1644 * igb_sw_init initializes the Adapter private data structure.
1645 * Fields are initialized based on PCI device information and
1646 * OS network device settings (MTU size).
1647 **/
1648 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1649 {
1650 struct e1000_hw *hw = &adapter->hw;
1651 struct net_device *netdev = adapter->netdev;
1652 struct pci_dev *pdev = adapter->pdev;
1653
1654 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1655
1656 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1657 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1658 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1659 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1660 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1661 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1662
1663 /* This call may decrease the number of queues depending on
1664 * interrupt mode. */
1665 igb_set_interrupt_capability(adapter);
1666
1667 if (igb_alloc_queues(adapter)) {
1668 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1669 return -ENOMEM;
1670 }
1671
1672 /* Explicitly disable IRQ since the NIC can be in any state. */
1673 igb_irq_disable(adapter);
1674
1675 set_bit(__IGB_DOWN, &adapter->state);
1676 return 0;
1677 }
1678
1679 /**
1680 * igb_open - Called when a network interface is made active
1681 * @netdev: network interface device structure
1682 *
1683 * Returns 0 on success, negative value on failure
1684 *
1685 * The open entry point is called when a network interface is made
1686 * active by the system (IFF_UP). At this point all resources needed
1687 * for transmit and receive operations are allocated, the interrupt
1688 * handler is registered with the OS, the watchdog timer is started,
1689 * and the stack is notified that the interface is ready.
1690 **/
1691 static int igb_open(struct net_device *netdev)
1692 {
1693 struct igb_adapter *adapter = netdev_priv(netdev);
1694 struct e1000_hw *hw = &adapter->hw;
1695 int err;
1696 int i;
1697
1698 /* disallow open during test */
1699 if (test_bit(__IGB_TESTING, &adapter->state))
1700 return -EBUSY;
1701
1702 /* allocate transmit descriptors */
1703 err = igb_setup_all_tx_resources(adapter);
1704 if (err)
1705 goto err_setup_tx;
1706
1707 /* allocate receive descriptors */
1708 err = igb_setup_all_rx_resources(adapter);
1709 if (err)
1710 goto err_setup_rx;
1711
1712 /* e1000_power_up_phy(adapter); */
1713
1714 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1715 if ((adapter->hw.mng_cookie.status &
1716 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1717 igb_update_mng_vlan(adapter);
1718
1719 /* before we allocate an interrupt, we must be ready to handle it.
1720 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1721 * as soon as we call pci_request_irq, so we have to setup our
1722 * clean_rx handler before we do so. */
1723 igb_configure(adapter);
1724
1725 igb_vmm_control(adapter);
1726 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1727 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1728
1729 err = igb_request_irq(adapter);
1730 if (err)
1731 goto err_req_irq;
1732
1733 /* From here on the code is the same as igb_up() */
1734 clear_bit(__IGB_DOWN, &adapter->state);
1735
1736 for (i = 0; i < adapter->num_rx_queues; i++)
1737 napi_enable(&adapter->rx_ring[i].napi);
1738
1739 /* Clear any pending interrupts. */
1740 rd32(E1000_ICR);
1741
1742 igb_irq_enable(adapter);
1743
1744 netif_tx_start_all_queues(netdev);
1745
1746 /* Fire a link status change interrupt to start the watchdog. */
1747 wr32(E1000_ICS, E1000_ICS_LSC);
1748
1749 return 0;
1750
1751 err_req_irq:
1752 igb_release_hw_control(adapter);
1753 /* e1000_power_down_phy(adapter); */
1754 igb_free_all_rx_resources(adapter);
1755 err_setup_rx:
1756 igb_free_all_tx_resources(adapter);
1757 err_setup_tx:
1758 igb_reset(adapter);
1759
1760 return err;
1761 }
1762
1763 /**
1764 * igb_close - Disables a network interface
1765 * @netdev: network interface device structure
1766 *
1767 * Returns 0, this is not allowed to fail
1768 *
1769 * The close entry point is called when an interface is de-activated
1770 * by the OS. The hardware is still under the driver's control, but
1771 * needs to be disabled. A global MAC reset is issued to stop the
1772 * hardware, and all transmit and receive resources are freed.
1773 **/
1774 static int igb_close(struct net_device *netdev)
1775 {
1776 struct igb_adapter *adapter = netdev_priv(netdev);
1777
1778 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1779 igb_down(adapter);
1780
1781 igb_free_irq(adapter);
1782
1783 igb_free_all_tx_resources(adapter);
1784 igb_free_all_rx_resources(adapter);
1785
1786 /* kill manageability vlan ID if supported, but not if a vlan with
1787 * the same ID is registered on the host OS (let 8021q kill it) */
1788 if ((adapter->hw.mng_cookie.status &
1789 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1790 !(adapter->vlgrp &&
1791 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1792 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1793
1794 return 0;
1795 }
1796
1797 /**
1798 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1799 * @adapter: board private structure
1800 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1801 *
1802 * Return 0 on success, negative on failure
1803 **/
1804 int igb_setup_tx_resources(struct igb_adapter *adapter,
1805 struct igb_ring *tx_ring)
1806 {
1807 struct pci_dev *pdev = adapter->pdev;
1808 int size;
1809
1810 size = sizeof(struct igb_buffer) * tx_ring->count;
1811 tx_ring->buffer_info = vmalloc(size);
1812 if (!tx_ring->buffer_info)
1813 goto err;
1814 memset(tx_ring->buffer_info, 0, size);
1815
1816 /* round up to nearest 4K */
1817 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1818 tx_ring->size = ALIGN(tx_ring->size, 4096);
1819
1820 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1821 &tx_ring->dma);
1822
1823 if (!tx_ring->desc)
1824 goto err;
1825
1826 tx_ring->adapter = adapter;
1827 tx_ring->next_to_use = 0;
1828 tx_ring->next_to_clean = 0;
1829 return 0;
1830
1831 err:
1832 vfree(tx_ring->buffer_info);
1833 dev_err(&adapter->pdev->dev,
1834 "Unable to allocate memory for the transmit descriptor ring\n");
1835 return -ENOMEM;
1836 }
1837
1838 /**
1839 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1840 * (Descriptors) for all queues
1841 * @adapter: board private structure
1842 *
1843 * Return 0 on success, negative on failure
1844 **/
1845 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1846 {
1847 int i, err = 0;
1848 int r_idx;
1849
1850 for (i = 0; i < adapter->num_tx_queues; i++) {
1851 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1852 if (err) {
1853 dev_err(&adapter->pdev->dev,
1854 "Allocation for Tx Queue %u failed\n", i);
1855 for (i--; i >= 0; i--)
1856 igb_free_tx_resources(&adapter->tx_ring[i]);
1857 break;
1858 }
1859 }
1860
1861 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1862 r_idx = i % adapter->num_tx_queues;
1863 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1864 }
1865 return err;
1866 }
1867
1868 /**
1869 * igb_configure_tx - Configure transmit Unit after Reset
1870 * @adapter: board private structure
1871 *
1872 * Configure the Tx unit of the MAC after a reset.
1873 **/
1874 static void igb_configure_tx(struct igb_adapter *adapter)
1875 {
1876 u64 tdba;
1877 struct e1000_hw *hw = &adapter->hw;
1878 u32 tctl;
1879 u32 txdctl, txctrl;
1880 int i, j;
1881
1882 for (i = 0; i < adapter->num_tx_queues; i++) {
1883 struct igb_ring *ring = &adapter->tx_ring[i];
1884 j = ring->reg_idx;
1885 wr32(E1000_TDLEN(j),
1886 ring->count * sizeof(union e1000_adv_tx_desc));
1887 tdba = ring->dma;
1888 wr32(E1000_TDBAL(j),
1889 tdba & 0x00000000ffffffffULL);
1890 wr32(E1000_TDBAH(j), tdba >> 32);
1891
1892 ring->head = E1000_TDH(j);
1893 ring->tail = E1000_TDT(j);
1894 writel(0, hw->hw_addr + ring->tail);
1895 writel(0, hw->hw_addr + ring->head);
1896 txdctl = rd32(E1000_TXDCTL(j));
1897 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1898 wr32(E1000_TXDCTL(j), txdctl);
1899
1900 /* Turn off Relaxed Ordering on head write-backs. The
1901 * writebacks MUST be delivered in order or it will
1902 * completely screw up our bookeeping.
1903 */
1904 txctrl = rd32(E1000_DCA_TXCTRL(j));
1905 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1906 wr32(E1000_DCA_TXCTRL(j), txctrl);
1907 }
1908
1909 /* disable queue 0 to prevent tail bump w/o re-configuration */
1910 if (adapter->vfs_allocated_count)
1911 wr32(E1000_TXDCTL(0), 0);
1912
1913 /* Program the Transmit Control Register */
1914 tctl = rd32(E1000_TCTL);
1915 tctl &= ~E1000_TCTL_CT;
1916 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1917 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1918
1919 igb_config_collision_dist(hw);
1920
1921 /* Setup Transmit Descriptor Settings for eop descriptor */
1922 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1923
1924 /* Enable transmits */
1925 tctl |= E1000_TCTL_EN;
1926
1927 wr32(E1000_TCTL, tctl);
1928 }
1929
1930 /**
1931 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1932 * @adapter: board private structure
1933 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1934 *
1935 * Returns 0 on success, negative on failure
1936 **/
1937 int igb_setup_rx_resources(struct igb_adapter *adapter,
1938 struct igb_ring *rx_ring)
1939 {
1940 struct pci_dev *pdev = adapter->pdev;
1941 int size, desc_len;
1942
1943 size = sizeof(struct igb_buffer) * rx_ring->count;
1944 rx_ring->buffer_info = vmalloc(size);
1945 if (!rx_ring->buffer_info)
1946 goto err;
1947 memset(rx_ring->buffer_info, 0, size);
1948
1949 desc_len = sizeof(union e1000_adv_rx_desc);
1950
1951 /* Round up to nearest 4K */
1952 rx_ring->size = rx_ring->count * desc_len;
1953 rx_ring->size = ALIGN(rx_ring->size, 4096);
1954
1955 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1956 &rx_ring->dma);
1957
1958 if (!rx_ring->desc)
1959 goto err;
1960
1961 rx_ring->next_to_clean = 0;
1962 rx_ring->next_to_use = 0;
1963
1964 rx_ring->adapter = adapter;
1965
1966 return 0;
1967
1968 err:
1969 vfree(rx_ring->buffer_info);
1970 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1971 "the receive descriptor ring\n");
1972 return -ENOMEM;
1973 }
1974
1975 /**
1976 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1977 * (Descriptors) for all queues
1978 * @adapter: board private structure
1979 *
1980 * Return 0 on success, negative on failure
1981 **/
1982 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1983 {
1984 int i, err = 0;
1985
1986 for (i = 0; i < adapter->num_rx_queues; i++) {
1987 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1988 if (err) {
1989 dev_err(&adapter->pdev->dev,
1990 "Allocation for Rx Queue %u failed\n", i);
1991 for (i--; i >= 0; i--)
1992 igb_free_rx_resources(&adapter->rx_ring[i]);
1993 break;
1994 }
1995 }
1996
1997 return err;
1998 }
1999
2000 /**
2001 * igb_setup_rctl - configure the receive control registers
2002 * @adapter: Board private structure
2003 **/
2004 static void igb_setup_rctl(struct igb_adapter *adapter)
2005 {
2006 struct e1000_hw *hw = &adapter->hw;
2007 u32 rctl;
2008 u32 srrctl = 0;
2009 int i;
2010
2011 rctl = rd32(E1000_RCTL);
2012
2013 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2014 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2015
2016 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2017 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2018
2019 /*
2020 * enable stripping of CRC. It's unlikely this will break BMC
2021 * redirection as it did with e1000. Newer features require
2022 * that the HW strips the CRC.
2023 */
2024 rctl |= E1000_RCTL_SECRC;
2025
2026 /*
2027 * disable store bad packets and clear size bits.
2028 */
2029 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2030
2031 /* enable LPE when to prevent packets larger than max_frame_size */
2032 rctl |= E1000_RCTL_LPE;
2033
2034 /* Setup buffer sizes */
2035 switch (adapter->rx_buffer_len) {
2036 case IGB_RXBUFFER_256:
2037 rctl |= E1000_RCTL_SZ_256;
2038 break;
2039 case IGB_RXBUFFER_512:
2040 rctl |= E1000_RCTL_SZ_512;
2041 break;
2042 default:
2043 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2044 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2045 break;
2046 }
2047
2048 /* 82575 and greater support packet-split where the protocol
2049 * header is placed in skb->data and the packet data is
2050 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2051 * In the case of a non-split, skb->data is linearly filled,
2052 * followed by the page buffers. Therefore, skb->data is
2053 * sized to hold the largest protocol header.
2054 */
2055 /* allocations using alloc_page take too long for regular MTU
2056 * so only enable packet split for jumbo frames */
2057 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2058 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2059 srrctl |= adapter->rx_ps_hdr_size <<
2060 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2061 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2062 } else {
2063 adapter->rx_ps_hdr_size = 0;
2064 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2065 }
2066
2067 /* Attention!!! For SR-IOV PF driver operations you must enable
2068 * queue drop for all VF and PF queues to prevent head of line blocking
2069 * if an un-trusted VF does not provide descriptors to hardware.
2070 */
2071 if (adapter->vfs_allocated_count) {
2072 u32 vmolr;
2073
2074 /* set all queue drop enable bits */
2075 wr32(E1000_QDE, ALL_QUEUES);
2076 srrctl |= E1000_SRRCTL_DROP_EN;
2077
2078 /* disable queue 0 to prevent tail write w/o re-config */
2079 wr32(E1000_RXDCTL(0), 0);
2080
2081 vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2082 if (rctl & E1000_RCTL_LPE)
2083 vmolr |= E1000_VMOLR_LPE;
2084 if (adapter->num_rx_queues > 1)
2085 vmolr |= E1000_VMOLR_RSSE;
2086 wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2087 }
2088
2089 for (i = 0; i < adapter->num_rx_queues; i++) {
2090 int j = adapter->rx_ring[i].reg_idx;
2091 wr32(E1000_SRRCTL(j), srrctl);
2092 }
2093
2094 wr32(E1000_RCTL, rctl);
2095 }
2096
2097 /**
2098 * igb_rlpml_set - set maximum receive packet size
2099 * @adapter: board private structure
2100 *
2101 * Configure maximum receivable packet size.
2102 **/
2103 static void igb_rlpml_set(struct igb_adapter *adapter)
2104 {
2105 u32 max_frame_size = adapter->max_frame_size;
2106 struct e1000_hw *hw = &adapter->hw;
2107 u16 pf_id = adapter->vfs_allocated_count;
2108
2109 if (adapter->vlgrp)
2110 max_frame_size += VLAN_TAG_SIZE;
2111
2112 /* if vfs are enabled we set RLPML to the largest possible request
2113 * size and set the VMOLR RLPML to the size we need */
2114 if (pf_id) {
2115 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2116 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2117 }
2118
2119 wr32(E1000_RLPML, max_frame_size);
2120 }
2121
2122 /**
2123 * igb_configure_vt_default_pool - Configure VT default pool
2124 * @adapter: board private structure
2125 *
2126 * Configure the default pool
2127 **/
2128 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2129 {
2130 struct e1000_hw *hw = &adapter->hw;
2131 u16 pf_id = adapter->vfs_allocated_count;
2132 u32 vtctl;
2133
2134 /* not in sr-iov mode - do nothing */
2135 if (!pf_id)
2136 return;
2137
2138 vtctl = rd32(E1000_VT_CTL);
2139 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2140 E1000_VT_CTL_DISABLE_DEF_POOL);
2141 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2142 wr32(E1000_VT_CTL, vtctl);
2143 }
2144
2145 /**
2146 * igb_configure_rx - Configure receive Unit after Reset
2147 * @adapter: board private structure
2148 *
2149 * Configure the Rx unit of the MAC after a reset.
2150 **/
2151 static void igb_configure_rx(struct igb_adapter *adapter)
2152 {
2153 u64 rdba;
2154 struct e1000_hw *hw = &adapter->hw;
2155 u32 rctl, rxcsum;
2156 u32 rxdctl;
2157 int i;
2158
2159 /* disable receives while setting up the descriptors */
2160 rctl = rd32(E1000_RCTL);
2161 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2162 wrfl();
2163 mdelay(10);
2164
2165 if (adapter->itr_setting > 3)
2166 wr32(E1000_ITR, adapter->itr);
2167
2168 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2169 * the Base and Length of the Rx Descriptor Ring */
2170 for (i = 0; i < adapter->num_rx_queues; i++) {
2171 struct igb_ring *ring = &adapter->rx_ring[i];
2172 int j = ring->reg_idx;
2173 rdba = ring->dma;
2174 wr32(E1000_RDBAL(j),
2175 rdba & 0x00000000ffffffffULL);
2176 wr32(E1000_RDBAH(j), rdba >> 32);
2177 wr32(E1000_RDLEN(j),
2178 ring->count * sizeof(union e1000_adv_rx_desc));
2179
2180 ring->head = E1000_RDH(j);
2181 ring->tail = E1000_RDT(j);
2182 writel(0, hw->hw_addr + ring->tail);
2183 writel(0, hw->hw_addr + ring->head);
2184
2185 rxdctl = rd32(E1000_RXDCTL(j));
2186 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2187 rxdctl &= 0xFFF00000;
2188 rxdctl |= IGB_RX_PTHRESH;
2189 rxdctl |= IGB_RX_HTHRESH << 8;
2190 rxdctl |= IGB_RX_WTHRESH << 16;
2191 wr32(E1000_RXDCTL(j), rxdctl);
2192 }
2193
2194 if (adapter->num_rx_queues > 1) {
2195 u32 random[10];
2196 u32 mrqc;
2197 u32 j, shift;
2198 union e1000_reta {
2199 u32 dword;
2200 u8 bytes[4];
2201 } reta;
2202
2203 get_random_bytes(&random[0], 40);
2204
2205 if (hw->mac.type >= e1000_82576)
2206 shift = 0;
2207 else
2208 shift = 6;
2209 for (j = 0; j < (32 * 4); j++) {
2210 reta.bytes[j & 3] =
2211 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2212 if ((j & 3) == 3)
2213 writel(reta.dword,
2214 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2215 }
2216 if (adapter->vfs_allocated_count)
2217 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2218 else
2219 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2220
2221 /* Fill out hash function seeds */
2222 for (j = 0; j < 10; j++)
2223 array_wr32(E1000_RSSRK(0), j, random[j]);
2224
2225 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2226 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2227 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2228 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2229 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2230 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2231 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2232 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2233
2234
2235 wr32(E1000_MRQC, mrqc);
2236
2237 /* Multiqueue and raw packet checksumming are mutually
2238 * exclusive. Note that this not the same as TCP/IP
2239 * checksumming, which works fine. */
2240 rxcsum = rd32(E1000_RXCSUM);
2241 rxcsum |= E1000_RXCSUM_PCSD;
2242 wr32(E1000_RXCSUM, rxcsum);
2243 } else {
2244 /* Enable multi-queue for sr-iov */
2245 if (adapter->vfs_allocated_count)
2246 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2247 /* Enable Receive Checksum Offload for TCP and UDP */
2248 rxcsum = rd32(E1000_RXCSUM);
2249 if (adapter->rx_csum)
2250 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE;
2251 else
2252 rxcsum &= ~(E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE);
2253
2254 wr32(E1000_RXCSUM, rxcsum);
2255 }
2256
2257 /* Set the default pool for the PF's first queue */
2258 igb_configure_vt_default_pool(adapter);
2259
2260 igb_rlpml_set(adapter);
2261
2262 /* Enable Receives */
2263 wr32(E1000_RCTL, rctl);
2264 }
2265
2266 /**
2267 * igb_free_tx_resources - Free Tx Resources per Queue
2268 * @tx_ring: Tx descriptor ring for a specific queue
2269 *
2270 * Free all transmit software resources
2271 **/
2272 void igb_free_tx_resources(struct igb_ring *tx_ring)
2273 {
2274 struct pci_dev *pdev = tx_ring->adapter->pdev;
2275
2276 igb_clean_tx_ring(tx_ring);
2277
2278 vfree(tx_ring->buffer_info);
2279 tx_ring->buffer_info = NULL;
2280
2281 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2282
2283 tx_ring->desc = NULL;
2284 }
2285
2286 /**
2287 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2288 * @adapter: board private structure
2289 *
2290 * Free all transmit software resources
2291 **/
2292 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2293 {
2294 int i;
2295
2296 for (i = 0; i < adapter->num_tx_queues; i++)
2297 igb_free_tx_resources(&adapter->tx_ring[i]);
2298 }
2299
2300 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2301 struct igb_buffer *buffer_info)
2302 {
2303 buffer_info->dma = 0;
2304 if (buffer_info->skb) {
2305 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2306 DMA_TO_DEVICE);
2307 dev_kfree_skb_any(buffer_info->skb);
2308 buffer_info->skb = NULL;
2309 }
2310 buffer_info->time_stamp = 0;
2311 /* buffer_info must be completely set up in the transmit path */
2312 }
2313
2314 /**
2315 * igb_clean_tx_ring - Free Tx Buffers
2316 * @tx_ring: ring to be cleaned
2317 **/
2318 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2319 {
2320 struct igb_adapter *adapter = tx_ring->adapter;
2321 struct igb_buffer *buffer_info;
2322 unsigned long size;
2323 unsigned int i;
2324
2325 if (!tx_ring->buffer_info)
2326 return;
2327 /* Free all the Tx ring sk_buffs */
2328
2329 for (i = 0; i < tx_ring->count; i++) {
2330 buffer_info = &tx_ring->buffer_info[i];
2331 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2332 }
2333
2334 size = sizeof(struct igb_buffer) * tx_ring->count;
2335 memset(tx_ring->buffer_info, 0, size);
2336
2337 /* Zero out the descriptor ring */
2338
2339 memset(tx_ring->desc, 0, tx_ring->size);
2340
2341 tx_ring->next_to_use = 0;
2342 tx_ring->next_to_clean = 0;
2343
2344 writel(0, adapter->hw.hw_addr + tx_ring->head);
2345 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2346 }
2347
2348 /**
2349 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2350 * @adapter: board private structure
2351 **/
2352 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2353 {
2354 int i;
2355
2356 for (i = 0; i < adapter->num_tx_queues; i++)
2357 igb_clean_tx_ring(&adapter->tx_ring[i]);
2358 }
2359
2360 /**
2361 * igb_free_rx_resources - Free Rx Resources
2362 * @rx_ring: ring to clean the resources from
2363 *
2364 * Free all receive software resources
2365 **/
2366 void igb_free_rx_resources(struct igb_ring *rx_ring)
2367 {
2368 struct pci_dev *pdev = rx_ring->adapter->pdev;
2369
2370 igb_clean_rx_ring(rx_ring);
2371
2372 vfree(rx_ring->buffer_info);
2373 rx_ring->buffer_info = NULL;
2374
2375 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2376
2377 rx_ring->desc = NULL;
2378 }
2379
2380 /**
2381 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2382 * @adapter: board private structure
2383 *
2384 * Free all receive software resources
2385 **/
2386 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2387 {
2388 int i;
2389
2390 for (i = 0; i < adapter->num_rx_queues; i++)
2391 igb_free_rx_resources(&adapter->rx_ring[i]);
2392 }
2393
2394 /**
2395 * igb_clean_rx_ring - Free Rx Buffers per Queue
2396 * @rx_ring: ring to free buffers from
2397 **/
2398 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2399 {
2400 struct igb_adapter *adapter = rx_ring->adapter;
2401 struct igb_buffer *buffer_info;
2402 struct pci_dev *pdev = adapter->pdev;
2403 unsigned long size;
2404 unsigned int i;
2405
2406 if (!rx_ring->buffer_info)
2407 return;
2408 /* Free all the Rx ring sk_buffs */
2409 for (i = 0; i < rx_ring->count; i++) {
2410 buffer_info = &rx_ring->buffer_info[i];
2411 if (buffer_info->dma) {
2412 if (adapter->rx_ps_hdr_size)
2413 pci_unmap_single(pdev, buffer_info->dma,
2414 adapter->rx_ps_hdr_size,
2415 PCI_DMA_FROMDEVICE);
2416 else
2417 pci_unmap_single(pdev, buffer_info->dma,
2418 adapter->rx_buffer_len,
2419 PCI_DMA_FROMDEVICE);
2420 buffer_info->dma = 0;
2421 }
2422
2423 if (buffer_info->skb) {
2424 dev_kfree_skb(buffer_info->skb);
2425 buffer_info->skb = NULL;
2426 }
2427 if (buffer_info->page) {
2428 if (buffer_info->page_dma)
2429 pci_unmap_page(pdev, buffer_info->page_dma,
2430 PAGE_SIZE / 2,
2431 PCI_DMA_FROMDEVICE);
2432 put_page(buffer_info->page);
2433 buffer_info->page = NULL;
2434 buffer_info->page_dma = 0;
2435 buffer_info->page_offset = 0;
2436 }
2437 }
2438
2439 size = sizeof(struct igb_buffer) * rx_ring->count;
2440 memset(rx_ring->buffer_info, 0, size);
2441
2442 /* Zero out the descriptor ring */
2443 memset(rx_ring->desc, 0, rx_ring->size);
2444
2445 rx_ring->next_to_clean = 0;
2446 rx_ring->next_to_use = 0;
2447
2448 writel(0, adapter->hw.hw_addr + rx_ring->head);
2449 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2450 }
2451
2452 /**
2453 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2454 * @adapter: board private structure
2455 **/
2456 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2457 {
2458 int i;
2459
2460 for (i = 0; i < adapter->num_rx_queues; i++)
2461 igb_clean_rx_ring(&adapter->rx_ring[i]);
2462 }
2463
2464 /**
2465 * igb_set_mac - Change the Ethernet Address of the NIC
2466 * @netdev: network interface device structure
2467 * @p: pointer to an address structure
2468 *
2469 * Returns 0 on success, negative on failure
2470 **/
2471 static int igb_set_mac(struct net_device *netdev, void *p)
2472 {
2473 struct igb_adapter *adapter = netdev_priv(netdev);
2474 struct e1000_hw *hw = &adapter->hw;
2475 struct sockaddr *addr = p;
2476
2477 if (!is_valid_ether_addr(addr->sa_data))
2478 return -EADDRNOTAVAIL;
2479
2480 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2481 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2482
2483 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2484
2485 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2486
2487 return 0;
2488 }
2489
2490 /**
2491 * igb_set_multi - Multicast and Promiscuous mode set
2492 * @netdev: network interface device structure
2493 *
2494 * The set_multi entry point is called whenever the multicast address
2495 * list or the network interface flags are updated. This routine is
2496 * responsible for configuring the hardware for proper multicast,
2497 * promiscuous mode, and all-multi behavior.
2498 **/
2499 static void igb_set_multi(struct net_device *netdev)
2500 {
2501 struct igb_adapter *adapter = netdev_priv(netdev);
2502 struct e1000_hw *hw = &adapter->hw;
2503 struct e1000_mac_info *mac = &hw->mac;
2504 struct dev_mc_list *mc_ptr;
2505 u8 *mta_list = NULL;
2506 u32 rctl;
2507 int i;
2508
2509 /* Check for Promiscuous and All Multicast modes */
2510
2511 rctl = rd32(E1000_RCTL);
2512
2513 if (netdev->flags & IFF_PROMISC) {
2514 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2515 rctl &= ~E1000_RCTL_VFE;
2516 } else {
2517 if (netdev->flags & IFF_ALLMULTI) {
2518 rctl |= E1000_RCTL_MPE;
2519 rctl &= ~E1000_RCTL_UPE;
2520 } else
2521 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2522 rctl |= E1000_RCTL_VFE;
2523 }
2524 wr32(E1000_RCTL, rctl);
2525
2526 if (netdev->mc_count) {
2527 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2528 if (!mta_list) {
2529 dev_err(&adapter->pdev->dev,
2530 "failed to allocate multicast filter list\n");
2531 return;
2532 }
2533 }
2534
2535 /* The shared function expects a packed array of only addresses. */
2536 mc_ptr = netdev->mc_list;
2537
2538 for (i = 0; i < netdev->mc_count; i++) {
2539 if (!mc_ptr)
2540 break;
2541 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2542 mc_ptr = mc_ptr->next;
2543 }
2544 igb_update_mc_addr_list(hw, mta_list, i,
2545 adapter->vfs_allocated_count + 1,
2546 mac->rar_entry_count);
2547
2548 igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
2549 igb_restore_vf_multicasts(adapter);
2550
2551 kfree(mta_list);
2552 }
2553
2554 /* Need to wait a few seconds after link up to get diagnostic information from
2555 * the phy */
2556 static void igb_update_phy_info(unsigned long data)
2557 {
2558 struct igb_adapter *adapter = (struct igb_adapter *) data;
2559 igb_get_phy_info(&adapter->hw);
2560 }
2561
2562 /**
2563 * igb_has_link - check shared code for link and determine up/down
2564 * @adapter: pointer to driver private info
2565 **/
2566 static bool igb_has_link(struct igb_adapter *adapter)
2567 {
2568 struct e1000_hw *hw = &adapter->hw;
2569 bool link_active = false;
2570 s32 ret_val = 0;
2571
2572 /* get_link_status is set on LSC (link status) interrupt or
2573 * rx sequence error interrupt. get_link_status will stay
2574 * false until the e1000_check_for_link establishes link
2575 * for copper adapters ONLY
2576 */
2577 switch (hw->phy.media_type) {
2578 case e1000_media_type_copper:
2579 if (hw->mac.get_link_status) {
2580 ret_val = hw->mac.ops.check_for_link(hw);
2581 link_active = !hw->mac.get_link_status;
2582 } else {
2583 link_active = true;
2584 }
2585 break;
2586 case e1000_media_type_fiber:
2587 ret_val = hw->mac.ops.check_for_link(hw);
2588 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2589 break;
2590 case e1000_media_type_internal_serdes:
2591 ret_val = hw->mac.ops.check_for_link(hw);
2592 link_active = hw->mac.serdes_has_link;
2593 break;
2594 default:
2595 case e1000_media_type_unknown:
2596 break;
2597 }
2598
2599 return link_active;
2600 }
2601
2602 /**
2603 * igb_watchdog - Timer Call-back
2604 * @data: pointer to adapter cast into an unsigned long
2605 **/
2606 static void igb_watchdog(unsigned long data)
2607 {
2608 struct igb_adapter *adapter = (struct igb_adapter *)data;
2609 /* Do the rest outside of interrupt context */
2610 schedule_work(&adapter->watchdog_task);
2611 }
2612
2613 static void igb_watchdog_task(struct work_struct *work)
2614 {
2615 struct igb_adapter *adapter = container_of(work,
2616 struct igb_adapter, watchdog_task);
2617 struct e1000_hw *hw = &adapter->hw;
2618 struct net_device *netdev = adapter->netdev;
2619 struct igb_ring *tx_ring = adapter->tx_ring;
2620 u32 link;
2621 u32 eics = 0;
2622 int i;
2623
2624 link = igb_has_link(adapter);
2625 if ((netif_carrier_ok(netdev)) && link)
2626 goto link_up;
2627
2628 if (link) {
2629 if (!netif_carrier_ok(netdev)) {
2630 u32 ctrl;
2631 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2632 &adapter->link_speed,
2633 &adapter->link_duplex);
2634
2635 ctrl = rd32(E1000_CTRL);
2636 /* Links status message must follow this format */
2637 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2638 "Flow Control: %s\n",
2639 netdev->name,
2640 adapter->link_speed,
2641 adapter->link_duplex == FULL_DUPLEX ?
2642 "Full Duplex" : "Half Duplex",
2643 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2644 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2645 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2646 E1000_CTRL_TFCE) ? "TX" : "None")));
2647
2648 /* tweak tx_queue_len according to speed/duplex and
2649 * adjust the timeout factor */
2650 netdev->tx_queue_len = adapter->tx_queue_len;
2651 adapter->tx_timeout_factor = 1;
2652 switch (adapter->link_speed) {
2653 case SPEED_10:
2654 netdev->tx_queue_len = 10;
2655 adapter->tx_timeout_factor = 14;
2656 break;
2657 case SPEED_100:
2658 netdev->tx_queue_len = 100;
2659 /* maybe add some timeout factor ? */
2660 break;
2661 }
2662
2663 netif_carrier_on(netdev);
2664 netif_tx_wake_all_queues(netdev);
2665
2666 igb_ping_all_vfs(adapter);
2667
2668 /* link state has changed, schedule phy info update */
2669 if (!test_bit(__IGB_DOWN, &adapter->state))
2670 mod_timer(&adapter->phy_info_timer,
2671 round_jiffies(jiffies + 2 * HZ));
2672 }
2673 } else {
2674 if (netif_carrier_ok(netdev)) {
2675 adapter->link_speed = 0;
2676 adapter->link_duplex = 0;
2677 /* Links status message must follow this format */
2678 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2679 netdev->name);
2680 netif_carrier_off(netdev);
2681 netif_tx_stop_all_queues(netdev);
2682
2683 igb_ping_all_vfs(adapter);
2684
2685 /* link state has changed, schedule phy info update */
2686 if (!test_bit(__IGB_DOWN, &adapter->state))
2687 mod_timer(&adapter->phy_info_timer,
2688 round_jiffies(jiffies + 2 * HZ));
2689 }
2690 }
2691
2692 link_up:
2693 igb_update_stats(adapter);
2694
2695 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2696 adapter->tpt_old = adapter->stats.tpt;
2697 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2698 adapter->colc_old = adapter->stats.colc;
2699
2700 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2701 adapter->gorc_old = adapter->stats.gorc;
2702 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2703 adapter->gotc_old = adapter->stats.gotc;
2704
2705 igb_update_adaptive(&adapter->hw);
2706
2707 if (!netif_carrier_ok(netdev)) {
2708 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2709 /* We've lost link, so the controller stops DMA,
2710 * but we've got queued Tx work that's never going
2711 * to get done, so reset controller to flush Tx.
2712 * (Do the reset outside of interrupt context). */
2713 adapter->tx_timeout_count++;
2714 schedule_work(&adapter->reset_task);
2715 }
2716 }
2717
2718 /* Cause software interrupt to ensure rx ring is cleaned */
2719 if (adapter->msix_entries) {
2720 for (i = 0; i < adapter->num_rx_queues; i++)
2721 eics |= adapter->rx_ring[i].eims_value;
2722 wr32(E1000_EICS, eics);
2723 } else {
2724 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2725 }
2726
2727 /* Force detection of hung controller every watchdog period */
2728 tx_ring->detect_tx_hung = true;
2729
2730 /* Reset the timer */
2731 if (!test_bit(__IGB_DOWN, &adapter->state))
2732 mod_timer(&adapter->watchdog_timer,
2733 round_jiffies(jiffies + 2 * HZ));
2734 }
2735
2736 enum latency_range {
2737 lowest_latency = 0,
2738 low_latency = 1,
2739 bulk_latency = 2,
2740 latency_invalid = 255
2741 };
2742
2743
2744 /**
2745 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2746 *
2747 * Stores a new ITR value based on strictly on packet size. This
2748 * algorithm is less sophisticated than that used in igb_update_itr,
2749 * due to the difficulty of synchronizing statistics across multiple
2750 * receive rings. The divisors and thresholds used by this fuction
2751 * were determined based on theoretical maximum wire speed and testing
2752 * data, in order to minimize response time while increasing bulk
2753 * throughput.
2754 * This functionality is controlled by the InterruptThrottleRate module
2755 * parameter (see igb_param.c)
2756 * NOTE: This function is called only when operating in a multiqueue
2757 * receive environment.
2758 * @rx_ring: pointer to ring
2759 **/
2760 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2761 {
2762 int new_val = rx_ring->itr_val;
2763 int avg_wire_size = 0;
2764 struct igb_adapter *adapter = rx_ring->adapter;
2765
2766 if (!rx_ring->total_packets)
2767 goto clear_counts; /* no packets, so don't do anything */
2768
2769 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2770 * ints/sec - ITR timer value of 120 ticks.
2771 */
2772 if (adapter->link_speed != SPEED_1000) {
2773 new_val = 120;
2774 goto set_itr_val;
2775 }
2776 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2777
2778 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2779 avg_wire_size += 24;
2780
2781 /* Don't starve jumbo frames */
2782 avg_wire_size = min(avg_wire_size, 3000);
2783
2784 /* Give a little boost to mid-size frames */
2785 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2786 new_val = avg_wire_size / 3;
2787 else
2788 new_val = avg_wire_size / 2;
2789
2790 set_itr_val:
2791 if (new_val != rx_ring->itr_val) {
2792 rx_ring->itr_val = new_val;
2793 rx_ring->set_itr = 1;
2794 }
2795 clear_counts:
2796 rx_ring->total_bytes = 0;
2797 rx_ring->total_packets = 0;
2798 }
2799
2800 /**
2801 * igb_update_itr - update the dynamic ITR value based on statistics
2802 * Stores a new ITR value based on packets and byte
2803 * counts during the last interrupt. The advantage of per interrupt
2804 * computation is faster updates and more accurate ITR for the current
2805 * traffic pattern. Constants in this function were computed
2806 * based on theoretical maximum wire speed and thresholds were set based
2807 * on testing data as well as attempting to minimize response time
2808 * while increasing bulk throughput.
2809 * this functionality is controlled by the InterruptThrottleRate module
2810 * parameter (see igb_param.c)
2811 * NOTE: These calculations are only valid when operating in a single-
2812 * queue environment.
2813 * @adapter: pointer to adapter
2814 * @itr_setting: current adapter->itr
2815 * @packets: the number of packets during this measurement interval
2816 * @bytes: the number of bytes during this measurement interval
2817 **/
2818 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2819 int packets, int bytes)
2820 {
2821 unsigned int retval = itr_setting;
2822
2823 if (packets == 0)
2824 goto update_itr_done;
2825
2826 switch (itr_setting) {
2827 case lowest_latency:
2828 /* handle TSO and jumbo frames */
2829 if (bytes/packets > 8000)
2830 retval = bulk_latency;
2831 else if ((packets < 5) && (bytes > 512))
2832 retval = low_latency;
2833 break;
2834 case low_latency: /* 50 usec aka 20000 ints/s */
2835 if (bytes > 10000) {
2836 /* this if handles the TSO accounting */
2837 if (bytes/packets > 8000) {
2838 retval = bulk_latency;
2839 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2840 retval = bulk_latency;
2841 } else if ((packets > 35)) {
2842 retval = lowest_latency;
2843 }
2844 } else if (bytes/packets > 2000) {
2845 retval = bulk_latency;
2846 } else if (packets <= 2 && bytes < 512) {
2847 retval = lowest_latency;
2848 }
2849 break;
2850 case bulk_latency: /* 250 usec aka 4000 ints/s */
2851 if (bytes > 25000) {
2852 if (packets > 35)
2853 retval = low_latency;
2854 } else if (bytes < 1500) {
2855 retval = low_latency;
2856 }
2857 break;
2858 }
2859
2860 update_itr_done:
2861 return retval;
2862 }
2863
2864 static void igb_set_itr(struct igb_adapter *adapter)
2865 {
2866 u16 current_itr;
2867 u32 new_itr = adapter->itr;
2868
2869 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2870 if (adapter->link_speed != SPEED_1000) {
2871 current_itr = 0;
2872 new_itr = 4000;
2873 goto set_itr_now;
2874 }
2875
2876 adapter->rx_itr = igb_update_itr(adapter,
2877 adapter->rx_itr,
2878 adapter->rx_ring->total_packets,
2879 adapter->rx_ring->total_bytes);
2880
2881 if (adapter->rx_ring->buddy) {
2882 adapter->tx_itr = igb_update_itr(adapter,
2883 adapter->tx_itr,
2884 adapter->tx_ring->total_packets,
2885 adapter->tx_ring->total_bytes);
2886 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2887 } else {
2888 current_itr = adapter->rx_itr;
2889 }
2890
2891 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2892 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2893 current_itr = low_latency;
2894
2895 switch (current_itr) {
2896 /* counts and packets in update_itr are dependent on these numbers */
2897 case lowest_latency:
2898 new_itr = 70000;
2899 break;
2900 case low_latency:
2901 new_itr = 20000; /* aka hwitr = ~200 */
2902 break;
2903 case bulk_latency:
2904 new_itr = 4000;
2905 break;
2906 default:
2907 break;
2908 }
2909
2910 set_itr_now:
2911 adapter->rx_ring->total_bytes = 0;
2912 adapter->rx_ring->total_packets = 0;
2913 if (adapter->rx_ring->buddy) {
2914 adapter->rx_ring->buddy->total_bytes = 0;
2915 adapter->rx_ring->buddy->total_packets = 0;
2916 }
2917
2918 if (new_itr != adapter->itr) {
2919 /* this attempts to bias the interrupt rate towards Bulk
2920 * by adding intermediate steps when interrupt rate is
2921 * increasing */
2922 new_itr = new_itr > adapter->itr ?
2923 min(adapter->itr + (new_itr >> 2), new_itr) :
2924 new_itr;
2925 /* Don't write the value here; it resets the adapter's
2926 * internal timer, and causes us to delay far longer than
2927 * we should between interrupts. Instead, we write the ITR
2928 * value at the beginning of the next interrupt so the timing
2929 * ends up being correct.
2930 */
2931 adapter->itr = new_itr;
2932 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2933 adapter->rx_ring->set_itr = 1;
2934 }
2935
2936 return;
2937 }
2938
2939
2940 #define IGB_TX_FLAGS_CSUM 0x00000001
2941 #define IGB_TX_FLAGS_VLAN 0x00000002
2942 #define IGB_TX_FLAGS_TSO 0x00000004
2943 #define IGB_TX_FLAGS_IPV4 0x00000008
2944 #define IGB_TX_FLAGS_TSTAMP 0x00000010
2945 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2946 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2947
2948 static inline int igb_tso_adv(struct igb_adapter *adapter,
2949 struct igb_ring *tx_ring,
2950 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2951 {
2952 struct e1000_adv_tx_context_desc *context_desc;
2953 unsigned int i;
2954 int err;
2955 struct igb_buffer *buffer_info;
2956 u32 info = 0, tu_cmd = 0;
2957 u32 mss_l4len_idx, l4len;
2958 *hdr_len = 0;
2959
2960 if (skb_header_cloned(skb)) {
2961 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2962 if (err)
2963 return err;
2964 }
2965
2966 l4len = tcp_hdrlen(skb);
2967 *hdr_len += l4len;
2968
2969 if (skb->protocol == htons(ETH_P_IP)) {
2970 struct iphdr *iph = ip_hdr(skb);
2971 iph->tot_len = 0;
2972 iph->check = 0;
2973 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2974 iph->daddr, 0,
2975 IPPROTO_TCP,
2976 0);
2977 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2978 ipv6_hdr(skb)->payload_len = 0;
2979 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2980 &ipv6_hdr(skb)->daddr,
2981 0, IPPROTO_TCP, 0);
2982 }
2983
2984 i = tx_ring->next_to_use;
2985
2986 buffer_info = &tx_ring->buffer_info[i];
2987 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2988 /* VLAN MACLEN IPLEN */
2989 if (tx_flags & IGB_TX_FLAGS_VLAN)
2990 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2991 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2992 *hdr_len += skb_network_offset(skb);
2993 info |= skb_network_header_len(skb);
2994 *hdr_len += skb_network_header_len(skb);
2995 context_desc->vlan_macip_lens = cpu_to_le32(info);
2996
2997 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2998 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2999
3000 if (skb->protocol == htons(ETH_P_IP))
3001 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3002 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3003
3004 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3005
3006 /* MSS L4LEN IDX */
3007 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3008 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3009
3010 /* For 82575, context index must be unique per ring. */
3011 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3012 mss_l4len_idx |= tx_ring->queue_index << 4;
3013
3014 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3015 context_desc->seqnum_seed = 0;
3016
3017 buffer_info->time_stamp = jiffies;
3018 buffer_info->next_to_watch = i;
3019 buffer_info->dma = 0;
3020 i++;
3021 if (i == tx_ring->count)
3022 i = 0;
3023
3024 tx_ring->next_to_use = i;
3025
3026 return true;
3027 }
3028
3029 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3030 struct igb_ring *tx_ring,
3031 struct sk_buff *skb, u32 tx_flags)
3032 {
3033 struct e1000_adv_tx_context_desc *context_desc;
3034 unsigned int i;
3035 struct igb_buffer *buffer_info;
3036 u32 info = 0, tu_cmd = 0;
3037
3038 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3039 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3040 i = tx_ring->next_to_use;
3041 buffer_info = &tx_ring->buffer_info[i];
3042 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3043
3044 if (tx_flags & IGB_TX_FLAGS_VLAN)
3045 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3046 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3047 if (skb->ip_summed == CHECKSUM_PARTIAL)
3048 info |= skb_network_header_len(skb);
3049
3050 context_desc->vlan_macip_lens = cpu_to_le32(info);
3051
3052 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3053
3054 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3055 __be16 protocol;
3056
3057 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3058 const struct vlan_ethhdr *vhdr =
3059 (const struct vlan_ethhdr*)skb->data;
3060
3061 protocol = vhdr->h_vlan_encapsulated_proto;
3062 } else {
3063 protocol = skb->protocol;
3064 }
3065
3066 switch (protocol) {
3067 case cpu_to_be16(ETH_P_IP):
3068 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3069 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3070 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3071 break;
3072 case cpu_to_be16(ETH_P_IPV6):
3073 /* XXX what about other V6 headers?? */
3074 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3075 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3076 break;
3077 default:
3078 if (unlikely(net_ratelimit()))
3079 dev_warn(&adapter->pdev->dev,
3080 "partial checksum but proto=%x!\n",
3081 skb->protocol);
3082 break;
3083 }
3084 }
3085
3086 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3087 context_desc->seqnum_seed = 0;
3088 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3089 context_desc->mss_l4len_idx =
3090 cpu_to_le32(tx_ring->queue_index << 4);
3091 else
3092 context_desc->mss_l4len_idx = 0;
3093
3094 buffer_info->time_stamp = jiffies;
3095 buffer_info->next_to_watch = i;
3096 buffer_info->dma = 0;
3097
3098 i++;
3099 if (i == tx_ring->count)
3100 i = 0;
3101 tx_ring->next_to_use = i;
3102
3103 return true;
3104 }
3105 return false;
3106 }
3107
3108 #define IGB_MAX_TXD_PWR 16
3109 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3110
3111 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3112 struct igb_ring *tx_ring, struct sk_buff *skb,
3113 unsigned int first)
3114 {
3115 struct igb_buffer *buffer_info;
3116 unsigned int len = skb_headlen(skb);
3117 unsigned int count = 0, i;
3118 unsigned int f;
3119 dma_addr_t *map;
3120
3121 i = tx_ring->next_to_use;
3122
3123 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3124 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3125 return 0;
3126 }
3127
3128 map = skb_shinfo(skb)->dma_maps;
3129
3130 buffer_info = &tx_ring->buffer_info[i];
3131 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3132 buffer_info->length = len;
3133 /* set time_stamp *before* dma to help avoid a possible race */
3134 buffer_info->time_stamp = jiffies;
3135 buffer_info->next_to_watch = i;
3136 buffer_info->dma = map[count];
3137 count++;
3138
3139 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3140 struct skb_frag_struct *frag;
3141
3142 i++;
3143 if (i == tx_ring->count)
3144 i = 0;
3145
3146 frag = &skb_shinfo(skb)->frags[f];
3147 len = frag->size;
3148
3149 buffer_info = &tx_ring->buffer_info[i];
3150 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3151 buffer_info->length = len;
3152 buffer_info->time_stamp = jiffies;
3153 buffer_info->next_to_watch = i;
3154 buffer_info->dma = map[count];
3155 count++;
3156 }
3157
3158 tx_ring->buffer_info[i].skb = skb;
3159 tx_ring->buffer_info[first].next_to_watch = i;
3160
3161 return count;
3162 }
3163
3164 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3165 struct igb_ring *tx_ring,
3166 int tx_flags, int count, u32 paylen,
3167 u8 hdr_len)
3168 {
3169 union e1000_adv_tx_desc *tx_desc = NULL;
3170 struct igb_buffer *buffer_info;
3171 u32 olinfo_status = 0, cmd_type_len;
3172 unsigned int i;
3173
3174 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3175 E1000_ADVTXD_DCMD_DEXT);
3176
3177 if (tx_flags & IGB_TX_FLAGS_VLAN)
3178 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3179
3180 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3181 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3182
3183 if (tx_flags & IGB_TX_FLAGS_TSO) {
3184 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3185
3186 /* insert tcp checksum */
3187 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3188
3189 /* insert ip checksum */
3190 if (tx_flags & IGB_TX_FLAGS_IPV4)
3191 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3192
3193 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3194 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3195 }
3196
3197 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3198 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3199 IGB_TX_FLAGS_VLAN)))
3200 olinfo_status |= tx_ring->queue_index << 4;
3201
3202 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3203
3204 i = tx_ring->next_to_use;
3205 while (count--) {
3206 buffer_info = &tx_ring->buffer_info[i];
3207 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3208 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3209 tx_desc->read.cmd_type_len =
3210 cpu_to_le32(cmd_type_len | buffer_info->length);
3211 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3212 i++;
3213 if (i == tx_ring->count)
3214 i = 0;
3215 }
3216
3217 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3218 /* Force memory writes to complete before letting h/w
3219 * know there are new descriptors to fetch. (Only
3220 * applicable for weak-ordered memory model archs,
3221 * such as IA-64). */
3222 wmb();
3223
3224 tx_ring->next_to_use = i;
3225 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3226 /* we need this if more than one processor can write to our tail
3227 * at a time, it syncronizes IO on IA64/Altix systems */
3228 mmiowb();
3229 }
3230
3231 static int __igb_maybe_stop_tx(struct net_device *netdev,
3232 struct igb_ring *tx_ring, int size)
3233 {
3234 struct igb_adapter *adapter = netdev_priv(netdev);
3235
3236 netif_stop_subqueue(netdev, tx_ring->queue_index);
3237
3238 /* Herbert's original patch had:
3239 * smp_mb__after_netif_stop_queue();
3240 * but since that doesn't exist yet, just open code it. */
3241 smp_mb();
3242
3243 /* We need to check again in a case another CPU has just
3244 * made room available. */
3245 if (igb_desc_unused(tx_ring) < size)
3246 return -EBUSY;
3247
3248 /* A reprieve! */
3249 netif_wake_subqueue(netdev, tx_ring->queue_index);
3250 ++adapter->restart_queue;
3251 return 0;
3252 }
3253
3254 static int igb_maybe_stop_tx(struct net_device *netdev,
3255 struct igb_ring *tx_ring, int size)
3256 {
3257 if (igb_desc_unused(tx_ring) >= size)
3258 return 0;
3259 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3260 }
3261
3262 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3263 struct net_device *netdev,
3264 struct igb_ring *tx_ring)
3265 {
3266 struct igb_adapter *adapter = netdev_priv(netdev);
3267 unsigned int first;
3268 unsigned int tx_flags = 0;
3269 u8 hdr_len = 0;
3270 int count = 0;
3271 int tso = 0;
3272 union skb_shared_tx *shtx;
3273
3274 if (test_bit(__IGB_DOWN, &adapter->state)) {
3275 dev_kfree_skb_any(skb);
3276 return NETDEV_TX_OK;
3277 }
3278
3279 if (skb->len <= 0) {
3280 dev_kfree_skb_any(skb);
3281 return NETDEV_TX_OK;
3282 }
3283
3284 /* need: 1 descriptor per page,
3285 * + 2 desc gap to keep tail from touching head,
3286 * + 1 desc for skb->data,
3287 * + 1 desc for context descriptor,
3288 * otherwise try next time */
3289 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3290 /* this is a hard error */
3291 return NETDEV_TX_BUSY;
3292 }
3293
3294 /*
3295 * TODO: check that there currently is no other packet with
3296 * time stamping in the queue
3297 *
3298 * When doing time stamping, keep the connection to the socket
3299 * a while longer: it is still needed by skb_hwtstamp_tx(),
3300 * called either in igb_tx_hwtstamp() or by our caller when
3301 * doing software time stamping.
3302 */
3303 shtx = skb_tx(skb);
3304 if (unlikely(shtx->hardware)) {
3305 shtx->in_progress = 1;
3306 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3307 }
3308
3309 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3310 tx_flags |= IGB_TX_FLAGS_VLAN;
3311 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3312 }
3313
3314 if (skb->protocol == htons(ETH_P_IP))
3315 tx_flags |= IGB_TX_FLAGS_IPV4;
3316
3317 first = tx_ring->next_to_use;
3318 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3319 &hdr_len) : 0;
3320
3321 if (tso < 0) {
3322 dev_kfree_skb_any(skb);
3323 return NETDEV_TX_OK;
3324 }
3325
3326 if (tso)
3327 tx_flags |= IGB_TX_FLAGS_TSO;
3328 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3329 (skb->ip_summed == CHECKSUM_PARTIAL))
3330 tx_flags |= IGB_TX_FLAGS_CSUM;
3331
3332 /*
3333 * count reflects descriptors mapped, if 0 then mapping error
3334 * has occured and we need to rewind the descriptor queue
3335 */
3336 count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3337
3338 if (count) {
3339 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3340 skb->len, hdr_len);
3341 netdev->trans_start = jiffies;
3342 /* Make sure there is space in the ring for the next send. */
3343 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3344 } else {
3345 dev_kfree_skb_any(skb);
3346 tx_ring->buffer_info[first].time_stamp = 0;
3347 tx_ring->next_to_use = first;
3348 }
3349
3350 return NETDEV_TX_OK;
3351 }
3352
3353 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3354 {
3355 struct igb_adapter *adapter = netdev_priv(netdev);
3356 struct igb_ring *tx_ring;
3357
3358 int r_idx = 0;
3359 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3360 tx_ring = adapter->multi_tx_table[r_idx];
3361
3362 /* This goes back to the question of how to logically map a tx queue
3363 * to a flow. Right now, performance is impacted slightly negatively
3364 * if using multiple tx queues. If the stack breaks away from a
3365 * single qdisc implementation, we can look at this again. */
3366 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3367 }
3368
3369 /**
3370 * igb_tx_timeout - Respond to a Tx Hang
3371 * @netdev: network interface device structure
3372 **/
3373 static void igb_tx_timeout(struct net_device *netdev)
3374 {
3375 struct igb_adapter *adapter = netdev_priv(netdev);
3376 struct e1000_hw *hw = &adapter->hw;
3377
3378 /* Do the reset outside of interrupt context */
3379 adapter->tx_timeout_count++;
3380 schedule_work(&adapter->reset_task);
3381 wr32(E1000_EICS,
3382 (adapter->eims_enable_mask & ~adapter->eims_other));
3383 }
3384
3385 static void igb_reset_task(struct work_struct *work)
3386 {
3387 struct igb_adapter *adapter;
3388 adapter = container_of(work, struct igb_adapter, reset_task);
3389
3390 igb_reinit_locked(adapter);
3391 }
3392
3393 /**
3394 * igb_get_stats - Get System Network Statistics
3395 * @netdev: network interface device structure
3396 *
3397 * Returns the address of the device statistics structure.
3398 * The statistics are actually updated from the timer callback.
3399 **/
3400 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3401 {
3402 struct igb_adapter *adapter = netdev_priv(netdev);
3403
3404 /* only return the current stats */
3405 return &adapter->net_stats;
3406 }
3407
3408 /**
3409 * igb_change_mtu - Change the Maximum Transfer Unit
3410 * @netdev: network interface device structure
3411 * @new_mtu: new value for maximum frame size
3412 *
3413 * Returns 0 on success, negative on failure
3414 **/
3415 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3416 {
3417 struct igb_adapter *adapter = netdev_priv(netdev);
3418 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3419
3420 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3421 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3422 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3423 return -EINVAL;
3424 }
3425
3426 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3427 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3428 return -EINVAL;
3429 }
3430
3431 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3432 msleep(1);
3433
3434 /* igb_down has a dependency on max_frame_size */
3435 adapter->max_frame_size = max_frame;
3436 if (netif_running(netdev))
3437 igb_down(adapter);
3438
3439 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3440 * means we reserve 2 more, this pushes us to allocate from the next
3441 * larger slab size.
3442 * i.e. RXBUFFER_2048 --> size-4096 slab
3443 */
3444
3445 if (max_frame <= IGB_RXBUFFER_256)
3446 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3447 else if (max_frame <= IGB_RXBUFFER_512)
3448 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3449 else if (max_frame <= IGB_RXBUFFER_1024)
3450 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3451 else if (max_frame <= IGB_RXBUFFER_2048)
3452 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3453 else
3454 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3455 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3456 #else
3457 adapter->rx_buffer_len = PAGE_SIZE / 2;
3458 #endif
3459
3460 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3461 if (adapter->vfs_allocated_count &&
3462 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3463 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3464
3465 /* adjust allocation if LPE protects us, and we aren't using SBP */
3466 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3467 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3468 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3469
3470 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3471 netdev->mtu, new_mtu);
3472 netdev->mtu = new_mtu;
3473
3474 if (netif_running(netdev))
3475 igb_up(adapter);
3476 else
3477 igb_reset(adapter);
3478
3479 clear_bit(__IGB_RESETTING, &adapter->state);
3480
3481 return 0;
3482 }
3483
3484 /**
3485 * igb_update_stats - Update the board statistics counters
3486 * @adapter: board private structure
3487 **/
3488
3489 void igb_update_stats(struct igb_adapter *adapter)
3490 {
3491 struct e1000_hw *hw = &adapter->hw;
3492 struct pci_dev *pdev = adapter->pdev;
3493 u16 phy_tmp;
3494
3495 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3496
3497 /*
3498 * Prevent stats update while adapter is being reset, or if the pci
3499 * connection is down.
3500 */
3501 if (adapter->link_speed == 0)
3502 return;
3503 if (pci_channel_offline(pdev))
3504 return;
3505
3506 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3507 adapter->stats.gprc += rd32(E1000_GPRC);
3508 adapter->stats.gorc += rd32(E1000_GORCL);
3509 rd32(E1000_GORCH); /* clear GORCL */
3510 adapter->stats.bprc += rd32(E1000_BPRC);
3511 adapter->stats.mprc += rd32(E1000_MPRC);
3512 adapter->stats.roc += rd32(E1000_ROC);
3513
3514 adapter->stats.prc64 += rd32(E1000_PRC64);
3515 adapter->stats.prc127 += rd32(E1000_PRC127);
3516 adapter->stats.prc255 += rd32(E1000_PRC255);
3517 adapter->stats.prc511 += rd32(E1000_PRC511);
3518 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3519 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3520 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3521 adapter->stats.sec += rd32(E1000_SEC);
3522
3523 adapter->stats.mpc += rd32(E1000_MPC);
3524 adapter->stats.scc += rd32(E1000_SCC);
3525 adapter->stats.ecol += rd32(E1000_ECOL);
3526 adapter->stats.mcc += rd32(E1000_MCC);
3527 adapter->stats.latecol += rd32(E1000_LATECOL);
3528 adapter->stats.dc += rd32(E1000_DC);
3529 adapter->stats.rlec += rd32(E1000_RLEC);
3530 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3531 adapter->stats.xontxc += rd32(E1000_XONTXC);
3532 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3533 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3534 adapter->stats.fcruc += rd32(E1000_FCRUC);
3535 adapter->stats.gptc += rd32(E1000_GPTC);
3536 adapter->stats.gotc += rd32(E1000_GOTCL);
3537 rd32(E1000_GOTCH); /* clear GOTCL */
3538 adapter->stats.rnbc += rd32(E1000_RNBC);
3539 adapter->stats.ruc += rd32(E1000_RUC);
3540 adapter->stats.rfc += rd32(E1000_RFC);
3541 adapter->stats.rjc += rd32(E1000_RJC);
3542 adapter->stats.tor += rd32(E1000_TORH);
3543 adapter->stats.tot += rd32(E1000_TOTH);
3544 adapter->stats.tpr += rd32(E1000_TPR);
3545
3546 adapter->stats.ptc64 += rd32(E1000_PTC64);
3547 adapter->stats.ptc127 += rd32(E1000_PTC127);
3548 adapter->stats.ptc255 += rd32(E1000_PTC255);
3549 adapter->stats.ptc511 += rd32(E1000_PTC511);
3550 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3551 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3552
3553 adapter->stats.mptc += rd32(E1000_MPTC);
3554 adapter->stats.bptc += rd32(E1000_BPTC);
3555
3556 /* used for adaptive IFS */
3557
3558 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3559 adapter->stats.tpt += hw->mac.tx_packet_delta;
3560 hw->mac.collision_delta = rd32(E1000_COLC);
3561 adapter->stats.colc += hw->mac.collision_delta;
3562
3563 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3564 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3565 adapter->stats.tncrs += rd32(E1000_TNCRS);
3566 adapter->stats.tsctc += rd32(E1000_TSCTC);
3567 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3568
3569 adapter->stats.iac += rd32(E1000_IAC);
3570 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3571 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3572 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3573 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3574 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3575 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3576 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3577 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3578
3579 /* Fill out the OS statistics structure */
3580 adapter->net_stats.multicast = adapter->stats.mprc;
3581 adapter->net_stats.collisions = adapter->stats.colc;
3582
3583 /* Rx Errors */
3584
3585 /* RLEC on some newer hardware can be incorrect so build
3586 * our own version based on RUC and ROC */
3587 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3588 adapter->stats.crcerrs + adapter->stats.algnerrc +
3589 adapter->stats.ruc + adapter->stats.roc +
3590 adapter->stats.cexterr;
3591 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3592 adapter->stats.roc;
3593 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3594 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3595 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3596
3597 /* Tx Errors */
3598 adapter->net_stats.tx_errors = adapter->stats.ecol +
3599 adapter->stats.latecol;
3600 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3601 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3602 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3603
3604 /* Tx Dropped needs to be maintained elsewhere */
3605
3606 /* Phy Stats */
3607 if (hw->phy.media_type == e1000_media_type_copper) {
3608 if ((adapter->link_speed == SPEED_1000) &&
3609 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3610 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3611 adapter->phy_stats.idle_errors += phy_tmp;
3612 }
3613 }
3614
3615 /* Management Stats */
3616 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3617 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3618 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3619 }
3620
3621 static irqreturn_t igb_msix_other(int irq, void *data)
3622 {
3623 struct net_device *netdev = data;
3624 struct igb_adapter *adapter = netdev_priv(netdev);
3625 struct e1000_hw *hw = &adapter->hw;
3626 u32 icr = rd32(E1000_ICR);
3627
3628 /* reading ICR causes bit 31 of EICR to be cleared */
3629
3630 if(icr & E1000_ICR_DOUTSYNC) {
3631 /* HW is reporting DMA is out of sync */
3632 adapter->stats.doosync++;
3633 }
3634
3635 /* Check for a mailbox event */
3636 if (icr & E1000_ICR_VMMB)
3637 igb_msg_task(adapter);
3638
3639 if (icr & E1000_ICR_LSC) {
3640 hw->mac.get_link_status = 1;
3641 /* guard against interrupt when we're going down */
3642 if (!test_bit(__IGB_DOWN, &adapter->state))
3643 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3644 }
3645
3646 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3647 wr32(E1000_EIMS, adapter->eims_other);
3648
3649 return IRQ_HANDLED;
3650 }
3651
3652 static irqreturn_t igb_msix_tx(int irq, void *data)
3653 {
3654 struct igb_ring *tx_ring = data;
3655 struct igb_adapter *adapter = tx_ring->adapter;
3656 struct e1000_hw *hw = &adapter->hw;
3657
3658 #ifdef CONFIG_IGB_DCA
3659 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3660 igb_update_tx_dca(tx_ring);
3661 #endif
3662
3663 tx_ring->total_bytes = 0;
3664 tx_ring->total_packets = 0;
3665
3666 /* auto mask will automatically reenable the interrupt when we write
3667 * EICS */
3668 if (!igb_clean_tx_irq(tx_ring))
3669 /* Ring was not completely cleaned, so fire another interrupt */
3670 wr32(E1000_EICS, tx_ring->eims_value);
3671 else
3672 wr32(E1000_EIMS, tx_ring->eims_value);
3673
3674 return IRQ_HANDLED;
3675 }
3676
3677 static void igb_write_itr(struct igb_ring *ring)
3678 {
3679 struct e1000_hw *hw = &ring->adapter->hw;
3680 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3681 switch (hw->mac.type) {
3682 case e1000_82576:
3683 wr32(ring->itr_register, ring->itr_val |
3684 0x80000000);
3685 break;
3686 default:
3687 wr32(ring->itr_register, ring->itr_val |
3688 (ring->itr_val << 16));
3689 break;
3690 }
3691 ring->set_itr = 0;
3692 }
3693 }
3694
3695 static irqreturn_t igb_msix_rx(int irq, void *data)
3696 {
3697 struct igb_ring *rx_ring = data;
3698
3699 /* Write the ITR value calculated at the end of the
3700 * previous interrupt.
3701 */
3702
3703 igb_write_itr(rx_ring);
3704
3705 if (napi_schedule_prep(&rx_ring->napi))
3706 __napi_schedule(&rx_ring->napi);
3707
3708 #ifdef CONFIG_IGB_DCA
3709 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3710 igb_update_rx_dca(rx_ring);
3711 #endif
3712 return IRQ_HANDLED;
3713 }
3714
3715 #ifdef CONFIG_IGB_DCA
3716 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3717 {
3718 u32 dca_rxctrl;
3719 struct igb_adapter *adapter = rx_ring->adapter;
3720 struct e1000_hw *hw = &adapter->hw;
3721 int cpu = get_cpu();
3722 int q = rx_ring->reg_idx;
3723
3724 if (rx_ring->cpu != cpu) {
3725 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3726 if (hw->mac.type == e1000_82576) {
3727 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3728 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3729 E1000_DCA_RXCTRL_CPUID_SHIFT;
3730 } else {
3731 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3732 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3733 }
3734 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3735 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3736 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3737 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3738 rx_ring->cpu = cpu;
3739 }
3740 put_cpu();
3741 }
3742
3743 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3744 {
3745 u32 dca_txctrl;
3746 struct igb_adapter *adapter = tx_ring->adapter;
3747 struct e1000_hw *hw = &adapter->hw;
3748 int cpu = get_cpu();
3749 int q = tx_ring->reg_idx;
3750
3751 if (tx_ring->cpu != cpu) {
3752 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3753 if (hw->mac.type == e1000_82576) {
3754 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3755 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3756 E1000_DCA_TXCTRL_CPUID_SHIFT;
3757 } else {
3758 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3759 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3760 }
3761 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3762 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3763 tx_ring->cpu = cpu;
3764 }
3765 put_cpu();
3766 }
3767
3768 static void igb_setup_dca(struct igb_adapter *adapter)
3769 {
3770 int i;
3771
3772 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3773 return;
3774
3775 for (i = 0; i < adapter->num_tx_queues; i++) {
3776 adapter->tx_ring[i].cpu = -1;
3777 igb_update_tx_dca(&adapter->tx_ring[i]);
3778 }
3779 for (i = 0; i < adapter->num_rx_queues; i++) {
3780 adapter->rx_ring[i].cpu = -1;
3781 igb_update_rx_dca(&adapter->rx_ring[i]);
3782 }
3783 }
3784
3785 static int __igb_notify_dca(struct device *dev, void *data)
3786 {
3787 struct net_device *netdev = dev_get_drvdata(dev);
3788 struct igb_adapter *adapter = netdev_priv(netdev);
3789 struct e1000_hw *hw = &adapter->hw;
3790 unsigned long event = *(unsigned long *)data;
3791
3792 switch (event) {
3793 case DCA_PROVIDER_ADD:
3794 /* if already enabled, don't do it again */
3795 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3796 break;
3797 /* Always use CB2 mode, difference is masked
3798 * in the CB driver. */
3799 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3800 if (dca_add_requester(dev) == 0) {
3801 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3802 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3803 igb_setup_dca(adapter);
3804 break;
3805 }
3806 /* Fall Through since DCA is disabled. */
3807 case DCA_PROVIDER_REMOVE:
3808 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3809 /* without this a class_device is left
3810 * hanging around in the sysfs model */
3811 dca_remove_requester(dev);
3812 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3813 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3814 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3815 }
3816 break;
3817 }
3818
3819 return 0;
3820 }
3821
3822 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3823 void *p)
3824 {
3825 int ret_val;
3826
3827 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3828 __igb_notify_dca);
3829
3830 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3831 }
3832 #endif /* CONFIG_IGB_DCA */
3833
3834 static void igb_ping_all_vfs(struct igb_adapter *adapter)
3835 {
3836 struct e1000_hw *hw = &adapter->hw;
3837 u32 ping;
3838 int i;
3839
3840 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3841 ping = E1000_PF_CONTROL_MSG;
3842 if (adapter->vf_data[i].clear_to_send)
3843 ping |= E1000_VT_MSGTYPE_CTS;
3844 igb_write_mbx(hw, &ping, 1, i);
3845 }
3846 }
3847
3848 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3849 u32 *msgbuf, u32 vf)
3850 {
3851 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3852 u16 *hash_list = (u16 *)&msgbuf[1];
3853 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3854 int i;
3855
3856 /* only up to 30 hash values supported */
3857 if (n > 30)
3858 n = 30;
3859
3860 /* salt away the number of multi cast addresses assigned
3861 * to this VF for later use to restore when the PF multi cast
3862 * list changes
3863 */
3864 vf_data->num_vf_mc_hashes = n;
3865
3866 /* VFs are limited to using the MTA hash table for their multicast
3867 * addresses */
3868 for (i = 0; i < n; i++)
3869 vf_data->vf_mc_hashes[i] = hash_list[i];;
3870
3871 /* Flush and reset the mta with the new values */
3872 igb_set_multi(adapter->netdev);
3873
3874 return 0;
3875 }
3876
3877 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3878 {
3879 struct e1000_hw *hw = &adapter->hw;
3880 struct vf_data_storage *vf_data;
3881 int i, j;
3882
3883 for (i = 0; i < adapter->vfs_allocated_count; i++) {
3884 vf_data = &adapter->vf_data[i];
3885 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
3886 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3887 }
3888 }
3889
3890 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3891 {
3892 struct e1000_hw *hw = &adapter->hw;
3893 u32 pool_mask, reg, vid;
3894 int i;
3895
3896 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3897
3898 /* Find the vlan filter for this id */
3899 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3900 reg = rd32(E1000_VLVF(i));
3901
3902 /* remove the vf from the pool */
3903 reg &= ~pool_mask;
3904
3905 /* if pool is empty then remove entry from vfta */
3906 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3907 (reg & E1000_VLVF_VLANID_ENABLE)) {
3908 reg = 0;
3909 vid = reg & E1000_VLVF_VLANID_MASK;
3910 igb_vfta_set(hw, vid, false);
3911 }
3912
3913 wr32(E1000_VLVF(i), reg);
3914 }
3915 }
3916
3917 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3918 {
3919 struct e1000_hw *hw = &adapter->hw;
3920 u32 reg, i;
3921
3922 /* It is an error to call this function when VFs are not enabled */
3923 if (!adapter->vfs_allocated_count)
3924 return -1;
3925
3926 /* Find the vlan filter for this id */
3927 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3928 reg = rd32(E1000_VLVF(i));
3929 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3930 vid == (reg & E1000_VLVF_VLANID_MASK))
3931 break;
3932 }
3933
3934 if (add) {
3935 if (i == E1000_VLVF_ARRAY_SIZE) {
3936 /* Did not find a matching VLAN ID entry that was
3937 * enabled. Search for a free filter entry, i.e.
3938 * one without the enable bit set
3939 */
3940 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3941 reg = rd32(E1000_VLVF(i));
3942 if (!(reg & E1000_VLVF_VLANID_ENABLE))
3943 break;
3944 }
3945 }
3946 if (i < E1000_VLVF_ARRAY_SIZE) {
3947 /* Found an enabled/available entry */
3948 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3949
3950 /* if !enabled we need to set this up in vfta */
3951 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
3952 /* add VID to filter table, if bit already set
3953 * PF must have added it outside of table */
3954 if (igb_vfta_set(hw, vid, true))
3955 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
3956 adapter->vfs_allocated_count);
3957 reg |= E1000_VLVF_VLANID_ENABLE;
3958 }
3959 reg &= ~E1000_VLVF_VLANID_MASK;
3960 reg |= vid;
3961
3962 wr32(E1000_VLVF(i), reg);
3963 return 0;
3964 }
3965 } else {
3966 if (i < E1000_VLVF_ARRAY_SIZE) {
3967 /* remove vf from the pool */
3968 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
3969 /* if pool is empty then remove entry from vfta */
3970 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
3971 reg = 0;
3972 igb_vfta_set(hw, vid, false);
3973 }
3974 wr32(E1000_VLVF(i), reg);
3975 return 0;
3976 }
3977 }
3978 return -1;
3979 }
3980
3981 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
3982 {
3983 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3984 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
3985
3986 return igb_vlvf_set(adapter, vid, add, vf);
3987 }
3988
3989 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
3990 {
3991 struct e1000_hw *hw = &adapter->hw;
3992
3993 /* disable mailbox functionality for vf */
3994 adapter->vf_data[vf].clear_to_send = false;
3995
3996 /* reset offloads to defaults */
3997 igb_set_vmolr(hw, vf);
3998
3999 /* reset vlans for device */
4000 igb_clear_vf_vfta(adapter, vf);
4001
4002 /* reset multicast table array for vf */
4003 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4004
4005 /* Flush and reset the mta with the new values */
4006 igb_set_multi(adapter->netdev);
4007 }
4008
4009 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4010 {
4011 struct e1000_hw *hw = &adapter->hw;
4012 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4013 u32 reg, msgbuf[3];
4014 u8 *addr = (u8 *)(&msgbuf[1]);
4015
4016 /* process all the same items cleared in a function level reset */
4017 igb_vf_reset_event(adapter, vf);
4018
4019 /* set vf mac address */
4020 igb_rar_set(hw, vf_mac, vf + 1);
4021 igb_set_rah_pool(hw, vf, vf + 1);
4022
4023 /* enable transmit and receive for vf */
4024 reg = rd32(E1000_VFTE);
4025 wr32(E1000_VFTE, reg | (1 << vf));
4026 reg = rd32(E1000_VFRE);
4027 wr32(E1000_VFRE, reg | (1 << vf));
4028
4029 /* enable mailbox functionality for vf */
4030 adapter->vf_data[vf].clear_to_send = true;
4031
4032 /* reply to reset with ack and vf mac address */
4033 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4034 memcpy(addr, vf_mac, 6);
4035 igb_write_mbx(hw, msgbuf, 3, vf);
4036 }
4037
4038 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4039 {
4040 unsigned char *addr = (char *)&msg[1];
4041 int err = -1;
4042
4043 if (is_valid_ether_addr(addr))
4044 err = igb_set_vf_mac(adapter, vf, addr);
4045
4046 return err;
4047
4048 }
4049
4050 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4051 {
4052 struct e1000_hw *hw = &adapter->hw;
4053 u32 msg = E1000_VT_MSGTYPE_NACK;
4054
4055 /* if device isn't clear to send it shouldn't be reading either */
4056 if (!adapter->vf_data[vf].clear_to_send)
4057 igb_write_mbx(hw, &msg, 1, vf);
4058 }
4059
4060
4061 static void igb_msg_task(struct igb_adapter *adapter)
4062 {
4063 struct e1000_hw *hw = &adapter->hw;
4064 u32 vf;
4065
4066 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4067 /* process any reset requests */
4068 if (!igb_check_for_rst(hw, vf)) {
4069 adapter->vf_data[vf].clear_to_send = false;
4070 igb_vf_reset_event(adapter, vf);
4071 }
4072
4073 /* process any messages pending */
4074 if (!igb_check_for_msg(hw, vf))
4075 igb_rcv_msg_from_vf(adapter, vf);
4076
4077 /* process any acks */
4078 if (!igb_check_for_ack(hw, vf))
4079 igb_rcv_ack_from_vf(adapter, vf);
4080
4081 }
4082 }
4083
4084 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4085 {
4086 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4087 u32 msgbuf[mbx_size];
4088 struct e1000_hw *hw = &adapter->hw;
4089 s32 retval;
4090
4091 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4092
4093 if (retval)
4094 dev_err(&adapter->pdev->dev,
4095 "Error receiving message from VF\n");
4096
4097 /* this is a message we already processed, do nothing */
4098 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4099 return retval;
4100
4101 /*
4102 * until the vf completes a reset it should not be
4103 * allowed to start any configuration.
4104 */
4105
4106 if (msgbuf[0] == E1000_VF_RESET) {
4107 igb_vf_reset_msg(adapter, vf);
4108
4109 return retval;
4110 }
4111
4112 if (!adapter->vf_data[vf].clear_to_send) {
4113 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4114 igb_write_mbx(hw, msgbuf, 1, vf);
4115 return retval;
4116 }
4117
4118 switch ((msgbuf[0] & 0xFFFF)) {
4119 case E1000_VF_SET_MAC_ADDR:
4120 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4121 break;
4122 case E1000_VF_SET_MULTICAST:
4123 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4124 break;
4125 case E1000_VF_SET_LPE:
4126 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4127 break;
4128 case E1000_VF_SET_VLAN:
4129 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4130 break;
4131 default:
4132 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4133 retval = -1;
4134 break;
4135 }
4136
4137 /* notify the VF of the results of what it sent us */
4138 if (retval)
4139 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4140 else
4141 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4142
4143 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4144
4145 igb_write_mbx(hw, msgbuf, 1, vf);
4146
4147 return retval;
4148 }
4149
4150 /**
4151 * igb_intr_msi - Interrupt Handler
4152 * @irq: interrupt number
4153 * @data: pointer to a network interface device structure
4154 **/
4155 static irqreturn_t igb_intr_msi(int irq, void *data)
4156 {
4157 struct net_device *netdev = data;
4158 struct igb_adapter *adapter = netdev_priv(netdev);
4159 struct e1000_hw *hw = &adapter->hw;
4160 /* read ICR disables interrupts using IAM */
4161 u32 icr = rd32(E1000_ICR);
4162
4163 igb_write_itr(adapter->rx_ring);
4164
4165 if(icr & E1000_ICR_DOUTSYNC) {
4166 /* HW is reporting DMA is out of sync */
4167 adapter->stats.doosync++;
4168 }
4169
4170 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4171 hw->mac.get_link_status = 1;
4172 if (!test_bit(__IGB_DOWN, &adapter->state))
4173 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4174 }
4175
4176 napi_schedule(&adapter->rx_ring[0].napi);
4177
4178 return IRQ_HANDLED;
4179 }
4180
4181 /**
4182 * igb_intr - Legacy Interrupt Handler
4183 * @irq: interrupt number
4184 * @data: pointer to a network interface device structure
4185 **/
4186 static irqreturn_t igb_intr(int irq, void *data)
4187 {
4188 struct net_device *netdev = data;
4189 struct igb_adapter *adapter = netdev_priv(netdev);
4190 struct e1000_hw *hw = &adapter->hw;
4191 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4192 * need for the IMC write */
4193 u32 icr = rd32(E1000_ICR);
4194 if (!icr)
4195 return IRQ_NONE; /* Not our interrupt */
4196
4197 igb_write_itr(adapter->rx_ring);
4198
4199 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4200 * not set, then the adapter didn't send an interrupt */
4201 if (!(icr & E1000_ICR_INT_ASSERTED))
4202 return IRQ_NONE;
4203
4204 if(icr & E1000_ICR_DOUTSYNC) {
4205 /* HW is reporting DMA is out of sync */
4206 adapter->stats.doosync++;
4207 }
4208
4209 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4210 hw->mac.get_link_status = 1;
4211 /* guard against interrupt when we're going down */
4212 if (!test_bit(__IGB_DOWN, &adapter->state))
4213 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4214 }
4215
4216 napi_schedule(&adapter->rx_ring[0].napi);
4217
4218 return IRQ_HANDLED;
4219 }
4220
4221 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4222 {
4223 struct igb_adapter *adapter = rx_ring->adapter;
4224 struct e1000_hw *hw = &adapter->hw;
4225
4226 if (adapter->itr_setting & 3) {
4227 if (adapter->num_rx_queues == 1)
4228 igb_set_itr(adapter);
4229 else
4230 igb_update_ring_itr(rx_ring);
4231 }
4232
4233 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4234 if (adapter->msix_entries)
4235 wr32(E1000_EIMS, rx_ring->eims_value);
4236 else
4237 igb_irq_enable(adapter);
4238 }
4239 }
4240
4241 /**
4242 * igb_poll - NAPI Rx polling callback
4243 * @napi: napi polling structure
4244 * @budget: count of how many packets we should handle
4245 **/
4246 static int igb_poll(struct napi_struct *napi, int budget)
4247 {
4248 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4249 int work_done = 0;
4250
4251 #ifdef CONFIG_IGB_DCA
4252 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4253 igb_update_rx_dca(rx_ring);
4254 #endif
4255 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4256
4257 if (rx_ring->buddy) {
4258 #ifdef CONFIG_IGB_DCA
4259 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4260 igb_update_tx_dca(rx_ring->buddy);
4261 #endif
4262 if (!igb_clean_tx_irq(rx_ring->buddy))
4263 work_done = budget;
4264 }
4265
4266 /* If not enough Rx work done, exit the polling mode */
4267 if (work_done < budget) {
4268 napi_complete(napi);
4269 igb_rx_irq_enable(rx_ring);
4270 }
4271
4272 return work_done;
4273 }
4274
4275 /**
4276 * igb_hwtstamp - utility function which checks for TX time stamp
4277 * @adapter: board private structure
4278 * @skb: packet that was just sent
4279 *
4280 * If we were asked to do hardware stamping and such a time stamp is
4281 * available, then it must have been for this skb here because we only
4282 * allow only one such packet into the queue.
4283 */
4284 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4285 {
4286 union skb_shared_tx *shtx = skb_tx(skb);
4287 struct e1000_hw *hw = &adapter->hw;
4288
4289 if (unlikely(shtx->hardware)) {
4290 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4291 if (valid) {
4292 u64 regval = rd32(E1000_TXSTMPL);
4293 u64 ns;
4294 struct skb_shared_hwtstamps shhwtstamps;
4295
4296 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4297 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4298 ns = timecounter_cyc2time(&adapter->clock,
4299 regval);
4300 timecompare_update(&adapter->compare, ns);
4301 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4302 shhwtstamps.syststamp =
4303 timecompare_transform(&adapter->compare, ns);
4304 skb_tstamp_tx(skb, &shhwtstamps);
4305 }
4306 }
4307 }
4308
4309 /**
4310 * igb_clean_tx_irq - Reclaim resources after transmit completes
4311 * @adapter: board private structure
4312 * returns true if ring is completely cleaned
4313 **/
4314 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4315 {
4316 struct igb_adapter *adapter = tx_ring->adapter;
4317 struct net_device *netdev = adapter->netdev;
4318 struct e1000_hw *hw = &adapter->hw;
4319 struct igb_buffer *buffer_info;
4320 struct sk_buff *skb;
4321 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4322 unsigned int total_bytes = 0, total_packets = 0;
4323 unsigned int i, eop, count = 0;
4324 bool cleaned = false;
4325
4326 i = tx_ring->next_to_clean;
4327 eop = tx_ring->buffer_info[i].next_to_watch;
4328 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4329
4330 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4331 (count < tx_ring->count)) {
4332 for (cleaned = false; !cleaned; count++) {
4333 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4334 buffer_info = &tx_ring->buffer_info[i];
4335 cleaned = (i == eop);
4336 skb = buffer_info->skb;
4337
4338 if (skb) {
4339 unsigned int segs, bytecount;
4340 /* gso_segs is currently only valid for tcp */
4341 segs = skb_shinfo(skb)->gso_segs ?: 1;
4342 /* multiply data chunks by size of headers */
4343 bytecount = ((segs - 1) * skb_headlen(skb)) +
4344 skb->len;
4345 total_packets += segs;
4346 total_bytes += bytecount;
4347
4348 igb_tx_hwtstamp(adapter, skb);
4349 }
4350
4351 igb_unmap_and_free_tx_resource(adapter, buffer_info);
4352 tx_desc->wb.status = 0;
4353
4354 i++;
4355 if (i == tx_ring->count)
4356 i = 0;
4357 }
4358 eop = tx_ring->buffer_info[i].next_to_watch;
4359 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4360 }
4361
4362 tx_ring->next_to_clean = i;
4363
4364 if (unlikely(count &&
4365 netif_carrier_ok(netdev) &&
4366 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4367 /* Make sure that anybody stopping the queue after this
4368 * sees the new next_to_clean.
4369 */
4370 smp_mb();
4371 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4372 !(test_bit(__IGB_DOWN, &adapter->state))) {
4373 netif_wake_subqueue(netdev, tx_ring->queue_index);
4374 ++adapter->restart_queue;
4375 }
4376 }
4377
4378 if (tx_ring->detect_tx_hung) {
4379 /* Detect a transmit hang in hardware, this serializes the
4380 * check with the clearing of time_stamp and movement of i */
4381 tx_ring->detect_tx_hung = false;
4382 if (tx_ring->buffer_info[i].time_stamp &&
4383 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4384 (adapter->tx_timeout_factor * HZ))
4385 && !(rd32(E1000_STATUS) &
4386 E1000_STATUS_TXOFF)) {
4387
4388 /* detected Tx unit hang */
4389 dev_err(&adapter->pdev->dev,
4390 "Detected Tx Unit Hang\n"
4391 " Tx Queue <%d>\n"
4392 " TDH <%x>\n"
4393 " TDT <%x>\n"
4394 " next_to_use <%x>\n"
4395 " next_to_clean <%x>\n"
4396 "buffer_info[next_to_clean]\n"
4397 " time_stamp <%lx>\n"
4398 " next_to_watch <%x>\n"
4399 " jiffies <%lx>\n"
4400 " desc.status <%x>\n",
4401 tx_ring->queue_index,
4402 readl(adapter->hw.hw_addr + tx_ring->head),
4403 readl(adapter->hw.hw_addr + tx_ring->tail),
4404 tx_ring->next_to_use,
4405 tx_ring->next_to_clean,
4406 tx_ring->buffer_info[i].time_stamp,
4407 eop,
4408 jiffies,
4409 eop_desc->wb.status);
4410 netif_stop_subqueue(netdev, tx_ring->queue_index);
4411 }
4412 }
4413 tx_ring->total_bytes += total_bytes;
4414 tx_ring->total_packets += total_packets;
4415 tx_ring->tx_stats.bytes += total_bytes;
4416 tx_ring->tx_stats.packets += total_packets;
4417 adapter->net_stats.tx_bytes += total_bytes;
4418 adapter->net_stats.tx_packets += total_packets;
4419 return (count < tx_ring->count);
4420 }
4421
4422 /**
4423 * igb_receive_skb - helper function to handle rx indications
4424 * @ring: pointer to receive ring receving this packet
4425 * @status: descriptor status field as written by hardware
4426 * @rx_desc: receive descriptor containing vlan and type information.
4427 * @skb: pointer to sk_buff to be indicated to stack
4428 **/
4429 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4430 union e1000_adv_rx_desc * rx_desc,
4431 struct sk_buff *skb)
4432 {
4433 struct igb_adapter * adapter = ring->adapter;
4434 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4435
4436 skb_record_rx_queue(skb, ring->queue_index);
4437 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4438 if (vlan_extracted)
4439 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4440 le16_to_cpu(rx_desc->wb.upper.vlan),
4441 skb);
4442 else
4443 napi_gro_receive(&ring->napi, skb);
4444 } else {
4445 if (vlan_extracted)
4446 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4447 le16_to_cpu(rx_desc->wb.upper.vlan));
4448 else
4449 netif_receive_skb(skb);
4450 }
4451 }
4452
4453 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4454 u32 status_err, struct sk_buff *skb)
4455 {
4456 skb->ip_summed = CHECKSUM_NONE;
4457
4458 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4459 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
4460 return;
4461 /* TCP/UDP checksum error bit is set */
4462 if (status_err &
4463 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4464 /* let the stack verify checksum errors */
4465 adapter->hw_csum_err++;
4466 return;
4467 }
4468 /* It must be a TCP or UDP packet with a valid checksum */
4469 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4470 skb->ip_summed = CHECKSUM_UNNECESSARY;
4471
4472 adapter->hw_csum_good++;
4473 }
4474
4475 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4476 int *work_done, int budget)
4477 {
4478 struct igb_adapter *adapter = rx_ring->adapter;
4479 struct net_device *netdev = adapter->netdev;
4480 struct e1000_hw *hw = &adapter->hw;
4481 struct pci_dev *pdev = adapter->pdev;
4482 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4483 struct igb_buffer *buffer_info , *next_buffer;
4484 struct sk_buff *skb;
4485 bool cleaned = false;
4486 int cleaned_count = 0;
4487 unsigned int total_bytes = 0, total_packets = 0;
4488 unsigned int i;
4489 u32 length, hlen, staterr;
4490
4491 i = rx_ring->next_to_clean;
4492 buffer_info = &rx_ring->buffer_info[i];
4493 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4494 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4495
4496 while (staterr & E1000_RXD_STAT_DD) {
4497 if (*work_done >= budget)
4498 break;
4499 (*work_done)++;
4500
4501 skb = buffer_info->skb;
4502 prefetch(skb->data - NET_IP_ALIGN);
4503 buffer_info->skb = NULL;
4504
4505 i++;
4506 if (i == rx_ring->count)
4507 i = 0;
4508 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4509 prefetch(next_rxd);
4510 next_buffer = &rx_ring->buffer_info[i];
4511
4512 length = le16_to_cpu(rx_desc->wb.upper.length);
4513 cleaned = true;
4514 cleaned_count++;
4515
4516 if (!adapter->rx_ps_hdr_size) {
4517 pci_unmap_single(pdev, buffer_info->dma,
4518 adapter->rx_buffer_len +
4519 NET_IP_ALIGN,
4520 PCI_DMA_FROMDEVICE);
4521 skb_put(skb, length);
4522 goto send_up;
4523 }
4524
4525 /* HW will not DMA in data larger than the given buffer, even
4526 * if it parses the (NFS, of course) header to be larger. In
4527 * that case, it fills the header buffer and spills the rest
4528 * into the page.
4529 */
4530 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4531 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4532 if (hlen > adapter->rx_ps_hdr_size)
4533 hlen = adapter->rx_ps_hdr_size;
4534
4535 if (!skb_shinfo(skb)->nr_frags) {
4536 pci_unmap_single(pdev, buffer_info->dma,
4537 adapter->rx_ps_hdr_size + NET_IP_ALIGN,
4538 PCI_DMA_FROMDEVICE);
4539 skb_put(skb, hlen);
4540 }
4541
4542 if (length) {
4543 pci_unmap_page(pdev, buffer_info->page_dma,
4544 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4545 buffer_info->page_dma = 0;
4546
4547 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4548 buffer_info->page,
4549 buffer_info->page_offset,
4550 length);
4551
4552 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4553 (page_count(buffer_info->page) != 1))
4554 buffer_info->page = NULL;
4555 else
4556 get_page(buffer_info->page);
4557
4558 skb->len += length;
4559 skb->data_len += length;
4560
4561 skb->truesize += length;
4562 }
4563
4564 if (!(staterr & E1000_RXD_STAT_EOP)) {
4565 buffer_info->skb = next_buffer->skb;
4566 buffer_info->dma = next_buffer->dma;
4567 next_buffer->skb = skb;
4568 next_buffer->dma = 0;
4569 goto next_desc;
4570 }
4571 send_up:
4572 /*
4573 * If this bit is set, then the RX registers contain
4574 * the time stamp. No other packet will be time
4575 * stamped until we read these registers, so read the
4576 * registers to make them available again. Because
4577 * only one packet can be time stamped at a time, we
4578 * know that the register values must belong to this
4579 * one here and therefore we don't need to compare
4580 * any of the additional attributes stored for it.
4581 *
4582 * If nothing went wrong, then it should have a
4583 * skb_shared_tx that we can turn into a
4584 * skb_shared_hwtstamps.
4585 *
4586 * TODO: can time stamping be triggered (thus locking
4587 * the registers) without the packet reaching this point
4588 * here? In that case RX time stamping would get stuck.
4589 *
4590 * TODO: in "time stamp all packets" mode this bit is
4591 * not set. Need a global flag for this mode and then
4592 * always read the registers. Cannot be done without
4593 * a race condition.
4594 */
4595 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4596 u64 regval;
4597 u64 ns;
4598 struct skb_shared_hwtstamps *shhwtstamps =
4599 skb_hwtstamps(skb);
4600
4601 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4602 "igb: no RX time stamp available for time stamped packet");
4603 regval = rd32(E1000_RXSTMPL);
4604 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4605 ns = timecounter_cyc2time(&adapter->clock, regval);
4606 timecompare_update(&adapter->compare, ns);
4607 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4608 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4609 shhwtstamps->syststamp =
4610 timecompare_transform(&adapter->compare, ns);
4611 }
4612
4613 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4614 dev_kfree_skb_irq(skb);
4615 goto next_desc;
4616 }
4617
4618 total_bytes += skb->len;
4619 total_packets++;
4620
4621 igb_rx_checksum_adv(adapter, staterr, skb);
4622
4623 skb->protocol = eth_type_trans(skb, netdev);
4624
4625 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4626
4627 next_desc:
4628 rx_desc->wb.upper.status_error = 0;
4629
4630 /* return some buffers to hardware, one at a time is too slow */
4631 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4632 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4633 cleaned_count = 0;
4634 }
4635
4636 /* use prefetched values */
4637 rx_desc = next_rxd;
4638 buffer_info = next_buffer;
4639 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4640 }
4641
4642 rx_ring->next_to_clean = i;
4643 cleaned_count = igb_desc_unused(rx_ring);
4644
4645 if (cleaned_count)
4646 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4647
4648 rx_ring->total_packets += total_packets;
4649 rx_ring->total_bytes += total_bytes;
4650 rx_ring->rx_stats.packets += total_packets;
4651 rx_ring->rx_stats.bytes += total_bytes;
4652 adapter->net_stats.rx_bytes += total_bytes;
4653 adapter->net_stats.rx_packets += total_packets;
4654 return cleaned;
4655 }
4656
4657 /**
4658 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4659 * @adapter: address of board private structure
4660 **/
4661 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4662 int cleaned_count)
4663 {
4664 struct igb_adapter *adapter = rx_ring->adapter;
4665 struct net_device *netdev = adapter->netdev;
4666 struct pci_dev *pdev = adapter->pdev;
4667 union e1000_adv_rx_desc *rx_desc;
4668 struct igb_buffer *buffer_info;
4669 struct sk_buff *skb;
4670 unsigned int i;
4671 int bufsz;
4672
4673 i = rx_ring->next_to_use;
4674 buffer_info = &rx_ring->buffer_info[i];
4675
4676 if (adapter->rx_ps_hdr_size)
4677 bufsz = adapter->rx_ps_hdr_size;
4678 else
4679 bufsz = adapter->rx_buffer_len;
4680 bufsz += NET_IP_ALIGN;
4681
4682 while (cleaned_count--) {
4683 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4684
4685 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4686 if (!buffer_info->page) {
4687 buffer_info->page = alloc_page(GFP_ATOMIC);
4688 if (!buffer_info->page) {
4689 adapter->alloc_rx_buff_failed++;
4690 goto no_buffers;
4691 }
4692 buffer_info->page_offset = 0;
4693 } else {
4694 buffer_info->page_offset ^= PAGE_SIZE / 2;
4695 }
4696 buffer_info->page_dma =
4697 pci_map_page(pdev, buffer_info->page,
4698 buffer_info->page_offset,
4699 PAGE_SIZE / 2,
4700 PCI_DMA_FROMDEVICE);
4701 }
4702
4703 if (!buffer_info->skb) {
4704 skb = netdev_alloc_skb(netdev, bufsz);
4705 if (!skb) {
4706 adapter->alloc_rx_buff_failed++;
4707 goto no_buffers;
4708 }
4709
4710 /* Make buffer alignment 2 beyond a 16 byte boundary
4711 * this will result in a 16 byte aligned IP header after
4712 * the 14 byte MAC header is removed
4713 */
4714 skb_reserve(skb, NET_IP_ALIGN);
4715
4716 buffer_info->skb = skb;
4717 buffer_info->dma = pci_map_single(pdev, skb->data,
4718 bufsz,
4719 PCI_DMA_FROMDEVICE);
4720 }
4721 /* Refresh the desc even if buffer_addrs didn't change because
4722 * each write-back erases this info. */
4723 if (adapter->rx_ps_hdr_size) {
4724 rx_desc->read.pkt_addr =
4725 cpu_to_le64(buffer_info->page_dma);
4726 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4727 } else {
4728 rx_desc->read.pkt_addr =
4729 cpu_to_le64(buffer_info->dma);
4730 rx_desc->read.hdr_addr = 0;
4731 }
4732
4733 i++;
4734 if (i == rx_ring->count)
4735 i = 0;
4736 buffer_info = &rx_ring->buffer_info[i];
4737 }
4738
4739 no_buffers:
4740 if (rx_ring->next_to_use != i) {
4741 rx_ring->next_to_use = i;
4742 if (i == 0)
4743 i = (rx_ring->count - 1);
4744 else
4745 i--;
4746
4747 /* Force memory writes to complete before letting h/w
4748 * know there are new descriptors to fetch. (Only
4749 * applicable for weak-ordered memory model archs,
4750 * such as IA-64). */
4751 wmb();
4752 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4753 }
4754 }
4755
4756 /**
4757 * igb_mii_ioctl -
4758 * @netdev:
4759 * @ifreq:
4760 * @cmd:
4761 **/
4762 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4763 {
4764 struct igb_adapter *adapter = netdev_priv(netdev);
4765 struct mii_ioctl_data *data = if_mii(ifr);
4766
4767 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4768 return -EOPNOTSUPP;
4769
4770 switch (cmd) {
4771 case SIOCGMIIPHY:
4772 data->phy_id = adapter->hw.phy.addr;
4773 break;
4774 case SIOCGMIIREG:
4775 if (!capable(CAP_NET_ADMIN))
4776 return -EPERM;
4777 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4778 &data->val_out))
4779 return -EIO;
4780 break;
4781 case SIOCSMIIREG:
4782 default:
4783 return -EOPNOTSUPP;
4784 }
4785 return 0;
4786 }
4787
4788 /**
4789 * igb_hwtstamp_ioctl - control hardware time stamping
4790 * @netdev:
4791 * @ifreq:
4792 * @cmd:
4793 *
4794 * Outgoing time stamping can be enabled and disabled. Play nice and
4795 * disable it when requested, although it shouldn't case any overhead
4796 * when no packet needs it. At most one packet in the queue may be
4797 * marked for time stamping, otherwise it would be impossible to tell
4798 * for sure to which packet the hardware time stamp belongs.
4799 *
4800 * Incoming time stamping has to be configured via the hardware
4801 * filters. Not all combinations are supported, in particular event
4802 * type has to be specified. Matching the kind of event packet is
4803 * not supported, with the exception of "all V2 events regardless of
4804 * level 2 or 4".
4805 *
4806 **/
4807 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4808 struct ifreq *ifr, int cmd)
4809 {
4810 struct igb_adapter *adapter = netdev_priv(netdev);
4811 struct e1000_hw *hw = &adapter->hw;
4812 struct hwtstamp_config config;
4813 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4814 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4815 u32 tsync_rx_ctl_type = 0;
4816 u32 tsync_rx_cfg = 0;
4817 int is_l4 = 0;
4818 int is_l2 = 0;
4819 short port = 319; /* PTP */
4820 u32 regval;
4821
4822 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4823 return -EFAULT;
4824
4825 /* reserved for future extensions */
4826 if (config.flags)
4827 return -EINVAL;
4828
4829 switch (config.tx_type) {
4830 case HWTSTAMP_TX_OFF:
4831 tsync_tx_ctl_bit = 0;
4832 break;
4833 case HWTSTAMP_TX_ON:
4834 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4835 break;
4836 default:
4837 return -ERANGE;
4838 }
4839
4840 switch (config.rx_filter) {
4841 case HWTSTAMP_FILTER_NONE:
4842 tsync_rx_ctl_bit = 0;
4843 break;
4844 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4845 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4846 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4847 case HWTSTAMP_FILTER_ALL:
4848 /*
4849 * register TSYNCRXCFG must be set, therefore it is not
4850 * possible to time stamp both Sync and Delay_Req messages
4851 * => fall back to time stamping all packets
4852 */
4853 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4854 config.rx_filter = HWTSTAMP_FILTER_ALL;
4855 break;
4856 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4857 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4858 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4859 is_l4 = 1;
4860 break;
4861 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4862 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4863 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4864 is_l4 = 1;
4865 break;
4866 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4867 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4868 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4869 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4870 is_l2 = 1;
4871 is_l4 = 1;
4872 config.rx_filter = HWTSTAMP_FILTER_SOME;
4873 break;
4874 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4875 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4876 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4877 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4878 is_l2 = 1;
4879 is_l4 = 1;
4880 config.rx_filter = HWTSTAMP_FILTER_SOME;
4881 break;
4882 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4883 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4884 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4885 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4886 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4887 is_l2 = 1;
4888 break;
4889 default:
4890 return -ERANGE;
4891 }
4892
4893 /* enable/disable TX */
4894 regval = rd32(E1000_TSYNCTXCTL);
4895 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4896 wr32(E1000_TSYNCTXCTL, regval);
4897
4898 /* enable/disable RX, define which PTP packets are time stamped */
4899 regval = rd32(E1000_TSYNCRXCTL);
4900 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4901 regval = (regval & ~0xE) | tsync_rx_ctl_type;
4902 wr32(E1000_TSYNCRXCTL, regval);
4903 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4904
4905 /*
4906 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4907 * (Ethertype to filter on)
4908 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4909 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4910 */
4911 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4912
4913 /* L4 Queue Filter[0]: only filter by source and destination port */
4914 wr32(E1000_SPQF0, htons(port));
4915 wr32(E1000_IMIREXT(0), is_l4 ?
4916 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4917 wr32(E1000_IMIR(0), is_l4 ?
4918 (htons(port)
4919 | (0<<16) /* immediate interrupt disabled */
4920 | 0 /* (1<<17) bit cleared: do not bypass
4921 destination port check */)
4922 : 0);
4923 wr32(E1000_FTQF0, is_l4 ?
4924 (0x11 /* UDP */
4925 | (1<<15) /* VF not compared */
4926 | (1<<27) /* Enable Timestamping */
4927 | (7<<28) /* only source port filter enabled,
4928 source/target address and protocol
4929 masked */)
4930 : ((1<<15) | (15<<28) /* all mask bits set = filter not
4931 enabled */));
4932
4933 wrfl();
4934
4935 adapter->hwtstamp_config = config;
4936
4937 /* clear TX/RX time stamp registers, just to be sure */
4938 regval = rd32(E1000_TXSTMPH);
4939 regval = rd32(E1000_RXSTMPH);
4940
4941 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4942 -EFAULT : 0;
4943 }
4944
4945 /**
4946 * igb_ioctl -
4947 * @netdev:
4948 * @ifreq:
4949 * @cmd:
4950 **/
4951 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4952 {
4953 switch (cmd) {
4954 case SIOCGMIIPHY:
4955 case SIOCGMIIREG:
4956 case SIOCSMIIREG:
4957 return igb_mii_ioctl(netdev, ifr, cmd);
4958 case SIOCSHWTSTAMP:
4959 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
4960 default:
4961 return -EOPNOTSUPP;
4962 }
4963 }
4964
4965 static void igb_vlan_rx_register(struct net_device *netdev,
4966 struct vlan_group *grp)
4967 {
4968 struct igb_adapter *adapter = netdev_priv(netdev);
4969 struct e1000_hw *hw = &adapter->hw;
4970 u32 ctrl, rctl;
4971
4972 igb_irq_disable(adapter);
4973 adapter->vlgrp = grp;
4974
4975 if (grp) {
4976 /* enable VLAN tag insert/strip */
4977 ctrl = rd32(E1000_CTRL);
4978 ctrl |= E1000_CTRL_VME;
4979 wr32(E1000_CTRL, ctrl);
4980
4981 /* enable VLAN receive filtering */
4982 rctl = rd32(E1000_RCTL);
4983 rctl &= ~E1000_RCTL_CFIEN;
4984 wr32(E1000_RCTL, rctl);
4985 igb_update_mng_vlan(adapter);
4986 } else {
4987 /* disable VLAN tag insert/strip */
4988 ctrl = rd32(E1000_CTRL);
4989 ctrl &= ~E1000_CTRL_VME;
4990 wr32(E1000_CTRL, ctrl);
4991
4992 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4993 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4994 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4995 }
4996 }
4997
4998 igb_rlpml_set(adapter);
4999
5000 if (!test_bit(__IGB_DOWN, &adapter->state))
5001 igb_irq_enable(adapter);
5002 }
5003
5004 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5005 {
5006 struct igb_adapter *adapter = netdev_priv(netdev);
5007 struct e1000_hw *hw = &adapter->hw;
5008 int pf_id = adapter->vfs_allocated_count;
5009
5010 if ((hw->mng_cookie.status &
5011 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5012 (vid == adapter->mng_vlan_id))
5013 return;
5014
5015 /* add vid to vlvf if sr-iov is enabled,
5016 * if that fails add directly to filter table */
5017 if (igb_vlvf_set(adapter, vid, true, pf_id))
5018 igb_vfta_set(hw, vid, true);
5019
5020 }
5021
5022 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5023 {
5024 struct igb_adapter *adapter = netdev_priv(netdev);
5025 struct e1000_hw *hw = &adapter->hw;
5026 int pf_id = adapter->vfs_allocated_count;
5027
5028 igb_irq_disable(adapter);
5029 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5030
5031 if (!test_bit(__IGB_DOWN, &adapter->state))
5032 igb_irq_enable(adapter);
5033
5034 if ((adapter->hw.mng_cookie.status &
5035 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5036 (vid == adapter->mng_vlan_id)) {
5037 /* release control to f/w */
5038 igb_release_hw_control(adapter);
5039 return;
5040 }
5041
5042 /* remove vid from vlvf if sr-iov is enabled,
5043 * if not in vlvf remove from vfta */
5044 if (igb_vlvf_set(adapter, vid, false, pf_id))
5045 igb_vfta_set(hw, vid, false);
5046 }
5047
5048 static void igb_restore_vlan(struct igb_adapter *adapter)
5049 {
5050 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5051
5052 if (adapter->vlgrp) {
5053 u16 vid;
5054 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5055 if (!vlan_group_get_device(adapter->vlgrp, vid))
5056 continue;
5057 igb_vlan_rx_add_vid(adapter->netdev, vid);
5058 }
5059 }
5060 }
5061
5062 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5063 {
5064 struct e1000_mac_info *mac = &adapter->hw.mac;
5065
5066 mac->autoneg = 0;
5067
5068 /* Fiber NICs only allow 1000 gbps Full duplex */
5069 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
5070 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5071 dev_err(&adapter->pdev->dev,
5072 "Unsupported Speed/Duplex configuration\n");
5073 return -EINVAL;
5074 }
5075
5076 switch (spddplx) {
5077 case SPEED_10 + DUPLEX_HALF:
5078 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5079 break;
5080 case SPEED_10 + DUPLEX_FULL:
5081 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5082 break;
5083 case SPEED_100 + DUPLEX_HALF:
5084 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5085 break;
5086 case SPEED_100 + DUPLEX_FULL:
5087 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5088 break;
5089 case SPEED_1000 + DUPLEX_FULL:
5090 mac->autoneg = 1;
5091 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5092 break;
5093 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5094 default:
5095 dev_err(&adapter->pdev->dev,
5096 "Unsupported Speed/Duplex configuration\n");
5097 return -EINVAL;
5098 }
5099 return 0;
5100 }
5101
5102 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5103 {
5104 struct net_device *netdev = pci_get_drvdata(pdev);
5105 struct igb_adapter *adapter = netdev_priv(netdev);
5106 struct e1000_hw *hw = &adapter->hw;
5107 u32 ctrl, rctl, status;
5108 u32 wufc = adapter->wol;
5109 #ifdef CONFIG_PM
5110 int retval = 0;
5111 #endif
5112
5113 netif_device_detach(netdev);
5114
5115 if (netif_running(netdev))
5116 igb_close(netdev);
5117
5118 igb_reset_interrupt_capability(adapter);
5119
5120 igb_free_queues(adapter);
5121
5122 #ifdef CONFIG_PM
5123 retval = pci_save_state(pdev);
5124 if (retval)
5125 return retval;
5126 #endif
5127
5128 status = rd32(E1000_STATUS);
5129 if (status & E1000_STATUS_LU)
5130 wufc &= ~E1000_WUFC_LNKC;
5131
5132 if (wufc) {
5133 igb_setup_rctl(adapter);
5134 igb_set_multi(netdev);
5135
5136 /* turn on all-multi mode if wake on multicast is enabled */
5137 if (wufc & E1000_WUFC_MC) {
5138 rctl = rd32(E1000_RCTL);
5139 rctl |= E1000_RCTL_MPE;
5140 wr32(E1000_RCTL, rctl);
5141 }
5142
5143 ctrl = rd32(E1000_CTRL);
5144 /* advertise wake from D3Cold */
5145 #define E1000_CTRL_ADVD3WUC 0x00100000
5146 /* phy power management enable */
5147 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5148 ctrl |= E1000_CTRL_ADVD3WUC;
5149 wr32(E1000_CTRL, ctrl);
5150
5151 /* Allow time for pending master requests to run */
5152 igb_disable_pcie_master(&adapter->hw);
5153
5154 wr32(E1000_WUC, E1000_WUC_PME_EN);
5155 wr32(E1000_WUFC, wufc);
5156 } else {
5157 wr32(E1000_WUC, 0);
5158 wr32(E1000_WUFC, 0);
5159 }
5160
5161 *enable_wake = wufc || adapter->en_mng_pt;
5162 if (!*enable_wake)
5163 igb_shutdown_fiber_serdes_link_82575(hw);
5164
5165 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5166 * would have already happened in close and is redundant. */
5167 igb_release_hw_control(adapter);
5168
5169 pci_disable_device(pdev);
5170
5171 return 0;
5172 }
5173
5174 #ifdef CONFIG_PM
5175 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5176 {
5177 int retval;
5178 bool wake;
5179
5180 retval = __igb_shutdown(pdev, &wake);
5181 if (retval)
5182 return retval;
5183
5184 if (wake) {
5185 pci_prepare_to_sleep(pdev);
5186 } else {
5187 pci_wake_from_d3(pdev, false);
5188 pci_set_power_state(pdev, PCI_D3hot);
5189 }
5190
5191 return 0;
5192 }
5193
5194 static int igb_resume(struct pci_dev *pdev)
5195 {
5196 struct net_device *netdev = pci_get_drvdata(pdev);
5197 struct igb_adapter *adapter = netdev_priv(netdev);
5198 struct e1000_hw *hw = &adapter->hw;
5199 u32 err;
5200
5201 pci_set_power_state(pdev, PCI_D0);
5202 pci_restore_state(pdev);
5203
5204 err = pci_enable_device_mem(pdev);
5205 if (err) {
5206 dev_err(&pdev->dev,
5207 "igb: Cannot enable PCI device from suspend\n");
5208 return err;
5209 }
5210 pci_set_master(pdev);
5211
5212 pci_enable_wake(pdev, PCI_D3hot, 0);
5213 pci_enable_wake(pdev, PCI_D3cold, 0);
5214
5215 igb_set_interrupt_capability(adapter);
5216
5217 if (igb_alloc_queues(adapter)) {
5218 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5219 return -ENOMEM;
5220 }
5221
5222 /* e1000_power_up_phy(adapter); */
5223
5224 igb_reset(adapter);
5225
5226 /* let the f/w know that the h/w is now under the control of the
5227 * driver. */
5228 igb_get_hw_control(adapter);
5229
5230 wr32(E1000_WUS, ~0);
5231
5232 if (netif_running(netdev)) {
5233 err = igb_open(netdev);
5234 if (err)
5235 return err;
5236 }
5237
5238 netif_device_attach(netdev);
5239
5240 return 0;
5241 }
5242 #endif
5243
5244 static void igb_shutdown(struct pci_dev *pdev)
5245 {
5246 bool wake;
5247
5248 __igb_shutdown(pdev, &wake);
5249
5250 if (system_state == SYSTEM_POWER_OFF) {
5251 pci_wake_from_d3(pdev, wake);
5252 pci_set_power_state(pdev, PCI_D3hot);
5253 }
5254 }
5255
5256 #ifdef CONFIG_NET_POLL_CONTROLLER
5257 /*
5258 * Polling 'interrupt' - used by things like netconsole to send skbs
5259 * without having to re-enable interrupts. It's not called while
5260 * the interrupt routine is executing.
5261 */
5262 static void igb_netpoll(struct net_device *netdev)
5263 {
5264 struct igb_adapter *adapter = netdev_priv(netdev);
5265 struct e1000_hw *hw = &adapter->hw;
5266 int i;
5267
5268 if (!adapter->msix_entries) {
5269 igb_irq_disable(adapter);
5270 napi_schedule(&adapter->rx_ring[0].napi);
5271 return;
5272 }
5273
5274 for (i = 0; i < adapter->num_tx_queues; i++) {
5275 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5276 wr32(E1000_EIMC, tx_ring->eims_value);
5277 igb_clean_tx_irq(tx_ring);
5278 wr32(E1000_EIMS, tx_ring->eims_value);
5279 }
5280
5281 for (i = 0; i < adapter->num_rx_queues; i++) {
5282 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5283 wr32(E1000_EIMC, rx_ring->eims_value);
5284 napi_schedule(&rx_ring->napi);
5285 }
5286 }
5287 #endif /* CONFIG_NET_POLL_CONTROLLER */
5288
5289 /**
5290 * igb_io_error_detected - called when PCI error is detected
5291 * @pdev: Pointer to PCI device
5292 * @state: The current pci connection state
5293 *
5294 * This function is called after a PCI bus error affecting
5295 * this device has been detected.
5296 */
5297 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5298 pci_channel_state_t state)
5299 {
5300 struct net_device *netdev = pci_get_drvdata(pdev);
5301 struct igb_adapter *adapter = netdev_priv(netdev);
5302
5303 netif_device_detach(netdev);
5304
5305 if (netif_running(netdev))
5306 igb_down(adapter);
5307 pci_disable_device(pdev);
5308
5309 /* Request a slot slot reset. */
5310 return PCI_ERS_RESULT_NEED_RESET;
5311 }
5312
5313 /**
5314 * igb_io_slot_reset - called after the pci bus has been reset.
5315 * @pdev: Pointer to PCI device
5316 *
5317 * Restart the card from scratch, as if from a cold-boot. Implementation
5318 * resembles the first-half of the igb_resume routine.
5319 */
5320 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5321 {
5322 struct net_device *netdev = pci_get_drvdata(pdev);
5323 struct igb_adapter *adapter = netdev_priv(netdev);
5324 struct e1000_hw *hw = &adapter->hw;
5325 pci_ers_result_t result;
5326 int err;
5327
5328 if (pci_enable_device_mem(pdev)) {
5329 dev_err(&pdev->dev,
5330 "Cannot re-enable PCI device after reset.\n");
5331 result = PCI_ERS_RESULT_DISCONNECT;
5332 } else {
5333 pci_set_master(pdev);
5334 pci_restore_state(pdev);
5335
5336 pci_enable_wake(pdev, PCI_D3hot, 0);
5337 pci_enable_wake(pdev, PCI_D3cold, 0);
5338
5339 igb_reset(adapter);
5340 wr32(E1000_WUS, ~0);
5341 result = PCI_ERS_RESULT_RECOVERED;
5342 }
5343
5344 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5345 if (err) {
5346 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5347 "failed 0x%0x\n", err);
5348 /* non-fatal, continue */
5349 }
5350
5351 return result;
5352 }
5353
5354 /**
5355 * igb_io_resume - called when traffic can start flowing again.
5356 * @pdev: Pointer to PCI device
5357 *
5358 * This callback is called when the error recovery driver tells us that
5359 * its OK to resume normal operation. Implementation resembles the
5360 * second-half of the igb_resume routine.
5361 */
5362 static void igb_io_resume(struct pci_dev *pdev)
5363 {
5364 struct net_device *netdev = pci_get_drvdata(pdev);
5365 struct igb_adapter *adapter = netdev_priv(netdev);
5366
5367 if (netif_running(netdev)) {
5368 if (igb_up(adapter)) {
5369 dev_err(&pdev->dev, "igb_up failed after reset\n");
5370 return;
5371 }
5372 }
5373
5374 netif_device_attach(netdev);
5375
5376 /* let the f/w know that the h/w is now under the control of the
5377 * driver. */
5378 igb_get_hw_control(adapter);
5379 }
5380
5381 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
5382 {
5383 u32 reg_data;
5384
5385 reg_data = rd32(E1000_VMOLR(vfn));
5386 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
5387 E1000_VMOLR_ROPE | /* Accept packets matched in UTA */
5388 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
5389 E1000_VMOLR_AUPE | /* Accept untagged packets */
5390 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
5391 wr32(E1000_VMOLR(vfn), reg_data);
5392 }
5393
5394 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
5395 int vfn)
5396 {
5397 struct e1000_hw *hw = &adapter->hw;
5398 u32 vmolr;
5399
5400 vmolr = rd32(E1000_VMOLR(vfn));
5401 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5402 vmolr |= size | E1000_VMOLR_LPE;
5403 wr32(E1000_VMOLR(vfn), vmolr);
5404
5405 return 0;
5406 }
5407
5408 static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
5409 {
5410 u32 reg_data;
5411
5412 reg_data = rd32(E1000_RAH(entry));
5413 reg_data &= ~E1000_RAH_POOL_MASK;
5414 reg_data |= E1000_RAH_POOL_1 << pool;;
5415 wr32(E1000_RAH(entry), reg_data);
5416 }
5417
5418 static void igb_set_mc_list_pools(struct igb_adapter *adapter,
5419 int entry_count, u16 total_rar_filters)
5420 {
5421 struct e1000_hw *hw = &adapter->hw;
5422 int i = adapter->vfs_allocated_count + 1;
5423
5424 if ((i + entry_count) < total_rar_filters)
5425 total_rar_filters = i + entry_count;
5426
5427 for (; i < total_rar_filters; i++)
5428 igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
5429 }
5430
5431 static int igb_set_vf_mac(struct igb_adapter *adapter,
5432 int vf, unsigned char *mac_addr)
5433 {
5434 struct e1000_hw *hw = &adapter->hw;
5435 int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5436
5437 igb_rar_set(hw, mac_addr, rar_entry);
5438
5439 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5440
5441 igb_set_rah_pool(hw, vf, rar_entry);
5442
5443 return 0;
5444 }
5445
5446 static void igb_vmm_control(struct igb_adapter *adapter)
5447 {
5448 struct e1000_hw *hw = &adapter->hw;
5449 u32 reg_data;
5450
5451 if (!adapter->vfs_allocated_count)
5452 return;
5453
5454 /* VF's need PF reset indication before they
5455 * can send/receive mail */
5456 reg_data = rd32(E1000_CTRL_EXT);
5457 reg_data |= E1000_CTRL_EXT_PFRSTD;
5458 wr32(E1000_CTRL_EXT, reg_data);
5459
5460 igb_vmdq_set_loopback_pf(hw, true);
5461 igb_vmdq_set_replication_pf(hw, true);
5462 }
5463
5464 /* igb_main.c */
This page took 0.446552 seconds and 5 git commands to generate.