igb: remove rx checksum good counter
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
74 /* required last entry */
75 {0, }
76 };
77
78 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79
80 void igb_reset(struct igb_adapter *);
81 static int igb_setup_all_tx_resources(struct igb_adapter *);
82 static int igb_setup_all_rx_resources(struct igb_adapter *);
83 static void igb_free_all_tx_resources(struct igb_adapter *);
84 static void igb_free_all_rx_resources(struct igb_adapter *);
85 void igb_update_stats(struct igb_adapter *);
86 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
87 static void __devexit igb_remove(struct pci_dev *pdev);
88 static int igb_sw_init(struct igb_adapter *);
89 static int igb_open(struct net_device *);
90 static int igb_close(struct net_device *);
91 static void igb_configure_tx(struct igb_adapter *);
92 static void igb_configure_rx(struct igb_adapter *);
93 static void igb_setup_rctl(struct igb_adapter *);
94 static void igb_clean_all_tx_rings(struct igb_adapter *);
95 static void igb_clean_all_rx_rings(struct igb_adapter *);
96 static void igb_clean_tx_ring(struct igb_ring *);
97 static void igb_clean_rx_ring(struct igb_ring *);
98 static void igb_set_rx_mode(struct net_device *);
99 static void igb_update_phy_info(unsigned long);
100 static void igb_watchdog(unsigned long);
101 static void igb_watchdog_task(struct work_struct *);
102 static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *,
103 struct net_device *,
104 struct igb_ring *);
105 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
106 struct net_device *);
107 static struct net_device_stats *igb_get_stats(struct net_device *);
108 static int igb_change_mtu(struct net_device *, int);
109 static int igb_set_mac(struct net_device *, void *);
110 static void igb_set_uta(struct igb_adapter *adapter);
111 static irqreturn_t igb_intr(int irq, void *);
112 static irqreturn_t igb_intr_msi(int irq, void *);
113 static irqreturn_t igb_msix_other(int irq, void *);
114 static irqreturn_t igb_msix_ring(int irq, void *);
115 #ifdef CONFIG_IGB_DCA
116 static void igb_update_dca(struct igb_q_vector *);
117 static void igb_setup_dca(struct igb_adapter *);
118 #endif /* CONFIG_IGB_DCA */
119 static bool igb_clean_tx_irq(struct igb_q_vector *);
120 static int igb_poll(struct napi_struct *, int);
121 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
122 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
123 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124 static void igb_tx_timeout(struct net_device *);
125 static void igb_reset_task(struct work_struct *);
126 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127 static void igb_vlan_rx_add_vid(struct net_device *, u16);
128 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129 static void igb_restore_vlan(struct igb_adapter *);
130 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
131 static void igb_ping_all_vfs(struct igb_adapter *);
132 static void igb_msg_task(struct igb_adapter *);
133 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
134 static void igb_vmm_control(struct igb_adapter *);
135 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
136 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
137
138 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
139 {
140 u32 reg_data;
141
142 reg_data = rd32(E1000_VMOLR(vfn));
143 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
144 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
145 E1000_VMOLR_AUPE | /* Accept untagged packets */
146 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
147 wr32(E1000_VMOLR(vfn), reg_data);
148 }
149
150 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
151 int vfn)
152 {
153 struct e1000_hw *hw = &adapter->hw;
154 u32 vmolr;
155
156 /* if it isn't the PF check to see if VFs are enabled and
157 * increase the size to support vlan tags */
158 if (vfn < adapter->vfs_allocated_count &&
159 adapter->vf_data[vfn].vlans_enabled)
160 size += VLAN_TAG_SIZE;
161
162 vmolr = rd32(E1000_VMOLR(vfn));
163 vmolr &= ~E1000_VMOLR_RLPML_MASK;
164 vmolr |= size | E1000_VMOLR_LPE;
165 wr32(E1000_VMOLR(vfn), vmolr);
166
167 return 0;
168 }
169
170 #ifdef CONFIG_PM
171 static int igb_suspend(struct pci_dev *, pm_message_t);
172 static int igb_resume(struct pci_dev *);
173 #endif
174 static void igb_shutdown(struct pci_dev *);
175 #ifdef CONFIG_IGB_DCA
176 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
177 static struct notifier_block dca_notifier = {
178 .notifier_call = igb_notify_dca,
179 .next = NULL,
180 .priority = 0
181 };
182 #endif
183 #ifdef CONFIG_NET_POLL_CONTROLLER
184 /* for netdump / net console */
185 static void igb_netpoll(struct net_device *);
186 #endif
187 #ifdef CONFIG_PCI_IOV
188 static unsigned int max_vfs = 0;
189 module_param(max_vfs, uint, 0);
190 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
191 "per physical function");
192 #endif /* CONFIG_PCI_IOV */
193
194 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
195 pci_channel_state_t);
196 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
197 static void igb_io_resume(struct pci_dev *);
198
199 static struct pci_error_handlers igb_err_handler = {
200 .error_detected = igb_io_error_detected,
201 .slot_reset = igb_io_slot_reset,
202 .resume = igb_io_resume,
203 };
204
205
206 static struct pci_driver igb_driver = {
207 .name = igb_driver_name,
208 .id_table = igb_pci_tbl,
209 .probe = igb_probe,
210 .remove = __devexit_p(igb_remove),
211 #ifdef CONFIG_PM
212 /* Power Managment Hooks */
213 .suspend = igb_suspend,
214 .resume = igb_resume,
215 #endif
216 .shutdown = igb_shutdown,
217 .err_handler = &igb_err_handler
218 };
219
220 static int global_quad_port_a; /* global quad port a indication */
221
222 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
223 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226
227 /**
228 * Scale the NIC clock cycle by a large factor so that
229 * relatively small clock corrections can be added or
230 * substracted at each clock tick. The drawbacks of a
231 * large factor are a) that the clock register overflows
232 * more quickly (not such a big deal) and b) that the
233 * increment per tick has to fit into 24 bits.
234 *
235 * Note that
236 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
237 * IGB_TSYNC_SCALE
238 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
239 *
240 * The base scale factor is intentionally a power of two
241 * so that the division in %struct timecounter can be done with
242 * a shift.
243 */
244 #define IGB_TSYNC_SHIFT (19)
245 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
246
247 /**
248 * The duration of one clock cycle of the NIC.
249 *
250 * @todo This hard-coded value is part of the specification and might change
251 * in future hardware revisions. Add revision check.
252 */
253 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
254
255 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
256 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
257 #endif
258
259 /**
260 * igb_read_clock - read raw cycle counter (to be used by time counter)
261 */
262 static cycle_t igb_read_clock(const struct cyclecounter *tc)
263 {
264 struct igb_adapter *adapter =
265 container_of(tc, struct igb_adapter, cycles);
266 struct e1000_hw *hw = &adapter->hw;
267 u64 stamp;
268
269 stamp = rd32(E1000_SYSTIML);
270 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
271
272 return stamp;
273 }
274
275 #ifdef DEBUG
276 /**
277 * igb_get_hw_dev_name - return device name string
278 * used by hardware layer to print debugging information
279 **/
280 char *igb_get_hw_dev_name(struct e1000_hw *hw)
281 {
282 struct igb_adapter *adapter = hw->back;
283 return adapter->netdev->name;
284 }
285
286 /**
287 * igb_get_time_str - format current NIC and system time as string
288 */
289 static char *igb_get_time_str(struct igb_adapter *adapter,
290 char buffer[160])
291 {
292 cycle_t hw = adapter->cycles.read(&adapter->cycles);
293 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
294 struct timespec sys;
295 struct timespec delta;
296 getnstimeofday(&sys);
297
298 delta = timespec_sub(nic, sys);
299
300 sprintf(buffer,
301 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
302 hw,
303 (long)nic.tv_sec, nic.tv_nsec,
304 (long)sys.tv_sec, sys.tv_nsec,
305 (long)delta.tv_sec, delta.tv_nsec);
306
307 return buffer;
308 }
309 #endif
310
311 /**
312 * igb_desc_unused - calculate if we have unused descriptors
313 **/
314 static int igb_desc_unused(struct igb_ring *ring)
315 {
316 if (ring->next_to_clean > ring->next_to_use)
317 return ring->next_to_clean - ring->next_to_use - 1;
318
319 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
320 }
321
322 /**
323 * igb_init_module - Driver Registration Routine
324 *
325 * igb_init_module is the first routine called when the driver is
326 * loaded. All it does is register with the PCI subsystem.
327 **/
328 static int __init igb_init_module(void)
329 {
330 int ret;
331 printk(KERN_INFO "%s - version %s\n",
332 igb_driver_string, igb_driver_version);
333
334 printk(KERN_INFO "%s\n", igb_copyright);
335
336 global_quad_port_a = 0;
337
338 #ifdef CONFIG_IGB_DCA
339 dca_register_notify(&dca_notifier);
340 #endif
341
342 ret = pci_register_driver(&igb_driver);
343 return ret;
344 }
345
346 module_init(igb_init_module);
347
348 /**
349 * igb_exit_module - Driver Exit Cleanup Routine
350 *
351 * igb_exit_module is called just before the driver is removed
352 * from memory.
353 **/
354 static void __exit igb_exit_module(void)
355 {
356 #ifdef CONFIG_IGB_DCA
357 dca_unregister_notify(&dca_notifier);
358 #endif
359 pci_unregister_driver(&igb_driver);
360 }
361
362 module_exit(igb_exit_module);
363
364 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
365 /**
366 * igb_cache_ring_register - Descriptor ring to register mapping
367 * @adapter: board private structure to initialize
368 *
369 * Once we know the feature-set enabled for the device, we'll cache
370 * the register offset the descriptor ring is assigned to.
371 **/
372 static void igb_cache_ring_register(struct igb_adapter *adapter)
373 {
374 int i;
375 u32 rbase_offset = adapter->vfs_allocated_count;
376
377 switch (adapter->hw.mac.type) {
378 case e1000_82576:
379 /* The queues are allocated for virtualization such that VF 0
380 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
381 * In order to avoid collision we start at the first free queue
382 * and continue consuming queues in the same sequence
383 */
384 for (i = 0; i < adapter->num_rx_queues; i++)
385 adapter->rx_ring[i].reg_idx = rbase_offset +
386 Q_IDX_82576(i);
387 for (i = 0; i < adapter->num_tx_queues; i++)
388 adapter->tx_ring[i].reg_idx = rbase_offset +
389 Q_IDX_82576(i);
390 break;
391 case e1000_82575:
392 default:
393 for (i = 0; i < adapter->num_rx_queues; i++)
394 adapter->rx_ring[i].reg_idx = i;
395 for (i = 0; i < adapter->num_tx_queues; i++)
396 adapter->tx_ring[i].reg_idx = i;
397 break;
398 }
399 }
400
401 static void igb_free_queues(struct igb_adapter *adapter)
402 {
403 kfree(adapter->tx_ring);
404 kfree(adapter->rx_ring);
405
406 adapter->tx_ring = NULL;
407 adapter->rx_ring = NULL;
408
409 adapter->num_rx_queues = 0;
410 adapter->num_tx_queues = 0;
411 }
412
413 /**
414 * igb_alloc_queues - Allocate memory for all rings
415 * @adapter: board private structure to initialize
416 *
417 * We allocate one ring per queue at run-time since we don't know the
418 * number of queues at compile-time.
419 **/
420 static int igb_alloc_queues(struct igb_adapter *adapter)
421 {
422 int i;
423
424 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
425 sizeof(struct igb_ring), GFP_KERNEL);
426 if (!adapter->tx_ring)
427 goto err;
428
429 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
430 sizeof(struct igb_ring), GFP_KERNEL);
431 if (!adapter->rx_ring)
432 goto err;
433
434 for (i = 0; i < adapter->num_tx_queues; i++) {
435 struct igb_ring *ring = &(adapter->tx_ring[i]);
436 ring->count = adapter->tx_ring_count;
437 ring->queue_index = i;
438 }
439 for (i = 0; i < adapter->num_rx_queues; i++) {
440 struct igb_ring *ring = &(adapter->rx_ring[i]);
441 ring->count = adapter->rx_ring_count;
442 ring->queue_index = i;
443 }
444
445 igb_cache_ring_register(adapter);
446
447 return 0;
448
449 err:
450 igb_free_queues(adapter);
451
452 return -ENOMEM;
453 }
454
455 #define IGB_N0_QUEUE -1
456 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
457 {
458 u32 msixbm = 0;
459 struct igb_adapter *adapter = q_vector->adapter;
460 struct e1000_hw *hw = &adapter->hw;
461 u32 ivar, index;
462 int rx_queue = IGB_N0_QUEUE;
463 int tx_queue = IGB_N0_QUEUE;
464
465 if (q_vector->rx_ring)
466 rx_queue = q_vector->rx_ring->reg_idx;
467 if (q_vector->tx_ring)
468 tx_queue = q_vector->tx_ring->reg_idx;
469
470 switch (hw->mac.type) {
471 case e1000_82575:
472 /* The 82575 assigns vectors using a bitmask, which matches the
473 bitmask for the EICR/EIMS/EIMC registers. To assign one
474 or more queues to a vector, we write the appropriate bits
475 into the MSIXBM register for that vector. */
476 if (rx_queue > IGB_N0_QUEUE)
477 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
478 if (tx_queue > IGB_N0_QUEUE)
479 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
480 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
481 q_vector->eims_value = msixbm;
482 break;
483 case e1000_82576:
484 /* 82576 uses a table-based method for assigning vectors.
485 Each queue has a single entry in the table to which we write
486 a vector number along with a "valid" bit. Sadly, the layout
487 of the table is somewhat counterintuitive. */
488 if (rx_queue > IGB_N0_QUEUE) {
489 index = (rx_queue & 0x7);
490 ivar = array_rd32(E1000_IVAR0, index);
491 if (rx_queue < 8) {
492 /* vector goes into low byte of register */
493 ivar = ivar & 0xFFFFFF00;
494 ivar |= msix_vector | E1000_IVAR_VALID;
495 } else {
496 /* vector goes into third byte of register */
497 ivar = ivar & 0xFF00FFFF;
498 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
499 }
500 array_wr32(E1000_IVAR0, index, ivar);
501 }
502 if (tx_queue > IGB_N0_QUEUE) {
503 index = (tx_queue & 0x7);
504 ivar = array_rd32(E1000_IVAR0, index);
505 if (tx_queue < 8) {
506 /* vector goes into second byte of register */
507 ivar = ivar & 0xFFFF00FF;
508 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
509 } else {
510 /* vector goes into high byte of register */
511 ivar = ivar & 0x00FFFFFF;
512 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
513 }
514 array_wr32(E1000_IVAR0, index, ivar);
515 }
516 q_vector->eims_value = 1 << msix_vector;
517 break;
518 default:
519 BUG();
520 break;
521 }
522 }
523
524 /**
525 * igb_configure_msix - Configure MSI-X hardware
526 *
527 * igb_configure_msix sets up the hardware to properly
528 * generate MSI-X interrupts.
529 **/
530 static void igb_configure_msix(struct igb_adapter *adapter)
531 {
532 u32 tmp;
533 int i, vector = 0;
534 struct e1000_hw *hw = &adapter->hw;
535
536 adapter->eims_enable_mask = 0;
537
538 /* set vector for other causes, i.e. link changes */
539 switch (hw->mac.type) {
540 case e1000_82575:
541 tmp = rd32(E1000_CTRL_EXT);
542 /* enable MSI-X PBA support*/
543 tmp |= E1000_CTRL_EXT_PBA_CLR;
544
545 /* Auto-Mask interrupts upon ICR read. */
546 tmp |= E1000_CTRL_EXT_EIAME;
547 tmp |= E1000_CTRL_EXT_IRCA;
548
549 wr32(E1000_CTRL_EXT, tmp);
550
551 /* enable msix_other interrupt */
552 array_wr32(E1000_MSIXBM(0), vector++,
553 E1000_EIMS_OTHER);
554 adapter->eims_other = E1000_EIMS_OTHER;
555
556 break;
557
558 case e1000_82576:
559 /* Turn on MSI-X capability first, or our settings
560 * won't stick. And it will take days to debug. */
561 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
562 E1000_GPIE_PBA | E1000_GPIE_EIAME |
563 E1000_GPIE_NSICR);
564
565 /* enable msix_other interrupt */
566 adapter->eims_other = 1 << vector;
567 tmp = (vector++ | E1000_IVAR_VALID) << 8;
568
569 wr32(E1000_IVAR_MISC, tmp);
570 break;
571 default:
572 /* do nothing, since nothing else supports MSI-X */
573 break;
574 } /* switch (hw->mac.type) */
575
576 adapter->eims_enable_mask |= adapter->eims_other;
577
578 for (i = 0; i < adapter->num_q_vectors; i++) {
579 struct igb_q_vector *q_vector = adapter->q_vector[i];
580 igb_assign_vector(q_vector, vector++);
581 adapter->eims_enable_mask |= q_vector->eims_value;
582 }
583
584 wrfl();
585 }
586
587 /**
588 * igb_request_msix - Initialize MSI-X interrupts
589 *
590 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
591 * kernel.
592 **/
593 static int igb_request_msix(struct igb_adapter *adapter)
594 {
595 struct net_device *netdev = adapter->netdev;
596 struct e1000_hw *hw = &adapter->hw;
597 int i, err = 0, vector = 0;
598
599 err = request_irq(adapter->msix_entries[vector].vector,
600 &igb_msix_other, 0, netdev->name, adapter);
601 if (err)
602 goto out;
603 vector++;
604
605 for (i = 0; i < adapter->num_q_vectors; i++) {
606 struct igb_q_vector *q_vector = adapter->q_vector[i];
607
608 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
609
610 if (q_vector->rx_ring && q_vector->tx_ring)
611 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
612 q_vector->rx_ring->queue_index);
613 else if (q_vector->tx_ring)
614 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
615 q_vector->tx_ring->queue_index);
616 else if (q_vector->rx_ring)
617 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
618 q_vector->rx_ring->queue_index);
619 else
620 sprintf(q_vector->name, "%s-unused", netdev->name);
621
622 err = request_irq(adapter->msix_entries[vector].vector,
623 &igb_msix_ring, 0, q_vector->name,
624 q_vector);
625 if (err)
626 goto out;
627 vector++;
628 }
629
630 igb_configure_msix(adapter);
631 return 0;
632 out:
633 return err;
634 }
635
636 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
637 {
638 if (adapter->msix_entries) {
639 pci_disable_msix(adapter->pdev);
640 kfree(adapter->msix_entries);
641 adapter->msix_entries = NULL;
642 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
643 pci_disable_msi(adapter->pdev);
644 }
645 }
646
647 /**
648 * igb_free_q_vectors - Free memory allocated for interrupt vectors
649 * @adapter: board private structure to initialize
650 *
651 * This function frees the memory allocated to the q_vectors. In addition if
652 * NAPI is enabled it will delete any references to the NAPI struct prior
653 * to freeing the q_vector.
654 **/
655 static void igb_free_q_vectors(struct igb_adapter *adapter)
656 {
657 int v_idx;
658
659 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
660 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
661 adapter->q_vector[v_idx] = NULL;
662 netif_napi_del(&q_vector->napi);
663 kfree(q_vector);
664 }
665 adapter->num_q_vectors = 0;
666 }
667
668 /**
669 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
670 *
671 * This function resets the device so that it has 0 rx queues, tx queues, and
672 * MSI-X interrupts allocated.
673 */
674 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
675 {
676 igb_free_queues(adapter);
677 igb_free_q_vectors(adapter);
678 igb_reset_interrupt_capability(adapter);
679 }
680
681 /**
682 * igb_set_interrupt_capability - set MSI or MSI-X if supported
683 *
684 * Attempt to configure interrupts using the best available
685 * capabilities of the hardware and kernel.
686 **/
687 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
688 {
689 int err;
690 int numvecs, i;
691
692 /* Number of supported queues. */
693 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
694 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
695
696 /* start with one vector for every rx queue */
697 numvecs = adapter->num_rx_queues;
698
699 /* if tx handler is seperate add 1 for every tx queue */
700 numvecs += adapter->num_tx_queues;
701
702 /* store the number of vectors reserved for queues */
703 adapter->num_q_vectors = numvecs;
704
705 /* add 1 vector for link status interrupts */
706 numvecs++;
707 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
708 GFP_KERNEL);
709 if (!adapter->msix_entries)
710 goto msi_only;
711
712 for (i = 0; i < numvecs; i++)
713 adapter->msix_entries[i].entry = i;
714
715 err = pci_enable_msix(adapter->pdev,
716 adapter->msix_entries,
717 numvecs);
718 if (err == 0)
719 goto out;
720
721 igb_reset_interrupt_capability(adapter);
722
723 /* If we can't do MSI-X, try MSI */
724 msi_only:
725 #ifdef CONFIG_PCI_IOV
726 /* disable SR-IOV for non MSI-X configurations */
727 if (adapter->vf_data) {
728 struct e1000_hw *hw = &adapter->hw;
729 /* disable iov and allow time for transactions to clear */
730 pci_disable_sriov(adapter->pdev);
731 msleep(500);
732
733 kfree(adapter->vf_data);
734 adapter->vf_data = NULL;
735 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
736 msleep(100);
737 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
738 }
739 #endif
740 adapter->num_rx_queues = 1;
741 adapter->num_tx_queues = 1;
742 adapter->num_q_vectors = 1;
743 if (!pci_enable_msi(adapter->pdev))
744 adapter->flags |= IGB_FLAG_HAS_MSI;
745 out:
746 /* Notify the stack of the (possibly) reduced Tx Queue count. */
747 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
748 return;
749 }
750
751 /**
752 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
753 * @adapter: board private structure to initialize
754 *
755 * We allocate one q_vector per queue interrupt. If allocation fails we
756 * return -ENOMEM.
757 **/
758 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
759 {
760 struct igb_q_vector *q_vector;
761 struct e1000_hw *hw = &adapter->hw;
762 int v_idx;
763
764 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
765 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
766 if (!q_vector)
767 goto err_out;
768 q_vector->adapter = adapter;
769 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
770 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
771 q_vector->itr_val = IGB_START_ITR;
772 q_vector->set_itr = 1;
773 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
774 adapter->q_vector[v_idx] = q_vector;
775 }
776 return 0;
777
778 err_out:
779 while (v_idx) {
780 v_idx--;
781 q_vector = adapter->q_vector[v_idx];
782 netif_napi_del(&q_vector->napi);
783 kfree(q_vector);
784 adapter->q_vector[v_idx] = NULL;
785 }
786 return -ENOMEM;
787 }
788
789 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
790 int ring_idx, int v_idx)
791 {
792 struct igb_q_vector *q_vector;
793
794 q_vector = adapter->q_vector[v_idx];
795 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
796 q_vector->rx_ring->q_vector = q_vector;
797 q_vector->itr_val = adapter->itr;
798 }
799
800 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
801 int ring_idx, int v_idx)
802 {
803 struct igb_q_vector *q_vector;
804
805 q_vector = adapter->q_vector[v_idx];
806 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
807 q_vector->tx_ring->q_vector = q_vector;
808 q_vector->itr_val = adapter->itr;
809 }
810
811 /**
812 * igb_map_ring_to_vector - maps allocated queues to vectors
813 *
814 * This function maps the recently allocated queues to vectors.
815 **/
816 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
817 {
818 int i;
819 int v_idx = 0;
820
821 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
822 (adapter->num_q_vectors < adapter->num_tx_queues))
823 return -ENOMEM;
824
825 if (adapter->num_q_vectors >=
826 (adapter->num_rx_queues + adapter->num_tx_queues)) {
827 for (i = 0; i < adapter->num_rx_queues; i++)
828 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
829 for (i = 0; i < adapter->num_tx_queues; i++)
830 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
831 } else {
832 for (i = 0; i < adapter->num_rx_queues; i++) {
833 if (i < adapter->num_tx_queues)
834 igb_map_tx_ring_to_vector(adapter, i, v_idx);
835 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
836 }
837 for (; i < adapter->num_tx_queues; i++)
838 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
839 }
840 return 0;
841 }
842
843 /**
844 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
845 *
846 * This function initializes the interrupts and allocates all of the queues.
847 **/
848 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
849 {
850 struct pci_dev *pdev = adapter->pdev;
851 int err;
852
853 igb_set_interrupt_capability(adapter);
854
855 err = igb_alloc_q_vectors(adapter);
856 if (err) {
857 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
858 goto err_alloc_q_vectors;
859 }
860
861 err = igb_alloc_queues(adapter);
862 if (err) {
863 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
864 goto err_alloc_queues;
865 }
866
867 err = igb_map_ring_to_vector(adapter);
868 if (err) {
869 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
870 goto err_map_queues;
871 }
872
873
874 return 0;
875 err_map_queues:
876 igb_free_queues(adapter);
877 err_alloc_queues:
878 igb_free_q_vectors(adapter);
879 err_alloc_q_vectors:
880 igb_reset_interrupt_capability(adapter);
881 return err;
882 }
883
884 /**
885 * igb_request_irq - initialize interrupts
886 *
887 * Attempts to configure interrupts using the best available
888 * capabilities of the hardware and kernel.
889 **/
890 static int igb_request_irq(struct igb_adapter *adapter)
891 {
892 struct net_device *netdev = adapter->netdev;
893 struct pci_dev *pdev = adapter->pdev;
894 struct e1000_hw *hw = &adapter->hw;
895 int err = 0;
896
897 if (adapter->msix_entries) {
898 err = igb_request_msix(adapter);
899 if (!err)
900 goto request_done;
901 /* fall back to MSI */
902 igb_clear_interrupt_scheme(adapter);
903 if (!pci_enable_msi(adapter->pdev))
904 adapter->flags |= IGB_FLAG_HAS_MSI;
905 igb_free_all_tx_resources(adapter);
906 igb_free_all_rx_resources(adapter);
907 adapter->num_tx_queues = 1;
908 adapter->num_rx_queues = 1;
909 adapter->num_q_vectors = 1;
910 err = igb_alloc_q_vectors(adapter);
911 if (err) {
912 dev_err(&pdev->dev,
913 "Unable to allocate memory for vectors\n");
914 goto request_done;
915 }
916 err = igb_alloc_queues(adapter);
917 if (err) {
918 dev_err(&pdev->dev,
919 "Unable to allocate memory for queues\n");
920 igb_free_q_vectors(adapter);
921 goto request_done;
922 }
923 igb_setup_all_tx_resources(adapter);
924 igb_setup_all_rx_resources(adapter);
925 } else {
926 switch (hw->mac.type) {
927 case e1000_82575:
928 wr32(E1000_MSIXBM(0),
929 (E1000_EICR_RX_QUEUE0 |
930 E1000_EICR_TX_QUEUE0 |
931 E1000_EIMS_OTHER));
932 break;
933 case e1000_82576:
934 wr32(E1000_IVAR0, E1000_IVAR_VALID);
935 break;
936 default:
937 break;
938 }
939 }
940
941 if (adapter->flags & IGB_FLAG_HAS_MSI) {
942 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
943 netdev->name, adapter);
944 if (!err)
945 goto request_done;
946
947 /* fall back to legacy interrupts */
948 igb_reset_interrupt_capability(adapter);
949 adapter->flags &= ~IGB_FLAG_HAS_MSI;
950 }
951
952 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
953 netdev->name, adapter);
954
955 if (err)
956 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
957 err);
958
959 request_done:
960 return err;
961 }
962
963 static void igb_free_irq(struct igb_adapter *adapter)
964 {
965 if (adapter->msix_entries) {
966 int vector = 0, i;
967
968 free_irq(adapter->msix_entries[vector++].vector, adapter);
969
970 for (i = 0; i < adapter->num_q_vectors; i++) {
971 struct igb_q_vector *q_vector = adapter->q_vector[i];
972 free_irq(adapter->msix_entries[vector++].vector,
973 q_vector);
974 }
975 } else {
976 free_irq(adapter->pdev->irq, adapter);
977 }
978 }
979
980 /**
981 * igb_irq_disable - Mask off interrupt generation on the NIC
982 * @adapter: board private structure
983 **/
984 static void igb_irq_disable(struct igb_adapter *adapter)
985 {
986 struct e1000_hw *hw = &adapter->hw;
987
988 if (adapter->msix_entries) {
989 u32 regval = rd32(E1000_EIAM);
990 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
991 wr32(E1000_EIMC, adapter->eims_enable_mask);
992 regval = rd32(E1000_EIAC);
993 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
994 }
995
996 wr32(E1000_IAM, 0);
997 wr32(E1000_IMC, ~0);
998 wrfl();
999 synchronize_irq(adapter->pdev->irq);
1000 }
1001
1002 /**
1003 * igb_irq_enable - Enable default interrupt generation settings
1004 * @adapter: board private structure
1005 **/
1006 static void igb_irq_enable(struct igb_adapter *adapter)
1007 {
1008 struct e1000_hw *hw = &adapter->hw;
1009
1010 if (adapter->msix_entries) {
1011 u32 regval = rd32(E1000_EIAC);
1012 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1013 regval = rd32(E1000_EIAM);
1014 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1015 wr32(E1000_EIMS, adapter->eims_enable_mask);
1016 if (adapter->vfs_allocated_count)
1017 wr32(E1000_MBVFIMR, 0xFF);
1018 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
1019 E1000_IMS_DOUTSYNC));
1020 } else {
1021 wr32(E1000_IMS, IMS_ENABLE_MASK);
1022 wr32(E1000_IAM, IMS_ENABLE_MASK);
1023 }
1024 }
1025
1026 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1027 {
1028 struct net_device *netdev = adapter->netdev;
1029 u16 vid = adapter->hw.mng_cookie.vlan_id;
1030 u16 old_vid = adapter->mng_vlan_id;
1031 if (adapter->vlgrp) {
1032 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1033 if (adapter->hw.mng_cookie.status &
1034 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1035 igb_vlan_rx_add_vid(netdev, vid);
1036 adapter->mng_vlan_id = vid;
1037 } else
1038 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1039
1040 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1041 (vid != old_vid) &&
1042 !vlan_group_get_device(adapter->vlgrp, old_vid))
1043 igb_vlan_rx_kill_vid(netdev, old_vid);
1044 } else
1045 adapter->mng_vlan_id = vid;
1046 }
1047 }
1048
1049 /**
1050 * igb_release_hw_control - release control of the h/w to f/w
1051 * @adapter: address of board private structure
1052 *
1053 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1054 * For ASF and Pass Through versions of f/w this means that the
1055 * driver is no longer loaded.
1056 *
1057 **/
1058 static void igb_release_hw_control(struct igb_adapter *adapter)
1059 {
1060 struct e1000_hw *hw = &adapter->hw;
1061 u32 ctrl_ext;
1062
1063 /* Let firmware take over control of h/w */
1064 ctrl_ext = rd32(E1000_CTRL_EXT);
1065 wr32(E1000_CTRL_EXT,
1066 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1067 }
1068
1069
1070 /**
1071 * igb_get_hw_control - get control of the h/w from f/w
1072 * @adapter: address of board private structure
1073 *
1074 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1075 * For ASF and Pass Through versions of f/w this means that
1076 * the driver is loaded.
1077 *
1078 **/
1079 static void igb_get_hw_control(struct igb_adapter *adapter)
1080 {
1081 struct e1000_hw *hw = &adapter->hw;
1082 u32 ctrl_ext;
1083
1084 /* Let firmware know the driver has taken over */
1085 ctrl_ext = rd32(E1000_CTRL_EXT);
1086 wr32(E1000_CTRL_EXT,
1087 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1088 }
1089
1090 /**
1091 * igb_configure - configure the hardware for RX and TX
1092 * @adapter: private board structure
1093 **/
1094 static void igb_configure(struct igb_adapter *adapter)
1095 {
1096 struct net_device *netdev = adapter->netdev;
1097 int i;
1098
1099 igb_get_hw_control(adapter);
1100 igb_set_rx_mode(netdev);
1101
1102 igb_restore_vlan(adapter);
1103
1104 igb_configure_tx(adapter);
1105 igb_setup_rctl(adapter);
1106 igb_configure_rx(adapter);
1107
1108 igb_rx_fifo_flush_82575(&adapter->hw);
1109
1110 /* call igb_desc_unused which always leaves
1111 * at least 1 descriptor unused to make sure
1112 * next_to_use != next_to_clean */
1113 for (i = 0; i < adapter->num_rx_queues; i++) {
1114 struct igb_ring *ring = &adapter->rx_ring[i];
1115 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1116 }
1117
1118
1119 adapter->tx_queue_len = netdev->tx_queue_len;
1120 }
1121
1122
1123 /**
1124 * igb_up - Open the interface and prepare it to handle traffic
1125 * @adapter: board private structure
1126 **/
1127
1128 int igb_up(struct igb_adapter *adapter)
1129 {
1130 struct e1000_hw *hw = &adapter->hw;
1131 int i;
1132
1133 /* hardware has been reset, we need to reload some things */
1134 igb_configure(adapter);
1135
1136 clear_bit(__IGB_DOWN, &adapter->state);
1137
1138 for (i = 0; i < adapter->num_q_vectors; i++) {
1139 struct igb_q_vector *q_vector = adapter->q_vector[i];
1140 napi_enable(&q_vector->napi);
1141 }
1142 if (adapter->msix_entries)
1143 igb_configure_msix(adapter);
1144
1145 igb_vmm_control(adapter);
1146 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1147
1148 /* Clear any pending interrupts. */
1149 rd32(E1000_ICR);
1150 igb_irq_enable(adapter);
1151
1152 netif_tx_start_all_queues(adapter->netdev);
1153
1154 /* Fire a link change interrupt to start the watchdog. */
1155 wr32(E1000_ICS, E1000_ICS_LSC);
1156 return 0;
1157 }
1158
1159 void igb_down(struct igb_adapter *adapter)
1160 {
1161 struct e1000_hw *hw = &adapter->hw;
1162 struct net_device *netdev = adapter->netdev;
1163 u32 tctl, rctl;
1164 int i;
1165
1166 /* signal that we're down so the interrupt handler does not
1167 * reschedule our watchdog timer */
1168 set_bit(__IGB_DOWN, &adapter->state);
1169
1170 /* disable receives in the hardware */
1171 rctl = rd32(E1000_RCTL);
1172 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1173 /* flush and sleep below */
1174
1175 netif_tx_stop_all_queues(netdev);
1176
1177 /* disable transmits in the hardware */
1178 tctl = rd32(E1000_TCTL);
1179 tctl &= ~E1000_TCTL_EN;
1180 wr32(E1000_TCTL, tctl);
1181 /* flush both disables and wait for them to finish */
1182 wrfl();
1183 msleep(10);
1184
1185 for (i = 0; i < adapter->num_q_vectors; i++) {
1186 struct igb_q_vector *q_vector = adapter->q_vector[i];
1187 napi_disable(&q_vector->napi);
1188 }
1189
1190 igb_irq_disable(adapter);
1191
1192 del_timer_sync(&adapter->watchdog_timer);
1193 del_timer_sync(&adapter->phy_info_timer);
1194
1195 netdev->tx_queue_len = adapter->tx_queue_len;
1196 netif_carrier_off(netdev);
1197
1198 /* record the stats before reset*/
1199 igb_update_stats(adapter);
1200
1201 adapter->link_speed = 0;
1202 adapter->link_duplex = 0;
1203
1204 if (!pci_channel_offline(adapter->pdev))
1205 igb_reset(adapter);
1206 igb_clean_all_tx_rings(adapter);
1207 igb_clean_all_rx_rings(adapter);
1208 #ifdef CONFIG_IGB_DCA
1209
1210 /* since we reset the hardware DCA settings were cleared */
1211 igb_setup_dca(adapter);
1212 #endif
1213 }
1214
1215 void igb_reinit_locked(struct igb_adapter *adapter)
1216 {
1217 WARN_ON(in_interrupt());
1218 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1219 msleep(1);
1220 igb_down(adapter);
1221 igb_up(adapter);
1222 clear_bit(__IGB_RESETTING, &adapter->state);
1223 }
1224
1225 void igb_reset(struct igb_adapter *adapter)
1226 {
1227 struct e1000_hw *hw = &adapter->hw;
1228 struct e1000_mac_info *mac = &hw->mac;
1229 struct e1000_fc_info *fc = &hw->fc;
1230 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1231 u16 hwm;
1232
1233 /* Repartition Pba for greater than 9k mtu
1234 * To take effect CTRL.RST is required.
1235 */
1236 switch (mac->type) {
1237 case e1000_82576:
1238 pba = E1000_PBA_64K;
1239 break;
1240 case e1000_82575:
1241 default:
1242 pba = E1000_PBA_34K;
1243 break;
1244 }
1245
1246 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1247 (mac->type < e1000_82576)) {
1248 /* adjust PBA for jumbo frames */
1249 wr32(E1000_PBA, pba);
1250
1251 /* To maintain wire speed transmits, the Tx FIFO should be
1252 * large enough to accommodate two full transmit packets,
1253 * rounded up to the next 1KB and expressed in KB. Likewise,
1254 * the Rx FIFO should be large enough to accommodate at least
1255 * one full receive packet and is similarly rounded up and
1256 * expressed in KB. */
1257 pba = rd32(E1000_PBA);
1258 /* upper 16 bits has Tx packet buffer allocation size in KB */
1259 tx_space = pba >> 16;
1260 /* lower 16 bits has Rx packet buffer allocation size in KB */
1261 pba &= 0xffff;
1262 /* the tx fifo also stores 16 bytes of information about the tx
1263 * but don't include ethernet FCS because hardware appends it */
1264 min_tx_space = (adapter->max_frame_size +
1265 sizeof(union e1000_adv_tx_desc) -
1266 ETH_FCS_LEN) * 2;
1267 min_tx_space = ALIGN(min_tx_space, 1024);
1268 min_tx_space >>= 10;
1269 /* software strips receive CRC, so leave room for it */
1270 min_rx_space = adapter->max_frame_size;
1271 min_rx_space = ALIGN(min_rx_space, 1024);
1272 min_rx_space >>= 10;
1273
1274 /* If current Tx allocation is less than the min Tx FIFO size,
1275 * and the min Tx FIFO size is less than the current Rx FIFO
1276 * allocation, take space away from current Rx allocation */
1277 if (tx_space < min_tx_space &&
1278 ((min_tx_space - tx_space) < pba)) {
1279 pba = pba - (min_tx_space - tx_space);
1280
1281 /* if short on rx space, rx wins and must trump tx
1282 * adjustment */
1283 if (pba < min_rx_space)
1284 pba = min_rx_space;
1285 }
1286 wr32(E1000_PBA, pba);
1287 }
1288
1289 /* flow control settings */
1290 /* The high water mark must be low enough to fit one full frame
1291 * (or the size used for early receive) above it in the Rx FIFO.
1292 * Set it to the lower of:
1293 * - 90% of the Rx FIFO size, or
1294 * - the full Rx FIFO size minus one full frame */
1295 hwm = min(((pba << 10) * 9 / 10),
1296 ((pba << 10) - 2 * adapter->max_frame_size));
1297
1298 if (mac->type < e1000_82576) {
1299 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1300 fc->low_water = fc->high_water - 8;
1301 } else {
1302 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1303 fc->low_water = fc->high_water - 16;
1304 }
1305 fc->pause_time = 0xFFFF;
1306 fc->send_xon = 1;
1307 fc->current_mode = fc->requested_mode;
1308
1309 /* disable receive for all VFs and wait one second */
1310 if (adapter->vfs_allocated_count) {
1311 int i;
1312 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1313 adapter->vf_data[i].clear_to_send = false;
1314
1315 /* ping all the active vfs to let them know we are going down */
1316 igb_ping_all_vfs(adapter);
1317
1318 /* disable transmits and receives */
1319 wr32(E1000_VFRE, 0);
1320 wr32(E1000_VFTE, 0);
1321 }
1322
1323 /* Allow time for pending master requests to run */
1324 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1325 wr32(E1000_WUC, 0);
1326
1327 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1328 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1329
1330 igb_update_mng_vlan(adapter);
1331
1332 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1333 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1334
1335 igb_reset_adaptive(&adapter->hw);
1336 igb_get_phy_info(&adapter->hw);
1337 }
1338
1339 static const struct net_device_ops igb_netdev_ops = {
1340 .ndo_open = igb_open,
1341 .ndo_stop = igb_close,
1342 .ndo_start_xmit = igb_xmit_frame_adv,
1343 .ndo_get_stats = igb_get_stats,
1344 .ndo_set_rx_mode = igb_set_rx_mode,
1345 .ndo_set_multicast_list = igb_set_rx_mode,
1346 .ndo_set_mac_address = igb_set_mac,
1347 .ndo_change_mtu = igb_change_mtu,
1348 .ndo_do_ioctl = igb_ioctl,
1349 .ndo_tx_timeout = igb_tx_timeout,
1350 .ndo_validate_addr = eth_validate_addr,
1351 .ndo_vlan_rx_register = igb_vlan_rx_register,
1352 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1353 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1354 #ifdef CONFIG_NET_POLL_CONTROLLER
1355 .ndo_poll_controller = igb_netpoll,
1356 #endif
1357 };
1358
1359 /**
1360 * igb_probe - Device Initialization Routine
1361 * @pdev: PCI device information struct
1362 * @ent: entry in igb_pci_tbl
1363 *
1364 * Returns 0 on success, negative on failure
1365 *
1366 * igb_probe initializes an adapter identified by a pci_dev structure.
1367 * The OS initialization, configuring of the adapter private structure,
1368 * and a hardware reset occur.
1369 **/
1370 static int __devinit igb_probe(struct pci_dev *pdev,
1371 const struct pci_device_id *ent)
1372 {
1373 struct net_device *netdev;
1374 struct igb_adapter *adapter;
1375 struct e1000_hw *hw;
1376 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1377 unsigned long mmio_start, mmio_len;
1378 int err, pci_using_dac;
1379 u16 eeprom_data = 0;
1380 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1381 u32 part_num;
1382
1383 err = pci_enable_device_mem(pdev);
1384 if (err)
1385 return err;
1386
1387 pci_using_dac = 0;
1388 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1389 if (!err) {
1390 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1391 if (!err)
1392 pci_using_dac = 1;
1393 } else {
1394 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1395 if (err) {
1396 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1397 if (err) {
1398 dev_err(&pdev->dev, "No usable DMA "
1399 "configuration, aborting\n");
1400 goto err_dma;
1401 }
1402 }
1403 }
1404
1405 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1406 IORESOURCE_MEM),
1407 igb_driver_name);
1408 if (err)
1409 goto err_pci_reg;
1410
1411 pci_enable_pcie_error_reporting(pdev);
1412
1413 pci_set_master(pdev);
1414 pci_save_state(pdev);
1415
1416 err = -ENOMEM;
1417 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1418 IGB_ABS_MAX_TX_QUEUES);
1419 if (!netdev)
1420 goto err_alloc_etherdev;
1421
1422 SET_NETDEV_DEV(netdev, &pdev->dev);
1423
1424 pci_set_drvdata(pdev, netdev);
1425 adapter = netdev_priv(netdev);
1426 adapter->netdev = netdev;
1427 adapter->pdev = pdev;
1428 hw = &adapter->hw;
1429 hw->back = adapter;
1430 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1431
1432 mmio_start = pci_resource_start(pdev, 0);
1433 mmio_len = pci_resource_len(pdev, 0);
1434
1435 err = -EIO;
1436 hw->hw_addr = ioremap(mmio_start, mmio_len);
1437 if (!hw->hw_addr)
1438 goto err_ioremap;
1439
1440 netdev->netdev_ops = &igb_netdev_ops;
1441 igb_set_ethtool_ops(netdev);
1442 netdev->watchdog_timeo = 5 * HZ;
1443
1444 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1445
1446 netdev->mem_start = mmio_start;
1447 netdev->mem_end = mmio_start + mmio_len;
1448
1449 /* PCI config space info */
1450 hw->vendor_id = pdev->vendor;
1451 hw->device_id = pdev->device;
1452 hw->revision_id = pdev->revision;
1453 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1454 hw->subsystem_device_id = pdev->subsystem_device;
1455
1456 /* setup the private structure */
1457 hw->back = adapter;
1458 /* Copy the default MAC, PHY and NVM function pointers */
1459 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1460 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1461 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1462 /* Initialize skew-specific constants */
1463 err = ei->get_invariants(hw);
1464 if (err)
1465 goto err_sw_init;
1466
1467 #ifdef CONFIG_PCI_IOV
1468 /* since iov functionality isn't critical to base device function we
1469 * can accept failure. If it fails we don't allow iov to be enabled */
1470 if (hw->mac.type == e1000_82576) {
1471 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1472 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1473 int i;
1474 unsigned char mac_addr[ETH_ALEN];
1475
1476 if (num_vfs) {
1477 adapter->vf_data = kcalloc(num_vfs,
1478 sizeof(struct vf_data_storage),
1479 GFP_KERNEL);
1480 if (!adapter->vf_data) {
1481 dev_err(&pdev->dev,
1482 "Could not allocate VF private data - "
1483 "IOV enable failed\n");
1484 } else {
1485 err = pci_enable_sriov(pdev, num_vfs);
1486 if (!err) {
1487 adapter->vfs_allocated_count = num_vfs;
1488 dev_info(&pdev->dev,
1489 "%d vfs allocated\n",
1490 num_vfs);
1491 for (i = 0;
1492 i < adapter->vfs_allocated_count;
1493 i++) {
1494 random_ether_addr(mac_addr);
1495 igb_set_vf_mac(adapter, i,
1496 mac_addr);
1497 }
1498 } else {
1499 kfree(adapter->vf_data);
1500 adapter->vf_data = NULL;
1501 }
1502 }
1503 }
1504 }
1505
1506 #endif
1507 /* setup the private structure */
1508 err = igb_sw_init(adapter);
1509 if (err)
1510 goto err_sw_init;
1511
1512 igb_get_bus_info_pcie(hw);
1513
1514 /* set flags */
1515 switch (hw->mac.type) {
1516 case e1000_82575:
1517 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1518 break;
1519 case e1000_82576:
1520 default:
1521 break;
1522 }
1523
1524 hw->phy.autoneg_wait_to_complete = false;
1525 hw->mac.adaptive_ifs = true;
1526
1527 /* Copper options */
1528 if (hw->phy.media_type == e1000_media_type_copper) {
1529 hw->phy.mdix = AUTO_ALL_MODES;
1530 hw->phy.disable_polarity_correction = false;
1531 hw->phy.ms_type = e1000_ms_hw_default;
1532 }
1533
1534 if (igb_check_reset_block(hw))
1535 dev_info(&pdev->dev,
1536 "PHY reset is blocked due to SOL/IDER session.\n");
1537
1538 netdev->features = NETIF_F_SG |
1539 NETIF_F_IP_CSUM |
1540 NETIF_F_HW_VLAN_TX |
1541 NETIF_F_HW_VLAN_RX |
1542 NETIF_F_HW_VLAN_FILTER;
1543
1544 netdev->features |= NETIF_F_IPV6_CSUM;
1545 netdev->features |= NETIF_F_TSO;
1546 netdev->features |= NETIF_F_TSO6;
1547
1548 netdev->features |= NETIF_F_GRO;
1549
1550 netdev->vlan_features |= NETIF_F_TSO;
1551 netdev->vlan_features |= NETIF_F_TSO6;
1552 netdev->vlan_features |= NETIF_F_IP_CSUM;
1553 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1554 netdev->vlan_features |= NETIF_F_SG;
1555
1556 if (pci_using_dac)
1557 netdev->features |= NETIF_F_HIGHDMA;
1558
1559 if (adapter->hw.mac.type == e1000_82576)
1560 netdev->features |= NETIF_F_SCTP_CSUM;
1561
1562 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1563
1564 /* before reading the NVM, reset the controller to put the device in a
1565 * known good starting state */
1566 hw->mac.ops.reset_hw(hw);
1567
1568 /* make sure the NVM is good */
1569 if (igb_validate_nvm_checksum(hw) < 0) {
1570 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1571 err = -EIO;
1572 goto err_eeprom;
1573 }
1574
1575 /* copy the MAC address out of the NVM */
1576 if (hw->mac.ops.read_mac_addr(hw))
1577 dev_err(&pdev->dev, "NVM Read Error\n");
1578
1579 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1580 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1581
1582 if (!is_valid_ether_addr(netdev->perm_addr)) {
1583 dev_err(&pdev->dev, "Invalid MAC Address\n");
1584 err = -EIO;
1585 goto err_eeprom;
1586 }
1587
1588 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1589 (unsigned long) adapter);
1590 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1591 (unsigned long) adapter);
1592
1593 INIT_WORK(&adapter->reset_task, igb_reset_task);
1594 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1595
1596 /* Initialize link properties that are user-changeable */
1597 adapter->fc_autoneg = true;
1598 hw->mac.autoneg = true;
1599 hw->phy.autoneg_advertised = 0x2f;
1600
1601 hw->fc.requested_mode = e1000_fc_default;
1602 hw->fc.current_mode = e1000_fc_default;
1603
1604 adapter->itr_setting = IGB_DEFAULT_ITR;
1605 adapter->itr = IGB_START_ITR;
1606
1607 igb_validate_mdi_setting(hw);
1608
1609 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1610 * enable the ACPI Magic Packet filter
1611 */
1612
1613 if (hw->bus.func == 0)
1614 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1615 else if (hw->bus.func == 1)
1616 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1617
1618 if (eeprom_data & eeprom_apme_mask)
1619 adapter->eeprom_wol |= E1000_WUFC_MAG;
1620
1621 /* now that we have the eeprom settings, apply the special cases where
1622 * the eeprom may be wrong or the board simply won't support wake on
1623 * lan on a particular port */
1624 switch (pdev->device) {
1625 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1626 adapter->eeprom_wol = 0;
1627 break;
1628 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1629 case E1000_DEV_ID_82576_FIBER:
1630 case E1000_DEV_ID_82576_SERDES:
1631 /* Wake events only supported on port A for dual fiber
1632 * regardless of eeprom setting */
1633 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1634 adapter->eeprom_wol = 0;
1635 break;
1636 case E1000_DEV_ID_82576_QUAD_COPPER:
1637 /* if quad port adapter, disable WoL on all but port A */
1638 if (global_quad_port_a != 0)
1639 adapter->eeprom_wol = 0;
1640 else
1641 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1642 /* Reset for multiple quad port adapters */
1643 if (++global_quad_port_a == 4)
1644 global_quad_port_a = 0;
1645 break;
1646 }
1647
1648 /* initialize the wol settings based on the eeprom settings */
1649 adapter->wol = adapter->eeprom_wol;
1650 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1651
1652 /* reset the hardware with the new settings */
1653 igb_reset(adapter);
1654
1655 /* let the f/w know that the h/w is now under the control of the
1656 * driver. */
1657 igb_get_hw_control(adapter);
1658
1659 strcpy(netdev->name, "eth%d");
1660 err = register_netdev(netdev);
1661 if (err)
1662 goto err_register;
1663
1664 /* carrier off reporting is important to ethtool even BEFORE open */
1665 netif_carrier_off(netdev);
1666
1667 #ifdef CONFIG_IGB_DCA
1668 if (dca_add_requester(&pdev->dev) == 0) {
1669 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1670 dev_info(&pdev->dev, "DCA enabled\n");
1671 igb_setup_dca(adapter);
1672 }
1673 #endif
1674
1675 /*
1676 * Initialize hardware timer: we keep it running just in case
1677 * that some program needs it later on.
1678 */
1679 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1680 adapter->cycles.read = igb_read_clock;
1681 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1682 adapter->cycles.mult = 1;
1683 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1684 wr32(E1000_TIMINCA,
1685 (1<<24) |
1686 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1687 #if 0
1688 /*
1689 * Avoid rollover while we initialize by resetting the time counter.
1690 */
1691 wr32(E1000_SYSTIML, 0x00000000);
1692 wr32(E1000_SYSTIMH, 0x00000000);
1693 #else
1694 /*
1695 * Set registers so that rollover occurs soon to test this.
1696 */
1697 wr32(E1000_SYSTIML, 0x00000000);
1698 wr32(E1000_SYSTIMH, 0xFF800000);
1699 #endif
1700 wrfl();
1701 timecounter_init(&adapter->clock,
1702 &adapter->cycles,
1703 ktime_to_ns(ktime_get_real()));
1704
1705 /*
1706 * Synchronize our NIC clock against system wall clock. NIC
1707 * time stamp reading requires ~3us per sample, each sample
1708 * was pretty stable even under load => only require 10
1709 * samples for each offset comparison.
1710 */
1711 memset(&adapter->compare, 0, sizeof(adapter->compare));
1712 adapter->compare.source = &adapter->clock;
1713 adapter->compare.target = ktime_get_real;
1714 adapter->compare.num_samples = 10;
1715 timecompare_update(&adapter->compare, 0);
1716
1717 #ifdef DEBUG
1718 {
1719 char buffer[160];
1720 printk(KERN_DEBUG
1721 "igb: %s: hw %p initialized timer\n",
1722 igb_get_time_str(adapter, buffer),
1723 &adapter->hw);
1724 }
1725 #endif
1726
1727 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1728 /* print bus type/speed/width info */
1729 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1730 netdev->name,
1731 ((hw->bus.speed == e1000_bus_speed_2500)
1732 ? "2.5Gb/s" : "unknown"),
1733 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1734 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1735 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1736 "unknown"),
1737 netdev->dev_addr);
1738
1739 igb_read_part_num(hw, &part_num);
1740 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1741 (part_num >> 8), (part_num & 0xff));
1742
1743 dev_info(&pdev->dev,
1744 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1745 adapter->msix_entries ? "MSI-X" :
1746 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1747 adapter->num_rx_queues, adapter->num_tx_queues);
1748
1749 return 0;
1750
1751 err_register:
1752 igb_release_hw_control(adapter);
1753 err_eeprom:
1754 if (!igb_check_reset_block(hw))
1755 igb_reset_phy(hw);
1756
1757 if (hw->flash_address)
1758 iounmap(hw->flash_address);
1759 err_sw_init:
1760 igb_clear_interrupt_scheme(adapter);
1761 iounmap(hw->hw_addr);
1762 err_ioremap:
1763 free_netdev(netdev);
1764 err_alloc_etherdev:
1765 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1766 IORESOURCE_MEM));
1767 err_pci_reg:
1768 err_dma:
1769 pci_disable_device(pdev);
1770 return err;
1771 }
1772
1773 /**
1774 * igb_remove - Device Removal Routine
1775 * @pdev: PCI device information struct
1776 *
1777 * igb_remove is called by the PCI subsystem to alert the driver
1778 * that it should release a PCI device. The could be caused by a
1779 * Hot-Plug event, or because the driver is going to be removed from
1780 * memory.
1781 **/
1782 static void __devexit igb_remove(struct pci_dev *pdev)
1783 {
1784 struct net_device *netdev = pci_get_drvdata(pdev);
1785 struct igb_adapter *adapter = netdev_priv(netdev);
1786 struct e1000_hw *hw = &adapter->hw;
1787
1788 /* flush_scheduled work may reschedule our watchdog task, so
1789 * explicitly disable watchdog tasks from being rescheduled */
1790 set_bit(__IGB_DOWN, &adapter->state);
1791 del_timer_sync(&adapter->watchdog_timer);
1792 del_timer_sync(&adapter->phy_info_timer);
1793
1794 flush_scheduled_work();
1795
1796 #ifdef CONFIG_IGB_DCA
1797 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1798 dev_info(&pdev->dev, "DCA disabled\n");
1799 dca_remove_requester(&pdev->dev);
1800 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1801 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1802 }
1803 #endif
1804
1805 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1806 * would have already happened in close and is redundant. */
1807 igb_release_hw_control(adapter);
1808
1809 unregister_netdev(netdev);
1810
1811 if (!igb_check_reset_block(&adapter->hw))
1812 igb_reset_phy(&adapter->hw);
1813
1814 igb_clear_interrupt_scheme(adapter);
1815
1816 #ifdef CONFIG_PCI_IOV
1817 /* reclaim resources allocated to VFs */
1818 if (adapter->vf_data) {
1819 /* disable iov and allow time for transactions to clear */
1820 pci_disable_sriov(pdev);
1821 msleep(500);
1822
1823 kfree(adapter->vf_data);
1824 adapter->vf_data = NULL;
1825 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1826 msleep(100);
1827 dev_info(&pdev->dev, "IOV Disabled\n");
1828 }
1829 #endif
1830 iounmap(hw->hw_addr);
1831 if (hw->flash_address)
1832 iounmap(hw->flash_address);
1833 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1834 IORESOURCE_MEM));
1835
1836 free_netdev(netdev);
1837
1838 pci_disable_pcie_error_reporting(pdev);
1839
1840 pci_disable_device(pdev);
1841 }
1842
1843 /**
1844 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1845 * @adapter: board private structure to initialize
1846 *
1847 * igb_sw_init initializes the Adapter private data structure.
1848 * Fields are initialized based on PCI device information and
1849 * OS network device settings (MTU size).
1850 **/
1851 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1852 {
1853 struct e1000_hw *hw = &adapter->hw;
1854 struct net_device *netdev = adapter->netdev;
1855 struct pci_dev *pdev = adapter->pdev;
1856
1857 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1858
1859 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1860 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1861 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1862 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1863 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1864 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1865
1866 /* This call may decrease the number of queues depending on
1867 * interrupt mode. */
1868 if (igb_init_interrupt_scheme(adapter)) {
1869 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1870 return -ENOMEM;
1871 }
1872
1873 /* Explicitly disable IRQ since the NIC can be in any state. */
1874 igb_irq_disable(adapter);
1875
1876 set_bit(__IGB_DOWN, &adapter->state);
1877 return 0;
1878 }
1879
1880 /**
1881 * igb_open - Called when a network interface is made active
1882 * @netdev: network interface device structure
1883 *
1884 * Returns 0 on success, negative value on failure
1885 *
1886 * The open entry point is called when a network interface is made
1887 * active by the system (IFF_UP). At this point all resources needed
1888 * for transmit and receive operations are allocated, the interrupt
1889 * handler is registered with the OS, the watchdog timer is started,
1890 * and the stack is notified that the interface is ready.
1891 **/
1892 static int igb_open(struct net_device *netdev)
1893 {
1894 struct igb_adapter *adapter = netdev_priv(netdev);
1895 struct e1000_hw *hw = &adapter->hw;
1896 int err;
1897 int i;
1898
1899 /* disallow open during test */
1900 if (test_bit(__IGB_TESTING, &adapter->state))
1901 return -EBUSY;
1902
1903 netif_carrier_off(netdev);
1904
1905 /* allocate transmit descriptors */
1906 err = igb_setup_all_tx_resources(adapter);
1907 if (err)
1908 goto err_setup_tx;
1909
1910 /* allocate receive descriptors */
1911 err = igb_setup_all_rx_resources(adapter);
1912 if (err)
1913 goto err_setup_rx;
1914
1915 /* e1000_power_up_phy(adapter); */
1916
1917 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1918 if ((adapter->hw.mng_cookie.status &
1919 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1920 igb_update_mng_vlan(adapter);
1921
1922 /* before we allocate an interrupt, we must be ready to handle it.
1923 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1924 * as soon as we call pci_request_irq, so we have to setup our
1925 * clean_rx handler before we do so. */
1926 igb_configure(adapter);
1927
1928 igb_vmm_control(adapter);
1929 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1930
1931 err = igb_request_irq(adapter);
1932 if (err)
1933 goto err_req_irq;
1934
1935 /* From here on the code is the same as igb_up() */
1936 clear_bit(__IGB_DOWN, &adapter->state);
1937
1938 for (i = 0; i < adapter->num_q_vectors; i++) {
1939 struct igb_q_vector *q_vector = adapter->q_vector[i];
1940 napi_enable(&q_vector->napi);
1941 }
1942
1943 /* Clear any pending interrupts. */
1944 rd32(E1000_ICR);
1945
1946 igb_irq_enable(adapter);
1947
1948 netif_tx_start_all_queues(netdev);
1949
1950 /* Fire a link status change interrupt to start the watchdog. */
1951 wr32(E1000_ICS, E1000_ICS_LSC);
1952
1953 return 0;
1954
1955 err_req_irq:
1956 igb_release_hw_control(adapter);
1957 /* e1000_power_down_phy(adapter); */
1958 igb_free_all_rx_resources(adapter);
1959 err_setup_rx:
1960 igb_free_all_tx_resources(adapter);
1961 err_setup_tx:
1962 igb_reset(adapter);
1963
1964 return err;
1965 }
1966
1967 /**
1968 * igb_close - Disables a network interface
1969 * @netdev: network interface device structure
1970 *
1971 * Returns 0, this is not allowed to fail
1972 *
1973 * The close entry point is called when an interface is de-activated
1974 * by the OS. The hardware is still under the driver's control, but
1975 * needs to be disabled. A global MAC reset is issued to stop the
1976 * hardware, and all transmit and receive resources are freed.
1977 **/
1978 static int igb_close(struct net_device *netdev)
1979 {
1980 struct igb_adapter *adapter = netdev_priv(netdev);
1981
1982 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1983 igb_down(adapter);
1984
1985 igb_free_irq(adapter);
1986
1987 igb_free_all_tx_resources(adapter);
1988 igb_free_all_rx_resources(adapter);
1989
1990 /* kill manageability vlan ID if supported, but not if a vlan with
1991 * the same ID is registered on the host OS (let 8021q kill it) */
1992 if ((adapter->hw.mng_cookie.status &
1993 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1994 !(adapter->vlgrp &&
1995 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1996 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1997
1998 return 0;
1999 }
2000
2001 /**
2002 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2003 * @adapter: board private structure
2004 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2005 *
2006 * Return 0 on success, negative on failure
2007 **/
2008 int igb_setup_tx_resources(struct igb_adapter *adapter,
2009 struct igb_ring *tx_ring)
2010 {
2011 struct pci_dev *pdev = adapter->pdev;
2012 int size;
2013
2014 size = sizeof(struct igb_buffer) * tx_ring->count;
2015 tx_ring->buffer_info = vmalloc(size);
2016 if (!tx_ring->buffer_info)
2017 goto err;
2018 memset(tx_ring->buffer_info, 0, size);
2019
2020 /* round up to nearest 4K */
2021 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2022 tx_ring->size = ALIGN(tx_ring->size, 4096);
2023
2024 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
2025 &tx_ring->dma);
2026
2027 if (!tx_ring->desc)
2028 goto err;
2029
2030 tx_ring->next_to_use = 0;
2031 tx_ring->next_to_clean = 0;
2032 return 0;
2033
2034 err:
2035 vfree(tx_ring->buffer_info);
2036 dev_err(&pdev->dev,
2037 "Unable to allocate memory for the transmit descriptor ring\n");
2038 return -ENOMEM;
2039 }
2040
2041 /**
2042 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2043 * (Descriptors) for all queues
2044 * @adapter: board private structure
2045 *
2046 * Return 0 on success, negative on failure
2047 **/
2048 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2049 {
2050 int i, err = 0;
2051 int r_idx;
2052
2053 for (i = 0; i < adapter->num_tx_queues; i++) {
2054 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2055 if (err) {
2056 dev_err(&adapter->pdev->dev,
2057 "Allocation for Tx Queue %u failed\n", i);
2058 for (i--; i >= 0; i--)
2059 igb_free_tx_resources(&adapter->tx_ring[i]);
2060 break;
2061 }
2062 }
2063
2064 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
2065 r_idx = i % adapter->num_tx_queues;
2066 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2067 }
2068 return err;
2069 }
2070
2071 /**
2072 * igb_configure_tx - Configure transmit Unit after Reset
2073 * @adapter: board private structure
2074 *
2075 * Configure the Tx unit of the MAC after a reset.
2076 **/
2077 static void igb_configure_tx(struct igb_adapter *adapter)
2078 {
2079 u64 tdba;
2080 struct e1000_hw *hw = &adapter->hw;
2081 u32 tctl;
2082 u32 txdctl, txctrl;
2083 int i, j;
2084
2085 for (i = 0; i < adapter->num_tx_queues; i++) {
2086 struct igb_ring *ring = &adapter->tx_ring[i];
2087 j = ring->reg_idx;
2088 wr32(E1000_TDLEN(j),
2089 ring->count * sizeof(union e1000_adv_tx_desc));
2090 tdba = ring->dma;
2091 wr32(E1000_TDBAL(j),
2092 tdba & 0x00000000ffffffffULL);
2093 wr32(E1000_TDBAH(j), tdba >> 32);
2094
2095 ring->head = E1000_TDH(j);
2096 ring->tail = E1000_TDT(j);
2097 writel(0, hw->hw_addr + ring->tail);
2098 writel(0, hw->hw_addr + ring->head);
2099 txdctl = rd32(E1000_TXDCTL(j));
2100 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2101 wr32(E1000_TXDCTL(j), txdctl);
2102
2103 /* Turn off Relaxed Ordering on head write-backs. The
2104 * writebacks MUST be delivered in order or it will
2105 * completely screw up our bookeeping.
2106 */
2107 txctrl = rd32(E1000_DCA_TXCTRL(j));
2108 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2109 wr32(E1000_DCA_TXCTRL(j), txctrl);
2110 }
2111
2112 /* disable queue 0 to prevent tail bump w/o re-configuration */
2113 if (adapter->vfs_allocated_count)
2114 wr32(E1000_TXDCTL(0), 0);
2115
2116 /* Program the Transmit Control Register */
2117 tctl = rd32(E1000_TCTL);
2118 tctl &= ~E1000_TCTL_CT;
2119 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2120 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2121
2122 igb_config_collision_dist(hw);
2123
2124 /* Setup Transmit Descriptor Settings for eop descriptor */
2125 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
2126
2127 /* Enable transmits */
2128 tctl |= E1000_TCTL_EN;
2129
2130 wr32(E1000_TCTL, tctl);
2131 }
2132
2133 /**
2134 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2135 * @adapter: board private structure
2136 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2137 *
2138 * Returns 0 on success, negative on failure
2139 **/
2140 int igb_setup_rx_resources(struct igb_adapter *adapter,
2141 struct igb_ring *rx_ring)
2142 {
2143 struct pci_dev *pdev = adapter->pdev;
2144 int size, desc_len;
2145
2146 size = sizeof(struct igb_buffer) * rx_ring->count;
2147 rx_ring->buffer_info = vmalloc(size);
2148 if (!rx_ring->buffer_info)
2149 goto err;
2150 memset(rx_ring->buffer_info, 0, size);
2151
2152 desc_len = sizeof(union e1000_adv_rx_desc);
2153
2154 /* Round up to nearest 4K */
2155 rx_ring->size = rx_ring->count * desc_len;
2156 rx_ring->size = ALIGN(rx_ring->size, 4096);
2157
2158 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2159 &rx_ring->dma);
2160
2161 if (!rx_ring->desc)
2162 goto err;
2163
2164 rx_ring->next_to_clean = 0;
2165 rx_ring->next_to_use = 0;
2166
2167 return 0;
2168
2169 err:
2170 vfree(rx_ring->buffer_info);
2171 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
2172 "the receive descriptor ring\n");
2173 return -ENOMEM;
2174 }
2175
2176 /**
2177 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2178 * (Descriptors) for all queues
2179 * @adapter: board private structure
2180 *
2181 * Return 0 on success, negative on failure
2182 **/
2183 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2184 {
2185 int i, err = 0;
2186
2187 for (i = 0; i < adapter->num_rx_queues; i++) {
2188 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2189 if (err) {
2190 dev_err(&adapter->pdev->dev,
2191 "Allocation for Rx Queue %u failed\n", i);
2192 for (i--; i >= 0; i--)
2193 igb_free_rx_resources(&adapter->rx_ring[i]);
2194 break;
2195 }
2196 }
2197
2198 return err;
2199 }
2200
2201 /**
2202 * igb_setup_rctl - configure the receive control registers
2203 * @adapter: Board private structure
2204 **/
2205 static void igb_setup_rctl(struct igb_adapter *adapter)
2206 {
2207 struct e1000_hw *hw = &adapter->hw;
2208 u32 rctl;
2209 u32 srrctl = 0;
2210 int i;
2211
2212 rctl = rd32(E1000_RCTL);
2213
2214 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2215 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2216
2217 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2218 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2219
2220 /*
2221 * enable stripping of CRC. It's unlikely this will break BMC
2222 * redirection as it did with e1000. Newer features require
2223 * that the HW strips the CRC.
2224 */
2225 rctl |= E1000_RCTL_SECRC;
2226
2227 /*
2228 * disable store bad packets and clear size bits.
2229 */
2230 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2231
2232 /* enable LPE when to prevent packets larger than max_frame_size */
2233 rctl |= E1000_RCTL_LPE;
2234
2235 /* Setup buffer sizes */
2236 switch (adapter->rx_buffer_len) {
2237 case IGB_RXBUFFER_256:
2238 rctl |= E1000_RCTL_SZ_256;
2239 break;
2240 case IGB_RXBUFFER_512:
2241 rctl |= E1000_RCTL_SZ_512;
2242 break;
2243 default:
2244 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2245 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2246 break;
2247 }
2248
2249 /* 82575 and greater support packet-split where the protocol
2250 * header is placed in skb->data and the packet data is
2251 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2252 * In the case of a non-split, skb->data is linearly filled,
2253 * followed by the page buffers. Therefore, skb->data is
2254 * sized to hold the largest protocol header.
2255 */
2256 /* allocations using alloc_page take too long for regular MTU
2257 * so only enable packet split for jumbo frames */
2258 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2259 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2260 srrctl |= adapter->rx_ps_hdr_size <<
2261 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2262 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2263 } else {
2264 adapter->rx_ps_hdr_size = 0;
2265 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2266 }
2267
2268 /* Attention!!! For SR-IOV PF driver operations you must enable
2269 * queue drop for all VF and PF queues to prevent head of line blocking
2270 * if an un-trusted VF does not provide descriptors to hardware.
2271 */
2272 if (adapter->vfs_allocated_count) {
2273 u32 vmolr;
2274
2275 /* set all queue drop enable bits */
2276 wr32(E1000_QDE, ALL_QUEUES);
2277 srrctl |= E1000_SRRCTL_DROP_EN;
2278
2279 /* disable queue 0 to prevent tail write w/o re-config */
2280 wr32(E1000_RXDCTL(0), 0);
2281
2282 vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2283 if (rctl & E1000_RCTL_LPE)
2284 vmolr |= E1000_VMOLR_LPE;
2285 if (adapter->num_rx_queues > 1)
2286 vmolr |= E1000_VMOLR_RSSE;
2287 wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2288 }
2289
2290 for (i = 0; i < adapter->num_rx_queues; i++) {
2291 int j = adapter->rx_ring[i].reg_idx;
2292 wr32(E1000_SRRCTL(j), srrctl);
2293 }
2294
2295 wr32(E1000_RCTL, rctl);
2296 }
2297
2298 /**
2299 * igb_rlpml_set - set maximum receive packet size
2300 * @adapter: board private structure
2301 *
2302 * Configure maximum receivable packet size.
2303 **/
2304 static void igb_rlpml_set(struct igb_adapter *adapter)
2305 {
2306 u32 max_frame_size = adapter->max_frame_size;
2307 struct e1000_hw *hw = &adapter->hw;
2308 u16 pf_id = adapter->vfs_allocated_count;
2309
2310 if (adapter->vlgrp)
2311 max_frame_size += VLAN_TAG_SIZE;
2312
2313 /* if vfs are enabled we set RLPML to the largest possible request
2314 * size and set the VMOLR RLPML to the size we need */
2315 if (pf_id) {
2316 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2317 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2318 }
2319
2320 wr32(E1000_RLPML, max_frame_size);
2321 }
2322
2323 /**
2324 * igb_configure_vt_default_pool - Configure VT default pool
2325 * @adapter: board private structure
2326 *
2327 * Configure the default pool
2328 **/
2329 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2330 {
2331 struct e1000_hw *hw = &adapter->hw;
2332 u16 pf_id = adapter->vfs_allocated_count;
2333 u32 vtctl;
2334
2335 /* not in sr-iov mode - do nothing */
2336 if (!pf_id)
2337 return;
2338
2339 vtctl = rd32(E1000_VT_CTL);
2340 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2341 E1000_VT_CTL_DISABLE_DEF_POOL);
2342 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2343 wr32(E1000_VT_CTL, vtctl);
2344 }
2345
2346 /**
2347 * igb_configure_rx - Configure receive Unit after Reset
2348 * @adapter: board private structure
2349 *
2350 * Configure the Rx unit of the MAC after a reset.
2351 **/
2352 static void igb_configure_rx(struct igb_adapter *adapter)
2353 {
2354 u64 rdba;
2355 struct e1000_hw *hw = &adapter->hw;
2356 u32 rctl, rxcsum;
2357 u32 rxdctl;
2358 int i;
2359
2360 /* disable receives while setting up the descriptors */
2361 rctl = rd32(E1000_RCTL);
2362 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2363 wrfl();
2364 mdelay(10);
2365
2366 if (adapter->itr_setting > 3)
2367 wr32(E1000_ITR, adapter->itr);
2368
2369 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2370 * the Base and Length of the Rx Descriptor Ring */
2371 for (i = 0; i < adapter->num_rx_queues; i++) {
2372 struct igb_ring *ring = &adapter->rx_ring[i];
2373 int j = ring->reg_idx;
2374 rdba = ring->dma;
2375 wr32(E1000_RDBAL(j),
2376 rdba & 0x00000000ffffffffULL);
2377 wr32(E1000_RDBAH(j), rdba >> 32);
2378 wr32(E1000_RDLEN(j),
2379 ring->count * sizeof(union e1000_adv_rx_desc));
2380
2381 ring->head = E1000_RDH(j);
2382 ring->tail = E1000_RDT(j);
2383 writel(0, hw->hw_addr + ring->tail);
2384 writel(0, hw->hw_addr + ring->head);
2385
2386 rxdctl = rd32(E1000_RXDCTL(j));
2387 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2388 rxdctl &= 0xFFF00000;
2389 rxdctl |= IGB_RX_PTHRESH;
2390 rxdctl |= IGB_RX_HTHRESH << 8;
2391 rxdctl |= IGB_RX_WTHRESH << 16;
2392 wr32(E1000_RXDCTL(j), rxdctl);
2393 }
2394
2395 if (adapter->num_rx_queues > 1) {
2396 u32 random[10];
2397 u32 mrqc;
2398 u32 j, shift;
2399 union e1000_reta {
2400 u32 dword;
2401 u8 bytes[4];
2402 } reta;
2403
2404 get_random_bytes(&random[0], 40);
2405
2406 if (hw->mac.type >= e1000_82576)
2407 shift = 0;
2408 else
2409 shift = 6;
2410 for (j = 0; j < (32 * 4); j++) {
2411 reta.bytes[j & 3] =
2412 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2413 if ((j & 3) == 3)
2414 writel(reta.dword,
2415 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2416 }
2417 if (adapter->vfs_allocated_count)
2418 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2419 else
2420 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2421
2422 /* Fill out hash function seeds */
2423 for (j = 0; j < 10; j++)
2424 array_wr32(E1000_RSSRK(0), j, random[j]);
2425
2426 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2427 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2428 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2429 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2430 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2431 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2432 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2433 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2434
2435 wr32(E1000_MRQC, mrqc);
2436 } else if (adapter->vfs_allocated_count) {
2437 /* Enable multi-queue for sr-iov */
2438 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2439 }
2440
2441 /* Enable Receive Checksum Offload for TCP and UDP */
2442 rxcsum = rd32(E1000_RXCSUM);
2443 /* Disable raw packet checksumming */
2444 rxcsum |= E1000_RXCSUM_PCSD;
2445
2446 if (adapter->hw.mac.type == e1000_82576)
2447 /* Enable Receive Checksum Offload for SCTP */
2448 rxcsum |= E1000_RXCSUM_CRCOFL;
2449
2450 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2451 wr32(E1000_RXCSUM, rxcsum);
2452
2453 /* Set the default pool for the PF's first queue */
2454 igb_configure_vt_default_pool(adapter);
2455
2456 /* set UTA to appropriate mode */
2457 igb_set_uta(adapter);
2458
2459 /* set the correct pool for the PF default MAC address in entry 0 */
2460 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2461 adapter->vfs_allocated_count);
2462
2463 igb_rlpml_set(adapter);
2464
2465 /* Enable Receives */
2466 wr32(E1000_RCTL, rctl);
2467 }
2468
2469 /**
2470 * igb_free_tx_resources - Free Tx Resources per Queue
2471 * @tx_ring: Tx descriptor ring for a specific queue
2472 *
2473 * Free all transmit software resources
2474 **/
2475 void igb_free_tx_resources(struct igb_ring *tx_ring)
2476 {
2477 struct pci_dev *pdev = tx_ring->q_vector->adapter->pdev;
2478
2479 igb_clean_tx_ring(tx_ring);
2480
2481 vfree(tx_ring->buffer_info);
2482 tx_ring->buffer_info = NULL;
2483
2484 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2485
2486 tx_ring->desc = NULL;
2487 }
2488
2489 /**
2490 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2491 * @adapter: board private structure
2492 *
2493 * Free all transmit software resources
2494 **/
2495 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2496 {
2497 int i;
2498
2499 for (i = 0; i < adapter->num_tx_queues; i++)
2500 igb_free_tx_resources(&adapter->tx_ring[i]);
2501 }
2502
2503 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2504 struct igb_buffer *buffer_info)
2505 {
2506 buffer_info->dma = 0;
2507 if (buffer_info->skb) {
2508 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2509 DMA_TO_DEVICE);
2510 dev_kfree_skb_any(buffer_info->skb);
2511 buffer_info->skb = NULL;
2512 }
2513 buffer_info->time_stamp = 0;
2514 /* buffer_info must be completely set up in the transmit path */
2515 }
2516
2517 /**
2518 * igb_clean_tx_ring - Free Tx Buffers
2519 * @tx_ring: ring to be cleaned
2520 **/
2521 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2522 {
2523 struct igb_adapter *adapter = tx_ring->q_vector->adapter;
2524 struct igb_buffer *buffer_info;
2525 unsigned long size;
2526 unsigned int i;
2527
2528 if (!tx_ring->buffer_info)
2529 return;
2530 /* Free all the Tx ring sk_buffs */
2531
2532 for (i = 0; i < tx_ring->count; i++) {
2533 buffer_info = &tx_ring->buffer_info[i];
2534 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2535 }
2536
2537 size = sizeof(struct igb_buffer) * tx_ring->count;
2538 memset(tx_ring->buffer_info, 0, size);
2539
2540 /* Zero out the descriptor ring */
2541
2542 memset(tx_ring->desc, 0, tx_ring->size);
2543
2544 tx_ring->next_to_use = 0;
2545 tx_ring->next_to_clean = 0;
2546
2547 writel(0, adapter->hw.hw_addr + tx_ring->head);
2548 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2549 }
2550
2551 /**
2552 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2553 * @adapter: board private structure
2554 **/
2555 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2556 {
2557 int i;
2558
2559 for (i = 0; i < adapter->num_tx_queues; i++)
2560 igb_clean_tx_ring(&adapter->tx_ring[i]);
2561 }
2562
2563 /**
2564 * igb_free_rx_resources - Free Rx Resources
2565 * @rx_ring: ring to clean the resources from
2566 *
2567 * Free all receive software resources
2568 **/
2569 void igb_free_rx_resources(struct igb_ring *rx_ring)
2570 {
2571 struct pci_dev *pdev = rx_ring->q_vector->adapter->pdev;
2572
2573 igb_clean_rx_ring(rx_ring);
2574
2575 vfree(rx_ring->buffer_info);
2576 rx_ring->buffer_info = NULL;
2577
2578 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2579
2580 rx_ring->desc = NULL;
2581 }
2582
2583 /**
2584 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2585 * @adapter: board private structure
2586 *
2587 * Free all receive software resources
2588 **/
2589 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2590 {
2591 int i;
2592
2593 for (i = 0; i < adapter->num_rx_queues; i++)
2594 igb_free_rx_resources(&adapter->rx_ring[i]);
2595 }
2596
2597 /**
2598 * igb_clean_rx_ring - Free Rx Buffers per Queue
2599 * @rx_ring: ring to free buffers from
2600 **/
2601 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2602 {
2603 struct igb_adapter *adapter = rx_ring->q_vector->adapter;
2604 struct igb_buffer *buffer_info;
2605 struct pci_dev *pdev = adapter->pdev;
2606 unsigned long size;
2607 unsigned int i;
2608
2609 if (!rx_ring->buffer_info)
2610 return;
2611 /* Free all the Rx ring sk_buffs */
2612 for (i = 0; i < rx_ring->count; i++) {
2613 buffer_info = &rx_ring->buffer_info[i];
2614 if (buffer_info->dma) {
2615 if (adapter->rx_ps_hdr_size)
2616 pci_unmap_single(pdev, buffer_info->dma,
2617 adapter->rx_ps_hdr_size,
2618 PCI_DMA_FROMDEVICE);
2619 else
2620 pci_unmap_single(pdev, buffer_info->dma,
2621 adapter->rx_buffer_len,
2622 PCI_DMA_FROMDEVICE);
2623 buffer_info->dma = 0;
2624 }
2625
2626 if (buffer_info->skb) {
2627 dev_kfree_skb(buffer_info->skb);
2628 buffer_info->skb = NULL;
2629 }
2630 if (buffer_info->page) {
2631 if (buffer_info->page_dma)
2632 pci_unmap_page(pdev, buffer_info->page_dma,
2633 PAGE_SIZE / 2,
2634 PCI_DMA_FROMDEVICE);
2635 put_page(buffer_info->page);
2636 buffer_info->page = NULL;
2637 buffer_info->page_dma = 0;
2638 buffer_info->page_offset = 0;
2639 }
2640 }
2641
2642 size = sizeof(struct igb_buffer) * rx_ring->count;
2643 memset(rx_ring->buffer_info, 0, size);
2644
2645 /* Zero out the descriptor ring */
2646 memset(rx_ring->desc, 0, rx_ring->size);
2647
2648 rx_ring->next_to_clean = 0;
2649 rx_ring->next_to_use = 0;
2650
2651 writel(0, adapter->hw.hw_addr + rx_ring->head);
2652 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2653 }
2654
2655 /**
2656 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2657 * @adapter: board private structure
2658 **/
2659 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2660 {
2661 int i;
2662
2663 for (i = 0; i < adapter->num_rx_queues; i++)
2664 igb_clean_rx_ring(&adapter->rx_ring[i]);
2665 }
2666
2667 /**
2668 * igb_set_mac - Change the Ethernet Address of the NIC
2669 * @netdev: network interface device structure
2670 * @p: pointer to an address structure
2671 *
2672 * Returns 0 on success, negative on failure
2673 **/
2674 static int igb_set_mac(struct net_device *netdev, void *p)
2675 {
2676 struct igb_adapter *adapter = netdev_priv(netdev);
2677 struct e1000_hw *hw = &adapter->hw;
2678 struct sockaddr *addr = p;
2679
2680 if (!is_valid_ether_addr(addr->sa_data))
2681 return -EADDRNOTAVAIL;
2682
2683 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2684 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2685
2686 /* set the correct pool for the new PF MAC address in entry 0 */
2687 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2688 adapter->vfs_allocated_count);
2689
2690 return 0;
2691 }
2692
2693 /**
2694 * igb_write_mc_addr_list - write multicast addresses to MTA
2695 * @netdev: network interface device structure
2696 *
2697 * Writes multicast address list to the MTA hash table.
2698 * Returns: -ENOMEM on failure
2699 * 0 on no addresses written
2700 * X on writing X addresses to MTA
2701 **/
2702 static int igb_write_mc_addr_list(struct net_device *netdev)
2703 {
2704 struct igb_adapter *adapter = netdev_priv(netdev);
2705 struct e1000_hw *hw = &adapter->hw;
2706 struct dev_mc_list *mc_ptr = netdev->mc_list;
2707 u8 *mta_list;
2708 u32 vmolr = 0;
2709 int i;
2710
2711 if (!netdev->mc_count) {
2712 /* nothing to program, so clear mc list */
2713 igb_update_mc_addr_list(hw, NULL, 0);
2714 igb_restore_vf_multicasts(adapter);
2715 return 0;
2716 }
2717
2718 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2719 if (!mta_list)
2720 return -ENOMEM;
2721
2722 /* set vmolr receive overflow multicast bit */
2723 vmolr |= E1000_VMOLR_ROMPE;
2724
2725 /* The shared function expects a packed array of only addresses. */
2726 mc_ptr = netdev->mc_list;
2727
2728 for (i = 0; i < netdev->mc_count; i++) {
2729 if (!mc_ptr)
2730 break;
2731 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2732 mc_ptr = mc_ptr->next;
2733 }
2734 igb_update_mc_addr_list(hw, mta_list, i);
2735 kfree(mta_list);
2736
2737 return netdev->mc_count;
2738 }
2739
2740 /**
2741 * igb_write_uc_addr_list - write unicast addresses to RAR table
2742 * @netdev: network interface device structure
2743 *
2744 * Writes unicast address list to the RAR table.
2745 * Returns: -ENOMEM on failure/insufficient address space
2746 * 0 on no addresses written
2747 * X on writing X addresses to the RAR table
2748 **/
2749 static int igb_write_uc_addr_list(struct net_device *netdev)
2750 {
2751 struct igb_adapter *adapter = netdev_priv(netdev);
2752 struct e1000_hw *hw = &adapter->hw;
2753 unsigned int vfn = adapter->vfs_allocated_count;
2754 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2755 int count = 0;
2756
2757 /* return ENOMEM indicating insufficient memory for addresses */
2758 if (netdev->uc.count > rar_entries)
2759 return -ENOMEM;
2760
2761 if (netdev->uc.count && rar_entries) {
2762 struct netdev_hw_addr *ha;
2763 list_for_each_entry(ha, &netdev->uc.list, list) {
2764 if (!rar_entries)
2765 break;
2766 igb_rar_set_qsel(adapter, ha->addr,
2767 rar_entries--,
2768 vfn);
2769 count++;
2770 }
2771 }
2772 /* write the addresses in reverse order to avoid write combining */
2773 for (; rar_entries > 0 ; rar_entries--) {
2774 wr32(E1000_RAH(rar_entries), 0);
2775 wr32(E1000_RAL(rar_entries), 0);
2776 }
2777 wrfl();
2778
2779 return count;
2780 }
2781
2782 /**
2783 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2784 * @netdev: network interface device structure
2785 *
2786 * The set_rx_mode entry point is called whenever the unicast or multicast
2787 * address lists or the network interface flags are updated. This routine is
2788 * responsible for configuring the hardware for proper unicast, multicast,
2789 * promiscuous mode, and all-multi behavior.
2790 **/
2791 static void igb_set_rx_mode(struct net_device *netdev)
2792 {
2793 struct igb_adapter *adapter = netdev_priv(netdev);
2794 struct e1000_hw *hw = &adapter->hw;
2795 unsigned int vfn = adapter->vfs_allocated_count;
2796 u32 rctl, vmolr = 0;
2797 int count;
2798
2799 /* Check for Promiscuous and All Multicast modes */
2800 rctl = rd32(E1000_RCTL);
2801
2802 /* clear the effected bits */
2803 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2804
2805 if (netdev->flags & IFF_PROMISC) {
2806 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2807 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2808 } else {
2809 if (netdev->flags & IFF_ALLMULTI) {
2810 rctl |= E1000_RCTL_MPE;
2811 vmolr |= E1000_VMOLR_MPME;
2812 } else {
2813 /*
2814 * Write addresses to the MTA, if the attempt fails
2815 * then we should just turn on promiscous mode so
2816 * that we can at least receive multicast traffic
2817 */
2818 count = igb_write_mc_addr_list(netdev);
2819 if (count < 0) {
2820 rctl |= E1000_RCTL_MPE;
2821 vmolr |= E1000_VMOLR_MPME;
2822 } else if (count) {
2823 vmolr |= E1000_VMOLR_ROMPE;
2824 }
2825 }
2826 /*
2827 * Write addresses to available RAR registers, if there is not
2828 * sufficient space to store all the addresses then enable
2829 * unicast promiscous mode
2830 */
2831 count = igb_write_uc_addr_list(netdev);
2832 if (count < 0) {
2833 rctl |= E1000_RCTL_UPE;
2834 vmolr |= E1000_VMOLR_ROPE;
2835 }
2836 rctl |= E1000_RCTL_VFE;
2837 }
2838 wr32(E1000_RCTL, rctl);
2839
2840 /*
2841 * In order to support SR-IOV and eventually VMDq it is necessary to set
2842 * the VMOLR to enable the appropriate modes. Without this workaround
2843 * we will have issues with VLAN tag stripping not being done for frames
2844 * that are only arriving because we are the default pool
2845 */
2846 if (hw->mac.type < e1000_82576)
2847 return;
2848
2849 vmolr |= rd32(E1000_VMOLR(vfn)) &
2850 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2851 wr32(E1000_VMOLR(vfn), vmolr);
2852 igb_restore_vf_multicasts(adapter);
2853 }
2854
2855 /* Need to wait a few seconds after link up to get diagnostic information from
2856 * the phy */
2857 static void igb_update_phy_info(unsigned long data)
2858 {
2859 struct igb_adapter *adapter = (struct igb_adapter *) data;
2860 igb_get_phy_info(&adapter->hw);
2861 }
2862
2863 /**
2864 * igb_has_link - check shared code for link and determine up/down
2865 * @adapter: pointer to driver private info
2866 **/
2867 static bool igb_has_link(struct igb_adapter *adapter)
2868 {
2869 struct e1000_hw *hw = &adapter->hw;
2870 bool link_active = false;
2871 s32 ret_val = 0;
2872
2873 /* get_link_status is set on LSC (link status) interrupt or
2874 * rx sequence error interrupt. get_link_status will stay
2875 * false until the e1000_check_for_link establishes link
2876 * for copper adapters ONLY
2877 */
2878 switch (hw->phy.media_type) {
2879 case e1000_media_type_copper:
2880 if (hw->mac.get_link_status) {
2881 ret_val = hw->mac.ops.check_for_link(hw);
2882 link_active = !hw->mac.get_link_status;
2883 } else {
2884 link_active = true;
2885 }
2886 break;
2887 case e1000_media_type_internal_serdes:
2888 ret_val = hw->mac.ops.check_for_link(hw);
2889 link_active = hw->mac.serdes_has_link;
2890 break;
2891 default:
2892 case e1000_media_type_unknown:
2893 break;
2894 }
2895
2896 return link_active;
2897 }
2898
2899 /**
2900 * igb_watchdog - Timer Call-back
2901 * @data: pointer to adapter cast into an unsigned long
2902 **/
2903 static void igb_watchdog(unsigned long data)
2904 {
2905 struct igb_adapter *adapter = (struct igb_adapter *)data;
2906 /* Do the rest outside of interrupt context */
2907 schedule_work(&adapter->watchdog_task);
2908 }
2909
2910 static void igb_watchdog_task(struct work_struct *work)
2911 {
2912 struct igb_adapter *adapter = container_of(work,
2913 struct igb_adapter, watchdog_task);
2914 struct e1000_hw *hw = &adapter->hw;
2915 struct net_device *netdev = adapter->netdev;
2916 struct igb_ring *tx_ring = adapter->tx_ring;
2917 u32 link;
2918 int i;
2919
2920 link = igb_has_link(adapter);
2921 if ((netif_carrier_ok(netdev)) && link)
2922 goto link_up;
2923
2924 if (link) {
2925 if (!netif_carrier_ok(netdev)) {
2926 u32 ctrl;
2927 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2928 &adapter->link_speed,
2929 &adapter->link_duplex);
2930
2931 ctrl = rd32(E1000_CTRL);
2932 /* Links status message must follow this format */
2933 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2934 "Flow Control: %s\n",
2935 netdev->name,
2936 adapter->link_speed,
2937 adapter->link_duplex == FULL_DUPLEX ?
2938 "Full Duplex" : "Half Duplex",
2939 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2940 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2941 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2942 E1000_CTRL_TFCE) ? "TX" : "None")));
2943
2944 /* tweak tx_queue_len according to speed/duplex and
2945 * adjust the timeout factor */
2946 netdev->tx_queue_len = adapter->tx_queue_len;
2947 adapter->tx_timeout_factor = 1;
2948 switch (adapter->link_speed) {
2949 case SPEED_10:
2950 netdev->tx_queue_len = 10;
2951 adapter->tx_timeout_factor = 14;
2952 break;
2953 case SPEED_100:
2954 netdev->tx_queue_len = 100;
2955 /* maybe add some timeout factor ? */
2956 break;
2957 }
2958
2959 netif_carrier_on(netdev);
2960
2961 igb_ping_all_vfs(adapter);
2962
2963 /* link state has changed, schedule phy info update */
2964 if (!test_bit(__IGB_DOWN, &adapter->state))
2965 mod_timer(&adapter->phy_info_timer,
2966 round_jiffies(jiffies + 2 * HZ));
2967 }
2968 } else {
2969 if (netif_carrier_ok(netdev)) {
2970 adapter->link_speed = 0;
2971 adapter->link_duplex = 0;
2972 /* Links status message must follow this format */
2973 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2974 netdev->name);
2975 netif_carrier_off(netdev);
2976
2977 igb_ping_all_vfs(adapter);
2978
2979 /* link state has changed, schedule phy info update */
2980 if (!test_bit(__IGB_DOWN, &adapter->state))
2981 mod_timer(&adapter->phy_info_timer,
2982 round_jiffies(jiffies + 2 * HZ));
2983 }
2984 }
2985
2986 link_up:
2987 igb_update_stats(adapter);
2988
2989 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2990 adapter->tpt_old = adapter->stats.tpt;
2991 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2992 adapter->colc_old = adapter->stats.colc;
2993
2994 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2995 adapter->gorc_old = adapter->stats.gorc;
2996 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2997 adapter->gotc_old = adapter->stats.gotc;
2998
2999 igb_update_adaptive(&adapter->hw);
3000
3001 if (!netif_carrier_ok(netdev)) {
3002 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3003 /* We've lost link, so the controller stops DMA,
3004 * but we've got queued Tx work that's never going
3005 * to get done, so reset controller to flush Tx.
3006 * (Do the reset outside of interrupt context). */
3007 adapter->tx_timeout_count++;
3008 schedule_work(&adapter->reset_task);
3009 /* return immediately since reset is imminent */
3010 return;
3011 }
3012 }
3013
3014 /* Cause software interrupt to ensure rx ring is cleaned */
3015 if (adapter->msix_entries) {
3016 u32 eics = 0;
3017 for (i = 0; i < adapter->num_q_vectors; i++) {
3018 struct igb_q_vector *q_vector = adapter->q_vector[i];
3019 eics |= q_vector->eims_value;
3020 }
3021 wr32(E1000_EICS, eics);
3022 } else {
3023 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3024 }
3025
3026 /* Force detection of hung controller every watchdog period */
3027 tx_ring->detect_tx_hung = true;
3028
3029 /* Reset the timer */
3030 if (!test_bit(__IGB_DOWN, &adapter->state))
3031 mod_timer(&adapter->watchdog_timer,
3032 round_jiffies(jiffies + 2 * HZ));
3033 }
3034
3035 enum latency_range {
3036 lowest_latency = 0,
3037 low_latency = 1,
3038 bulk_latency = 2,
3039 latency_invalid = 255
3040 };
3041
3042
3043 /**
3044 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3045 *
3046 * Stores a new ITR value based on strictly on packet size. This
3047 * algorithm is less sophisticated than that used in igb_update_itr,
3048 * due to the difficulty of synchronizing statistics across multiple
3049 * receive rings. The divisors and thresholds used by this fuction
3050 * were determined based on theoretical maximum wire speed and testing
3051 * data, in order to minimize response time while increasing bulk
3052 * throughput.
3053 * This functionality is controlled by the InterruptThrottleRate module
3054 * parameter (see igb_param.c)
3055 * NOTE: This function is called only when operating in a multiqueue
3056 * receive environment.
3057 * @q_vector: pointer to q_vector
3058 **/
3059 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3060 {
3061 int new_val = q_vector->itr_val;
3062 int avg_wire_size = 0;
3063 struct igb_adapter *adapter = q_vector->adapter;
3064
3065 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3066 * ints/sec - ITR timer value of 120 ticks.
3067 */
3068 if (adapter->link_speed != SPEED_1000) {
3069 new_val = 976;
3070 goto set_itr_val;
3071 }
3072
3073 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3074 struct igb_ring *ring = q_vector->rx_ring;
3075 avg_wire_size = ring->total_bytes / ring->total_packets;
3076 }
3077
3078 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3079 struct igb_ring *ring = q_vector->tx_ring;
3080 avg_wire_size = max_t(u32, avg_wire_size,
3081 (ring->total_bytes /
3082 ring->total_packets));
3083 }
3084
3085 /* if avg_wire_size isn't set no work was done */
3086 if (!avg_wire_size)
3087 goto clear_counts;
3088
3089 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3090 avg_wire_size += 24;
3091
3092 /* Don't starve jumbo frames */
3093 avg_wire_size = min(avg_wire_size, 3000);
3094
3095 /* Give a little boost to mid-size frames */
3096 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3097 new_val = avg_wire_size / 3;
3098 else
3099 new_val = avg_wire_size / 2;
3100
3101 set_itr_val:
3102 if (new_val != q_vector->itr_val) {
3103 q_vector->itr_val = new_val;
3104 q_vector->set_itr = 1;
3105 }
3106 clear_counts:
3107 if (q_vector->rx_ring) {
3108 q_vector->rx_ring->total_bytes = 0;
3109 q_vector->rx_ring->total_packets = 0;
3110 }
3111 if (q_vector->tx_ring) {
3112 q_vector->tx_ring->total_bytes = 0;
3113 q_vector->tx_ring->total_packets = 0;
3114 }
3115 }
3116
3117 /**
3118 * igb_update_itr - update the dynamic ITR value based on statistics
3119 * Stores a new ITR value based on packets and byte
3120 * counts during the last interrupt. The advantage of per interrupt
3121 * computation is faster updates and more accurate ITR for the current
3122 * traffic pattern. Constants in this function were computed
3123 * based on theoretical maximum wire speed and thresholds were set based
3124 * on testing data as well as attempting to minimize response time
3125 * while increasing bulk throughput.
3126 * this functionality is controlled by the InterruptThrottleRate module
3127 * parameter (see igb_param.c)
3128 * NOTE: These calculations are only valid when operating in a single-
3129 * queue environment.
3130 * @adapter: pointer to adapter
3131 * @itr_setting: current q_vector->itr_val
3132 * @packets: the number of packets during this measurement interval
3133 * @bytes: the number of bytes during this measurement interval
3134 **/
3135 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3136 int packets, int bytes)
3137 {
3138 unsigned int retval = itr_setting;
3139
3140 if (packets == 0)
3141 goto update_itr_done;
3142
3143 switch (itr_setting) {
3144 case lowest_latency:
3145 /* handle TSO and jumbo frames */
3146 if (bytes/packets > 8000)
3147 retval = bulk_latency;
3148 else if ((packets < 5) && (bytes > 512))
3149 retval = low_latency;
3150 break;
3151 case low_latency: /* 50 usec aka 20000 ints/s */
3152 if (bytes > 10000) {
3153 /* this if handles the TSO accounting */
3154 if (bytes/packets > 8000) {
3155 retval = bulk_latency;
3156 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3157 retval = bulk_latency;
3158 } else if ((packets > 35)) {
3159 retval = lowest_latency;
3160 }
3161 } else if (bytes/packets > 2000) {
3162 retval = bulk_latency;
3163 } else if (packets <= 2 && bytes < 512) {
3164 retval = lowest_latency;
3165 }
3166 break;
3167 case bulk_latency: /* 250 usec aka 4000 ints/s */
3168 if (bytes > 25000) {
3169 if (packets > 35)
3170 retval = low_latency;
3171 } else if (bytes < 1500) {
3172 retval = low_latency;
3173 }
3174 break;
3175 }
3176
3177 update_itr_done:
3178 return retval;
3179 }
3180
3181 static void igb_set_itr(struct igb_adapter *adapter)
3182 {
3183 struct igb_q_vector *q_vector = adapter->q_vector[0];
3184 u16 current_itr;
3185 u32 new_itr = q_vector->itr_val;
3186
3187 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3188 if (adapter->link_speed != SPEED_1000) {
3189 current_itr = 0;
3190 new_itr = 4000;
3191 goto set_itr_now;
3192 }
3193
3194 adapter->rx_itr = igb_update_itr(adapter,
3195 adapter->rx_itr,
3196 adapter->rx_ring->total_packets,
3197 adapter->rx_ring->total_bytes);
3198
3199 adapter->tx_itr = igb_update_itr(adapter,
3200 adapter->tx_itr,
3201 adapter->tx_ring->total_packets,
3202 adapter->tx_ring->total_bytes);
3203 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3204
3205 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3206 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
3207 current_itr = low_latency;
3208
3209 switch (current_itr) {
3210 /* counts and packets in update_itr are dependent on these numbers */
3211 case lowest_latency:
3212 new_itr = 56; /* aka 70,000 ints/sec */
3213 break;
3214 case low_latency:
3215 new_itr = 196; /* aka 20,000 ints/sec */
3216 break;
3217 case bulk_latency:
3218 new_itr = 980; /* aka 4,000 ints/sec */
3219 break;
3220 default:
3221 break;
3222 }
3223
3224 set_itr_now:
3225 adapter->rx_ring->total_bytes = 0;
3226 adapter->rx_ring->total_packets = 0;
3227 adapter->tx_ring->total_bytes = 0;
3228 adapter->tx_ring->total_packets = 0;
3229
3230 if (new_itr != q_vector->itr_val) {
3231 /* this attempts to bias the interrupt rate towards Bulk
3232 * by adding intermediate steps when interrupt rate is
3233 * increasing */
3234 new_itr = new_itr > q_vector->itr_val ?
3235 max((new_itr * q_vector->itr_val) /
3236 (new_itr + (q_vector->itr_val >> 2)),
3237 new_itr) :
3238 new_itr;
3239 /* Don't write the value here; it resets the adapter's
3240 * internal timer, and causes us to delay far longer than
3241 * we should between interrupts. Instead, we write the ITR
3242 * value at the beginning of the next interrupt so the timing
3243 * ends up being correct.
3244 */
3245 q_vector->itr_val = new_itr;
3246 q_vector->set_itr = 1;
3247 }
3248
3249 return;
3250 }
3251
3252 #define IGB_TX_FLAGS_CSUM 0x00000001
3253 #define IGB_TX_FLAGS_VLAN 0x00000002
3254 #define IGB_TX_FLAGS_TSO 0x00000004
3255 #define IGB_TX_FLAGS_IPV4 0x00000008
3256 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3257 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3258 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3259
3260 static inline int igb_tso_adv(struct igb_adapter *adapter,
3261 struct igb_ring *tx_ring,
3262 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3263 {
3264 struct e1000_adv_tx_context_desc *context_desc;
3265 unsigned int i;
3266 int err;
3267 struct igb_buffer *buffer_info;
3268 u32 info = 0, tu_cmd = 0;
3269 u32 mss_l4len_idx, l4len;
3270 *hdr_len = 0;
3271
3272 if (skb_header_cloned(skb)) {
3273 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3274 if (err)
3275 return err;
3276 }
3277
3278 l4len = tcp_hdrlen(skb);
3279 *hdr_len += l4len;
3280
3281 if (skb->protocol == htons(ETH_P_IP)) {
3282 struct iphdr *iph = ip_hdr(skb);
3283 iph->tot_len = 0;
3284 iph->check = 0;
3285 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3286 iph->daddr, 0,
3287 IPPROTO_TCP,
3288 0);
3289 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3290 ipv6_hdr(skb)->payload_len = 0;
3291 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3292 &ipv6_hdr(skb)->daddr,
3293 0, IPPROTO_TCP, 0);
3294 }
3295
3296 i = tx_ring->next_to_use;
3297
3298 buffer_info = &tx_ring->buffer_info[i];
3299 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3300 /* VLAN MACLEN IPLEN */
3301 if (tx_flags & IGB_TX_FLAGS_VLAN)
3302 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3303 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3304 *hdr_len += skb_network_offset(skb);
3305 info |= skb_network_header_len(skb);
3306 *hdr_len += skb_network_header_len(skb);
3307 context_desc->vlan_macip_lens = cpu_to_le32(info);
3308
3309 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3310 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3311
3312 if (skb->protocol == htons(ETH_P_IP))
3313 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3314 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3315
3316 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3317
3318 /* MSS L4LEN IDX */
3319 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3320 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3321
3322 /* For 82575, context index must be unique per ring. */
3323 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3324 mss_l4len_idx |= tx_ring->queue_index << 4;
3325
3326 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3327 context_desc->seqnum_seed = 0;
3328
3329 buffer_info->time_stamp = jiffies;
3330 buffer_info->next_to_watch = i;
3331 buffer_info->dma = 0;
3332 i++;
3333 if (i == tx_ring->count)
3334 i = 0;
3335
3336 tx_ring->next_to_use = i;
3337
3338 return true;
3339 }
3340
3341 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3342 struct igb_ring *tx_ring,
3343 struct sk_buff *skb, u32 tx_flags)
3344 {
3345 struct e1000_adv_tx_context_desc *context_desc;
3346 unsigned int i;
3347 struct igb_buffer *buffer_info;
3348 u32 info = 0, tu_cmd = 0;
3349
3350 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3351 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3352 i = tx_ring->next_to_use;
3353 buffer_info = &tx_ring->buffer_info[i];
3354 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3355
3356 if (tx_flags & IGB_TX_FLAGS_VLAN)
3357 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3358 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3359 if (skb->ip_summed == CHECKSUM_PARTIAL)
3360 info |= skb_network_header_len(skb);
3361
3362 context_desc->vlan_macip_lens = cpu_to_le32(info);
3363
3364 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3365
3366 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3367 __be16 protocol;
3368
3369 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3370 const struct vlan_ethhdr *vhdr =
3371 (const struct vlan_ethhdr*)skb->data;
3372
3373 protocol = vhdr->h_vlan_encapsulated_proto;
3374 } else {
3375 protocol = skb->protocol;
3376 }
3377
3378 switch (protocol) {
3379 case cpu_to_be16(ETH_P_IP):
3380 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3381 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3382 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3383 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3384 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3385 break;
3386 case cpu_to_be16(ETH_P_IPV6):
3387 /* XXX what about other V6 headers?? */
3388 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3389 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3390 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3391 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3392 break;
3393 default:
3394 if (unlikely(net_ratelimit()))
3395 dev_warn(&adapter->pdev->dev,
3396 "partial checksum but proto=%x!\n",
3397 skb->protocol);
3398 break;
3399 }
3400 }
3401
3402 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3403 context_desc->seqnum_seed = 0;
3404 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3405 context_desc->mss_l4len_idx =
3406 cpu_to_le32(tx_ring->queue_index << 4);
3407 else
3408 context_desc->mss_l4len_idx = 0;
3409
3410 buffer_info->time_stamp = jiffies;
3411 buffer_info->next_to_watch = i;
3412 buffer_info->dma = 0;
3413
3414 i++;
3415 if (i == tx_ring->count)
3416 i = 0;
3417 tx_ring->next_to_use = i;
3418
3419 return true;
3420 }
3421 return false;
3422 }
3423
3424 #define IGB_MAX_TXD_PWR 16
3425 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3426
3427 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3428 struct igb_ring *tx_ring, struct sk_buff *skb,
3429 unsigned int first)
3430 {
3431 struct igb_buffer *buffer_info;
3432 unsigned int len = skb_headlen(skb);
3433 unsigned int count = 0, i;
3434 unsigned int f;
3435 dma_addr_t *map;
3436
3437 i = tx_ring->next_to_use;
3438
3439 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3440 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3441 return 0;
3442 }
3443
3444 map = skb_shinfo(skb)->dma_maps;
3445
3446 buffer_info = &tx_ring->buffer_info[i];
3447 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3448 buffer_info->length = len;
3449 /* set time_stamp *before* dma to help avoid a possible race */
3450 buffer_info->time_stamp = jiffies;
3451 buffer_info->next_to_watch = i;
3452 buffer_info->dma = skb_shinfo(skb)->dma_head;
3453
3454 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3455 struct skb_frag_struct *frag;
3456
3457 i++;
3458 if (i == tx_ring->count)
3459 i = 0;
3460
3461 frag = &skb_shinfo(skb)->frags[f];
3462 len = frag->size;
3463
3464 buffer_info = &tx_ring->buffer_info[i];
3465 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3466 buffer_info->length = len;
3467 buffer_info->time_stamp = jiffies;
3468 buffer_info->next_to_watch = i;
3469 buffer_info->dma = map[count];
3470 count++;
3471 }
3472
3473 tx_ring->buffer_info[i].skb = skb;
3474 tx_ring->buffer_info[first].next_to_watch = i;
3475
3476 return count + 1;
3477 }
3478
3479 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3480 struct igb_ring *tx_ring,
3481 int tx_flags, int count, u32 paylen,
3482 u8 hdr_len)
3483 {
3484 union e1000_adv_tx_desc *tx_desc = NULL;
3485 struct igb_buffer *buffer_info;
3486 u32 olinfo_status = 0, cmd_type_len;
3487 unsigned int i;
3488
3489 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3490 E1000_ADVTXD_DCMD_DEXT);
3491
3492 if (tx_flags & IGB_TX_FLAGS_VLAN)
3493 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3494
3495 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3496 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3497
3498 if (tx_flags & IGB_TX_FLAGS_TSO) {
3499 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3500
3501 /* insert tcp checksum */
3502 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3503
3504 /* insert ip checksum */
3505 if (tx_flags & IGB_TX_FLAGS_IPV4)
3506 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3507
3508 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3509 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3510 }
3511
3512 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3513 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3514 IGB_TX_FLAGS_VLAN)))
3515 olinfo_status |= tx_ring->queue_index << 4;
3516
3517 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3518
3519 i = tx_ring->next_to_use;
3520 while (count--) {
3521 buffer_info = &tx_ring->buffer_info[i];
3522 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3523 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3524 tx_desc->read.cmd_type_len =
3525 cpu_to_le32(cmd_type_len | buffer_info->length);
3526 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3527 i++;
3528 if (i == tx_ring->count)
3529 i = 0;
3530 }
3531
3532 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3533 /* Force memory writes to complete before letting h/w
3534 * know there are new descriptors to fetch. (Only
3535 * applicable for weak-ordered memory model archs,
3536 * such as IA-64). */
3537 wmb();
3538
3539 tx_ring->next_to_use = i;
3540 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3541 /* we need this if more than one processor can write to our tail
3542 * at a time, it syncronizes IO on IA64/Altix systems */
3543 mmiowb();
3544 }
3545
3546 static int __igb_maybe_stop_tx(struct net_device *netdev,
3547 struct igb_ring *tx_ring, int size)
3548 {
3549 struct igb_adapter *adapter = netdev_priv(netdev);
3550
3551 netif_stop_subqueue(netdev, tx_ring->queue_index);
3552
3553 /* Herbert's original patch had:
3554 * smp_mb__after_netif_stop_queue();
3555 * but since that doesn't exist yet, just open code it. */
3556 smp_mb();
3557
3558 /* We need to check again in a case another CPU has just
3559 * made room available. */
3560 if (igb_desc_unused(tx_ring) < size)
3561 return -EBUSY;
3562
3563 /* A reprieve! */
3564 netif_wake_subqueue(netdev, tx_ring->queue_index);
3565 ++adapter->restart_queue;
3566 return 0;
3567 }
3568
3569 static int igb_maybe_stop_tx(struct net_device *netdev,
3570 struct igb_ring *tx_ring, int size)
3571 {
3572 if (igb_desc_unused(tx_ring) >= size)
3573 return 0;
3574 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3575 }
3576
3577 static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3578 struct net_device *netdev,
3579 struct igb_ring *tx_ring)
3580 {
3581 struct igb_adapter *adapter = netdev_priv(netdev);
3582 unsigned int first;
3583 unsigned int tx_flags = 0;
3584 u8 hdr_len = 0;
3585 int count = 0;
3586 int tso = 0;
3587 union skb_shared_tx *shtx;
3588
3589 if (test_bit(__IGB_DOWN, &adapter->state)) {
3590 dev_kfree_skb_any(skb);
3591 return NETDEV_TX_OK;
3592 }
3593
3594 if (skb->len <= 0) {
3595 dev_kfree_skb_any(skb);
3596 return NETDEV_TX_OK;
3597 }
3598
3599 /* need: 1 descriptor per page,
3600 * + 2 desc gap to keep tail from touching head,
3601 * + 1 desc for skb->data,
3602 * + 1 desc for context descriptor,
3603 * otherwise try next time */
3604 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3605 /* this is a hard error */
3606 return NETDEV_TX_BUSY;
3607 }
3608
3609 /*
3610 * TODO: check that there currently is no other packet with
3611 * time stamping in the queue
3612 *
3613 * When doing time stamping, keep the connection to the socket
3614 * a while longer: it is still needed by skb_hwtstamp_tx(),
3615 * called either in igb_tx_hwtstamp() or by our caller when
3616 * doing software time stamping.
3617 */
3618 shtx = skb_tx(skb);
3619 if (unlikely(shtx->hardware)) {
3620 shtx->in_progress = 1;
3621 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3622 }
3623
3624 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3625 tx_flags |= IGB_TX_FLAGS_VLAN;
3626 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3627 }
3628
3629 if (skb->protocol == htons(ETH_P_IP))
3630 tx_flags |= IGB_TX_FLAGS_IPV4;
3631
3632 first = tx_ring->next_to_use;
3633 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3634 &hdr_len) : 0;
3635
3636 if (tso < 0) {
3637 dev_kfree_skb_any(skb);
3638 return NETDEV_TX_OK;
3639 }
3640
3641 if (tso)
3642 tx_flags |= IGB_TX_FLAGS_TSO;
3643 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3644 (skb->ip_summed == CHECKSUM_PARTIAL))
3645 tx_flags |= IGB_TX_FLAGS_CSUM;
3646
3647 /*
3648 * count reflects descriptors mapped, if 0 then mapping error
3649 * has occured and we need to rewind the descriptor queue
3650 */
3651 count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3652
3653 if (count) {
3654 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3655 skb->len, hdr_len);
3656 /* Make sure there is space in the ring for the next send. */
3657 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3658 } else {
3659 dev_kfree_skb_any(skb);
3660 tx_ring->buffer_info[first].time_stamp = 0;
3661 tx_ring->next_to_use = first;
3662 }
3663
3664 return NETDEV_TX_OK;
3665 }
3666
3667 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3668 struct net_device *netdev)
3669 {
3670 struct igb_adapter *adapter = netdev_priv(netdev);
3671 struct igb_ring *tx_ring;
3672
3673 int r_idx = 0;
3674 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3675 tx_ring = adapter->multi_tx_table[r_idx];
3676
3677 /* This goes back to the question of how to logically map a tx queue
3678 * to a flow. Right now, performance is impacted slightly negatively
3679 * if using multiple tx queues. If the stack breaks away from a
3680 * single qdisc implementation, we can look at this again. */
3681 return igb_xmit_frame_ring_adv(skb, netdev, tx_ring);
3682 }
3683
3684 /**
3685 * igb_tx_timeout - Respond to a Tx Hang
3686 * @netdev: network interface device structure
3687 **/
3688 static void igb_tx_timeout(struct net_device *netdev)
3689 {
3690 struct igb_adapter *adapter = netdev_priv(netdev);
3691 struct e1000_hw *hw = &adapter->hw;
3692
3693 /* Do the reset outside of interrupt context */
3694 adapter->tx_timeout_count++;
3695 schedule_work(&adapter->reset_task);
3696 wr32(E1000_EICS,
3697 (adapter->eims_enable_mask & ~adapter->eims_other));
3698 }
3699
3700 static void igb_reset_task(struct work_struct *work)
3701 {
3702 struct igb_adapter *adapter;
3703 adapter = container_of(work, struct igb_adapter, reset_task);
3704
3705 igb_reinit_locked(adapter);
3706 }
3707
3708 /**
3709 * igb_get_stats - Get System Network Statistics
3710 * @netdev: network interface device structure
3711 *
3712 * Returns the address of the device statistics structure.
3713 * The statistics are actually updated from the timer callback.
3714 **/
3715 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3716 {
3717 /* only return the current stats */
3718 return &netdev->stats;
3719 }
3720
3721 /**
3722 * igb_change_mtu - Change the Maximum Transfer Unit
3723 * @netdev: network interface device structure
3724 * @new_mtu: new value for maximum frame size
3725 *
3726 * Returns 0 on success, negative on failure
3727 **/
3728 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3729 {
3730 struct igb_adapter *adapter = netdev_priv(netdev);
3731 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3732
3733 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3734 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3735 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3736 return -EINVAL;
3737 }
3738
3739 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3740 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3741 return -EINVAL;
3742 }
3743
3744 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3745 msleep(1);
3746
3747 /* igb_down has a dependency on max_frame_size */
3748 adapter->max_frame_size = max_frame;
3749 if (netif_running(netdev))
3750 igb_down(adapter);
3751
3752 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3753 * means we reserve 2 more, this pushes us to allocate from the next
3754 * larger slab size.
3755 * i.e. RXBUFFER_2048 --> size-4096 slab
3756 */
3757
3758 if (max_frame <= IGB_RXBUFFER_256)
3759 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3760 else if (max_frame <= IGB_RXBUFFER_512)
3761 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3762 else if (max_frame <= IGB_RXBUFFER_1024)
3763 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3764 else if (max_frame <= IGB_RXBUFFER_2048)
3765 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3766 else
3767 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3768 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3769 #else
3770 adapter->rx_buffer_len = PAGE_SIZE / 2;
3771 #endif
3772
3773 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3774 if (adapter->vfs_allocated_count &&
3775 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3776 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3777
3778 /* adjust allocation if LPE protects us, and we aren't using SBP */
3779 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3780 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3781 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3782
3783 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3784 netdev->mtu, new_mtu);
3785 netdev->mtu = new_mtu;
3786
3787 if (netif_running(netdev))
3788 igb_up(adapter);
3789 else
3790 igb_reset(adapter);
3791
3792 clear_bit(__IGB_RESETTING, &adapter->state);
3793
3794 return 0;
3795 }
3796
3797 /**
3798 * igb_update_stats - Update the board statistics counters
3799 * @adapter: board private structure
3800 **/
3801
3802 void igb_update_stats(struct igb_adapter *adapter)
3803 {
3804 struct net_device *netdev = adapter->netdev;
3805 struct e1000_hw *hw = &adapter->hw;
3806 struct pci_dev *pdev = adapter->pdev;
3807 u16 phy_tmp;
3808
3809 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3810
3811 /*
3812 * Prevent stats update while adapter is being reset, or if the pci
3813 * connection is down.
3814 */
3815 if (adapter->link_speed == 0)
3816 return;
3817 if (pci_channel_offline(pdev))
3818 return;
3819
3820 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3821 adapter->stats.gprc += rd32(E1000_GPRC);
3822 adapter->stats.gorc += rd32(E1000_GORCL);
3823 rd32(E1000_GORCH); /* clear GORCL */
3824 adapter->stats.bprc += rd32(E1000_BPRC);
3825 adapter->stats.mprc += rd32(E1000_MPRC);
3826 adapter->stats.roc += rd32(E1000_ROC);
3827
3828 adapter->stats.prc64 += rd32(E1000_PRC64);
3829 adapter->stats.prc127 += rd32(E1000_PRC127);
3830 adapter->stats.prc255 += rd32(E1000_PRC255);
3831 adapter->stats.prc511 += rd32(E1000_PRC511);
3832 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3833 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3834 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3835 adapter->stats.sec += rd32(E1000_SEC);
3836
3837 adapter->stats.mpc += rd32(E1000_MPC);
3838 adapter->stats.scc += rd32(E1000_SCC);
3839 adapter->stats.ecol += rd32(E1000_ECOL);
3840 adapter->stats.mcc += rd32(E1000_MCC);
3841 adapter->stats.latecol += rd32(E1000_LATECOL);
3842 adapter->stats.dc += rd32(E1000_DC);
3843 adapter->stats.rlec += rd32(E1000_RLEC);
3844 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3845 adapter->stats.xontxc += rd32(E1000_XONTXC);
3846 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3847 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3848 adapter->stats.fcruc += rd32(E1000_FCRUC);
3849 adapter->stats.gptc += rd32(E1000_GPTC);
3850 adapter->stats.gotc += rd32(E1000_GOTCL);
3851 rd32(E1000_GOTCH); /* clear GOTCL */
3852 adapter->stats.rnbc += rd32(E1000_RNBC);
3853 adapter->stats.ruc += rd32(E1000_RUC);
3854 adapter->stats.rfc += rd32(E1000_RFC);
3855 adapter->stats.rjc += rd32(E1000_RJC);
3856 adapter->stats.tor += rd32(E1000_TORH);
3857 adapter->stats.tot += rd32(E1000_TOTH);
3858 adapter->stats.tpr += rd32(E1000_TPR);
3859
3860 adapter->stats.ptc64 += rd32(E1000_PTC64);
3861 adapter->stats.ptc127 += rd32(E1000_PTC127);
3862 adapter->stats.ptc255 += rd32(E1000_PTC255);
3863 adapter->stats.ptc511 += rd32(E1000_PTC511);
3864 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3865 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3866
3867 adapter->stats.mptc += rd32(E1000_MPTC);
3868 adapter->stats.bptc += rd32(E1000_BPTC);
3869
3870 /* used for adaptive IFS */
3871
3872 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3873 adapter->stats.tpt += hw->mac.tx_packet_delta;
3874 hw->mac.collision_delta = rd32(E1000_COLC);
3875 adapter->stats.colc += hw->mac.collision_delta;
3876
3877 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3878 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3879 adapter->stats.tncrs += rd32(E1000_TNCRS);
3880 adapter->stats.tsctc += rd32(E1000_TSCTC);
3881 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3882
3883 adapter->stats.iac += rd32(E1000_IAC);
3884 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3885 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3886 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3887 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3888 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3889 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3890 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3891 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3892
3893 /* Fill out the OS statistics structure */
3894 netdev->stats.multicast = adapter->stats.mprc;
3895 netdev->stats.collisions = adapter->stats.colc;
3896
3897 /* Rx Errors */
3898
3899 if (hw->mac.type != e1000_82575) {
3900 u32 rqdpc_tmp;
3901 u64 rqdpc_total = 0;
3902 int i;
3903 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3904 * Queue Drop Packet Count) stats only gets incremented, if
3905 * the DROP_EN but it set (in the SRRCTL register for that
3906 * queue). If DROP_EN bit is NOT set, then the some what
3907 * equivalent count is stored in RNBC (not per queue basis).
3908 * Also note the drop count is due to lack of available
3909 * descriptors.
3910 */
3911 for (i = 0; i < adapter->num_rx_queues; i++) {
3912 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3913 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3914 rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3915 }
3916 netdev->stats.rx_fifo_errors = rqdpc_total;
3917 }
3918
3919 /* Note RNBC (Receive No Buffers Count) is an not an exact
3920 * drop count as the hardware FIFO might save the day. Thats
3921 * one of the reason for saving it in rx_fifo_errors, as its
3922 * potentially not a true drop.
3923 */
3924 netdev->stats.rx_fifo_errors += adapter->stats.rnbc;
3925
3926 /* RLEC on some newer hardware can be incorrect so build
3927 * our own version based on RUC and ROC */
3928 netdev->stats.rx_errors = adapter->stats.rxerrc +
3929 adapter->stats.crcerrs + adapter->stats.algnerrc +
3930 adapter->stats.ruc + adapter->stats.roc +
3931 adapter->stats.cexterr;
3932 netdev->stats.rx_length_errors = adapter->stats.ruc +
3933 adapter->stats.roc;
3934 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3935 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3936 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3937
3938 /* Tx Errors */
3939 netdev->stats.tx_errors = adapter->stats.ecol +
3940 adapter->stats.latecol;
3941 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3942 netdev->stats.tx_window_errors = adapter->stats.latecol;
3943 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3944
3945 /* Tx Dropped needs to be maintained elsewhere */
3946
3947 /* Phy Stats */
3948 if (hw->phy.media_type == e1000_media_type_copper) {
3949 if ((adapter->link_speed == SPEED_1000) &&
3950 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3951 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3952 adapter->phy_stats.idle_errors += phy_tmp;
3953 }
3954 }
3955
3956 /* Management Stats */
3957 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3958 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3959 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3960 }
3961
3962 static irqreturn_t igb_msix_other(int irq, void *data)
3963 {
3964 struct igb_adapter *adapter = data;
3965 struct e1000_hw *hw = &adapter->hw;
3966 u32 icr = rd32(E1000_ICR);
3967 /* reading ICR causes bit 31 of EICR to be cleared */
3968
3969 if (icr & E1000_ICR_DOUTSYNC) {
3970 /* HW is reporting DMA is out of sync */
3971 adapter->stats.doosync++;
3972 }
3973
3974 /* Check for a mailbox event */
3975 if (icr & E1000_ICR_VMMB)
3976 igb_msg_task(adapter);
3977
3978 if (icr & E1000_ICR_LSC) {
3979 hw->mac.get_link_status = 1;
3980 /* guard against interrupt when we're going down */
3981 if (!test_bit(__IGB_DOWN, &adapter->state))
3982 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3983 }
3984
3985 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3986 wr32(E1000_EIMS, adapter->eims_other);
3987
3988 return IRQ_HANDLED;
3989 }
3990
3991 static void igb_write_itr(struct igb_q_vector *q_vector)
3992 {
3993 u32 itr_val = q_vector->itr_val & 0x7FFC;
3994
3995 if (!q_vector->set_itr)
3996 return;
3997
3998 if (!itr_val)
3999 itr_val = 0x4;
4000
4001 if (q_vector->itr_shift)
4002 itr_val |= itr_val << q_vector->itr_shift;
4003 else
4004 itr_val |= 0x8000000;
4005
4006 writel(itr_val, q_vector->itr_register);
4007 q_vector->set_itr = 0;
4008 }
4009
4010 static irqreturn_t igb_msix_ring(int irq, void *data)
4011 {
4012 struct igb_q_vector *q_vector = data;
4013
4014 /* Write the ITR value calculated from the previous interrupt. */
4015 igb_write_itr(q_vector);
4016
4017 napi_schedule(&q_vector->napi);
4018
4019 return IRQ_HANDLED;
4020 }
4021
4022 #ifdef CONFIG_IGB_DCA
4023 static void igb_update_dca(struct igb_q_vector *q_vector)
4024 {
4025 struct igb_adapter *adapter = q_vector->adapter;
4026 struct e1000_hw *hw = &adapter->hw;
4027 int cpu = get_cpu();
4028
4029 if (q_vector->cpu == cpu)
4030 goto out_no_update;
4031
4032 if (q_vector->tx_ring) {
4033 int q = q_vector->tx_ring->reg_idx;
4034 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4035 if (hw->mac.type == e1000_82575) {
4036 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4037 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4038 } else {
4039 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4040 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4041 E1000_DCA_TXCTRL_CPUID_SHIFT;
4042 }
4043 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4044 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4045 }
4046 if (q_vector->rx_ring) {
4047 int q = q_vector->rx_ring->reg_idx;
4048 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4049 if (hw->mac.type == e1000_82575) {
4050 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4051 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4052 } else {
4053 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4054 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4055 E1000_DCA_RXCTRL_CPUID_SHIFT;
4056 }
4057 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4058 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4059 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4060 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4061 }
4062 q_vector->cpu = cpu;
4063 out_no_update:
4064 put_cpu();
4065 }
4066
4067 static void igb_setup_dca(struct igb_adapter *adapter)
4068 {
4069 struct e1000_hw *hw = &adapter->hw;
4070 int i;
4071
4072 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4073 return;
4074
4075 /* Always use CB2 mode, difference is masked in the CB driver. */
4076 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4077
4078 for (i = 0; i < adapter->num_q_vectors; i++) {
4079 struct igb_q_vector *q_vector = adapter->q_vector[i];
4080 q_vector->cpu = -1;
4081 igb_update_dca(q_vector);
4082 }
4083 }
4084
4085 static int __igb_notify_dca(struct device *dev, void *data)
4086 {
4087 struct net_device *netdev = dev_get_drvdata(dev);
4088 struct igb_adapter *adapter = netdev_priv(netdev);
4089 struct e1000_hw *hw = &adapter->hw;
4090 unsigned long event = *(unsigned long *)data;
4091
4092 switch (event) {
4093 case DCA_PROVIDER_ADD:
4094 /* if already enabled, don't do it again */
4095 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4096 break;
4097 /* Always use CB2 mode, difference is masked
4098 * in the CB driver. */
4099 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4100 if (dca_add_requester(dev) == 0) {
4101 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4102 dev_info(&adapter->pdev->dev, "DCA enabled\n");
4103 igb_setup_dca(adapter);
4104 break;
4105 }
4106 /* Fall Through since DCA is disabled. */
4107 case DCA_PROVIDER_REMOVE:
4108 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4109 /* without this a class_device is left
4110 * hanging around in the sysfs model */
4111 dca_remove_requester(dev);
4112 dev_info(&adapter->pdev->dev, "DCA disabled\n");
4113 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4114 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4115 }
4116 break;
4117 }
4118
4119 return 0;
4120 }
4121
4122 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4123 void *p)
4124 {
4125 int ret_val;
4126
4127 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4128 __igb_notify_dca);
4129
4130 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4131 }
4132 #endif /* CONFIG_IGB_DCA */
4133
4134 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4135 {
4136 struct e1000_hw *hw = &adapter->hw;
4137 u32 ping;
4138 int i;
4139
4140 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4141 ping = E1000_PF_CONTROL_MSG;
4142 if (adapter->vf_data[i].clear_to_send)
4143 ping |= E1000_VT_MSGTYPE_CTS;
4144 igb_write_mbx(hw, &ping, 1, i);
4145 }
4146 }
4147
4148 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4149 u32 *msgbuf, u32 vf)
4150 {
4151 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4152 u16 *hash_list = (u16 *)&msgbuf[1];
4153 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4154 int i;
4155
4156 /* only up to 30 hash values supported */
4157 if (n > 30)
4158 n = 30;
4159
4160 /* salt away the number of multi cast addresses assigned
4161 * to this VF for later use to restore when the PF multi cast
4162 * list changes
4163 */
4164 vf_data->num_vf_mc_hashes = n;
4165
4166 /* VFs are limited to using the MTA hash table for their multicast
4167 * addresses */
4168 for (i = 0; i < n; i++)
4169 vf_data->vf_mc_hashes[i] = hash_list[i];
4170
4171 /* Flush and reset the mta with the new values */
4172 igb_set_rx_mode(adapter->netdev);
4173
4174 return 0;
4175 }
4176
4177 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4178 {
4179 struct e1000_hw *hw = &adapter->hw;
4180 struct vf_data_storage *vf_data;
4181 int i, j;
4182
4183 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4184 vf_data = &adapter->vf_data[i];
4185 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4186 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4187 }
4188 }
4189
4190 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4191 {
4192 struct e1000_hw *hw = &adapter->hw;
4193 u32 pool_mask, reg, vid;
4194 int i;
4195
4196 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4197
4198 /* Find the vlan filter for this id */
4199 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4200 reg = rd32(E1000_VLVF(i));
4201
4202 /* remove the vf from the pool */
4203 reg &= ~pool_mask;
4204
4205 /* if pool is empty then remove entry from vfta */
4206 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4207 (reg & E1000_VLVF_VLANID_ENABLE)) {
4208 reg = 0;
4209 vid = reg & E1000_VLVF_VLANID_MASK;
4210 igb_vfta_set(hw, vid, false);
4211 }
4212
4213 wr32(E1000_VLVF(i), reg);
4214 }
4215
4216 adapter->vf_data[vf].vlans_enabled = 0;
4217 }
4218
4219 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4220 {
4221 struct e1000_hw *hw = &adapter->hw;
4222 u32 reg, i;
4223
4224 /* It is an error to call this function when VFs are not enabled */
4225 if (!adapter->vfs_allocated_count)
4226 return -1;
4227
4228 /* Find the vlan filter for this id */
4229 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4230 reg = rd32(E1000_VLVF(i));
4231 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4232 vid == (reg & E1000_VLVF_VLANID_MASK))
4233 break;
4234 }
4235
4236 if (add) {
4237 if (i == E1000_VLVF_ARRAY_SIZE) {
4238 /* Did not find a matching VLAN ID entry that was
4239 * enabled. Search for a free filter entry, i.e.
4240 * one without the enable bit set
4241 */
4242 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4243 reg = rd32(E1000_VLVF(i));
4244 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4245 break;
4246 }
4247 }
4248 if (i < E1000_VLVF_ARRAY_SIZE) {
4249 /* Found an enabled/available entry */
4250 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4251
4252 /* if !enabled we need to set this up in vfta */
4253 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4254 /* add VID to filter table, if bit already set
4255 * PF must have added it outside of table */
4256 if (igb_vfta_set(hw, vid, true))
4257 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
4258 adapter->vfs_allocated_count);
4259 reg |= E1000_VLVF_VLANID_ENABLE;
4260 }
4261 reg &= ~E1000_VLVF_VLANID_MASK;
4262 reg |= vid;
4263
4264 wr32(E1000_VLVF(i), reg);
4265
4266 /* do not modify RLPML for PF devices */
4267 if (vf >= adapter->vfs_allocated_count)
4268 return 0;
4269
4270 if (!adapter->vf_data[vf].vlans_enabled) {
4271 u32 size;
4272 reg = rd32(E1000_VMOLR(vf));
4273 size = reg & E1000_VMOLR_RLPML_MASK;
4274 size += 4;
4275 reg &= ~E1000_VMOLR_RLPML_MASK;
4276 reg |= size;
4277 wr32(E1000_VMOLR(vf), reg);
4278 }
4279 adapter->vf_data[vf].vlans_enabled++;
4280
4281 return 0;
4282 }
4283 } else {
4284 if (i < E1000_VLVF_ARRAY_SIZE) {
4285 /* remove vf from the pool */
4286 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4287 /* if pool is empty then remove entry from vfta */
4288 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4289 reg = 0;
4290 igb_vfta_set(hw, vid, false);
4291 }
4292 wr32(E1000_VLVF(i), reg);
4293
4294 /* do not modify RLPML for PF devices */
4295 if (vf >= adapter->vfs_allocated_count)
4296 return 0;
4297
4298 adapter->vf_data[vf].vlans_enabled--;
4299 if (!adapter->vf_data[vf].vlans_enabled) {
4300 u32 size;
4301 reg = rd32(E1000_VMOLR(vf));
4302 size = reg & E1000_VMOLR_RLPML_MASK;
4303 size -= 4;
4304 reg &= ~E1000_VMOLR_RLPML_MASK;
4305 reg |= size;
4306 wr32(E1000_VMOLR(vf), reg);
4307 }
4308 return 0;
4309 }
4310 }
4311 return -1;
4312 }
4313
4314 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4315 {
4316 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4317 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4318
4319 return igb_vlvf_set(adapter, vid, add, vf);
4320 }
4321
4322 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4323 {
4324 struct e1000_hw *hw = &adapter->hw;
4325
4326 /* disable mailbox functionality for vf */
4327 adapter->vf_data[vf].clear_to_send = false;
4328
4329 /* reset offloads to defaults */
4330 igb_set_vmolr(hw, vf);
4331
4332 /* reset vlans for device */
4333 igb_clear_vf_vfta(adapter, vf);
4334
4335 /* reset multicast table array for vf */
4336 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4337
4338 /* Flush and reset the mta with the new values */
4339 igb_set_rx_mode(adapter->netdev);
4340 }
4341
4342 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4343 {
4344 struct e1000_hw *hw = &adapter->hw;
4345 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4346 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4347 u32 reg, msgbuf[3];
4348 u8 *addr = (u8 *)(&msgbuf[1]);
4349
4350 /* process all the same items cleared in a function level reset */
4351 igb_vf_reset_event(adapter, vf);
4352
4353 /* set vf mac address */
4354 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4355
4356 /* enable transmit and receive for vf */
4357 reg = rd32(E1000_VFTE);
4358 wr32(E1000_VFTE, reg | (1 << vf));
4359 reg = rd32(E1000_VFRE);
4360 wr32(E1000_VFRE, reg | (1 << vf));
4361
4362 /* enable mailbox functionality for vf */
4363 adapter->vf_data[vf].clear_to_send = true;
4364
4365 /* reply to reset with ack and vf mac address */
4366 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4367 memcpy(addr, vf_mac, 6);
4368 igb_write_mbx(hw, msgbuf, 3, vf);
4369 }
4370
4371 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4372 {
4373 unsigned char *addr = (char *)&msg[1];
4374 int err = -1;
4375
4376 if (is_valid_ether_addr(addr))
4377 err = igb_set_vf_mac(adapter, vf, addr);
4378
4379 return err;
4380
4381 }
4382
4383 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4384 {
4385 struct e1000_hw *hw = &adapter->hw;
4386 u32 msg = E1000_VT_MSGTYPE_NACK;
4387
4388 /* if device isn't clear to send it shouldn't be reading either */
4389 if (!adapter->vf_data[vf].clear_to_send)
4390 igb_write_mbx(hw, &msg, 1, vf);
4391 }
4392
4393
4394 static void igb_msg_task(struct igb_adapter *adapter)
4395 {
4396 struct e1000_hw *hw = &adapter->hw;
4397 u32 vf;
4398
4399 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4400 /* process any reset requests */
4401 if (!igb_check_for_rst(hw, vf)) {
4402 adapter->vf_data[vf].clear_to_send = false;
4403 igb_vf_reset_event(adapter, vf);
4404 }
4405
4406 /* process any messages pending */
4407 if (!igb_check_for_msg(hw, vf))
4408 igb_rcv_msg_from_vf(adapter, vf);
4409
4410 /* process any acks */
4411 if (!igb_check_for_ack(hw, vf))
4412 igb_rcv_ack_from_vf(adapter, vf);
4413
4414 }
4415 }
4416
4417 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4418 {
4419 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4420 u32 msgbuf[mbx_size];
4421 struct e1000_hw *hw = &adapter->hw;
4422 s32 retval;
4423
4424 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4425
4426 if (retval)
4427 dev_err(&adapter->pdev->dev,
4428 "Error receiving message from VF\n");
4429
4430 /* this is a message we already processed, do nothing */
4431 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4432 return retval;
4433
4434 /*
4435 * until the vf completes a reset it should not be
4436 * allowed to start any configuration.
4437 */
4438
4439 if (msgbuf[0] == E1000_VF_RESET) {
4440 igb_vf_reset_msg(adapter, vf);
4441
4442 return retval;
4443 }
4444
4445 if (!adapter->vf_data[vf].clear_to_send) {
4446 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4447 igb_write_mbx(hw, msgbuf, 1, vf);
4448 return retval;
4449 }
4450
4451 switch ((msgbuf[0] & 0xFFFF)) {
4452 case E1000_VF_SET_MAC_ADDR:
4453 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4454 break;
4455 case E1000_VF_SET_MULTICAST:
4456 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4457 break;
4458 case E1000_VF_SET_LPE:
4459 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4460 break;
4461 case E1000_VF_SET_VLAN:
4462 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4463 break;
4464 default:
4465 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4466 retval = -1;
4467 break;
4468 }
4469
4470 /* notify the VF of the results of what it sent us */
4471 if (retval)
4472 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4473 else
4474 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4475
4476 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4477
4478 igb_write_mbx(hw, msgbuf, 1, vf);
4479
4480 return retval;
4481 }
4482
4483 /**
4484 * igb_set_uta - Set unicast filter table address
4485 * @adapter: board private structure
4486 *
4487 * The unicast table address is a register array of 32-bit registers.
4488 * The table is meant to be used in a way similar to how the MTA is used
4489 * however due to certain limitations in the hardware it is necessary to
4490 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4491 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4492 **/
4493 static void igb_set_uta(struct igb_adapter *adapter)
4494 {
4495 struct e1000_hw *hw = &adapter->hw;
4496 int i;
4497
4498 /* The UTA table only exists on 82576 hardware and newer */
4499 if (hw->mac.type < e1000_82576)
4500 return;
4501
4502 /* we only need to do this if VMDq is enabled */
4503 if (!adapter->vfs_allocated_count)
4504 return;
4505
4506 for (i = 0; i < hw->mac.uta_reg_count; i++)
4507 array_wr32(E1000_UTA, i, ~0);
4508 }
4509
4510 /**
4511 * igb_intr_msi - Interrupt Handler
4512 * @irq: interrupt number
4513 * @data: pointer to a network interface device structure
4514 **/
4515 static irqreturn_t igb_intr_msi(int irq, void *data)
4516 {
4517 struct igb_adapter *adapter = data;
4518 struct igb_q_vector *q_vector = adapter->q_vector[0];
4519 struct e1000_hw *hw = &adapter->hw;
4520 /* read ICR disables interrupts using IAM */
4521 u32 icr = rd32(E1000_ICR);
4522
4523 igb_write_itr(q_vector);
4524
4525 if (icr & E1000_ICR_DOUTSYNC) {
4526 /* HW is reporting DMA is out of sync */
4527 adapter->stats.doosync++;
4528 }
4529
4530 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4531 hw->mac.get_link_status = 1;
4532 if (!test_bit(__IGB_DOWN, &adapter->state))
4533 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4534 }
4535
4536 napi_schedule(&q_vector->napi);
4537
4538 return IRQ_HANDLED;
4539 }
4540
4541 /**
4542 * igb_intr - Legacy Interrupt Handler
4543 * @irq: interrupt number
4544 * @data: pointer to a network interface device structure
4545 **/
4546 static irqreturn_t igb_intr(int irq, void *data)
4547 {
4548 struct igb_adapter *adapter = data;
4549 struct igb_q_vector *q_vector = adapter->q_vector[0];
4550 struct e1000_hw *hw = &adapter->hw;
4551 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4552 * need for the IMC write */
4553 u32 icr = rd32(E1000_ICR);
4554 if (!icr)
4555 return IRQ_NONE; /* Not our interrupt */
4556
4557 igb_write_itr(q_vector);
4558
4559 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4560 * not set, then the adapter didn't send an interrupt */
4561 if (!(icr & E1000_ICR_INT_ASSERTED))
4562 return IRQ_NONE;
4563
4564 if (icr & E1000_ICR_DOUTSYNC) {
4565 /* HW is reporting DMA is out of sync */
4566 adapter->stats.doosync++;
4567 }
4568
4569 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4570 hw->mac.get_link_status = 1;
4571 /* guard against interrupt when we're going down */
4572 if (!test_bit(__IGB_DOWN, &adapter->state))
4573 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4574 }
4575
4576 napi_schedule(&q_vector->napi);
4577
4578 return IRQ_HANDLED;
4579 }
4580
4581 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4582 {
4583 struct igb_adapter *adapter = q_vector->adapter;
4584 struct e1000_hw *hw = &adapter->hw;
4585
4586 if (adapter->itr_setting & 3) {
4587 if (!adapter->msix_entries)
4588 igb_set_itr(adapter);
4589 else
4590 igb_update_ring_itr(q_vector);
4591 }
4592
4593 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4594 if (adapter->msix_entries)
4595 wr32(E1000_EIMS, q_vector->eims_value);
4596 else
4597 igb_irq_enable(adapter);
4598 }
4599 }
4600
4601 /**
4602 * igb_poll - NAPI Rx polling callback
4603 * @napi: napi polling structure
4604 * @budget: count of how many packets we should handle
4605 **/
4606 static int igb_poll(struct napi_struct *napi, int budget)
4607 {
4608 struct igb_q_vector *q_vector = container_of(napi,
4609 struct igb_q_vector,
4610 napi);
4611 int tx_clean_complete = 1, work_done = 0;
4612
4613 #ifdef CONFIG_IGB_DCA
4614 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4615 igb_update_dca(q_vector);
4616 #endif
4617 if (q_vector->tx_ring)
4618 tx_clean_complete = igb_clean_tx_irq(q_vector);
4619
4620 if (q_vector->rx_ring)
4621 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4622
4623 if (!tx_clean_complete)
4624 work_done = budget;
4625
4626 /* If not enough Rx work done, exit the polling mode */
4627 if (work_done < budget) {
4628 napi_complete(napi);
4629 igb_ring_irq_enable(q_vector);
4630 }
4631
4632 return work_done;
4633 }
4634
4635 /**
4636 * igb_hwtstamp - utility function which checks for TX time stamp
4637 * @adapter: board private structure
4638 * @skb: packet that was just sent
4639 *
4640 * If we were asked to do hardware stamping and such a time stamp is
4641 * available, then it must have been for this skb here because we only
4642 * allow only one such packet into the queue.
4643 */
4644 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4645 {
4646 union skb_shared_tx *shtx = skb_tx(skb);
4647 struct e1000_hw *hw = &adapter->hw;
4648
4649 if (unlikely(shtx->hardware)) {
4650 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4651 if (valid) {
4652 u64 regval = rd32(E1000_TXSTMPL);
4653 u64 ns;
4654 struct skb_shared_hwtstamps shhwtstamps;
4655
4656 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4657 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4658 ns = timecounter_cyc2time(&adapter->clock,
4659 regval);
4660 timecompare_update(&adapter->compare, ns);
4661 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4662 shhwtstamps.syststamp =
4663 timecompare_transform(&adapter->compare, ns);
4664 skb_tstamp_tx(skb, &shhwtstamps);
4665 }
4666 }
4667 }
4668
4669 /**
4670 * igb_clean_tx_irq - Reclaim resources after transmit completes
4671 * @q_vector: pointer to q_vector containing needed info
4672 * returns true if ring is completely cleaned
4673 **/
4674 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4675 {
4676 struct igb_adapter *adapter = q_vector->adapter;
4677 struct igb_ring *tx_ring = q_vector->tx_ring;
4678 struct net_device *netdev = adapter->netdev;
4679 struct e1000_hw *hw = &adapter->hw;
4680 struct igb_buffer *buffer_info;
4681 struct sk_buff *skb;
4682 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4683 unsigned int total_bytes = 0, total_packets = 0;
4684 unsigned int i, eop, count = 0;
4685 bool cleaned = false;
4686
4687 i = tx_ring->next_to_clean;
4688 eop = tx_ring->buffer_info[i].next_to_watch;
4689 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4690
4691 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4692 (count < tx_ring->count)) {
4693 for (cleaned = false; !cleaned; count++) {
4694 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4695 buffer_info = &tx_ring->buffer_info[i];
4696 cleaned = (i == eop);
4697 skb = buffer_info->skb;
4698
4699 if (skb) {
4700 unsigned int segs, bytecount;
4701 /* gso_segs is currently only valid for tcp */
4702 segs = skb_shinfo(skb)->gso_segs ?: 1;
4703 /* multiply data chunks by size of headers */
4704 bytecount = ((segs - 1) * skb_headlen(skb)) +
4705 skb->len;
4706 total_packets += segs;
4707 total_bytes += bytecount;
4708
4709 igb_tx_hwtstamp(adapter, skb);
4710 }
4711
4712 igb_unmap_and_free_tx_resource(adapter, buffer_info);
4713 tx_desc->wb.status = 0;
4714
4715 i++;
4716 if (i == tx_ring->count)
4717 i = 0;
4718 }
4719 eop = tx_ring->buffer_info[i].next_to_watch;
4720 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4721 }
4722
4723 tx_ring->next_to_clean = i;
4724
4725 if (unlikely(count &&
4726 netif_carrier_ok(netdev) &&
4727 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4728 /* Make sure that anybody stopping the queue after this
4729 * sees the new next_to_clean.
4730 */
4731 smp_mb();
4732 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4733 !(test_bit(__IGB_DOWN, &adapter->state))) {
4734 netif_wake_subqueue(netdev, tx_ring->queue_index);
4735 ++adapter->restart_queue;
4736 }
4737 }
4738
4739 if (tx_ring->detect_tx_hung) {
4740 /* Detect a transmit hang in hardware, this serializes the
4741 * check with the clearing of time_stamp and movement of i */
4742 tx_ring->detect_tx_hung = false;
4743 if (tx_ring->buffer_info[i].time_stamp &&
4744 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4745 (adapter->tx_timeout_factor * HZ))
4746 && !(rd32(E1000_STATUS) &
4747 E1000_STATUS_TXOFF)) {
4748
4749 /* detected Tx unit hang */
4750 dev_err(&adapter->pdev->dev,
4751 "Detected Tx Unit Hang\n"
4752 " Tx Queue <%d>\n"
4753 " TDH <%x>\n"
4754 " TDT <%x>\n"
4755 " next_to_use <%x>\n"
4756 " next_to_clean <%x>\n"
4757 "buffer_info[next_to_clean]\n"
4758 " time_stamp <%lx>\n"
4759 " next_to_watch <%x>\n"
4760 " jiffies <%lx>\n"
4761 " desc.status <%x>\n",
4762 tx_ring->queue_index,
4763 readl(adapter->hw.hw_addr + tx_ring->head),
4764 readl(adapter->hw.hw_addr + tx_ring->tail),
4765 tx_ring->next_to_use,
4766 tx_ring->next_to_clean,
4767 tx_ring->buffer_info[i].time_stamp,
4768 eop,
4769 jiffies,
4770 eop_desc->wb.status);
4771 netif_stop_subqueue(netdev, tx_ring->queue_index);
4772 }
4773 }
4774 tx_ring->total_bytes += total_bytes;
4775 tx_ring->total_packets += total_packets;
4776 tx_ring->tx_stats.bytes += total_bytes;
4777 tx_ring->tx_stats.packets += total_packets;
4778 netdev->stats.tx_bytes += total_bytes;
4779 netdev->stats.tx_packets += total_packets;
4780 return (count < tx_ring->count);
4781 }
4782
4783 /**
4784 * igb_receive_skb - helper function to handle rx indications
4785 * @q_vector: structure containing interrupt and ring information
4786 * @skb: packet to send up
4787 * @vlan_tag: vlan tag for packet
4788 **/
4789 static void igb_receive_skb(struct igb_q_vector *q_vector,
4790 struct sk_buff *skb,
4791 u16 vlan_tag)
4792 {
4793 struct igb_adapter *adapter = q_vector->adapter;
4794
4795 if (vlan_tag)
4796 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
4797 vlan_tag, skb);
4798 else
4799 napi_gro_receive(&q_vector->napi, skb);
4800 }
4801
4802 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4803 u32 status_err, struct sk_buff *skb)
4804 {
4805 skb->ip_summed = CHECKSUM_NONE;
4806
4807 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4808 if ((status_err & E1000_RXD_STAT_IXSM) ||
4809 (adapter->flags & IGB_FLAG_RX_CSUM_DISABLED))
4810 return;
4811 /* TCP/UDP checksum error bit is set */
4812 if (status_err &
4813 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4814 /*
4815 * work around errata with sctp packets where the TCPE aka
4816 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4817 * packets, (aka let the stack check the crc32c)
4818 */
4819 if (!((adapter->hw.mac.type == e1000_82576) &&
4820 (skb->len == 60)))
4821 adapter->hw_csum_err++;
4822 /* let the stack verify checksum errors */
4823 return;
4824 }
4825 /* It must be a TCP or UDP packet with a valid checksum */
4826 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4827 skb->ip_summed = CHECKSUM_UNNECESSARY;
4828
4829 dev_dbg(&adapter->pdev->dev, "cksum success: bits %08X\n", status_err);
4830 }
4831
4832 static inline u16 igb_get_hlen(struct igb_adapter *adapter,
4833 union e1000_adv_rx_desc *rx_desc)
4834 {
4835 /* HW will not DMA in data larger than the given buffer, even if it
4836 * parses the (NFS, of course) header to be larger. In that case, it
4837 * fills the header buffer and spills the rest into the page.
4838 */
4839 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4840 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4841 if (hlen > adapter->rx_ps_hdr_size)
4842 hlen = adapter->rx_ps_hdr_size;
4843 return hlen;
4844 }
4845
4846 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
4847 int *work_done, int budget)
4848 {
4849 struct igb_adapter *adapter = q_vector->adapter;
4850 struct net_device *netdev = adapter->netdev;
4851 struct igb_ring *rx_ring = q_vector->rx_ring;
4852 struct e1000_hw *hw = &adapter->hw;
4853 struct pci_dev *pdev = adapter->pdev;
4854 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4855 struct igb_buffer *buffer_info , *next_buffer;
4856 struct sk_buff *skb;
4857 bool cleaned = false;
4858 int cleaned_count = 0;
4859 unsigned int total_bytes = 0, total_packets = 0;
4860 unsigned int i;
4861 u32 staterr;
4862 u16 length;
4863 u16 vlan_tag;
4864
4865 i = rx_ring->next_to_clean;
4866 buffer_info = &rx_ring->buffer_info[i];
4867 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4868 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4869
4870 while (staterr & E1000_RXD_STAT_DD) {
4871 if (*work_done >= budget)
4872 break;
4873 (*work_done)++;
4874
4875 skb = buffer_info->skb;
4876 prefetch(skb->data - NET_IP_ALIGN);
4877 buffer_info->skb = NULL;
4878
4879 i++;
4880 if (i == rx_ring->count)
4881 i = 0;
4882 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4883 prefetch(next_rxd);
4884 next_buffer = &rx_ring->buffer_info[i];
4885
4886 length = le16_to_cpu(rx_desc->wb.upper.length);
4887 cleaned = true;
4888 cleaned_count++;
4889
4890 /* this is the fast path for the non-packet split case */
4891 if (!adapter->rx_ps_hdr_size) {
4892 pci_unmap_single(pdev, buffer_info->dma,
4893 adapter->rx_buffer_len,
4894 PCI_DMA_FROMDEVICE);
4895 buffer_info->dma = 0;
4896 skb_put(skb, length);
4897 goto send_up;
4898 }
4899
4900 if (buffer_info->dma) {
4901 u16 hlen = igb_get_hlen(adapter, rx_desc);
4902 pci_unmap_single(pdev, buffer_info->dma,
4903 adapter->rx_ps_hdr_size,
4904 PCI_DMA_FROMDEVICE);
4905 buffer_info->dma = 0;
4906 skb_put(skb, hlen);
4907 }
4908
4909 if (length) {
4910 pci_unmap_page(pdev, buffer_info->page_dma,
4911 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4912 buffer_info->page_dma = 0;
4913
4914 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4915 buffer_info->page,
4916 buffer_info->page_offset,
4917 length);
4918
4919 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4920 (page_count(buffer_info->page) != 1))
4921 buffer_info->page = NULL;
4922 else
4923 get_page(buffer_info->page);
4924
4925 skb->len += length;
4926 skb->data_len += length;
4927
4928 skb->truesize += length;
4929 }
4930
4931 if (!(staterr & E1000_RXD_STAT_EOP)) {
4932 buffer_info->skb = next_buffer->skb;
4933 buffer_info->dma = next_buffer->dma;
4934 next_buffer->skb = skb;
4935 next_buffer->dma = 0;
4936 goto next_desc;
4937 }
4938 send_up:
4939 /*
4940 * If this bit is set, then the RX registers contain
4941 * the time stamp. No other packet will be time
4942 * stamped until we read these registers, so read the
4943 * registers to make them available again. Because
4944 * only one packet can be time stamped at a time, we
4945 * know that the register values must belong to this
4946 * one here and therefore we don't need to compare
4947 * any of the additional attributes stored for it.
4948 *
4949 * If nothing went wrong, then it should have a
4950 * skb_shared_tx that we can turn into a
4951 * skb_shared_hwtstamps.
4952 *
4953 * TODO: can time stamping be triggered (thus locking
4954 * the registers) without the packet reaching this point
4955 * here? In that case RX time stamping would get stuck.
4956 *
4957 * TODO: in "time stamp all packets" mode this bit is
4958 * not set. Need a global flag for this mode and then
4959 * always read the registers. Cannot be done without
4960 * a race condition.
4961 */
4962 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4963 u64 regval;
4964 u64 ns;
4965 struct skb_shared_hwtstamps *shhwtstamps =
4966 skb_hwtstamps(skb);
4967
4968 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4969 "igb: no RX time stamp available for time stamped packet");
4970 regval = rd32(E1000_RXSTMPL);
4971 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4972 ns = timecounter_cyc2time(&adapter->clock, regval);
4973 timecompare_update(&adapter->compare, ns);
4974 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4975 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4976 shhwtstamps->syststamp =
4977 timecompare_transform(&adapter->compare, ns);
4978 }
4979
4980 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4981 dev_kfree_skb_irq(skb);
4982 goto next_desc;
4983 }
4984
4985 total_bytes += skb->len;
4986 total_packets++;
4987
4988 igb_rx_checksum_adv(adapter, staterr, skb);
4989
4990 skb->protocol = eth_type_trans(skb, netdev);
4991 skb_record_rx_queue(skb, rx_ring->queue_index);
4992
4993 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
4994 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
4995
4996 igb_receive_skb(q_vector, skb, vlan_tag);
4997
4998 next_desc:
4999 rx_desc->wb.upper.status_error = 0;
5000
5001 /* return some buffers to hardware, one at a time is too slow */
5002 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5003 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5004 cleaned_count = 0;
5005 }
5006
5007 /* use prefetched values */
5008 rx_desc = next_rxd;
5009 buffer_info = next_buffer;
5010 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5011 }
5012
5013 rx_ring->next_to_clean = i;
5014 cleaned_count = igb_desc_unused(rx_ring);
5015
5016 if (cleaned_count)
5017 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5018
5019 rx_ring->total_packets += total_packets;
5020 rx_ring->total_bytes += total_bytes;
5021 rx_ring->rx_stats.packets += total_packets;
5022 rx_ring->rx_stats.bytes += total_bytes;
5023 netdev->stats.rx_bytes += total_bytes;
5024 netdev->stats.rx_packets += total_packets;
5025 return cleaned;
5026 }
5027
5028 /**
5029 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5030 * @adapter: address of board private structure
5031 **/
5032 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
5033 int cleaned_count)
5034 {
5035 struct igb_adapter *adapter = rx_ring->q_vector->adapter;
5036 struct net_device *netdev = adapter->netdev;
5037 struct pci_dev *pdev = adapter->pdev;
5038 union e1000_adv_rx_desc *rx_desc;
5039 struct igb_buffer *buffer_info;
5040 struct sk_buff *skb;
5041 unsigned int i;
5042 int bufsz;
5043
5044 i = rx_ring->next_to_use;
5045 buffer_info = &rx_ring->buffer_info[i];
5046
5047 if (adapter->rx_ps_hdr_size)
5048 bufsz = adapter->rx_ps_hdr_size;
5049 else
5050 bufsz = adapter->rx_buffer_len;
5051
5052 while (cleaned_count--) {
5053 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5054
5055 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
5056 if (!buffer_info->page) {
5057 buffer_info->page = alloc_page(GFP_ATOMIC);
5058 if (!buffer_info->page) {
5059 adapter->alloc_rx_buff_failed++;
5060 goto no_buffers;
5061 }
5062 buffer_info->page_offset = 0;
5063 } else {
5064 buffer_info->page_offset ^= PAGE_SIZE / 2;
5065 }
5066 buffer_info->page_dma =
5067 pci_map_page(pdev, buffer_info->page,
5068 buffer_info->page_offset,
5069 PAGE_SIZE / 2,
5070 PCI_DMA_FROMDEVICE);
5071 }
5072
5073 if (!buffer_info->skb) {
5074 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5075 if (!skb) {
5076 adapter->alloc_rx_buff_failed++;
5077 goto no_buffers;
5078 }
5079
5080 buffer_info->skb = skb;
5081 buffer_info->dma = pci_map_single(pdev, skb->data,
5082 bufsz,
5083 PCI_DMA_FROMDEVICE);
5084 }
5085 /* Refresh the desc even if buffer_addrs didn't change because
5086 * each write-back erases this info. */
5087 if (adapter->rx_ps_hdr_size) {
5088 rx_desc->read.pkt_addr =
5089 cpu_to_le64(buffer_info->page_dma);
5090 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5091 } else {
5092 rx_desc->read.pkt_addr =
5093 cpu_to_le64(buffer_info->dma);
5094 rx_desc->read.hdr_addr = 0;
5095 }
5096
5097 i++;
5098 if (i == rx_ring->count)
5099 i = 0;
5100 buffer_info = &rx_ring->buffer_info[i];
5101 }
5102
5103 no_buffers:
5104 if (rx_ring->next_to_use != i) {
5105 rx_ring->next_to_use = i;
5106 if (i == 0)
5107 i = (rx_ring->count - 1);
5108 else
5109 i--;
5110
5111 /* Force memory writes to complete before letting h/w
5112 * know there are new descriptors to fetch. (Only
5113 * applicable for weak-ordered memory model archs,
5114 * such as IA-64). */
5115 wmb();
5116 writel(i, adapter->hw.hw_addr + rx_ring->tail);
5117 }
5118 }
5119
5120 /**
5121 * igb_mii_ioctl -
5122 * @netdev:
5123 * @ifreq:
5124 * @cmd:
5125 **/
5126 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5127 {
5128 struct igb_adapter *adapter = netdev_priv(netdev);
5129 struct mii_ioctl_data *data = if_mii(ifr);
5130
5131 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5132 return -EOPNOTSUPP;
5133
5134 switch (cmd) {
5135 case SIOCGMIIPHY:
5136 data->phy_id = adapter->hw.phy.addr;
5137 break;
5138 case SIOCGMIIREG:
5139 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5140 &data->val_out))
5141 return -EIO;
5142 break;
5143 case SIOCSMIIREG:
5144 default:
5145 return -EOPNOTSUPP;
5146 }
5147 return 0;
5148 }
5149
5150 /**
5151 * igb_hwtstamp_ioctl - control hardware time stamping
5152 * @netdev:
5153 * @ifreq:
5154 * @cmd:
5155 *
5156 * Outgoing time stamping can be enabled and disabled. Play nice and
5157 * disable it when requested, although it shouldn't case any overhead
5158 * when no packet needs it. At most one packet in the queue may be
5159 * marked for time stamping, otherwise it would be impossible to tell
5160 * for sure to which packet the hardware time stamp belongs.
5161 *
5162 * Incoming time stamping has to be configured via the hardware
5163 * filters. Not all combinations are supported, in particular event
5164 * type has to be specified. Matching the kind of event packet is
5165 * not supported, with the exception of "all V2 events regardless of
5166 * level 2 or 4".
5167 *
5168 **/
5169 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5170 struct ifreq *ifr, int cmd)
5171 {
5172 struct igb_adapter *adapter = netdev_priv(netdev);
5173 struct e1000_hw *hw = &adapter->hw;
5174 struct hwtstamp_config config;
5175 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
5176 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
5177 u32 tsync_rx_ctl_type = 0;
5178 u32 tsync_rx_cfg = 0;
5179 int is_l4 = 0;
5180 int is_l2 = 0;
5181 short port = 319; /* PTP */
5182 u32 regval;
5183
5184 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5185 return -EFAULT;
5186
5187 /* reserved for future extensions */
5188 if (config.flags)
5189 return -EINVAL;
5190
5191 switch (config.tx_type) {
5192 case HWTSTAMP_TX_OFF:
5193 tsync_tx_ctl_bit = 0;
5194 break;
5195 case HWTSTAMP_TX_ON:
5196 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
5197 break;
5198 default:
5199 return -ERANGE;
5200 }
5201
5202 switch (config.rx_filter) {
5203 case HWTSTAMP_FILTER_NONE:
5204 tsync_rx_ctl_bit = 0;
5205 break;
5206 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5207 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5208 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5209 case HWTSTAMP_FILTER_ALL:
5210 /*
5211 * register TSYNCRXCFG must be set, therefore it is not
5212 * possible to time stamp both Sync and Delay_Req messages
5213 * => fall back to time stamping all packets
5214 */
5215 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
5216 config.rx_filter = HWTSTAMP_FILTER_ALL;
5217 break;
5218 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5219 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
5220 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5221 is_l4 = 1;
5222 break;
5223 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5224 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
5225 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5226 is_l4 = 1;
5227 break;
5228 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5229 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5230 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5231 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5232 is_l2 = 1;
5233 is_l4 = 1;
5234 config.rx_filter = HWTSTAMP_FILTER_SOME;
5235 break;
5236 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5237 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5238 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5239 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5240 is_l2 = 1;
5241 is_l4 = 1;
5242 config.rx_filter = HWTSTAMP_FILTER_SOME;
5243 break;
5244 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5245 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5246 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5247 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5248 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5249 is_l2 = 1;
5250 break;
5251 default:
5252 return -ERANGE;
5253 }
5254
5255 /* enable/disable TX */
5256 regval = rd32(E1000_TSYNCTXCTL);
5257 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
5258 wr32(E1000_TSYNCTXCTL, regval);
5259
5260 /* enable/disable RX, define which PTP packets are time stamped */
5261 regval = rd32(E1000_TSYNCRXCTL);
5262 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
5263 regval = (regval & ~0xE) | tsync_rx_ctl_type;
5264 wr32(E1000_TSYNCRXCTL, regval);
5265 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5266
5267 /*
5268 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
5269 * (Ethertype to filter on)
5270 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
5271 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
5272 */
5273 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
5274
5275 /* L4 Queue Filter[0]: only filter by source and destination port */
5276 wr32(E1000_SPQF0, htons(port));
5277 wr32(E1000_IMIREXT(0), is_l4 ?
5278 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
5279 wr32(E1000_IMIR(0), is_l4 ?
5280 (htons(port)
5281 | (0<<16) /* immediate interrupt disabled */
5282 | 0 /* (1<<17) bit cleared: do not bypass
5283 destination port check */)
5284 : 0);
5285 wr32(E1000_FTQF0, is_l4 ?
5286 (0x11 /* UDP */
5287 | (1<<15) /* VF not compared */
5288 | (1<<27) /* Enable Timestamping */
5289 | (7<<28) /* only source port filter enabled,
5290 source/target address and protocol
5291 masked */)
5292 : ((1<<15) | (15<<28) /* all mask bits set = filter not
5293 enabled */));
5294
5295 wrfl();
5296
5297 adapter->hwtstamp_config = config;
5298
5299 /* clear TX/RX time stamp registers, just to be sure */
5300 regval = rd32(E1000_TXSTMPH);
5301 regval = rd32(E1000_RXSTMPH);
5302
5303 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5304 -EFAULT : 0;
5305 }
5306
5307 /**
5308 * igb_ioctl -
5309 * @netdev:
5310 * @ifreq:
5311 * @cmd:
5312 **/
5313 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5314 {
5315 switch (cmd) {
5316 case SIOCGMIIPHY:
5317 case SIOCGMIIREG:
5318 case SIOCSMIIREG:
5319 return igb_mii_ioctl(netdev, ifr, cmd);
5320 case SIOCSHWTSTAMP:
5321 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5322 default:
5323 return -EOPNOTSUPP;
5324 }
5325 }
5326
5327 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5328 {
5329 struct igb_adapter *adapter = hw->back;
5330 u16 cap_offset;
5331
5332 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5333 if (!cap_offset)
5334 return -E1000_ERR_CONFIG;
5335
5336 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5337
5338 return 0;
5339 }
5340
5341 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5342 {
5343 struct igb_adapter *adapter = hw->back;
5344 u16 cap_offset;
5345
5346 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5347 if (!cap_offset)
5348 return -E1000_ERR_CONFIG;
5349
5350 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5351
5352 return 0;
5353 }
5354
5355 static void igb_vlan_rx_register(struct net_device *netdev,
5356 struct vlan_group *grp)
5357 {
5358 struct igb_adapter *adapter = netdev_priv(netdev);
5359 struct e1000_hw *hw = &adapter->hw;
5360 u32 ctrl, rctl;
5361
5362 igb_irq_disable(adapter);
5363 adapter->vlgrp = grp;
5364
5365 if (grp) {
5366 /* enable VLAN tag insert/strip */
5367 ctrl = rd32(E1000_CTRL);
5368 ctrl |= E1000_CTRL_VME;
5369 wr32(E1000_CTRL, ctrl);
5370
5371 /* enable VLAN receive filtering */
5372 rctl = rd32(E1000_RCTL);
5373 rctl &= ~E1000_RCTL_CFIEN;
5374 wr32(E1000_RCTL, rctl);
5375 igb_update_mng_vlan(adapter);
5376 } else {
5377 /* disable VLAN tag insert/strip */
5378 ctrl = rd32(E1000_CTRL);
5379 ctrl &= ~E1000_CTRL_VME;
5380 wr32(E1000_CTRL, ctrl);
5381
5382 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
5383 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
5384 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
5385 }
5386 }
5387
5388 igb_rlpml_set(adapter);
5389
5390 if (!test_bit(__IGB_DOWN, &adapter->state))
5391 igb_irq_enable(adapter);
5392 }
5393
5394 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5395 {
5396 struct igb_adapter *adapter = netdev_priv(netdev);
5397 struct e1000_hw *hw = &adapter->hw;
5398 int pf_id = adapter->vfs_allocated_count;
5399
5400 if ((hw->mng_cookie.status &
5401 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5402 (vid == adapter->mng_vlan_id))
5403 return;
5404
5405 /* add vid to vlvf if sr-iov is enabled,
5406 * if that fails add directly to filter table */
5407 if (igb_vlvf_set(adapter, vid, true, pf_id))
5408 igb_vfta_set(hw, vid, true);
5409
5410 }
5411
5412 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5413 {
5414 struct igb_adapter *adapter = netdev_priv(netdev);
5415 struct e1000_hw *hw = &adapter->hw;
5416 int pf_id = adapter->vfs_allocated_count;
5417
5418 igb_irq_disable(adapter);
5419 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5420
5421 if (!test_bit(__IGB_DOWN, &adapter->state))
5422 igb_irq_enable(adapter);
5423
5424 if ((adapter->hw.mng_cookie.status &
5425 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5426 (vid == adapter->mng_vlan_id)) {
5427 /* release control to f/w */
5428 igb_release_hw_control(adapter);
5429 return;
5430 }
5431
5432 /* remove vid from vlvf if sr-iov is enabled,
5433 * if not in vlvf remove from vfta */
5434 if (igb_vlvf_set(adapter, vid, false, pf_id))
5435 igb_vfta_set(hw, vid, false);
5436 }
5437
5438 static void igb_restore_vlan(struct igb_adapter *adapter)
5439 {
5440 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5441
5442 if (adapter->vlgrp) {
5443 u16 vid;
5444 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5445 if (!vlan_group_get_device(adapter->vlgrp, vid))
5446 continue;
5447 igb_vlan_rx_add_vid(adapter->netdev, vid);
5448 }
5449 }
5450 }
5451
5452 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5453 {
5454 struct e1000_mac_info *mac = &adapter->hw.mac;
5455
5456 mac->autoneg = 0;
5457
5458 switch (spddplx) {
5459 case SPEED_10 + DUPLEX_HALF:
5460 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5461 break;
5462 case SPEED_10 + DUPLEX_FULL:
5463 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5464 break;
5465 case SPEED_100 + DUPLEX_HALF:
5466 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5467 break;
5468 case SPEED_100 + DUPLEX_FULL:
5469 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5470 break;
5471 case SPEED_1000 + DUPLEX_FULL:
5472 mac->autoneg = 1;
5473 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5474 break;
5475 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5476 default:
5477 dev_err(&adapter->pdev->dev,
5478 "Unsupported Speed/Duplex configuration\n");
5479 return -EINVAL;
5480 }
5481 return 0;
5482 }
5483
5484 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5485 {
5486 struct net_device *netdev = pci_get_drvdata(pdev);
5487 struct igb_adapter *adapter = netdev_priv(netdev);
5488 struct e1000_hw *hw = &adapter->hw;
5489 u32 ctrl, rctl, status;
5490 u32 wufc = adapter->wol;
5491 #ifdef CONFIG_PM
5492 int retval = 0;
5493 #endif
5494
5495 netif_device_detach(netdev);
5496
5497 if (netif_running(netdev))
5498 igb_close(netdev);
5499
5500 igb_clear_interrupt_scheme(adapter);
5501
5502 #ifdef CONFIG_PM
5503 retval = pci_save_state(pdev);
5504 if (retval)
5505 return retval;
5506 #endif
5507
5508 status = rd32(E1000_STATUS);
5509 if (status & E1000_STATUS_LU)
5510 wufc &= ~E1000_WUFC_LNKC;
5511
5512 if (wufc) {
5513 igb_setup_rctl(adapter);
5514 igb_set_rx_mode(netdev);
5515
5516 /* turn on all-multi mode if wake on multicast is enabled */
5517 if (wufc & E1000_WUFC_MC) {
5518 rctl = rd32(E1000_RCTL);
5519 rctl |= E1000_RCTL_MPE;
5520 wr32(E1000_RCTL, rctl);
5521 }
5522
5523 ctrl = rd32(E1000_CTRL);
5524 /* advertise wake from D3Cold */
5525 #define E1000_CTRL_ADVD3WUC 0x00100000
5526 /* phy power management enable */
5527 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5528 ctrl |= E1000_CTRL_ADVD3WUC;
5529 wr32(E1000_CTRL, ctrl);
5530
5531 /* Allow time for pending master requests to run */
5532 igb_disable_pcie_master(&adapter->hw);
5533
5534 wr32(E1000_WUC, E1000_WUC_PME_EN);
5535 wr32(E1000_WUFC, wufc);
5536 } else {
5537 wr32(E1000_WUC, 0);
5538 wr32(E1000_WUFC, 0);
5539 }
5540
5541 *enable_wake = wufc || adapter->en_mng_pt;
5542 if (!*enable_wake)
5543 igb_shutdown_serdes_link_82575(hw);
5544
5545 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5546 * would have already happened in close and is redundant. */
5547 igb_release_hw_control(adapter);
5548
5549 pci_disable_device(pdev);
5550
5551 return 0;
5552 }
5553
5554 #ifdef CONFIG_PM
5555 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5556 {
5557 int retval;
5558 bool wake;
5559
5560 retval = __igb_shutdown(pdev, &wake);
5561 if (retval)
5562 return retval;
5563
5564 if (wake) {
5565 pci_prepare_to_sleep(pdev);
5566 } else {
5567 pci_wake_from_d3(pdev, false);
5568 pci_set_power_state(pdev, PCI_D3hot);
5569 }
5570
5571 return 0;
5572 }
5573
5574 static int igb_resume(struct pci_dev *pdev)
5575 {
5576 struct net_device *netdev = pci_get_drvdata(pdev);
5577 struct igb_adapter *adapter = netdev_priv(netdev);
5578 struct e1000_hw *hw = &adapter->hw;
5579 u32 err;
5580
5581 pci_set_power_state(pdev, PCI_D0);
5582 pci_restore_state(pdev);
5583
5584 err = pci_enable_device_mem(pdev);
5585 if (err) {
5586 dev_err(&pdev->dev,
5587 "igb: Cannot enable PCI device from suspend\n");
5588 return err;
5589 }
5590 pci_set_master(pdev);
5591
5592 pci_enable_wake(pdev, PCI_D3hot, 0);
5593 pci_enable_wake(pdev, PCI_D3cold, 0);
5594
5595 if (igb_init_interrupt_scheme(adapter)) {
5596 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5597 return -ENOMEM;
5598 }
5599
5600 /* e1000_power_up_phy(adapter); */
5601
5602 igb_reset(adapter);
5603
5604 /* let the f/w know that the h/w is now under the control of the
5605 * driver. */
5606 igb_get_hw_control(adapter);
5607
5608 wr32(E1000_WUS, ~0);
5609
5610 if (netif_running(netdev)) {
5611 err = igb_open(netdev);
5612 if (err)
5613 return err;
5614 }
5615
5616 netif_device_attach(netdev);
5617
5618 return 0;
5619 }
5620 #endif
5621
5622 static void igb_shutdown(struct pci_dev *pdev)
5623 {
5624 bool wake;
5625
5626 __igb_shutdown(pdev, &wake);
5627
5628 if (system_state == SYSTEM_POWER_OFF) {
5629 pci_wake_from_d3(pdev, wake);
5630 pci_set_power_state(pdev, PCI_D3hot);
5631 }
5632 }
5633
5634 #ifdef CONFIG_NET_POLL_CONTROLLER
5635 /*
5636 * Polling 'interrupt' - used by things like netconsole to send skbs
5637 * without having to re-enable interrupts. It's not called while
5638 * the interrupt routine is executing.
5639 */
5640 static void igb_netpoll(struct net_device *netdev)
5641 {
5642 struct igb_adapter *adapter = netdev_priv(netdev);
5643 struct e1000_hw *hw = &adapter->hw;
5644 int i;
5645
5646 if (!adapter->msix_entries) {
5647 struct igb_q_vector *q_vector = adapter->q_vector[0];
5648 igb_irq_disable(adapter);
5649 napi_schedule(&q_vector->napi);
5650 return;
5651 }
5652
5653 for (i = 0; i < adapter->num_q_vectors; i++) {
5654 struct igb_q_vector *q_vector = adapter->q_vector[i];
5655 wr32(E1000_EIMC, q_vector->eims_value);
5656 napi_schedule(&q_vector->napi);
5657 }
5658 }
5659 #endif /* CONFIG_NET_POLL_CONTROLLER */
5660
5661 /**
5662 * igb_io_error_detected - called when PCI error is detected
5663 * @pdev: Pointer to PCI device
5664 * @state: The current pci connection state
5665 *
5666 * This function is called after a PCI bus error affecting
5667 * this device has been detected.
5668 */
5669 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5670 pci_channel_state_t state)
5671 {
5672 struct net_device *netdev = pci_get_drvdata(pdev);
5673 struct igb_adapter *adapter = netdev_priv(netdev);
5674
5675 netif_device_detach(netdev);
5676
5677 if (state == pci_channel_io_perm_failure)
5678 return PCI_ERS_RESULT_DISCONNECT;
5679
5680 if (netif_running(netdev))
5681 igb_down(adapter);
5682 pci_disable_device(pdev);
5683
5684 /* Request a slot slot reset. */
5685 return PCI_ERS_RESULT_NEED_RESET;
5686 }
5687
5688 /**
5689 * igb_io_slot_reset - called after the pci bus has been reset.
5690 * @pdev: Pointer to PCI device
5691 *
5692 * Restart the card from scratch, as if from a cold-boot. Implementation
5693 * resembles the first-half of the igb_resume routine.
5694 */
5695 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5696 {
5697 struct net_device *netdev = pci_get_drvdata(pdev);
5698 struct igb_adapter *adapter = netdev_priv(netdev);
5699 struct e1000_hw *hw = &adapter->hw;
5700 pci_ers_result_t result;
5701 int err;
5702
5703 if (pci_enable_device_mem(pdev)) {
5704 dev_err(&pdev->dev,
5705 "Cannot re-enable PCI device after reset.\n");
5706 result = PCI_ERS_RESULT_DISCONNECT;
5707 } else {
5708 pci_set_master(pdev);
5709 pci_restore_state(pdev);
5710
5711 pci_enable_wake(pdev, PCI_D3hot, 0);
5712 pci_enable_wake(pdev, PCI_D3cold, 0);
5713
5714 igb_reset(adapter);
5715 wr32(E1000_WUS, ~0);
5716 result = PCI_ERS_RESULT_RECOVERED;
5717 }
5718
5719 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5720 if (err) {
5721 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5722 "failed 0x%0x\n", err);
5723 /* non-fatal, continue */
5724 }
5725
5726 return result;
5727 }
5728
5729 /**
5730 * igb_io_resume - called when traffic can start flowing again.
5731 * @pdev: Pointer to PCI device
5732 *
5733 * This callback is called when the error recovery driver tells us that
5734 * its OK to resume normal operation. Implementation resembles the
5735 * second-half of the igb_resume routine.
5736 */
5737 static void igb_io_resume(struct pci_dev *pdev)
5738 {
5739 struct net_device *netdev = pci_get_drvdata(pdev);
5740 struct igb_adapter *adapter = netdev_priv(netdev);
5741
5742 if (netif_running(netdev)) {
5743 if (igb_up(adapter)) {
5744 dev_err(&pdev->dev, "igb_up failed after reset\n");
5745 return;
5746 }
5747 }
5748
5749 netif_device_attach(netdev);
5750
5751 /* let the f/w know that the h/w is now under the control of the
5752 * driver. */
5753 igb_get_hw_control(adapter);
5754 }
5755
5756 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5757 u8 qsel)
5758 {
5759 u32 rar_low, rar_high;
5760 struct e1000_hw *hw = &adapter->hw;
5761
5762 /* HW expects these in little endian so we reverse the byte order
5763 * from network order (big endian) to little endian
5764 */
5765 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5766 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5767 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5768
5769 /* Indicate to hardware the Address is Valid. */
5770 rar_high |= E1000_RAH_AV;
5771
5772 if (hw->mac.type == e1000_82575)
5773 rar_high |= E1000_RAH_POOL_1 * qsel;
5774 else
5775 rar_high |= E1000_RAH_POOL_1 << qsel;
5776
5777 wr32(E1000_RAL(index), rar_low);
5778 wrfl();
5779 wr32(E1000_RAH(index), rar_high);
5780 wrfl();
5781 }
5782
5783 static int igb_set_vf_mac(struct igb_adapter *adapter,
5784 int vf, unsigned char *mac_addr)
5785 {
5786 struct e1000_hw *hw = &adapter->hw;
5787 /* VF MAC addresses start at end of receive addresses and moves
5788 * torwards the first, as a result a collision should not be possible */
5789 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5790
5791 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5792
5793 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5794
5795 return 0;
5796 }
5797
5798 static void igb_vmm_control(struct igb_adapter *adapter)
5799 {
5800 struct e1000_hw *hw = &adapter->hw;
5801 u32 reg_data;
5802
5803 if (!adapter->vfs_allocated_count)
5804 return;
5805
5806 /* VF's need PF reset indication before they
5807 * can send/receive mail */
5808 reg_data = rd32(E1000_CTRL_EXT);
5809 reg_data |= E1000_CTRL_EXT_PFRSTD;
5810 wr32(E1000_CTRL_EXT, reg_data);
5811
5812 igb_vmdq_set_loopback_pf(hw, true);
5813 igb_vmdq_set_replication_pf(hw, true);
5814 }
5815
5816 /* igb_main.c */
This page took 0.150842 seconds and 6 git commands to generate.