igb: Rework how netdev->stats is handled
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
74 /* required last entry */
75 {0, }
76 };
77
78 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79
80 void igb_reset(struct igb_adapter *);
81 static int igb_setup_all_tx_resources(struct igb_adapter *);
82 static int igb_setup_all_rx_resources(struct igb_adapter *);
83 static void igb_free_all_tx_resources(struct igb_adapter *);
84 static void igb_free_all_rx_resources(struct igb_adapter *);
85 static void igb_setup_mrqc(struct igb_adapter *);
86 void igb_update_stats(struct igb_adapter *);
87 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
88 static void __devexit igb_remove(struct pci_dev *pdev);
89 static int igb_sw_init(struct igb_adapter *);
90 static int igb_open(struct net_device *);
91 static int igb_close(struct net_device *);
92 static void igb_configure_tx(struct igb_adapter *);
93 static void igb_configure_rx(struct igb_adapter *);
94 static void igb_clean_all_tx_rings(struct igb_adapter *);
95 static void igb_clean_all_rx_rings(struct igb_adapter *);
96 static void igb_clean_tx_ring(struct igb_ring *);
97 static void igb_clean_rx_ring(struct igb_ring *);
98 static void igb_set_rx_mode(struct net_device *);
99 static void igb_update_phy_info(unsigned long);
100 static void igb_watchdog(unsigned long);
101 static void igb_watchdog_task(struct work_struct *);
102 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static void igb_set_uta(struct igb_adapter *adapter);
107 static irqreturn_t igb_intr(int irq, void *);
108 static irqreturn_t igb_intr_msi(int irq, void *);
109 static irqreturn_t igb_msix_other(int irq, void *);
110 static irqreturn_t igb_msix_ring(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_dca(struct igb_q_vector *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_q_vector *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
126 static void igb_ping_all_vfs(struct igb_adapter *);
127 static void igb_msg_task(struct igb_adapter *);
128 static void igb_vmm_control(struct igb_adapter *);
129 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
130 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
131
132 #ifdef CONFIG_PM
133 static int igb_suspend(struct pci_dev *, pm_message_t);
134 static int igb_resume(struct pci_dev *);
135 #endif
136 static void igb_shutdown(struct pci_dev *);
137 #ifdef CONFIG_IGB_DCA
138 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
139 static struct notifier_block dca_notifier = {
140 .notifier_call = igb_notify_dca,
141 .next = NULL,
142 .priority = 0
143 };
144 #endif
145 #ifdef CONFIG_NET_POLL_CONTROLLER
146 /* for netdump / net console */
147 static void igb_netpoll(struct net_device *);
148 #endif
149 #ifdef CONFIG_PCI_IOV
150 static unsigned int max_vfs = 0;
151 module_param(max_vfs, uint, 0);
152 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
153 "per physical function");
154 #endif /* CONFIG_PCI_IOV */
155
156 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
157 pci_channel_state_t);
158 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
159 static void igb_io_resume(struct pci_dev *);
160
161 static struct pci_error_handlers igb_err_handler = {
162 .error_detected = igb_io_error_detected,
163 .slot_reset = igb_io_slot_reset,
164 .resume = igb_io_resume,
165 };
166
167
168 static struct pci_driver igb_driver = {
169 .name = igb_driver_name,
170 .id_table = igb_pci_tbl,
171 .probe = igb_probe,
172 .remove = __devexit_p(igb_remove),
173 #ifdef CONFIG_PM
174 /* Power Managment Hooks */
175 .suspend = igb_suspend,
176 .resume = igb_resume,
177 #endif
178 .shutdown = igb_shutdown,
179 .err_handler = &igb_err_handler
180 };
181
182 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
183 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
186
187 /**
188 * igb_read_clock - read raw cycle counter (to be used by time counter)
189 */
190 static cycle_t igb_read_clock(const struct cyclecounter *tc)
191 {
192 struct igb_adapter *adapter =
193 container_of(tc, struct igb_adapter, cycles);
194 struct e1000_hw *hw = &adapter->hw;
195 u64 stamp = 0;
196 int shift = 0;
197
198 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
199 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
200 return stamp;
201 }
202
203 #ifdef DEBUG
204 /**
205 * igb_get_hw_dev_name - return device name string
206 * used by hardware layer to print debugging information
207 **/
208 char *igb_get_hw_dev_name(struct e1000_hw *hw)
209 {
210 struct igb_adapter *adapter = hw->back;
211 return adapter->netdev->name;
212 }
213
214 /**
215 * igb_get_time_str - format current NIC and system time as string
216 */
217 static char *igb_get_time_str(struct igb_adapter *adapter,
218 char buffer[160])
219 {
220 cycle_t hw = adapter->cycles.read(&adapter->cycles);
221 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
222 struct timespec sys;
223 struct timespec delta;
224 getnstimeofday(&sys);
225
226 delta = timespec_sub(nic, sys);
227
228 sprintf(buffer,
229 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
230 hw,
231 (long)nic.tv_sec, nic.tv_nsec,
232 (long)sys.tv_sec, sys.tv_nsec,
233 (long)delta.tv_sec, delta.tv_nsec);
234
235 return buffer;
236 }
237 #endif
238
239 /**
240 * igb_init_module - Driver Registration Routine
241 *
242 * igb_init_module is the first routine called when the driver is
243 * loaded. All it does is register with the PCI subsystem.
244 **/
245 static int __init igb_init_module(void)
246 {
247 int ret;
248 printk(KERN_INFO "%s - version %s\n",
249 igb_driver_string, igb_driver_version);
250
251 printk(KERN_INFO "%s\n", igb_copyright);
252
253 #ifdef CONFIG_IGB_DCA
254 dca_register_notify(&dca_notifier);
255 #endif
256 ret = pci_register_driver(&igb_driver);
257 return ret;
258 }
259
260 module_init(igb_init_module);
261
262 /**
263 * igb_exit_module - Driver Exit Cleanup Routine
264 *
265 * igb_exit_module is called just before the driver is removed
266 * from memory.
267 **/
268 static void __exit igb_exit_module(void)
269 {
270 #ifdef CONFIG_IGB_DCA
271 dca_unregister_notify(&dca_notifier);
272 #endif
273 pci_unregister_driver(&igb_driver);
274 }
275
276 module_exit(igb_exit_module);
277
278 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
279 /**
280 * igb_cache_ring_register - Descriptor ring to register mapping
281 * @adapter: board private structure to initialize
282 *
283 * Once we know the feature-set enabled for the device, we'll cache
284 * the register offset the descriptor ring is assigned to.
285 **/
286 static void igb_cache_ring_register(struct igb_adapter *adapter)
287 {
288 int i = 0, j = 0;
289 u32 rbase_offset = adapter->vfs_allocated_count;
290
291 switch (adapter->hw.mac.type) {
292 case e1000_82576:
293 /* The queues are allocated for virtualization such that VF 0
294 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
295 * In order to avoid collision we start at the first free queue
296 * and continue consuming queues in the same sequence
297 */
298 if (adapter->vfs_allocated_count) {
299 for (; i < adapter->rss_queues; i++)
300 adapter->rx_ring[i].reg_idx = rbase_offset +
301 Q_IDX_82576(i);
302 for (; j < adapter->rss_queues; j++)
303 adapter->tx_ring[j].reg_idx = rbase_offset +
304 Q_IDX_82576(j);
305 }
306 case e1000_82575:
307 default:
308 for (; i < adapter->num_rx_queues; i++)
309 adapter->rx_ring[i].reg_idx = rbase_offset + i;
310 for (; j < adapter->num_tx_queues; j++)
311 adapter->tx_ring[j].reg_idx = rbase_offset + j;
312 break;
313 }
314 }
315
316 static void igb_free_queues(struct igb_adapter *adapter)
317 {
318 kfree(adapter->tx_ring);
319 kfree(adapter->rx_ring);
320
321 adapter->tx_ring = NULL;
322 adapter->rx_ring = NULL;
323
324 adapter->num_rx_queues = 0;
325 adapter->num_tx_queues = 0;
326 }
327
328 /**
329 * igb_alloc_queues - Allocate memory for all rings
330 * @adapter: board private structure to initialize
331 *
332 * We allocate one ring per queue at run-time since we don't know the
333 * number of queues at compile-time.
334 **/
335 static int igb_alloc_queues(struct igb_adapter *adapter)
336 {
337 int i;
338
339 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
340 sizeof(struct igb_ring), GFP_KERNEL);
341 if (!adapter->tx_ring)
342 goto err;
343
344 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
345 sizeof(struct igb_ring), GFP_KERNEL);
346 if (!adapter->rx_ring)
347 goto err;
348
349 for (i = 0; i < adapter->num_tx_queues; i++) {
350 struct igb_ring *ring = &(adapter->tx_ring[i]);
351 ring->count = adapter->tx_ring_count;
352 ring->queue_index = i;
353 ring->pdev = adapter->pdev;
354 ring->netdev = adapter->netdev;
355 /* For 82575, context index must be unique per ring. */
356 if (adapter->hw.mac.type == e1000_82575)
357 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
358 }
359
360 for (i = 0; i < adapter->num_rx_queues; i++) {
361 struct igb_ring *ring = &(adapter->rx_ring[i]);
362 ring->count = adapter->rx_ring_count;
363 ring->queue_index = i;
364 ring->pdev = adapter->pdev;
365 ring->netdev = adapter->netdev;
366 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
367 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
368 /* set flag indicating ring supports SCTP checksum offload */
369 if (adapter->hw.mac.type >= e1000_82576)
370 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
371 }
372
373 igb_cache_ring_register(adapter);
374
375 return 0;
376
377 err:
378 igb_free_queues(adapter);
379
380 return -ENOMEM;
381 }
382
383 #define IGB_N0_QUEUE -1
384 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
385 {
386 u32 msixbm = 0;
387 struct igb_adapter *adapter = q_vector->adapter;
388 struct e1000_hw *hw = &adapter->hw;
389 u32 ivar, index;
390 int rx_queue = IGB_N0_QUEUE;
391 int tx_queue = IGB_N0_QUEUE;
392
393 if (q_vector->rx_ring)
394 rx_queue = q_vector->rx_ring->reg_idx;
395 if (q_vector->tx_ring)
396 tx_queue = q_vector->tx_ring->reg_idx;
397
398 switch (hw->mac.type) {
399 case e1000_82575:
400 /* The 82575 assigns vectors using a bitmask, which matches the
401 bitmask for the EICR/EIMS/EIMC registers. To assign one
402 or more queues to a vector, we write the appropriate bits
403 into the MSIXBM register for that vector. */
404 if (rx_queue > IGB_N0_QUEUE)
405 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
406 if (tx_queue > IGB_N0_QUEUE)
407 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
408 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
409 q_vector->eims_value = msixbm;
410 break;
411 case e1000_82576:
412 /* 82576 uses a table-based method for assigning vectors.
413 Each queue has a single entry in the table to which we write
414 a vector number along with a "valid" bit. Sadly, the layout
415 of the table is somewhat counterintuitive. */
416 if (rx_queue > IGB_N0_QUEUE) {
417 index = (rx_queue & 0x7);
418 ivar = array_rd32(E1000_IVAR0, index);
419 if (rx_queue < 8) {
420 /* vector goes into low byte of register */
421 ivar = ivar & 0xFFFFFF00;
422 ivar |= msix_vector | E1000_IVAR_VALID;
423 } else {
424 /* vector goes into third byte of register */
425 ivar = ivar & 0xFF00FFFF;
426 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
427 }
428 array_wr32(E1000_IVAR0, index, ivar);
429 }
430 if (tx_queue > IGB_N0_QUEUE) {
431 index = (tx_queue & 0x7);
432 ivar = array_rd32(E1000_IVAR0, index);
433 if (tx_queue < 8) {
434 /* vector goes into second byte of register */
435 ivar = ivar & 0xFFFF00FF;
436 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
437 } else {
438 /* vector goes into high byte of register */
439 ivar = ivar & 0x00FFFFFF;
440 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
441 }
442 array_wr32(E1000_IVAR0, index, ivar);
443 }
444 q_vector->eims_value = 1 << msix_vector;
445 break;
446 default:
447 BUG();
448 break;
449 }
450 }
451
452 /**
453 * igb_configure_msix - Configure MSI-X hardware
454 *
455 * igb_configure_msix sets up the hardware to properly
456 * generate MSI-X interrupts.
457 **/
458 static void igb_configure_msix(struct igb_adapter *adapter)
459 {
460 u32 tmp;
461 int i, vector = 0;
462 struct e1000_hw *hw = &adapter->hw;
463
464 adapter->eims_enable_mask = 0;
465
466 /* set vector for other causes, i.e. link changes */
467 switch (hw->mac.type) {
468 case e1000_82575:
469 tmp = rd32(E1000_CTRL_EXT);
470 /* enable MSI-X PBA support*/
471 tmp |= E1000_CTRL_EXT_PBA_CLR;
472
473 /* Auto-Mask interrupts upon ICR read. */
474 tmp |= E1000_CTRL_EXT_EIAME;
475 tmp |= E1000_CTRL_EXT_IRCA;
476
477 wr32(E1000_CTRL_EXT, tmp);
478
479 /* enable msix_other interrupt */
480 array_wr32(E1000_MSIXBM(0), vector++,
481 E1000_EIMS_OTHER);
482 adapter->eims_other = E1000_EIMS_OTHER;
483
484 break;
485
486 case e1000_82576:
487 /* Turn on MSI-X capability first, or our settings
488 * won't stick. And it will take days to debug. */
489 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
490 E1000_GPIE_PBA | E1000_GPIE_EIAME |
491 E1000_GPIE_NSICR);
492
493 /* enable msix_other interrupt */
494 adapter->eims_other = 1 << vector;
495 tmp = (vector++ | E1000_IVAR_VALID) << 8;
496
497 wr32(E1000_IVAR_MISC, tmp);
498 break;
499 default:
500 /* do nothing, since nothing else supports MSI-X */
501 break;
502 } /* switch (hw->mac.type) */
503
504 adapter->eims_enable_mask |= adapter->eims_other;
505
506 for (i = 0; i < adapter->num_q_vectors; i++) {
507 struct igb_q_vector *q_vector = adapter->q_vector[i];
508 igb_assign_vector(q_vector, vector++);
509 adapter->eims_enable_mask |= q_vector->eims_value;
510 }
511
512 wrfl();
513 }
514
515 /**
516 * igb_request_msix - Initialize MSI-X interrupts
517 *
518 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
519 * kernel.
520 **/
521 static int igb_request_msix(struct igb_adapter *adapter)
522 {
523 struct net_device *netdev = adapter->netdev;
524 struct e1000_hw *hw = &adapter->hw;
525 int i, err = 0, vector = 0;
526
527 err = request_irq(adapter->msix_entries[vector].vector,
528 &igb_msix_other, 0, netdev->name, adapter);
529 if (err)
530 goto out;
531 vector++;
532
533 for (i = 0; i < adapter->num_q_vectors; i++) {
534 struct igb_q_vector *q_vector = adapter->q_vector[i];
535
536 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
537
538 if (q_vector->rx_ring && q_vector->tx_ring)
539 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
540 q_vector->rx_ring->queue_index);
541 else if (q_vector->tx_ring)
542 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
543 q_vector->tx_ring->queue_index);
544 else if (q_vector->rx_ring)
545 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
546 q_vector->rx_ring->queue_index);
547 else
548 sprintf(q_vector->name, "%s-unused", netdev->name);
549
550 err = request_irq(adapter->msix_entries[vector].vector,
551 &igb_msix_ring, 0, q_vector->name,
552 q_vector);
553 if (err)
554 goto out;
555 vector++;
556 }
557
558 igb_configure_msix(adapter);
559 return 0;
560 out:
561 return err;
562 }
563
564 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
565 {
566 if (adapter->msix_entries) {
567 pci_disable_msix(adapter->pdev);
568 kfree(adapter->msix_entries);
569 adapter->msix_entries = NULL;
570 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
571 pci_disable_msi(adapter->pdev);
572 }
573 }
574
575 /**
576 * igb_free_q_vectors - Free memory allocated for interrupt vectors
577 * @adapter: board private structure to initialize
578 *
579 * This function frees the memory allocated to the q_vectors. In addition if
580 * NAPI is enabled it will delete any references to the NAPI struct prior
581 * to freeing the q_vector.
582 **/
583 static void igb_free_q_vectors(struct igb_adapter *adapter)
584 {
585 int v_idx;
586
587 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
588 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
589 adapter->q_vector[v_idx] = NULL;
590 netif_napi_del(&q_vector->napi);
591 kfree(q_vector);
592 }
593 adapter->num_q_vectors = 0;
594 }
595
596 /**
597 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
598 *
599 * This function resets the device so that it has 0 rx queues, tx queues, and
600 * MSI-X interrupts allocated.
601 */
602 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
603 {
604 igb_free_queues(adapter);
605 igb_free_q_vectors(adapter);
606 igb_reset_interrupt_capability(adapter);
607 }
608
609 /**
610 * igb_set_interrupt_capability - set MSI or MSI-X if supported
611 *
612 * Attempt to configure interrupts using the best available
613 * capabilities of the hardware and kernel.
614 **/
615 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
616 {
617 int err;
618 int numvecs, i;
619
620 /* Number of supported queues. */
621 adapter->num_rx_queues = adapter->rss_queues;
622 adapter->num_tx_queues = adapter->rss_queues;
623
624 /* start with one vector for every rx queue */
625 numvecs = adapter->num_rx_queues;
626
627 /* if tx handler is seperate add 1 for every tx queue */
628 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
629 numvecs += adapter->num_tx_queues;
630
631 /* store the number of vectors reserved for queues */
632 adapter->num_q_vectors = numvecs;
633
634 /* add 1 vector for link status interrupts */
635 numvecs++;
636 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
637 GFP_KERNEL);
638 if (!adapter->msix_entries)
639 goto msi_only;
640
641 for (i = 0; i < numvecs; i++)
642 adapter->msix_entries[i].entry = i;
643
644 err = pci_enable_msix(adapter->pdev,
645 adapter->msix_entries,
646 numvecs);
647 if (err == 0)
648 goto out;
649
650 igb_reset_interrupt_capability(adapter);
651
652 /* If we can't do MSI-X, try MSI */
653 msi_only:
654 #ifdef CONFIG_PCI_IOV
655 /* disable SR-IOV for non MSI-X configurations */
656 if (adapter->vf_data) {
657 struct e1000_hw *hw = &adapter->hw;
658 /* disable iov and allow time for transactions to clear */
659 pci_disable_sriov(adapter->pdev);
660 msleep(500);
661
662 kfree(adapter->vf_data);
663 adapter->vf_data = NULL;
664 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
665 msleep(100);
666 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
667 }
668 #endif
669 adapter->vfs_allocated_count = 0;
670 adapter->rss_queues = 1;
671 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
672 adapter->num_rx_queues = 1;
673 adapter->num_tx_queues = 1;
674 adapter->num_q_vectors = 1;
675 if (!pci_enable_msi(adapter->pdev))
676 adapter->flags |= IGB_FLAG_HAS_MSI;
677 out:
678 /* Notify the stack of the (possibly) reduced Tx Queue count. */
679 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
680 return;
681 }
682
683 /**
684 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
685 * @adapter: board private structure to initialize
686 *
687 * We allocate one q_vector per queue interrupt. If allocation fails we
688 * return -ENOMEM.
689 **/
690 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
691 {
692 struct igb_q_vector *q_vector;
693 struct e1000_hw *hw = &adapter->hw;
694 int v_idx;
695
696 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
697 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
698 if (!q_vector)
699 goto err_out;
700 q_vector->adapter = adapter;
701 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
702 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
703 q_vector->itr_val = IGB_START_ITR;
704 q_vector->set_itr = 1;
705 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
706 adapter->q_vector[v_idx] = q_vector;
707 }
708 return 0;
709
710 err_out:
711 while (v_idx) {
712 v_idx--;
713 q_vector = adapter->q_vector[v_idx];
714 netif_napi_del(&q_vector->napi);
715 kfree(q_vector);
716 adapter->q_vector[v_idx] = NULL;
717 }
718 return -ENOMEM;
719 }
720
721 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
722 int ring_idx, int v_idx)
723 {
724 struct igb_q_vector *q_vector;
725
726 q_vector = adapter->q_vector[v_idx];
727 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
728 q_vector->rx_ring->q_vector = q_vector;
729 q_vector->itr_val = adapter->rx_itr_setting;
730 if (q_vector->itr_val && q_vector->itr_val <= 3)
731 q_vector->itr_val = IGB_START_ITR;
732 }
733
734 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
735 int ring_idx, int v_idx)
736 {
737 struct igb_q_vector *q_vector;
738
739 q_vector = adapter->q_vector[v_idx];
740 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
741 q_vector->tx_ring->q_vector = q_vector;
742 q_vector->itr_val = adapter->tx_itr_setting;
743 if (q_vector->itr_val && q_vector->itr_val <= 3)
744 q_vector->itr_val = IGB_START_ITR;
745 }
746
747 /**
748 * igb_map_ring_to_vector - maps allocated queues to vectors
749 *
750 * This function maps the recently allocated queues to vectors.
751 **/
752 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
753 {
754 int i;
755 int v_idx = 0;
756
757 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
758 (adapter->num_q_vectors < adapter->num_tx_queues))
759 return -ENOMEM;
760
761 if (adapter->num_q_vectors >=
762 (adapter->num_rx_queues + adapter->num_tx_queues)) {
763 for (i = 0; i < adapter->num_rx_queues; i++)
764 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
765 for (i = 0; i < adapter->num_tx_queues; i++)
766 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
767 } else {
768 for (i = 0; i < adapter->num_rx_queues; i++) {
769 if (i < adapter->num_tx_queues)
770 igb_map_tx_ring_to_vector(adapter, i, v_idx);
771 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
772 }
773 for (; i < adapter->num_tx_queues; i++)
774 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
775 }
776 return 0;
777 }
778
779 /**
780 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
781 *
782 * This function initializes the interrupts and allocates all of the queues.
783 **/
784 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
785 {
786 struct pci_dev *pdev = adapter->pdev;
787 int err;
788
789 igb_set_interrupt_capability(adapter);
790
791 err = igb_alloc_q_vectors(adapter);
792 if (err) {
793 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
794 goto err_alloc_q_vectors;
795 }
796
797 err = igb_alloc_queues(adapter);
798 if (err) {
799 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
800 goto err_alloc_queues;
801 }
802
803 err = igb_map_ring_to_vector(adapter);
804 if (err) {
805 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
806 goto err_map_queues;
807 }
808
809
810 return 0;
811 err_map_queues:
812 igb_free_queues(adapter);
813 err_alloc_queues:
814 igb_free_q_vectors(adapter);
815 err_alloc_q_vectors:
816 igb_reset_interrupt_capability(adapter);
817 return err;
818 }
819
820 /**
821 * igb_request_irq - initialize interrupts
822 *
823 * Attempts to configure interrupts using the best available
824 * capabilities of the hardware and kernel.
825 **/
826 static int igb_request_irq(struct igb_adapter *adapter)
827 {
828 struct net_device *netdev = adapter->netdev;
829 struct pci_dev *pdev = adapter->pdev;
830 struct e1000_hw *hw = &adapter->hw;
831 int err = 0;
832
833 if (adapter->msix_entries) {
834 err = igb_request_msix(adapter);
835 if (!err)
836 goto request_done;
837 /* fall back to MSI */
838 igb_clear_interrupt_scheme(adapter);
839 if (!pci_enable_msi(adapter->pdev))
840 adapter->flags |= IGB_FLAG_HAS_MSI;
841 igb_free_all_tx_resources(adapter);
842 igb_free_all_rx_resources(adapter);
843 adapter->num_tx_queues = 1;
844 adapter->num_rx_queues = 1;
845 adapter->num_q_vectors = 1;
846 err = igb_alloc_q_vectors(adapter);
847 if (err) {
848 dev_err(&pdev->dev,
849 "Unable to allocate memory for vectors\n");
850 goto request_done;
851 }
852 err = igb_alloc_queues(adapter);
853 if (err) {
854 dev_err(&pdev->dev,
855 "Unable to allocate memory for queues\n");
856 igb_free_q_vectors(adapter);
857 goto request_done;
858 }
859 igb_setup_all_tx_resources(adapter);
860 igb_setup_all_rx_resources(adapter);
861 } else {
862 switch (hw->mac.type) {
863 case e1000_82575:
864 wr32(E1000_MSIXBM(0),
865 (E1000_EICR_RX_QUEUE0 |
866 E1000_EICR_TX_QUEUE0 |
867 E1000_EIMS_OTHER));
868 break;
869 case e1000_82576:
870 wr32(E1000_IVAR0, E1000_IVAR_VALID);
871 break;
872 default:
873 break;
874 }
875 }
876
877 if (adapter->flags & IGB_FLAG_HAS_MSI) {
878 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
879 netdev->name, adapter);
880 if (!err)
881 goto request_done;
882
883 /* fall back to legacy interrupts */
884 igb_reset_interrupt_capability(adapter);
885 adapter->flags &= ~IGB_FLAG_HAS_MSI;
886 }
887
888 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
889 netdev->name, adapter);
890
891 if (err)
892 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
893 err);
894
895 request_done:
896 return err;
897 }
898
899 static void igb_free_irq(struct igb_adapter *adapter)
900 {
901 if (adapter->msix_entries) {
902 int vector = 0, i;
903
904 free_irq(adapter->msix_entries[vector++].vector, adapter);
905
906 for (i = 0; i < adapter->num_q_vectors; i++) {
907 struct igb_q_vector *q_vector = adapter->q_vector[i];
908 free_irq(adapter->msix_entries[vector++].vector,
909 q_vector);
910 }
911 } else {
912 free_irq(adapter->pdev->irq, adapter);
913 }
914 }
915
916 /**
917 * igb_irq_disable - Mask off interrupt generation on the NIC
918 * @adapter: board private structure
919 **/
920 static void igb_irq_disable(struct igb_adapter *adapter)
921 {
922 struct e1000_hw *hw = &adapter->hw;
923
924 /*
925 * we need to be careful when disabling interrupts. The VFs are also
926 * mapped into these registers and so clearing the bits can cause
927 * issues on the VF drivers so we only need to clear what we set
928 */
929 if (adapter->msix_entries) {
930 u32 regval = rd32(E1000_EIAM);
931 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
932 wr32(E1000_EIMC, adapter->eims_enable_mask);
933 regval = rd32(E1000_EIAC);
934 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
935 }
936
937 wr32(E1000_IAM, 0);
938 wr32(E1000_IMC, ~0);
939 wrfl();
940 synchronize_irq(adapter->pdev->irq);
941 }
942
943 /**
944 * igb_irq_enable - Enable default interrupt generation settings
945 * @adapter: board private structure
946 **/
947 static void igb_irq_enable(struct igb_adapter *adapter)
948 {
949 struct e1000_hw *hw = &adapter->hw;
950
951 if (adapter->msix_entries) {
952 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
953 u32 regval = rd32(E1000_EIAC);
954 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
955 regval = rd32(E1000_EIAM);
956 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
957 wr32(E1000_EIMS, adapter->eims_enable_mask);
958 if (adapter->vfs_allocated_count) {
959 wr32(E1000_MBVFIMR, 0xFF);
960 ims |= E1000_IMS_VMMB;
961 }
962 wr32(E1000_IMS, ims);
963 } else {
964 wr32(E1000_IMS, IMS_ENABLE_MASK);
965 wr32(E1000_IAM, IMS_ENABLE_MASK);
966 }
967 }
968
969 static void igb_update_mng_vlan(struct igb_adapter *adapter)
970 {
971 struct e1000_hw *hw = &adapter->hw;
972 u16 vid = adapter->hw.mng_cookie.vlan_id;
973 u16 old_vid = adapter->mng_vlan_id;
974
975 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
976 /* add VID to filter table */
977 igb_vfta_set(hw, vid, true);
978 adapter->mng_vlan_id = vid;
979 } else {
980 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
981 }
982
983 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
984 (vid != old_vid) &&
985 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
986 /* remove VID from filter table */
987 igb_vfta_set(hw, old_vid, false);
988 }
989 }
990
991 /**
992 * igb_release_hw_control - release control of the h/w to f/w
993 * @adapter: address of board private structure
994 *
995 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
996 * For ASF and Pass Through versions of f/w this means that the
997 * driver is no longer loaded.
998 *
999 **/
1000 static void igb_release_hw_control(struct igb_adapter *adapter)
1001 {
1002 struct e1000_hw *hw = &adapter->hw;
1003 u32 ctrl_ext;
1004
1005 /* Let firmware take over control of h/w */
1006 ctrl_ext = rd32(E1000_CTRL_EXT);
1007 wr32(E1000_CTRL_EXT,
1008 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1009 }
1010
1011 /**
1012 * igb_get_hw_control - get control of the h/w from f/w
1013 * @adapter: address of board private structure
1014 *
1015 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1016 * For ASF and Pass Through versions of f/w this means that
1017 * the driver is loaded.
1018 *
1019 **/
1020 static void igb_get_hw_control(struct igb_adapter *adapter)
1021 {
1022 struct e1000_hw *hw = &adapter->hw;
1023 u32 ctrl_ext;
1024
1025 /* Let firmware know the driver has taken over */
1026 ctrl_ext = rd32(E1000_CTRL_EXT);
1027 wr32(E1000_CTRL_EXT,
1028 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1029 }
1030
1031 /**
1032 * igb_configure - configure the hardware for RX and TX
1033 * @adapter: private board structure
1034 **/
1035 static void igb_configure(struct igb_adapter *adapter)
1036 {
1037 struct net_device *netdev = adapter->netdev;
1038 int i;
1039
1040 igb_get_hw_control(adapter);
1041 igb_set_rx_mode(netdev);
1042
1043 igb_restore_vlan(adapter);
1044
1045 igb_setup_tctl(adapter);
1046 igb_setup_mrqc(adapter);
1047 igb_setup_rctl(adapter);
1048
1049 igb_configure_tx(adapter);
1050 igb_configure_rx(adapter);
1051
1052 igb_rx_fifo_flush_82575(&adapter->hw);
1053
1054 /* call igb_desc_unused which always leaves
1055 * at least 1 descriptor unused to make sure
1056 * next_to_use != next_to_clean */
1057 for (i = 0; i < adapter->num_rx_queues; i++) {
1058 struct igb_ring *ring = &adapter->rx_ring[i];
1059 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1060 }
1061
1062
1063 adapter->tx_queue_len = netdev->tx_queue_len;
1064 }
1065
1066
1067 /**
1068 * igb_up - Open the interface and prepare it to handle traffic
1069 * @adapter: board private structure
1070 **/
1071 int igb_up(struct igb_adapter *adapter)
1072 {
1073 struct e1000_hw *hw = &adapter->hw;
1074 int i;
1075
1076 /* hardware has been reset, we need to reload some things */
1077 igb_configure(adapter);
1078
1079 clear_bit(__IGB_DOWN, &adapter->state);
1080
1081 for (i = 0; i < adapter->num_q_vectors; i++) {
1082 struct igb_q_vector *q_vector = adapter->q_vector[i];
1083 napi_enable(&q_vector->napi);
1084 }
1085 if (adapter->msix_entries)
1086 igb_configure_msix(adapter);
1087
1088 /* Clear any pending interrupts. */
1089 rd32(E1000_ICR);
1090 igb_irq_enable(adapter);
1091
1092 /* notify VFs that reset has been completed */
1093 if (adapter->vfs_allocated_count) {
1094 u32 reg_data = rd32(E1000_CTRL_EXT);
1095 reg_data |= E1000_CTRL_EXT_PFRSTD;
1096 wr32(E1000_CTRL_EXT, reg_data);
1097 }
1098
1099 netif_tx_start_all_queues(adapter->netdev);
1100
1101 /* start the watchdog. */
1102 hw->mac.get_link_status = 1;
1103 schedule_work(&adapter->watchdog_task);
1104
1105 return 0;
1106 }
1107
1108 void igb_down(struct igb_adapter *adapter)
1109 {
1110 struct net_device *netdev = adapter->netdev;
1111 struct e1000_hw *hw = &adapter->hw;
1112 u32 tctl, rctl;
1113 int i;
1114
1115 /* signal that we're down so the interrupt handler does not
1116 * reschedule our watchdog timer */
1117 set_bit(__IGB_DOWN, &adapter->state);
1118
1119 /* disable receives in the hardware */
1120 rctl = rd32(E1000_RCTL);
1121 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1122 /* flush and sleep below */
1123
1124 netif_tx_stop_all_queues(netdev);
1125
1126 /* disable transmits in the hardware */
1127 tctl = rd32(E1000_TCTL);
1128 tctl &= ~E1000_TCTL_EN;
1129 wr32(E1000_TCTL, tctl);
1130 /* flush both disables and wait for them to finish */
1131 wrfl();
1132 msleep(10);
1133
1134 for (i = 0; i < adapter->num_q_vectors; i++) {
1135 struct igb_q_vector *q_vector = adapter->q_vector[i];
1136 napi_disable(&q_vector->napi);
1137 }
1138
1139 igb_irq_disable(adapter);
1140
1141 del_timer_sync(&adapter->watchdog_timer);
1142 del_timer_sync(&adapter->phy_info_timer);
1143
1144 netdev->tx_queue_len = adapter->tx_queue_len;
1145 netif_carrier_off(netdev);
1146
1147 /* record the stats before reset*/
1148 igb_update_stats(adapter);
1149
1150 adapter->link_speed = 0;
1151 adapter->link_duplex = 0;
1152
1153 if (!pci_channel_offline(adapter->pdev))
1154 igb_reset(adapter);
1155 igb_clean_all_tx_rings(adapter);
1156 igb_clean_all_rx_rings(adapter);
1157 #ifdef CONFIG_IGB_DCA
1158
1159 /* since we reset the hardware DCA settings were cleared */
1160 igb_setup_dca(adapter);
1161 #endif
1162 }
1163
1164 void igb_reinit_locked(struct igb_adapter *adapter)
1165 {
1166 WARN_ON(in_interrupt());
1167 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1168 msleep(1);
1169 igb_down(adapter);
1170 igb_up(adapter);
1171 clear_bit(__IGB_RESETTING, &adapter->state);
1172 }
1173
1174 void igb_reset(struct igb_adapter *adapter)
1175 {
1176 struct pci_dev *pdev = adapter->pdev;
1177 struct e1000_hw *hw = &adapter->hw;
1178 struct e1000_mac_info *mac = &hw->mac;
1179 struct e1000_fc_info *fc = &hw->fc;
1180 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1181 u16 hwm;
1182
1183 /* Repartition Pba for greater than 9k mtu
1184 * To take effect CTRL.RST is required.
1185 */
1186 switch (mac->type) {
1187 case e1000_82576:
1188 pba = rd32(E1000_RXPBS);
1189 pba &= E1000_RXPBS_SIZE_MASK_82576;
1190 break;
1191 case e1000_82575:
1192 default:
1193 pba = E1000_PBA_34K;
1194 break;
1195 }
1196
1197 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1198 (mac->type < e1000_82576)) {
1199 /* adjust PBA for jumbo frames */
1200 wr32(E1000_PBA, pba);
1201
1202 /* To maintain wire speed transmits, the Tx FIFO should be
1203 * large enough to accommodate two full transmit packets,
1204 * rounded up to the next 1KB and expressed in KB. Likewise,
1205 * the Rx FIFO should be large enough to accommodate at least
1206 * one full receive packet and is similarly rounded up and
1207 * expressed in KB. */
1208 pba = rd32(E1000_PBA);
1209 /* upper 16 bits has Tx packet buffer allocation size in KB */
1210 tx_space = pba >> 16;
1211 /* lower 16 bits has Rx packet buffer allocation size in KB */
1212 pba &= 0xffff;
1213 /* the tx fifo also stores 16 bytes of information about the tx
1214 * but don't include ethernet FCS because hardware appends it */
1215 min_tx_space = (adapter->max_frame_size +
1216 sizeof(union e1000_adv_tx_desc) -
1217 ETH_FCS_LEN) * 2;
1218 min_tx_space = ALIGN(min_tx_space, 1024);
1219 min_tx_space >>= 10;
1220 /* software strips receive CRC, so leave room for it */
1221 min_rx_space = adapter->max_frame_size;
1222 min_rx_space = ALIGN(min_rx_space, 1024);
1223 min_rx_space >>= 10;
1224
1225 /* If current Tx allocation is less than the min Tx FIFO size,
1226 * and the min Tx FIFO size is less than the current Rx FIFO
1227 * allocation, take space away from current Rx allocation */
1228 if (tx_space < min_tx_space &&
1229 ((min_tx_space - tx_space) < pba)) {
1230 pba = pba - (min_tx_space - tx_space);
1231
1232 /* if short on rx space, rx wins and must trump tx
1233 * adjustment */
1234 if (pba < min_rx_space)
1235 pba = min_rx_space;
1236 }
1237 wr32(E1000_PBA, pba);
1238 }
1239
1240 /* flow control settings */
1241 /* The high water mark must be low enough to fit one full frame
1242 * (or the size used for early receive) above it in the Rx FIFO.
1243 * Set it to the lower of:
1244 * - 90% of the Rx FIFO size, or
1245 * - the full Rx FIFO size minus one full frame */
1246 hwm = min(((pba << 10) * 9 / 10),
1247 ((pba << 10) - 2 * adapter->max_frame_size));
1248
1249 if (mac->type < e1000_82576) {
1250 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1251 fc->low_water = fc->high_water - 8;
1252 } else {
1253 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1254 fc->low_water = fc->high_water - 16;
1255 }
1256 fc->pause_time = 0xFFFF;
1257 fc->send_xon = 1;
1258 fc->current_mode = fc->requested_mode;
1259
1260 /* disable receive for all VFs and wait one second */
1261 if (adapter->vfs_allocated_count) {
1262 int i;
1263 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1264 adapter->vf_data[i].flags = 0;
1265
1266 /* ping all the active vfs to let them know we are going down */
1267 igb_ping_all_vfs(adapter);
1268
1269 /* disable transmits and receives */
1270 wr32(E1000_VFRE, 0);
1271 wr32(E1000_VFTE, 0);
1272 }
1273
1274 /* Allow time for pending master requests to run */
1275 hw->mac.ops.reset_hw(hw);
1276 wr32(E1000_WUC, 0);
1277
1278 if (hw->mac.ops.init_hw(hw))
1279 dev_err(&pdev->dev, "Hardware Error\n");
1280
1281 igb_update_mng_vlan(adapter);
1282
1283 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1284 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1285
1286 igb_reset_adaptive(hw);
1287 igb_get_phy_info(hw);
1288 }
1289
1290 static const struct net_device_ops igb_netdev_ops = {
1291 .ndo_open = igb_open,
1292 .ndo_stop = igb_close,
1293 .ndo_start_xmit = igb_xmit_frame_adv,
1294 .ndo_get_stats = igb_get_stats,
1295 .ndo_set_rx_mode = igb_set_rx_mode,
1296 .ndo_set_multicast_list = igb_set_rx_mode,
1297 .ndo_set_mac_address = igb_set_mac,
1298 .ndo_change_mtu = igb_change_mtu,
1299 .ndo_do_ioctl = igb_ioctl,
1300 .ndo_tx_timeout = igb_tx_timeout,
1301 .ndo_validate_addr = eth_validate_addr,
1302 .ndo_vlan_rx_register = igb_vlan_rx_register,
1303 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1304 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1305 #ifdef CONFIG_NET_POLL_CONTROLLER
1306 .ndo_poll_controller = igb_netpoll,
1307 #endif
1308 };
1309
1310 /**
1311 * igb_probe - Device Initialization Routine
1312 * @pdev: PCI device information struct
1313 * @ent: entry in igb_pci_tbl
1314 *
1315 * Returns 0 on success, negative on failure
1316 *
1317 * igb_probe initializes an adapter identified by a pci_dev structure.
1318 * The OS initialization, configuring of the adapter private structure,
1319 * and a hardware reset occur.
1320 **/
1321 static int __devinit igb_probe(struct pci_dev *pdev,
1322 const struct pci_device_id *ent)
1323 {
1324 struct net_device *netdev;
1325 struct igb_adapter *adapter;
1326 struct e1000_hw *hw;
1327 u16 eeprom_data = 0;
1328 static int global_quad_port_a; /* global quad port a indication */
1329 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1330 unsigned long mmio_start, mmio_len;
1331 int err, pci_using_dac;
1332 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1333 u32 part_num;
1334
1335 err = pci_enable_device_mem(pdev);
1336 if (err)
1337 return err;
1338
1339 pci_using_dac = 0;
1340 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1341 if (!err) {
1342 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1343 if (!err)
1344 pci_using_dac = 1;
1345 } else {
1346 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1347 if (err) {
1348 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1349 if (err) {
1350 dev_err(&pdev->dev, "No usable DMA "
1351 "configuration, aborting\n");
1352 goto err_dma;
1353 }
1354 }
1355 }
1356
1357 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1358 IORESOURCE_MEM),
1359 igb_driver_name);
1360 if (err)
1361 goto err_pci_reg;
1362
1363 pci_enable_pcie_error_reporting(pdev);
1364
1365 pci_set_master(pdev);
1366 pci_save_state(pdev);
1367
1368 err = -ENOMEM;
1369 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1370 IGB_ABS_MAX_TX_QUEUES);
1371 if (!netdev)
1372 goto err_alloc_etherdev;
1373
1374 SET_NETDEV_DEV(netdev, &pdev->dev);
1375
1376 pci_set_drvdata(pdev, netdev);
1377 adapter = netdev_priv(netdev);
1378 adapter->netdev = netdev;
1379 adapter->pdev = pdev;
1380 hw = &adapter->hw;
1381 hw->back = adapter;
1382 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1383
1384 mmio_start = pci_resource_start(pdev, 0);
1385 mmio_len = pci_resource_len(pdev, 0);
1386
1387 err = -EIO;
1388 hw->hw_addr = ioremap(mmio_start, mmio_len);
1389 if (!hw->hw_addr)
1390 goto err_ioremap;
1391
1392 netdev->netdev_ops = &igb_netdev_ops;
1393 igb_set_ethtool_ops(netdev);
1394 netdev->watchdog_timeo = 5 * HZ;
1395
1396 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1397
1398 netdev->mem_start = mmio_start;
1399 netdev->mem_end = mmio_start + mmio_len;
1400
1401 /* PCI config space info */
1402 hw->vendor_id = pdev->vendor;
1403 hw->device_id = pdev->device;
1404 hw->revision_id = pdev->revision;
1405 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1406 hw->subsystem_device_id = pdev->subsystem_device;
1407
1408 /* Copy the default MAC, PHY and NVM function pointers */
1409 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1410 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1411 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1412 /* Initialize skew-specific constants */
1413 err = ei->get_invariants(hw);
1414 if (err)
1415 goto err_sw_init;
1416
1417 /* setup the private structure */
1418 err = igb_sw_init(adapter);
1419 if (err)
1420 goto err_sw_init;
1421
1422 igb_get_bus_info_pcie(hw);
1423
1424 hw->phy.autoneg_wait_to_complete = false;
1425 hw->mac.adaptive_ifs = true;
1426
1427 /* Copper options */
1428 if (hw->phy.media_type == e1000_media_type_copper) {
1429 hw->phy.mdix = AUTO_ALL_MODES;
1430 hw->phy.disable_polarity_correction = false;
1431 hw->phy.ms_type = e1000_ms_hw_default;
1432 }
1433
1434 if (igb_check_reset_block(hw))
1435 dev_info(&pdev->dev,
1436 "PHY reset is blocked due to SOL/IDER session.\n");
1437
1438 netdev->features = NETIF_F_SG |
1439 NETIF_F_IP_CSUM |
1440 NETIF_F_HW_VLAN_TX |
1441 NETIF_F_HW_VLAN_RX |
1442 NETIF_F_HW_VLAN_FILTER;
1443
1444 netdev->features |= NETIF_F_IPV6_CSUM;
1445 netdev->features |= NETIF_F_TSO;
1446 netdev->features |= NETIF_F_TSO6;
1447 netdev->features |= NETIF_F_GRO;
1448
1449 netdev->vlan_features |= NETIF_F_TSO;
1450 netdev->vlan_features |= NETIF_F_TSO6;
1451 netdev->vlan_features |= NETIF_F_IP_CSUM;
1452 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1453 netdev->vlan_features |= NETIF_F_SG;
1454
1455 if (pci_using_dac)
1456 netdev->features |= NETIF_F_HIGHDMA;
1457
1458 if (hw->mac.type >= e1000_82576)
1459 netdev->features |= NETIF_F_SCTP_CSUM;
1460
1461 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1462
1463 /* before reading the NVM, reset the controller to put the device in a
1464 * known good starting state */
1465 hw->mac.ops.reset_hw(hw);
1466
1467 /* make sure the NVM is good */
1468 if (igb_validate_nvm_checksum(hw) < 0) {
1469 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1470 err = -EIO;
1471 goto err_eeprom;
1472 }
1473
1474 /* copy the MAC address out of the NVM */
1475 if (hw->mac.ops.read_mac_addr(hw))
1476 dev_err(&pdev->dev, "NVM Read Error\n");
1477
1478 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1479 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1480
1481 if (!is_valid_ether_addr(netdev->perm_addr)) {
1482 dev_err(&pdev->dev, "Invalid MAC Address\n");
1483 err = -EIO;
1484 goto err_eeprom;
1485 }
1486
1487 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1488 (unsigned long) adapter);
1489 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1490 (unsigned long) adapter);
1491
1492 INIT_WORK(&adapter->reset_task, igb_reset_task);
1493 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1494
1495 /* Initialize link properties that are user-changeable */
1496 adapter->fc_autoneg = true;
1497 hw->mac.autoneg = true;
1498 hw->phy.autoneg_advertised = 0x2f;
1499
1500 hw->fc.requested_mode = e1000_fc_default;
1501 hw->fc.current_mode = e1000_fc_default;
1502
1503 igb_validate_mdi_setting(hw);
1504
1505 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1506 * enable the ACPI Magic Packet filter
1507 */
1508
1509 if (hw->bus.func == 0)
1510 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1511 else if (hw->bus.func == 1)
1512 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1513
1514 if (eeprom_data & eeprom_apme_mask)
1515 adapter->eeprom_wol |= E1000_WUFC_MAG;
1516
1517 /* now that we have the eeprom settings, apply the special cases where
1518 * the eeprom may be wrong or the board simply won't support wake on
1519 * lan on a particular port */
1520 switch (pdev->device) {
1521 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1522 adapter->eeprom_wol = 0;
1523 break;
1524 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1525 case E1000_DEV_ID_82576_FIBER:
1526 case E1000_DEV_ID_82576_SERDES:
1527 /* Wake events only supported on port A for dual fiber
1528 * regardless of eeprom setting */
1529 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1530 adapter->eeprom_wol = 0;
1531 break;
1532 case E1000_DEV_ID_82576_QUAD_COPPER:
1533 /* if quad port adapter, disable WoL on all but port A */
1534 if (global_quad_port_a != 0)
1535 adapter->eeprom_wol = 0;
1536 else
1537 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1538 /* Reset for multiple quad port adapters */
1539 if (++global_quad_port_a == 4)
1540 global_quad_port_a = 0;
1541 break;
1542 }
1543
1544 /* initialize the wol settings based on the eeprom settings */
1545 adapter->wol = adapter->eeprom_wol;
1546 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1547
1548 /* reset the hardware with the new settings */
1549 igb_reset(adapter);
1550
1551 /* let the f/w know that the h/w is now under the control of the
1552 * driver. */
1553 igb_get_hw_control(adapter);
1554
1555 strcpy(netdev->name, "eth%d");
1556 err = register_netdev(netdev);
1557 if (err)
1558 goto err_register;
1559
1560 /* carrier off reporting is important to ethtool even BEFORE open */
1561 netif_carrier_off(netdev);
1562
1563 #ifdef CONFIG_IGB_DCA
1564 if (dca_add_requester(&pdev->dev) == 0) {
1565 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1566 dev_info(&pdev->dev, "DCA enabled\n");
1567 igb_setup_dca(adapter);
1568 }
1569
1570 #endif
1571 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1572 /* print bus type/speed/width info */
1573 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1574 netdev->name,
1575 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1576 "unknown"),
1577 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1578 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1579 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1580 "unknown"),
1581 netdev->dev_addr);
1582
1583 igb_read_part_num(hw, &part_num);
1584 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1585 (part_num >> 8), (part_num & 0xff));
1586
1587 dev_info(&pdev->dev,
1588 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1589 adapter->msix_entries ? "MSI-X" :
1590 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1591 adapter->num_rx_queues, adapter->num_tx_queues);
1592
1593 return 0;
1594
1595 err_register:
1596 igb_release_hw_control(adapter);
1597 err_eeprom:
1598 if (!igb_check_reset_block(hw))
1599 igb_reset_phy(hw);
1600
1601 if (hw->flash_address)
1602 iounmap(hw->flash_address);
1603 err_sw_init:
1604 igb_clear_interrupt_scheme(adapter);
1605 iounmap(hw->hw_addr);
1606 err_ioremap:
1607 free_netdev(netdev);
1608 err_alloc_etherdev:
1609 pci_release_selected_regions(pdev,
1610 pci_select_bars(pdev, IORESOURCE_MEM));
1611 err_pci_reg:
1612 err_dma:
1613 pci_disable_device(pdev);
1614 return err;
1615 }
1616
1617 /**
1618 * igb_remove - Device Removal Routine
1619 * @pdev: PCI device information struct
1620 *
1621 * igb_remove is called by the PCI subsystem to alert the driver
1622 * that it should release a PCI device. The could be caused by a
1623 * Hot-Plug event, or because the driver is going to be removed from
1624 * memory.
1625 **/
1626 static void __devexit igb_remove(struct pci_dev *pdev)
1627 {
1628 struct net_device *netdev = pci_get_drvdata(pdev);
1629 struct igb_adapter *adapter = netdev_priv(netdev);
1630 struct e1000_hw *hw = &adapter->hw;
1631
1632 /* flush_scheduled work may reschedule our watchdog task, so
1633 * explicitly disable watchdog tasks from being rescheduled */
1634 set_bit(__IGB_DOWN, &adapter->state);
1635 del_timer_sync(&adapter->watchdog_timer);
1636 del_timer_sync(&adapter->phy_info_timer);
1637
1638 flush_scheduled_work();
1639
1640 #ifdef CONFIG_IGB_DCA
1641 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1642 dev_info(&pdev->dev, "DCA disabled\n");
1643 dca_remove_requester(&pdev->dev);
1644 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1645 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1646 }
1647 #endif
1648
1649 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1650 * would have already happened in close and is redundant. */
1651 igb_release_hw_control(adapter);
1652
1653 unregister_netdev(netdev);
1654
1655 if (!igb_check_reset_block(hw))
1656 igb_reset_phy(hw);
1657
1658 igb_clear_interrupt_scheme(adapter);
1659
1660 #ifdef CONFIG_PCI_IOV
1661 /* reclaim resources allocated to VFs */
1662 if (adapter->vf_data) {
1663 /* disable iov and allow time for transactions to clear */
1664 pci_disable_sriov(pdev);
1665 msleep(500);
1666
1667 kfree(adapter->vf_data);
1668 adapter->vf_data = NULL;
1669 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1670 msleep(100);
1671 dev_info(&pdev->dev, "IOV Disabled\n");
1672 }
1673 #endif
1674
1675 iounmap(hw->hw_addr);
1676 if (hw->flash_address)
1677 iounmap(hw->flash_address);
1678 pci_release_selected_regions(pdev,
1679 pci_select_bars(pdev, IORESOURCE_MEM));
1680
1681 free_netdev(netdev);
1682
1683 pci_disable_pcie_error_reporting(pdev);
1684
1685 pci_disable_device(pdev);
1686 }
1687
1688 /**
1689 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1690 * @adapter: board private structure to initialize
1691 *
1692 * This function initializes the vf specific data storage and then attempts to
1693 * allocate the VFs. The reason for ordering it this way is because it is much
1694 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1695 * the memory for the VFs.
1696 **/
1697 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1698 {
1699 #ifdef CONFIG_PCI_IOV
1700 struct pci_dev *pdev = adapter->pdev;
1701
1702 if (adapter->vfs_allocated_count > 7)
1703 adapter->vfs_allocated_count = 7;
1704
1705 if (adapter->vfs_allocated_count) {
1706 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1707 sizeof(struct vf_data_storage),
1708 GFP_KERNEL);
1709 /* if allocation failed then we do not support SR-IOV */
1710 if (!adapter->vf_data) {
1711 adapter->vfs_allocated_count = 0;
1712 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1713 "Data Storage\n");
1714 }
1715 }
1716
1717 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1718 kfree(adapter->vf_data);
1719 adapter->vf_data = NULL;
1720 #endif /* CONFIG_PCI_IOV */
1721 adapter->vfs_allocated_count = 0;
1722 #ifdef CONFIG_PCI_IOV
1723 } else {
1724 unsigned char mac_addr[ETH_ALEN];
1725 int i;
1726 dev_info(&pdev->dev, "%d vfs allocated\n",
1727 adapter->vfs_allocated_count);
1728 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1729 random_ether_addr(mac_addr);
1730 igb_set_vf_mac(adapter, i, mac_addr);
1731 }
1732 }
1733 #endif /* CONFIG_PCI_IOV */
1734 }
1735
1736
1737 /**
1738 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1739 * @adapter: board private structure to initialize
1740 *
1741 * igb_init_hw_timer initializes the function pointer and values for the hw
1742 * timer found in hardware.
1743 **/
1744 static void igb_init_hw_timer(struct igb_adapter *adapter)
1745 {
1746 struct e1000_hw *hw = &adapter->hw;
1747
1748 switch (hw->mac.type) {
1749 case e1000_82576:
1750 /*
1751 * Initialize hardware timer: we keep it running just in case
1752 * that some program needs it later on.
1753 */
1754 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1755 adapter->cycles.read = igb_read_clock;
1756 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1757 adapter->cycles.mult = 1;
1758 /**
1759 * Scale the NIC clock cycle by a large factor so that
1760 * relatively small clock corrections can be added or
1761 * substracted at each clock tick. The drawbacks of a large
1762 * factor are a) that the clock register overflows more quickly
1763 * (not such a big deal) and b) that the increment per tick has
1764 * to fit into 24 bits. As a result we need to use a shift of
1765 * 19 so we can fit a value of 16 into the TIMINCA register.
1766 */
1767 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1768 wr32(E1000_TIMINCA,
1769 (1 << E1000_TIMINCA_16NS_SHIFT) |
1770 (16 << IGB_82576_TSYNC_SHIFT));
1771
1772 /* Set registers so that rollover occurs soon to test this. */
1773 wr32(E1000_SYSTIML, 0x00000000);
1774 wr32(E1000_SYSTIMH, 0xFF800000);
1775 wrfl();
1776
1777 timecounter_init(&adapter->clock,
1778 &adapter->cycles,
1779 ktime_to_ns(ktime_get_real()));
1780 /*
1781 * Synchronize our NIC clock against system wall clock. NIC
1782 * time stamp reading requires ~3us per sample, each sample
1783 * was pretty stable even under load => only require 10
1784 * samples for each offset comparison.
1785 */
1786 memset(&adapter->compare, 0, sizeof(adapter->compare));
1787 adapter->compare.source = &adapter->clock;
1788 adapter->compare.target = ktime_get_real;
1789 adapter->compare.num_samples = 10;
1790 timecompare_update(&adapter->compare, 0);
1791 break;
1792 case e1000_82575:
1793 /* 82575 does not support timesync */
1794 default:
1795 break;
1796 }
1797
1798 }
1799
1800 /**
1801 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1802 * @adapter: board private structure to initialize
1803 *
1804 * igb_sw_init initializes the Adapter private data structure.
1805 * Fields are initialized based on PCI device information and
1806 * OS network device settings (MTU size).
1807 **/
1808 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1809 {
1810 struct e1000_hw *hw = &adapter->hw;
1811 struct net_device *netdev = adapter->netdev;
1812 struct pci_dev *pdev = adapter->pdev;
1813
1814 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1815
1816 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1817 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1818 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1819 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1820
1821 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1822 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1823
1824 #ifdef CONFIG_PCI_IOV
1825 if (hw->mac.type == e1000_82576)
1826 adapter->vfs_allocated_count = max_vfs;
1827
1828 #endif /* CONFIG_PCI_IOV */
1829 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1830
1831 /*
1832 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1833 * then we should combine the queues into a queue pair in order to
1834 * conserve interrupts due to limited supply
1835 */
1836 if ((adapter->rss_queues > 4) ||
1837 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1838 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1839
1840 /* This call may decrease the number of queues */
1841 if (igb_init_interrupt_scheme(adapter)) {
1842 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1843 return -ENOMEM;
1844 }
1845
1846 igb_init_hw_timer(adapter);
1847 igb_probe_vfs(adapter);
1848
1849 /* Explicitly disable IRQ since the NIC can be in any state. */
1850 igb_irq_disable(adapter);
1851
1852 set_bit(__IGB_DOWN, &adapter->state);
1853 return 0;
1854 }
1855
1856 /**
1857 * igb_open - Called when a network interface is made active
1858 * @netdev: network interface device structure
1859 *
1860 * Returns 0 on success, negative value on failure
1861 *
1862 * The open entry point is called when a network interface is made
1863 * active by the system (IFF_UP). At this point all resources needed
1864 * for transmit and receive operations are allocated, the interrupt
1865 * handler is registered with the OS, the watchdog timer is started,
1866 * and the stack is notified that the interface is ready.
1867 **/
1868 static int igb_open(struct net_device *netdev)
1869 {
1870 struct igb_adapter *adapter = netdev_priv(netdev);
1871 struct e1000_hw *hw = &adapter->hw;
1872 int err;
1873 int i;
1874
1875 /* disallow open during test */
1876 if (test_bit(__IGB_TESTING, &adapter->state))
1877 return -EBUSY;
1878
1879 netif_carrier_off(netdev);
1880
1881 /* allocate transmit descriptors */
1882 err = igb_setup_all_tx_resources(adapter);
1883 if (err)
1884 goto err_setup_tx;
1885
1886 /* allocate receive descriptors */
1887 err = igb_setup_all_rx_resources(adapter);
1888 if (err)
1889 goto err_setup_rx;
1890
1891 /* e1000_power_up_phy(adapter); */
1892
1893 /* before we allocate an interrupt, we must be ready to handle it.
1894 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1895 * as soon as we call pci_request_irq, so we have to setup our
1896 * clean_rx handler before we do so. */
1897 igb_configure(adapter);
1898
1899 err = igb_request_irq(adapter);
1900 if (err)
1901 goto err_req_irq;
1902
1903 /* From here on the code is the same as igb_up() */
1904 clear_bit(__IGB_DOWN, &adapter->state);
1905
1906 for (i = 0; i < adapter->num_q_vectors; i++) {
1907 struct igb_q_vector *q_vector = adapter->q_vector[i];
1908 napi_enable(&q_vector->napi);
1909 }
1910
1911 /* Clear any pending interrupts. */
1912 rd32(E1000_ICR);
1913
1914 igb_irq_enable(adapter);
1915
1916 /* notify VFs that reset has been completed */
1917 if (adapter->vfs_allocated_count) {
1918 u32 reg_data = rd32(E1000_CTRL_EXT);
1919 reg_data |= E1000_CTRL_EXT_PFRSTD;
1920 wr32(E1000_CTRL_EXT, reg_data);
1921 }
1922
1923 netif_tx_start_all_queues(netdev);
1924
1925 /* start the watchdog. */
1926 hw->mac.get_link_status = 1;
1927 schedule_work(&adapter->watchdog_task);
1928
1929 return 0;
1930
1931 err_req_irq:
1932 igb_release_hw_control(adapter);
1933 /* e1000_power_down_phy(adapter); */
1934 igb_free_all_rx_resources(adapter);
1935 err_setup_rx:
1936 igb_free_all_tx_resources(adapter);
1937 err_setup_tx:
1938 igb_reset(adapter);
1939
1940 return err;
1941 }
1942
1943 /**
1944 * igb_close - Disables a network interface
1945 * @netdev: network interface device structure
1946 *
1947 * Returns 0, this is not allowed to fail
1948 *
1949 * The close entry point is called when an interface is de-activated
1950 * by the OS. The hardware is still under the driver's control, but
1951 * needs to be disabled. A global MAC reset is issued to stop the
1952 * hardware, and all transmit and receive resources are freed.
1953 **/
1954 static int igb_close(struct net_device *netdev)
1955 {
1956 struct igb_adapter *adapter = netdev_priv(netdev);
1957
1958 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1959 igb_down(adapter);
1960
1961 igb_free_irq(adapter);
1962
1963 igb_free_all_tx_resources(adapter);
1964 igb_free_all_rx_resources(adapter);
1965
1966 return 0;
1967 }
1968
1969 /**
1970 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1971 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1972 *
1973 * Return 0 on success, negative on failure
1974 **/
1975 int igb_setup_tx_resources(struct igb_ring *tx_ring)
1976 {
1977 struct pci_dev *pdev = tx_ring->pdev;
1978 int size;
1979
1980 size = sizeof(struct igb_buffer) * tx_ring->count;
1981 tx_ring->buffer_info = vmalloc(size);
1982 if (!tx_ring->buffer_info)
1983 goto err;
1984 memset(tx_ring->buffer_info, 0, size);
1985
1986 /* round up to nearest 4K */
1987 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1988 tx_ring->size = ALIGN(tx_ring->size, 4096);
1989
1990 tx_ring->desc = pci_alloc_consistent(pdev,
1991 tx_ring->size,
1992 &tx_ring->dma);
1993
1994 if (!tx_ring->desc)
1995 goto err;
1996
1997 tx_ring->next_to_use = 0;
1998 tx_ring->next_to_clean = 0;
1999 return 0;
2000
2001 err:
2002 vfree(tx_ring->buffer_info);
2003 dev_err(&pdev->dev,
2004 "Unable to allocate memory for the transmit descriptor ring\n");
2005 return -ENOMEM;
2006 }
2007
2008 /**
2009 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2010 * (Descriptors) for all queues
2011 * @adapter: board private structure
2012 *
2013 * Return 0 on success, negative on failure
2014 **/
2015 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2016 {
2017 struct pci_dev *pdev = adapter->pdev;
2018 int i, err = 0;
2019
2020 for (i = 0; i < adapter->num_tx_queues; i++) {
2021 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2022 if (err) {
2023 dev_err(&pdev->dev,
2024 "Allocation for Tx Queue %u failed\n", i);
2025 for (i--; i >= 0; i--)
2026 igb_free_tx_resources(&adapter->tx_ring[i]);
2027 break;
2028 }
2029 }
2030
2031 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2032 int r_idx = i % adapter->num_tx_queues;
2033 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2034 }
2035 return err;
2036 }
2037
2038 /**
2039 * igb_setup_tctl - configure the transmit control registers
2040 * @adapter: Board private structure
2041 **/
2042 void igb_setup_tctl(struct igb_adapter *adapter)
2043 {
2044 struct e1000_hw *hw = &adapter->hw;
2045 u32 tctl;
2046
2047 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2048 wr32(E1000_TXDCTL(0), 0);
2049
2050 /* Program the Transmit Control Register */
2051 tctl = rd32(E1000_TCTL);
2052 tctl &= ~E1000_TCTL_CT;
2053 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2054 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2055
2056 igb_config_collision_dist(hw);
2057
2058 /* Enable transmits */
2059 tctl |= E1000_TCTL_EN;
2060
2061 wr32(E1000_TCTL, tctl);
2062 }
2063
2064 /**
2065 * igb_configure_tx_ring - Configure transmit ring after Reset
2066 * @adapter: board private structure
2067 * @ring: tx ring to configure
2068 *
2069 * Configure a transmit ring after a reset.
2070 **/
2071 void igb_configure_tx_ring(struct igb_adapter *adapter,
2072 struct igb_ring *ring)
2073 {
2074 struct e1000_hw *hw = &adapter->hw;
2075 u32 txdctl;
2076 u64 tdba = ring->dma;
2077 int reg_idx = ring->reg_idx;
2078
2079 /* disable the queue */
2080 txdctl = rd32(E1000_TXDCTL(reg_idx));
2081 wr32(E1000_TXDCTL(reg_idx),
2082 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2083 wrfl();
2084 mdelay(10);
2085
2086 wr32(E1000_TDLEN(reg_idx),
2087 ring->count * sizeof(union e1000_adv_tx_desc));
2088 wr32(E1000_TDBAL(reg_idx),
2089 tdba & 0x00000000ffffffffULL);
2090 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2091
2092 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2093 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2094 writel(0, ring->head);
2095 writel(0, ring->tail);
2096
2097 txdctl |= IGB_TX_PTHRESH;
2098 txdctl |= IGB_TX_HTHRESH << 8;
2099 txdctl |= IGB_TX_WTHRESH << 16;
2100
2101 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2102 wr32(E1000_TXDCTL(reg_idx), txdctl);
2103 }
2104
2105 /**
2106 * igb_configure_tx - Configure transmit Unit after Reset
2107 * @adapter: board private structure
2108 *
2109 * Configure the Tx unit of the MAC after a reset.
2110 **/
2111 static void igb_configure_tx(struct igb_adapter *adapter)
2112 {
2113 int i;
2114
2115 for (i = 0; i < adapter->num_tx_queues; i++)
2116 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2117 }
2118
2119 /**
2120 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2121 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2122 *
2123 * Returns 0 on success, negative on failure
2124 **/
2125 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2126 {
2127 struct pci_dev *pdev = rx_ring->pdev;
2128 int size, desc_len;
2129
2130 size = sizeof(struct igb_buffer) * rx_ring->count;
2131 rx_ring->buffer_info = vmalloc(size);
2132 if (!rx_ring->buffer_info)
2133 goto err;
2134 memset(rx_ring->buffer_info, 0, size);
2135
2136 desc_len = sizeof(union e1000_adv_rx_desc);
2137
2138 /* Round up to nearest 4K */
2139 rx_ring->size = rx_ring->count * desc_len;
2140 rx_ring->size = ALIGN(rx_ring->size, 4096);
2141
2142 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2143 &rx_ring->dma);
2144
2145 if (!rx_ring->desc)
2146 goto err;
2147
2148 rx_ring->next_to_clean = 0;
2149 rx_ring->next_to_use = 0;
2150
2151 return 0;
2152
2153 err:
2154 vfree(rx_ring->buffer_info);
2155 rx_ring->buffer_info = NULL;
2156 dev_err(&pdev->dev, "Unable to allocate memory for "
2157 "the receive descriptor ring\n");
2158 return -ENOMEM;
2159 }
2160
2161 /**
2162 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2163 * (Descriptors) for all queues
2164 * @adapter: board private structure
2165 *
2166 * Return 0 on success, negative on failure
2167 **/
2168 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2169 {
2170 struct pci_dev *pdev = adapter->pdev;
2171 int i, err = 0;
2172
2173 for (i = 0; i < adapter->num_rx_queues; i++) {
2174 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2175 if (err) {
2176 dev_err(&pdev->dev,
2177 "Allocation for Rx Queue %u failed\n", i);
2178 for (i--; i >= 0; i--)
2179 igb_free_rx_resources(&adapter->rx_ring[i]);
2180 break;
2181 }
2182 }
2183
2184 return err;
2185 }
2186
2187 /**
2188 * igb_setup_mrqc - configure the multiple receive queue control registers
2189 * @adapter: Board private structure
2190 **/
2191 static void igb_setup_mrqc(struct igb_adapter *adapter)
2192 {
2193 struct e1000_hw *hw = &adapter->hw;
2194 u32 mrqc, rxcsum;
2195 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2196 union e1000_reta {
2197 u32 dword;
2198 u8 bytes[4];
2199 } reta;
2200 static const u8 rsshash[40] = {
2201 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2202 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2203 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2204 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2205
2206 /* Fill out hash function seeds */
2207 for (j = 0; j < 10; j++) {
2208 u32 rsskey = rsshash[(j * 4)];
2209 rsskey |= rsshash[(j * 4) + 1] << 8;
2210 rsskey |= rsshash[(j * 4) + 2] << 16;
2211 rsskey |= rsshash[(j * 4) + 3] << 24;
2212 array_wr32(E1000_RSSRK(0), j, rsskey);
2213 }
2214
2215 num_rx_queues = adapter->rss_queues;
2216
2217 if (adapter->vfs_allocated_count) {
2218 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2219 switch (hw->mac.type) {
2220 case e1000_82576:
2221 shift = 3;
2222 num_rx_queues = 2;
2223 break;
2224 case e1000_82575:
2225 shift = 2;
2226 shift2 = 6;
2227 default:
2228 break;
2229 }
2230 } else {
2231 if (hw->mac.type == e1000_82575)
2232 shift = 6;
2233 }
2234
2235 for (j = 0; j < (32 * 4); j++) {
2236 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2237 if (shift2)
2238 reta.bytes[j & 3] |= num_rx_queues << shift2;
2239 if ((j & 3) == 3)
2240 wr32(E1000_RETA(j >> 2), reta.dword);
2241 }
2242
2243 /*
2244 * Disable raw packet checksumming so that RSS hash is placed in
2245 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2246 * offloads as they are enabled by default
2247 */
2248 rxcsum = rd32(E1000_RXCSUM);
2249 rxcsum |= E1000_RXCSUM_PCSD;
2250
2251 if (adapter->hw.mac.type >= e1000_82576)
2252 /* Enable Receive Checksum Offload for SCTP */
2253 rxcsum |= E1000_RXCSUM_CRCOFL;
2254
2255 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2256 wr32(E1000_RXCSUM, rxcsum);
2257
2258 /* If VMDq is enabled then we set the appropriate mode for that, else
2259 * we default to RSS so that an RSS hash is calculated per packet even
2260 * if we are only using one queue */
2261 if (adapter->vfs_allocated_count) {
2262 if (hw->mac.type > e1000_82575) {
2263 /* Set the default pool for the PF's first queue */
2264 u32 vtctl = rd32(E1000_VT_CTL);
2265 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2266 E1000_VT_CTL_DISABLE_DEF_POOL);
2267 vtctl |= adapter->vfs_allocated_count <<
2268 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2269 wr32(E1000_VT_CTL, vtctl);
2270 }
2271 if (adapter->rss_queues > 1)
2272 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2273 else
2274 mrqc = E1000_MRQC_ENABLE_VMDQ;
2275 } else {
2276 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2277 }
2278 igb_vmm_control(adapter);
2279
2280 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2281 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2282 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2283 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2284 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2285 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2286 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2287 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2288
2289 wr32(E1000_MRQC, mrqc);
2290 }
2291
2292 /**
2293 * igb_setup_rctl - configure the receive control registers
2294 * @adapter: Board private structure
2295 **/
2296 void igb_setup_rctl(struct igb_adapter *adapter)
2297 {
2298 struct e1000_hw *hw = &adapter->hw;
2299 u32 rctl;
2300
2301 rctl = rd32(E1000_RCTL);
2302
2303 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2304 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2305
2306 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2307 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2308
2309 /*
2310 * enable stripping of CRC. It's unlikely this will break BMC
2311 * redirection as it did with e1000. Newer features require
2312 * that the HW strips the CRC.
2313 */
2314 rctl |= E1000_RCTL_SECRC;
2315
2316 /* disable store bad packets and clear size bits. */
2317 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2318
2319 /* enable LPE to prevent packets larger than max_frame_size */
2320 rctl |= E1000_RCTL_LPE;
2321
2322 /* disable queue 0 to prevent tail write w/o re-config */
2323 wr32(E1000_RXDCTL(0), 0);
2324
2325 /* Attention!!! For SR-IOV PF driver operations you must enable
2326 * queue drop for all VF and PF queues to prevent head of line blocking
2327 * if an un-trusted VF does not provide descriptors to hardware.
2328 */
2329 if (adapter->vfs_allocated_count) {
2330 /* set all queue drop enable bits */
2331 wr32(E1000_QDE, ALL_QUEUES);
2332 }
2333
2334 wr32(E1000_RCTL, rctl);
2335 }
2336
2337 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2338 int vfn)
2339 {
2340 struct e1000_hw *hw = &adapter->hw;
2341 u32 vmolr;
2342
2343 /* if it isn't the PF check to see if VFs are enabled and
2344 * increase the size to support vlan tags */
2345 if (vfn < adapter->vfs_allocated_count &&
2346 adapter->vf_data[vfn].vlans_enabled)
2347 size += VLAN_TAG_SIZE;
2348
2349 vmolr = rd32(E1000_VMOLR(vfn));
2350 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2351 vmolr |= size | E1000_VMOLR_LPE;
2352 wr32(E1000_VMOLR(vfn), vmolr);
2353
2354 return 0;
2355 }
2356
2357 /**
2358 * igb_rlpml_set - set maximum receive packet size
2359 * @adapter: board private structure
2360 *
2361 * Configure maximum receivable packet size.
2362 **/
2363 static void igb_rlpml_set(struct igb_adapter *adapter)
2364 {
2365 u32 max_frame_size = adapter->max_frame_size;
2366 struct e1000_hw *hw = &adapter->hw;
2367 u16 pf_id = adapter->vfs_allocated_count;
2368
2369 if (adapter->vlgrp)
2370 max_frame_size += VLAN_TAG_SIZE;
2371
2372 /* if vfs are enabled we set RLPML to the largest possible request
2373 * size and set the VMOLR RLPML to the size we need */
2374 if (pf_id) {
2375 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2376 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2377 }
2378
2379 wr32(E1000_RLPML, max_frame_size);
2380 }
2381
2382 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2383 {
2384 struct e1000_hw *hw = &adapter->hw;
2385 u32 vmolr;
2386
2387 /*
2388 * This register exists only on 82576 and newer so if we are older then
2389 * we should exit and do nothing
2390 */
2391 if (hw->mac.type < e1000_82576)
2392 return;
2393
2394 vmolr = rd32(E1000_VMOLR(vfn));
2395 vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */
2396 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2397
2398 /* clear all bits that might not be set */
2399 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2400
2401 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2402 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2403 /*
2404 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2405 * multicast packets
2406 */
2407 if (vfn <= adapter->vfs_allocated_count)
2408 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2409
2410 wr32(E1000_VMOLR(vfn), vmolr);
2411 }
2412
2413 /**
2414 * igb_configure_rx_ring - Configure a receive ring after Reset
2415 * @adapter: board private structure
2416 * @ring: receive ring to be configured
2417 *
2418 * Configure the Rx unit of the MAC after a reset.
2419 **/
2420 void igb_configure_rx_ring(struct igb_adapter *adapter,
2421 struct igb_ring *ring)
2422 {
2423 struct e1000_hw *hw = &adapter->hw;
2424 u64 rdba = ring->dma;
2425 int reg_idx = ring->reg_idx;
2426 u32 srrctl, rxdctl;
2427
2428 /* disable the queue */
2429 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2430 wr32(E1000_RXDCTL(reg_idx),
2431 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2432
2433 /* Set DMA base address registers */
2434 wr32(E1000_RDBAL(reg_idx),
2435 rdba & 0x00000000ffffffffULL);
2436 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2437 wr32(E1000_RDLEN(reg_idx),
2438 ring->count * sizeof(union e1000_adv_rx_desc));
2439
2440 /* initialize head and tail */
2441 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2442 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2443 writel(0, ring->head);
2444 writel(0, ring->tail);
2445
2446 /* set descriptor configuration */
2447 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2448 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2449 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2450 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2451 srrctl |= IGB_RXBUFFER_16384 >>
2452 E1000_SRRCTL_BSIZEPKT_SHIFT;
2453 #else
2454 srrctl |= (PAGE_SIZE / 2) >>
2455 E1000_SRRCTL_BSIZEPKT_SHIFT;
2456 #endif
2457 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2458 } else {
2459 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2460 E1000_SRRCTL_BSIZEPKT_SHIFT;
2461 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2462 }
2463
2464 wr32(E1000_SRRCTL(reg_idx), srrctl);
2465
2466 /* set filtering for VMDQ pools */
2467 igb_set_vmolr(adapter, reg_idx & 0x7);
2468
2469 /* enable receive descriptor fetching */
2470 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2471 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2472 rxdctl &= 0xFFF00000;
2473 rxdctl |= IGB_RX_PTHRESH;
2474 rxdctl |= IGB_RX_HTHRESH << 8;
2475 rxdctl |= IGB_RX_WTHRESH << 16;
2476 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2477 }
2478
2479 /**
2480 * igb_configure_rx - Configure receive Unit after Reset
2481 * @adapter: board private structure
2482 *
2483 * Configure the Rx unit of the MAC after a reset.
2484 **/
2485 static void igb_configure_rx(struct igb_adapter *adapter)
2486 {
2487 int i;
2488
2489 /* set UTA to appropriate mode */
2490 igb_set_uta(adapter);
2491
2492 /* set the correct pool for the PF default MAC address in entry 0 */
2493 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2494 adapter->vfs_allocated_count);
2495
2496 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2497 * the Base and Length of the Rx Descriptor Ring */
2498 for (i = 0; i < adapter->num_rx_queues; i++)
2499 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2500 }
2501
2502 /**
2503 * igb_free_tx_resources - Free Tx Resources per Queue
2504 * @tx_ring: Tx descriptor ring for a specific queue
2505 *
2506 * Free all transmit software resources
2507 **/
2508 void igb_free_tx_resources(struct igb_ring *tx_ring)
2509 {
2510 igb_clean_tx_ring(tx_ring);
2511
2512 vfree(tx_ring->buffer_info);
2513 tx_ring->buffer_info = NULL;
2514
2515 /* if not set, then don't free */
2516 if (!tx_ring->desc)
2517 return;
2518
2519 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2520 tx_ring->desc, tx_ring->dma);
2521
2522 tx_ring->desc = NULL;
2523 }
2524
2525 /**
2526 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2527 * @adapter: board private structure
2528 *
2529 * Free all transmit software resources
2530 **/
2531 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2532 {
2533 int i;
2534
2535 for (i = 0; i < adapter->num_tx_queues; i++)
2536 igb_free_tx_resources(&adapter->tx_ring[i]);
2537 }
2538
2539 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2540 struct igb_buffer *buffer_info)
2541 {
2542 buffer_info->dma = 0;
2543 if (buffer_info->skb) {
2544 skb_dma_unmap(&tx_ring->pdev->dev,
2545 buffer_info->skb,
2546 DMA_TO_DEVICE);
2547 dev_kfree_skb_any(buffer_info->skb);
2548 buffer_info->skb = NULL;
2549 }
2550 buffer_info->time_stamp = 0;
2551 /* buffer_info must be completely set up in the transmit path */
2552 }
2553
2554 /**
2555 * igb_clean_tx_ring - Free Tx Buffers
2556 * @tx_ring: ring to be cleaned
2557 **/
2558 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2559 {
2560 struct igb_buffer *buffer_info;
2561 unsigned long size;
2562 unsigned int i;
2563
2564 if (!tx_ring->buffer_info)
2565 return;
2566 /* Free all the Tx ring sk_buffs */
2567
2568 for (i = 0; i < tx_ring->count; i++) {
2569 buffer_info = &tx_ring->buffer_info[i];
2570 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2571 }
2572
2573 size = sizeof(struct igb_buffer) * tx_ring->count;
2574 memset(tx_ring->buffer_info, 0, size);
2575
2576 /* Zero out the descriptor ring */
2577 memset(tx_ring->desc, 0, tx_ring->size);
2578
2579 tx_ring->next_to_use = 0;
2580 tx_ring->next_to_clean = 0;
2581 }
2582
2583 /**
2584 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2585 * @adapter: board private structure
2586 **/
2587 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2588 {
2589 int i;
2590
2591 for (i = 0; i < adapter->num_tx_queues; i++)
2592 igb_clean_tx_ring(&adapter->tx_ring[i]);
2593 }
2594
2595 /**
2596 * igb_free_rx_resources - Free Rx Resources
2597 * @rx_ring: ring to clean the resources from
2598 *
2599 * Free all receive software resources
2600 **/
2601 void igb_free_rx_resources(struct igb_ring *rx_ring)
2602 {
2603 igb_clean_rx_ring(rx_ring);
2604
2605 vfree(rx_ring->buffer_info);
2606 rx_ring->buffer_info = NULL;
2607
2608 /* if not set, then don't free */
2609 if (!rx_ring->desc)
2610 return;
2611
2612 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2613 rx_ring->desc, rx_ring->dma);
2614
2615 rx_ring->desc = NULL;
2616 }
2617
2618 /**
2619 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2620 * @adapter: board private structure
2621 *
2622 * Free all receive software resources
2623 **/
2624 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2625 {
2626 int i;
2627
2628 for (i = 0; i < adapter->num_rx_queues; i++)
2629 igb_free_rx_resources(&adapter->rx_ring[i]);
2630 }
2631
2632 /**
2633 * igb_clean_rx_ring - Free Rx Buffers per Queue
2634 * @rx_ring: ring to free buffers from
2635 **/
2636 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2637 {
2638 struct igb_buffer *buffer_info;
2639 unsigned long size;
2640 unsigned int i;
2641
2642 if (!rx_ring->buffer_info)
2643 return;
2644
2645 /* Free all the Rx ring sk_buffs */
2646 for (i = 0; i < rx_ring->count; i++) {
2647 buffer_info = &rx_ring->buffer_info[i];
2648 if (buffer_info->dma) {
2649 pci_unmap_single(rx_ring->pdev,
2650 buffer_info->dma,
2651 rx_ring->rx_buffer_len,
2652 PCI_DMA_FROMDEVICE);
2653 buffer_info->dma = 0;
2654 }
2655
2656 if (buffer_info->skb) {
2657 dev_kfree_skb(buffer_info->skb);
2658 buffer_info->skb = NULL;
2659 }
2660 if (buffer_info->page_dma) {
2661 pci_unmap_page(rx_ring->pdev,
2662 buffer_info->page_dma,
2663 PAGE_SIZE / 2,
2664 PCI_DMA_FROMDEVICE);
2665 buffer_info->page_dma = 0;
2666 }
2667 if (buffer_info->page) {
2668 put_page(buffer_info->page);
2669 buffer_info->page = NULL;
2670 buffer_info->page_offset = 0;
2671 }
2672 }
2673
2674 size = sizeof(struct igb_buffer) * rx_ring->count;
2675 memset(rx_ring->buffer_info, 0, size);
2676
2677 /* Zero out the descriptor ring */
2678 memset(rx_ring->desc, 0, rx_ring->size);
2679
2680 rx_ring->next_to_clean = 0;
2681 rx_ring->next_to_use = 0;
2682 }
2683
2684 /**
2685 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2686 * @adapter: board private structure
2687 **/
2688 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2689 {
2690 int i;
2691
2692 for (i = 0; i < adapter->num_rx_queues; i++)
2693 igb_clean_rx_ring(&adapter->rx_ring[i]);
2694 }
2695
2696 /**
2697 * igb_set_mac - Change the Ethernet Address of the NIC
2698 * @netdev: network interface device structure
2699 * @p: pointer to an address structure
2700 *
2701 * Returns 0 on success, negative on failure
2702 **/
2703 static int igb_set_mac(struct net_device *netdev, void *p)
2704 {
2705 struct igb_adapter *adapter = netdev_priv(netdev);
2706 struct e1000_hw *hw = &adapter->hw;
2707 struct sockaddr *addr = p;
2708
2709 if (!is_valid_ether_addr(addr->sa_data))
2710 return -EADDRNOTAVAIL;
2711
2712 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2713 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2714
2715 /* set the correct pool for the new PF MAC address in entry 0 */
2716 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2717 adapter->vfs_allocated_count);
2718
2719 return 0;
2720 }
2721
2722 /**
2723 * igb_write_mc_addr_list - write multicast addresses to MTA
2724 * @netdev: network interface device structure
2725 *
2726 * Writes multicast address list to the MTA hash table.
2727 * Returns: -ENOMEM on failure
2728 * 0 on no addresses written
2729 * X on writing X addresses to MTA
2730 **/
2731 static int igb_write_mc_addr_list(struct net_device *netdev)
2732 {
2733 struct igb_adapter *adapter = netdev_priv(netdev);
2734 struct e1000_hw *hw = &adapter->hw;
2735 struct dev_mc_list *mc_ptr = netdev->mc_list;
2736 u8 *mta_list;
2737 u32 vmolr = 0;
2738 int i;
2739
2740 if (!netdev->mc_count) {
2741 /* nothing to program, so clear mc list */
2742 igb_update_mc_addr_list(hw, NULL, 0);
2743 igb_restore_vf_multicasts(adapter);
2744 return 0;
2745 }
2746
2747 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2748 if (!mta_list)
2749 return -ENOMEM;
2750
2751 /* set vmolr receive overflow multicast bit */
2752 vmolr |= E1000_VMOLR_ROMPE;
2753
2754 /* The shared function expects a packed array of only addresses. */
2755 mc_ptr = netdev->mc_list;
2756
2757 for (i = 0; i < netdev->mc_count; i++) {
2758 if (!mc_ptr)
2759 break;
2760 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2761 mc_ptr = mc_ptr->next;
2762 }
2763 igb_update_mc_addr_list(hw, mta_list, i);
2764 kfree(mta_list);
2765
2766 return netdev->mc_count;
2767 }
2768
2769 /**
2770 * igb_write_uc_addr_list - write unicast addresses to RAR table
2771 * @netdev: network interface device structure
2772 *
2773 * Writes unicast address list to the RAR table.
2774 * Returns: -ENOMEM on failure/insufficient address space
2775 * 0 on no addresses written
2776 * X on writing X addresses to the RAR table
2777 **/
2778 static int igb_write_uc_addr_list(struct net_device *netdev)
2779 {
2780 struct igb_adapter *adapter = netdev_priv(netdev);
2781 struct e1000_hw *hw = &adapter->hw;
2782 unsigned int vfn = adapter->vfs_allocated_count;
2783 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2784 int count = 0;
2785
2786 /* return ENOMEM indicating insufficient memory for addresses */
2787 if (netdev->uc.count > rar_entries)
2788 return -ENOMEM;
2789
2790 if (netdev->uc.count && rar_entries) {
2791 struct netdev_hw_addr *ha;
2792 list_for_each_entry(ha, &netdev->uc.list, list) {
2793 if (!rar_entries)
2794 break;
2795 igb_rar_set_qsel(adapter, ha->addr,
2796 rar_entries--,
2797 vfn);
2798 count++;
2799 }
2800 }
2801 /* write the addresses in reverse order to avoid write combining */
2802 for (; rar_entries > 0 ; rar_entries--) {
2803 wr32(E1000_RAH(rar_entries), 0);
2804 wr32(E1000_RAL(rar_entries), 0);
2805 }
2806 wrfl();
2807
2808 return count;
2809 }
2810
2811 /**
2812 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2813 * @netdev: network interface device structure
2814 *
2815 * The set_rx_mode entry point is called whenever the unicast or multicast
2816 * address lists or the network interface flags are updated. This routine is
2817 * responsible for configuring the hardware for proper unicast, multicast,
2818 * promiscuous mode, and all-multi behavior.
2819 **/
2820 static void igb_set_rx_mode(struct net_device *netdev)
2821 {
2822 struct igb_adapter *adapter = netdev_priv(netdev);
2823 struct e1000_hw *hw = &adapter->hw;
2824 unsigned int vfn = adapter->vfs_allocated_count;
2825 u32 rctl, vmolr = 0;
2826 int count;
2827
2828 /* Check for Promiscuous and All Multicast modes */
2829 rctl = rd32(E1000_RCTL);
2830
2831 /* clear the effected bits */
2832 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2833
2834 if (netdev->flags & IFF_PROMISC) {
2835 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2836 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2837 } else {
2838 if (netdev->flags & IFF_ALLMULTI) {
2839 rctl |= E1000_RCTL_MPE;
2840 vmolr |= E1000_VMOLR_MPME;
2841 } else {
2842 /*
2843 * Write addresses to the MTA, if the attempt fails
2844 * then we should just turn on promiscous mode so
2845 * that we can at least receive multicast traffic
2846 */
2847 count = igb_write_mc_addr_list(netdev);
2848 if (count < 0) {
2849 rctl |= E1000_RCTL_MPE;
2850 vmolr |= E1000_VMOLR_MPME;
2851 } else if (count) {
2852 vmolr |= E1000_VMOLR_ROMPE;
2853 }
2854 }
2855 /*
2856 * Write addresses to available RAR registers, if there is not
2857 * sufficient space to store all the addresses then enable
2858 * unicast promiscous mode
2859 */
2860 count = igb_write_uc_addr_list(netdev);
2861 if (count < 0) {
2862 rctl |= E1000_RCTL_UPE;
2863 vmolr |= E1000_VMOLR_ROPE;
2864 }
2865 rctl |= E1000_RCTL_VFE;
2866 }
2867 wr32(E1000_RCTL, rctl);
2868
2869 /*
2870 * In order to support SR-IOV and eventually VMDq it is necessary to set
2871 * the VMOLR to enable the appropriate modes. Without this workaround
2872 * we will have issues with VLAN tag stripping not being done for frames
2873 * that are only arriving because we are the default pool
2874 */
2875 if (hw->mac.type < e1000_82576)
2876 return;
2877
2878 vmolr |= rd32(E1000_VMOLR(vfn)) &
2879 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2880 wr32(E1000_VMOLR(vfn), vmolr);
2881 igb_restore_vf_multicasts(adapter);
2882 }
2883
2884 /* Need to wait a few seconds after link up to get diagnostic information from
2885 * the phy */
2886 static void igb_update_phy_info(unsigned long data)
2887 {
2888 struct igb_adapter *adapter = (struct igb_adapter *) data;
2889 igb_get_phy_info(&adapter->hw);
2890 }
2891
2892 /**
2893 * igb_has_link - check shared code for link and determine up/down
2894 * @adapter: pointer to driver private info
2895 **/
2896 static bool igb_has_link(struct igb_adapter *adapter)
2897 {
2898 struct e1000_hw *hw = &adapter->hw;
2899 bool link_active = false;
2900 s32 ret_val = 0;
2901
2902 /* get_link_status is set on LSC (link status) interrupt or
2903 * rx sequence error interrupt. get_link_status will stay
2904 * false until the e1000_check_for_link establishes link
2905 * for copper adapters ONLY
2906 */
2907 switch (hw->phy.media_type) {
2908 case e1000_media_type_copper:
2909 if (hw->mac.get_link_status) {
2910 ret_val = hw->mac.ops.check_for_link(hw);
2911 link_active = !hw->mac.get_link_status;
2912 } else {
2913 link_active = true;
2914 }
2915 break;
2916 case e1000_media_type_internal_serdes:
2917 ret_val = hw->mac.ops.check_for_link(hw);
2918 link_active = hw->mac.serdes_has_link;
2919 break;
2920 default:
2921 case e1000_media_type_unknown:
2922 break;
2923 }
2924
2925 return link_active;
2926 }
2927
2928 /**
2929 * igb_watchdog - Timer Call-back
2930 * @data: pointer to adapter cast into an unsigned long
2931 **/
2932 static void igb_watchdog(unsigned long data)
2933 {
2934 struct igb_adapter *adapter = (struct igb_adapter *)data;
2935 /* Do the rest outside of interrupt context */
2936 schedule_work(&adapter->watchdog_task);
2937 }
2938
2939 static void igb_watchdog_task(struct work_struct *work)
2940 {
2941 struct igb_adapter *adapter = container_of(work,
2942 struct igb_adapter,
2943 watchdog_task);
2944 struct e1000_hw *hw = &adapter->hw;
2945 struct net_device *netdev = adapter->netdev;
2946 struct igb_ring *tx_ring = adapter->tx_ring;
2947 u32 link;
2948 int i;
2949
2950 link = igb_has_link(adapter);
2951 if (link) {
2952 if (!netif_carrier_ok(netdev)) {
2953 u32 ctrl;
2954 hw->mac.ops.get_speed_and_duplex(hw,
2955 &adapter->link_speed,
2956 &adapter->link_duplex);
2957
2958 ctrl = rd32(E1000_CTRL);
2959 /* Links status message must follow this format */
2960 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2961 "Flow Control: %s\n",
2962 netdev->name,
2963 adapter->link_speed,
2964 adapter->link_duplex == FULL_DUPLEX ?
2965 "Full Duplex" : "Half Duplex",
2966 ((ctrl & E1000_CTRL_TFCE) &&
2967 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
2968 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2969 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
2970
2971 /* tweak tx_queue_len according to speed/duplex and
2972 * adjust the timeout factor */
2973 netdev->tx_queue_len = adapter->tx_queue_len;
2974 adapter->tx_timeout_factor = 1;
2975 switch (adapter->link_speed) {
2976 case SPEED_10:
2977 netdev->tx_queue_len = 10;
2978 adapter->tx_timeout_factor = 14;
2979 break;
2980 case SPEED_100:
2981 netdev->tx_queue_len = 100;
2982 /* maybe add some timeout factor ? */
2983 break;
2984 }
2985
2986 netif_carrier_on(netdev);
2987
2988 igb_ping_all_vfs(adapter);
2989
2990 /* link state has changed, schedule phy info update */
2991 if (!test_bit(__IGB_DOWN, &adapter->state))
2992 mod_timer(&adapter->phy_info_timer,
2993 round_jiffies(jiffies + 2 * HZ));
2994 }
2995 } else {
2996 if (netif_carrier_ok(netdev)) {
2997 adapter->link_speed = 0;
2998 adapter->link_duplex = 0;
2999 /* Links status message must follow this format */
3000 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3001 netdev->name);
3002 netif_carrier_off(netdev);
3003
3004 igb_ping_all_vfs(adapter);
3005
3006 /* link state has changed, schedule phy info update */
3007 if (!test_bit(__IGB_DOWN, &adapter->state))
3008 mod_timer(&adapter->phy_info_timer,
3009 round_jiffies(jiffies + 2 * HZ));
3010 }
3011 }
3012
3013 igb_update_stats(adapter);
3014 igb_update_adaptive(hw);
3015
3016 if (!netif_carrier_ok(netdev)) {
3017 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3018 /* We've lost link, so the controller stops DMA,
3019 * but we've got queued Tx work that's never going
3020 * to get done, so reset controller to flush Tx.
3021 * (Do the reset outside of interrupt context). */
3022 adapter->tx_timeout_count++;
3023 schedule_work(&adapter->reset_task);
3024 /* return immediately since reset is imminent */
3025 return;
3026 }
3027 }
3028
3029 /* Force detection of hung controller every watchdog period */
3030 for (i = 0; i < adapter->num_tx_queues; i++)
3031 adapter->tx_ring[i].detect_tx_hung = true;
3032
3033 /* Cause software interrupt to ensure rx ring is cleaned */
3034 if (adapter->msix_entries) {
3035 u32 eics = 0;
3036 for (i = 0; i < adapter->num_q_vectors; i++) {
3037 struct igb_q_vector *q_vector = adapter->q_vector[i];
3038 eics |= q_vector->eims_value;
3039 }
3040 wr32(E1000_EICS, eics);
3041 } else {
3042 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3043 }
3044
3045 /* Reset the timer */
3046 if (!test_bit(__IGB_DOWN, &adapter->state))
3047 mod_timer(&adapter->watchdog_timer,
3048 round_jiffies(jiffies + 2 * HZ));
3049 }
3050
3051 enum latency_range {
3052 lowest_latency = 0,
3053 low_latency = 1,
3054 bulk_latency = 2,
3055 latency_invalid = 255
3056 };
3057
3058 /**
3059 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3060 *
3061 * Stores a new ITR value based on strictly on packet size. This
3062 * algorithm is less sophisticated than that used in igb_update_itr,
3063 * due to the difficulty of synchronizing statistics across multiple
3064 * receive rings. The divisors and thresholds used by this fuction
3065 * were determined based on theoretical maximum wire speed and testing
3066 * data, in order to minimize response time while increasing bulk
3067 * throughput.
3068 * This functionality is controlled by the InterruptThrottleRate module
3069 * parameter (see igb_param.c)
3070 * NOTE: This function is called only when operating in a multiqueue
3071 * receive environment.
3072 * @q_vector: pointer to q_vector
3073 **/
3074 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3075 {
3076 int new_val = q_vector->itr_val;
3077 int avg_wire_size = 0;
3078 struct igb_adapter *adapter = q_vector->adapter;
3079
3080 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3081 * ints/sec - ITR timer value of 120 ticks.
3082 */
3083 if (adapter->link_speed != SPEED_1000) {
3084 new_val = 976;
3085 goto set_itr_val;
3086 }
3087
3088 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3089 struct igb_ring *ring = q_vector->rx_ring;
3090 avg_wire_size = ring->total_bytes / ring->total_packets;
3091 }
3092
3093 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3094 struct igb_ring *ring = q_vector->tx_ring;
3095 avg_wire_size = max_t(u32, avg_wire_size,
3096 (ring->total_bytes /
3097 ring->total_packets));
3098 }
3099
3100 /* if avg_wire_size isn't set no work was done */
3101 if (!avg_wire_size)
3102 goto clear_counts;
3103
3104 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3105 avg_wire_size += 24;
3106
3107 /* Don't starve jumbo frames */
3108 avg_wire_size = min(avg_wire_size, 3000);
3109
3110 /* Give a little boost to mid-size frames */
3111 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3112 new_val = avg_wire_size / 3;
3113 else
3114 new_val = avg_wire_size / 2;
3115
3116 set_itr_val:
3117 if (new_val != q_vector->itr_val) {
3118 q_vector->itr_val = new_val;
3119 q_vector->set_itr = 1;
3120 }
3121 clear_counts:
3122 if (q_vector->rx_ring) {
3123 q_vector->rx_ring->total_bytes = 0;
3124 q_vector->rx_ring->total_packets = 0;
3125 }
3126 if (q_vector->tx_ring) {
3127 q_vector->tx_ring->total_bytes = 0;
3128 q_vector->tx_ring->total_packets = 0;
3129 }
3130 }
3131
3132 /**
3133 * igb_update_itr - update the dynamic ITR value based on statistics
3134 * Stores a new ITR value based on packets and byte
3135 * counts during the last interrupt. The advantage of per interrupt
3136 * computation is faster updates and more accurate ITR for the current
3137 * traffic pattern. Constants in this function were computed
3138 * based on theoretical maximum wire speed and thresholds were set based
3139 * on testing data as well as attempting to minimize response time
3140 * while increasing bulk throughput.
3141 * this functionality is controlled by the InterruptThrottleRate module
3142 * parameter (see igb_param.c)
3143 * NOTE: These calculations are only valid when operating in a single-
3144 * queue environment.
3145 * @adapter: pointer to adapter
3146 * @itr_setting: current q_vector->itr_val
3147 * @packets: the number of packets during this measurement interval
3148 * @bytes: the number of bytes during this measurement interval
3149 **/
3150 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3151 int packets, int bytes)
3152 {
3153 unsigned int retval = itr_setting;
3154
3155 if (packets == 0)
3156 goto update_itr_done;
3157
3158 switch (itr_setting) {
3159 case lowest_latency:
3160 /* handle TSO and jumbo frames */
3161 if (bytes/packets > 8000)
3162 retval = bulk_latency;
3163 else if ((packets < 5) && (bytes > 512))
3164 retval = low_latency;
3165 break;
3166 case low_latency: /* 50 usec aka 20000 ints/s */
3167 if (bytes > 10000) {
3168 /* this if handles the TSO accounting */
3169 if (bytes/packets > 8000) {
3170 retval = bulk_latency;
3171 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3172 retval = bulk_latency;
3173 } else if ((packets > 35)) {
3174 retval = lowest_latency;
3175 }
3176 } else if (bytes/packets > 2000) {
3177 retval = bulk_latency;
3178 } else if (packets <= 2 && bytes < 512) {
3179 retval = lowest_latency;
3180 }
3181 break;
3182 case bulk_latency: /* 250 usec aka 4000 ints/s */
3183 if (bytes > 25000) {
3184 if (packets > 35)
3185 retval = low_latency;
3186 } else if (bytes < 1500) {
3187 retval = low_latency;
3188 }
3189 break;
3190 }
3191
3192 update_itr_done:
3193 return retval;
3194 }
3195
3196 static void igb_set_itr(struct igb_adapter *adapter)
3197 {
3198 struct igb_q_vector *q_vector = adapter->q_vector[0];
3199 u16 current_itr;
3200 u32 new_itr = q_vector->itr_val;
3201
3202 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3203 if (adapter->link_speed != SPEED_1000) {
3204 current_itr = 0;
3205 new_itr = 4000;
3206 goto set_itr_now;
3207 }
3208
3209 adapter->rx_itr = igb_update_itr(adapter,
3210 adapter->rx_itr,
3211 adapter->rx_ring->total_packets,
3212 adapter->rx_ring->total_bytes);
3213
3214 adapter->tx_itr = igb_update_itr(adapter,
3215 adapter->tx_itr,
3216 adapter->tx_ring->total_packets,
3217 adapter->tx_ring->total_bytes);
3218 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3219
3220 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3221 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3222 current_itr = low_latency;
3223
3224 switch (current_itr) {
3225 /* counts and packets in update_itr are dependent on these numbers */
3226 case lowest_latency:
3227 new_itr = 56; /* aka 70,000 ints/sec */
3228 break;
3229 case low_latency:
3230 new_itr = 196; /* aka 20,000 ints/sec */
3231 break;
3232 case bulk_latency:
3233 new_itr = 980; /* aka 4,000 ints/sec */
3234 break;
3235 default:
3236 break;
3237 }
3238
3239 set_itr_now:
3240 adapter->rx_ring->total_bytes = 0;
3241 adapter->rx_ring->total_packets = 0;
3242 adapter->tx_ring->total_bytes = 0;
3243 adapter->tx_ring->total_packets = 0;
3244
3245 if (new_itr != q_vector->itr_val) {
3246 /* this attempts to bias the interrupt rate towards Bulk
3247 * by adding intermediate steps when interrupt rate is
3248 * increasing */
3249 new_itr = new_itr > q_vector->itr_val ?
3250 max((new_itr * q_vector->itr_val) /
3251 (new_itr + (q_vector->itr_val >> 2)),
3252 new_itr) :
3253 new_itr;
3254 /* Don't write the value here; it resets the adapter's
3255 * internal timer, and causes us to delay far longer than
3256 * we should between interrupts. Instead, we write the ITR
3257 * value at the beginning of the next interrupt so the timing
3258 * ends up being correct.
3259 */
3260 q_vector->itr_val = new_itr;
3261 q_vector->set_itr = 1;
3262 }
3263
3264 return;
3265 }
3266
3267 #define IGB_TX_FLAGS_CSUM 0x00000001
3268 #define IGB_TX_FLAGS_VLAN 0x00000002
3269 #define IGB_TX_FLAGS_TSO 0x00000004
3270 #define IGB_TX_FLAGS_IPV4 0x00000008
3271 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3272 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3273 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3274
3275 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3276 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3277 {
3278 struct e1000_adv_tx_context_desc *context_desc;
3279 unsigned int i;
3280 int err;
3281 struct igb_buffer *buffer_info;
3282 u32 info = 0, tu_cmd = 0;
3283 u32 mss_l4len_idx, l4len;
3284 *hdr_len = 0;
3285
3286 if (skb_header_cloned(skb)) {
3287 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3288 if (err)
3289 return err;
3290 }
3291
3292 l4len = tcp_hdrlen(skb);
3293 *hdr_len += l4len;
3294
3295 if (skb->protocol == htons(ETH_P_IP)) {
3296 struct iphdr *iph = ip_hdr(skb);
3297 iph->tot_len = 0;
3298 iph->check = 0;
3299 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3300 iph->daddr, 0,
3301 IPPROTO_TCP,
3302 0);
3303 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3304 ipv6_hdr(skb)->payload_len = 0;
3305 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3306 &ipv6_hdr(skb)->daddr,
3307 0, IPPROTO_TCP, 0);
3308 }
3309
3310 i = tx_ring->next_to_use;
3311
3312 buffer_info = &tx_ring->buffer_info[i];
3313 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3314 /* VLAN MACLEN IPLEN */
3315 if (tx_flags & IGB_TX_FLAGS_VLAN)
3316 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3317 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3318 *hdr_len += skb_network_offset(skb);
3319 info |= skb_network_header_len(skb);
3320 *hdr_len += skb_network_header_len(skb);
3321 context_desc->vlan_macip_lens = cpu_to_le32(info);
3322
3323 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3324 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3325
3326 if (skb->protocol == htons(ETH_P_IP))
3327 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3328 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3329
3330 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3331
3332 /* MSS L4LEN IDX */
3333 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3334 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3335
3336 /* For 82575, context index must be unique per ring. */
3337 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3338 mss_l4len_idx |= tx_ring->reg_idx << 4;
3339
3340 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3341 context_desc->seqnum_seed = 0;
3342
3343 buffer_info->time_stamp = jiffies;
3344 buffer_info->next_to_watch = i;
3345 buffer_info->dma = 0;
3346 i++;
3347 if (i == tx_ring->count)
3348 i = 0;
3349
3350 tx_ring->next_to_use = i;
3351
3352 return true;
3353 }
3354
3355 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3356 struct sk_buff *skb, u32 tx_flags)
3357 {
3358 struct e1000_adv_tx_context_desc *context_desc;
3359 struct pci_dev *pdev = tx_ring->pdev;
3360 struct igb_buffer *buffer_info;
3361 u32 info = 0, tu_cmd = 0;
3362 unsigned int i;
3363
3364 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3365 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3366 i = tx_ring->next_to_use;
3367 buffer_info = &tx_ring->buffer_info[i];
3368 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3369
3370 if (tx_flags & IGB_TX_FLAGS_VLAN)
3371 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3372
3373 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3374 if (skb->ip_summed == CHECKSUM_PARTIAL)
3375 info |= skb_network_header_len(skb);
3376
3377 context_desc->vlan_macip_lens = cpu_to_le32(info);
3378
3379 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3380
3381 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3382 __be16 protocol;
3383
3384 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3385 const struct vlan_ethhdr *vhdr =
3386 (const struct vlan_ethhdr*)skb->data;
3387
3388 protocol = vhdr->h_vlan_encapsulated_proto;
3389 } else {
3390 protocol = skb->protocol;
3391 }
3392
3393 switch (protocol) {
3394 case cpu_to_be16(ETH_P_IP):
3395 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3396 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3397 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3398 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3399 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3400 break;
3401 case cpu_to_be16(ETH_P_IPV6):
3402 /* XXX what about other V6 headers?? */
3403 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3404 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3405 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3406 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3407 break;
3408 default:
3409 if (unlikely(net_ratelimit()))
3410 dev_warn(&pdev->dev,
3411 "partial checksum but proto=%x!\n",
3412 skb->protocol);
3413 break;
3414 }
3415 }
3416
3417 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3418 context_desc->seqnum_seed = 0;
3419 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3420 context_desc->mss_l4len_idx =
3421 cpu_to_le32(tx_ring->reg_idx << 4);
3422
3423 buffer_info->time_stamp = jiffies;
3424 buffer_info->next_to_watch = i;
3425 buffer_info->dma = 0;
3426
3427 i++;
3428 if (i == tx_ring->count)
3429 i = 0;
3430 tx_ring->next_to_use = i;
3431
3432 return true;
3433 }
3434 return false;
3435 }
3436
3437 #define IGB_MAX_TXD_PWR 16
3438 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3439
3440 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3441 unsigned int first)
3442 {
3443 struct igb_buffer *buffer_info;
3444 struct pci_dev *pdev = tx_ring->pdev;
3445 unsigned int len = skb_headlen(skb);
3446 unsigned int count = 0, i;
3447 unsigned int f;
3448 dma_addr_t *map;
3449
3450 i = tx_ring->next_to_use;
3451
3452 if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
3453 dev_err(&pdev->dev, "TX DMA map failed\n");
3454 return 0;
3455 }
3456
3457 map = skb_shinfo(skb)->dma_maps;
3458
3459 buffer_info = &tx_ring->buffer_info[i];
3460 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3461 buffer_info->length = len;
3462 /* set time_stamp *before* dma to help avoid a possible race */
3463 buffer_info->time_stamp = jiffies;
3464 buffer_info->next_to_watch = i;
3465 buffer_info->dma = skb_shinfo(skb)->dma_head;
3466
3467 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3468 struct skb_frag_struct *frag;
3469
3470 i++;
3471 if (i == tx_ring->count)
3472 i = 0;
3473
3474 frag = &skb_shinfo(skb)->frags[f];
3475 len = frag->size;
3476
3477 buffer_info = &tx_ring->buffer_info[i];
3478 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3479 buffer_info->length = len;
3480 buffer_info->time_stamp = jiffies;
3481 buffer_info->next_to_watch = i;
3482 buffer_info->dma = map[count];
3483 count++;
3484 }
3485
3486 tx_ring->buffer_info[i].skb = skb;
3487 tx_ring->buffer_info[first].next_to_watch = i;
3488
3489 return ++count;
3490 }
3491
3492 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3493 int tx_flags, int count, u32 paylen,
3494 u8 hdr_len)
3495 {
3496 union e1000_adv_tx_desc *tx_desc;
3497 struct igb_buffer *buffer_info;
3498 u32 olinfo_status = 0, cmd_type_len;
3499 unsigned int i = tx_ring->next_to_use;
3500
3501 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3502 E1000_ADVTXD_DCMD_DEXT);
3503
3504 if (tx_flags & IGB_TX_FLAGS_VLAN)
3505 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3506
3507 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3508 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3509
3510 if (tx_flags & IGB_TX_FLAGS_TSO) {
3511 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3512
3513 /* insert tcp checksum */
3514 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3515
3516 /* insert ip checksum */
3517 if (tx_flags & IGB_TX_FLAGS_IPV4)
3518 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3519
3520 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3521 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3522 }
3523
3524 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3525 (tx_flags & (IGB_TX_FLAGS_CSUM |
3526 IGB_TX_FLAGS_TSO |
3527 IGB_TX_FLAGS_VLAN)))
3528 olinfo_status |= tx_ring->reg_idx << 4;
3529
3530 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3531
3532 do {
3533 buffer_info = &tx_ring->buffer_info[i];
3534 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3535 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3536 tx_desc->read.cmd_type_len =
3537 cpu_to_le32(cmd_type_len | buffer_info->length);
3538 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3539 count--;
3540 i++;
3541 if (i == tx_ring->count)
3542 i = 0;
3543 } while (count > 0);
3544
3545 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3546 /* Force memory writes to complete before letting h/w
3547 * know there are new descriptors to fetch. (Only
3548 * applicable for weak-ordered memory model archs,
3549 * such as IA-64). */
3550 wmb();
3551
3552 tx_ring->next_to_use = i;
3553 writel(i, tx_ring->tail);
3554 /* we need this if more than one processor can write to our tail
3555 * at a time, it syncronizes IO on IA64/Altix systems */
3556 mmiowb();
3557 }
3558
3559 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3560 {
3561 struct net_device *netdev = tx_ring->netdev;
3562
3563 netif_stop_subqueue(netdev, tx_ring->queue_index);
3564
3565 /* Herbert's original patch had:
3566 * smp_mb__after_netif_stop_queue();
3567 * but since that doesn't exist yet, just open code it. */
3568 smp_mb();
3569
3570 /* We need to check again in a case another CPU has just
3571 * made room available. */
3572 if (igb_desc_unused(tx_ring) < size)
3573 return -EBUSY;
3574
3575 /* A reprieve! */
3576 netif_wake_subqueue(netdev, tx_ring->queue_index);
3577 tx_ring->tx_stats.restart_queue++;
3578 return 0;
3579 }
3580
3581 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3582 {
3583 if (igb_desc_unused(tx_ring) >= size)
3584 return 0;
3585 return __igb_maybe_stop_tx(tx_ring, size);
3586 }
3587
3588 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3589 struct igb_ring *tx_ring)
3590 {
3591 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3592 unsigned int first;
3593 unsigned int tx_flags = 0;
3594 u8 hdr_len = 0;
3595 int tso = 0, count;
3596 union skb_shared_tx *shtx = skb_tx(skb);
3597
3598 /* need: 1 descriptor per page,
3599 * + 2 desc gap to keep tail from touching head,
3600 * + 1 desc for skb->data,
3601 * + 1 desc for context descriptor,
3602 * otherwise try next time */
3603 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3604 /* this is a hard error */
3605 return NETDEV_TX_BUSY;
3606 }
3607
3608 if (unlikely(shtx->hardware)) {
3609 shtx->in_progress = 1;
3610 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3611 }
3612
3613 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3614 tx_flags |= IGB_TX_FLAGS_VLAN;
3615 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3616 }
3617
3618 if (skb->protocol == htons(ETH_P_IP))
3619 tx_flags |= IGB_TX_FLAGS_IPV4;
3620
3621 first = tx_ring->next_to_use;
3622 if (skb_is_gso(skb)) {
3623 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3624
3625 if (tso < 0) {
3626 dev_kfree_skb_any(skb);
3627 return NETDEV_TX_OK;
3628 }
3629 }
3630
3631 if (tso)
3632 tx_flags |= IGB_TX_FLAGS_TSO;
3633 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3634 (skb->ip_summed == CHECKSUM_PARTIAL))
3635 tx_flags |= IGB_TX_FLAGS_CSUM;
3636
3637 /*
3638 * count reflects descriptors mapped, if 0 or less then mapping error
3639 * has occured and we need to rewind the descriptor queue
3640 */
3641 count = igb_tx_map_adv(tx_ring, skb, first);
3642 if (count <= 0) {
3643 dev_kfree_skb_any(skb);
3644 tx_ring->buffer_info[first].time_stamp = 0;
3645 tx_ring->next_to_use = first;
3646 return NETDEV_TX_OK;
3647 }
3648
3649 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3650
3651 /* Make sure there is space in the ring for the next send. */
3652 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3653
3654 return NETDEV_TX_OK;
3655 }
3656
3657 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3658 struct net_device *netdev)
3659 {
3660 struct igb_adapter *adapter = netdev_priv(netdev);
3661 struct igb_ring *tx_ring;
3662 int r_idx = 0;
3663
3664 if (test_bit(__IGB_DOWN, &adapter->state)) {
3665 dev_kfree_skb_any(skb);
3666 return NETDEV_TX_OK;
3667 }
3668
3669 if (skb->len <= 0) {
3670 dev_kfree_skb_any(skb);
3671 return NETDEV_TX_OK;
3672 }
3673
3674 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3675 tx_ring = adapter->multi_tx_table[r_idx];
3676
3677 /* This goes back to the question of how to logically map a tx queue
3678 * to a flow. Right now, performance is impacted slightly negatively
3679 * if using multiple tx queues. If the stack breaks away from a
3680 * single qdisc implementation, we can look at this again. */
3681 return igb_xmit_frame_ring_adv(skb, tx_ring);
3682 }
3683
3684 /**
3685 * igb_tx_timeout - Respond to a Tx Hang
3686 * @netdev: network interface device structure
3687 **/
3688 static void igb_tx_timeout(struct net_device *netdev)
3689 {
3690 struct igb_adapter *adapter = netdev_priv(netdev);
3691 struct e1000_hw *hw = &adapter->hw;
3692
3693 /* Do the reset outside of interrupt context */
3694 adapter->tx_timeout_count++;
3695
3696 schedule_work(&adapter->reset_task);
3697 wr32(E1000_EICS,
3698 (adapter->eims_enable_mask & ~adapter->eims_other));
3699 }
3700
3701 static void igb_reset_task(struct work_struct *work)
3702 {
3703 struct igb_adapter *adapter;
3704 adapter = container_of(work, struct igb_adapter, reset_task);
3705
3706 igb_reinit_locked(adapter);
3707 }
3708
3709 /**
3710 * igb_get_stats - Get System Network Statistics
3711 * @netdev: network interface device structure
3712 *
3713 * Returns the address of the device statistics structure.
3714 * The statistics are actually updated from the timer callback.
3715 **/
3716 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3717 {
3718 /* only return the current stats */
3719 return &netdev->stats;
3720 }
3721
3722 /**
3723 * igb_change_mtu - Change the Maximum Transfer Unit
3724 * @netdev: network interface device structure
3725 * @new_mtu: new value for maximum frame size
3726 *
3727 * Returns 0 on success, negative on failure
3728 **/
3729 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3730 {
3731 struct igb_adapter *adapter = netdev_priv(netdev);
3732 struct pci_dev *pdev = adapter->pdev;
3733 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3734 u32 rx_buffer_len, i;
3735
3736 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3737 dev_err(&pdev->dev, "Invalid MTU setting\n");
3738 return -EINVAL;
3739 }
3740
3741 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3742 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3743 return -EINVAL;
3744 }
3745
3746 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3747 msleep(1);
3748
3749 /* igb_down has a dependency on max_frame_size */
3750 adapter->max_frame_size = max_frame;
3751
3752 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3753 * means we reserve 2 more, this pushes us to allocate from the next
3754 * larger slab size.
3755 * i.e. RXBUFFER_2048 --> size-4096 slab
3756 */
3757
3758 if (max_frame <= IGB_RXBUFFER_1024)
3759 rx_buffer_len = IGB_RXBUFFER_1024;
3760 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3761 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3762 else
3763 rx_buffer_len = IGB_RXBUFFER_128;
3764
3765 if (netif_running(netdev))
3766 igb_down(adapter);
3767
3768 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3769 netdev->mtu, new_mtu);
3770 netdev->mtu = new_mtu;
3771
3772 for (i = 0; i < adapter->num_rx_queues; i++)
3773 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3774
3775 if (netif_running(netdev))
3776 igb_up(adapter);
3777 else
3778 igb_reset(adapter);
3779
3780 clear_bit(__IGB_RESETTING, &adapter->state);
3781
3782 return 0;
3783 }
3784
3785 /**
3786 * igb_update_stats - Update the board statistics counters
3787 * @adapter: board private structure
3788 **/
3789
3790 void igb_update_stats(struct igb_adapter *adapter)
3791 {
3792 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
3793 struct e1000_hw *hw = &adapter->hw;
3794 struct pci_dev *pdev = adapter->pdev;
3795 u32 rnbc;
3796 u16 phy_tmp;
3797 int i;
3798 u64 bytes, packets;
3799
3800 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3801
3802 /*
3803 * Prevent stats update while adapter is being reset, or if the pci
3804 * connection is down.
3805 */
3806 if (adapter->link_speed == 0)
3807 return;
3808 if (pci_channel_offline(pdev))
3809 return;
3810
3811 bytes = 0;
3812 packets = 0;
3813 for (i = 0; i < adapter->num_rx_queues; i++) {
3814 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3815 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3816 net_stats->rx_fifo_errors += rqdpc_tmp;
3817 bytes += adapter->rx_ring[i].rx_stats.bytes;
3818 packets += adapter->rx_ring[i].rx_stats.packets;
3819 }
3820
3821 net_stats->rx_bytes = bytes;
3822 net_stats->rx_packets = packets;
3823
3824 bytes = 0;
3825 packets = 0;
3826 for (i = 0; i < adapter->num_tx_queues; i++) {
3827 bytes += adapter->tx_ring[i].tx_stats.bytes;
3828 packets += adapter->tx_ring[i].tx_stats.packets;
3829 }
3830 net_stats->tx_bytes = bytes;
3831 net_stats->tx_packets = packets;
3832
3833 /* read stats registers */
3834 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3835 adapter->stats.gprc += rd32(E1000_GPRC);
3836 adapter->stats.gorc += rd32(E1000_GORCL);
3837 rd32(E1000_GORCH); /* clear GORCL */
3838 adapter->stats.bprc += rd32(E1000_BPRC);
3839 adapter->stats.mprc += rd32(E1000_MPRC);
3840 adapter->stats.roc += rd32(E1000_ROC);
3841
3842 adapter->stats.prc64 += rd32(E1000_PRC64);
3843 adapter->stats.prc127 += rd32(E1000_PRC127);
3844 adapter->stats.prc255 += rd32(E1000_PRC255);
3845 adapter->stats.prc511 += rd32(E1000_PRC511);
3846 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3847 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3848 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3849 adapter->stats.sec += rd32(E1000_SEC);
3850
3851 adapter->stats.mpc += rd32(E1000_MPC);
3852 adapter->stats.scc += rd32(E1000_SCC);
3853 adapter->stats.ecol += rd32(E1000_ECOL);
3854 adapter->stats.mcc += rd32(E1000_MCC);
3855 adapter->stats.latecol += rd32(E1000_LATECOL);
3856 adapter->stats.dc += rd32(E1000_DC);
3857 adapter->stats.rlec += rd32(E1000_RLEC);
3858 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3859 adapter->stats.xontxc += rd32(E1000_XONTXC);
3860 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3861 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3862 adapter->stats.fcruc += rd32(E1000_FCRUC);
3863 adapter->stats.gptc += rd32(E1000_GPTC);
3864 adapter->stats.gotc += rd32(E1000_GOTCL);
3865 rd32(E1000_GOTCH); /* clear GOTCL */
3866 rnbc = rd32(E1000_RNBC);
3867 adapter->stats.rnbc += rnbc;
3868 net_stats->rx_fifo_errors += rnbc;
3869 adapter->stats.ruc += rd32(E1000_RUC);
3870 adapter->stats.rfc += rd32(E1000_RFC);
3871 adapter->stats.rjc += rd32(E1000_RJC);
3872 adapter->stats.tor += rd32(E1000_TORH);
3873 adapter->stats.tot += rd32(E1000_TOTH);
3874 adapter->stats.tpr += rd32(E1000_TPR);
3875
3876 adapter->stats.ptc64 += rd32(E1000_PTC64);
3877 adapter->stats.ptc127 += rd32(E1000_PTC127);
3878 adapter->stats.ptc255 += rd32(E1000_PTC255);
3879 adapter->stats.ptc511 += rd32(E1000_PTC511);
3880 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3881 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3882
3883 adapter->stats.mptc += rd32(E1000_MPTC);
3884 adapter->stats.bptc += rd32(E1000_BPTC);
3885
3886 /* used for adaptive IFS */
3887 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3888 adapter->stats.tpt += hw->mac.tx_packet_delta;
3889 hw->mac.collision_delta = rd32(E1000_COLC);
3890 adapter->stats.colc += hw->mac.collision_delta;
3891
3892 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3893 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3894 adapter->stats.tncrs += rd32(E1000_TNCRS);
3895 adapter->stats.tsctc += rd32(E1000_TSCTC);
3896 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3897
3898 adapter->stats.iac += rd32(E1000_IAC);
3899 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3900 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3901 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3902 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3903 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3904 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3905 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3906 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3907
3908 /* Fill out the OS statistics structure */
3909 net_stats->multicast = adapter->stats.mprc;
3910 net_stats->collisions = adapter->stats.colc;
3911
3912 /* Rx Errors */
3913
3914 /* RLEC on some newer hardware can be incorrect so build
3915 * our own version based on RUC and ROC */
3916 net_stats->rx_errors = adapter->stats.rxerrc +
3917 adapter->stats.crcerrs + adapter->stats.algnerrc +
3918 adapter->stats.ruc + adapter->stats.roc +
3919 adapter->stats.cexterr;
3920 net_stats->rx_length_errors = adapter->stats.ruc +
3921 adapter->stats.roc;
3922 net_stats->rx_crc_errors = adapter->stats.crcerrs;
3923 net_stats->rx_frame_errors = adapter->stats.algnerrc;
3924 net_stats->rx_missed_errors = adapter->stats.mpc;
3925
3926 /* Tx Errors */
3927 net_stats->tx_errors = adapter->stats.ecol +
3928 adapter->stats.latecol;
3929 net_stats->tx_aborted_errors = adapter->stats.ecol;
3930 net_stats->tx_window_errors = adapter->stats.latecol;
3931 net_stats->tx_carrier_errors = adapter->stats.tncrs;
3932
3933 /* Tx Dropped needs to be maintained elsewhere */
3934
3935 /* Phy Stats */
3936 if (hw->phy.media_type == e1000_media_type_copper) {
3937 if ((adapter->link_speed == SPEED_1000) &&
3938 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3939 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3940 adapter->phy_stats.idle_errors += phy_tmp;
3941 }
3942 }
3943
3944 /* Management Stats */
3945 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3946 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3947 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3948 }
3949
3950 static irqreturn_t igb_msix_other(int irq, void *data)
3951 {
3952 struct igb_adapter *adapter = data;
3953 struct e1000_hw *hw = &adapter->hw;
3954 u32 icr = rd32(E1000_ICR);
3955 /* reading ICR causes bit 31 of EICR to be cleared */
3956
3957 if (icr & E1000_ICR_DOUTSYNC) {
3958 /* HW is reporting DMA is out of sync */
3959 adapter->stats.doosync++;
3960 }
3961
3962 /* Check for a mailbox event */
3963 if (icr & E1000_ICR_VMMB)
3964 igb_msg_task(adapter);
3965
3966 if (icr & E1000_ICR_LSC) {
3967 hw->mac.get_link_status = 1;
3968 /* guard against interrupt when we're going down */
3969 if (!test_bit(__IGB_DOWN, &adapter->state))
3970 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3971 }
3972
3973 if (adapter->vfs_allocated_count)
3974 wr32(E1000_IMS, E1000_IMS_LSC |
3975 E1000_IMS_VMMB |
3976 E1000_IMS_DOUTSYNC);
3977 else
3978 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3979 wr32(E1000_EIMS, adapter->eims_other);
3980
3981 return IRQ_HANDLED;
3982 }
3983
3984 static void igb_write_itr(struct igb_q_vector *q_vector)
3985 {
3986 u32 itr_val = q_vector->itr_val & 0x7FFC;
3987
3988 if (!q_vector->set_itr)
3989 return;
3990
3991 if (!itr_val)
3992 itr_val = 0x4;
3993
3994 if (q_vector->itr_shift)
3995 itr_val |= itr_val << q_vector->itr_shift;
3996 else
3997 itr_val |= 0x8000000;
3998
3999 writel(itr_val, q_vector->itr_register);
4000 q_vector->set_itr = 0;
4001 }
4002
4003 static irqreturn_t igb_msix_ring(int irq, void *data)
4004 {
4005 struct igb_q_vector *q_vector = data;
4006
4007 /* Write the ITR value calculated from the previous interrupt. */
4008 igb_write_itr(q_vector);
4009
4010 napi_schedule(&q_vector->napi);
4011
4012 return IRQ_HANDLED;
4013 }
4014
4015 #ifdef CONFIG_IGB_DCA
4016 static void igb_update_dca(struct igb_q_vector *q_vector)
4017 {
4018 struct igb_adapter *adapter = q_vector->adapter;
4019 struct e1000_hw *hw = &adapter->hw;
4020 int cpu = get_cpu();
4021
4022 if (q_vector->cpu == cpu)
4023 goto out_no_update;
4024
4025 if (q_vector->tx_ring) {
4026 int q = q_vector->tx_ring->reg_idx;
4027 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4028 if (hw->mac.type == e1000_82575) {
4029 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4030 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4031 } else {
4032 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4033 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4034 E1000_DCA_TXCTRL_CPUID_SHIFT;
4035 }
4036 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4037 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4038 }
4039 if (q_vector->rx_ring) {
4040 int q = q_vector->rx_ring->reg_idx;
4041 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4042 if (hw->mac.type == e1000_82575) {
4043 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4044 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4045 } else {
4046 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4047 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4048 E1000_DCA_RXCTRL_CPUID_SHIFT;
4049 }
4050 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4051 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4052 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4053 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4054 }
4055 q_vector->cpu = cpu;
4056 out_no_update:
4057 put_cpu();
4058 }
4059
4060 static void igb_setup_dca(struct igb_adapter *adapter)
4061 {
4062 struct e1000_hw *hw = &adapter->hw;
4063 int i;
4064
4065 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4066 return;
4067
4068 /* Always use CB2 mode, difference is masked in the CB driver. */
4069 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4070
4071 for (i = 0; i < adapter->num_q_vectors; i++) {
4072 struct igb_q_vector *q_vector = adapter->q_vector[i];
4073 q_vector->cpu = -1;
4074 igb_update_dca(q_vector);
4075 }
4076 }
4077
4078 static int __igb_notify_dca(struct device *dev, void *data)
4079 {
4080 struct net_device *netdev = dev_get_drvdata(dev);
4081 struct igb_adapter *adapter = netdev_priv(netdev);
4082 struct pci_dev *pdev = adapter->pdev;
4083 struct e1000_hw *hw = &adapter->hw;
4084 unsigned long event = *(unsigned long *)data;
4085
4086 switch (event) {
4087 case DCA_PROVIDER_ADD:
4088 /* if already enabled, don't do it again */
4089 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4090 break;
4091 if (dca_add_requester(dev) == 0) {
4092 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4093 dev_info(&pdev->dev, "DCA enabled\n");
4094 igb_setup_dca(adapter);
4095 break;
4096 }
4097 /* Fall Through since DCA is disabled. */
4098 case DCA_PROVIDER_REMOVE:
4099 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4100 /* without this a class_device is left
4101 * hanging around in the sysfs model */
4102 dca_remove_requester(dev);
4103 dev_info(&pdev->dev, "DCA disabled\n");
4104 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4105 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4106 }
4107 break;
4108 }
4109
4110 return 0;
4111 }
4112
4113 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4114 void *p)
4115 {
4116 int ret_val;
4117
4118 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4119 __igb_notify_dca);
4120
4121 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4122 }
4123 #endif /* CONFIG_IGB_DCA */
4124
4125 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4126 {
4127 struct e1000_hw *hw = &adapter->hw;
4128 u32 ping;
4129 int i;
4130
4131 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4132 ping = E1000_PF_CONTROL_MSG;
4133 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4134 ping |= E1000_VT_MSGTYPE_CTS;
4135 igb_write_mbx(hw, &ping, 1, i);
4136 }
4137 }
4138
4139 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4140 {
4141 struct e1000_hw *hw = &adapter->hw;
4142 u32 vmolr = rd32(E1000_VMOLR(vf));
4143 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4144
4145 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4146 IGB_VF_FLAG_MULTI_PROMISC);
4147 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4148
4149 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4150 vmolr |= E1000_VMOLR_MPME;
4151 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4152 } else {
4153 /*
4154 * if we have hashes and we are clearing a multicast promisc
4155 * flag we need to write the hashes to the MTA as this step
4156 * was previously skipped
4157 */
4158 if (vf_data->num_vf_mc_hashes > 30) {
4159 vmolr |= E1000_VMOLR_MPME;
4160 } else if (vf_data->num_vf_mc_hashes) {
4161 int j;
4162 vmolr |= E1000_VMOLR_ROMPE;
4163 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4164 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4165 }
4166 }
4167
4168 wr32(E1000_VMOLR(vf), vmolr);
4169
4170 /* there are flags left unprocessed, likely not supported */
4171 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4172 return -EINVAL;
4173
4174 return 0;
4175
4176 }
4177
4178 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4179 u32 *msgbuf, u32 vf)
4180 {
4181 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4182 u16 *hash_list = (u16 *)&msgbuf[1];
4183 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4184 int i;
4185
4186 /* salt away the number of multicast addresses assigned
4187 * to this VF for later use to restore when the PF multi cast
4188 * list changes
4189 */
4190 vf_data->num_vf_mc_hashes = n;
4191
4192 /* only up to 30 hash values supported */
4193 if (n > 30)
4194 n = 30;
4195
4196 /* store the hashes for later use */
4197 for (i = 0; i < n; i++)
4198 vf_data->vf_mc_hashes[i] = hash_list[i];
4199
4200 /* Flush and reset the mta with the new values */
4201 igb_set_rx_mode(adapter->netdev);
4202
4203 return 0;
4204 }
4205
4206 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4207 {
4208 struct e1000_hw *hw = &adapter->hw;
4209 struct vf_data_storage *vf_data;
4210 int i, j;
4211
4212 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4213 u32 vmolr = rd32(E1000_VMOLR(i));
4214 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4215
4216 vf_data = &adapter->vf_data[i];
4217
4218 if ((vf_data->num_vf_mc_hashes > 30) ||
4219 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4220 vmolr |= E1000_VMOLR_MPME;
4221 } else if (vf_data->num_vf_mc_hashes) {
4222 vmolr |= E1000_VMOLR_ROMPE;
4223 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4224 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4225 }
4226 wr32(E1000_VMOLR(i), vmolr);
4227 }
4228 }
4229
4230 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4231 {
4232 struct e1000_hw *hw = &adapter->hw;
4233 u32 pool_mask, reg, vid;
4234 int i;
4235
4236 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4237
4238 /* Find the vlan filter for this id */
4239 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4240 reg = rd32(E1000_VLVF(i));
4241
4242 /* remove the vf from the pool */
4243 reg &= ~pool_mask;
4244
4245 /* if pool is empty then remove entry from vfta */
4246 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4247 (reg & E1000_VLVF_VLANID_ENABLE)) {
4248 reg = 0;
4249 vid = reg & E1000_VLVF_VLANID_MASK;
4250 igb_vfta_set(hw, vid, false);
4251 }
4252
4253 wr32(E1000_VLVF(i), reg);
4254 }
4255
4256 adapter->vf_data[vf].vlans_enabled = 0;
4257 }
4258
4259 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4260 {
4261 struct e1000_hw *hw = &adapter->hw;
4262 u32 reg, i;
4263
4264 /* The vlvf table only exists on 82576 hardware and newer */
4265 if (hw->mac.type < e1000_82576)
4266 return -1;
4267
4268 /* we only need to do this if VMDq is enabled */
4269 if (!adapter->vfs_allocated_count)
4270 return -1;
4271
4272 /* Find the vlan filter for this id */
4273 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4274 reg = rd32(E1000_VLVF(i));
4275 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4276 vid == (reg & E1000_VLVF_VLANID_MASK))
4277 break;
4278 }
4279
4280 if (add) {
4281 if (i == E1000_VLVF_ARRAY_SIZE) {
4282 /* Did not find a matching VLAN ID entry that was
4283 * enabled. Search for a free filter entry, i.e.
4284 * one without the enable bit set
4285 */
4286 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4287 reg = rd32(E1000_VLVF(i));
4288 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4289 break;
4290 }
4291 }
4292 if (i < E1000_VLVF_ARRAY_SIZE) {
4293 /* Found an enabled/available entry */
4294 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4295
4296 /* if !enabled we need to set this up in vfta */
4297 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4298 /* add VID to filter table */
4299 igb_vfta_set(hw, vid, true);
4300 reg |= E1000_VLVF_VLANID_ENABLE;
4301 }
4302 reg &= ~E1000_VLVF_VLANID_MASK;
4303 reg |= vid;
4304 wr32(E1000_VLVF(i), reg);
4305
4306 /* do not modify RLPML for PF devices */
4307 if (vf >= adapter->vfs_allocated_count)
4308 return 0;
4309
4310 if (!adapter->vf_data[vf].vlans_enabled) {
4311 u32 size;
4312 reg = rd32(E1000_VMOLR(vf));
4313 size = reg & E1000_VMOLR_RLPML_MASK;
4314 size += 4;
4315 reg &= ~E1000_VMOLR_RLPML_MASK;
4316 reg |= size;
4317 wr32(E1000_VMOLR(vf), reg);
4318 }
4319
4320 adapter->vf_data[vf].vlans_enabled++;
4321 return 0;
4322 }
4323 } else {
4324 if (i < E1000_VLVF_ARRAY_SIZE) {
4325 /* remove vf from the pool */
4326 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4327 /* if pool is empty then remove entry from vfta */
4328 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4329 reg = 0;
4330 igb_vfta_set(hw, vid, false);
4331 }
4332 wr32(E1000_VLVF(i), reg);
4333
4334 /* do not modify RLPML for PF devices */
4335 if (vf >= adapter->vfs_allocated_count)
4336 return 0;
4337
4338 adapter->vf_data[vf].vlans_enabled--;
4339 if (!adapter->vf_data[vf].vlans_enabled) {
4340 u32 size;
4341 reg = rd32(E1000_VMOLR(vf));
4342 size = reg & E1000_VMOLR_RLPML_MASK;
4343 size -= 4;
4344 reg &= ~E1000_VMOLR_RLPML_MASK;
4345 reg |= size;
4346 wr32(E1000_VMOLR(vf), reg);
4347 }
4348 return 0;
4349 }
4350 }
4351 return -1;
4352 }
4353
4354 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4355 {
4356 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4357 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4358
4359 return igb_vlvf_set(adapter, vid, add, vf);
4360 }
4361
4362 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4363 {
4364 /* clear all flags */
4365 adapter->vf_data[vf].flags = 0;
4366 adapter->vf_data[vf].last_nack = jiffies;
4367
4368 /* reset offloads to defaults */
4369 igb_set_vmolr(adapter, vf);
4370
4371 /* reset vlans for device */
4372 igb_clear_vf_vfta(adapter, vf);
4373
4374 /* reset multicast table array for vf */
4375 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4376
4377 /* Flush and reset the mta with the new values */
4378 igb_set_rx_mode(adapter->netdev);
4379 }
4380
4381 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4382 {
4383 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4384
4385 /* generate a new mac address as we were hotplug removed/added */
4386 random_ether_addr(vf_mac);
4387
4388 /* process remaining reset events */
4389 igb_vf_reset(adapter, vf);
4390 }
4391
4392 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4393 {
4394 struct e1000_hw *hw = &adapter->hw;
4395 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4396 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4397 u32 reg, msgbuf[3];
4398 u8 *addr = (u8 *)(&msgbuf[1]);
4399
4400 /* process all the same items cleared in a function level reset */
4401 igb_vf_reset(adapter, vf);
4402
4403 /* set vf mac address */
4404 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4405
4406 /* enable transmit and receive for vf */
4407 reg = rd32(E1000_VFTE);
4408 wr32(E1000_VFTE, reg | (1 << vf));
4409 reg = rd32(E1000_VFRE);
4410 wr32(E1000_VFRE, reg | (1 << vf));
4411
4412 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4413
4414 /* reply to reset with ack and vf mac address */
4415 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4416 memcpy(addr, vf_mac, 6);
4417 igb_write_mbx(hw, msgbuf, 3, vf);
4418 }
4419
4420 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4421 {
4422 unsigned char *addr = (char *)&msg[1];
4423 int err = -1;
4424
4425 if (is_valid_ether_addr(addr))
4426 err = igb_set_vf_mac(adapter, vf, addr);
4427
4428 return err;
4429 }
4430
4431 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4432 {
4433 struct e1000_hw *hw = &adapter->hw;
4434 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4435 u32 msg = E1000_VT_MSGTYPE_NACK;
4436
4437 /* if device isn't clear to send it shouldn't be reading either */
4438 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4439 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4440 igb_write_mbx(hw, &msg, 1, vf);
4441 vf_data->last_nack = jiffies;
4442 }
4443 }
4444
4445 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4446 {
4447 struct pci_dev *pdev = adapter->pdev;
4448 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4449 struct e1000_hw *hw = &adapter->hw;
4450 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4451 s32 retval;
4452
4453 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4454
4455 if (retval)
4456 dev_err(&pdev->dev, "Error receiving message from VF\n");
4457
4458 /* this is a message we already processed, do nothing */
4459 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4460 return;
4461
4462 /*
4463 * until the vf completes a reset it should not be
4464 * allowed to start any configuration.
4465 */
4466
4467 if (msgbuf[0] == E1000_VF_RESET) {
4468 igb_vf_reset_msg(adapter, vf);
4469 return;
4470 }
4471
4472 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4473 msgbuf[0] = E1000_VT_MSGTYPE_NACK;
4474 if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4475 igb_write_mbx(hw, msgbuf, 1, vf);
4476 vf_data->last_nack = jiffies;
4477 }
4478 return;
4479 }
4480
4481 switch ((msgbuf[0] & 0xFFFF)) {
4482 case E1000_VF_SET_MAC_ADDR:
4483 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4484 break;
4485 case E1000_VF_SET_PROMISC:
4486 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4487 break;
4488 case E1000_VF_SET_MULTICAST:
4489 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4490 break;
4491 case E1000_VF_SET_LPE:
4492 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4493 break;
4494 case E1000_VF_SET_VLAN:
4495 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4496 break;
4497 default:
4498 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4499 retval = -1;
4500 break;
4501 }
4502
4503 /* notify the VF of the results of what it sent us */
4504 if (retval)
4505 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4506 else
4507 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4508
4509 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4510
4511 igb_write_mbx(hw, msgbuf, 1, vf);
4512 }
4513
4514 static void igb_msg_task(struct igb_adapter *adapter)
4515 {
4516 struct e1000_hw *hw = &adapter->hw;
4517 u32 vf;
4518
4519 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4520 /* process any reset requests */
4521 if (!igb_check_for_rst(hw, vf))
4522 igb_vf_reset_event(adapter, vf);
4523
4524 /* process any messages pending */
4525 if (!igb_check_for_msg(hw, vf))
4526 igb_rcv_msg_from_vf(adapter, vf);
4527
4528 /* process any acks */
4529 if (!igb_check_for_ack(hw, vf))
4530 igb_rcv_ack_from_vf(adapter, vf);
4531 }
4532 }
4533
4534 /**
4535 * igb_set_uta - Set unicast filter table address
4536 * @adapter: board private structure
4537 *
4538 * The unicast table address is a register array of 32-bit registers.
4539 * The table is meant to be used in a way similar to how the MTA is used
4540 * however due to certain limitations in the hardware it is necessary to
4541 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4542 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4543 **/
4544 static void igb_set_uta(struct igb_adapter *adapter)
4545 {
4546 struct e1000_hw *hw = &adapter->hw;
4547 int i;
4548
4549 /* The UTA table only exists on 82576 hardware and newer */
4550 if (hw->mac.type < e1000_82576)
4551 return;
4552
4553 /* we only need to do this if VMDq is enabled */
4554 if (!adapter->vfs_allocated_count)
4555 return;
4556
4557 for (i = 0; i < hw->mac.uta_reg_count; i++)
4558 array_wr32(E1000_UTA, i, ~0);
4559 }
4560
4561 /**
4562 * igb_intr_msi - Interrupt Handler
4563 * @irq: interrupt number
4564 * @data: pointer to a network interface device structure
4565 **/
4566 static irqreturn_t igb_intr_msi(int irq, void *data)
4567 {
4568 struct igb_adapter *adapter = data;
4569 struct igb_q_vector *q_vector = adapter->q_vector[0];
4570 struct e1000_hw *hw = &adapter->hw;
4571 /* read ICR disables interrupts using IAM */
4572 u32 icr = rd32(E1000_ICR);
4573
4574 igb_write_itr(q_vector);
4575
4576 if (icr & E1000_ICR_DOUTSYNC) {
4577 /* HW is reporting DMA is out of sync */
4578 adapter->stats.doosync++;
4579 }
4580
4581 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4582 hw->mac.get_link_status = 1;
4583 if (!test_bit(__IGB_DOWN, &adapter->state))
4584 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4585 }
4586
4587 napi_schedule(&q_vector->napi);
4588
4589 return IRQ_HANDLED;
4590 }
4591
4592 /**
4593 * igb_intr - Legacy Interrupt Handler
4594 * @irq: interrupt number
4595 * @data: pointer to a network interface device structure
4596 **/
4597 static irqreturn_t igb_intr(int irq, void *data)
4598 {
4599 struct igb_adapter *adapter = data;
4600 struct igb_q_vector *q_vector = adapter->q_vector[0];
4601 struct e1000_hw *hw = &adapter->hw;
4602 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4603 * need for the IMC write */
4604 u32 icr = rd32(E1000_ICR);
4605 if (!icr)
4606 return IRQ_NONE; /* Not our interrupt */
4607
4608 igb_write_itr(q_vector);
4609
4610 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4611 * not set, then the adapter didn't send an interrupt */
4612 if (!(icr & E1000_ICR_INT_ASSERTED))
4613 return IRQ_NONE;
4614
4615 if (icr & E1000_ICR_DOUTSYNC) {
4616 /* HW is reporting DMA is out of sync */
4617 adapter->stats.doosync++;
4618 }
4619
4620 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4621 hw->mac.get_link_status = 1;
4622 /* guard against interrupt when we're going down */
4623 if (!test_bit(__IGB_DOWN, &adapter->state))
4624 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4625 }
4626
4627 napi_schedule(&q_vector->napi);
4628
4629 return IRQ_HANDLED;
4630 }
4631
4632 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4633 {
4634 struct igb_adapter *adapter = q_vector->adapter;
4635 struct e1000_hw *hw = &adapter->hw;
4636
4637 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4638 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4639 if (!adapter->msix_entries)
4640 igb_set_itr(adapter);
4641 else
4642 igb_update_ring_itr(q_vector);
4643 }
4644
4645 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4646 if (adapter->msix_entries)
4647 wr32(E1000_EIMS, q_vector->eims_value);
4648 else
4649 igb_irq_enable(adapter);
4650 }
4651 }
4652
4653 /**
4654 * igb_poll - NAPI Rx polling callback
4655 * @napi: napi polling structure
4656 * @budget: count of how many packets we should handle
4657 **/
4658 static int igb_poll(struct napi_struct *napi, int budget)
4659 {
4660 struct igb_q_vector *q_vector = container_of(napi,
4661 struct igb_q_vector,
4662 napi);
4663 int tx_clean_complete = 1, work_done = 0;
4664
4665 #ifdef CONFIG_IGB_DCA
4666 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4667 igb_update_dca(q_vector);
4668 #endif
4669 if (q_vector->tx_ring)
4670 tx_clean_complete = igb_clean_tx_irq(q_vector);
4671
4672 if (q_vector->rx_ring)
4673 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4674
4675 if (!tx_clean_complete)
4676 work_done = budget;
4677
4678 /* If not enough Rx work done, exit the polling mode */
4679 if (work_done < budget) {
4680 napi_complete(napi);
4681 igb_ring_irq_enable(q_vector);
4682 }
4683
4684 return work_done;
4685 }
4686
4687 /**
4688 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4689 * @adapter: board private structure
4690 * @shhwtstamps: timestamp structure to update
4691 * @regval: unsigned 64bit system time value.
4692 *
4693 * We need to convert the system time value stored in the RX/TXSTMP registers
4694 * into a hwtstamp which can be used by the upper level timestamping functions
4695 */
4696 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4697 struct skb_shared_hwtstamps *shhwtstamps,
4698 u64 regval)
4699 {
4700 u64 ns;
4701
4702 ns = timecounter_cyc2time(&adapter->clock, regval);
4703 timecompare_update(&adapter->compare, ns);
4704 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4705 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4706 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4707 }
4708
4709 /**
4710 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4711 * @q_vector: pointer to q_vector containing needed info
4712 * @skb: packet that was just sent
4713 *
4714 * If we were asked to do hardware stamping and such a time stamp is
4715 * available, then it must have been for this skb here because we only
4716 * allow only one such packet into the queue.
4717 */
4718 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4719 {
4720 struct igb_adapter *adapter = q_vector->adapter;
4721 union skb_shared_tx *shtx = skb_tx(skb);
4722 struct e1000_hw *hw = &adapter->hw;
4723 struct skb_shared_hwtstamps shhwtstamps;
4724 u64 regval;
4725
4726 /* if skb does not support hw timestamp or TX stamp not valid exit */
4727 if (likely(!shtx->hardware) ||
4728 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4729 return;
4730
4731 regval = rd32(E1000_TXSTMPL);
4732 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4733
4734 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4735 skb_tstamp_tx(skb, &shhwtstamps);
4736 }
4737
4738 /**
4739 * igb_clean_tx_irq - Reclaim resources after transmit completes
4740 * @q_vector: pointer to q_vector containing needed info
4741 * returns true if ring is completely cleaned
4742 **/
4743 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4744 {
4745 struct igb_adapter *adapter = q_vector->adapter;
4746 struct igb_ring *tx_ring = q_vector->tx_ring;
4747 struct net_device *netdev = tx_ring->netdev;
4748 struct e1000_hw *hw = &adapter->hw;
4749 struct igb_buffer *buffer_info;
4750 struct sk_buff *skb;
4751 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4752 unsigned int total_bytes = 0, total_packets = 0;
4753 unsigned int i, eop, count = 0;
4754 bool cleaned = false;
4755
4756 i = tx_ring->next_to_clean;
4757 eop = tx_ring->buffer_info[i].next_to_watch;
4758 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4759
4760 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4761 (count < tx_ring->count)) {
4762 for (cleaned = false; !cleaned; count++) {
4763 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4764 buffer_info = &tx_ring->buffer_info[i];
4765 cleaned = (i == eop);
4766 skb = buffer_info->skb;
4767
4768 if (skb) {
4769 unsigned int segs, bytecount;
4770 /* gso_segs is currently only valid for tcp */
4771 segs = skb_shinfo(skb)->gso_segs ?: 1;
4772 /* multiply data chunks by size of headers */
4773 bytecount = ((segs - 1) * skb_headlen(skb)) +
4774 skb->len;
4775 total_packets += segs;
4776 total_bytes += bytecount;
4777
4778 igb_tx_hwtstamp(q_vector, skb);
4779 }
4780
4781 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4782 tx_desc->wb.status = 0;
4783
4784 i++;
4785 if (i == tx_ring->count)
4786 i = 0;
4787 }
4788 eop = tx_ring->buffer_info[i].next_to_watch;
4789 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4790 }
4791
4792 tx_ring->next_to_clean = i;
4793
4794 if (unlikely(count &&
4795 netif_carrier_ok(netdev) &&
4796 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4797 /* Make sure that anybody stopping the queue after this
4798 * sees the new next_to_clean.
4799 */
4800 smp_mb();
4801 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4802 !(test_bit(__IGB_DOWN, &adapter->state))) {
4803 netif_wake_subqueue(netdev, tx_ring->queue_index);
4804 tx_ring->tx_stats.restart_queue++;
4805 }
4806 }
4807
4808 if (tx_ring->detect_tx_hung) {
4809 /* Detect a transmit hang in hardware, this serializes the
4810 * check with the clearing of time_stamp and movement of i */
4811 tx_ring->detect_tx_hung = false;
4812 if (tx_ring->buffer_info[i].time_stamp &&
4813 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4814 (adapter->tx_timeout_factor * HZ))
4815 && !(rd32(E1000_STATUS) &
4816 E1000_STATUS_TXOFF)) {
4817
4818 /* detected Tx unit hang */
4819 dev_err(&tx_ring->pdev->dev,
4820 "Detected Tx Unit Hang\n"
4821 " Tx Queue <%d>\n"
4822 " TDH <%x>\n"
4823 " TDT <%x>\n"
4824 " next_to_use <%x>\n"
4825 " next_to_clean <%x>\n"
4826 "buffer_info[next_to_clean]\n"
4827 " time_stamp <%lx>\n"
4828 " next_to_watch <%x>\n"
4829 " jiffies <%lx>\n"
4830 " desc.status <%x>\n",
4831 tx_ring->queue_index,
4832 readl(tx_ring->head),
4833 readl(tx_ring->tail),
4834 tx_ring->next_to_use,
4835 tx_ring->next_to_clean,
4836 tx_ring->buffer_info[eop].time_stamp,
4837 eop,
4838 jiffies,
4839 eop_desc->wb.status);
4840 netif_stop_subqueue(netdev, tx_ring->queue_index);
4841 }
4842 }
4843 tx_ring->total_bytes += total_bytes;
4844 tx_ring->total_packets += total_packets;
4845 tx_ring->tx_stats.bytes += total_bytes;
4846 tx_ring->tx_stats.packets += total_packets;
4847 return (count < tx_ring->count);
4848 }
4849
4850 /**
4851 * igb_receive_skb - helper function to handle rx indications
4852 * @q_vector: structure containing interrupt and ring information
4853 * @skb: packet to send up
4854 * @vlan_tag: vlan tag for packet
4855 **/
4856 static void igb_receive_skb(struct igb_q_vector *q_vector,
4857 struct sk_buff *skb,
4858 u16 vlan_tag)
4859 {
4860 struct igb_adapter *adapter = q_vector->adapter;
4861
4862 if (vlan_tag)
4863 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
4864 vlan_tag, skb);
4865 else
4866 napi_gro_receive(&q_vector->napi, skb);
4867 }
4868
4869 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
4870 u32 status_err, struct sk_buff *skb)
4871 {
4872 skb->ip_summed = CHECKSUM_NONE;
4873
4874 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4875 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
4876 (status_err & E1000_RXD_STAT_IXSM))
4877 return;
4878
4879 /* TCP/UDP checksum error bit is set */
4880 if (status_err &
4881 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4882 /*
4883 * work around errata with sctp packets where the TCPE aka
4884 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4885 * packets, (aka let the stack check the crc32c)
4886 */
4887 if ((skb->len == 60) &&
4888 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
4889 ring->rx_stats.csum_err++;
4890
4891 /* let the stack verify checksum errors */
4892 return;
4893 }
4894 /* It must be a TCP or UDP packet with a valid checksum */
4895 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4896 skb->ip_summed = CHECKSUM_UNNECESSARY;
4897
4898 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
4899 }
4900
4901 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
4902 struct sk_buff *skb)
4903 {
4904 struct igb_adapter *adapter = q_vector->adapter;
4905 struct e1000_hw *hw = &adapter->hw;
4906 u64 regval;
4907
4908 /*
4909 * If this bit is set, then the RX registers contain the time stamp. No
4910 * other packet will be time stamped until we read these registers, so
4911 * read the registers to make them available again. Because only one
4912 * packet can be time stamped at a time, we know that the register
4913 * values must belong to this one here and therefore we don't need to
4914 * compare any of the additional attributes stored for it.
4915 *
4916 * If nothing went wrong, then it should have a skb_shared_tx that we
4917 * can turn into a skb_shared_hwtstamps.
4918 */
4919 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
4920 return;
4921 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
4922 return;
4923
4924 regval = rd32(E1000_RXSTMPL);
4925 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4926
4927 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
4928 }
4929 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
4930 union e1000_adv_rx_desc *rx_desc)
4931 {
4932 /* HW will not DMA in data larger than the given buffer, even if it
4933 * parses the (NFS, of course) header to be larger. In that case, it
4934 * fills the header buffer and spills the rest into the page.
4935 */
4936 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4937 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4938 if (hlen > rx_ring->rx_buffer_len)
4939 hlen = rx_ring->rx_buffer_len;
4940 return hlen;
4941 }
4942
4943 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
4944 int *work_done, int budget)
4945 {
4946 struct igb_ring *rx_ring = q_vector->rx_ring;
4947 struct net_device *netdev = rx_ring->netdev;
4948 struct pci_dev *pdev = rx_ring->pdev;
4949 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4950 struct igb_buffer *buffer_info , *next_buffer;
4951 struct sk_buff *skb;
4952 bool cleaned = false;
4953 int cleaned_count = 0;
4954 unsigned int total_bytes = 0, total_packets = 0;
4955 unsigned int i;
4956 u32 staterr;
4957 u16 length;
4958 u16 vlan_tag;
4959
4960 i = rx_ring->next_to_clean;
4961 buffer_info = &rx_ring->buffer_info[i];
4962 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4963 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4964
4965 while (staterr & E1000_RXD_STAT_DD) {
4966 if (*work_done >= budget)
4967 break;
4968 (*work_done)++;
4969
4970 skb = buffer_info->skb;
4971 prefetch(skb->data - NET_IP_ALIGN);
4972 buffer_info->skb = NULL;
4973
4974 i++;
4975 if (i == rx_ring->count)
4976 i = 0;
4977
4978 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4979 prefetch(next_rxd);
4980 next_buffer = &rx_ring->buffer_info[i];
4981
4982 length = le16_to_cpu(rx_desc->wb.upper.length);
4983 cleaned = true;
4984 cleaned_count++;
4985
4986 if (buffer_info->dma) {
4987 pci_unmap_single(pdev, buffer_info->dma,
4988 rx_ring->rx_buffer_len,
4989 PCI_DMA_FROMDEVICE);
4990 buffer_info->dma = 0;
4991 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
4992 skb_put(skb, length);
4993 goto send_up;
4994 }
4995 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
4996 }
4997
4998 if (length) {
4999 pci_unmap_page(pdev, buffer_info->page_dma,
5000 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
5001 buffer_info->page_dma = 0;
5002
5003 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
5004 buffer_info->page,
5005 buffer_info->page_offset,
5006 length);
5007
5008 if (page_count(buffer_info->page) != 1)
5009 buffer_info->page = NULL;
5010 else
5011 get_page(buffer_info->page);
5012
5013 skb->len += length;
5014 skb->data_len += length;
5015 skb->truesize += length;
5016 }
5017
5018 if (!(staterr & E1000_RXD_STAT_EOP)) {
5019 buffer_info->skb = next_buffer->skb;
5020 buffer_info->dma = next_buffer->dma;
5021 next_buffer->skb = skb;
5022 next_buffer->dma = 0;
5023 goto next_desc;
5024 }
5025 send_up:
5026 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5027 dev_kfree_skb_irq(skb);
5028 goto next_desc;
5029 }
5030
5031 igb_rx_hwtstamp(q_vector, staterr, skb);
5032 total_bytes += skb->len;
5033 total_packets++;
5034
5035 igb_rx_checksum_adv(rx_ring, staterr, skb);
5036
5037 skb->protocol = eth_type_trans(skb, netdev);
5038 skb_record_rx_queue(skb, rx_ring->queue_index);
5039
5040 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5041 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5042
5043 igb_receive_skb(q_vector, skb, vlan_tag);
5044
5045 next_desc:
5046 rx_desc->wb.upper.status_error = 0;
5047
5048 /* return some buffers to hardware, one at a time is too slow */
5049 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5050 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5051 cleaned_count = 0;
5052 }
5053
5054 /* use prefetched values */
5055 rx_desc = next_rxd;
5056 buffer_info = next_buffer;
5057 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5058 }
5059
5060 rx_ring->next_to_clean = i;
5061 cleaned_count = igb_desc_unused(rx_ring);
5062
5063 if (cleaned_count)
5064 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5065
5066 rx_ring->total_packets += total_packets;
5067 rx_ring->total_bytes += total_bytes;
5068 rx_ring->rx_stats.packets += total_packets;
5069 rx_ring->rx_stats.bytes += total_bytes;
5070 return cleaned;
5071 }
5072
5073 /**
5074 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5075 * @adapter: address of board private structure
5076 **/
5077 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5078 {
5079 struct net_device *netdev = rx_ring->netdev;
5080 union e1000_adv_rx_desc *rx_desc;
5081 struct igb_buffer *buffer_info;
5082 struct sk_buff *skb;
5083 unsigned int i;
5084 int bufsz;
5085
5086 i = rx_ring->next_to_use;
5087 buffer_info = &rx_ring->buffer_info[i];
5088
5089 bufsz = rx_ring->rx_buffer_len;
5090
5091 while (cleaned_count--) {
5092 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5093
5094 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5095 if (!buffer_info->page) {
5096 buffer_info->page = netdev_alloc_page(netdev);
5097 if (!buffer_info->page) {
5098 rx_ring->rx_stats.alloc_failed++;
5099 goto no_buffers;
5100 }
5101 buffer_info->page_offset = 0;
5102 } else {
5103 buffer_info->page_offset ^= PAGE_SIZE / 2;
5104 }
5105 buffer_info->page_dma =
5106 pci_map_page(rx_ring->pdev, buffer_info->page,
5107 buffer_info->page_offset,
5108 PAGE_SIZE / 2,
5109 PCI_DMA_FROMDEVICE);
5110 if (pci_dma_mapping_error(rx_ring->pdev,
5111 buffer_info->page_dma)) {
5112 buffer_info->page_dma = 0;
5113 rx_ring->rx_stats.alloc_failed++;
5114 goto no_buffers;
5115 }
5116 }
5117
5118 skb = buffer_info->skb;
5119 if (!skb) {
5120 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5121 if (!skb) {
5122 rx_ring->rx_stats.alloc_failed++;
5123 goto no_buffers;
5124 }
5125
5126 buffer_info->skb = skb;
5127 }
5128 if (!buffer_info->dma) {
5129 buffer_info->dma = pci_map_single(rx_ring->pdev,
5130 skb->data,
5131 bufsz,
5132 PCI_DMA_FROMDEVICE);
5133 if (pci_dma_mapping_error(rx_ring->pdev,
5134 buffer_info->dma)) {
5135 buffer_info->dma = 0;
5136 rx_ring->rx_stats.alloc_failed++;
5137 goto no_buffers;
5138 }
5139 }
5140 /* Refresh the desc even if buffer_addrs didn't change because
5141 * each write-back erases this info. */
5142 if (bufsz < IGB_RXBUFFER_1024) {
5143 rx_desc->read.pkt_addr =
5144 cpu_to_le64(buffer_info->page_dma);
5145 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5146 } else {
5147 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5148 rx_desc->read.hdr_addr = 0;
5149 }
5150
5151 i++;
5152 if (i == rx_ring->count)
5153 i = 0;
5154 buffer_info = &rx_ring->buffer_info[i];
5155 }
5156
5157 no_buffers:
5158 if (rx_ring->next_to_use != i) {
5159 rx_ring->next_to_use = i;
5160 if (i == 0)
5161 i = (rx_ring->count - 1);
5162 else
5163 i--;
5164
5165 /* Force memory writes to complete before letting h/w
5166 * know there are new descriptors to fetch. (Only
5167 * applicable for weak-ordered memory model archs,
5168 * such as IA-64). */
5169 wmb();
5170 writel(i, rx_ring->tail);
5171 }
5172 }
5173
5174 /**
5175 * igb_mii_ioctl -
5176 * @netdev:
5177 * @ifreq:
5178 * @cmd:
5179 **/
5180 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5181 {
5182 struct igb_adapter *adapter = netdev_priv(netdev);
5183 struct mii_ioctl_data *data = if_mii(ifr);
5184
5185 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5186 return -EOPNOTSUPP;
5187
5188 switch (cmd) {
5189 case SIOCGMIIPHY:
5190 data->phy_id = adapter->hw.phy.addr;
5191 break;
5192 case SIOCGMIIREG:
5193 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5194 &data->val_out))
5195 return -EIO;
5196 break;
5197 case SIOCSMIIREG:
5198 default:
5199 return -EOPNOTSUPP;
5200 }
5201 return 0;
5202 }
5203
5204 /**
5205 * igb_hwtstamp_ioctl - control hardware time stamping
5206 * @netdev:
5207 * @ifreq:
5208 * @cmd:
5209 *
5210 * Outgoing time stamping can be enabled and disabled. Play nice and
5211 * disable it when requested, although it shouldn't case any overhead
5212 * when no packet needs it. At most one packet in the queue may be
5213 * marked for time stamping, otherwise it would be impossible to tell
5214 * for sure to which packet the hardware time stamp belongs.
5215 *
5216 * Incoming time stamping has to be configured via the hardware
5217 * filters. Not all combinations are supported, in particular event
5218 * type has to be specified. Matching the kind of event packet is
5219 * not supported, with the exception of "all V2 events regardless of
5220 * level 2 or 4".
5221 *
5222 **/
5223 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5224 struct ifreq *ifr, int cmd)
5225 {
5226 struct igb_adapter *adapter = netdev_priv(netdev);
5227 struct e1000_hw *hw = &adapter->hw;
5228 struct hwtstamp_config config;
5229 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5230 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5231 u32 tsync_rx_cfg = 0;
5232 bool is_l4 = false;
5233 bool is_l2 = false;
5234 u32 regval;
5235
5236 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5237 return -EFAULT;
5238
5239 /* reserved for future extensions */
5240 if (config.flags)
5241 return -EINVAL;
5242
5243 switch (config.tx_type) {
5244 case HWTSTAMP_TX_OFF:
5245 tsync_tx_ctl = 0;
5246 case HWTSTAMP_TX_ON:
5247 break;
5248 default:
5249 return -ERANGE;
5250 }
5251
5252 switch (config.rx_filter) {
5253 case HWTSTAMP_FILTER_NONE:
5254 tsync_rx_ctl = 0;
5255 break;
5256 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5257 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5258 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5259 case HWTSTAMP_FILTER_ALL:
5260 /*
5261 * register TSYNCRXCFG must be set, therefore it is not
5262 * possible to time stamp both Sync and Delay_Req messages
5263 * => fall back to time stamping all packets
5264 */
5265 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5266 config.rx_filter = HWTSTAMP_FILTER_ALL;
5267 break;
5268 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5269 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5270 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5271 is_l4 = true;
5272 break;
5273 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5274 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5275 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5276 is_l4 = true;
5277 break;
5278 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5279 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5280 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5281 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5282 is_l2 = true;
5283 is_l4 = true;
5284 config.rx_filter = HWTSTAMP_FILTER_SOME;
5285 break;
5286 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5287 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5288 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5289 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5290 is_l2 = true;
5291 is_l4 = true;
5292 config.rx_filter = HWTSTAMP_FILTER_SOME;
5293 break;
5294 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5295 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5296 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5297 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5298 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5299 is_l2 = true;
5300 break;
5301 default:
5302 return -ERANGE;
5303 }
5304
5305 if (hw->mac.type == e1000_82575) {
5306 if (tsync_rx_ctl | tsync_tx_ctl)
5307 return -EINVAL;
5308 return 0;
5309 }
5310
5311 /* enable/disable TX */
5312 regval = rd32(E1000_TSYNCTXCTL);
5313 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5314 regval |= tsync_tx_ctl;
5315 wr32(E1000_TSYNCTXCTL, regval);
5316
5317 /* enable/disable RX */
5318 regval = rd32(E1000_TSYNCRXCTL);
5319 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5320 regval |= tsync_rx_ctl;
5321 wr32(E1000_TSYNCRXCTL, regval);
5322
5323 /* define which PTP packets are time stamped */
5324 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5325
5326 /* define ethertype filter for timestamped packets */
5327 if (is_l2)
5328 wr32(E1000_ETQF(3),
5329 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5330 E1000_ETQF_1588 | /* enable timestamping */
5331 ETH_P_1588)); /* 1588 eth protocol type */
5332 else
5333 wr32(E1000_ETQF(3), 0);
5334
5335 #define PTP_PORT 319
5336 /* L4 Queue Filter[3]: filter by destination port and protocol */
5337 if (is_l4) {
5338 u32 ftqf = (IPPROTO_UDP /* UDP */
5339 | E1000_FTQF_VF_BP /* VF not compared */
5340 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5341 | E1000_FTQF_MASK); /* mask all inputs */
5342 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5343
5344 wr32(E1000_IMIR(3), htons(PTP_PORT));
5345 wr32(E1000_IMIREXT(3),
5346 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5347 if (hw->mac.type == e1000_82576) {
5348 /* enable source port check */
5349 wr32(E1000_SPQF(3), htons(PTP_PORT));
5350 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5351 }
5352 wr32(E1000_FTQF(3), ftqf);
5353 } else {
5354 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5355 }
5356 wrfl();
5357
5358 adapter->hwtstamp_config = config;
5359
5360 /* clear TX/RX time stamp registers, just to be sure */
5361 regval = rd32(E1000_TXSTMPH);
5362 regval = rd32(E1000_RXSTMPH);
5363
5364 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5365 -EFAULT : 0;
5366 }
5367
5368 /**
5369 * igb_ioctl -
5370 * @netdev:
5371 * @ifreq:
5372 * @cmd:
5373 **/
5374 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5375 {
5376 switch (cmd) {
5377 case SIOCGMIIPHY:
5378 case SIOCGMIIREG:
5379 case SIOCSMIIREG:
5380 return igb_mii_ioctl(netdev, ifr, cmd);
5381 case SIOCSHWTSTAMP:
5382 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5383 default:
5384 return -EOPNOTSUPP;
5385 }
5386 }
5387
5388 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5389 {
5390 struct igb_adapter *adapter = hw->back;
5391 u16 cap_offset;
5392
5393 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5394 if (!cap_offset)
5395 return -E1000_ERR_CONFIG;
5396
5397 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5398
5399 return 0;
5400 }
5401
5402 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5403 {
5404 struct igb_adapter *adapter = hw->back;
5405 u16 cap_offset;
5406
5407 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5408 if (!cap_offset)
5409 return -E1000_ERR_CONFIG;
5410
5411 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5412
5413 return 0;
5414 }
5415
5416 static void igb_vlan_rx_register(struct net_device *netdev,
5417 struct vlan_group *grp)
5418 {
5419 struct igb_adapter *adapter = netdev_priv(netdev);
5420 struct e1000_hw *hw = &adapter->hw;
5421 u32 ctrl, rctl;
5422
5423 igb_irq_disable(adapter);
5424 adapter->vlgrp = grp;
5425
5426 if (grp) {
5427 /* enable VLAN tag insert/strip */
5428 ctrl = rd32(E1000_CTRL);
5429 ctrl |= E1000_CTRL_VME;
5430 wr32(E1000_CTRL, ctrl);
5431
5432 /* Disable CFI check */
5433 rctl = rd32(E1000_RCTL);
5434 rctl &= ~E1000_RCTL_CFIEN;
5435 wr32(E1000_RCTL, rctl);
5436 } else {
5437 /* disable VLAN tag insert/strip */
5438 ctrl = rd32(E1000_CTRL);
5439 ctrl &= ~E1000_CTRL_VME;
5440 wr32(E1000_CTRL, ctrl);
5441 }
5442
5443 igb_rlpml_set(adapter);
5444
5445 if (!test_bit(__IGB_DOWN, &adapter->state))
5446 igb_irq_enable(adapter);
5447 }
5448
5449 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5450 {
5451 struct igb_adapter *adapter = netdev_priv(netdev);
5452 struct e1000_hw *hw = &adapter->hw;
5453 int pf_id = adapter->vfs_allocated_count;
5454
5455 /* attempt to add filter to vlvf array */
5456 igb_vlvf_set(adapter, vid, true, pf_id);
5457
5458 /* add the filter since PF can receive vlans w/o entry in vlvf */
5459 igb_vfta_set(hw, vid, true);
5460 }
5461
5462 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5463 {
5464 struct igb_adapter *adapter = netdev_priv(netdev);
5465 struct e1000_hw *hw = &adapter->hw;
5466 int pf_id = adapter->vfs_allocated_count;
5467 s32 err;
5468
5469 igb_irq_disable(adapter);
5470 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5471
5472 if (!test_bit(__IGB_DOWN, &adapter->state))
5473 igb_irq_enable(adapter);
5474
5475 /* remove vlan from VLVF table array */
5476 err = igb_vlvf_set(adapter, vid, false, pf_id);
5477
5478 /* if vid was not present in VLVF just remove it from table */
5479 if (err)
5480 igb_vfta_set(hw, vid, false);
5481 }
5482
5483 static void igb_restore_vlan(struct igb_adapter *adapter)
5484 {
5485 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5486
5487 if (adapter->vlgrp) {
5488 u16 vid;
5489 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5490 if (!vlan_group_get_device(adapter->vlgrp, vid))
5491 continue;
5492 igb_vlan_rx_add_vid(adapter->netdev, vid);
5493 }
5494 }
5495 }
5496
5497 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5498 {
5499 struct pci_dev *pdev = adapter->pdev;
5500 struct e1000_mac_info *mac = &adapter->hw.mac;
5501
5502 mac->autoneg = 0;
5503
5504 switch (spddplx) {
5505 case SPEED_10 + DUPLEX_HALF:
5506 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5507 break;
5508 case SPEED_10 + DUPLEX_FULL:
5509 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5510 break;
5511 case SPEED_100 + DUPLEX_HALF:
5512 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5513 break;
5514 case SPEED_100 + DUPLEX_FULL:
5515 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5516 break;
5517 case SPEED_1000 + DUPLEX_FULL:
5518 mac->autoneg = 1;
5519 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5520 break;
5521 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5522 default:
5523 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5524 return -EINVAL;
5525 }
5526 return 0;
5527 }
5528
5529 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5530 {
5531 struct net_device *netdev = pci_get_drvdata(pdev);
5532 struct igb_adapter *adapter = netdev_priv(netdev);
5533 struct e1000_hw *hw = &adapter->hw;
5534 u32 ctrl, rctl, status;
5535 u32 wufc = adapter->wol;
5536 #ifdef CONFIG_PM
5537 int retval = 0;
5538 #endif
5539
5540 netif_device_detach(netdev);
5541
5542 if (netif_running(netdev))
5543 igb_close(netdev);
5544
5545 igb_clear_interrupt_scheme(adapter);
5546
5547 #ifdef CONFIG_PM
5548 retval = pci_save_state(pdev);
5549 if (retval)
5550 return retval;
5551 #endif
5552
5553 status = rd32(E1000_STATUS);
5554 if (status & E1000_STATUS_LU)
5555 wufc &= ~E1000_WUFC_LNKC;
5556
5557 if (wufc) {
5558 igb_setup_rctl(adapter);
5559 igb_set_rx_mode(netdev);
5560
5561 /* turn on all-multi mode if wake on multicast is enabled */
5562 if (wufc & E1000_WUFC_MC) {
5563 rctl = rd32(E1000_RCTL);
5564 rctl |= E1000_RCTL_MPE;
5565 wr32(E1000_RCTL, rctl);
5566 }
5567
5568 ctrl = rd32(E1000_CTRL);
5569 /* advertise wake from D3Cold */
5570 #define E1000_CTRL_ADVD3WUC 0x00100000
5571 /* phy power management enable */
5572 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5573 ctrl |= E1000_CTRL_ADVD3WUC;
5574 wr32(E1000_CTRL, ctrl);
5575
5576 /* Allow time for pending master requests to run */
5577 igb_disable_pcie_master(hw);
5578
5579 wr32(E1000_WUC, E1000_WUC_PME_EN);
5580 wr32(E1000_WUFC, wufc);
5581 } else {
5582 wr32(E1000_WUC, 0);
5583 wr32(E1000_WUFC, 0);
5584 }
5585
5586 *enable_wake = wufc || adapter->en_mng_pt;
5587 if (!*enable_wake)
5588 igb_shutdown_serdes_link_82575(hw);
5589
5590 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5591 * would have already happened in close and is redundant. */
5592 igb_release_hw_control(adapter);
5593
5594 pci_disable_device(pdev);
5595
5596 return 0;
5597 }
5598
5599 #ifdef CONFIG_PM
5600 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5601 {
5602 int retval;
5603 bool wake;
5604
5605 retval = __igb_shutdown(pdev, &wake);
5606 if (retval)
5607 return retval;
5608
5609 if (wake) {
5610 pci_prepare_to_sleep(pdev);
5611 } else {
5612 pci_wake_from_d3(pdev, false);
5613 pci_set_power_state(pdev, PCI_D3hot);
5614 }
5615
5616 return 0;
5617 }
5618
5619 static int igb_resume(struct pci_dev *pdev)
5620 {
5621 struct net_device *netdev = pci_get_drvdata(pdev);
5622 struct igb_adapter *adapter = netdev_priv(netdev);
5623 struct e1000_hw *hw = &adapter->hw;
5624 u32 err;
5625
5626 pci_set_power_state(pdev, PCI_D0);
5627 pci_restore_state(pdev);
5628
5629 err = pci_enable_device_mem(pdev);
5630 if (err) {
5631 dev_err(&pdev->dev,
5632 "igb: Cannot enable PCI device from suspend\n");
5633 return err;
5634 }
5635 pci_set_master(pdev);
5636
5637 pci_enable_wake(pdev, PCI_D3hot, 0);
5638 pci_enable_wake(pdev, PCI_D3cold, 0);
5639
5640 if (igb_init_interrupt_scheme(adapter)) {
5641 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5642 return -ENOMEM;
5643 }
5644
5645 /* e1000_power_up_phy(adapter); */
5646
5647 igb_reset(adapter);
5648
5649 /* let the f/w know that the h/w is now under the control of the
5650 * driver. */
5651 igb_get_hw_control(adapter);
5652
5653 wr32(E1000_WUS, ~0);
5654
5655 if (netif_running(netdev)) {
5656 err = igb_open(netdev);
5657 if (err)
5658 return err;
5659 }
5660
5661 netif_device_attach(netdev);
5662
5663 return 0;
5664 }
5665 #endif
5666
5667 static void igb_shutdown(struct pci_dev *pdev)
5668 {
5669 bool wake;
5670
5671 __igb_shutdown(pdev, &wake);
5672
5673 if (system_state == SYSTEM_POWER_OFF) {
5674 pci_wake_from_d3(pdev, wake);
5675 pci_set_power_state(pdev, PCI_D3hot);
5676 }
5677 }
5678
5679 #ifdef CONFIG_NET_POLL_CONTROLLER
5680 /*
5681 * Polling 'interrupt' - used by things like netconsole to send skbs
5682 * without having to re-enable interrupts. It's not called while
5683 * the interrupt routine is executing.
5684 */
5685 static void igb_netpoll(struct net_device *netdev)
5686 {
5687 struct igb_adapter *adapter = netdev_priv(netdev);
5688 struct e1000_hw *hw = &adapter->hw;
5689 int i;
5690
5691 if (!adapter->msix_entries) {
5692 struct igb_q_vector *q_vector = adapter->q_vector[0];
5693 igb_irq_disable(adapter);
5694 napi_schedule(&q_vector->napi);
5695 return;
5696 }
5697
5698 for (i = 0; i < adapter->num_q_vectors; i++) {
5699 struct igb_q_vector *q_vector = adapter->q_vector[i];
5700 wr32(E1000_EIMC, q_vector->eims_value);
5701 napi_schedule(&q_vector->napi);
5702 }
5703 }
5704 #endif /* CONFIG_NET_POLL_CONTROLLER */
5705
5706 /**
5707 * igb_io_error_detected - called when PCI error is detected
5708 * @pdev: Pointer to PCI device
5709 * @state: The current pci connection state
5710 *
5711 * This function is called after a PCI bus error affecting
5712 * this device has been detected.
5713 */
5714 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5715 pci_channel_state_t state)
5716 {
5717 struct net_device *netdev = pci_get_drvdata(pdev);
5718 struct igb_adapter *adapter = netdev_priv(netdev);
5719
5720 netif_device_detach(netdev);
5721
5722 if (state == pci_channel_io_perm_failure)
5723 return PCI_ERS_RESULT_DISCONNECT;
5724
5725 if (netif_running(netdev))
5726 igb_down(adapter);
5727 pci_disable_device(pdev);
5728
5729 /* Request a slot slot reset. */
5730 return PCI_ERS_RESULT_NEED_RESET;
5731 }
5732
5733 /**
5734 * igb_io_slot_reset - called after the pci bus has been reset.
5735 * @pdev: Pointer to PCI device
5736 *
5737 * Restart the card from scratch, as if from a cold-boot. Implementation
5738 * resembles the first-half of the igb_resume routine.
5739 */
5740 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5741 {
5742 struct net_device *netdev = pci_get_drvdata(pdev);
5743 struct igb_adapter *adapter = netdev_priv(netdev);
5744 struct e1000_hw *hw = &adapter->hw;
5745 pci_ers_result_t result;
5746 int err;
5747
5748 if (pci_enable_device_mem(pdev)) {
5749 dev_err(&pdev->dev,
5750 "Cannot re-enable PCI device after reset.\n");
5751 result = PCI_ERS_RESULT_DISCONNECT;
5752 } else {
5753 pci_set_master(pdev);
5754 pci_restore_state(pdev);
5755
5756 pci_enable_wake(pdev, PCI_D3hot, 0);
5757 pci_enable_wake(pdev, PCI_D3cold, 0);
5758
5759 igb_reset(adapter);
5760 wr32(E1000_WUS, ~0);
5761 result = PCI_ERS_RESULT_RECOVERED;
5762 }
5763
5764 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5765 if (err) {
5766 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5767 "failed 0x%0x\n", err);
5768 /* non-fatal, continue */
5769 }
5770
5771 return result;
5772 }
5773
5774 /**
5775 * igb_io_resume - called when traffic can start flowing again.
5776 * @pdev: Pointer to PCI device
5777 *
5778 * This callback is called when the error recovery driver tells us that
5779 * its OK to resume normal operation. Implementation resembles the
5780 * second-half of the igb_resume routine.
5781 */
5782 static void igb_io_resume(struct pci_dev *pdev)
5783 {
5784 struct net_device *netdev = pci_get_drvdata(pdev);
5785 struct igb_adapter *adapter = netdev_priv(netdev);
5786
5787 if (netif_running(netdev)) {
5788 if (igb_up(adapter)) {
5789 dev_err(&pdev->dev, "igb_up failed after reset\n");
5790 return;
5791 }
5792 }
5793
5794 netif_device_attach(netdev);
5795
5796 /* let the f/w know that the h/w is now under the control of the
5797 * driver. */
5798 igb_get_hw_control(adapter);
5799 }
5800
5801 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5802 u8 qsel)
5803 {
5804 u32 rar_low, rar_high;
5805 struct e1000_hw *hw = &adapter->hw;
5806
5807 /* HW expects these in little endian so we reverse the byte order
5808 * from network order (big endian) to little endian
5809 */
5810 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5811 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5812 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5813
5814 /* Indicate to hardware the Address is Valid. */
5815 rar_high |= E1000_RAH_AV;
5816
5817 if (hw->mac.type == e1000_82575)
5818 rar_high |= E1000_RAH_POOL_1 * qsel;
5819 else
5820 rar_high |= E1000_RAH_POOL_1 << qsel;
5821
5822 wr32(E1000_RAL(index), rar_low);
5823 wrfl();
5824 wr32(E1000_RAH(index), rar_high);
5825 wrfl();
5826 }
5827
5828 static int igb_set_vf_mac(struct igb_adapter *adapter,
5829 int vf, unsigned char *mac_addr)
5830 {
5831 struct e1000_hw *hw = &adapter->hw;
5832 /* VF MAC addresses start at end of receive addresses and moves
5833 * torwards the first, as a result a collision should not be possible */
5834 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5835
5836 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5837
5838 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5839
5840 return 0;
5841 }
5842
5843 static void igb_vmm_control(struct igb_adapter *adapter)
5844 {
5845 struct e1000_hw *hw = &adapter->hw;
5846 u32 reg;
5847
5848 /* replication is not supported for 82575 */
5849 if (hw->mac.type == e1000_82575)
5850 return;
5851
5852 /* enable replication vlan tag stripping */
5853 reg = rd32(E1000_RPLOLR);
5854 reg |= E1000_RPLOLR_STRVLAN;
5855 wr32(E1000_RPLOLR, reg);
5856
5857 /* notify HW that the MAC is adding vlan tags */
5858 reg = rd32(E1000_DTXCTL);
5859 reg |= E1000_DTXCTL_VLAN_ADDED;
5860 wr32(E1000_DTXCTL, reg);
5861
5862 if (adapter->vfs_allocated_count) {
5863 igb_vmdq_set_loopback_pf(hw, true);
5864 igb_vmdq_set_replication_pf(hw, true);
5865 } else {
5866 igb_vmdq_set_loopback_pf(hw, false);
5867 igb_vmdq_set_replication_pf(hw, false);
5868 }
5869 }
5870
5871 /* igb_main.c */
This page took 0.20852 seconds and 6 git commands to generate.