net: use helpers to access uc list V2
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "2.1.0-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
79 /* required last entry */
80 {0, }
81 };
82
83 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
84
85 void igb_reset(struct igb_adapter *);
86 static int igb_setup_all_tx_resources(struct igb_adapter *);
87 static int igb_setup_all_rx_resources(struct igb_adapter *);
88 static void igb_free_all_tx_resources(struct igb_adapter *);
89 static void igb_free_all_rx_resources(struct igb_adapter *);
90 static void igb_setup_mrqc(struct igb_adapter *);
91 void igb_update_stats(struct igb_adapter *);
92 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
93 static void __devexit igb_remove(struct pci_dev *pdev);
94 static int igb_sw_init(struct igb_adapter *);
95 static int igb_open(struct net_device *);
96 static int igb_close(struct net_device *);
97 static void igb_configure_tx(struct igb_adapter *);
98 static void igb_configure_rx(struct igb_adapter *);
99 static void igb_clean_all_tx_rings(struct igb_adapter *);
100 static void igb_clean_all_rx_rings(struct igb_adapter *);
101 static void igb_clean_tx_ring(struct igb_ring *);
102 static void igb_clean_rx_ring(struct igb_ring *);
103 static void igb_set_rx_mode(struct net_device *);
104 static void igb_update_phy_info(unsigned long);
105 static void igb_watchdog(unsigned long);
106 static void igb_watchdog_task(struct work_struct *);
107 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
108 static struct net_device_stats *igb_get_stats(struct net_device *);
109 static int igb_change_mtu(struct net_device *, int);
110 static int igb_set_mac(struct net_device *, void *);
111 static void igb_set_uta(struct igb_adapter *adapter);
112 static irqreturn_t igb_intr(int irq, void *);
113 static irqreturn_t igb_intr_msi(int irq, void *);
114 static irqreturn_t igb_msix_other(int irq, void *);
115 static irqreturn_t igb_msix_ring(int irq, void *);
116 #ifdef CONFIG_IGB_DCA
117 static void igb_update_dca(struct igb_q_vector *);
118 static void igb_setup_dca(struct igb_adapter *);
119 #endif /* CONFIG_IGB_DCA */
120 static bool igb_clean_tx_irq(struct igb_q_vector *);
121 static int igb_poll(struct napi_struct *, int);
122 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
123 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124 static void igb_tx_timeout(struct net_device *);
125 static void igb_reset_task(struct work_struct *);
126 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127 static void igb_vlan_rx_add_vid(struct net_device *, u16);
128 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129 static void igb_restore_vlan(struct igb_adapter *);
130 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
131 static void igb_ping_all_vfs(struct igb_adapter *);
132 static void igb_msg_task(struct igb_adapter *);
133 static void igb_vmm_control(struct igb_adapter *);
134 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
135 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
136
137 #ifdef CONFIG_PM
138 static int igb_suspend(struct pci_dev *, pm_message_t);
139 static int igb_resume(struct pci_dev *);
140 #endif
141 static void igb_shutdown(struct pci_dev *);
142 #ifdef CONFIG_IGB_DCA
143 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
144 static struct notifier_block dca_notifier = {
145 .notifier_call = igb_notify_dca,
146 .next = NULL,
147 .priority = 0
148 };
149 #endif
150 #ifdef CONFIG_NET_POLL_CONTROLLER
151 /* for netdump / net console */
152 static void igb_netpoll(struct net_device *);
153 #endif
154 #ifdef CONFIG_PCI_IOV
155 static unsigned int max_vfs = 0;
156 module_param(max_vfs, uint, 0);
157 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
158 "per physical function");
159 #endif /* CONFIG_PCI_IOV */
160
161 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
162 pci_channel_state_t);
163 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
164 static void igb_io_resume(struct pci_dev *);
165
166 static struct pci_error_handlers igb_err_handler = {
167 .error_detected = igb_io_error_detected,
168 .slot_reset = igb_io_slot_reset,
169 .resume = igb_io_resume,
170 };
171
172
173 static struct pci_driver igb_driver = {
174 .name = igb_driver_name,
175 .id_table = igb_pci_tbl,
176 .probe = igb_probe,
177 .remove = __devexit_p(igb_remove),
178 #ifdef CONFIG_PM
179 /* Power Managment Hooks */
180 .suspend = igb_suspend,
181 .resume = igb_resume,
182 #endif
183 .shutdown = igb_shutdown,
184 .err_handler = &igb_err_handler
185 };
186
187 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
188 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
189 MODULE_LICENSE("GPL");
190 MODULE_VERSION(DRV_VERSION);
191
192 /**
193 * igb_read_clock - read raw cycle counter (to be used by time counter)
194 */
195 static cycle_t igb_read_clock(const struct cyclecounter *tc)
196 {
197 struct igb_adapter *adapter =
198 container_of(tc, struct igb_adapter, cycles);
199 struct e1000_hw *hw = &adapter->hw;
200 u64 stamp = 0;
201 int shift = 0;
202
203 /*
204 * The timestamp latches on lowest register read. For the 82580
205 * the lowest register is SYSTIMR instead of SYSTIML. However we never
206 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
207 */
208 if (hw->mac.type == e1000_82580) {
209 stamp = rd32(E1000_SYSTIMR) >> 8;
210 shift = IGB_82580_TSYNC_SHIFT;
211 }
212
213 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
214 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
215 return stamp;
216 }
217
218 #ifdef DEBUG
219 /**
220 * igb_get_hw_dev_name - return device name string
221 * used by hardware layer to print debugging information
222 **/
223 char *igb_get_hw_dev_name(struct e1000_hw *hw)
224 {
225 struct igb_adapter *adapter = hw->back;
226 return adapter->netdev->name;
227 }
228
229 /**
230 * igb_get_time_str - format current NIC and system time as string
231 */
232 static char *igb_get_time_str(struct igb_adapter *adapter,
233 char buffer[160])
234 {
235 cycle_t hw = adapter->cycles.read(&adapter->cycles);
236 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
237 struct timespec sys;
238 struct timespec delta;
239 getnstimeofday(&sys);
240
241 delta = timespec_sub(nic, sys);
242
243 sprintf(buffer,
244 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
245 hw,
246 (long)nic.tv_sec, nic.tv_nsec,
247 (long)sys.tv_sec, sys.tv_nsec,
248 (long)delta.tv_sec, delta.tv_nsec);
249
250 return buffer;
251 }
252 #endif
253
254 /**
255 * igb_init_module - Driver Registration Routine
256 *
257 * igb_init_module is the first routine called when the driver is
258 * loaded. All it does is register with the PCI subsystem.
259 **/
260 static int __init igb_init_module(void)
261 {
262 int ret;
263 printk(KERN_INFO "%s - version %s\n",
264 igb_driver_string, igb_driver_version);
265
266 printk(KERN_INFO "%s\n", igb_copyright);
267
268 #ifdef CONFIG_IGB_DCA
269 dca_register_notify(&dca_notifier);
270 #endif
271 ret = pci_register_driver(&igb_driver);
272 return ret;
273 }
274
275 module_init(igb_init_module);
276
277 /**
278 * igb_exit_module - Driver Exit Cleanup Routine
279 *
280 * igb_exit_module is called just before the driver is removed
281 * from memory.
282 **/
283 static void __exit igb_exit_module(void)
284 {
285 #ifdef CONFIG_IGB_DCA
286 dca_unregister_notify(&dca_notifier);
287 #endif
288 pci_unregister_driver(&igb_driver);
289 }
290
291 module_exit(igb_exit_module);
292
293 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
294 /**
295 * igb_cache_ring_register - Descriptor ring to register mapping
296 * @adapter: board private structure to initialize
297 *
298 * Once we know the feature-set enabled for the device, we'll cache
299 * the register offset the descriptor ring is assigned to.
300 **/
301 static void igb_cache_ring_register(struct igb_adapter *adapter)
302 {
303 int i = 0, j = 0;
304 u32 rbase_offset = adapter->vfs_allocated_count;
305
306 switch (adapter->hw.mac.type) {
307 case e1000_82576:
308 /* The queues are allocated for virtualization such that VF 0
309 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
310 * In order to avoid collision we start at the first free queue
311 * and continue consuming queues in the same sequence
312 */
313 if (adapter->vfs_allocated_count) {
314 for (; i < adapter->rss_queues; i++)
315 adapter->rx_ring[i].reg_idx = rbase_offset +
316 Q_IDX_82576(i);
317 for (; j < adapter->rss_queues; j++)
318 adapter->tx_ring[j].reg_idx = rbase_offset +
319 Q_IDX_82576(j);
320 }
321 case e1000_82575:
322 case e1000_82580:
323 default:
324 for (; i < adapter->num_rx_queues; i++)
325 adapter->rx_ring[i].reg_idx = rbase_offset + i;
326 for (; j < adapter->num_tx_queues; j++)
327 adapter->tx_ring[j].reg_idx = rbase_offset + j;
328 break;
329 }
330 }
331
332 static void igb_free_queues(struct igb_adapter *adapter)
333 {
334 kfree(adapter->tx_ring);
335 kfree(adapter->rx_ring);
336
337 adapter->tx_ring = NULL;
338 adapter->rx_ring = NULL;
339
340 adapter->num_rx_queues = 0;
341 adapter->num_tx_queues = 0;
342 }
343
344 /**
345 * igb_alloc_queues - Allocate memory for all rings
346 * @adapter: board private structure to initialize
347 *
348 * We allocate one ring per queue at run-time since we don't know the
349 * number of queues at compile-time.
350 **/
351 static int igb_alloc_queues(struct igb_adapter *adapter)
352 {
353 int i;
354
355 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
356 sizeof(struct igb_ring), GFP_KERNEL);
357 if (!adapter->tx_ring)
358 goto err;
359
360 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
361 sizeof(struct igb_ring), GFP_KERNEL);
362 if (!adapter->rx_ring)
363 goto err;
364
365 for (i = 0; i < adapter->num_tx_queues; i++) {
366 struct igb_ring *ring = &(adapter->tx_ring[i]);
367 ring->count = adapter->tx_ring_count;
368 ring->queue_index = i;
369 ring->pdev = adapter->pdev;
370 ring->netdev = adapter->netdev;
371 /* For 82575, context index must be unique per ring. */
372 if (adapter->hw.mac.type == e1000_82575)
373 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
374 }
375
376 for (i = 0; i < adapter->num_rx_queues; i++) {
377 struct igb_ring *ring = &(adapter->rx_ring[i]);
378 ring->count = adapter->rx_ring_count;
379 ring->queue_index = i;
380 ring->pdev = adapter->pdev;
381 ring->netdev = adapter->netdev;
382 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
383 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
384 /* set flag indicating ring supports SCTP checksum offload */
385 if (adapter->hw.mac.type >= e1000_82576)
386 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
387 }
388
389 igb_cache_ring_register(adapter);
390
391 return 0;
392
393 err:
394 igb_free_queues(adapter);
395
396 return -ENOMEM;
397 }
398
399 #define IGB_N0_QUEUE -1
400 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
401 {
402 u32 msixbm = 0;
403 struct igb_adapter *adapter = q_vector->adapter;
404 struct e1000_hw *hw = &adapter->hw;
405 u32 ivar, index;
406 int rx_queue = IGB_N0_QUEUE;
407 int tx_queue = IGB_N0_QUEUE;
408
409 if (q_vector->rx_ring)
410 rx_queue = q_vector->rx_ring->reg_idx;
411 if (q_vector->tx_ring)
412 tx_queue = q_vector->tx_ring->reg_idx;
413
414 switch (hw->mac.type) {
415 case e1000_82575:
416 /* The 82575 assigns vectors using a bitmask, which matches the
417 bitmask for the EICR/EIMS/EIMC registers. To assign one
418 or more queues to a vector, we write the appropriate bits
419 into the MSIXBM register for that vector. */
420 if (rx_queue > IGB_N0_QUEUE)
421 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
422 if (tx_queue > IGB_N0_QUEUE)
423 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
424 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
425 q_vector->eims_value = msixbm;
426 break;
427 case e1000_82576:
428 /* 82576 uses a table-based method for assigning vectors.
429 Each queue has a single entry in the table to which we write
430 a vector number along with a "valid" bit. Sadly, the layout
431 of the table is somewhat counterintuitive. */
432 if (rx_queue > IGB_N0_QUEUE) {
433 index = (rx_queue & 0x7);
434 ivar = array_rd32(E1000_IVAR0, index);
435 if (rx_queue < 8) {
436 /* vector goes into low byte of register */
437 ivar = ivar & 0xFFFFFF00;
438 ivar |= msix_vector | E1000_IVAR_VALID;
439 } else {
440 /* vector goes into third byte of register */
441 ivar = ivar & 0xFF00FFFF;
442 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
443 }
444 array_wr32(E1000_IVAR0, index, ivar);
445 }
446 if (tx_queue > IGB_N0_QUEUE) {
447 index = (tx_queue & 0x7);
448 ivar = array_rd32(E1000_IVAR0, index);
449 if (tx_queue < 8) {
450 /* vector goes into second byte of register */
451 ivar = ivar & 0xFFFF00FF;
452 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
453 } else {
454 /* vector goes into high byte of register */
455 ivar = ivar & 0x00FFFFFF;
456 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
457 }
458 array_wr32(E1000_IVAR0, index, ivar);
459 }
460 q_vector->eims_value = 1 << msix_vector;
461 break;
462 case e1000_82580:
463 /* 82580 uses the same table-based approach as 82576 but has fewer
464 entries as a result we carry over for queues greater than 4. */
465 if (rx_queue > IGB_N0_QUEUE) {
466 index = (rx_queue >> 1);
467 ivar = array_rd32(E1000_IVAR0, index);
468 if (rx_queue & 0x1) {
469 /* vector goes into third byte of register */
470 ivar = ivar & 0xFF00FFFF;
471 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
472 } else {
473 /* vector goes into low byte of register */
474 ivar = ivar & 0xFFFFFF00;
475 ivar |= msix_vector | E1000_IVAR_VALID;
476 }
477 array_wr32(E1000_IVAR0, index, ivar);
478 }
479 if (tx_queue > IGB_N0_QUEUE) {
480 index = (tx_queue >> 1);
481 ivar = array_rd32(E1000_IVAR0, index);
482 if (tx_queue & 0x1) {
483 /* vector goes into high byte of register */
484 ivar = ivar & 0x00FFFFFF;
485 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
486 } else {
487 /* vector goes into second byte of register */
488 ivar = ivar & 0xFFFF00FF;
489 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
490 }
491 array_wr32(E1000_IVAR0, index, ivar);
492 }
493 q_vector->eims_value = 1 << msix_vector;
494 break;
495 default:
496 BUG();
497 break;
498 }
499 }
500
501 /**
502 * igb_configure_msix - Configure MSI-X hardware
503 *
504 * igb_configure_msix sets up the hardware to properly
505 * generate MSI-X interrupts.
506 **/
507 static void igb_configure_msix(struct igb_adapter *adapter)
508 {
509 u32 tmp;
510 int i, vector = 0;
511 struct e1000_hw *hw = &adapter->hw;
512
513 adapter->eims_enable_mask = 0;
514
515 /* set vector for other causes, i.e. link changes */
516 switch (hw->mac.type) {
517 case e1000_82575:
518 tmp = rd32(E1000_CTRL_EXT);
519 /* enable MSI-X PBA support*/
520 tmp |= E1000_CTRL_EXT_PBA_CLR;
521
522 /* Auto-Mask interrupts upon ICR read. */
523 tmp |= E1000_CTRL_EXT_EIAME;
524 tmp |= E1000_CTRL_EXT_IRCA;
525
526 wr32(E1000_CTRL_EXT, tmp);
527
528 /* enable msix_other interrupt */
529 array_wr32(E1000_MSIXBM(0), vector++,
530 E1000_EIMS_OTHER);
531 adapter->eims_other = E1000_EIMS_OTHER;
532
533 break;
534
535 case e1000_82576:
536 case e1000_82580:
537 /* Turn on MSI-X capability first, or our settings
538 * won't stick. And it will take days to debug. */
539 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
540 E1000_GPIE_PBA | E1000_GPIE_EIAME |
541 E1000_GPIE_NSICR);
542
543 /* enable msix_other interrupt */
544 adapter->eims_other = 1 << vector;
545 tmp = (vector++ | E1000_IVAR_VALID) << 8;
546
547 wr32(E1000_IVAR_MISC, tmp);
548 break;
549 default:
550 /* do nothing, since nothing else supports MSI-X */
551 break;
552 } /* switch (hw->mac.type) */
553
554 adapter->eims_enable_mask |= adapter->eims_other;
555
556 for (i = 0; i < adapter->num_q_vectors; i++) {
557 struct igb_q_vector *q_vector = adapter->q_vector[i];
558 igb_assign_vector(q_vector, vector++);
559 adapter->eims_enable_mask |= q_vector->eims_value;
560 }
561
562 wrfl();
563 }
564
565 /**
566 * igb_request_msix - Initialize MSI-X interrupts
567 *
568 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
569 * kernel.
570 **/
571 static int igb_request_msix(struct igb_adapter *adapter)
572 {
573 struct net_device *netdev = adapter->netdev;
574 struct e1000_hw *hw = &adapter->hw;
575 int i, err = 0, vector = 0;
576
577 err = request_irq(adapter->msix_entries[vector].vector,
578 igb_msix_other, 0, netdev->name, adapter);
579 if (err)
580 goto out;
581 vector++;
582
583 for (i = 0; i < adapter->num_q_vectors; i++) {
584 struct igb_q_vector *q_vector = adapter->q_vector[i];
585
586 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
587
588 if (q_vector->rx_ring && q_vector->tx_ring)
589 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
590 q_vector->rx_ring->queue_index);
591 else if (q_vector->tx_ring)
592 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
593 q_vector->tx_ring->queue_index);
594 else if (q_vector->rx_ring)
595 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
596 q_vector->rx_ring->queue_index);
597 else
598 sprintf(q_vector->name, "%s-unused", netdev->name);
599
600 err = request_irq(adapter->msix_entries[vector].vector,
601 igb_msix_ring, 0, q_vector->name,
602 q_vector);
603 if (err)
604 goto out;
605 vector++;
606 }
607
608 igb_configure_msix(adapter);
609 return 0;
610 out:
611 return err;
612 }
613
614 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
615 {
616 if (adapter->msix_entries) {
617 pci_disable_msix(adapter->pdev);
618 kfree(adapter->msix_entries);
619 adapter->msix_entries = NULL;
620 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
621 pci_disable_msi(adapter->pdev);
622 }
623 }
624
625 /**
626 * igb_free_q_vectors - Free memory allocated for interrupt vectors
627 * @adapter: board private structure to initialize
628 *
629 * This function frees the memory allocated to the q_vectors. In addition if
630 * NAPI is enabled it will delete any references to the NAPI struct prior
631 * to freeing the q_vector.
632 **/
633 static void igb_free_q_vectors(struct igb_adapter *adapter)
634 {
635 int v_idx;
636
637 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
638 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
639 adapter->q_vector[v_idx] = NULL;
640 netif_napi_del(&q_vector->napi);
641 kfree(q_vector);
642 }
643 adapter->num_q_vectors = 0;
644 }
645
646 /**
647 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
648 *
649 * This function resets the device so that it has 0 rx queues, tx queues, and
650 * MSI-X interrupts allocated.
651 */
652 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
653 {
654 igb_free_queues(adapter);
655 igb_free_q_vectors(adapter);
656 igb_reset_interrupt_capability(adapter);
657 }
658
659 /**
660 * igb_set_interrupt_capability - set MSI or MSI-X if supported
661 *
662 * Attempt to configure interrupts using the best available
663 * capabilities of the hardware and kernel.
664 **/
665 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
666 {
667 int err;
668 int numvecs, i;
669
670 /* Number of supported queues. */
671 adapter->num_rx_queues = adapter->rss_queues;
672 adapter->num_tx_queues = adapter->rss_queues;
673
674 /* start with one vector for every rx queue */
675 numvecs = adapter->num_rx_queues;
676
677 /* if tx handler is seperate add 1 for every tx queue */
678 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
679 numvecs += adapter->num_tx_queues;
680
681 /* store the number of vectors reserved for queues */
682 adapter->num_q_vectors = numvecs;
683
684 /* add 1 vector for link status interrupts */
685 numvecs++;
686 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
687 GFP_KERNEL);
688 if (!adapter->msix_entries)
689 goto msi_only;
690
691 for (i = 0; i < numvecs; i++)
692 adapter->msix_entries[i].entry = i;
693
694 err = pci_enable_msix(adapter->pdev,
695 adapter->msix_entries,
696 numvecs);
697 if (err == 0)
698 goto out;
699
700 igb_reset_interrupt_capability(adapter);
701
702 /* If we can't do MSI-X, try MSI */
703 msi_only:
704 #ifdef CONFIG_PCI_IOV
705 /* disable SR-IOV for non MSI-X configurations */
706 if (adapter->vf_data) {
707 struct e1000_hw *hw = &adapter->hw;
708 /* disable iov and allow time for transactions to clear */
709 pci_disable_sriov(adapter->pdev);
710 msleep(500);
711
712 kfree(adapter->vf_data);
713 adapter->vf_data = NULL;
714 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
715 msleep(100);
716 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
717 }
718 #endif
719 adapter->vfs_allocated_count = 0;
720 adapter->rss_queues = 1;
721 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
722 adapter->num_rx_queues = 1;
723 adapter->num_tx_queues = 1;
724 adapter->num_q_vectors = 1;
725 if (!pci_enable_msi(adapter->pdev))
726 adapter->flags |= IGB_FLAG_HAS_MSI;
727 out:
728 /* Notify the stack of the (possibly) reduced Tx Queue count. */
729 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
730 return;
731 }
732
733 /**
734 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
735 * @adapter: board private structure to initialize
736 *
737 * We allocate one q_vector per queue interrupt. If allocation fails we
738 * return -ENOMEM.
739 **/
740 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
741 {
742 struct igb_q_vector *q_vector;
743 struct e1000_hw *hw = &adapter->hw;
744 int v_idx;
745
746 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
747 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
748 if (!q_vector)
749 goto err_out;
750 q_vector->adapter = adapter;
751 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
752 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
753 q_vector->itr_val = IGB_START_ITR;
754 q_vector->set_itr = 1;
755 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
756 adapter->q_vector[v_idx] = q_vector;
757 }
758 return 0;
759
760 err_out:
761 while (v_idx) {
762 v_idx--;
763 q_vector = adapter->q_vector[v_idx];
764 netif_napi_del(&q_vector->napi);
765 kfree(q_vector);
766 adapter->q_vector[v_idx] = NULL;
767 }
768 return -ENOMEM;
769 }
770
771 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
772 int ring_idx, int v_idx)
773 {
774 struct igb_q_vector *q_vector;
775
776 q_vector = adapter->q_vector[v_idx];
777 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
778 q_vector->rx_ring->q_vector = q_vector;
779 q_vector->itr_val = adapter->rx_itr_setting;
780 if (q_vector->itr_val && q_vector->itr_val <= 3)
781 q_vector->itr_val = IGB_START_ITR;
782 }
783
784 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
785 int ring_idx, int v_idx)
786 {
787 struct igb_q_vector *q_vector;
788
789 q_vector = adapter->q_vector[v_idx];
790 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
791 q_vector->tx_ring->q_vector = q_vector;
792 q_vector->itr_val = adapter->tx_itr_setting;
793 if (q_vector->itr_val && q_vector->itr_val <= 3)
794 q_vector->itr_val = IGB_START_ITR;
795 }
796
797 /**
798 * igb_map_ring_to_vector - maps allocated queues to vectors
799 *
800 * This function maps the recently allocated queues to vectors.
801 **/
802 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
803 {
804 int i;
805 int v_idx = 0;
806
807 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
808 (adapter->num_q_vectors < adapter->num_tx_queues))
809 return -ENOMEM;
810
811 if (adapter->num_q_vectors >=
812 (adapter->num_rx_queues + adapter->num_tx_queues)) {
813 for (i = 0; i < adapter->num_rx_queues; i++)
814 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
815 for (i = 0; i < adapter->num_tx_queues; i++)
816 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
817 } else {
818 for (i = 0; i < adapter->num_rx_queues; i++) {
819 if (i < adapter->num_tx_queues)
820 igb_map_tx_ring_to_vector(adapter, i, v_idx);
821 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
822 }
823 for (; i < adapter->num_tx_queues; i++)
824 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
825 }
826 return 0;
827 }
828
829 /**
830 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
831 *
832 * This function initializes the interrupts and allocates all of the queues.
833 **/
834 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
835 {
836 struct pci_dev *pdev = adapter->pdev;
837 int err;
838
839 igb_set_interrupt_capability(adapter);
840
841 err = igb_alloc_q_vectors(adapter);
842 if (err) {
843 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
844 goto err_alloc_q_vectors;
845 }
846
847 err = igb_alloc_queues(adapter);
848 if (err) {
849 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
850 goto err_alloc_queues;
851 }
852
853 err = igb_map_ring_to_vector(adapter);
854 if (err) {
855 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
856 goto err_map_queues;
857 }
858
859
860 return 0;
861 err_map_queues:
862 igb_free_queues(adapter);
863 err_alloc_queues:
864 igb_free_q_vectors(adapter);
865 err_alloc_q_vectors:
866 igb_reset_interrupt_capability(adapter);
867 return err;
868 }
869
870 /**
871 * igb_request_irq - initialize interrupts
872 *
873 * Attempts to configure interrupts using the best available
874 * capabilities of the hardware and kernel.
875 **/
876 static int igb_request_irq(struct igb_adapter *adapter)
877 {
878 struct net_device *netdev = adapter->netdev;
879 struct pci_dev *pdev = adapter->pdev;
880 struct e1000_hw *hw = &adapter->hw;
881 int err = 0;
882
883 if (adapter->msix_entries) {
884 err = igb_request_msix(adapter);
885 if (!err)
886 goto request_done;
887 /* fall back to MSI */
888 igb_clear_interrupt_scheme(adapter);
889 if (!pci_enable_msi(adapter->pdev))
890 adapter->flags |= IGB_FLAG_HAS_MSI;
891 igb_free_all_tx_resources(adapter);
892 igb_free_all_rx_resources(adapter);
893 adapter->num_tx_queues = 1;
894 adapter->num_rx_queues = 1;
895 adapter->num_q_vectors = 1;
896 err = igb_alloc_q_vectors(adapter);
897 if (err) {
898 dev_err(&pdev->dev,
899 "Unable to allocate memory for vectors\n");
900 goto request_done;
901 }
902 err = igb_alloc_queues(adapter);
903 if (err) {
904 dev_err(&pdev->dev,
905 "Unable to allocate memory for queues\n");
906 igb_free_q_vectors(adapter);
907 goto request_done;
908 }
909 igb_setup_all_tx_resources(adapter);
910 igb_setup_all_rx_resources(adapter);
911 } else {
912 switch (hw->mac.type) {
913 case e1000_82575:
914 wr32(E1000_MSIXBM(0),
915 (E1000_EICR_RX_QUEUE0 |
916 E1000_EICR_TX_QUEUE0 |
917 E1000_EIMS_OTHER));
918 break;
919 case e1000_82580:
920 case e1000_82576:
921 wr32(E1000_IVAR0, E1000_IVAR_VALID);
922 break;
923 default:
924 break;
925 }
926 }
927
928 if (adapter->flags & IGB_FLAG_HAS_MSI) {
929 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
930 netdev->name, adapter);
931 if (!err)
932 goto request_done;
933
934 /* fall back to legacy interrupts */
935 igb_reset_interrupt_capability(adapter);
936 adapter->flags &= ~IGB_FLAG_HAS_MSI;
937 }
938
939 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
940 netdev->name, adapter);
941
942 if (err)
943 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
944 err);
945
946 request_done:
947 return err;
948 }
949
950 static void igb_free_irq(struct igb_adapter *adapter)
951 {
952 if (adapter->msix_entries) {
953 int vector = 0, i;
954
955 free_irq(adapter->msix_entries[vector++].vector, adapter);
956
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959 free_irq(adapter->msix_entries[vector++].vector,
960 q_vector);
961 }
962 } else {
963 free_irq(adapter->pdev->irq, adapter);
964 }
965 }
966
967 /**
968 * igb_irq_disable - Mask off interrupt generation on the NIC
969 * @adapter: board private structure
970 **/
971 static void igb_irq_disable(struct igb_adapter *adapter)
972 {
973 struct e1000_hw *hw = &adapter->hw;
974
975 /*
976 * we need to be careful when disabling interrupts. The VFs are also
977 * mapped into these registers and so clearing the bits can cause
978 * issues on the VF drivers so we only need to clear what we set
979 */
980 if (adapter->msix_entries) {
981 u32 regval = rd32(E1000_EIAM);
982 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
983 wr32(E1000_EIMC, adapter->eims_enable_mask);
984 regval = rd32(E1000_EIAC);
985 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
986 }
987
988 wr32(E1000_IAM, 0);
989 wr32(E1000_IMC, ~0);
990 wrfl();
991 synchronize_irq(adapter->pdev->irq);
992 }
993
994 /**
995 * igb_irq_enable - Enable default interrupt generation settings
996 * @adapter: board private structure
997 **/
998 static void igb_irq_enable(struct igb_adapter *adapter)
999 {
1000 struct e1000_hw *hw = &adapter->hw;
1001
1002 if (adapter->msix_entries) {
1003 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1004 u32 regval = rd32(E1000_EIAC);
1005 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1006 regval = rd32(E1000_EIAM);
1007 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1008 wr32(E1000_EIMS, adapter->eims_enable_mask);
1009 if (adapter->vfs_allocated_count) {
1010 wr32(E1000_MBVFIMR, 0xFF);
1011 ims |= E1000_IMS_VMMB;
1012 }
1013 if (adapter->hw.mac.type == e1000_82580)
1014 ims |= E1000_IMS_DRSTA;
1015
1016 wr32(E1000_IMS, ims);
1017 } else {
1018 wr32(E1000_IMS, IMS_ENABLE_MASK |
1019 E1000_IMS_DRSTA);
1020 wr32(E1000_IAM, IMS_ENABLE_MASK |
1021 E1000_IMS_DRSTA);
1022 }
1023 }
1024
1025 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1026 {
1027 struct e1000_hw *hw = &adapter->hw;
1028 u16 vid = adapter->hw.mng_cookie.vlan_id;
1029 u16 old_vid = adapter->mng_vlan_id;
1030
1031 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1032 /* add VID to filter table */
1033 igb_vfta_set(hw, vid, true);
1034 adapter->mng_vlan_id = vid;
1035 } else {
1036 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1037 }
1038
1039 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1040 (vid != old_vid) &&
1041 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1042 /* remove VID from filter table */
1043 igb_vfta_set(hw, old_vid, false);
1044 }
1045 }
1046
1047 /**
1048 * igb_release_hw_control - release control of the h/w to f/w
1049 * @adapter: address of board private structure
1050 *
1051 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1052 * For ASF and Pass Through versions of f/w this means that the
1053 * driver is no longer loaded.
1054 *
1055 **/
1056 static void igb_release_hw_control(struct igb_adapter *adapter)
1057 {
1058 struct e1000_hw *hw = &adapter->hw;
1059 u32 ctrl_ext;
1060
1061 /* Let firmware take over control of h/w */
1062 ctrl_ext = rd32(E1000_CTRL_EXT);
1063 wr32(E1000_CTRL_EXT,
1064 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1065 }
1066
1067 /**
1068 * igb_get_hw_control - get control of the h/w from f/w
1069 * @adapter: address of board private structure
1070 *
1071 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1072 * For ASF and Pass Through versions of f/w this means that
1073 * the driver is loaded.
1074 *
1075 **/
1076 static void igb_get_hw_control(struct igb_adapter *adapter)
1077 {
1078 struct e1000_hw *hw = &adapter->hw;
1079 u32 ctrl_ext;
1080
1081 /* Let firmware know the driver has taken over */
1082 ctrl_ext = rd32(E1000_CTRL_EXT);
1083 wr32(E1000_CTRL_EXT,
1084 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1085 }
1086
1087 /**
1088 * igb_configure - configure the hardware for RX and TX
1089 * @adapter: private board structure
1090 **/
1091 static void igb_configure(struct igb_adapter *adapter)
1092 {
1093 struct net_device *netdev = adapter->netdev;
1094 int i;
1095
1096 igb_get_hw_control(adapter);
1097 igb_set_rx_mode(netdev);
1098
1099 igb_restore_vlan(adapter);
1100
1101 igb_setup_tctl(adapter);
1102 igb_setup_mrqc(adapter);
1103 igb_setup_rctl(adapter);
1104
1105 igb_configure_tx(adapter);
1106 igb_configure_rx(adapter);
1107
1108 igb_rx_fifo_flush_82575(&adapter->hw);
1109
1110 /* call igb_desc_unused which always leaves
1111 * at least 1 descriptor unused to make sure
1112 * next_to_use != next_to_clean */
1113 for (i = 0; i < adapter->num_rx_queues; i++) {
1114 struct igb_ring *ring = &adapter->rx_ring[i];
1115 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1116 }
1117
1118
1119 adapter->tx_queue_len = netdev->tx_queue_len;
1120 }
1121
1122
1123 /**
1124 * igb_up - Open the interface and prepare it to handle traffic
1125 * @adapter: board private structure
1126 **/
1127 int igb_up(struct igb_adapter *adapter)
1128 {
1129 struct e1000_hw *hw = &adapter->hw;
1130 int i;
1131
1132 /* hardware has been reset, we need to reload some things */
1133 igb_configure(adapter);
1134
1135 clear_bit(__IGB_DOWN, &adapter->state);
1136
1137 for (i = 0; i < adapter->num_q_vectors; i++) {
1138 struct igb_q_vector *q_vector = adapter->q_vector[i];
1139 napi_enable(&q_vector->napi);
1140 }
1141 if (adapter->msix_entries)
1142 igb_configure_msix(adapter);
1143
1144 /* Clear any pending interrupts. */
1145 rd32(E1000_ICR);
1146 igb_irq_enable(adapter);
1147
1148 /* notify VFs that reset has been completed */
1149 if (adapter->vfs_allocated_count) {
1150 u32 reg_data = rd32(E1000_CTRL_EXT);
1151 reg_data |= E1000_CTRL_EXT_PFRSTD;
1152 wr32(E1000_CTRL_EXT, reg_data);
1153 }
1154
1155 netif_tx_start_all_queues(adapter->netdev);
1156
1157 /* start the watchdog. */
1158 hw->mac.get_link_status = 1;
1159 schedule_work(&adapter->watchdog_task);
1160
1161 return 0;
1162 }
1163
1164 void igb_down(struct igb_adapter *adapter)
1165 {
1166 struct net_device *netdev = adapter->netdev;
1167 struct e1000_hw *hw = &adapter->hw;
1168 u32 tctl, rctl;
1169 int i;
1170
1171 /* signal that we're down so the interrupt handler does not
1172 * reschedule our watchdog timer */
1173 set_bit(__IGB_DOWN, &adapter->state);
1174
1175 /* disable receives in the hardware */
1176 rctl = rd32(E1000_RCTL);
1177 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1178 /* flush and sleep below */
1179
1180 netif_tx_stop_all_queues(netdev);
1181
1182 /* disable transmits in the hardware */
1183 tctl = rd32(E1000_TCTL);
1184 tctl &= ~E1000_TCTL_EN;
1185 wr32(E1000_TCTL, tctl);
1186 /* flush both disables and wait for them to finish */
1187 wrfl();
1188 msleep(10);
1189
1190 for (i = 0; i < adapter->num_q_vectors; i++) {
1191 struct igb_q_vector *q_vector = adapter->q_vector[i];
1192 napi_disable(&q_vector->napi);
1193 }
1194
1195 igb_irq_disable(adapter);
1196
1197 del_timer_sync(&adapter->watchdog_timer);
1198 del_timer_sync(&adapter->phy_info_timer);
1199
1200 netdev->tx_queue_len = adapter->tx_queue_len;
1201 netif_carrier_off(netdev);
1202
1203 /* record the stats before reset*/
1204 igb_update_stats(adapter);
1205
1206 adapter->link_speed = 0;
1207 adapter->link_duplex = 0;
1208
1209 if (!pci_channel_offline(adapter->pdev))
1210 igb_reset(adapter);
1211 igb_clean_all_tx_rings(adapter);
1212 igb_clean_all_rx_rings(adapter);
1213 #ifdef CONFIG_IGB_DCA
1214
1215 /* since we reset the hardware DCA settings were cleared */
1216 igb_setup_dca(adapter);
1217 #endif
1218 }
1219
1220 void igb_reinit_locked(struct igb_adapter *adapter)
1221 {
1222 WARN_ON(in_interrupt());
1223 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1224 msleep(1);
1225 igb_down(adapter);
1226 igb_up(adapter);
1227 clear_bit(__IGB_RESETTING, &adapter->state);
1228 }
1229
1230 void igb_reset(struct igb_adapter *adapter)
1231 {
1232 struct pci_dev *pdev = adapter->pdev;
1233 struct e1000_hw *hw = &adapter->hw;
1234 struct e1000_mac_info *mac = &hw->mac;
1235 struct e1000_fc_info *fc = &hw->fc;
1236 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1237 u16 hwm;
1238
1239 /* Repartition Pba for greater than 9k mtu
1240 * To take effect CTRL.RST is required.
1241 */
1242 switch (mac->type) {
1243 case e1000_82580:
1244 pba = rd32(E1000_RXPBS);
1245 pba = igb_rxpbs_adjust_82580(pba);
1246 break;
1247 case e1000_82576:
1248 pba = rd32(E1000_RXPBS);
1249 pba &= E1000_RXPBS_SIZE_MASK_82576;
1250 break;
1251 case e1000_82575:
1252 default:
1253 pba = E1000_PBA_34K;
1254 break;
1255 }
1256
1257 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1258 (mac->type < e1000_82576)) {
1259 /* adjust PBA for jumbo frames */
1260 wr32(E1000_PBA, pba);
1261
1262 /* To maintain wire speed transmits, the Tx FIFO should be
1263 * large enough to accommodate two full transmit packets,
1264 * rounded up to the next 1KB and expressed in KB. Likewise,
1265 * the Rx FIFO should be large enough to accommodate at least
1266 * one full receive packet and is similarly rounded up and
1267 * expressed in KB. */
1268 pba = rd32(E1000_PBA);
1269 /* upper 16 bits has Tx packet buffer allocation size in KB */
1270 tx_space = pba >> 16;
1271 /* lower 16 bits has Rx packet buffer allocation size in KB */
1272 pba &= 0xffff;
1273 /* the tx fifo also stores 16 bytes of information about the tx
1274 * but don't include ethernet FCS because hardware appends it */
1275 min_tx_space = (adapter->max_frame_size +
1276 sizeof(union e1000_adv_tx_desc) -
1277 ETH_FCS_LEN) * 2;
1278 min_tx_space = ALIGN(min_tx_space, 1024);
1279 min_tx_space >>= 10;
1280 /* software strips receive CRC, so leave room for it */
1281 min_rx_space = adapter->max_frame_size;
1282 min_rx_space = ALIGN(min_rx_space, 1024);
1283 min_rx_space >>= 10;
1284
1285 /* If current Tx allocation is less than the min Tx FIFO size,
1286 * and the min Tx FIFO size is less than the current Rx FIFO
1287 * allocation, take space away from current Rx allocation */
1288 if (tx_space < min_tx_space &&
1289 ((min_tx_space - tx_space) < pba)) {
1290 pba = pba - (min_tx_space - tx_space);
1291
1292 /* if short on rx space, rx wins and must trump tx
1293 * adjustment */
1294 if (pba < min_rx_space)
1295 pba = min_rx_space;
1296 }
1297 wr32(E1000_PBA, pba);
1298 }
1299
1300 /* flow control settings */
1301 /* The high water mark must be low enough to fit one full frame
1302 * (or the size used for early receive) above it in the Rx FIFO.
1303 * Set it to the lower of:
1304 * - 90% of the Rx FIFO size, or
1305 * - the full Rx FIFO size minus one full frame */
1306 hwm = min(((pba << 10) * 9 / 10),
1307 ((pba << 10) - 2 * adapter->max_frame_size));
1308
1309 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1310 fc->low_water = fc->high_water - 16;
1311 fc->pause_time = 0xFFFF;
1312 fc->send_xon = 1;
1313 fc->current_mode = fc->requested_mode;
1314
1315 /* disable receive for all VFs and wait one second */
1316 if (adapter->vfs_allocated_count) {
1317 int i;
1318 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1319 adapter->vf_data[i].flags = 0;
1320
1321 /* ping all the active vfs to let them know we are going down */
1322 igb_ping_all_vfs(adapter);
1323
1324 /* disable transmits and receives */
1325 wr32(E1000_VFRE, 0);
1326 wr32(E1000_VFTE, 0);
1327 }
1328
1329 /* Allow time for pending master requests to run */
1330 hw->mac.ops.reset_hw(hw);
1331 wr32(E1000_WUC, 0);
1332
1333 if (hw->mac.ops.init_hw(hw))
1334 dev_err(&pdev->dev, "Hardware Error\n");
1335
1336 if (hw->mac.type == e1000_82580) {
1337 u32 reg = rd32(E1000_PCIEMISC);
1338 wr32(E1000_PCIEMISC,
1339 reg & ~E1000_PCIEMISC_LX_DECISION);
1340 }
1341 igb_update_mng_vlan(adapter);
1342
1343 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1344 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1345
1346 igb_reset_adaptive(hw);
1347 igb_get_phy_info(hw);
1348 }
1349
1350 static const struct net_device_ops igb_netdev_ops = {
1351 .ndo_open = igb_open,
1352 .ndo_stop = igb_close,
1353 .ndo_start_xmit = igb_xmit_frame_adv,
1354 .ndo_get_stats = igb_get_stats,
1355 .ndo_set_rx_mode = igb_set_rx_mode,
1356 .ndo_set_multicast_list = igb_set_rx_mode,
1357 .ndo_set_mac_address = igb_set_mac,
1358 .ndo_change_mtu = igb_change_mtu,
1359 .ndo_do_ioctl = igb_ioctl,
1360 .ndo_tx_timeout = igb_tx_timeout,
1361 .ndo_validate_addr = eth_validate_addr,
1362 .ndo_vlan_rx_register = igb_vlan_rx_register,
1363 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1364 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1365 #ifdef CONFIG_NET_POLL_CONTROLLER
1366 .ndo_poll_controller = igb_netpoll,
1367 #endif
1368 };
1369
1370 /**
1371 * igb_probe - Device Initialization Routine
1372 * @pdev: PCI device information struct
1373 * @ent: entry in igb_pci_tbl
1374 *
1375 * Returns 0 on success, negative on failure
1376 *
1377 * igb_probe initializes an adapter identified by a pci_dev structure.
1378 * The OS initialization, configuring of the adapter private structure,
1379 * and a hardware reset occur.
1380 **/
1381 static int __devinit igb_probe(struct pci_dev *pdev,
1382 const struct pci_device_id *ent)
1383 {
1384 struct net_device *netdev;
1385 struct igb_adapter *adapter;
1386 struct e1000_hw *hw;
1387 u16 eeprom_data = 0;
1388 static int global_quad_port_a; /* global quad port a indication */
1389 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1390 unsigned long mmio_start, mmio_len;
1391 int err, pci_using_dac;
1392 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1393 u32 part_num;
1394
1395 err = pci_enable_device_mem(pdev);
1396 if (err)
1397 return err;
1398
1399 pci_using_dac = 0;
1400 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1401 if (!err) {
1402 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1403 if (!err)
1404 pci_using_dac = 1;
1405 } else {
1406 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1407 if (err) {
1408 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1409 if (err) {
1410 dev_err(&pdev->dev, "No usable DMA "
1411 "configuration, aborting\n");
1412 goto err_dma;
1413 }
1414 }
1415 }
1416
1417 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1418 IORESOURCE_MEM),
1419 igb_driver_name);
1420 if (err)
1421 goto err_pci_reg;
1422
1423 pci_enable_pcie_error_reporting(pdev);
1424
1425 pci_set_master(pdev);
1426 pci_save_state(pdev);
1427
1428 err = -ENOMEM;
1429 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1430 IGB_ABS_MAX_TX_QUEUES);
1431 if (!netdev)
1432 goto err_alloc_etherdev;
1433
1434 SET_NETDEV_DEV(netdev, &pdev->dev);
1435
1436 pci_set_drvdata(pdev, netdev);
1437 adapter = netdev_priv(netdev);
1438 adapter->netdev = netdev;
1439 adapter->pdev = pdev;
1440 hw = &adapter->hw;
1441 hw->back = adapter;
1442 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1443
1444 mmio_start = pci_resource_start(pdev, 0);
1445 mmio_len = pci_resource_len(pdev, 0);
1446
1447 err = -EIO;
1448 hw->hw_addr = ioremap(mmio_start, mmio_len);
1449 if (!hw->hw_addr)
1450 goto err_ioremap;
1451
1452 netdev->netdev_ops = &igb_netdev_ops;
1453 igb_set_ethtool_ops(netdev);
1454 netdev->watchdog_timeo = 5 * HZ;
1455
1456 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1457
1458 netdev->mem_start = mmio_start;
1459 netdev->mem_end = mmio_start + mmio_len;
1460
1461 /* PCI config space info */
1462 hw->vendor_id = pdev->vendor;
1463 hw->device_id = pdev->device;
1464 hw->revision_id = pdev->revision;
1465 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1466 hw->subsystem_device_id = pdev->subsystem_device;
1467
1468 /* Copy the default MAC, PHY and NVM function pointers */
1469 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1470 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1471 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1472 /* Initialize skew-specific constants */
1473 err = ei->get_invariants(hw);
1474 if (err)
1475 goto err_sw_init;
1476
1477 /* setup the private structure */
1478 err = igb_sw_init(adapter);
1479 if (err)
1480 goto err_sw_init;
1481
1482 igb_get_bus_info_pcie(hw);
1483
1484 hw->phy.autoneg_wait_to_complete = false;
1485 hw->mac.adaptive_ifs = true;
1486
1487 /* Copper options */
1488 if (hw->phy.media_type == e1000_media_type_copper) {
1489 hw->phy.mdix = AUTO_ALL_MODES;
1490 hw->phy.disable_polarity_correction = false;
1491 hw->phy.ms_type = e1000_ms_hw_default;
1492 }
1493
1494 if (igb_check_reset_block(hw))
1495 dev_info(&pdev->dev,
1496 "PHY reset is blocked due to SOL/IDER session.\n");
1497
1498 netdev->features = NETIF_F_SG |
1499 NETIF_F_IP_CSUM |
1500 NETIF_F_HW_VLAN_TX |
1501 NETIF_F_HW_VLAN_RX |
1502 NETIF_F_HW_VLAN_FILTER;
1503
1504 netdev->features |= NETIF_F_IPV6_CSUM;
1505 netdev->features |= NETIF_F_TSO;
1506 netdev->features |= NETIF_F_TSO6;
1507 netdev->features |= NETIF_F_GRO;
1508
1509 netdev->vlan_features |= NETIF_F_TSO;
1510 netdev->vlan_features |= NETIF_F_TSO6;
1511 netdev->vlan_features |= NETIF_F_IP_CSUM;
1512 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1513 netdev->vlan_features |= NETIF_F_SG;
1514
1515 if (pci_using_dac)
1516 netdev->features |= NETIF_F_HIGHDMA;
1517
1518 if (hw->mac.type >= e1000_82576)
1519 netdev->features |= NETIF_F_SCTP_CSUM;
1520
1521 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1522
1523 /* before reading the NVM, reset the controller to put the device in a
1524 * known good starting state */
1525 hw->mac.ops.reset_hw(hw);
1526
1527 /* make sure the NVM is good */
1528 if (igb_validate_nvm_checksum(hw) < 0) {
1529 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1530 err = -EIO;
1531 goto err_eeprom;
1532 }
1533
1534 /* copy the MAC address out of the NVM */
1535 if (hw->mac.ops.read_mac_addr(hw))
1536 dev_err(&pdev->dev, "NVM Read Error\n");
1537
1538 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1539 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1540
1541 if (!is_valid_ether_addr(netdev->perm_addr)) {
1542 dev_err(&pdev->dev, "Invalid MAC Address\n");
1543 err = -EIO;
1544 goto err_eeprom;
1545 }
1546
1547 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1548 (unsigned long) adapter);
1549 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1550 (unsigned long) adapter);
1551
1552 INIT_WORK(&adapter->reset_task, igb_reset_task);
1553 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1554
1555 /* Initialize link properties that are user-changeable */
1556 adapter->fc_autoneg = true;
1557 hw->mac.autoneg = true;
1558 hw->phy.autoneg_advertised = 0x2f;
1559
1560 hw->fc.requested_mode = e1000_fc_default;
1561 hw->fc.current_mode = e1000_fc_default;
1562
1563 igb_validate_mdi_setting(hw);
1564
1565 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1566 * enable the ACPI Magic Packet filter
1567 */
1568
1569 if (hw->bus.func == 0)
1570 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1571 else if (hw->mac.type == e1000_82580)
1572 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1573 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1574 &eeprom_data);
1575 else if (hw->bus.func == 1)
1576 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1577
1578 if (eeprom_data & eeprom_apme_mask)
1579 adapter->eeprom_wol |= E1000_WUFC_MAG;
1580
1581 /* now that we have the eeprom settings, apply the special cases where
1582 * the eeprom may be wrong or the board simply won't support wake on
1583 * lan on a particular port */
1584 switch (pdev->device) {
1585 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1586 adapter->eeprom_wol = 0;
1587 break;
1588 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1589 case E1000_DEV_ID_82576_FIBER:
1590 case E1000_DEV_ID_82576_SERDES:
1591 /* Wake events only supported on port A for dual fiber
1592 * regardless of eeprom setting */
1593 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1594 adapter->eeprom_wol = 0;
1595 break;
1596 case E1000_DEV_ID_82576_QUAD_COPPER:
1597 /* if quad port adapter, disable WoL on all but port A */
1598 if (global_quad_port_a != 0)
1599 adapter->eeprom_wol = 0;
1600 else
1601 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1602 /* Reset for multiple quad port adapters */
1603 if (++global_quad_port_a == 4)
1604 global_quad_port_a = 0;
1605 break;
1606 }
1607
1608 /* initialize the wol settings based on the eeprom settings */
1609 adapter->wol = adapter->eeprom_wol;
1610 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1611
1612 /* reset the hardware with the new settings */
1613 igb_reset(adapter);
1614
1615 /* let the f/w know that the h/w is now under the control of the
1616 * driver. */
1617 igb_get_hw_control(adapter);
1618
1619 strcpy(netdev->name, "eth%d");
1620 err = register_netdev(netdev);
1621 if (err)
1622 goto err_register;
1623
1624 /* carrier off reporting is important to ethtool even BEFORE open */
1625 netif_carrier_off(netdev);
1626
1627 #ifdef CONFIG_IGB_DCA
1628 if (dca_add_requester(&pdev->dev) == 0) {
1629 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1630 dev_info(&pdev->dev, "DCA enabled\n");
1631 igb_setup_dca(adapter);
1632 }
1633
1634 #endif
1635 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1636 /* print bus type/speed/width info */
1637 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1638 netdev->name,
1639 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1640 "unknown"),
1641 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1642 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1643 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1644 "unknown"),
1645 netdev->dev_addr);
1646
1647 igb_read_part_num(hw, &part_num);
1648 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1649 (part_num >> 8), (part_num & 0xff));
1650
1651 dev_info(&pdev->dev,
1652 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1653 adapter->msix_entries ? "MSI-X" :
1654 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1655 adapter->num_rx_queues, adapter->num_tx_queues);
1656
1657 return 0;
1658
1659 err_register:
1660 igb_release_hw_control(adapter);
1661 err_eeprom:
1662 if (!igb_check_reset_block(hw))
1663 igb_reset_phy(hw);
1664
1665 if (hw->flash_address)
1666 iounmap(hw->flash_address);
1667 err_sw_init:
1668 igb_clear_interrupt_scheme(adapter);
1669 iounmap(hw->hw_addr);
1670 err_ioremap:
1671 free_netdev(netdev);
1672 err_alloc_etherdev:
1673 pci_release_selected_regions(pdev,
1674 pci_select_bars(pdev, IORESOURCE_MEM));
1675 err_pci_reg:
1676 err_dma:
1677 pci_disable_device(pdev);
1678 return err;
1679 }
1680
1681 /**
1682 * igb_remove - Device Removal Routine
1683 * @pdev: PCI device information struct
1684 *
1685 * igb_remove is called by the PCI subsystem to alert the driver
1686 * that it should release a PCI device. The could be caused by a
1687 * Hot-Plug event, or because the driver is going to be removed from
1688 * memory.
1689 **/
1690 static void __devexit igb_remove(struct pci_dev *pdev)
1691 {
1692 struct net_device *netdev = pci_get_drvdata(pdev);
1693 struct igb_adapter *adapter = netdev_priv(netdev);
1694 struct e1000_hw *hw = &adapter->hw;
1695
1696 /* flush_scheduled work may reschedule our watchdog task, so
1697 * explicitly disable watchdog tasks from being rescheduled */
1698 set_bit(__IGB_DOWN, &adapter->state);
1699 del_timer_sync(&adapter->watchdog_timer);
1700 del_timer_sync(&adapter->phy_info_timer);
1701
1702 flush_scheduled_work();
1703
1704 #ifdef CONFIG_IGB_DCA
1705 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1706 dev_info(&pdev->dev, "DCA disabled\n");
1707 dca_remove_requester(&pdev->dev);
1708 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1709 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1710 }
1711 #endif
1712
1713 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1714 * would have already happened in close and is redundant. */
1715 igb_release_hw_control(adapter);
1716
1717 unregister_netdev(netdev);
1718
1719 if (!igb_check_reset_block(hw))
1720 igb_reset_phy(hw);
1721
1722 igb_clear_interrupt_scheme(adapter);
1723
1724 #ifdef CONFIG_PCI_IOV
1725 /* reclaim resources allocated to VFs */
1726 if (adapter->vf_data) {
1727 /* disable iov and allow time for transactions to clear */
1728 pci_disable_sriov(pdev);
1729 msleep(500);
1730
1731 kfree(adapter->vf_data);
1732 adapter->vf_data = NULL;
1733 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1734 msleep(100);
1735 dev_info(&pdev->dev, "IOV Disabled\n");
1736 }
1737 #endif
1738
1739 iounmap(hw->hw_addr);
1740 if (hw->flash_address)
1741 iounmap(hw->flash_address);
1742 pci_release_selected_regions(pdev,
1743 pci_select_bars(pdev, IORESOURCE_MEM));
1744
1745 free_netdev(netdev);
1746
1747 pci_disable_pcie_error_reporting(pdev);
1748
1749 pci_disable_device(pdev);
1750 }
1751
1752 /**
1753 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1754 * @adapter: board private structure to initialize
1755 *
1756 * This function initializes the vf specific data storage and then attempts to
1757 * allocate the VFs. The reason for ordering it this way is because it is much
1758 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1759 * the memory for the VFs.
1760 **/
1761 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1762 {
1763 #ifdef CONFIG_PCI_IOV
1764 struct pci_dev *pdev = adapter->pdev;
1765
1766 if (adapter->vfs_allocated_count > 7)
1767 adapter->vfs_allocated_count = 7;
1768
1769 if (adapter->vfs_allocated_count) {
1770 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1771 sizeof(struct vf_data_storage),
1772 GFP_KERNEL);
1773 /* if allocation failed then we do not support SR-IOV */
1774 if (!adapter->vf_data) {
1775 adapter->vfs_allocated_count = 0;
1776 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1777 "Data Storage\n");
1778 }
1779 }
1780
1781 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1782 kfree(adapter->vf_data);
1783 adapter->vf_data = NULL;
1784 #endif /* CONFIG_PCI_IOV */
1785 adapter->vfs_allocated_count = 0;
1786 #ifdef CONFIG_PCI_IOV
1787 } else {
1788 unsigned char mac_addr[ETH_ALEN];
1789 int i;
1790 dev_info(&pdev->dev, "%d vfs allocated\n",
1791 adapter->vfs_allocated_count);
1792 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1793 random_ether_addr(mac_addr);
1794 igb_set_vf_mac(adapter, i, mac_addr);
1795 }
1796 }
1797 #endif /* CONFIG_PCI_IOV */
1798 }
1799
1800
1801 /**
1802 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1803 * @adapter: board private structure to initialize
1804 *
1805 * igb_init_hw_timer initializes the function pointer and values for the hw
1806 * timer found in hardware.
1807 **/
1808 static void igb_init_hw_timer(struct igb_adapter *adapter)
1809 {
1810 struct e1000_hw *hw = &adapter->hw;
1811
1812 switch (hw->mac.type) {
1813 case e1000_82580:
1814 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1815 adapter->cycles.read = igb_read_clock;
1816 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1817 adapter->cycles.mult = 1;
1818 /*
1819 * The 82580 timesync updates the system timer every 8ns by 8ns
1820 * and the value cannot be shifted. Instead we need to shift
1821 * the registers to generate a 64bit timer value. As a result
1822 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
1823 * 24 in order to generate a larger value for synchronization.
1824 */
1825 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
1826 /* disable system timer temporarily by setting bit 31 */
1827 wr32(E1000_TSAUXC, 0x80000000);
1828 wrfl();
1829
1830 /* Set registers so that rollover occurs soon to test this. */
1831 wr32(E1000_SYSTIMR, 0x00000000);
1832 wr32(E1000_SYSTIML, 0x80000000);
1833 wr32(E1000_SYSTIMH, 0x000000FF);
1834 wrfl();
1835
1836 /* enable system timer by clearing bit 31 */
1837 wr32(E1000_TSAUXC, 0x0);
1838 wrfl();
1839
1840 timecounter_init(&adapter->clock,
1841 &adapter->cycles,
1842 ktime_to_ns(ktime_get_real()));
1843 /*
1844 * Synchronize our NIC clock against system wall clock. NIC
1845 * time stamp reading requires ~3us per sample, each sample
1846 * was pretty stable even under load => only require 10
1847 * samples for each offset comparison.
1848 */
1849 memset(&adapter->compare, 0, sizeof(adapter->compare));
1850 adapter->compare.source = &adapter->clock;
1851 adapter->compare.target = ktime_get_real;
1852 adapter->compare.num_samples = 10;
1853 timecompare_update(&adapter->compare, 0);
1854 break;
1855 case e1000_82576:
1856 /*
1857 * Initialize hardware timer: we keep it running just in case
1858 * that some program needs it later on.
1859 */
1860 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1861 adapter->cycles.read = igb_read_clock;
1862 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1863 adapter->cycles.mult = 1;
1864 /**
1865 * Scale the NIC clock cycle by a large factor so that
1866 * relatively small clock corrections can be added or
1867 * substracted at each clock tick. The drawbacks of a large
1868 * factor are a) that the clock register overflows more quickly
1869 * (not such a big deal) and b) that the increment per tick has
1870 * to fit into 24 bits. As a result we need to use a shift of
1871 * 19 so we can fit a value of 16 into the TIMINCA register.
1872 */
1873 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1874 wr32(E1000_TIMINCA,
1875 (1 << E1000_TIMINCA_16NS_SHIFT) |
1876 (16 << IGB_82576_TSYNC_SHIFT));
1877
1878 /* Set registers so that rollover occurs soon to test this. */
1879 wr32(E1000_SYSTIML, 0x00000000);
1880 wr32(E1000_SYSTIMH, 0xFF800000);
1881 wrfl();
1882
1883 timecounter_init(&adapter->clock,
1884 &adapter->cycles,
1885 ktime_to_ns(ktime_get_real()));
1886 /*
1887 * Synchronize our NIC clock against system wall clock. NIC
1888 * time stamp reading requires ~3us per sample, each sample
1889 * was pretty stable even under load => only require 10
1890 * samples for each offset comparison.
1891 */
1892 memset(&adapter->compare, 0, sizeof(adapter->compare));
1893 adapter->compare.source = &adapter->clock;
1894 adapter->compare.target = ktime_get_real;
1895 adapter->compare.num_samples = 10;
1896 timecompare_update(&adapter->compare, 0);
1897 break;
1898 case e1000_82575:
1899 /* 82575 does not support timesync */
1900 default:
1901 break;
1902 }
1903
1904 }
1905
1906 /**
1907 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1908 * @adapter: board private structure to initialize
1909 *
1910 * igb_sw_init initializes the Adapter private data structure.
1911 * Fields are initialized based on PCI device information and
1912 * OS network device settings (MTU size).
1913 **/
1914 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1915 {
1916 struct e1000_hw *hw = &adapter->hw;
1917 struct net_device *netdev = adapter->netdev;
1918 struct pci_dev *pdev = adapter->pdev;
1919
1920 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1921
1922 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1923 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1924 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1925 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1926
1927 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1928 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1929
1930 #ifdef CONFIG_PCI_IOV
1931 if (hw->mac.type == e1000_82576)
1932 adapter->vfs_allocated_count = max_vfs;
1933
1934 #endif /* CONFIG_PCI_IOV */
1935 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1936
1937 /*
1938 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1939 * then we should combine the queues into a queue pair in order to
1940 * conserve interrupts due to limited supply
1941 */
1942 if ((adapter->rss_queues > 4) ||
1943 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1944 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1945
1946 /* This call may decrease the number of queues */
1947 if (igb_init_interrupt_scheme(adapter)) {
1948 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1949 return -ENOMEM;
1950 }
1951
1952 igb_init_hw_timer(adapter);
1953 igb_probe_vfs(adapter);
1954
1955 /* Explicitly disable IRQ since the NIC can be in any state. */
1956 igb_irq_disable(adapter);
1957
1958 set_bit(__IGB_DOWN, &adapter->state);
1959 return 0;
1960 }
1961
1962 /**
1963 * igb_open - Called when a network interface is made active
1964 * @netdev: network interface device structure
1965 *
1966 * Returns 0 on success, negative value on failure
1967 *
1968 * The open entry point is called when a network interface is made
1969 * active by the system (IFF_UP). At this point all resources needed
1970 * for transmit and receive operations are allocated, the interrupt
1971 * handler is registered with the OS, the watchdog timer is started,
1972 * and the stack is notified that the interface is ready.
1973 **/
1974 static int igb_open(struct net_device *netdev)
1975 {
1976 struct igb_adapter *adapter = netdev_priv(netdev);
1977 struct e1000_hw *hw = &adapter->hw;
1978 int err;
1979 int i;
1980
1981 /* disallow open during test */
1982 if (test_bit(__IGB_TESTING, &adapter->state))
1983 return -EBUSY;
1984
1985 netif_carrier_off(netdev);
1986
1987 /* allocate transmit descriptors */
1988 err = igb_setup_all_tx_resources(adapter);
1989 if (err)
1990 goto err_setup_tx;
1991
1992 /* allocate receive descriptors */
1993 err = igb_setup_all_rx_resources(adapter);
1994 if (err)
1995 goto err_setup_rx;
1996
1997 /* e1000_power_up_phy(adapter); */
1998
1999 /* before we allocate an interrupt, we must be ready to handle it.
2000 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2001 * as soon as we call pci_request_irq, so we have to setup our
2002 * clean_rx handler before we do so. */
2003 igb_configure(adapter);
2004
2005 err = igb_request_irq(adapter);
2006 if (err)
2007 goto err_req_irq;
2008
2009 /* From here on the code is the same as igb_up() */
2010 clear_bit(__IGB_DOWN, &adapter->state);
2011
2012 for (i = 0; i < adapter->num_q_vectors; i++) {
2013 struct igb_q_vector *q_vector = adapter->q_vector[i];
2014 napi_enable(&q_vector->napi);
2015 }
2016
2017 /* Clear any pending interrupts. */
2018 rd32(E1000_ICR);
2019
2020 igb_irq_enable(adapter);
2021
2022 /* notify VFs that reset has been completed */
2023 if (adapter->vfs_allocated_count) {
2024 u32 reg_data = rd32(E1000_CTRL_EXT);
2025 reg_data |= E1000_CTRL_EXT_PFRSTD;
2026 wr32(E1000_CTRL_EXT, reg_data);
2027 }
2028
2029 netif_tx_start_all_queues(netdev);
2030
2031 /* start the watchdog. */
2032 hw->mac.get_link_status = 1;
2033 schedule_work(&adapter->watchdog_task);
2034
2035 return 0;
2036
2037 err_req_irq:
2038 igb_release_hw_control(adapter);
2039 /* e1000_power_down_phy(adapter); */
2040 igb_free_all_rx_resources(adapter);
2041 err_setup_rx:
2042 igb_free_all_tx_resources(adapter);
2043 err_setup_tx:
2044 igb_reset(adapter);
2045
2046 return err;
2047 }
2048
2049 /**
2050 * igb_close - Disables a network interface
2051 * @netdev: network interface device structure
2052 *
2053 * Returns 0, this is not allowed to fail
2054 *
2055 * The close entry point is called when an interface is de-activated
2056 * by the OS. The hardware is still under the driver's control, but
2057 * needs to be disabled. A global MAC reset is issued to stop the
2058 * hardware, and all transmit and receive resources are freed.
2059 **/
2060 static int igb_close(struct net_device *netdev)
2061 {
2062 struct igb_adapter *adapter = netdev_priv(netdev);
2063
2064 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2065 igb_down(adapter);
2066
2067 igb_free_irq(adapter);
2068
2069 igb_free_all_tx_resources(adapter);
2070 igb_free_all_rx_resources(adapter);
2071
2072 return 0;
2073 }
2074
2075 /**
2076 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2077 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2078 *
2079 * Return 0 on success, negative on failure
2080 **/
2081 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2082 {
2083 struct pci_dev *pdev = tx_ring->pdev;
2084 int size;
2085
2086 size = sizeof(struct igb_buffer) * tx_ring->count;
2087 tx_ring->buffer_info = vmalloc(size);
2088 if (!tx_ring->buffer_info)
2089 goto err;
2090 memset(tx_ring->buffer_info, 0, size);
2091
2092 /* round up to nearest 4K */
2093 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2094 tx_ring->size = ALIGN(tx_ring->size, 4096);
2095
2096 tx_ring->desc = pci_alloc_consistent(pdev,
2097 tx_ring->size,
2098 &tx_ring->dma);
2099
2100 if (!tx_ring->desc)
2101 goto err;
2102
2103 tx_ring->next_to_use = 0;
2104 tx_ring->next_to_clean = 0;
2105 return 0;
2106
2107 err:
2108 vfree(tx_ring->buffer_info);
2109 dev_err(&pdev->dev,
2110 "Unable to allocate memory for the transmit descriptor ring\n");
2111 return -ENOMEM;
2112 }
2113
2114 /**
2115 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2116 * (Descriptors) for all queues
2117 * @adapter: board private structure
2118 *
2119 * Return 0 on success, negative on failure
2120 **/
2121 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2122 {
2123 struct pci_dev *pdev = adapter->pdev;
2124 int i, err = 0;
2125
2126 for (i = 0; i < adapter->num_tx_queues; i++) {
2127 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2128 if (err) {
2129 dev_err(&pdev->dev,
2130 "Allocation for Tx Queue %u failed\n", i);
2131 for (i--; i >= 0; i--)
2132 igb_free_tx_resources(&adapter->tx_ring[i]);
2133 break;
2134 }
2135 }
2136
2137 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2138 int r_idx = i % adapter->num_tx_queues;
2139 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2140 }
2141 return err;
2142 }
2143
2144 /**
2145 * igb_setup_tctl - configure the transmit control registers
2146 * @adapter: Board private structure
2147 **/
2148 void igb_setup_tctl(struct igb_adapter *adapter)
2149 {
2150 struct e1000_hw *hw = &adapter->hw;
2151 u32 tctl;
2152
2153 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2154 wr32(E1000_TXDCTL(0), 0);
2155
2156 /* Program the Transmit Control Register */
2157 tctl = rd32(E1000_TCTL);
2158 tctl &= ~E1000_TCTL_CT;
2159 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2160 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2161
2162 igb_config_collision_dist(hw);
2163
2164 /* Enable transmits */
2165 tctl |= E1000_TCTL_EN;
2166
2167 wr32(E1000_TCTL, tctl);
2168 }
2169
2170 /**
2171 * igb_configure_tx_ring - Configure transmit ring after Reset
2172 * @adapter: board private structure
2173 * @ring: tx ring to configure
2174 *
2175 * Configure a transmit ring after a reset.
2176 **/
2177 void igb_configure_tx_ring(struct igb_adapter *adapter,
2178 struct igb_ring *ring)
2179 {
2180 struct e1000_hw *hw = &adapter->hw;
2181 u32 txdctl;
2182 u64 tdba = ring->dma;
2183 int reg_idx = ring->reg_idx;
2184
2185 /* disable the queue */
2186 txdctl = rd32(E1000_TXDCTL(reg_idx));
2187 wr32(E1000_TXDCTL(reg_idx),
2188 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2189 wrfl();
2190 mdelay(10);
2191
2192 wr32(E1000_TDLEN(reg_idx),
2193 ring->count * sizeof(union e1000_adv_tx_desc));
2194 wr32(E1000_TDBAL(reg_idx),
2195 tdba & 0x00000000ffffffffULL);
2196 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2197
2198 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2199 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2200 writel(0, ring->head);
2201 writel(0, ring->tail);
2202
2203 txdctl |= IGB_TX_PTHRESH;
2204 txdctl |= IGB_TX_HTHRESH << 8;
2205 txdctl |= IGB_TX_WTHRESH << 16;
2206
2207 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2208 wr32(E1000_TXDCTL(reg_idx), txdctl);
2209 }
2210
2211 /**
2212 * igb_configure_tx - Configure transmit Unit after Reset
2213 * @adapter: board private structure
2214 *
2215 * Configure the Tx unit of the MAC after a reset.
2216 **/
2217 static void igb_configure_tx(struct igb_adapter *adapter)
2218 {
2219 int i;
2220
2221 for (i = 0; i < adapter->num_tx_queues; i++)
2222 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2223 }
2224
2225 /**
2226 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2227 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2228 *
2229 * Returns 0 on success, negative on failure
2230 **/
2231 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2232 {
2233 struct pci_dev *pdev = rx_ring->pdev;
2234 int size, desc_len;
2235
2236 size = sizeof(struct igb_buffer) * rx_ring->count;
2237 rx_ring->buffer_info = vmalloc(size);
2238 if (!rx_ring->buffer_info)
2239 goto err;
2240 memset(rx_ring->buffer_info, 0, size);
2241
2242 desc_len = sizeof(union e1000_adv_rx_desc);
2243
2244 /* Round up to nearest 4K */
2245 rx_ring->size = rx_ring->count * desc_len;
2246 rx_ring->size = ALIGN(rx_ring->size, 4096);
2247
2248 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2249 &rx_ring->dma);
2250
2251 if (!rx_ring->desc)
2252 goto err;
2253
2254 rx_ring->next_to_clean = 0;
2255 rx_ring->next_to_use = 0;
2256
2257 return 0;
2258
2259 err:
2260 vfree(rx_ring->buffer_info);
2261 rx_ring->buffer_info = NULL;
2262 dev_err(&pdev->dev, "Unable to allocate memory for "
2263 "the receive descriptor ring\n");
2264 return -ENOMEM;
2265 }
2266
2267 /**
2268 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2269 * (Descriptors) for all queues
2270 * @adapter: board private structure
2271 *
2272 * Return 0 on success, negative on failure
2273 **/
2274 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2275 {
2276 struct pci_dev *pdev = adapter->pdev;
2277 int i, err = 0;
2278
2279 for (i = 0; i < adapter->num_rx_queues; i++) {
2280 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2281 if (err) {
2282 dev_err(&pdev->dev,
2283 "Allocation for Rx Queue %u failed\n", i);
2284 for (i--; i >= 0; i--)
2285 igb_free_rx_resources(&adapter->rx_ring[i]);
2286 break;
2287 }
2288 }
2289
2290 return err;
2291 }
2292
2293 /**
2294 * igb_setup_mrqc - configure the multiple receive queue control registers
2295 * @adapter: Board private structure
2296 **/
2297 static void igb_setup_mrqc(struct igb_adapter *adapter)
2298 {
2299 struct e1000_hw *hw = &adapter->hw;
2300 u32 mrqc, rxcsum;
2301 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2302 union e1000_reta {
2303 u32 dword;
2304 u8 bytes[4];
2305 } reta;
2306 static const u8 rsshash[40] = {
2307 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2308 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2309 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2310 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2311
2312 /* Fill out hash function seeds */
2313 for (j = 0; j < 10; j++) {
2314 u32 rsskey = rsshash[(j * 4)];
2315 rsskey |= rsshash[(j * 4) + 1] << 8;
2316 rsskey |= rsshash[(j * 4) + 2] << 16;
2317 rsskey |= rsshash[(j * 4) + 3] << 24;
2318 array_wr32(E1000_RSSRK(0), j, rsskey);
2319 }
2320
2321 num_rx_queues = adapter->rss_queues;
2322
2323 if (adapter->vfs_allocated_count) {
2324 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2325 switch (hw->mac.type) {
2326 case e1000_82580:
2327 num_rx_queues = 1;
2328 shift = 0;
2329 break;
2330 case e1000_82576:
2331 shift = 3;
2332 num_rx_queues = 2;
2333 break;
2334 case e1000_82575:
2335 shift = 2;
2336 shift2 = 6;
2337 default:
2338 break;
2339 }
2340 } else {
2341 if (hw->mac.type == e1000_82575)
2342 shift = 6;
2343 }
2344
2345 for (j = 0; j < (32 * 4); j++) {
2346 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2347 if (shift2)
2348 reta.bytes[j & 3] |= num_rx_queues << shift2;
2349 if ((j & 3) == 3)
2350 wr32(E1000_RETA(j >> 2), reta.dword);
2351 }
2352
2353 /*
2354 * Disable raw packet checksumming so that RSS hash is placed in
2355 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2356 * offloads as they are enabled by default
2357 */
2358 rxcsum = rd32(E1000_RXCSUM);
2359 rxcsum |= E1000_RXCSUM_PCSD;
2360
2361 if (adapter->hw.mac.type >= e1000_82576)
2362 /* Enable Receive Checksum Offload for SCTP */
2363 rxcsum |= E1000_RXCSUM_CRCOFL;
2364
2365 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2366 wr32(E1000_RXCSUM, rxcsum);
2367
2368 /* If VMDq is enabled then we set the appropriate mode for that, else
2369 * we default to RSS so that an RSS hash is calculated per packet even
2370 * if we are only using one queue */
2371 if (adapter->vfs_allocated_count) {
2372 if (hw->mac.type > e1000_82575) {
2373 /* Set the default pool for the PF's first queue */
2374 u32 vtctl = rd32(E1000_VT_CTL);
2375 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2376 E1000_VT_CTL_DISABLE_DEF_POOL);
2377 vtctl |= adapter->vfs_allocated_count <<
2378 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2379 wr32(E1000_VT_CTL, vtctl);
2380 }
2381 if (adapter->rss_queues > 1)
2382 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2383 else
2384 mrqc = E1000_MRQC_ENABLE_VMDQ;
2385 } else {
2386 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2387 }
2388 igb_vmm_control(adapter);
2389
2390 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2391 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2392 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2393 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2394 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2395 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2396 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2397 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2398
2399 wr32(E1000_MRQC, mrqc);
2400 }
2401
2402 /**
2403 * igb_setup_rctl - configure the receive control registers
2404 * @adapter: Board private structure
2405 **/
2406 void igb_setup_rctl(struct igb_adapter *adapter)
2407 {
2408 struct e1000_hw *hw = &adapter->hw;
2409 u32 rctl;
2410
2411 rctl = rd32(E1000_RCTL);
2412
2413 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2414 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2415
2416 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2417 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2418
2419 /*
2420 * enable stripping of CRC. It's unlikely this will break BMC
2421 * redirection as it did with e1000. Newer features require
2422 * that the HW strips the CRC.
2423 */
2424 rctl |= E1000_RCTL_SECRC;
2425
2426 /* disable store bad packets and clear size bits. */
2427 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2428
2429 /* enable LPE to prevent packets larger than max_frame_size */
2430 rctl |= E1000_RCTL_LPE;
2431
2432 /* disable queue 0 to prevent tail write w/o re-config */
2433 wr32(E1000_RXDCTL(0), 0);
2434
2435 /* Attention!!! For SR-IOV PF driver operations you must enable
2436 * queue drop for all VF and PF queues to prevent head of line blocking
2437 * if an un-trusted VF does not provide descriptors to hardware.
2438 */
2439 if (adapter->vfs_allocated_count) {
2440 /* set all queue drop enable bits */
2441 wr32(E1000_QDE, ALL_QUEUES);
2442 }
2443
2444 wr32(E1000_RCTL, rctl);
2445 }
2446
2447 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2448 int vfn)
2449 {
2450 struct e1000_hw *hw = &adapter->hw;
2451 u32 vmolr;
2452
2453 /* if it isn't the PF check to see if VFs are enabled and
2454 * increase the size to support vlan tags */
2455 if (vfn < adapter->vfs_allocated_count &&
2456 adapter->vf_data[vfn].vlans_enabled)
2457 size += VLAN_TAG_SIZE;
2458
2459 vmolr = rd32(E1000_VMOLR(vfn));
2460 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2461 vmolr |= size | E1000_VMOLR_LPE;
2462 wr32(E1000_VMOLR(vfn), vmolr);
2463
2464 return 0;
2465 }
2466
2467 /**
2468 * igb_rlpml_set - set maximum receive packet size
2469 * @adapter: board private structure
2470 *
2471 * Configure maximum receivable packet size.
2472 **/
2473 static void igb_rlpml_set(struct igb_adapter *adapter)
2474 {
2475 u32 max_frame_size = adapter->max_frame_size;
2476 struct e1000_hw *hw = &adapter->hw;
2477 u16 pf_id = adapter->vfs_allocated_count;
2478
2479 if (adapter->vlgrp)
2480 max_frame_size += VLAN_TAG_SIZE;
2481
2482 /* if vfs are enabled we set RLPML to the largest possible request
2483 * size and set the VMOLR RLPML to the size we need */
2484 if (pf_id) {
2485 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2486 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2487 }
2488
2489 wr32(E1000_RLPML, max_frame_size);
2490 }
2491
2492 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2493 {
2494 struct e1000_hw *hw = &adapter->hw;
2495 u32 vmolr;
2496
2497 /*
2498 * This register exists only on 82576 and newer so if we are older then
2499 * we should exit and do nothing
2500 */
2501 if (hw->mac.type < e1000_82576)
2502 return;
2503
2504 vmolr = rd32(E1000_VMOLR(vfn));
2505 vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */
2506 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2507
2508 /* clear all bits that might not be set */
2509 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2510
2511 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2512 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2513 /*
2514 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2515 * multicast packets
2516 */
2517 if (vfn <= adapter->vfs_allocated_count)
2518 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2519
2520 wr32(E1000_VMOLR(vfn), vmolr);
2521 }
2522
2523 /**
2524 * igb_configure_rx_ring - Configure a receive ring after Reset
2525 * @adapter: board private structure
2526 * @ring: receive ring to be configured
2527 *
2528 * Configure the Rx unit of the MAC after a reset.
2529 **/
2530 void igb_configure_rx_ring(struct igb_adapter *adapter,
2531 struct igb_ring *ring)
2532 {
2533 struct e1000_hw *hw = &adapter->hw;
2534 u64 rdba = ring->dma;
2535 int reg_idx = ring->reg_idx;
2536 u32 srrctl, rxdctl;
2537
2538 /* disable the queue */
2539 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2540 wr32(E1000_RXDCTL(reg_idx),
2541 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2542
2543 /* Set DMA base address registers */
2544 wr32(E1000_RDBAL(reg_idx),
2545 rdba & 0x00000000ffffffffULL);
2546 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2547 wr32(E1000_RDLEN(reg_idx),
2548 ring->count * sizeof(union e1000_adv_rx_desc));
2549
2550 /* initialize head and tail */
2551 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2552 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2553 writel(0, ring->head);
2554 writel(0, ring->tail);
2555
2556 /* set descriptor configuration */
2557 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2558 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2559 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2560 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2561 srrctl |= IGB_RXBUFFER_16384 >>
2562 E1000_SRRCTL_BSIZEPKT_SHIFT;
2563 #else
2564 srrctl |= (PAGE_SIZE / 2) >>
2565 E1000_SRRCTL_BSIZEPKT_SHIFT;
2566 #endif
2567 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2568 } else {
2569 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2570 E1000_SRRCTL_BSIZEPKT_SHIFT;
2571 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2572 }
2573
2574 wr32(E1000_SRRCTL(reg_idx), srrctl);
2575
2576 /* set filtering for VMDQ pools */
2577 igb_set_vmolr(adapter, reg_idx & 0x7);
2578
2579 /* enable receive descriptor fetching */
2580 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2581 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2582 rxdctl &= 0xFFF00000;
2583 rxdctl |= IGB_RX_PTHRESH;
2584 rxdctl |= IGB_RX_HTHRESH << 8;
2585 rxdctl |= IGB_RX_WTHRESH << 16;
2586 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2587 }
2588
2589 /**
2590 * igb_configure_rx - Configure receive Unit after Reset
2591 * @adapter: board private structure
2592 *
2593 * Configure the Rx unit of the MAC after a reset.
2594 **/
2595 static void igb_configure_rx(struct igb_adapter *adapter)
2596 {
2597 int i;
2598
2599 /* set UTA to appropriate mode */
2600 igb_set_uta(adapter);
2601
2602 /* set the correct pool for the PF default MAC address in entry 0 */
2603 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2604 adapter->vfs_allocated_count);
2605
2606 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2607 * the Base and Length of the Rx Descriptor Ring */
2608 for (i = 0; i < adapter->num_rx_queues; i++)
2609 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2610 }
2611
2612 /**
2613 * igb_free_tx_resources - Free Tx Resources per Queue
2614 * @tx_ring: Tx descriptor ring for a specific queue
2615 *
2616 * Free all transmit software resources
2617 **/
2618 void igb_free_tx_resources(struct igb_ring *tx_ring)
2619 {
2620 igb_clean_tx_ring(tx_ring);
2621
2622 vfree(tx_ring->buffer_info);
2623 tx_ring->buffer_info = NULL;
2624
2625 /* if not set, then don't free */
2626 if (!tx_ring->desc)
2627 return;
2628
2629 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2630 tx_ring->desc, tx_ring->dma);
2631
2632 tx_ring->desc = NULL;
2633 }
2634
2635 /**
2636 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2637 * @adapter: board private structure
2638 *
2639 * Free all transmit software resources
2640 **/
2641 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2642 {
2643 int i;
2644
2645 for (i = 0; i < adapter->num_tx_queues; i++)
2646 igb_free_tx_resources(&adapter->tx_ring[i]);
2647 }
2648
2649 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2650 struct igb_buffer *buffer_info)
2651 {
2652 if (buffer_info->dma) {
2653 if (buffer_info->mapped_as_page)
2654 pci_unmap_page(tx_ring->pdev,
2655 buffer_info->dma,
2656 buffer_info->length,
2657 PCI_DMA_TODEVICE);
2658 else
2659 pci_unmap_single(tx_ring->pdev,
2660 buffer_info->dma,
2661 buffer_info->length,
2662 PCI_DMA_TODEVICE);
2663 buffer_info->dma = 0;
2664 }
2665 if (buffer_info->skb) {
2666 dev_kfree_skb_any(buffer_info->skb);
2667 buffer_info->skb = NULL;
2668 }
2669 buffer_info->time_stamp = 0;
2670 buffer_info->length = 0;
2671 buffer_info->next_to_watch = 0;
2672 buffer_info->mapped_as_page = false;
2673 }
2674
2675 /**
2676 * igb_clean_tx_ring - Free Tx Buffers
2677 * @tx_ring: ring to be cleaned
2678 **/
2679 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2680 {
2681 struct igb_buffer *buffer_info;
2682 unsigned long size;
2683 unsigned int i;
2684
2685 if (!tx_ring->buffer_info)
2686 return;
2687 /* Free all the Tx ring sk_buffs */
2688
2689 for (i = 0; i < tx_ring->count; i++) {
2690 buffer_info = &tx_ring->buffer_info[i];
2691 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2692 }
2693
2694 size = sizeof(struct igb_buffer) * tx_ring->count;
2695 memset(tx_ring->buffer_info, 0, size);
2696
2697 /* Zero out the descriptor ring */
2698 memset(tx_ring->desc, 0, tx_ring->size);
2699
2700 tx_ring->next_to_use = 0;
2701 tx_ring->next_to_clean = 0;
2702 }
2703
2704 /**
2705 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2706 * @adapter: board private structure
2707 **/
2708 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2709 {
2710 int i;
2711
2712 for (i = 0; i < adapter->num_tx_queues; i++)
2713 igb_clean_tx_ring(&adapter->tx_ring[i]);
2714 }
2715
2716 /**
2717 * igb_free_rx_resources - Free Rx Resources
2718 * @rx_ring: ring to clean the resources from
2719 *
2720 * Free all receive software resources
2721 **/
2722 void igb_free_rx_resources(struct igb_ring *rx_ring)
2723 {
2724 igb_clean_rx_ring(rx_ring);
2725
2726 vfree(rx_ring->buffer_info);
2727 rx_ring->buffer_info = NULL;
2728
2729 /* if not set, then don't free */
2730 if (!rx_ring->desc)
2731 return;
2732
2733 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2734 rx_ring->desc, rx_ring->dma);
2735
2736 rx_ring->desc = NULL;
2737 }
2738
2739 /**
2740 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2741 * @adapter: board private structure
2742 *
2743 * Free all receive software resources
2744 **/
2745 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2746 {
2747 int i;
2748
2749 for (i = 0; i < adapter->num_rx_queues; i++)
2750 igb_free_rx_resources(&adapter->rx_ring[i]);
2751 }
2752
2753 /**
2754 * igb_clean_rx_ring - Free Rx Buffers per Queue
2755 * @rx_ring: ring to free buffers from
2756 **/
2757 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2758 {
2759 struct igb_buffer *buffer_info;
2760 unsigned long size;
2761 unsigned int i;
2762
2763 if (!rx_ring->buffer_info)
2764 return;
2765
2766 /* Free all the Rx ring sk_buffs */
2767 for (i = 0; i < rx_ring->count; i++) {
2768 buffer_info = &rx_ring->buffer_info[i];
2769 if (buffer_info->dma) {
2770 pci_unmap_single(rx_ring->pdev,
2771 buffer_info->dma,
2772 rx_ring->rx_buffer_len,
2773 PCI_DMA_FROMDEVICE);
2774 buffer_info->dma = 0;
2775 }
2776
2777 if (buffer_info->skb) {
2778 dev_kfree_skb(buffer_info->skb);
2779 buffer_info->skb = NULL;
2780 }
2781 if (buffer_info->page_dma) {
2782 pci_unmap_page(rx_ring->pdev,
2783 buffer_info->page_dma,
2784 PAGE_SIZE / 2,
2785 PCI_DMA_FROMDEVICE);
2786 buffer_info->page_dma = 0;
2787 }
2788 if (buffer_info->page) {
2789 put_page(buffer_info->page);
2790 buffer_info->page = NULL;
2791 buffer_info->page_offset = 0;
2792 }
2793 }
2794
2795 size = sizeof(struct igb_buffer) * rx_ring->count;
2796 memset(rx_ring->buffer_info, 0, size);
2797
2798 /* Zero out the descriptor ring */
2799 memset(rx_ring->desc, 0, rx_ring->size);
2800
2801 rx_ring->next_to_clean = 0;
2802 rx_ring->next_to_use = 0;
2803 }
2804
2805 /**
2806 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2807 * @adapter: board private structure
2808 **/
2809 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2810 {
2811 int i;
2812
2813 for (i = 0; i < adapter->num_rx_queues; i++)
2814 igb_clean_rx_ring(&adapter->rx_ring[i]);
2815 }
2816
2817 /**
2818 * igb_set_mac - Change the Ethernet Address of the NIC
2819 * @netdev: network interface device structure
2820 * @p: pointer to an address structure
2821 *
2822 * Returns 0 on success, negative on failure
2823 **/
2824 static int igb_set_mac(struct net_device *netdev, void *p)
2825 {
2826 struct igb_adapter *adapter = netdev_priv(netdev);
2827 struct e1000_hw *hw = &adapter->hw;
2828 struct sockaddr *addr = p;
2829
2830 if (!is_valid_ether_addr(addr->sa_data))
2831 return -EADDRNOTAVAIL;
2832
2833 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2834 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2835
2836 /* set the correct pool for the new PF MAC address in entry 0 */
2837 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2838 adapter->vfs_allocated_count);
2839
2840 return 0;
2841 }
2842
2843 /**
2844 * igb_write_mc_addr_list - write multicast addresses to MTA
2845 * @netdev: network interface device structure
2846 *
2847 * Writes multicast address list to the MTA hash table.
2848 * Returns: -ENOMEM on failure
2849 * 0 on no addresses written
2850 * X on writing X addresses to MTA
2851 **/
2852 static int igb_write_mc_addr_list(struct net_device *netdev)
2853 {
2854 struct igb_adapter *adapter = netdev_priv(netdev);
2855 struct e1000_hw *hw = &adapter->hw;
2856 struct dev_mc_list *mc_ptr = netdev->mc_list;
2857 u8 *mta_list;
2858 u32 vmolr = 0;
2859 int i;
2860
2861 if (!netdev->mc_count) {
2862 /* nothing to program, so clear mc list */
2863 igb_update_mc_addr_list(hw, NULL, 0);
2864 igb_restore_vf_multicasts(adapter);
2865 return 0;
2866 }
2867
2868 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2869 if (!mta_list)
2870 return -ENOMEM;
2871
2872 /* set vmolr receive overflow multicast bit */
2873 vmolr |= E1000_VMOLR_ROMPE;
2874
2875 /* The shared function expects a packed array of only addresses. */
2876 mc_ptr = netdev->mc_list;
2877
2878 for (i = 0; i < netdev->mc_count; i++) {
2879 if (!mc_ptr)
2880 break;
2881 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2882 mc_ptr = mc_ptr->next;
2883 }
2884 igb_update_mc_addr_list(hw, mta_list, i);
2885 kfree(mta_list);
2886
2887 return netdev->mc_count;
2888 }
2889
2890 /**
2891 * igb_write_uc_addr_list - write unicast addresses to RAR table
2892 * @netdev: network interface device structure
2893 *
2894 * Writes unicast address list to the RAR table.
2895 * Returns: -ENOMEM on failure/insufficient address space
2896 * 0 on no addresses written
2897 * X on writing X addresses to the RAR table
2898 **/
2899 static int igb_write_uc_addr_list(struct net_device *netdev)
2900 {
2901 struct igb_adapter *adapter = netdev_priv(netdev);
2902 struct e1000_hw *hw = &adapter->hw;
2903 unsigned int vfn = adapter->vfs_allocated_count;
2904 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2905 int count = 0;
2906
2907 /* return ENOMEM indicating insufficient memory for addresses */
2908 if (netdev_uc_count(netdev) > rar_entries)
2909 return -ENOMEM;
2910
2911 if (!netdev_uc_empty(netdev) && rar_entries) {
2912 struct netdev_hw_addr *ha;
2913
2914 netdev_for_each_uc_addr(ha, netdev) {
2915 if (!rar_entries)
2916 break;
2917 igb_rar_set_qsel(adapter, ha->addr,
2918 rar_entries--,
2919 vfn);
2920 count++;
2921 }
2922 }
2923 /* write the addresses in reverse order to avoid write combining */
2924 for (; rar_entries > 0 ; rar_entries--) {
2925 wr32(E1000_RAH(rar_entries), 0);
2926 wr32(E1000_RAL(rar_entries), 0);
2927 }
2928 wrfl();
2929
2930 return count;
2931 }
2932
2933 /**
2934 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2935 * @netdev: network interface device structure
2936 *
2937 * The set_rx_mode entry point is called whenever the unicast or multicast
2938 * address lists or the network interface flags are updated. This routine is
2939 * responsible for configuring the hardware for proper unicast, multicast,
2940 * promiscuous mode, and all-multi behavior.
2941 **/
2942 static void igb_set_rx_mode(struct net_device *netdev)
2943 {
2944 struct igb_adapter *adapter = netdev_priv(netdev);
2945 struct e1000_hw *hw = &adapter->hw;
2946 unsigned int vfn = adapter->vfs_allocated_count;
2947 u32 rctl, vmolr = 0;
2948 int count;
2949
2950 /* Check for Promiscuous and All Multicast modes */
2951 rctl = rd32(E1000_RCTL);
2952
2953 /* clear the effected bits */
2954 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2955
2956 if (netdev->flags & IFF_PROMISC) {
2957 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2958 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2959 } else {
2960 if (netdev->flags & IFF_ALLMULTI) {
2961 rctl |= E1000_RCTL_MPE;
2962 vmolr |= E1000_VMOLR_MPME;
2963 } else {
2964 /*
2965 * Write addresses to the MTA, if the attempt fails
2966 * then we should just turn on promiscous mode so
2967 * that we can at least receive multicast traffic
2968 */
2969 count = igb_write_mc_addr_list(netdev);
2970 if (count < 0) {
2971 rctl |= E1000_RCTL_MPE;
2972 vmolr |= E1000_VMOLR_MPME;
2973 } else if (count) {
2974 vmolr |= E1000_VMOLR_ROMPE;
2975 }
2976 }
2977 /*
2978 * Write addresses to available RAR registers, if there is not
2979 * sufficient space to store all the addresses then enable
2980 * unicast promiscous mode
2981 */
2982 count = igb_write_uc_addr_list(netdev);
2983 if (count < 0) {
2984 rctl |= E1000_RCTL_UPE;
2985 vmolr |= E1000_VMOLR_ROPE;
2986 }
2987 rctl |= E1000_RCTL_VFE;
2988 }
2989 wr32(E1000_RCTL, rctl);
2990
2991 /*
2992 * In order to support SR-IOV and eventually VMDq it is necessary to set
2993 * the VMOLR to enable the appropriate modes. Without this workaround
2994 * we will have issues with VLAN tag stripping not being done for frames
2995 * that are only arriving because we are the default pool
2996 */
2997 if (hw->mac.type < e1000_82576)
2998 return;
2999
3000 vmolr |= rd32(E1000_VMOLR(vfn)) &
3001 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3002 wr32(E1000_VMOLR(vfn), vmolr);
3003 igb_restore_vf_multicasts(adapter);
3004 }
3005
3006 /* Need to wait a few seconds after link up to get diagnostic information from
3007 * the phy */
3008 static void igb_update_phy_info(unsigned long data)
3009 {
3010 struct igb_adapter *adapter = (struct igb_adapter *) data;
3011 igb_get_phy_info(&adapter->hw);
3012 }
3013
3014 /**
3015 * igb_has_link - check shared code for link and determine up/down
3016 * @adapter: pointer to driver private info
3017 **/
3018 static bool igb_has_link(struct igb_adapter *adapter)
3019 {
3020 struct e1000_hw *hw = &adapter->hw;
3021 bool link_active = false;
3022 s32 ret_val = 0;
3023
3024 /* get_link_status is set on LSC (link status) interrupt or
3025 * rx sequence error interrupt. get_link_status will stay
3026 * false until the e1000_check_for_link establishes link
3027 * for copper adapters ONLY
3028 */
3029 switch (hw->phy.media_type) {
3030 case e1000_media_type_copper:
3031 if (hw->mac.get_link_status) {
3032 ret_val = hw->mac.ops.check_for_link(hw);
3033 link_active = !hw->mac.get_link_status;
3034 } else {
3035 link_active = true;
3036 }
3037 break;
3038 case e1000_media_type_internal_serdes:
3039 ret_val = hw->mac.ops.check_for_link(hw);
3040 link_active = hw->mac.serdes_has_link;
3041 break;
3042 default:
3043 case e1000_media_type_unknown:
3044 break;
3045 }
3046
3047 return link_active;
3048 }
3049
3050 /**
3051 * igb_watchdog - Timer Call-back
3052 * @data: pointer to adapter cast into an unsigned long
3053 **/
3054 static void igb_watchdog(unsigned long data)
3055 {
3056 struct igb_adapter *adapter = (struct igb_adapter *)data;
3057 /* Do the rest outside of interrupt context */
3058 schedule_work(&adapter->watchdog_task);
3059 }
3060
3061 static void igb_watchdog_task(struct work_struct *work)
3062 {
3063 struct igb_adapter *adapter = container_of(work,
3064 struct igb_adapter,
3065 watchdog_task);
3066 struct e1000_hw *hw = &adapter->hw;
3067 struct net_device *netdev = adapter->netdev;
3068 u32 link;
3069 int i;
3070
3071 link = igb_has_link(adapter);
3072 if (link) {
3073 if (!netif_carrier_ok(netdev)) {
3074 u32 ctrl;
3075 hw->mac.ops.get_speed_and_duplex(hw,
3076 &adapter->link_speed,
3077 &adapter->link_duplex);
3078
3079 ctrl = rd32(E1000_CTRL);
3080 /* Links status message must follow this format */
3081 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3082 "Flow Control: %s\n",
3083 netdev->name,
3084 adapter->link_speed,
3085 adapter->link_duplex == FULL_DUPLEX ?
3086 "Full Duplex" : "Half Duplex",
3087 ((ctrl & E1000_CTRL_TFCE) &&
3088 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3089 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3090 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
3091
3092 /* tweak tx_queue_len according to speed/duplex and
3093 * adjust the timeout factor */
3094 netdev->tx_queue_len = adapter->tx_queue_len;
3095 adapter->tx_timeout_factor = 1;
3096 switch (adapter->link_speed) {
3097 case SPEED_10:
3098 netdev->tx_queue_len = 10;
3099 adapter->tx_timeout_factor = 14;
3100 break;
3101 case SPEED_100:
3102 netdev->tx_queue_len = 100;
3103 /* maybe add some timeout factor ? */
3104 break;
3105 }
3106
3107 netif_carrier_on(netdev);
3108
3109 igb_ping_all_vfs(adapter);
3110
3111 /* link state has changed, schedule phy info update */
3112 if (!test_bit(__IGB_DOWN, &adapter->state))
3113 mod_timer(&adapter->phy_info_timer,
3114 round_jiffies(jiffies + 2 * HZ));
3115 }
3116 } else {
3117 if (netif_carrier_ok(netdev)) {
3118 adapter->link_speed = 0;
3119 adapter->link_duplex = 0;
3120 /* Links status message must follow this format */
3121 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3122 netdev->name);
3123 netif_carrier_off(netdev);
3124
3125 igb_ping_all_vfs(adapter);
3126
3127 /* link state has changed, schedule phy info update */
3128 if (!test_bit(__IGB_DOWN, &adapter->state))
3129 mod_timer(&adapter->phy_info_timer,
3130 round_jiffies(jiffies + 2 * HZ));
3131 }
3132 }
3133
3134 igb_update_stats(adapter);
3135 igb_update_adaptive(hw);
3136
3137 for (i = 0; i < adapter->num_tx_queues; i++) {
3138 struct igb_ring *tx_ring = &adapter->tx_ring[i];
3139 if (!netif_carrier_ok(netdev)) {
3140 /* We've lost link, so the controller stops DMA,
3141 * but we've got queued Tx work that's never going
3142 * to get done, so reset controller to flush Tx.
3143 * (Do the reset outside of interrupt context). */
3144 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3145 adapter->tx_timeout_count++;
3146 schedule_work(&adapter->reset_task);
3147 /* return immediately since reset is imminent */
3148 return;
3149 }
3150 }
3151
3152 /* Force detection of hung controller every watchdog period */
3153 tx_ring->detect_tx_hung = true;
3154 }
3155
3156 /* Cause software interrupt to ensure rx ring is cleaned */
3157 if (adapter->msix_entries) {
3158 u32 eics = 0;
3159 for (i = 0; i < adapter->num_q_vectors; i++) {
3160 struct igb_q_vector *q_vector = adapter->q_vector[i];
3161 eics |= q_vector->eims_value;
3162 }
3163 wr32(E1000_EICS, eics);
3164 } else {
3165 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3166 }
3167
3168 /* Reset the timer */
3169 if (!test_bit(__IGB_DOWN, &adapter->state))
3170 mod_timer(&adapter->watchdog_timer,
3171 round_jiffies(jiffies + 2 * HZ));
3172 }
3173
3174 enum latency_range {
3175 lowest_latency = 0,
3176 low_latency = 1,
3177 bulk_latency = 2,
3178 latency_invalid = 255
3179 };
3180
3181 /**
3182 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3183 *
3184 * Stores a new ITR value based on strictly on packet size. This
3185 * algorithm is less sophisticated than that used in igb_update_itr,
3186 * due to the difficulty of synchronizing statistics across multiple
3187 * receive rings. The divisors and thresholds used by this fuction
3188 * were determined based on theoretical maximum wire speed and testing
3189 * data, in order to minimize response time while increasing bulk
3190 * throughput.
3191 * This functionality is controlled by the InterruptThrottleRate module
3192 * parameter (see igb_param.c)
3193 * NOTE: This function is called only when operating in a multiqueue
3194 * receive environment.
3195 * @q_vector: pointer to q_vector
3196 **/
3197 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3198 {
3199 int new_val = q_vector->itr_val;
3200 int avg_wire_size = 0;
3201 struct igb_adapter *adapter = q_vector->adapter;
3202
3203 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3204 * ints/sec - ITR timer value of 120 ticks.
3205 */
3206 if (adapter->link_speed != SPEED_1000) {
3207 new_val = 976;
3208 goto set_itr_val;
3209 }
3210
3211 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3212 struct igb_ring *ring = q_vector->rx_ring;
3213 avg_wire_size = ring->total_bytes / ring->total_packets;
3214 }
3215
3216 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3217 struct igb_ring *ring = q_vector->tx_ring;
3218 avg_wire_size = max_t(u32, avg_wire_size,
3219 (ring->total_bytes /
3220 ring->total_packets));
3221 }
3222
3223 /* if avg_wire_size isn't set no work was done */
3224 if (!avg_wire_size)
3225 goto clear_counts;
3226
3227 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3228 avg_wire_size += 24;
3229
3230 /* Don't starve jumbo frames */
3231 avg_wire_size = min(avg_wire_size, 3000);
3232
3233 /* Give a little boost to mid-size frames */
3234 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3235 new_val = avg_wire_size / 3;
3236 else
3237 new_val = avg_wire_size / 2;
3238
3239 set_itr_val:
3240 if (new_val != q_vector->itr_val) {
3241 q_vector->itr_val = new_val;
3242 q_vector->set_itr = 1;
3243 }
3244 clear_counts:
3245 if (q_vector->rx_ring) {
3246 q_vector->rx_ring->total_bytes = 0;
3247 q_vector->rx_ring->total_packets = 0;
3248 }
3249 if (q_vector->tx_ring) {
3250 q_vector->tx_ring->total_bytes = 0;
3251 q_vector->tx_ring->total_packets = 0;
3252 }
3253 }
3254
3255 /**
3256 * igb_update_itr - update the dynamic ITR value based on statistics
3257 * Stores a new ITR value based on packets and byte
3258 * counts during the last interrupt. The advantage of per interrupt
3259 * computation is faster updates and more accurate ITR for the current
3260 * traffic pattern. Constants in this function were computed
3261 * based on theoretical maximum wire speed and thresholds were set based
3262 * on testing data as well as attempting to minimize response time
3263 * while increasing bulk throughput.
3264 * this functionality is controlled by the InterruptThrottleRate module
3265 * parameter (see igb_param.c)
3266 * NOTE: These calculations are only valid when operating in a single-
3267 * queue environment.
3268 * @adapter: pointer to adapter
3269 * @itr_setting: current q_vector->itr_val
3270 * @packets: the number of packets during this measurement interval
3271 * @bytes: the number of bytes during this measurement interval
3272 **/
3273 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3274 int packets, int bytes)
3275 {
3276 unsigned int retval = itr_setting;
3277
3278 if (packets == 0)
3279 goto update_itr_done;
3280
3281 switch (itr_setting) {
3282 case lowest_latency:
3283 /* handle TSO and jumbo frames */
3284 if (bytes/packets > 8000)
3285 retval = bulk_latency;
3286 else if ((packets < 5) && (bytes > 512))
3287 retval = low_latency;
3288 break;
3289 case low_latency: /* 50 usec aka 20000 ints/s */
3290 if (bytes > 10000) {
3291 /* this if handles the TSO accounting */
3292 if (bytes/packets > 8000) {
3293 retval = bulk_latency;
3294 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3295 retval = bulk_latency;
3296 } else if ((packets > 35)) {
3297 retval = lowest_latency;
3298 }
3299 } else if (bytes/packets > 2000) {
3300 retval = bulk_latency;
3301 } else if (packets <= 2 && bytes < 512) {
3302 retval = lowest_latency;
3303 }
3304 break;
3305 case bulk_latency: /* 250 usec aka 4000 ints/s */
3306 if (bytes > 25000) {
3307 if (packets > 35)
3308 retval = low_latency;
3309 } else if (bytes < 1500) {
3310 retval = low_latency;
3311 }
3312 break;
3313 }
3314
3315 update_itr_done:
3316 return retval;
3317 }
3318
3319 static void igb_set_itr(struct igb_adapter *adapter)
3320 {
3321 struct igb_q_vector *q_vector = adapter->q_vector[0];
3322 u16 current_itr;
3323 u32 new_itr = q_vector->itr_val;
3324
3325 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3326 if (adapter->link_speed != SPEED_1000) {
3327 current_itr = 0;
3328 new_itr = 4000;
3329 goto set_itr_now;
3330 }
3331
3332 adapter->rx_itr = igb_update_itr(adapter,
3333 adapter->rx_itr,
3334 adapter->rx_ring->total_packets,
3335 adapter->rx_ring->total_bytes);
3336
3337 adapter->tx_itr = igb_update_itr(adapter,
3338 adapter->tx_itr,
3339 adapter->tx_ring->total_packets,
3340 adapter->tx_ring->total_bytes);
3341 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3342
3343 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3344 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3345 current_itr = low_latency;
3346
3347 switch (current_itr) {
3348 /* counts and packets in update_itr are dependent on these numbers */
3349 case lowest_latency:
3350 new_itr = 56; /* aka 70,000 ints/sec */
3351 break;
3352 case low_latency:
3353 new_itr = 196; /* aka 20,000 ints/sec */
3354 break;
3355 case bulk_latency:
3356 new_itr = 980; /* aka 4,000 ints/sec */
3357 break;
3358 default:
3359 break;
3360 }
3361
3362 set_itr_now:
3363 adapter->rx_ring->total_bytes = 0;
3364 adapter->rx_ring->total_packets = 0;
3365 adapter->tx_ring->total_bytes = 0;
3366 adapter->tx_ring->total_packets = 0;
3367
3368 if (new_itr != q_vector->itr_val) {
3369 /* this attempts to bias the interrupt rate towards Bulk
3370 * by adding intermediate steps when interrupt rate is
3371 * increasing */
3372 new_itr = new_itr > q_vector->itr_val ?
3373 max((new_itr * q_vector->itr_val) /
3374 (new_itr + (q_vector->itr_val >> 2)),
3375 new_itr) :
3376 new_itr;
3377 /* Don't write the value here; it resets the adapter's
3378 * internal timer, and causes us to delay far longer than
3379 * we should between interrupts. Instead, we write the ITR
3380 * value at the beginning of the next interrupt so the timing
3381 * ends up being correct.
3382 */
3383 q_vector->itr_val = new_itr;
3384 q_vector->set_itr = 1;
3385 }
3386
3387 return;
3388 }
3389
3390 #define IGB_TX_FLAGS_CSUM 0x00000001
3391 #define IGB_TX_FLAGS_VLAN 0x00000002
3392 #define IGB_TX_FLAGS_TSO 0x00000004
3393 #define IGB_TX_FLAGS_IPV4 0x00000008
3394 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3395 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3396 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3397
3398 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3399 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3400 {
3401 struct e1000_adv_tx_context_desc *context_desc;
3402 unsigned int i;
3403 int err;
3404 struct igb_buffer *buffer_info;
3405 u32 info = 0, tu_cmd = 0;
3406 u32 mss_l4len_idx, l4len;
3407 *hdr_len = 0;
3408
3409 if (skb_header_cloned(skb)) {
3410 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3411 if (err)
3412 return err;
3413 }
3414
3415 l4len = tcp_hdrlen(skb);
3416 *hdr_len += l4len;
3417
3418 if (skb->protocol == htons(ETH_P_IP)) {
3419 struct iphdr *iph = ip_hdr(skb);
3420 iph->tot_len = 0;
3421 iph->check = 0;
3422 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3423 iph->daddr, 0,
3424 IPPROTO_TCP,
3425 0);
3426 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3427 ipv6_hdr(skb)->payload_len = 0;
3428 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3429 &ipv6_hdr(skb)->daddr,
3430 0, IPPROTO_TCP, 0);
3431 }
3432
3433 i = tx_ring->next_to_use;
3434
3435 buffer_info = &tx_ring->buffer_info[i];
3436 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3437 /* VLAN MACLEN IPLEN */
3438 if (tx_flags & IGB_TX_FLAGS_VLAN)
3439 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3440 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3441 *hdr_len += skb_network_offset(skb);
3442 info |= skb_network_header_len(skb);
3443 *hdr_len += skb_network_header_len(skb);
3444 context_desc->vlan_macip_lens = cpu_to_le32(info);
3445
3446 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3447 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3448
3449 if (skb->protocol == htons(ETH_P_IP))
3450 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3451 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3452
3453 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3454
3455 /* MSS L4LEN IDX */
3456 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3457 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3458
3459 /* For 82575, context index must be unique per ring. */
3460 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3461 mss_l4len_idx |= tx_ring->reg_idx << 4;
3462
3463 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3464 context_desc->seqnum_seed = 0;
3465
3466 buffer_info->time_stamp = jiffies;
3467 buffer_info->next_to_watch = i;
3468 buffer_info->dma = 0;
3469 i++;
3470 if (i == tx_ring->count)
3471 i = 0;
3472
3473 tx_ring->next_to_use = i;
3474
3475 return true;
3476 }
3477
3478 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3479 struct sk_buff *skb, u32 tx_flags)
3480 {
3481 struct e1000_adv_tx_context_desc *context_desc;
3482 struct pci_dev *pdev = tx_ring->pdev;
3483 struct igb_buffer *buffer_info;
3484 u32 info = 0, tu_cmd = 0;
3485 unsigned int i;
3486
3487 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3488 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3489 i = tx_ring->next_to_use;
3490 buffer_info = &tx_ring->buffer_info[i];
3491 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3492
3493 if (tx_flags & IGB_TX_FLAGS_VLAN)
3494 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3495
3496 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3497 if (skb->ip_summed == CHECKSUM_PARTIAL)
3498 info |= skb_network_header_len(skb);
3499
3500 context_desc->vlan_macip_lens = cpu_to_le32(info);
3501
3502 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3503
3504 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3505 __be16 protocol;
3506
3507 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3508 const struct vlan_ethhdr *vhdr =
3509 (const struct vlan_ethhdr*)skb->data;
3510
3511 protocol = vhdr->h_vlan_encapsulated_proto;
3512 } else {
3513 protocol = skb->protocol;
3514 }
3515
3516 switch (protocol) {
3517 case cpu_to_be16(ETH_P_IP):
3518 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3519 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3520 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3521 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3522 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3523 break;
3524 case cpu_to_be16(ETH_P_IPV6):
3525 /* XXX what about other V6 headers?? */
3526 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3527 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3528 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3529 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3530 break;
3531 default:
3532 if (unlikely(net_ratelimit()))
3533 dev_warn(&pdev->dev,
3534 "partial checksum but proto=%x!\n",
3535 skb->protocol);
3536 break;
3537 }
3538 }
3539
3540 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3541 context_desc->seqnum_seed = 0;
3542 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3543 context_desc->mss_l4len_idx =
3544 cpu_to_le32(tx_ring->reg_idx << 4);
3545
3546 buffer_info->time_stamp = jiffies;
3547 buffer_info->next_to_watch = i;
3548 buffer_info->dma = 0;
3549
3550 i++;
3551 if (i == tx_ring->count)
3552 i = 0;
3553 tx_ring->next_to_use = i;
3554
3555 return true;
3556 }
3557 return false;
3558 }
3559
3560 #define IGB_MAX_TXD_PWR 16
3561 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3562
3563 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3564 unsigned int first)
3565 {
3566 struct igb_buffer *buffer_info;
3567 struct pci_dev *pdev = tx_ring->pdev;
3568 unsigned int len = skb_headlen(skb);
3569 unsigned int count = 0, i;
3570 unsigned int f;
3571
3572 i = tx_ring->next_to_use;
3573
3574 buffer_info = &tx_ring->buffer_info[i];
3575 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3576 buffer_info->length = len;
3577 /* set time_stamp *before* dma to help avoid a possible race */
3578 buffer_info->time_stamp = jiffies;
3579 buffer_info->next_to_watch = i;
3580 buffer_info->dma = pci_map_single(pdev, skb->data, len,
3581 PCI_DMA_TODEVICE);
3582 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3583 goto dma_error;
3584
3585 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3586 struct skb_frag_struct *frag;
3587
3588 i++;
3589 if (i == tx_ring->count)
3590 i = 0;
3591
3592 frag = &skb_shinfo(skb)->frags[f];
3593 len = frag->size;
3594
3595 buffer_info = &tx_ring->buffer_info[i];
3596 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3597 buffer_info->length = len;
3598 buffer_info->time_stamp = jiffies;
3599 buffer_info->next_to_watch = i;
3600 buffer_info->mapped_as_page = true;
3601 buffer_info->dma = pci_map_page(pdev,
3602 frag->page,
3603 frag->page_offset,
3604 len,
3605 PCI_DMA_TODEVICE);
3606 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3607 goto dma_error;
3608
3609 count++;
3610 }
3611
3612 tx_ring->buffer_info[i].skb = skb;
3613 tx_ring->buffer_info[first].next_to_watch = i;
3614
3615 return ++count;
3616
3617 dma_error:
3618 dev_err(&pdev->dev, "TX DMA map failed\n");
3619
3620 /* clear timestamp and dma mappings for failed buffer_info mapping */
3621 buffer_info->dma = 0;
3622 buffer_info->time_stamp = 0;
3623 buffer_info->length = 0;
3624 buffer_info->next_to_watch = 0;
3625 buffer_info->mapped_as_page = false;
3626 count--;
3627
3628 /* clear timestamp and dma mappings for remaining portion of packet */
3629 while (count >= 0) {
3630 count--;
3631 i--;
3632 if (i < 0)
3633 i += tx_ring->count;
3634 buffer_info = &tx_ring->buffer_info[i];
3635 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3636 }
3637
3638 return 0;
3639 }
3640
3641 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3642 int tx_flags, int count, u32 paylen,
3643 u8 hdr_len)
3644 {
3645 union e1000_adv_tx_desc *tx_desc;
3646 struct igb_buffer *buffer_info;
3647 u32 olinfo_status = 0, cmd_type_len;
3648 unsigned int i = tx_ring->next_to_use;
3649
3650 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3651 E1000_ADVTXD_DCMD_DEXT);
3652
3653 if (tx_flags & IGB_TX_FLAGS_VLAN)
3654 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3655
3656 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3657 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3658
3659 if (tx_flags & IGB_TX_FLAGS_TSO) {
3660 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3661
3662 /* insert tcp checksum */
3663 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3664
3665 /* insert ip checksum */
3666 if (tx_flags & IGB_TX_FLAGS_IPV4)
3667 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3668
3669 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3670 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3671 }
3672
3673 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3674 (tx_flags & (IGB_TX_FLAGS_CSUM |
3675 IGB_TX_FLAGS_TSO |
3676 IGB_TX_FLAGS_VLAN)))
3677 olinfo_status |= tx_ring->reg_idx << 4;
3678
3679 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3680
3681 do {
3682 buffer_info = &tx_ring->buffer_info[i];
3683 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3684 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3685 tx_desc->read.cmd_type_len =
3686 cpu_to_le32(cmd_type_len | buffer_info->length);
3687 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3688 count--;
3689 i++;
3690 if (i == tx_ring->count)
3691 i = 0;
3692 } while (count > 0);
3693
3694 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3695 /* Force memory writes to complete before letting h/w
3696 * know there are new descriptors to fetch. (Only
3697 * applicable for weak-ordered memory model archs,
3698 * such as IA-64). */
3699 wmb();
3700
3701 tx_ring->next_to_use = i;
3702 writel(i, tx_ring->tail);
3703 /* we need this if more than one processor can write to our tail
3704 * at a time, it syncronizes IO on IA64/Altix systems */
3705 mmiowb();
3706 }
3707
3708 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3709 {
3710 struct net_device *netdev = tx_ring->netdev;
3711
3712 netif_stop_subqueue(netdev, tx_ring->queue_index);
3713
3714 /* Herbert's original patch had:
3715 * smp_mb__after_netif_stop_queue();
3716 * but since that doesn't exist yet, just open code it. */
3717 smp_mb();
3718
3719 /* We need to check again in a case another CPU has just
3720 * made room available. */
3721 if (igb_desc_unused(tx_ring) < size)
3722 return -EBUSY;
3723
3724 /* A reprieve! */
3725 netif_wake_subqueue(netdev, tx_ring->queue_index);
3726 tx_ring->tx_stats.restart_queue++;
3727 return 0;
3728 }
3729
3730 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3731 {
3732 if (igb_desc_unused(tx_ring) >= size)
3733 return 0;
3734 return __igb_maybe_stop_tx(tx_ring, size);
3735 }
3736
3737 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3738 struct igb_ring *tx_ring)
3739 {
3740 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3741 unsigned int first;
3742 unsigned int tx_flags = 0;
3743 u8 hdr_len = 0;
3744 int tso = 0, count;
3745 union skb_shared_tx *shtx = skb_tx(skb);
3746
3747 /* need: 1 descriptor per page,
3748 * + 2 desc gap to keep tail from touching head,
3749 * + 1 desc for skb->data,
3750 * + 1 desc for context descriptor,
3751 * otherwise try next time */
3752 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3753 /* this is a hard error */
3754 return NETDEV_TX_BUSY;
3755 }
3756
3757 if (unlikely(shtx->hardware)) {
3758 shtx->in_progress = 1;
3759 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3760 }
3761
3762 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3763 tx_flags |= IGB_TX_FLAGS_VLAN;
3764 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3765 }
3766
3767 if (skb->protocol == htons(ETH_P_IP))
3768 tx_flags |= IGB_TX_FLAGS_IPV4;
3769
3770 first = tx_ring->next_to_use;
3771 if (skb_is_gso(skb)) {
3772 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3773
3774 if (tso < 0) {
3775 dev_kfree_skb_any(skb);
3776 return NETDEV_TX_OK;
3777 }
3778 }
3779
3780 if (tso)
3781 tx_flags |= IGB_TX_FLAGS_TSO;
3782 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3783 (skb->ip_summed == CHECKSUM_PARTIAL))
3784 tx_flags |= IGB_TX_FLAGS_CSUM;
3785
3786 /*
3787 * count reflects descriptors mapped, if 0 or less then mapping error
3788 * has occured and we need to rewind the descriptor queue
3789 */
3790 count = igb_tx_map_adv(tx_ring, skb, first);
3791 if (!count) {
3792 dev_kfree_skb_any(skb);
3793 tx_ring->buffer_info[first].time_stamp = 0;
3794 tx_ring->next_to_use = first;
3795 return NETDEV_TX_OK;
3796 }
3797
3798 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3799
3800 /* Make sure there is space in the ring for the next send. */
3801 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3802
3803 return NETDEV_TX_OK;
3804 }
3805
3806 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3807 struct net_device *netdev)
3808 {
3809 struct igb_adapter *adapter = netdev_priv(netdev);
3810 struct igb_ring *tx_ring;
3811 int r_idx = 0;
3812
3813 if (test_bit(__IGB_DOWN, &adapter->state)) {
3814 dev_kfree_skb_any(skb);
3815 return NETDEV_TX_OK;
3816 }
3817
3818 if (skb->len <= 0) {
3819 dev_kfree_skb_any(skb);
3820 return NETDEV_TX_OK;
3821 }
3822
3823 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3824 tx_ring = adapter->multi_tx_table[r_idx];
3825
3826 /* This goes back to the question of how to logically map a tx queue
3827 * to a flow. Right now, performance is impacted slightly negatively
3828 * if using multiple tx queues. If the stack breaks away from a
3829 * single qdisc implementation, we can look at this again. */
3830 return igb_xmit_frame_ring_adv(skb, tx_ring);
3831 }
3832
3833 /**
3834 * igb_tx_timeout - Respond to a Tx Hang
3835 * @netdev: network interface device structure
3836 **/
3837 static void igb_tx_timeout(struct net_device *netdev)
3838 {
3839 struct igb_adapter *adapter = netdev_priv(netdev);
3840 struct e1000_hw *hw = &adapter->hw;
3841
3842 /* Do the reset outside of interrupt context */
3843 adapter->tx_timeout_count++;
3844
3845 if (hw->mac.type == e1000_82580)
3846 hw->dev_spec._82575.global_device_reset = true;
3847
3848 schedule_work(&adapter->reset_task);
3849 wr32(E1000_EICS,
3850 (adapter->eims_enable_mask & ~adapter->eims_other));
3851 }
3852
3853 static void igb_reset_task(struct work_struct *work)
3854 {
3855 struct igb_adapter *adapter;
3856 adapter = container_of(work, struct igb_adapter, reset_task);
3857
3858 igb_reinit_locked(adapter);
3859 }
3860
3861 /**
3862 * igb_get_stats - Get System Network Statistics
3863 * @netdev: network interface device structure
3864 *
3865 * Returns the address of the device statistics structure.
3866 * The statistics are actually updated from the timer callback.
3867 **/
3868 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3869 {
3870 /* only return the current stats */
3871 return &netdev->stats;
3872 }
3873
3874 /**
3875 * igb_change_mtu - Change the Maximum Transfer Unit
3876 * @netdev: network interface device structure
3877 * @new_mtu: new value for maximum frame size
3878 *
3879 * Returns 0 on success, negative on failure
3880 **/
3881 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3882 {
3883 struct igb_adapter *adapter = netdev_priv(netdev);
3884 struct pci_dev *pdev = adapter->pdev;
3885 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3886 u32 rx_buffer_len, i;
3887
3888 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3889 dev_err(&pdev->dev, "Invalid MTU setting\n");
3890 return -EINVAL;
3891 }
3892
3893 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3894 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3895 return -EINVAL;
3896 }
3897
3898 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3899 msleep(1);
3900
3901 /* igb_down has a dependency on max_frame_size */
3902 adapter->max_frame_size = max_frame;
3903
3904 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3905 * means we reserve 2 more, this pushes us to allocate from the next
3906 * larger slab size.
3907 * i.e. RXBUFFER_2048 --> size-4096 slab
3908 */
3909
3910 if (max_frame <= IGB_RXBUFFER_1024)
3911 rx_buffer_len = IGB_RXBUFFER_1024;
3912 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3913 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3914 else
3915 rx_buffer_len = IGB_RXBUFFER_128;
3916
3917 if (netif_running(netdev))
3918 igb_down(adapter);
3919
3920 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3921 netdev->mtu, new_mtu);
3922 netdev->mtu = new_mtu;
3923
3924 for (i = 0; i < adapter->num_rx_queues; i++)
3925 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3926
3927 if (netif_running(netdev))
3928 igb_up(adapter);
3929 else
3930 igb_reset(adapter);
3931
3932 clear_bit(__IGB_RESETTING, &adapter->state);
3933
3934 return 0;
3935 }
3936
3937 /**
3938 * igb_update_stats - Update the board statistics counters
3939 * @adapter: board private structure
3940 **/
3941
3942 void igb_update_stats(struct igb_adapter *adapter)
3943 {
3944 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
3945 struct e1000_hw *hw = &adapter->hw;
3946 struct pci_dev *pdev = adapter->pdev;
3947 u32 rnbc;
3948 u16 phy_tmp;
3949 int i;
3950 u64 bytes, packets;
3951
3952 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3953
3954 /*
3955 * Prevent stats update while adapter is being reset, or if the pci
3956 * connection is down.
3957 */
3958 if (adapter->link_speed == 0)
3959 return;
3960 if (pci_channel_offline(pdev))
3961 return;
3962
3963 bytes = 0;
3964 packets = 0;
3965 for (i = 0; i < adapter->num_rx_queues; i++) {
3966 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3967 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3968 net_stats->rx_fifo_errors += rqdpc_tmp;
3969 bytes += adapter->rx_ring[i].rx_stats.bytes;
3970 packets += adapter->rx_ring[i].rx_stats.packets;
3971 }
3972
3973 net_stats->rx_bytes = bytes;
3974 net_stats->rx_packets = packets;
3975
3976 bytes = 0;
3977 packets = 0;
3978 for (i = 0; i < adapter->num_tx_queues; i++) {
3979 bytes += adapter->tx_ring[i].tx_stats.bytes;
3980 packets += adapter->tx_ring[i].tx_stats.packets;
3981 }
3982 net_stats->tx_bytes = bytes;
3983 net_stats->tx_packets = packets;
3984
3985 /* read stats registers */
3986 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3987 adapter->stats.gprc += rd32(E1000_GPRC);
3988 adapter->stats.gorc += rd32(E1000_GORCL);
3989 rd32(E1000_GORCH); /* clear GORCL */
3990 adapter->stats.bprc += rd32(E1000_BPRC);
3991 adapter->stats.mprc += rd32(E1000_MPRC);
3992 adapter->stats.roc += rd32(E1000_ROC);
3993
3994 adapter->stats.prc64 += rd32(E1000_PRC64);
3995 adapter->stats.prc127 += rd32(E1000_PRC127);
3996 adapter->stats.prc255 += rd32(E1000_PRC255);
3997 adapter->stats.prc511 += rd32(E1000_PRC511);
3998 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3999 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4000 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4001 adapter->stats.sec += rd32(E1000_SEC);
4002
4003 adapter->stats.mpc += rd32(E1000_MPC);
4004 adapter->stats.scc += rd32(E1000_SCC);
4005 adapter->stats.ecol += rd32(E1000_ECOL);
4006 adapter->stats.mcc += rd32(E1000_MCC);
4007 adapter->stats.latecol += rd32(E1000_LATECOL);
4008 adapter->stats.dc += rd32(E1000_DC);
4009 adapter->stats.rlec += rd32(E1000_RLEC);
4010 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4011 adapter->stats.xontxc += rd32(E1000_XONTXC);
4012 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4013 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4014 adapter->stats.fcruc += rd32(E1000_FCRUC);
4015 adapter->stats.gptc += rd32(E1000_GPTC);
4016 adapter->stats.gotc += rd32(E1000_GOTCL);
4017 rd32(E1000_GOTCH); /* clear GOTCL */
4018 rnbc = rd32(E1000_RNBC);
4019 adapter->stats.rnbc += rnbc;
4020 net_stats->rx_fifo_errors += rnbc;
4021 adapter->stats.ruc += rd32(E1000_RUC);
4022 adapter->stats.rfc += rd32(E1000_RFC);
4023 adapter->stats.rjc += rd32(E1000_RJC);
4024 adapter->stats.tor += rd32(E1000_TORH);
4025 adapter->stats.tot += rd32(E1000_TOTH);
4026 adapter->stats.tpr += rd32(E1000_TPR);
4027
4028 adapter->stats.ptc64 += rd32(E1000_PTC64);
4029 adapter->stats.ptc127 += rd32(E1000_PTC127);
4030 adapter->stats.ptc255 += rd32(E1000_PTC255);
4031 adapter->stats.ptc511 += rd32(E1000_PTC511);
4032 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4033 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4034
4035 adapter->stats.mptc += rd32(E1000_MPTC);
4036 adapter->stats.bptc += rd32(E1000_BPTC);
4037
4038 /* used for adaptive IFS */
4039 hw->mac.tx_packet_delta = rd32(E1000_TPT);
4040 adapter->stats.tpt += hw->mac.tx_packet_delta;
4041 hw->mac.collision_delta = rd32(E1000_COLC);
4042 adapter->stats.colc += hw->mac.collision_delta;
4043
4044 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4045 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4046 adapter->stats.tncrs += rd32(E1000_TNCRS);
4047 adapter->stats.tsctc += rd32(E1000_TSCTC);
4048 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4049
4050 adapter->stats.iac += rd32(E1000_IAC);
4051 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4052 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4053 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4054 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4055 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4056 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4057 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4058 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4059
4060 /* Fill out the OS statistics structure */
4061 net_stats->multicast = adapter->stats.mprc;
4062 net_stats->collisions = adapter->stats.colc;
4063
4064 /* Rx Errors */
4065
4066 /* RLEC on some newer hardware can be incorrect so build
4067 * our own version based on RUC and ROC */
4068 net_stats->rx_errors = adapter->stats.rxerrc +
4069 adapter->stats.crcerrs + adapter->stats.algnerrc +
4070 adapter->stats.ruc + adapter->stats.roc +
4071 adapter->stats.cexterr;
4072 net_stats->rx_length_errors = adapter->stats.ruc +
4073 adapter->stats.roc;
4074 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4075 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4076 net_stats->rx_missed_errors = adapter->stats.mpc;
4077
4078 /* Tx Errors */
4079 net_stats->tx_errors = adapter->stats.ecol +
4080 adapter->stats.latecol;
4081 net_stats->tx_aborted_errors = adapter->stats.ecol;
4082 net_stats->tx_window_errors = adapter->stats.latecol;
4083 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4084
4085 /* Tx Dropped needs to be maintained elsewhere */
4086
4087 /* Phy Stats */
4088 if (hw->phy.media_type == e1000_media_type_copper) {
4089 if ((adapter->link_speed == SPEED_1000) &&
4090 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4091 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4092 adapter->phy_stats.idle_errors += phy_tmp;
4093 }
4094 }
4095
4096 /* Management Stats */
4097 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4098 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4099 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4100 }
4101
4102 static irqreturn_t igb_msix_other(int irq, void *data)
4103 {
4104 struct igb_adapter *adapter = data;
4105 struct e1000_hw *hw = &adapter->hw;
4106 u32 icr = rd32(E1000_ICR);
4107 /* reading ICR causes bit 31 of EICR to be cleared */
4108
4109 if (icr & E1000_ICR_DRSTA)
4110 schedule_work(&adapter->reset_task);
4111
4112 if (icr & E1000_ICR_DOUTSYNC) {
4113 /* HW is reporting DMA is out of sync */
4114 adapter->stats.doosync++;
4115 }
4116
4117 /* Check for a mailbox event */
4118 if (icr & E1000_ICR_VMMB)
4119 igb_msg_task(adapter);
4120
4121 if (icr & E1000_ICR_LSC) {
4122 hw->mac.get_link_status = 1;
4123 /* guard against interrupt when we're going down */
4124 if (!test_bit(__IGB_DOWN, &adapter->state))
4125 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4126 }
4127
4128 if (adapter->vfs_allocated_count)
4129 wr32(E1000_IMS, E1000_IMS_LSC |
4130 E1000_IMS_VMMB |
4131 E1000_IMS_DOUTSYNC);
4132 else
4133 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4134 wr32(E1000_EIMS, adapter->eims_other);
4135
4136 return IRQ_HANDLED;
4137 }
4138
4139 static void igb_write_itr(struct igb_q_vector *q_vector)
4140 {
4141 u32 itr_val = q_vector->itr_val & 0x7FFC;
4142
4143 if (!q_vector->set_itr)
4144 return;
4145
4146 if (!itr_val)
4147 itr_val = 0x4;
4148
4149 if (q_vector->itr_shift)
4150 itr_val |= itr_val << q_vector->itr_shift;
4151 else
4152 itr_val |= 0x8000000;
4153
4154 writel(itr_val, q_vector->itr_register);
4155 q_vector->set_itr = 0;
4156 }
4157
4158 static irqreturn_t igb_msix_ring(int irq, void *data)
4159 {
4160 struct igb_q_vector *q_vector = data;
4161
4162 /* Write the ITR value calculated from the previous interrupt. */
4163 igb_write_itr(q_vector);
4164
4165 napi_schedule(&q_vector->napi);
4166
4167 return IRQ_HANDLED;
4168 }
4169
4170 #ifdef CONFIG_IGB_DCA
4171 static void igb_update_dca(struct igb_q_vector *q_vector)
4172 {
4173 struct igb_adapter *adapter = q_vector->adapter;
4174 struct e1000_hw *hw = &adapter->hw;
4175 int cpu = get_cpu();
4176
4177 if (q_vector->cpu == cpu)
4178 goto out_no_update;
4179
4180 if (q_vector->tx_ring) {
4181 int q = q_vector->tx_ring->reg_idx;
4182 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4183 if (hw->mac.type == e1000_82575) {
4184 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4185 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4186 } else {
4187 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4188 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4189 E1000_DCA_TXCTRL_CPUID_SHIFT;
4190 }
4191 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4192 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4193 }
4194 if (q_vector->rx_ring) {
4195 int q = q_vector->rx_ring->reg_idx;
4196 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4197 if (hw->mac.type == e1000_82575) {
4198 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4199 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4200 } else {
4201 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4202 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4203 E1000_DCA_RXCTRL_CPUID_SHIFT;
4204 }
4205 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4206 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4207 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4208 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4209 }
4210 q_vector->cpu = cpu;
4211 out_no_update:
4212 put_cpu();
4213 }
4214
4215 static void igb_setup_dca(struct igb_adapter *adapter)
4216 {
4217 struct e1000_hw *hw = &adapter->hw;
4218 int i;
4219
4220 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4221 return;
4222
4223 /* Always use CB2 mode, difference is masked in the CB driver. */
4224 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4225
4226 for (i = 0; i < adapter->num_q_vectors; i++) {
4227 struct igb_q_vector *q_vector = adapter->q_vector[i];
4228 q_vector->cpu = -1;
4229 igb_update_dca(q_vector);
4230 }
4231 }
4232
4233 static int __igb_notify_dca(struct device *dev, void *data)
4234 {
4235 struct net_device *netdev = dev_get_drvdata(dev);
4236 struct igb_adapter *adapter = netdev_priv(netdev);
4237 struct pci_dev *pdev = adapter->pdev;
4238 struct e1000_hw *hw = &adapter->hw;
4239 unsigned long event = *(unsigned long *)data;
4240
4241 switch (event) {
4242 case DCA_PROVIDER_ADD:
4243 /* if already enabled, don't do it again */
4244 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4245 break;
4246 if (dca_add_requester(dev) == 0) {
4247 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4248 dev_info(&pdev->dev, "DCA enabled\n");
4249 igb_setup_dca(adapter);
4250 break;
4251 }
4252 /* Fall Through since DCA is disabled. */
4253 case DCA_PROVIDER_REMOVE:
4254 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4255 /* without this a class_device is left
4256 * hanging around in the sysfs model */
4257 dca_remove_requester(dev);
4258 dev_info(&pdev->dev, "DCA disabled\n");
4259 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4260 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4261 }
4262 break;
4263 }
4264
4265 return 0;
4266 }
4267
4268 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4269 void *p)
4270 {
4271 int ret_val;
4272
4273 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4274 __igb_notify_dca);
4275
4276 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4277 }
4278 #endif /* CONFIG_IGB_DCA */
4279
4280 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4281 {
4282 struct e1000_hw *hw = &adapter->hw;
4283 u32 ping;
4284 int i;
4285
4286 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4287 ping = E1000_PF_CONTROL_MSG;
4288 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4289 ping |= E1000_VT_MSGTYPE_CTS;
4290 igb_write_mbx(hw, &ping, 1, i);
4291 }
4292 }
4293
4294 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4295 {
4296 struct e1000_hw *hw = &adapter->hw;
4297 u32 vmolr = rd32(E1000_VMOLR(vf));
4298 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4299
4300 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4301 IGB_VF_FLAG_MULTI_PROMISC);
4302 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4303
4304 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4305 vmolr |= E1000_VMOLR_MPME;
4306 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4307 } else {
4308 /*
4309 * if we have hashes and we are clearing a multicast promisc
4310 * flag we need to write the hashes to the MTA as this step
4311 * was previously skipped
4312 */
4313 if (vf_data->num_vf_mc_hashes > 30) {
4314 vmolr |= E1000_VMOLR_MPME;
4315 } else if (vf_data->num_vf_mc_hashes) {
4316 int j;
4317 vmolr |= E1000_VMOLR_ROMPE;
4318 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4319 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4320 }
4321 }
4322
4323 wr32(E1000_VMOLR(vf), vmolr);
4324
4325 /* there are flags left unprocessed, likely not supported */
4326 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4327 return -EINVAL;
4328
4329 return 0;
4330
4331 }
4332
4333 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4334 u32 *msgbuf, u32 vf)
4335 {
4336 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4337 u16 *hash_list = (u16 *)&msgbuf[1];
4338 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4339 int i;
4340
4341 /* salt away the number of multicast addresses assigned
4342 * to this VF for later use to restore when the PF multi cast
4343 * list changes
4344 */
4345 vf_data->num_vf_mc_hashes = n;
4346
4347 /* only up to 30 hash values supported */
4348 if (n > 30)
4349 n = 30;
4350
4351 /* store the hashes for later use */
4352 for (i = 0; i < n; i++)
4353 vf_data->vf_mc_hashes[i] = hash_list[i];
4354
4355 /* Flush and reset the mta with the new values */
4356 igb_set_rx_mode(adapter->netdev);
4357
4358 return 0;
4359 }
4360
4361 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4362 {
4363 struct e1000_hw *hw = &adapter->hw;
4364 struct vf_data_storage *vf_data;
4365 int i, j;
4366
4367 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4368 u32 vmolr = rd32(E1000_VMOLR(i));
4369 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4370
4371 vf_data = &adapter->vf_data[i];
4372
4373 if ((vf_data->num_vf_mc_hashes > 30) ||
4374 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4375 vmolr |= E1000_VMOLR_MPME;
4376 } else if (vf_data->num_vf_mc_hashes) {
4377 vmolr |= E1000_VMOLR_ROMPE;
4378 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4379 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4380 }
4381 wr32(E1000_VMOLR(i), vmolr);
4382 }
4383 }
4384
4385 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4386 {
4387 struct e1000_hw *hw = &adapter->hw;
4388 u32 pool_mask, reg, vid;
4389 int i;
4390
4391 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4392
4393 /* Find the vlan filter for this id */
4394 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4395 reg = rd32(E1000_VLVF(i));
4396
4397 /* remove the vf from the pool */
4398 reg &= ~pool_mask;
4399
4400 /* if pool is empty then remove entry from vfta */
4401 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4402 (reg & E1000_VLVF_VLANID_ENABLE)) {
4403 reg = 0;
4404 vid = reg & E1000_VLVF_VLANID_MASK;
4405 igb_vfta_set(hw, vid, false);
4406 }
4407
4408 wr32(E1000_VLVF(i), reg);
4409 }
4410
4411 adapter->vf_data[vf].vlans_enabled = 0;
4412 }
4413
4414 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4415 {
4416 struct e1000_hw *hw = &adapter->hw;
4417 u32 reg, i;
4418
4419 /* The vlvf table only exists on 82576 hardware and newer */
4420 if (hw->mac.type < e1000_82576)
4421 return -1;
4422
4423 /* we only need to do this if VMDq is enabled */
4424 if (!adapter->vfs_allocated_count)
4425 return -1;
4426
4427 /* Find the vlan filter for this id */
4428 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4429 reg = rd32(E1000_VLVF(i));
4430 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4431 vid == (reg & E1000_VLVF_VLANID_MASK))
4432 break;
4433 }
4434
4435 if (add) {
4436 if (i == E1000_VLVF_ARRAY_SIZE) {
4437 /* Did not find a matching VLAN ID entry that was
4438 * enabled. Search for a free filter entry, i.e.
4439 * one without the enable bit set
4440 */
4441 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4442 reg = rd32(E1000_VLVF(i));
4443 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4444 break;
4445 }
4446 }
4447 if (i < E1000_VLVF_ARRAY_SIZE) {
4448 /* Found an enabled/available entry */
4449 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4450
4451 /* if !enabled we need to set this up in vfta */
4452 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4453 /* add VID to filter table */
4454 igb_vfta_set(hw, vid, true);
4455 reg |= E1000_VLVF_VLANID_ENABLE;
4456 }
4457 reg &= ~E1000_VLVF_VLANID_MASK;
4458 reg |= vid;
4459 wr32(E1000_VLVF(i), reg);
4460
4461 /* do not modify RLPML for PF devices */
4462 if (vf >= adapter->vfs_allocated_count)
4463 return 0;
4464
4465 if (!adapter->vf_data[vf].vlans_enabled) {
4466 u32 size;
4467 reg = rd32(E1000_VMOLR(vf));
4468 size = reg & E1000_VMOLR_RLPML_MASK;
4469 size += 4;
4470 reg &= ~E1000_VMOLR_RLPML_MASK;
4471 reg |= size;
4472 wr32(E1000_VMOLR(vf), reg);
4473 }
4474
4475 adapter->vf_data[vf].vlans_enabled++;
4476 return 0;
4477 }
4478 } else {
4479 if (i < E1000_VLVF_ARRAY_SIZE) {
4480 /* remove vf from the pool */
4481 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4482 /* if pool is empty then remove entry from vfta */
4483 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4484 reg = 0;
4485 igb_vfta_set(hw, vid, false);
4486 }
4487 wr32(E1000_VLVF(i), reg);
4488
4489 /* do not modify RLPML for PF devices */
4490 if (vf >= adapter->vfs_allocated_count)
4491 return 0;
4492
4493 adapter->vf_data[vf].vlans_enabled--;
4494 if (!adapter->vf_data[vf].vlans_enabled) {
4495 u32 size;
4496 reg = rd32(E1000_VMOLR(vf));
4497 size = reg & E1000_VMOLR_RLPML_MASK;
4498 size -= 4;
4499 reg &= ~E1000_VMOLR_RLPML_MASK;
4500 reg |= size;
4501 wr32(E1000_VMOLR(vf), reg);
4502 }
4503 return 0;
4504 }
4505 }
4506 return -1;
4507 }
4508
4509 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4510 {
4511 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4512 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4513
4514 return igb_vlvf_set(adapter, vid, add, vf);
4515 }
4516
4517 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4518 {
4519 /* clear all flags */
4520 adapter->vf_data[vf].flags = 0;
4521 adapter->vf_data[vf].last_nack = jiffies;
4522
4523 /* reset offloads to defaults */
4524 igb_set_vmolr(adapter, vf);
4525
4526 /* reset vlans for device */
4527 igb_clear_vf_vfta(adapter, vf);
4528
4529 /* reset multicast table array for vf */
4530 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4531
4532 /* Flush and reset the mta with the new values */
4533 igb_set_rx_mode(adapter->netdev);
4534 }
4535
4536 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4537 {
4538 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4539
4540 /* generate a new mac address as we were hotplug removed/added */
4541 random_ether_addr(vf_mac);
4542
4543 /* process remaining reset events */
4544 igb_vf_reset(adapter, vf);
4545 }
4546
4547 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4548 {
4549 struct e1000_hw *hw = &adapter->hw;
4550 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4551 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4552 u32 reg, msgbuf[3];
4553 u8 *addr = (u8 *)(&msgbuf[1]);
4554
4555 /* process all the same items cleared in a function level reset */
4556 igb_vf_reset(adapter, vf);
4557
4558 /* set vf mac address */
4559 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4560
4561 /* enable transmit and receive for vf */
4562 reg = rd32(E1000_VFTE);
4563 wr32(E1000_VFTE, reg | (1 << vf));
4564 reg = rd32(E1000_VFRE);
4565 wr32(E1000_VFRE, reg | (1 << vf));
4566
4567 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4568
4569 /* reply to reset with ack and vf mac address */
4570 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4571 memcpy(addr, vf_mac, 6);
4572 igb_write_mbx(hw, msgbuf, 3, vf);
4573 }
4574
4575 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4576 {
4577 unsigned char *addr = (char *)&msg[1];
4578 int err = -1;
4579
4580 if (is_valid_ether_addr(addr))
4581 err = igb_set_vf_mac(adapter, vf, addr);
4582
4583 return err;
4584 }
4585
4586 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4587 {
4588 struct e1000_hw *hw = &adapter->hw;
4589 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4590 u32 msg = E1000_VT_MSGTYPE_NACK;
4591
4592 /* if device isn't clear to send it shouldn't be reading either */
4593 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4594 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4595 igb_write_mbx(hw, &msg, 1, vf);
4596 vf_data->last_nack = jiffies;
4597 }
4598 }
4599
4600 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4601 {
4602 struct pci_dev *pdev = adapter->pdev;
4603 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4604 struct e1000_hw *hw = &adapter->hw;
4605 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4606 s32 retval;
4607
4608 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4609
4610 if (retval) {
4611 /* if receive failed revoke VF CTS stats and restart init */
4612 dev_err(&pdev->dev, "Error receiving message from VF\n");
4613 vf_data->flags &= ~IGB_VF_FLAG_CTS;
4614 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4615 return;
4616 goto out;
4617 }
4618
4619 /* this is a message we already processed, do nothing */
4620 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4621 return;
4622
4623 /*
4624 * until the vf completes a reset it should not be
4625 * allowed to start any configuration.
4626 */
4627
4628 if (msgbuf[0] == E1000_VF_RESET) {
4629 igb_vf_reset_msg(adapter, vf);
4630 return;
4631 }
4632
4633 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4634 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4635 return;
4636 retval = -1;
4637 goto out;
4638 }
4639
4640 switch ((msgbuf[0] & 0xFFFF)) {
4641 case E1000_VF_SET_MAC_ADDR:
4642 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4643 break;
4644 case E1000_VF_SET_PROMISC:
4645 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4646 break;
4647 case E1000_VF_SET_MULTICAST:
4648 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4649 break;
4650 case E1000_VF_SET_LPE:
4651 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4652 break;
4653 case E1000_VF_SET_VLAN:
4654 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4655 break;
4656 default:
4657 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4658 retval = -1;
4659 break;
4660 }
4661
4662 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4663 out:
4664 /* notify the VF of the results of what it sent us */
4665 if (retval)
4666 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4667 else
4668 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4669
4670 igb_write_mbx(hw, msgbuf, 1, vf);
4671 }
4672
4673 static void igb_msg_task(struct igb_adapter *adapter)
4674 {
4675 struct e1000_hw *hw = &adapter->hw;
4676 u32 vf;
4677
4678 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4679 /* process any reset requests */
4680 if (!igb_check_for_rst(hw, vf))
4681 igb_vf_reset_event(adapter, vf);
4682
4683 /* process any messages pending */
4684 if (!igb_check_for_msg(hw, vf))
4685 igb_rcv_msg_from_vf(adapter, vf);
4686
4687 /* process any acks */
4688 if (!igb_check_for_ack(hw, vf))
4689 igb_rcv_ack_from_vf(adapter, vf);
4690 }
4691 }
4692
4693 /**
4694 * igb_set_uta - Set unicast filter table address
4695 * @adapter: board private structure
4696 *
4697 * The unicast table address is a register array of 32-bit registers.
4698 * The table is meant to be used in a way similar to how the MTA is used
4699 * however due to certain limitations in the hardware it is necessary to
4700 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4701 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4702 **/
4703 static void igb_set_uta(struct igb_adapter *adapter)
4704 {
4705 struct e1000_hw *hw = &adapter->hw;
4706 int i;
4707
4708 /* The UTA table only exists on 82576 hardware and newer */
4709 if (hw->mac.type < e1000_82576)
4710 return;
4711
4712 /* we only need to do this if VMDq is enabled */
4713 if (!adapter->vfs_allocated_count)
4714 return;
4715
4716 for (i = 0; i < hw->mac.uta_reg_count; i++)
4717 array_wr32(E1000_UTA, i, ~0);
4718 }
4719
4720 /**
4721 * igb_intr_msi - Interrupt Handler
4722 * @irq: interrupt number
4723 * @data: pointer to a network interface device structure
4724 **/
4725 static irqreturn_t igb_intr_msi(int irq, void *data)
4726 {
4727 struct igb_adapter *adapter = data;
4728 struct igb_q_vector *q_vector = adapter->q_vector[0];
4729 struct e1000_hw *hw = &adapter->hw;
4730 /* read ICR disables interrupts using IAM */
4731 u32 icr = rd32(E1000_ICR);
4732
4733 igb_write_itr(q_vector);
4734
4735 if (icr & E1000_ICR_DRSTA)
4736 schedule_work(&adapter->reset_task);
4737
4738 if (icr & E1000_ICR_DOUTSYNC) {
4739 /* HW is reporting DMA is out of sync */
4740 adapter->stats.doosync++;
4741 }
4742
4743 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4744 hw->mac.get_link_status = 1;
4745 if (!test_bit(__IGB_DOWN, &adapter->state))
4746 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4747 }
4748
4749 napi_schedule(&q_vector->napi);
4750
4751 return IRQ_HANDLED;
4752 }
4753
4754 /**
4755 * igb_intr - Legacy Interrupt Handler
4756 * @irq: interrupt number
4757 * @data: pointer to a network interface device structure
4758 **/
4759 static irqreturn_t igb_intr(int irq, void *data)
4760 {
4761 struct igb_adapter *adapter = data;
4762 struct igb_q_vector *q_vector = adapter->q_vector[0];
4763 struct e1000_hw *hw = &adapter->hw;
4764 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4765 * need for the IMC write */
4766 u32 icr = rd32(E1000_ICR);
4767 if (!icr)
4768 return IRQ_NONE; /* Not our interrupt */
4769
4770 igb_write_itr(q_vector);
4771
4772 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4773 * not set, then the adapter didn't send an interrupt */
4774 if (!(icr & E1000_ICR_INT_ASSERTED))
4775 return IRQ_NONE;
4776
4777 if (icr & E1000_ICR_DRSTA)
4778 schedule_work(&adapter->reset_task);
4779
4780 if (icr & E1000_ICR_DOUTSYNC) {
4781 /* HW is reporting DMA is out of sync */
4782 adapter->stats.doosync++;
4783 }
4784
4785 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4786 hw->mac.get_link_status = 1;
4787 /* guard against interrupt when we're going down */
4788 if (!test_bit(__IGB_DOWN, &adapter->state))
4789 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4790 }
4791
4792 napi_schedule(&q_vector->napi);
4793
4794 return IRQ_HANDLED;
4795 }
4796
4797 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4798 {
4799 struct igb_adapter *adapter = q_vector->adapter;
4800 struct e1000_hw *hw = &adapter->hw;
4801
4802 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4803 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4804 if (!adapter->msix_entries)
4805 igb_set_itr(adapter);
4806 else
4807 igb_update_ring_itr(q_vector);
4808 }
4809
4810 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4811 if (adapter->msix_entries)
4812 wr32(E1000_EIMS, q_vector->eims_value);
4813 else
4814 igb_irq_enable(adapter);
4815 }
4816 }
4817
4818 /**
4819 * igb_poll - NAPI Rx polling callback
4820 * @napi: napi polling structure
4821 * @budget: count of how many packets we should handle
4822 **/
4823 static int igb_poll(struct napi_struct *napi, int budget)
4824 {
4825 struct igb_q_vector *q_vector = container_of(napi,
4826 struct igb_q_vector,
4827 napi);
4828 int tx_clean_complete = 1, work_done = 0;
4829
4830 #ifdef CONFIG_IGB_DCA
4831 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4832 igb_update_dca(q_vector);
4833 #endif
4834 if (q_vector->tx_ring)
4835 tx_clean_complete = igb_clean_tx_irq(q_vector);
4836
4837 if (q_vector->rx_ring)
4838 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4839
4840 if (!tx_clean_complete)
4841 work_done = budget;
4842
4843 /* If not enough Rx work done, exit the polling mode */
4844 if (work_done < budget) {
4845 napi_complete(napi);
4846 igb_ring_irq_enable(q_vector);
4847 }
4848
4849 return work_done;
4850 }
4851
4852 /**
4853 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4854 * @adapter: board private structure
4855 * @shhwtstamps: timestamp structure to update
4856 * @regval: unsigned 64bit system time value.
4857 *
4858 * We need to convert the system time value stored in the RX/TXSTMP registers
4859 * into a hwtstamp which can be used by the upper level timestamping functions
4860 */
4861 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4862 struct skb_shared_hwtstamps *shhwtstamps,
4863 u64 regval)
4864 {
4865 u64 ns;
4866
4867 /*
4868 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
4869 * 24 to match clock shift we setup earlier.
4870 */
4871 if (adapter->hw.mac.type == e1000_82580)
4872 regval <<= IGB_82580_TSYNC_SHIFT;
4873
4874 ns = timecounter_cyc2time(&adapter->clock, regval);
4875 timecompare_update(&adapter->compare, ns);
4876 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4877 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4878 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4879 }
4880
4881 /**
4882 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4883 * @q_vector: pointer to q_vector containing needed info
4884 * @skb: packet that was just sent
4885 *
4886 * If we were asked to do hardware stamping and such a time stamp is
4887 * available, then it must have been for this skb here because we only
4888 * allow only one such packet into the queue.
4889 */
4890 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4891 {
4892 struct igb_adapter *adapter = q_vector->adapter;
4893 union skb_shared_tx *shtx = skb_tx(skb);
4894 struct e1000_hw *hw = &adapter->hw;
4895 struct skb_shared_hwtstamps shhwtstamps;
4896 u64 regval;
4897
4898 /* if skb does not support hw timestamp or TX stamp not valid exit */
4899 if (likely(!shtx->hardware) ||
4900 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4901 return;
4902
4903 regval = rd32(E1000_TXSTMPL);
4904 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4905
4906 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4907 skb_tstamp_tx(skb, &shhwtstamps);
4908 }
4909
4910 /**
4911 * igb_clean_tx_irq - Reclaim resources after transmit completes
4912 * @q_vector: pointer to q_vector containing needed info
4913 * returns true if ring is completely cleaned
4914 **/
4915 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4916 {
4917 struct igb_adapter *adapter = q_vector->adapter;
4918 struct igb_ring *tx_ring = q_vector->tx_ring;
4919 struct net_device *netdev = tx_ring->netdev;
4920 struct e1000_hw *hw = &adapter->hw;
4921 struct igb_buffer *buffer_info;
4922 struct sk_buff *skb;
4923 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4924 unsigned int total_bytes = 0, total_packets = 0;
4925 unsigned int i, eop, count = 0;
4926 bool cleaned = false;
4927
4928 i = tx_ring->next_to_clean;
4929 eop = tx_ring->buffer_info[i].next_to_watch;
4930 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4931
4932 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4933 (count < tx_ring->count)) {
4934 for (cleaned = false; !cleaned; count++) {
4935 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4936 buffer_info = &tx_ring->buffer_info[i];
4937 cleaned = (i == eop);
4938 skb = buffer_info->skb;
4939
4940 if (skb) {
4941 unsigned int segs, bytecount;
4942 /* gso_segs is currently only valid for tcp */
4943 segs = skb_shinfo(skb)->gso_segs ?: 1;
4944 /* multiply data chunks by size of headers */
4945 bytecount = ((segs - 1) * skb_headlen(skb)) +
4946 skb->len;
4947 total_packets += segs;
4948 total_bytes += bytecount;
4949
4950 igb_tx_hwtstamp(q_vector, skb);
4951 }
4952
4953 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4954 tx_desc->wb.status = 0;
4955
4956 i++;
4957 if (i == tx_ring->count)
4958 i = 0;
4959 }
4960 eop = tx_ring->buffer_info[i].next_to_watch;
4961 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4962 }
4963
4964 tx_ring->next_to_clean = i;
4965
4966 if (unlikely(count &&
4967 netif_carrier_ok(netdev) &&
4968 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4969 /* Make sure that anybody stopping the queue after this
4970 * sees the new next_to_clean.
4971 */
4972 smp_mb();
4973 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4974 !(test_bit(__IGB_DOWN, &adapter->state))) {
4975 netif_wake_subqueue(netdev, tx_ring->queue_index);
4976 tx_ring->tx_stats.restart_queue++;
4977 }
4978 }
4979
4980 if (tx_ring->detect_tx_hung) {
4981 /* Detect a transmit hang in hardware, this serializes the
4982 * check with the clearing of time_stamp and movement of i */
4983 tx_ring->detect_tx_hung = false;
4984 if (tx_ring->buffer_info[i].time_stamp &&
4985 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4986 (adapter->tx_timeout_factor * HZ)) &&
4987 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
4988
4989 /* detected Tx unit hang */
4990 dev_err(&tx_ring->pdev->dev,
4991 "Detected Tx Unit Hang\n"
4992 " Tx Queue <%d>\n"
4993 " TDH <%x>\n"
4994 " TDT <%x>\n"
4995 " next_to_use <%x>\n"
4996 " next_to_clean <%x>\n"
4997 "buffer_info[next_to_clean]\n"
4998 " time_stamp <%lx>\n"
4999 " next_to_watch <%x>\n"
5000 " jiffies <%lx>\n"
5001 " desc.status <%x>\n",
5002 tx_ring->queue_index,
5003 readl(tx_ring->head),
5004 readl(tx_ring->tail),
5005 tx_ring->next_to_use,
5006 tx_ring->next_to_clean,
5007 tx_ring->buffer_info[eop].time_stamp,
5008 eop,
5009 jiffies,
5010 eop_desc->wb.status);
5011 netif_stop_subqueue(netdev, tx_ring->queue_index);
5012 }
5013 }
5014 tx_ring->total_bytes += total_bytes;
5015 tx_ring->total_packets += total_packets;
5016 tx_ring->tx_stats.bytes += total_bytes;
5017 tx_ring->tx_stats.packets += total_packets;
5018 return (count < tx_ring->count);
5019 }
5020
5021 /**
5022 * igb_receive_skb - helper function to handle rx indications
5023 * @q_vector: structure containing interrupt and ring information
5024 * @skb: packet to send up
5025 * @vlan_tag: vlan tag for packet
5026 **/
5027 static void igb_receive_skb(struct igb_q_vector *q_vector,
5028 struct sk_buff *skb,
5029 u16 vlan_tag)
5030 {
5031 struct igb_adapter *adapter = q_vector->adapter;
5032
5033 if (vlan_tag)
5034 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5035 vlan_tag, skb);
5036 else
5037 napi_gro_receive(&q_vector->napi, skb);
5038 }
5039
5040 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5041 u32 status_err, struct sk_buff *skb)
5042 {
5043 skb->ip_summed = CHECKSUM_NONE;
5044
5045 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5046 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5047 (status_err & E1000_RXD_STAT_IXSM))
5048 return;
5049
5050 /* TCP/UDP checksum error bit is set */
5051 if (status_err &
5052 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5053 /*
5054 * work around errata with sctp packets where the TCPE aka
5055 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5056 * packets, (aka let the stack check the crc32c)
5057 */
5058 if ((skb->len == 60) &&
5059 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5060 ring->rx_stats.csum_err++;
5061
5062 /* let the stack verify checksum errors */
5063 return;
5064 }
5065 /* It must be a TCP or UDP packet with a valid checksum */
5066 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5067 skb->ip_summed = CHECKSUM_UNNECESSARY;
5068
5069 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
5070 }
5071
5072 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5073 struct sk_buff *skb)
5074 {
5075 struct igb_adapter *adapter = q_vector->adapter;
5076 struct e1000_hw *hw = &adapter->hw;
5077 u64 regval;
5078
5079 /*
5080 * If this bit is set, then the RX registers contain the time stamp. No
5081 * other packet will be time stamped until we read these registers, so
5082 * read the registers to make them available again. Because only one
5083 * packet can be time stamped at a time, we know that the register
5084 * values must belong to this one here and therefore we don't need to
5085 * compare any of the additional attributes stored for it.
5086 *
5087 * If nothing went wrong, then it should have a skb_shared_tx that we
5088 * can turn into a skb_shared_hwtstamps.
5089 */
5090 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
5091 return;
5092 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5093 return;
5094
5095 regval = rd32(E1000_RXSTMPL);
5096 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5097
5098 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5099 }
5100 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5101 union e1000_adv_rx_desc *rx_desc)
5102 {
5103 /* HW will not DMA in data larger than the given buffer, even if it
5104 * parses the (NFS, of course) header to be larger. In that case, it
5105 * fills the header buffer and spills the rest into the page.
5106 */
5107 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5108 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5109 if (hlen > rx_ring->rx_buffer_len)
5110 hlen = rx_ring->rx_buffer_len;
5111 return hlen;
5112 }
5113
5114 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5115 int *work_done, int budget)
5116 {
5117 struct igb_ring *rx_ring = q_vector->rx_ring;
5118 struct net_device *netdev = rx_ring->netdev;
5119 struct pci_dev *pdev = rx_ring->pdev;
5120 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5121 struct igb_buffer *buffer_info , *next_buffer;
5122 struct sk_buff *skb;
5123 bool cleaned = false;
5124 int cleaned_count = 0;
5125 int current_node = numa_node_id();
5126 unsigned int total_bytes = 0, total_packets = 0;
5127 unsigned int i;
5128 u32 staterr;
5129 u16 length;
5130 u16 vlan_tag;
5131
5132 i = rx_ring->next_to_clean;
5133 buffer_info = &rx_ring->buffer_info[i];
5134 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5135 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5136
5137 while (staterr & E1000_RXD_STAT_DD) {
5138 if (*work_done >= budget)
5139 break;
5140 (*work_done)++;
5141
5142 skb = buffer_info->skb;
5143 prefetch(skb->data - NET_IP_ALIGN);
5144 buffer_info->skb = NULL;
5145
5146 i++;
5147 if (i == rx_ring->count)
5148 i = 0;
5149
5150 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5151 prefetch(next_rxd);
5152 next_buffer = &rx_ring->buffer_info[i];
5153
5154 length = le16_to_cpu(rx_desc->wb.upper.length);
5155 cleaned = true;
5156 cleaned_count++;
5157
5158 if (buffer_info->dma) {
5159 pci_unmap_single(pdev, buffer_info->dma,
5160 rx_ring->rx_buffer_len,
5161 PCI_DMA_FROMDEVICE);
5162 buffer_info->dma = 0;
5163 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5164 skb_put(skb, length);
5165 goto send_up;
5166 }
5167 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5168 }
5169
5170 if (length) {
5171 pci_unmap_page(pdev, buffer_info->page_dma,
5172 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
5173 buffer_info->page_dma = 0;
5174
5175 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
5176 buffer_info->page,
5177 buffer_info->page_offset,
5178 length);
5179
5180 if ((page_count(buffer_info->page) != 1) ||
5181 (page_to_nid(buffer_info->page) != current_node))
5182 buffer_info->page = NULL;
5183 else
5184 get_page(buffer_info->page);
5185
5186 skb->len += length;
5187 skb->data_len += length;
5188 skb->truesize += length;
5189 }
5190
5191 if (!(staterr & E1000_RXD_STAT_EOP)) {
5192 buffer_info->skb = next_buffer->skb;
5193 buffer_info->dma = next_buffer->dma;
5194 next_buffer->skb = skb;
5195 next_buffer->dma = 0;
5196 goto next_desc;
5197 }
5198 send_up:
5199 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5200 dev_kfree_skb_irq(skb);
5201 goto next_desc;
5202 }
5203
5204 igb_rx_hwtstamp(q_vector, staterr, skb);
5205 total_bytes += skb->len;
5206 total_packets++;
5207
5208 igb_rx_checksum_adv(rx_ring, staterr, skb);
5209
5210 skb->protocol = eth_type_trans(skb, netdev);
5211 skb_record_rx_queue(skb, rx_ring->queue_index);
5212
5213 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5214 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5215
5216 igb_receive_skb(q_vector, skb, vlan_tag);
5217
5218 next_desc:
5219 rx_desc->wb.upper.status_error = 0;
5220
5221 /* return some buffers to hardware, one at a time is too slow */
5222 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5223 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5224 cleaned_count = 0;
5225 }
5226
5227 /* use prefetched values */
5228 rx_desc = next_rxd;
5229 buffer_info = next_buffer;
5230 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5231 }
5232
5233 rx_ring->next_to_clean = i;
5234 cleaned_count = igb_desc_unused(rx_ring);
5235
5236 if (cleaned_count)
5237 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5238
5239 rx_ring->total_packets += total_packets;
5240 rx_ring->total_bytes += total_bytes;
5241 rx_ring->rx_stats.packets += total_packets;
5242 rx_ring->rx_stats.bytes += total_bytes;
5243 return cleaned;
5244 }
5245
5246 /**
5247 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5248 * @adapter: address of board private structure
5249 **/
5250 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5251 {
5252 struct net_device *netdev = rx_ring->netdev;
5253 union e1000_adv_rx_desc *rx_desc;
5254 struct igb_buffer *buffer_info;
5255 struct sk_buff *skb;
5256 unsigned int i;
5257 int bufsz;
5258
5259 i = rx_ring->next_to_use;
5260 buffer_info = &rx_ring->buffer_info[i];
5261
5262 bufsz = rx_ring->rx_buffer_len;
5263
5264 while (cleaned_count--) {
5265 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5266
5267 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5268 if (!buffer_info->page) {
5269 buffer_info->page = netdev_alloc_page(netdev);
5270 if (!buffer_info->page) {
5271 rx_ring->rx_stats.alloc_failed++;
5272 goto no_buffers;
5273 }
5274 buffer_info->page_offset = 0;
5275 } else {
5276 buffer_info->page_offset ^= PAGE_SIZE / 2;
5277 }
5278 buffer_info->page_dma =
5279 pci_map_page(rx_ring->pdev, buffer_info->page,
5280 buffer_info->page_offset,
5281 PAGE_SIZE / 2,
5282 PCI_DMA_FROMDEVICE);
5283 if (pci_dma_mapping_error(rx_ring->pdev,
5284 buffer_info->page_dma)) {
5285 buffer_info->page_dma = 0;
5286 rx_ring->rx_stats.alloc_failed++;
5287 goto no_buffers;
5288 }
5289 }
5290
5291 skb = buffer_info->skb;
5292 if (!skb) {
5293 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5294 if (!skb) {
5295 rx_ring->rx_stats.alloc_failed++;
5296 goto no_buffers;
5297 }
5298
5299 buffer_info->skb = skb;
5300 }
5301 if (!buffer_info->dma) {
5302 buffer_info->dma = pci_map_single(rx_ring->pdev,
5303 skb->data,
5304 bufsz,
5305 PCI_DMA_FROMDEVICE);
5306 if (pci_dma_mapping_error(rx_ring->pdev,
5307 buffer_info->dma)) {
5308 buffer_info->dma = 0;
5309 rx_ring->rx_stats.alloc_failed++;
5310 goto no_buffers;
5311 }
5312 }
5313 /* Refresh the desc even if buffer_addrs didn't change because
5314 * each write-back erases this info. */
5315 if (bufsz < IGB_RXBUFFER_1024) {
5316 rx_desc->read.pkt_addr =
5317 cpu_to_le64(buffer_info->page_dma);
5318 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5319 } else {
5320 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5321 rx_desc->read.hdr_addr = 0;
5322 }
5323
5324 i++;
5325 if (i == rx_ring->count)
5326 i = 0;
5327 buffer_info = &rx_ring->buffer_info[i];
5328 }
5329
5330 no_buffers:
5331 if (rx_ring->next_to_use != i) {
5332 rx_ring->next_to_use = i;
5333 if (i == 0)
5334 i = (rx_ring->count - 1);
5335 else
5336 i--;
5337
5338 /* Force memory writes to complete before letting h/w
5339 * know there are new descriptors to fetch. (Only
5340 * applicable for weak-ordered memory model archs,
5341 * such as IA-64). */
5342 wmb();
5343 writel(i, rx_ring->tail);
5344 }
5345 }
5346
5347 /**
5348 * igb_mii_ioctl -
5349 * @netdev:
5350 * @ifreq:
5351 * @cmd:
5352 **/
5353 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5354 {
5355 struct igb_adapter *adapter = netdev_priv(netdev);
5356 struct mii_ioctl_data *data = if_mii(ifr);
5357
5358 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5359 return -EOPNOTSUPP;
5360
5361 switch (cmd) {
5362 case SIOCGMIIPHY:
5363 data->phy_id = adapter->hw.phy.addr;
5364 break;
5365 case SIOCGMIIREG:
5366 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5367 &data->val_out))
5368 return -EIO;
5369 break;
5370 case SIOCSMIIREG:
5371 default:
5372 return -EOPNOTSUPP;
5373 }
5374 return 0;
5375 }
5376
5377 /**
5378 * igb_hwtstamp_ioctl - control hardware time stamping
5379 * @netdev:
5380 * @ifreq:
5381 * @cmd:
5382 *
5383 * Outgoing time stamping can be enabled and disabled. Play nice and
5384 * disable it when requested, although it shouldn't case any overhead
5385 * when no packet needs it. At most one packet in the queue may be
5386 * marked for time stamping, otherwise it would be impossible to tell
5387 * for sure to which packet the hardware time stamp belongs.
5388 *
5389 * Incoming time stamping has to be configured via the hardware
5390 * filters. Not all combinations are supported, in particular event
5391 * type has to be specified. Matching the kind of event packet is
5392 * not supported, with the exception of "all V2 events regardless of
5393 * level 2 or 4".
5394 *
5395 **/
5396 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5397 struct ifreq *ifr, int cmd)
5398 {
5399 struct igb_adapter *adapter = netdev_priv(netdev);
5400 struct e1000_hw *hw = &adapter->hw;
5401 struct hwtstamp_config config;
5402 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5403 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5404 u32 tsync_rx_cfg = 0;
5405 bool is_l4 = false;
5406 bool is_l2 = false;
5407 u32 regval;
5408
5409 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5410 return -EFAULT;
5411
5412 /* reserved for future extensions */
5413 if (config.flags)
5414 return -EINVAL;
5415
5416 switch (config.tx_type) {
5417 case HWTSTAMP_TX_OFF:
5418 tsync_tx_ctl = 0;
5419 case HWTSTAMP_TX_ON:
5420 break;
5421 default:
5422 return -ERANGE;
5423 }
5424
5425 switch (config.rx_filter) {
5426 case HWTSTAMP_FILTER_NONE:
5427 tsync_rx_ctl = 0;
5428 break;
5429 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5430 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5431 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5432 case HWTSTAMP_FILTER_ALL:
5433 /*
5434 * register TSYNCRXCFG must be set, therefore it is not
5435 * possible to time stamp both Sync and Delay_Req messages
5436 * => fall back to time stamping all packets
5437 */
5438 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5439 config.rx_filter = HWTSTAMP_FILTER_ALL;
5440 break;
5441 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5442 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5443 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5444 is_l4 = true;
5445 break;
5446 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5447 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5448 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5449 is_l4 = true;
5450 break;
5451 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5452 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5453 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5454 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5455 is_l2 = true;
5456 is_l4 = true;
5457 config.rx_filter = HWTSTAMP_FILTER_SOME;
5458 break;
5459 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5460 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5461 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5462 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5463 is_l2 = true;
5464 is_l4 = true;
5465 config.rx_filter = HWTSTAMP_FILTER_SOME;
5466 break;
5467 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5468 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5469 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5470 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5471 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5472 is_l2 = true;
5473 break;
5474 default:
5475 return -ERANGE;
5476 }
5477
5478 if (hw->mac.type == e1000_82575) {
5479 if (tsync_rx_ctl | tsync_tx_ctl)
5480 return -EINVAL;
5481 return 0;
5482 }
5483
5484 /* enable/disable TX */
5485 regval = rd32(E1000_TSYNCTXCTL);
5486 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5487 regval |= tsync_tx_ctl;
5488 wr32(E1000_TSYNCTXCTL, regval);
5489
5490 /* enable/disable RX */
5491 regval = rd32(E1000_TSYNCRXCTL);
5492 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5493 regval |= tsync_rx_ctl;
5494 wr32(E1000_TSYNCRXCTL, regval);
5495
5496 /* define which PTP packets are time stamped */
5497 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5498
5499 /* define ethertype filter for timestamped packets */
5500 if (is_l2)
5501 wr32(E1000_ETQF(3),
5502 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5503 E1000_ETQF_1588 | /* enable timestamping */
5504 ETH_P_1588)); /* 1588 eth protocol type */
5505 else
5506 wr32(E1000_ETQF(3), 0);
5507
5508 #define PTP_PORT 319
5509 /* L4 Queue Filter[3]: filter by destination port and protocol */
5510 if (is_l4) {
5511 u32 ftqf = (IPPROTO_UDP /* UDP */
5512 | E1000_FTQF_VF_BP /* VF not compared */
5513 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5514 | E1000_FTQF_MASK); /* mask all inputs */
5515 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5516
5517 wr32(E1000_IMIR(3), htons(PTP_PORT));
5518 wr32(E1000_IMIREXT(3),
5519 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5520 if (hw->mac.type == e1000_82576) {
5521 /* enable source port check */
5522 wr32(E1000_SPQF(3), htons(PTP_PORT));
5523 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5524 }
5525 wr32(E1000_FTQF(3), ftqf);
5526 } else {
5527 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5528 }
5529 wrfl();
5530
5531 adapter->hwtstamp_config = config;
5532
5533 /* clear TX/RX time stamp registers, just to be sure */
5534 regval = rd32(E1000_TXSTMPH);
5535 regval = rd32(E1000_RXSTMPH);
5536
5537 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5538 -EFAULT : 0;
5539 }
5540
5541 /**
5542 * igb_ioctl -
5543 * @netdev:
5544 * @ifreq:
5545 * @cmd:
5546 **/
5547 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5548 {
5549 switch (cmd) {
5550 case SIOCGMIIPHY:
5551 case SIOCGMIIREG:
5552 case SIOCSMIIREG:
5553 return igb_mii_ioctl(netdev, ifr, cmd);
5554 case SIOCSHWTSTAMP:
5555 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5556 default:
5557 return -EOPNOTSUPP;
5558 }
5559 }
5560
5561 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5562 {
5563 struct igb_adapter *adapter = hw->back;
5564 u16 cap_offset;
5565
5566 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5567 if (!cap_offset)
5568 return -E1000_ERR_CONFIG;
5569
5570 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5571
5572 return 0;
5573 }
5574
5575 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5576 {
5577 struct igb_adapter *adapter = hw->back;
5578 u16 cap_offset;
5579
5580 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5581 if (!cap_offset)
5582 return -E1000_ERR_CONFIG;
5583
5584 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5585
5586 return 0;
5587 }
5588
5589 static void igb_vlan_rx_register(struct net_device *netdev,
5590 struct vlan_group *grp)
5591 {
5592 struct igb_adapter *adapter = netdev_priv(netdev);
5593 struct e1000_hw *hw = &adapter->hw;
5594 u32 ctrl, rctl;
5595
5596 igb_irq_disable(adapter);
5597 adapter->vlgrp = grp;
5598
5599 if (grp) {
5600 /* enable VLAN tag insert/strip */
5601 ctrl = rd32(E1000_CTRL);
5602 ctrl |= E1000_CTRL_VME;
5603 wr32(E1000_CTRL, ctrl);
5604
5605 /* Disable CFI check */
5606 rctl = rd32(E1000_RCTL);
5607 rctl &= ~E1000_RCTL_CFIEN;
5608 wr32(E1000_RCTL, rctl);
5609 } else {
5610 /* disable VLAN tag insert/strip */
5611 ctrl = rd32(E1000_CTRL);
5612 ctrl &= ~E1000_CTRL_VME;
5613 wr32(E1000_CTRL, ctrl);
5614 }
5615
5616 igb_rlpml_set(adapter);
5617
5618 if (!test_bit(__IGB_DOWN, &adapter->state))
5619 igb_irq_enable(adapter);
5620 }
5621
5622 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5623 {
5624 struct igb_adapter *adapter = netdev_priv(netdev);
5625 struct e1000_hw *hw = &adapter->hw;
5626 int pf_id = adapter->vfs_allocated_count;
5627
5628 /* attempt to add filter to vlvf array */
5629 igb_vlvf_set(adapter, vid, true, pf_id);
5630
5631 /* add the filter since PF can receive vlans w/o entry in vlvf */
5632 igb_vfta_set(hw, vid, true);
5633 }
5634
5635 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5636 {
5637 struct igb_adapter *adapter = netdev_priv(netdev);
5638 struct e1000_hw *hw = &adapter->hw;
5639 int pf_id = adapter->vfs_allocated_count;
5640 s32 err;
5641
5642 igb_irq_disable(adapter);
5643 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5644
5645 if (!test_bit(__IGB_DOWN, &adapter->state))
5646 igb_irq_enable(adapter);
5647
5648 /* remove vlan from VLVF table array */
5649 err = igb_vlvf_set(adapter, vid, false, pf_id);
5650
5651 /* if vid was not present in VLVF just remove it from table */
5652 if (err)
5653 igb_vfta_set(hw, vid, false);
5654 }
5655
5656 static void igb_restore_vlan(struct igb_adapter *adapter)
5657 {
5658 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5659
5660 if (adapter->vlgrp) {
5661 u16 vid;
5662 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5663 if (!vlan_group_get_device(adapter->vlgrp, vid))
5664 continue;
5665 igb_vlan_rx_add_vid(adapter->netdev, vid);
5666 }
5667 }
5668 }
5669
5670 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5671 {
5672 struct pci_dev *pdev = adapter->pdev;
5673 struct e1000_mac_info *mac = &adapter->hw.mac;
5674
5675 mac->autoneg = 0;
5676
5677 switch (spddplx) {
5678 case SPEED_10 + DUPLEX_HALF:
5679 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5680 break;
5681 case SPEED_10 + DUPLEX_FULL:
5682 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5683 break;
5684 case SPEED_100 + DUPLEX_HALF:
5685 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5686 break;
5687 case SPEED_100 + DUPLEX_FULL:
5688 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5689 break;
5690 case SPEED_1000 + DUPLEX_FULL:
5691 mac->autoneg = 1;
5692 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5693 break;
5694 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5695 default:
5696 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5697 return -EINVAL;
5698 }
5699 return 0;
5700 }
5701
5702 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5703 {
5704 struct net_device *netdev = pci_get_drvdata(pdev);
5705 struct igb_adapter *adapter = netdev_priv(netdev);
5706 struct e1000_hw *hw = &adapter->hw;
5707 u32 ctrl, rctl, status;
5708 u32 wufc = adapter->wol;
5709 #ifdef CONFIG_PM
5710 int retval = 0;
5711 #endif
5712
5713 netif_device_detach(netdev);
5714
5715 if (netif_running(netdev))
5716 igb_close(netdev);
5717
5718 igb_clear_interrupt_scheme(adapter);
5719
5720 #ifdef CONFIG_PM
5721 retval = pci_save_state(pdev);
5722 if (retval)
5723 return retval;
5724 #endif
5725
5726 status = rd32(E1000_STATUS);
5727 if (status & E1000_STATUS_LU)
5728 wufc &= ~E1000_WUFC_LNKC;
5729
5730 if (wufc) {
5731 igb_setup_rctl(adapter);
5732 igb_set_rx_mode(netdev);
5733
5734 /* turn on all-multi mode if wake on multicast is enabled */
5735 if (wufc & E1000_WUFC_MC) {
5736 rctl = rd32(E1000_RCTL);
5737 rctl |= E1000_RCTL_MPE;
5738 wr32(E1000_RCTL, rctl);
5739 }
5740
5741 ctrl = rd32(E1000_CTRL);
5742 /* advertise wake from D3Cold */
5743 #define E1000_CTRL_ADVD3WUC 0x00100000
5744 /* phy power management enable */
5745 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5746 ctrl |= E1000_CTRL_ADVD3WUC;
5747 wr32(E1000_CTRL, ctrl);
5748
5749 /* Allow time for pending master requests to run */
5750 igb_disable_pcie_master(hw);
5751
5752 wr32(E1000_WUC, E1000_WUC_PME_EN);
5753 wr32(E1000_WUFC, wufc);
5754 } else {
5755 wr32(E1000_WUC, 0);
5756 wr32(E1000_WUFC, 0);
5757 }
5758
5759 *enable_wake = wufc || adapter->en_mng_pt;
5760 if (!*enable_wake)
5761 igb_shutdown_serdes_link_82575(hw);
5762
5763 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5764 * would have already happened in close and is redundant. */
5765 igb_release_hw_control(adapter);
5766
5767 pci_disable_device(pdev);
5768
5769 return 0;
5770 }
5771
5772 #ifdef CONFIG_PM
5773 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5774 {
5775 int retval;
5776 bool wake;
5777
5778 retval = __igb_shutdown(pdev, &wake);
5779 if (retval)
5780 return retval;
5781
5782 if (wake) {
5783 pci_prepare_to_sleep(pdev);
5784 } else {
5785 pci_wake_from_d3(pdev, false);
5786 pci_set_power_state(pdev, PCI_D3hot);
5787 }
5788
5789 return 0;
5790 }
5791
5792 static int igb_resume(struct pci_dev *pdev)
5793 {
5794 struct net_device *netdev = pci_get_drvdata(pdev);
5795 struct igb_adapter *adapter = netdev_priv(netdev);
5796 struct e1000_hw *hw = &adapter->hw;
5797 u32 err;
5798
5799 pci_set_power_state(pdev, PCI_D0);
5800 pci_restore_state(pdev);
5801
5802 err = pci_enable_device_mem(pdev);
5803 if (err) {
5804 dev_err(&pdev->dev,
5805 "igb: Cannot enable PCI device from suspend\n");
5806 return err;
5807 }
5808 pci_set_master(pdev);
5809
5810 pci_enable_wake(pdev, PCI_D3hot, 0);
5811 pci_enable_wake(pdev, PCI_D3cold, 0);
5812
5813 if (igb_init_interrupt_scheme(adapter)) {
5814 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5815 return -ENOMEM;
5816 }
5817
5818 /* e1000_power_up_phy(adapter); */
5819
5820 igb_reset(adapter);
5821
5822 /* let the f/w know that the h/w is now under the control of the
5823 * driver. */
5824 igb_get_hw_control(adapter);
5825
5826 wr32(E1000_WUS, ~0);
5827
5828 if (netif_running(netdev)) {
5829 err = igb_open(netdev);
5830 if (err)
5831 return err;
5832 }
5833
5834 netif_device_attach(netdev);
5835
5836 return 0;
5837 }
5838 #endif
5839
5840 static void igb_shutdown(struct pci_dev *pdev)
5841 {
5842 bool wake;
5843
5844 __igb_shutdown(pdev, &wake);
5845
5846 if (system_state == SYSTEM_POWER_OFF) {
5847 pci_wake_from_d3(pdev, wake);
5848 pci_set_power_state(pdev, PCI_D3hot);
5849 }
5850 }
5851
5852 #ifdef CONFIG_NET_POLL_CONTROLLER
5853 /*
5854 * Polling 'interrupt' - used by things like netconsole to send skbs
5855 * without having to re-enable interrupts. It's not called while
5856 * the interrupt routine is executing.
5857 */
5858 static void igb_netpoll(struct net_device *netdev)
5859 {
5860 struct igb_adapter *adapter = netdev_priv(netdev);
5861 struct e1000_hw *hw = &adapter->hw;
5862 int i;
5863
5864 if (!adapter->msix_entries) {
5865 struct igb_q_vector *q_vector = adapter->q_vector[0];
5866 igb_irq_disable(adapter);
5867 napi_schedule(&q_vector->napi);
5868 return;
5869 }
5870
5871 for (i = 0; i < adapter->num_q_vectors; i++) {
5872 struct igb_q_vector *q_vector = adapter->q_vector[i];
5873 wr32(E1000_EIMC, q_vector->eims_value);
5874 napi_schedule(&q_vector->napi);
5875 }
5876 }
5877 #endif /* CONFIG_NET_POLL_CONTROLLER */
5878
5879 /**
5880 * igb_io_error_detected - called when PCI error is detected
5881 * @pdev: Pointer to PCI device
5882 * @state: The current pci connection state
5883 *
5884 * This function is called after a PCI bus error affecting
5885 * this device has been detected.
5886 */
5887 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5888 pci_channel_state_t state)
5889 {
5890 struct net_device *netdev = pci_get_drvdata(pdev);
5891 struct igb_adapter *adapter = netdev_priv(netdev);
5892
5893 netif_device_detach(netdev);
5894
5895 if (state == pci_channel_io_perm_failure)
5896 return PCI_ERS_RESULT_DISCONNECT;
5897
5898 if (netif_running(netdev))
5899 igb_down(adapter);
5900 pci_disable_device(pdev);
5901
5902 /* Request a slot slot reset. */
5903 return PCI_ERS_RESULT_NEED_RESET;
5904 }
5905
5906 /**
5907 * igb_io_slot_reset - called after the pci bus has been reset.
5908 * @pdev: Pointer to PCI device
5909 *
5910 * Restart the card from scratch, as if from a cold-boot. Implementation
5911 * resembles the first-half of the igb_resume routine.
5912 */
5913 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5914 {
5915 struct net_device *netdev = pci_get_drvdata(pdev);
5916 struct igb_adapter *adapter = netdev_priv(netdev);
5917 struct e1000_hw *hw = &adapter->hw;
5918 pci_ers_result_t result;
5919 int err;
5920
5921 if (pci_enable_device_mem(pdev)) {
5922 dev_err(&pdev->dev,
5923 "Cannot re-enable PCI device after reset.\n");
5924 result = PCI_ERS_RESULT_DISCONNECT;
5925 } else {
5926 pci_set_master(pdev);
5927 pci_restore_state(pdev);
5928
5929 pci_enable_wake(pdev, PCI_D3hot, 0);
5930 pci_enable_wake(pdev, PCI_D3cold, 0);
5931
5932 igb_reset(adapter);
5933 wr32(E1000_WUS, ~0);
5934 result = PCI_ERS_RESULT_RECOVERED;
5935 }
5936
5937 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5938 if (err) {
5939 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5940 "failed 0x%0x\n", err);
5941 /* non-fatal, continue */
5942 }
5943
5944 return result;
5945 }
5946
5947 /**
5948 * igb_io_resume - called when traffic can start flowing again.
5949 * @pdev: Pointer to PCI device
5950 *
5951 * This callback is called when the error recovery driver tells us that
5952 * its OK to resume normal operation. Implementation resembles the
5953 * second-half of the igb_resume routine.
5954 */
5955 static void igb_io_resume(struct pci_dev *pdev)
5956 {
5957 struct net_device *netdev = pci_get_drvdata(pdev);
5958 struct igb_adapter *adapter = netdev_priv(netdev);
5959
5960 if (netif_running(netdev)) {
5961 if (igb_up(adapter)) {
5962 dev_err(&pdev->dev, "igb_up failed after reset\n");
5963 return;
5964 }
5965 }
5966
5967 netif_device_attach(netdev);
5968
5969 /* let the f/w know that the h/w is now under the control of the
5970 * driver. */
5971 igb_get_hw_control(adapter);
5972 }
5973
5974 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5975 u8 qsel)
5976 {
5977 u32 rar_low, rar_high;
5978 struct e1000_hw *hw = &adapter->hw;
5979
5980 /* HW expects these in little endian so we reverse the byte order
5981 * from network order (big endian) to little endian
5982 */
5983 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5984 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5985 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5986
5987 /* Indicate to hardware the Address is Valid. */
5988 rar_high |= E1000_RAH_AV;
5989
5990 if (hw->mac.type == e1000_82575)
5991 rar_high |= E1000_RAH_POOL_1 * qsel;
5992 else
5993 rar_high |= E1000_RAH_POOL_1 << qsel;
5994
5995 wr32(E1000_RAL(index), rar_low);
5996 wrfl();
5997 wr32(E1000_RAH(index), rar_high);
5998 wrfl();
5999 }
6000
6001 static int igb_set_vf_mac(struct igb_adapter *adapter,
6002 int vf, unsigned char *mac_addr)
6003 {
6004 struct e1000_hw *hw = &adapter->hw;
6005 /* VF MAC addresses start at end of receive addresses and moves
6006 * torwards the first, as a result a collision should not be possible */
6007 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6008
6009 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6010
6011 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6012
6013 return 0;
6014 }
6015
6016 static void igb_vmm_control(struct igb_adapter *adapter)
6017 {
6018 struct e1000_hw *hw = &adapter->hw;
6019 u32 reg;
6020
6021 /* replication is not supported for 82575 */
6022 if (hw->mac.type == e1000_82575)
6023 return;
6024
6025 /* enable replication vlan tag stripping */
6026 reg = rd32(E1000_RPLOLR);
6027 reg |= E1000_RPLOLR_STRVLAN;
6028 wr32(E1000_RPLOLR, reg);
6029
6030 /* notify HW that the MAC is adding vlan tags */
6031 reg = rd32(E1000_DTXCTL);
6032 reg |= E1000_DTXCTL_VLAN_ADDED;
6033 wr32(E1000_DTXCTL, reg);
6034
6035 if (adapter->vfs_allocated_count) {
6036 igb_vmdq_set_loopback_pf(hw, true);
6037 igb_vmdq_set_replication_pf(hw, true);
6038 } else {
6039 igb_vmdq_set_loopback_pf(hw, false);
6040 igb_vmdq_set_replication_pf(hw, false);
6041 }
6042 }
6043
6044 /* igb_main.c */
This page took 0.205119 seconds and 6 git commands to generate.