igb: use timecompare to implement hardware time stamping
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
70 /* required last entry */
71 {0, }
72 };
73
74 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
75
76 void igb_reset(struct igb_adapter *);
77 static int igb_setup_all_tx_resources(struct igb_adapter *);
78 static int igb_setup_all_rx_resources(struct igb_adapter *);
79 static void igb_free_all_tx_resources(struct igb_adapter *);
80 static void igb_free_all_rx_resources(struct igb_adapter *);
81 void igb_update_stats(struct igb_adapter *);
82 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83 static void __devexit igb_remove(struct pci_dev *pdev);
84 static int igb_sw_init(struct igb_adapter *);
85 static int igb_open(struct net_device *);
86 static int igb_close(struct net_device *);
87 static void igb_configure_tx(struct igb_adapter *);
88 static void igb_configure_rx(struct igb_adapter *);
89 static void igb_setup_rctl(struct igb_adapter *);
90 static void igb_clean_all_tx_rings(struct igb_adapter *);
91 static void igb_clean_all_rx_rings(struct igb_adapter *);
92 static void igb_clean_tx_ring(struct igb_ring *);
93 static void igb_clean_rx_ring(struct igb_ring *);
94 static void igb_set_multi(struct net_device *);
95 static void igb_update_phy_info(unsigned long);
96 static void igb_watchdog(unsigned long);
97 static void igb_watchdog_task(struct work_struct *);
98 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99 struct igb_ring *);
100 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101 static struct net_device_stats *igb_get_stats(struct net_device *);
102 static int igb_change_mtu(struct net_device *, int);
103 static int igb_set_mac(struct net_device *, void *);
104 static irqreturn_t igb_intr(int irq, void *);
105 static irqreturn_t igb_intr_msi(int irq, void *);
106 static irqreturn_t igb_msix_other(int irq, void *);
107 static irqreturn_t igb_msix_rx(int irq, void *);
108 static irqreturn_t igb_msix_tx(int irq, void *);
109 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
110 #ifdef CONFIG_IGB_DCA
111 static void igb_update_rx_dca(struct igb_ring *);
112 static void igb_update_tx_dca(struct igb_ring *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_ring *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
118 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
119 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
120 static void igb_tx_timeout(struct net_device *);
121 static void igb_reset_task(struct work_struct *);
122 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
123 static void igb_vlan_rx_add_vid(struct net_device *, u16);
124 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
125 static void igb_restore_vlan(struct igb_adapter *);
126
127 static int igb_suspend(struct pci_dev *, pm_message_t);
128 #ifdef CONFIG_PM
129 static int igb_resume(struct pci_dev *);
130 #endif
131 static void igb_shutdown(struct pci_dev *);
132 #ifdef CONFIG_IGB_DCA
133 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
134 static struct notifier_block dca_notifier = {
135 .notifier_call = igb_notify_dca,
136 .next = NULL,
137 .priority = 0
138 };
139 #endif
140
141 #ifdef CONFIG_NET_POLL_CONTROLLER
142 /* for netdump / net console */
143 static void igb_netpoll(struct net_device *);
144 #endif
145
146 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
147 pci_channel_state_t);
148 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
149 static void igb_io_resume(struct pci_dev *);
150
151 static struct pci_error_handlers igb_err_handler = {
152 .error_detected = igb_io_error_detected,
153 .slot_reset = igb_io_slot_reset,
154 .resume = igb_io_resume,
155 };
156
157
158 static struct pci_driver igb_driver = {
159 .name = igb_driver_name,
160 .id_table = igb_pci_tbl,
161 .probe = igb_probe,
162 .remove = __devexit_p(igb_remove),
163 #ifdef CONFIG_PM
164 /* Power Managment Hooks */
165 .suspend = igb_suspend,
166 .resume = igb_resume,
167 #endif
168 .shutdown = igb_shutdown,
169 .err_handler = &igb_err_handler
170 };
171
172 static int global_quad_port_a; /* global quad port a indication */
173
174 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
175 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178
179 /**
180 * Scale the NIC clock cycle by a large factor so that
181 * relatively small clock corrections can be added or
182 * substracted at each clock tick. The drawbacks of a
183 * large factor are a) that the clock register overflows
184 * more quickly (not such a big deal) and b) that the
185 * increment per tick has to fit into 24 bits.
186 *
187 * Note that
188 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
189 * IGB_TSYNC_SCALE
190 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
191 *
192 * The base scale factor is intentionally a power of two
193 * so that the division in %struct timecounter can be done with
194 * a shift.
195 */
196 #define IGB_TSYNC_SHIFT (19)
197 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
198
199 /**
200 * The duration of one clock cycle of the NIC.
201 *
202 * @todo This hard-coded value is part of the specification and might change
203 * in future hardware revisions. Add revision check.
204 */
205 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
206
207 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
208 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
209 #endif
210
211 /**
212 * igb_read_clock - read raw cycle counter (to be used by time counter)
213 */
214 static cycle_t igb_read_clock(const struct cyclecounter *tc)
215 {
216 struct igb_adapter *adapter =
217 container_of(tc, struct igb_adapter, cycles);
218 struct e1000_hw *hw = &adapter->hw;
219 u64 stamp;
220
221 stamp = rd32(E1000_SYSTIML);
222 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
223
224 return stamp;
225 }
226
227 #ifdef DEBUG
228 /**
229 * igb_get_hw_dev_name - return device name string
230 * used by hardware layer to print debugging information
231 **/
232 char *igb_get_hw_dev_name(struct e1000_hw *hw)
233 {
234 struct igb_adapter *adapter = hw->back;
235 return adapter->netdev->name;
236 }
237
238 /**
239 * igb_get_time_str - format current NIC and system time as string
240 */
241 static char *igb_get_time_str(struct igb_adapter *adapter,
242 char buffer[160])
243 {
244 cycle_t hw = adapter->cycles.read(&adapter->cycles);
245 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
246 struct timespec sys;
247 struct timespec delta;
248 getnstimeofday(&sys);
249
250 delta = timespec_sub(nic, sys);
251
252 sprintf(buffer,
253 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
254 hw,
255 (long)nic.tv_sec, nic.tv_nsec,
256 (long)sys.tv_sec, sys.tv_nsec,
257 (long)delta.tv_sec, delta.tv_nsec);
258
259 return buffer;
260 }
261 #endif
262
263 /**
264 * igb_init_module - Driver Registration Routine
265 *
266 * igb_init_module is the first routine called when the driver is
267 * loaded. All it does is register with the PCI subsystem.
268 **/
269 static int __init igb_init_module(void)
270 {
271 int ret;
272 printk(KERN_INFO "%s - version %s\n",
273 igb_driver_string, igb_driver_version);
274
275 printk(KERN_INFO "%s\n", igb_copyright);
276
277 global_quad_port_a = 0;
278
279 #ifdef CONFIG_IGB_DCA
280 dca_register_notify(&dca_notifier);
281 #endif
282
283 ret = pci_register_driver(&igb_driver);
284 return ret;
285 }
286
287 module_init(igb_init_module);
288
289 /**
290 * igb_exit_module - Driver Exit Cleanup Routine
291 *
292 * igb_exit_module is called just before the driver is removed
293 * from memory.
294 **/
295 static void __exit igb_exit_module(void)
296 {
297 #ifdef CONFIG_IGB_DCA
298 dca_unregister_notify(&dca_notifier);
299 #endif
300 pci_unregister_driver(&igb_driver);
301 }
302
303 module_exit(igb_exit_module);
304
305 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
306 /**
307 * igb_cache_ring_register - Descriptor ring to register mapping
308 * @adapter: board private structure to initialize
309 *
310 * Once we know the feature-set enabled for the device, we'll cache
311 * the register offset the descriptor ring is assigned to.
312 **/
313 static void igb_cache_ring_register(struct igb_adapter *adapter)
314 {
315 int i;
316
317 switch (adapter->hw.mac.type) {
318 case e1000_82576:
319 /* The queues are allocated for virtualization such that VF 0
320 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
321 * In order to avoid collision we start at the first free queue
322 * and continue consuming queues in the same sequence
323 */
324 for (i = 0; i < adapter->num_rx_queues; i++)
325 adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
326 for (i = 0; i < adapter->num_tx_queues; i++)
327 adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
328 break;
329 case e1000_82575:
330 default:
331 for (i = 0; i < adapter->num_rx_queues; i++)
332 adapter->rx_ring[i].reg_idx = i;
333 for (i = 0; i < adapter->num_tx_queues; i++)
334 adapter->tx_ring[i].reg_idx = i;
335 break;
336 }
337 }
338
339 /**
340 * igb_alloc_queues - Allocate memory for all rings
341 * @adapter: board private structure to initialize
342 *
343 * We allocate one ring per queue at run-time since we don't know the
344 * number of queues at compile-time.
345 **/
346 static int igb_alloc_queues(struct igb_adapter *adapter)
347 {
348 int i;
349
350 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
351 sizeof(struct igb_ring), GFP_KERNEL);
352 if (!adapter->tx_ring)
353 return -ENOMEM;
354
355 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
356 sizeof(struct igb_ring), GFP_KERNEL);
357 if (!adapter->rx_ring) {
358 kfree(adapter->tx_ring);
359 return -ENOMEM;
360 }
361
362 adapter->rx_ring->buddy = adapter->tx_ring;
363
364 for (i = 0; i < adapter->num_tx_queues; i++) {
365 struct igb_ring *ring = &(adapter->tx_ring[i]);
366 ring->count = adapter->tx_ring_count;
367 ring->adapter = adapter;
368 ring->queue_index = i;
369 }
370 for (i = 0; i < adapter->num_rx_queues; i++) {
371 struct igb_ring *ring = &(adapter->rx_ring[i]);
372 ring->count = adapter->rx_ring_count;
373 ring->adapter = adapter;
374 ring->queue_index = i;
375 ring->itr_register = E1000_ITR;
376
377 /* set a default napi handler for each rx_ring */
378 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
379 }
380
381 igb_cache_ring_register(adapter);
382 return 0;
383 }
384
385 static void igb_free_queues(struct igb_adapter *adapter)
386 {
387 int i;
388
389 for (i = 0; i < adapter->num_rx_queues; i++)
390 netif_napi_del(&adapter->rx_ring[i].napi);
391
392 kfree(adapter->tx_ring);
393 kfree(adapter->rx_ring);
394 }
395
396 #define IGB_N0_QUEUE -1
397 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
398 int tx_queue, int msix_vector)
399 {
400 u32 msixbm = 0;
401 struct e1000_hw *hw = &adapter->hw;
402 u32 ivar, index;
403
404 switch (hw->mac.type) {
405 case e1000_82575:
406 /* The 82575 assigns vectors using a bitmask, which matches the
407 bitmask for the EICR/EIMS/EIMC registers. To assign one
408 or more queues to a vector, we write the appropriate bits
409 into the MSIXBM register for that vector. */
410 if (rx_queue > IGB_N0_QUEUE) {
411 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
412 adapter->rx_ring[rx_queue].eims_value = msixbm;
413 }
414 if (tx_queue > IGB_N0_QUEUE) {
415 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
416 adapter->tx_ring[tx_queue].eims_value =
417 E1000_EICR_TX_QUEUE0 << tx_queue;
418 }
419 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
420 break;
421 case e1000_82576:
422 /* 82576 uses a table-based method for assigning vectors.
423 Each queue has a single entry in the table to which we write
424 a vector number along with a "valid" bit. Sadly, the layout
425 of the table is somewhat counterintuitive. */
426 if (rx_queue > IGB_N0_QUEUE) {
427 index = (rx_queue >> 1);
428 ivar = array_rd32(E1000_IVAR0, index);
429 if (rx_queue & 0x1) {
430 /* vector goes into third byte of register */
431 ivar = ivar & 0xFF00FFFF;
432 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
433 } else {
434 /* vector goes into low byte of register */
435 ivar = ivar & 0xFFFFFF00;
436 ivar |= msix_vector | E1000_IVAR_VALID;
437 }
438 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
439 array_wr32(E1000_IVAR0, index, ivar);
440 }
441 if (tx_queue > IGB_N0_QUEUE) {
442 index = (tx_queue >> 1);
443 ivar = array_rd32(E1000_IVAR0, index);
444 if (tx_queue & 0x1) {
445 /* vector goes into high byte of register */
446 ivar = ivar & 0x00FFFFFF;
447 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
448 } else {
449 /* vector goes into second byte of register */
450 ivar = ivar & 0xFFFF00FF;
451 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
452 }
453 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
454 array_wr32(E1000_IVAR0, index, ivar);
455 }
456 break;
457 default:
458 BUG();
459 break;
460 }
461 }
462
463 /**
464 * igb_configure_msix - Configure MSI-X hardware
465 *
466 * igb_configure_msix sets up the hardware to properly
467 * generate MSI-X interrupts.
468 **/
469 static void igb_configure_msix(struct igb_adapter *adapter)
470 {
471 u32 tmp;
472 int i, vector = 0;
473 struct e1000_hw *hw = &adapter->hw;
474
475 adapter->eims_enable_mask = 0;
476 if (hw->mac.type == e1000_82576)
477 /* Turn on MSI-X capability first, or our settings
478 * won't stick. And it will take days to debug. */
479 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
480 E1000_GPIE_PBA | E1000_GPIE_EIAME |
481 E1000_GPIE_NSICR);
482
483 for (i = 0; i < adapter->num_tx_queues; i++) {
484 struct igb_ring *tx_ring = &adapter->tx_ring[i];
485 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
486 adapter->eims_enable_mask |= tx_ring->eims_value;
487 if (tx_ring->itr_val)
488 writel(tx_ring->itr_val,
489 hw->hw_addr + tx_ring->itr_register);
490 else
491 writel(1, hw->hw_addr + tx_ring->itr_register);
492 }
493
494 for (i = 0; i < adapter->num_rx_queues; i++) {
495 struct igb_ring *rx_ring = &adapter->rx_ring[i];
496 rx_ring->buddy = NULL;
497 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
498 adapter->eims_enable_mask |= rx_ring->eims_value;
499 if (rx_ring->itr_val)
500 writel(rx_ring->itr_val,
501 hw->hw_addr + rx_ring->itr_register);
502 else
503 writel(1, hw->hw_addr + rx_ring->itr_register);
504 }
505
506
507 /* set vector for other causes, i.e. link changes */
508 switch (hw->mac.type) {
509 case e1000_82575:
510 array_wr32(E1000_MSIXBM(0), vector++,
511 E1000_EIMS_OTHER);
512
513 tmp = rd32(E1000_CTRL_EXT);
514 /* enable MSI-X PBA support*/
515 tmp |= E1000_CTRL_EXT_PBA_CLR;
516
517 /* Auto-Mask interrupts upon ICR read. */
518 tmp |= E1000_CTRL_EXT_EIAME;
519 tmp |= E1000_CTRL_EXT_IRCA;
520
521 wr32(E1000_CTRL_EXT, tmp);
522 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
523 adapter->eims_other = E1000_EIMS_OTHER;
524
525 break;
526
527 case e1000_82576:
528 tmp = (vector++ | E1000_IVAR_VALID) << 8;
529 wr32(E1000_IVAR_MISC, tmp);
530
531 adapter->eims_enable_mask = (1 << (vector)) - 1;
532 adapter->eims_other = 1 << (vector - 1);
533 break;
534 default:
535 /* do nothing, since nothing else supports MSI-X */
536 break;
537 } /* switch (hw->mac.type) */
538 wrfl();
539 }
540
541 /**
542 * igb_request_msix - Initialize MSI-X interrupts
543 *
544 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
545 * kernel.
546 **/
547 static int igb_request_msix(struct igb_adapter *adapter)
548 {
549 struct net_device *netdev = adapter->netdev;
550 int i, err = 0, vector = 0;
551
552 vector = 0;
553
554 for (i = 0; i < adapter->num_tx_queues; i++) {
555 struct igb_ring *ring = &(adapter->tx_ring[i]);
556 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
557 err = request_irq(adapter->msix_entries[vector].vector,
558 &igb_msix_tx, 0, ring->name,
559 &(adapter->tx_ring[i]));
560 if (err)
561 goto out;
562 ring->itr_register = E1000_EITR(0) + (vector << 2);
563 ring->itr_val = 976; /* ~4000 ints/sec */
564 vector++;
565 }
566 for (i = 0; i < adapter->num_rx_queues; i++) {
567 struct igb_ring *ring = &(adapter->rx_ring[i]);
568 if (strlen(netdev->name) < (IFNAMSIZ - 5))
569 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
570 else
571 memcpy(ring->name, netdev->name, IFNAMSIZ);
572 err = request_irq(adapter->msix_entries[vector].vector,
573 &igb_msix_rx, 0, ring->name,
574 &(adapter->rx_ring[i]));
575 if (err)
576 goto out;
577 ring->itr_register = E1000_EITR(0) + (vector << 2);
578 ring->itr_val = adapter->itr;
579 /* overwrite the poll routine for MSIX, we've already done
580 * netif_napi_add */
581 ring->napi.poll = &igb_clean_rx_ring_msix;
582 vector++;
583 }
584
585 err = request_irq(adapter->msix_entries[vector].vector,
586 &igb_msix_other, 0, netdev->name, netdev);
587 if (err)
588 goto out;
589
590 igb_configure_msix(adapter);
591 return 0;
592 out:
593 return err;
594 }
595
596 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
597 {
598 if (adapter->msix_entries) {
599 pci_disable_msix(adapter->pdev);
600 kfree(adapter->msix_entries);
601 adapter->msix_entries = NULL;
602 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
603 pci_disable_msi(adapter->pdev);
604 return;
605 }
606
607
608 /**
609 * igb_set_interrupt_capability - set MSI or MSI-X if supported
610 *
611 * Attempt to configure interrupts using the best available
612 * capabilities of the hardware and kernel.
613 **/
614 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
615 {
616 int err;
617 int numvecs, i;
618
619 /* Number of supported queues. */
620 /* Having more queues than CPUs doesn't make sense. */
621 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
622 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
623
624 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
625 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
626 GFP_KERNEL);
627 if (!adapter->msix_entries)
628 goto msi_only;
629
630 for (i = 0; i < numvecs; i++)
631 adapter->msix_entries[i].entry = i;
632
633 err = pci_enable_msix(adapter->pdev,
634 adapter->msix_entries,
635 numvecs);
636 if (err == 0)
637 goto out;
638
639 igb_reset_interrupt_capability(adapter);
640
641 /* If we can't do MSI-X, try MSI */
642 msi_only:
643 adapter->num_rx_queues = 1;
644 adapter->num_tx_queues = 1;
645 if (!pci_enable_msi(adapter->pdev))
646 adapter->flags |= IGB_FLAG_HAS_MSI;
647 out:
648 /* Notify the stack of the (possibly) reduced Tx Queue count. */
649 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
650 return;
651 }
652
653 /**
654 * igb_request_irq - initialize interrupts
655 *
656 * Attempts to configure interrupts using the best available
657 * capabilities of the hardware and kernel.
658 **/
659 static int igb_request_irq(struct igb_adapter *adapter)
660 {
661 struct net_device *netdev = adapter->netdev;
662 struct e1000_hw *hw = &adapter->hw;
663 int err = 0;
664
665 if (adapter->msix_entries) {
666 err = igb_request_msix(adapter);
667 if (!err)
668 goto request_done;
669 /* fall back to MSI */
670 igb_reset_interrupt_capability(adapter);
671 if (!pci_enable_msi(adapter->pdev))
672 adapter->flags |= IGB_FLAG_HAS_MSI;
673 igb_free_all_tx_resources(adapter);
674 igb_free_all_rx_resources(adapter);
675 adapter->num_rx_queues = 1;
676 igb_alloc_queues(adapter);
677 } else {
678 switch (hw->mac.type) {
679 case e1000_82575:
680 wr32(E1000_MSIXBM(0),
681 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
682 break;
683 case e1000_82576:
684 wr32(E1000_IVAR0, E1000_IVAR_VALID);
685 break;
686 default:
687 break;
688 }
689 }
690
691 if (adapter->flags & IGB_FLAG_HAS_MSI) {
692 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
693 netdev->name, netdev);
694 if (!err)
695 goto request_done;
696 /* fall back to legacy interrupts */
697 igb_reset_interrupt_capability(adapter);
698 adapter->flags &= ~IGB_FLAG_HAS_MSI;
699 }
700
701 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
702 netdev->name, netdev);
703
704 if (err)
705 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
706 err);
707
708 request_done:
709 return err;
710 }
711
712 static void igb_free_irq(struct igb_adapter *adapter)
713 {
714 struct net_device *netdev = adapter->netdev;
715
716 if (adapter->msix_entries) {
717 int vector = 0, i;
718
719 for (i = 0; i < adapter->num_tx_queues; i++)
720 free_irq(adapter->msix_entries[vector++].vector,
721 &(adapter->tx_ring[i]));
722 for (i = 0; i < adapter->num_rx_queues; i++)
723 free_irq(adapter->msix_entries[vector++].vector,
724 &(adapter->rx_ring[i]));
725
726 free_irq(adapter->msix_entries[vector++].vector, netdev);
727 return;
728 }
729
730 free_irq(adapter->pdev->irq, netdev);
731 }
732
733 /**
734 * igb_irq_disable - Mask off interrupt generation on the NIC
735 * @adapter: board private structure
736 **/
737 static void igb_irq_disable(struct igb_adapter *adapter)
738 {
739 struct e1000_hw *hw = &adapter->hw;
740
741 if (adapter->msix_entries) {
742 wr32(E1000_EIAM, 0);
743 wr32(E1000_EIMC, ~0);
744 wr32(E1000_EIAC, 0);
745 }
746
747 wr32(E1000_IAM, 0);
748 wr32(E1000_IMC, ~0);
749 wrfl();
750 synchronize_irq(adapter->pdev->irq);
751 }
752
753 /**
754 * igb_irq_enable - Enable default interrupt generation settings
755 * @adapter: board private structure
756 **/
757 static void igb_irq_enable(struct igb_adapter *adapter)
758 {
759 struct e1000_hw *hw = &adapter->hw;
760
761 if (adapter->msix_entries) {
762 wr32(E1000_EIAC, adapter->eims_enable_mask);
763 wr32(E1000_EIAM, adapter->eims_enable_mask);
764 wr32(E1000_EIMS, adapter->eims_enable_mask);
765 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
766 } else {
767 wr32(E1000_IMS, IMS_ENABLE_MASK);
768 wr32(E1000_IAM, IMS_ENABLE_MASK);
769 }
770 }
771
772 static void igb_update_mng_vlan(struct igb_adapter *adapter)
773 {
774 struct net_device *netdev = adapter->netdev;
775 u16 vid = adapter->hw.mng_cookie.vlan_id;
776 u16 old_vid = adapter->mng_vlan_id;
777 if (adapter->vlgrp) {
778 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
779 if (adapter->hw.mng_cookie.status &
780 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
781 igb_vlan_rx_add_vid(netdev, vid);
782 adapter->mng_vlan_id = vid;
783 } else
784 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
785
786 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
787 (vid != old_vid) &&
788 !vlan_group_get_device(adapter->vlgrp, old_vid))
789 igb_vlan_rx_kill_vid(netdev, old_vid);
790 } else
791 adapter->mng_vlan_id = vid;
792 }
793 }
794
795 /**
796 * igb_release_hw_control - release control of the h/w to f/w
797 * @adapter: address of board private structure
798 *
799 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
800 * For ASF and Pass Through versions of f/w this means that the
801 * driver is no longer loaded.
802 *
803 **/
804 static void igb_release_hw_control(struct igb_adapter *adapter)
805 {
806 struct e1000_hw *hw = &adapter->hw;
807 u32 ctrl_ext;
808
809 /* Let firmware take over control of h/w */
810 ctrl_ext = rd32(E1000_CTRL_EXT);
811 wr32(E1000_CTRL_EXT,
812 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
813 }
814
815
816 /**
817 * igb_get_hw_control - get control of the h/w from f/w
818 * @adapter: address of board private structure
819 *
820 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
821 * For ASF and Pass Through versions of f/w this means that
822 * the driver is loaded.
823 *
824 **/
825 static void igb_get_hw_control(struct igb_adapter *adapter)
826 {
827 struct e1000_hw *hw = &adapter->hw;
828 u32 ctrl_ext;
829
830 /* Let firmware know the driver has taken over */
831 ctrl_ext = rd32(E1000_CTRL_EXT);
832 wr32(E1000_CTRL_EXT,
833 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
834 }
835
836 /**
837 * igb_configure - configure the hardware for RX and TX
838 * @adapter: private board structure
839 **/
840 static void igb_configure(struct igb_adapter *adapter)
841 {
842 struct net_device *netdev = adapter->netdev;
843 int i;
844
845 igb_get_hw_control(adapter);
846 igb_set_multi(netdev);
847
848 igb_restore_vlan(adapter);
849
850 igb_configure_tx(adapter);
851 igb_setup_rctl(adapter);
852 igb_configure_rx(adapter);
853
854 igb_rx_fifo_flush_82575(&adapter->hw);
855
856 /* call IGB_DESC_UNUSED which always leaves
857 * at least 1 descriptor unused to make sure
858 * next_to_use != next_to_clean */
859 for (i = 0; i < adapter->num_rx_queues; i++) {
860 struct igb_ring *ring = &adapter->rx_ring[i];
861 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
862 }
863
864
865 adapter->tx_queue_len = netdev->tx_queue_len;
866 }
867
868
869 /**
870 * igb_up - Open the interface and prepare it to handle traffic
871 * @adapter: board private structure
872 **/
873
874 int igb_up(struct igb_adapter *adapter)
875 {
876 struct e1000_hw *hw = &adapter->hw;
877 int i;
878
879 /* hardware has been reset, we need to reload some things */
880 igb_configure(adapter);
881
882 clear_bit(__IGB_DOWN, &adapter->state);
883
884 for (i = 0; i < adapter->num_rx_queues; i++)
885 napi_enable(&adapter->rx_ring[i].napi);
886 if (adapter->msix_entries)
887 igb_configure_msix(adapter);
888
889 /* Clear any pending interrupts. */
890 rd32(E1000_ICR);
891 igb_irq_enable(adapter);
892
893 /* Fire a link change interrupt to start the watchdog. */
894 wr32(E1000_ICS, E1000_ICS_LSC);
895 return 0;
896 }
897
898 void igb_down(struct igb_adapter *adapter)
899 {
900 struct e1000_hw *hw = &adapter->hw;
901 struct net_device *netdev = adapter->netdev;
902 u32 tctl, rctl;
903 int i;
904
905 /* signal that we're down so the interrupt handler does not
906 * reschedule our watchdog timer */
907 set_bit(__IGB_DOWN, &adapter->state);
908
909 /* disable receives in the hardware */
910 rctl = rd32(E1000_RCTL);
911 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
912 /* flush and sleep below */
913
914 netif_tx_stop_all_queues(netdev);
915
916 /* disable transmits in the hardware */
917 tctl = rd32(E1000_TCTL);
918 tctl &= ~E1000_TCTL_EN;
919 wr32(E1000_TCTL, tctl);
920 /* flush both disables and wait for them to finish */
921 wrfl();
922 msleep(10);
923
924 for (i = 0; i < adapter->num_rx_queues; i++)
925 napi_disable(&adapter->rx_ring[i].napi);
926
927 igb_irq_disable(adapter);
928
929 del_timer_sync(&adapter->watchdog_timer);
930 del_timer_sync(&adapter->phy_info_timer);
931
932 netdev->tx_queue_len = adapter->tx_queue_len;
933 netif_carrier_off(netdev);
934
935 /* record the stats before reset*/
936 igb_update_stats(adapter);
937
938 adapter->link_speed = 0;
939 adapter->link_duplex = 0;
940
941 if (!pci_channel_offline(adapter->pdev))
942 igb_reset(adapter);
943 igb_clean_all_tx_rings(adapter);
944 igb_clean_all_rx_rings(adapter);
945 }
946
947 void igb_reinit_locked(struct igb_adapter *adapter)
948 {
949 WARN_ON(in_interrupt());
950 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
951 msleep(1);
952 igb_down(adapter);
953 igb_up(adapter);
954 clear_bit(__IGB_RESETTING, &adapter->state);
955 }
956
957 void igb_reset(struct igb_adapter *adapter)
958 {
959 struct e1000_hw *hw = &adapter->hw;
960 struct e1000_mac_info *mac = &hw->mac;
961 struct e1000_fc_info *fc = &hw->fc;
962 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
963 u16 hwm;
964
965 /* Repartition Pba for greater than 9k mtu
966 * To take effect CTRL.RST is required.
967 */
968 switch (mac->type) {
969 case e1000_82576:
970 pba = E1000_PBA_64K;
971 break;
972 case e1000_82575:
973 default:
974 pba = E1000_PBA_34K;
975 break;
976 }
977
978 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
979 (mac->type < e1000_82576)) {
980 /* adjust PBA for jumbo frames */
981 wr32(E1000_PBA, pba);
982
983 /* To maintain wire speed transmits, the Tx FIFO should be
984 * large enough to accommodate two full transmit packets,
985 * rounded up to the next 1KB and expressed in KB. Likewise,
986 * the Rx FIFO should be large enough to accommodate at least
987 * one full receive packet and is similarly rounded up and
988 * expressed in KB. */
989 pba = rd32(E1000_PBA);
990 /* upper 16 bits has Tx packet buffer allocation size in KB */
991 tx_space = pba >> 16;
992 /* lower 16 bits has Rx packet buffer allocation size in KB */
993 pba &= 0xffff;
994 /* the tx fifo also stores 16 bytes of information about the tx
995 * but don't include ethernet FCS because hardware appends it */
996 min_tx_space = (adapter->max_frame_size +
997 sizeof(struct e1000_tx_desc) -
998 ETH_FCS_LEN) * 2;
999 min_tx_space = ALIGN(min_tx_space, 1024);
1000 min_tx_space >>= 10;
1001 /* software strips receive CRC, so leave room for it */
1002 min_rx_space = adapter->max_frame_size;
1003 min_rx_space = ALIGN(min_rx_space, 1024);
1004 min_rx_space >>= 10;
1005
1006 /* If current Tx allocation is less than the min Tx FIFO size,
1007 * and the min Tx FIFO size is less than the current Rx FIFO
1008 * allocation, take space away from current Rx allocation */
1009 if (tx_space < min_tx_space &&
1010 ((min_tx_space - tx_space) < pba)) {
1011 pba = pba - (min_tx_space - tx_space);
1012
1013 /* if short on rx space, rx wins and must trump tx
1014 * adjustment */
1015 if (pba < min_rx_space)
1016 pba = min_rx_space;
1017 }
1018 wr32(E1000_PBA, pba);
1019 }
1020
1021 /* flow control settings */
1022 /* The high water mark must be low enough to fit one full frame
1023 * (or the size used for early receive) above it in the Rx FIFO.
1024 * Set it to the lower of:
1025 * - 90% of the Rx FIFO size, or
1026 * - the full Rx FIFO size minus one full frame */
1027 hwm = min(((pba << 10) * 9 / 10),
1028 ((pba << 10) - 2 * adapter->max_frame_size));
1029
1030 if (mac->type < e1000_82576) {
1031 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1032 fc->low_water = fc->high_water - 8;
1033 } else {
1034 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1035 fc->low_water = fc->high_water - 16;
1036 }
1037 fc->pause_time = 0xFFFF;
1038 fc->send_xon = 1;
1039 fc->type = fc->original_type;
1040
1041 /* Allow time for pending master requests to run */
1042 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1043 wr32(E1000_WUC, 0);
1044
1045 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1046 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1047
1048 igb_update_mng_vlan(adapter);
1049
1050 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1051 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1052
1053 igb_reset_adaptive(&adapter->hw);
1054 igb_get_phy_info(&adapter->hw);
1055 }
1056
1057 static const struct net_device_ops igb_netdev_ops = {
1058 .ndo_open = igb_open,
1059 .ndo_stop = igb_close,
1060 .ndo_start_xmit = igb_xmit_frame_adv,
1061 .ndo_get_stats = igb_get_stats,
1062 .ndo_set_multicast_list = igb_set_multi,
1063 .ndo_set_mac_address = igb_set_mac,
1064 .ndo_change_mtu = igb_change_mtu,
1065 .ndo_do_ioctl = igb_ioctl,
1066 .ndo_tx_timeout = igb_tx_timeout,
1067 .ndo_validate_addr = eth_validate_addr,
1068 .ndo_vlan_rx_register = igb_vlan_rx_register,
1069 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1070 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1071 #ifdef CONFIG_NET_POLL_CONTROLLER
1072 .ndo_poll_controller = igb_netpoll,
1073 #endif
1074 };
1075
1076 /**
1077 * igb_probe - Device Initialization Routine
1078 * @pdev: PCI device information struct
1079 * @ent: entry in igb_pci_tbl
1080 *
1081 * Returns 0 on success, negative on failure
1082 *
1083 * igb_probe initializes an adapter identified by a pci_dev structure.
1084 * The OS initialization, configuring of the adapter private structure,
1085 * and a hardware reset occur.
1086 **/
1087 static int __devinit igb_probe(struct pci_dev *pdev,
1088 const struct pci_device_id *ent)
1089 {
1090 struct net_device *netdev;
1091 struct igb_adapter *adapter;
1092 struct e1000_hw *hw;
1093 struct pci_dev *us_dev;
1094 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1095 unsigned long mmio_start, mmio_len;
1096 int err, pci_using_dac, pos;
1097 u16 eeprom_data = 0, state = 0;
1098 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1099 u32 part_num;
1100
1101 err = pci_enable_device_mem(pdev);
1102 if (err)
1103 return err;
1104
1105 pci_using_dac = 0;
1106 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1107 if (!err) {
1108 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1109 if (!err)
1110 pci_using_dac = 1;
1111 } else {
1112 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1113 if (err) {
1114 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1115 if (err) {
1116 dev_err(&pdev->dev, "No usable DMA "
1117 "configuration, aborting\n");
1118 goto err_dma;
1119 }
1120 }
1121 }
1122
1123 /* 82575 requires that the pci-e link partner disable the L0s state */
1124 switch (pdev->device) {
1125 case E1000_DEV_ID_82575EB_COPPER:
1126 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1127 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1128 us_dev = pdev->bus->self;
1129 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1130 if (pos) {
1131 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1132 &state);
1133 state &= ~PCIE_LINK_STATE_L0S;
1134 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1135 state);
1136 dev_info(&pdev->dev,
1137 "Disabling ASPM L0s upstream switch port %s\n",
1138 pci_name(us_dev));
1139 }
1140 default:
1141 break;
1142 }
1143
1144 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1145 IORESOURCE_MEM),
1146 igb_driver_name);
1147 if (err)
1148 goto err_pci_reg;
1149
1150 err = pci_enable_pcie_error_reporting(pdev);
1151 if (err) {
1152 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1153 "0x%x\n", err);
1154 /* non-fatal, continue */
1155 }
1156
1157 pci_set_master(pdev);
1158 pci_save_state(pdev);
1159
1160 err = -ENOMEM;
1161 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1162 if (!netdev)
1163 goto err_alloc_etherdev;
1164
1165 SET_NETDEV_DEV(netdev, &pdev->dev);
1166
1167 pci_set_drvdata(pdev, netdev);
1168 adapter = netdev_priv(netdev);
1169 adapter->netdev = netdev;
1170 adapter->pdev = pdev;
1171 hw = &adapter->hw;
1172 hw->back = adapter;
1173 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1174
1175 mmio_start = pci_resource_start(pdev, 0);
1176 mmio_len = pci_resource_len(pdev, 0);
1177
1178 err = -EIO;
1179 hw->hw_addr = ioremap(mmio_start, mmio_len);
1180 if (!hw->hw_addr)
1181 goto err_ioremap;
1182
1183 netdev->netdev_ops = &igb_netdev_ops;
1184 igb_set_ethtool_ops(netdev);
1185 netdev->watchdog_timeo = 5 * HZ;
1186
1187 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1188
1189 netdev->mem_start = mmio_start;
1190 netdev->mem_end = mmio_start + mmio_len;
1191
1192 /* PCI config space info */
1193 hw->vendor_id = pdev->vendor;
1194 hw->device_id = pdev->device;
1195 hw->revision_id = pdev->revision;
1196 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1197 hw->subsystem_device_id = pdev->subsystem_device;
1198
1199 /* setup the private structure */
1200 hw->back = adapter;
1201 /* Copy the default MAC, PHY and NVM function pointers */
1202 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1203 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1204 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1205 /* Initialize skew-specific constants */
1206 err = ei->get_invariants(hw);
1207 if (err)
1208 goto err_sw_init;
1209
1210 /* setup the private structure */
1211 err = igb_sw_init(adapter);
1212 if (err)
1213 goto err_sw_init;
1214
1215 igb_get_bus_info_pcie(hw);
1216
1217 /* set flags */
1218 switch (hw->mac.type) {
1219 case e1000_82575:
1220 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1221 break;
1222 case e1000_82576:
1223 default:
1224 break;
1225 }
1226
1227 hw->phy.autoneg_wait_to_complete = false;
1228 hw->mac.adaptive_ifs = true;
1229
1230 /* Copper options */
1231 if (hw->phy.media_type == e1000_media_type_copper) {
1232 hw->phy.mdix = AUTO_ALL_MODES;
1233 hw->phy.disable_polarity_correction = false;
1234 hw->phy.ms_type = e1000_ms_hw_default;
1235 }
1236
1237 if (igb_check_reset_block(hw))
1238 dev_info(&pdev->dev,
1239 "PHY reset is blocked due to SOL/IDER session.\n");
1240
1241 netdev->features = NETIF_F_SG |
1242 NETIF_F_IP_CSUM |
1243 NETIF_F_HW_VLAN_TX |
1244 NETIF_F_HW_VLAN_RX |
1245 NETIF_F_HW_VLAN_FILTER;
1246
1247 netdev->features |= NETIF_F_IPV6_CSUM;
1248 netdev->features |= NETIF_F_TSO;
1249 netdev->features |= NETIF_F_TSO6;
1250
1251 #ifdef CONFIG_IGB_LRO
1252 netdev->features |= NETIF_F_GRO;
1253 #endif
1254
1255 netdev->vlan_features |= NETIF_F_TSO;
1256 netdev->vlan_features |= NETIF_F_TSO6;
1257 netdev->vlan_features |= NETIF_F_IP_CSUM;
1258 netdev->vlan_features |= NETIF_F_SG;
1259
1260 if (pci_using_dac)
1261 netdev->features |= NETIF_F_HIGHDMA;
1262
1263 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1264
1265 /* before reading the NVM, reset the controller to put the device in a
1266 * known good starting state */
1267 hw->mac.ops.reset_hw(hw);
1268
1269 /* make sure the NVM is good */
1270 if (igb_validate_nvm_checksum(hw) < 0) {
1271 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1272 err = -EIO;
1273 goto err_eeprom;
1274 }
1275
1276 /* copy the MAC address out of the NVM */
1277 if (hw->mac.ops.read_mac_addr(hw))
1278 dev_err(&pdev->dev, "NVM Read Error\n");
1279
1280 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1281 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1282
1283 if (!is_valid_ether_addr(netdev->perm_addr)) {
1284 dev_err(&pdev->dev, "Invalid MAC Address\n");
1285 err = -EIO;
1286 goto err_eeprom;
1287 }
1288
1289 init_timer(&adapter->watchdog_timer);
1290 adapter->watchdog_timer.function = &igb_watchdog;
1291 adapter->watchdog_timer.data = (unsigned long) adapter;
1292
1293 init_timer(&adapter->phy_info_timer);
1294 adapter->phy_info_timer.function = &igb_update_phy_info;
1295 adapter->phy_info_timer.data = (unsigned long) adapter;
1296
1297 INIT_WORK(&adapter->reset_task, igb_reset_task);
1298 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1299
1300 /* Initialize link properties that are user-changeable */
1301 adapter->fc_autoneg = true;
1302 hw->mac.autoneg = true;
1303 hw->phy.autoneg_advertised = 0x2f;
1304
1305 hw->fc.original_type = e1000_fc_default;
1306 hw->fc.type = e1000_fc_default;
1307
1308 adapter->itr_setting = 3;
1309 adapter->itr = IGB_START_ITR;
1310
1311 igb_validate_mdi_setting(hw);
1312
1313 adapter->rx_csum = 1;
1314
1315 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1316 * enable the ACPI Magic Packet filter
1317 */
1318
1319 if (hw->bus.func == 0 ||
1320 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1321 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1322
1323 if (eeprom_data & eeprom_apme_mask)
1324 adapter->eeprom_wol |= E1000_WUFC_MAG;
1325
1326 /* now that we have the eeprom settings, apply the special cases where
1327 * the eeprom may be wrong or the board simply won't support wake on
1328 * lan on a particular port */
1329 switch (pdev->device) {
1330 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1331 adapter->eeprom_wol = 0;
1332 break;
1333 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1334 case E1000_DEV_ID_82576_FIBER:
1335 case E1000_DEV_ID_82576_SERDES:
1336 /* Wake events only supported on port A for dual fiber
1337 * regardless of eeprom setting */
1338 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1339 adapter->eeprom_wol = 0;
1340 break;
1341 }
1342
1343 /* initialize the wol settings based on the eeprom settings */
1344 adapter->wol = adapter->eeprom_wol;
1345 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1346
1347 /* reset the hardware with the new settings */
1348 igb_reset(adapter);
1349
1350 /* let the f/w know that the h/w is now under the control of the
1351 * driver. */
1352 igb_get_hw_control(adapter);
1353
1354 /* tell the stack to leave us alone until igb_open() is called */
1355 netif_carrier_off(netdev);
1356 netif_tx_stop_all_queues(netdev);
1357
1358 strcpy(netdev->name, "eth%d");
1359 err = register_netdev(netdev);
1360 if (err)
1361 goto err_register;
1362
1363 #ifdef CONFIG_IGB_DCA
1364 if (dca_add_requester(&pdev->dev) == 0) {
1365 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1366 dev_info(&pdev->dev, "DCA enabled\n");
1367 /* Always use CB2 mode, difference is masked
1368 * in the CB driver. */
1369 wr32(E1000_DCA_CTRL, 2);
1370 igb_setup_dca(adapter);
1371 }
1372 #endif
1373
1374 /*
1375 * Initialize hardware timer: we keep it running just in case
1376 * that some program needs it later on.
1377 */
1378 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1379 adapter->cycles.read = igb_read_clock;
1380 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1381 adapter->cycles.mult = 1;
1382 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1383 wr32(E1000_TIMINCA,
1384 (1<<24) |
1385 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1386 #if 0
1387 /*
1388 * Avoid rollover while we initialize by resetting the time counter.
1389 */
1390 wr32(E1000_SYSTIML, 0x00000000);
1391 wr32(E1000_SYSTIMH, 0x00000000);
1392 #else
1393 /*
1394 * Set registers so that rollover occurs soon to test this.
1395 */
1396 wr32(E1000_SYSTIML, 0x00000000);
1397 wr32(E1000_SYSTIMH, 0xFF800000);
1398 #endif
1399 wrfl();
1400 timecounter_init(&adapter->clock,
1401 &adapter->cycles,
1402 ktime_to_ns(ktime_get_real()));
1403
1404 /*
1405 * Synchronize our NIC clock against system wall clock. NIC
1406 * time stamp reading requires ~3us per sample, each sample
1407 * was pretty stable even under load => only require 10
1408 * samples for each offset comparison.
1409 */
1410 memset(&adapter->compare, 0, sizeof(adapter->compare));
1411 adapter->compare.source = &adapter->clock;
1412 adapter->compare.target = ktime_get_real;
1413 adapter->compare.num_samples = 10;
1414 timecompare_update(&adapter->compare, 0);
1415
1416 #ifdef DEBUG
1417 {
1418 char buffer[160];
1419 printk(KERN_DEBUG
1420 "igb: %s: hw %p initialized timer\n",
1421 igb_get_time_str(adapter, buffer),
1422 &adapter->hw);
1423 }
1424 #endif
1425
1426 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1427 /* print bus type/speed/width info */
1428 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1429 netdev->name,
1430 ((hw->bus.speed == e1000_bus_speed_2500)
1431 ? "2.5Gb/s" : "unknown"),
1432 ((hw->bus.width == e1000_bus_width_pcie_x4)
1433 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1434 ? "Width x1" : "unknown"),
1435 netdev->dev_addr);
1436
1437 igb_read_part_num(hw, &part_num);
1438 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1439 (part_num >> 8), (part_num & 0xff));
1440
1441 dev_info(&pdev->dev,
1442 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1443 adapter->msix_entries ? "MSI-X" :
1444 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1445 adapter->num_rx_queues, adapter->num_tx_queues);
1446
1447 return 0;
1448
1449 err_register:
1450 igb_release_hw_control(adapter);
1451 err_eeprom:
1452 if (!igb_check_reset_block(hw))
1453 igb_reset_phy(hw);
1454
1455 if (hw->flash_address)
1456 iounmap(hw->flash_address);
1457
1458 igb_free_queues(adapter);
1459 err_sw_init:
1460 iounmap(hw->hw_addr);
1461 err_ioremap:
1462 free_netdev(netdev);
1463 err_alloc_etherdev:
1464 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1465 IORESOURCE_MEM));
1466 err_pci_reg:
1467 err_dma:
1468 pci_disable_device(pdev);
1469 return err;
1470 }
1471
1472 /**
1473 * igb_remove - Device Removal Routine
1474 * @pdev: PCI device information struct
1475 *
1476 * igb_remove is called by the PCI subsystem to alert the driver
1477 * that it should release a PCI device. The could be caused by a
1478 * Hot-Plug event, or because the driver is going to be removed from
1479 * memory.
1480 **/
1481 static void __devexit igb_remove(struct pci_dev *pdev)
1482 {
1483 struct net_device *netdev = pci_get_drvdata(pdev);
1484 struct igb_adapter *adapter = netdev_priv(netdev);
1485 struct e1000_hw *hw = &adapter->hw;
1486 int err;
1487
1488 /* flush_scheduled work may reschedule our watchdog task, so
1489 * explicitly disable watchdog tasks from being rescheduled */
1490 set_bit(__IGB_DOWN, &adapter->state);
1491 del_timer_sync(&adapter->watchdog_timer);
1492 del_timer_sync(&adapter->phy_info_timer);
1493
1494 flush_scheduled_work();
1495
1496 #ifdef CONFIG_IGB_DCA
1497 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1498 dev_info(&pdev->dev, "DCA disabled\n");
1499 dca_remove_requester(&pdev->dev);
1500 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1501 wr32(E1000_DCA_CTRL, 1);
1502 }
1503 #endif
1504
1505 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1506 * would have already happened in close and is redundant. */
1507 igb_release_hw_control(adapter);
1508
1509 unregister_netdev(netdev);
1510
1511 if (!igb_check_reset_block(&adapter->hw))
1512 igb_reset_phy(&adapter->hw);
1513
1514 igb_reset_interrupt_capability(adapter);
1515
1516 igb_free_queues(adapter);
1517
1518 iounmap(hw->hw_addr);
1519 if (hw->flash_address)
1520 iounmap(hw->flash_address);
1521 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1522 IORESOURCE_MEM));
1523
1524 free_netdev(netdev);
1525
1526 err = pci_disable_pcie_error_reporting(pdev);
1527 if (err)
1528 dev_err(&pdev->dev,
1529 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1530
1531 pci_disable_device(pdev);
1532 }
1533
1534 /**
1535 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1536 * @adapter: board private structure to initialize
1537 *
1538 * igb_sw_init initializes the Adapter private data structure.
1539 * Fields are initialized based on PCI device information and
1540 * OS network device settings (MTU size).
1541 **/
1542 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1543 {
1544 struct e1000_hw *hw = &adapter->hw;
1545 struct net_device *netdev = adapter->netdev;
1546 struct pci_dev *pdev = adapter->pdev;
1547
1548 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1549
1550 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1551 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1552 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1553 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1554 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1555 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1556
1557 /* This call may decrease the number of queues depending on
1558 * interrupt mode. */
1559 igb_set_interrupt_capability(adapter);
1560
1561 if (igb_alloc_queues(adapter)) {
1562 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1563 return -ENOMEM;
1564 }
1565
1566 /* Explicitly disable IRQ since the NIC can be in any state. */
1567 igb_irq_disable(adapter);
1568
1569 set_bit(__IGB_DOWN, &adapter->state);
1570 return 0;
1571 }
1572
1573 /**
1574 * igb_open - Called when a network interface is made active
1575 * @netdev: network interface device structure
1576 *
1577 * Returns 0 on success, negative value on failure
1578 *
1579 * The open entry point is called when a network interface is made
1580 * active by the system (IFF_UP). At this point all resources needed
1581 * for transmit and receive operations are allocated, the interrupt
1582 * handler is registered with the OS, the watchdog timer is started,
1583 * and the stack is notified that the interface is ready.
1584 **/
1585 static int igb_open(struct net_device *netdev)
1586 {
1587 struct igb_adapter *adapter = netdev_priv(netdev);
1588 struct e1000_hw *hw = &adapter->hw;
1589 int err;
1590 int i;
1591
1592 /* disallow open during test */
1593 if (test_bit(__IGB_TESTING, &adapter->state))
1594 return -EBUSY;
1595
1596 /* allocate transmit descriptors */
1597 err = igb_setup_all_tx_resources(adapter);
1598 if (err)
1599 goto err_setup_tx;
1600
1601 /* allocate receive descriptors */
1602 err = igb_setup_all_rx_resources(adapter);
1603 if (err)
1604 goto err_setup_rx;
1605
1606 /* e1000_power_up_phy(adapter); */
1607
1608 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1609 if ((adapter->hw.mng_cookie.status &
1610 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1611 igb_update_mng_vlan(adapter);
1612
1613 /* before we allocate an interrupt, we must be ready to handle it.
1614 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1615 * as soon as we call pci_request_irq, so we have to setup our
1616 * clean_rx handler before we do so. */
1617 igb_configure(adapter);
1618
1619 err = igb_request_irq(adapter);
1620 if (err)
1621 goto err_req_irq;
1622
1623 /* From here on the code is the same as igb_up() */
1624 clear_bit(__IGB_DOWN, &adapter->state);
1625
1626 for (i = 0; i < adapter->num_rx_queues; i++)
1627 napi_enable(&adapter->rx_ring[i].napi);
1628
1629 /* Clear any pending interrupts. */
1630 rd32(E1000_ICR);
1631
1632 igb_irq_enable(adapter);
1633
1634 netif_tx_start_all_queues(netdev);
1635
1636 /* Fire a link status change interrupt to start the watchdog. */
1637 wr32(E1000_ICS, E1000_ICS_LSC);
1638
1639 return 0;
1640
1641 err_req_irq:
1642 igb_release_hw_control(adapter);
1643 /* e1000_power_down_phy(adapter); */
1644 igb_free_all_rx_resources(adapter);
1645 err_setup_rx:
1646 igb_free_all_tx_resources(adapter);
1647 err_setup_tx:
1648 igb_reset(adapter);
1649
1650 return err;
1651 }
1652
1653 /**
1654 * igb_close - Disables a network interface
1655 * @netdev: network interface device structure
1656 *
1657 * Returns 0, this is not allowed to fail
1658 *
1659 * The close entry point is called when an interface is de-activated
1660 * by the OS. The hardware is still under the driver's control, but
1661 * needs to be disabled. A global MAC reset is issued to stop the
1662 * hardware, and all transmit and receive resources are freed.
1663 **/
1664 static int igb_close(struct net_device *netdev)
1665 {
1666 struct igb_adapter *adapter = netdev_priv(netdev);
1667
1668 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1669 igb_down(adapter);
1670
1671 igb_free_irq(adapter);
1672
1673 igb_free_all_tx_resources(adapter);
1674 igb_free_all_rx_resources(adapter);
1675
1676 /* kill manageability vlan ID if supported, but not if a vlan with
1677 * the same ID is registered on the host OS (let 8021q kill it) */
1678 if ((adapter->hw.mng_cookie.status &
1679 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1680 !(adapter->vlgrp &&
1681 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1682 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1683
1684 return 0;
1685 }
1686
1687 /**
1688 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1689 * @adapter: board private structure
1690 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1691 *
1692 * Return 0 on success, negative on failure
1693 **/
1694
1695 int igb_setup_tx_resources(struct igb_adapter *adapter,
1696 struct igb_ring *tx_ring)
1697 {
1698 struct pci_dev *pdev = adapter->pdev;
1699 int size;
1700
1701 size = sizeof(struct igb_buffer) * tx_ring->count;
1702 tx_ring->buffer_info = vmalloc(size);
1703 if (!tx_ring->buffer_info)
1704 goto err;
1705 memset(tx_ring->buffer_info, 0, size);
1706
1707 /* round up to nearest 4K */
1708 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1709 tx_ring->size = ALIGN(tx_ring->size, 4096);
1710
1711 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1712 &tx_ring->dma);
1713
1714 if (!tx_ring->desc)
1715 goto err;
1716
1717 tx_ring->adapter = adapter;
1718 tx_ring->next_to_use = 0;
1719 tx_ring->next_to_clean = 0;
1720 return 0;
1721
1722 err:
1723 vfree(tx_ring->buffer_info);
1724 dev_err(&adapter->pdev->dev,
1725 "Unable to allocate memory for the transmit descriptor ring\n");
1726 return -ENOMEM;
1727 }
1728
1729 /**
1730 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1731 * (Descriptors) for all queues
1732 * @adapter: board private structure
1733 *
1734 * Return 0 on success, negative on failure
1735 **/
1736 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1737 {
1738 int i, err = 0;
1739 int r_idx;
1740
1741 for (i = 0; i < adapter->num_tx_queues; i++) {
1742 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1743 if (err) {
1744 dev_err(&adapter->pdev->dev,
1745 "Allocation for Tx Queue %u failed\n", i);
1746 for (i--; i >= 0; i--)
1747 igb_free_tx_resources(&adapter->tx_ring[i]);
1748 break;
1749 }
1750 }
1751
1752 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1753 r_idx = i % adapter->num_tx_queues;
1754 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1755 }
1756 return err;
1757 }
1758
1759 /**
1760 * igb_configure_tx - Configure transmit Unit after Reset
1761 * @adapter: board private structure
1762 *
1763 * Configure the Tx unit of the MAC after a reset.
1764 **/
1765 static void igb_configure_tx(struct igb_adapter *adapter)
1766 {
1767 u64 tdba;
1768 struct e1000_hw *hw = &adapter->hw;
1769 u32 tctl;
1770 u32 txdctl, txctrl;
1771 int i, j;
1772
1773 for (i = 0; i < adapter->num_tx_queues; i++) {
1774 struct igb_ring *ring = &(adapter->tx_ring[i]);
1775 j = ring->reg_idx;
1776 wr32(E1000_TDLEN(j),
1777 ring->count * sizeof(struct e1000_tx_desc));
1778 tdba = ring->dma;
1779 wr32(E1000_TDBAL(j),
1780 tdba & 0x00000000ffffffffULL);
1781 wr32(E1000_TDBAH(j), tdba >> 32);
1782
1783 ring->head = E1000_TDH(j);
1784 ring->tail = E1000_TDT(j);
1785 writel(0, hw->hw_addr + ring->tail);
1786 writel(0, hw->hw_addr + ring->head);
1787 txdctl = rd32(E1000_TXDCTL(j));
1788 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1789 wr32(E1000_TXDCTL(j), txdctl);
1790
1791 /* Turn off Relaxed Ordering on head write-backs. The
1792 * writebacks MUST be delivered in order or it will
1793 * completely screw up our bookeeping.
1794 */
1795 txctrl = rd32(E1000_DCA_TXCTRL(j));
1796 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1797 wr32(E1000_DCA_TXCTRL(j), txctrl);
1798 }
1799
1800
1801
1802 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1803
1804 /* Program the Transmit Control Register */
1805
1806 tctl = rd32(E1000_TCTL);
1807 tctl &= ~E1000_TCTL_CT;
1808 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1809 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1810
1811 igb_config_collision_dist(hw);
1812
1813 /* Setup Transmit Descriptor Settings for eop descriptor */
1814 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1815
1816 /* Enable transmits */
1817 tctl |= E1000_TCTL_EN;
1818
1819 wr32(E1000_TCTL, tctl);
1820 }
1821
1822 /**
1823 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1824 * @adapter: board private structure
1825 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1826 *
1827 * Returns 0 on success, negative on failure
1828 **/
1829
1830 int igb_setup_rx_resources(struct igb_adapter *adapter,
1831 struct igb_ring *rx_ring)
1832 {
1833 struct pci_dev *pdev = adapter->pdev;
1834 int size, desc_len;
1835
1836 size = sizeof(struct igb_buffer) * rx_ring->count;
1837 rx_ring->buffer_info = vmalloc(size);
1838 if (!rx_ring->buffer_info)
1839 goto err;
1840 memset(rx_ring->buffer_info, 0, size);
1841
1842 desc_len = sizeof(union e1000_adv_rx_desc);
1843
1844 /* Round up to nearest 4K */
1845 rx_ring->size = rx_ring->count * desc_len;
1846 rx_ring->size = ALIGN(rx_ring->size, 4096);
1847
1848 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1849 &rx_ring->dma);
1850
1851 if (!rx_ring->desc)
1852 goto err;
1853
1854 rx_ring->next_to_clean = 0;
1855 rx_ring->next_to_use = 0;
1856
1857 rx_ring->adapter = adapter;
1858
1859 return 0;
1860
1861 err:
1862 vfree(rx_ring->buffer_info);
1863 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1864 "the receive descriptor ring\n");
1865 return -ENOMEM;
1866 }
1867
1868 /**
1869 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1870 * (Descriptors) for all queues
1871 * @adapter: board private structure
1872 *
1873 * Return 0 on success, negative on failure
1874 **/
1875 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1876 {
1877 int i, err = 0;
1878
1879 for (i = 0; i < adapter->num_rx_queues; i++) {
1880 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1881 if (err) {
1882 dev_err(&adapter->pdev->dev,
1883 "Allocation for Rx Queue %u failed\n", i);
1884 for (i--; i >= 0; i--)
1885 igb_free_rx_resources(&adapter->rx_ring[i]);
1886 break;
1887 }
1888 }
1889
1890 return err;
1891 }
1892
1893 /**
1894 * igb_setup_rctl - configure the receive control registers
1895 * @adapter: Board private structure
1896 **/
1897 static void igb_setup_rctl(struct igb_adapter *adapter)
1898 {
1899 struct e1000_hw *hw = &adapter->hw;
1900 u32 rctl;
1901 u32 srrctl = 0;
1902 int i, j;
1903
1904 rctl = rd32(E1000_RCTL);
1905
1906 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1907 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1908
1909 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1910 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1911
1912 /*
1913 * enable stripping of CRC. It's unlikely this will break BMC
1914 * redirection as it did with e1000. Newer features require
1915 * that the HW strips the CRC.
1916 */
1917 rctl |= E1000_RCTL_SECRC;
1918
1919 /*
1920 * disable store bad packets and clear size bits.
1921 */
1922 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1923
1924 /* enable LPE when to prevent packets larger than max_frame_size */
1925 rctl |= E1000_RCTL_LPE;
1926
1927 /* Setup buffer sizes */
1928 switch (adapter->rx_buffer_len) {
1929 case IGB_RXBUFFER_256:
1930 rctl |= E1000_RCTL_SZ_256;
1931 break;
1932 case IGB_RXBUFFER_512:
1933 rctl |= E1000_RCTL_SZ_512;
1934 break;
1935 default:
1936 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1937 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1938 break;
1939 }
1940
1941 /* 82575 and greater support packet-split where the protocol
1942 * header is placed in skb->data and the packet data is
1943 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1944 * In the case of a non-split, skb->data is linearly filled,
1945 * followed by the page buffers. Therefore, skb->data is
1946 * sized to hold the largest protocol header.
1947 */
1948 /* allocations using alloc_page take too long for regular MTU
1949 * so only enable packet split for jumbo frames */
1950 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1951 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1952 srrctl |= adapter->rx_ps_hdr_size <<
1953 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1954 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1955 } else {
1956 adapter->rx_ps_hdr_size = 0;
1957 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1958 }
1959
1960 for (i = 0; i < adapter->num_rx_queues; i++) {
1961 j = adapter->rx_ring[i].reg_idx;
1962 wr32(E1000_SRRCTL(j), srrctl);
1963 }
1964
1965 wr32(E1000_RCTL, rctl);
1966 }
1967
1968 /**
1969 * igb_configure_rx - Configure receive Unit after Reset
1970 * @adapter: board private structure
1971 *
1972 * Configure the Rx unit of the MAC after a reset.
1973 **/
1974 static void igb_configure_rx(struct igb_adapter *adapter)
1975 {
1976 u64 rdba;
1977 struct e1000_hw *hw = &adapter->hw;
1978 u32 rctl, rxcsum;
1979 u32 rxdctl;
1980 int i, j;
1981
1982 /* disable receives while setting up the descriptors */
1983 rctl = rd32(E1000_RCTL);
1984 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1985 wrfl();
1986 mdelay(10);
1987
1988 if (adapter->itr_setting > 3)
1989 wr32(E1000_ITR, adapter->itr);
1990
1991 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1992 * the Base and Length of the Rx Descriptor Ring */
1993 for (i = 0; i < adapter->num_rx_queues; i++) {
1994 struct igb_ring *ring = &(adapter->rx_ring[i]);
1995 j = ring->reg_idx;
1996 rdba = ring->dma;
1997 wr32(E1000_RDBAL(j),
1998 rdba & 0x00000000ffffffffULL);
1999 wr32(E1000_RDBAH(j), rdba >> 32);
2000 wr32(E1000_RDLEN(j),
2001 ring->count * sizeof(union e1000_adv_rx_desc));
2002
2003 ring->head = E1000_RDH(j);
2004 ring->tail = E1000_RDT(j);
2005 writel(0, hw->hw_addr + ring->tail);
2006 writel(0, hw->hw_addr + ring->head);
2007
2008 rxdctl = rd32(E1000_RXDCTL(j));
2009 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2010 rxdctl &= 0xFFF00000;
2011 rxdctl |= IGB_RX_PTHRESH;
2012 rxdctl |= IGB_RX_HTHRESH << 8;
2013 rxdctl |= IGB_RX_WTHRESH << 16;
2014 wr32(E1000_RXDCTL(j), rxdctl);
2015 }
2016
2017 if (adapter->num_rx_queues > 1) {
2018 u32 random[10];
2019 u32 mrqc;
2020 u32 j, shift;
2021 union e1000_reta {
2022 u32 dword;
2023 u8 bytes[4];
2024 } reta;
2025
2026 get_random_bytes(&random[0], 40);
2027
2028 if (hw->mac.type >= e1000_82576)
2029 shift = 0;
2030 else
2031 shift = 6;
2032 for (j = 0; j < (32 * 4); j++) {
2033 reta.bytes[j & 3] =
2034 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2035 if ((j & 3) == 3)
2036 writel(reta.dword,
2037 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2038 }
2039 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2040
2041 /* Fill out hash function seeds */
2042 for (j = 0; j < 10; j++)
2043 array_wr32(E1000_RSSRK(0), j, random[j]);
2044
2045 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2046 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2047 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2048 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2049 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2050 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2051 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2052 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2053
2054
2055 wr32(E1000_MRQC, mrqc);
2056
2057 /* Multiqueue and raw packet checksumming are mutually
2058 * exclusive. Note that this not the same as TCP/IP
2059 * checksumming, which works fine. */
2060 rxcsum = rd32(E1000_RXCSUM);
2061 rxcsum |= E1000_RXCSUM_PCSD;
2062 wr32(E1000_RXCSUM, rxcsum);
2063 } else {
2064 /* Enable Receive Checksum Offload for TCP and UDP */
2065 rxcsum = rd32(E1000_RXCSUM);
2066 if (adapter->rx_csum) {
2067 rxcsum |= E1000_RXCSUM_TUOFL;
2068
2069 /* Enable IPv4 payload checksum for UDP fragments
2070 * Must be used in conjunction with packet-split. */
2071 if (adapter->rx_ps_hdr_size)
2072 rxcsum |= E1000_RXCSUM_IPPCSE;
2073 } else {
2074 rxcsum &= ~E1000_RXCSUM_TUOFL;
2075 /* don't need to clear IPPCSE as it defaults to 0 */
2076 }
2077 wr32(E1000_RXCSUM, rxcsum);
2078 }
2079
2080 if (adapter->vlgrp)
2081 wr32(E1000_RLPML,
2082 adapter->max_frame_size + VLAN_TAG_SIZE);
2083 else
2084 wr32(E1000_RLPML, adapter->max_frame_size);
2085
2086 /* Enable Receives */
2087 wr32(E1000_RCTL, rctl);
2088 }
2089
2090 /**
2091 * igb_free_tx_resources - Free Tx Resources per Queue
2092 * @tx_ring: Tx descriptor ring for a specific queue
2093 *
2094 * Free all transmit software resources
2095 **/
2096 void igb_free_tx_resources(struct igb_ring *tx_ring)
2097 {
2098 struct pci_dev *pdev = tx_ring->adapter->pdev;
2099
2100 igb_clean_tx_ring(tx_ring);
2101
2102 vfree(tx_ring->buffer_info);
2103 tx_ring->buffer_info = NULL;
2104
2105 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2106
2107 tx_ring->desc = NULL;
2108 }
2109
2110 /**
2111 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2112 * @adapter: board private structure
2113 *
2114 * Free all transmit software resources
2115 **/
2116 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2117 {
2118 int i;
2119
2120 for (i = 0; i < adapter->num_tx_queues; i++)
2121 igb_free_tx_resources(&adapter->tx_ring[i]);
2122 }
2123
2124 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2125 struct igb_buffer *buffer_info)
2126 {
2127 if (buffer_info->dma) {
2128 pci_unmap_page(adapter->pdev,
2129 buffer_info->dma,
2130 buffer_info->length,
2131 PCI_DMA_TODEVICE);
2132 buffer_info->dma = 0;
2133 }
2134 if (buffer_info->skb) {
2135 dev_kfree_skb_any(buffer_info->skb);
2136 buffer_info->skb = NULL;
2137 }
2138 buffer_info->time_stamp = 0;
2139 /* buffer_info must be completely set up in the transmit path */
2140 }
2141
2142 /**
2143 * igb_clean_tx_ring - Free Tx Buffers
2144 * @tx_ring: ring to be cleaned
2145 **/
2146 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2147 {
2148 struct igb_adapter *adapter = tx_ring->adapter;
2149 struct igb_buffer *buffer_info;
2150 unsigned long size;
2151 unsigned int i;
2152
2153 if (!tx_ring->buffer_info)
2154 return;
2155 /* Free all the Tx ring sk_buffs */
2156
2157 for (i = 0; i < tx_ring->count; i++) {
2158 buffer_info = &tx_ring->buffer_info[i];
2159 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2160 }
2161
2162 size = sizeof(struct igb_buffer) * tx_ring->count;
2163 memset(tx_ring->buffer_info, 0, size);
2164
2165 /* Zero out the descriptor ring */
2166
2167 memset(tx_ring->desc, 0, tx_ring->size);
2168
2169 tx_ring->next_to_use = 0;
2170 tx_ring->next_to_clean = 0;
2171
2172 writel(0, adapter->hw.hw_addr + tx_ring->head);
2173 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2174 }
2175
2176 /**
2177 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2178 * @adapter: board private structure
2179 **/
2180 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2181 {
2182 int i;
2183
2184 for (i = 0; i < adapter->num_tx_queues; i++)
2185 igb_clean_tx_ring(&adapter->tx_ring[i]);
2186 }
2187
2188 /**
2189 * igb_free_rx_resources - Free Rx Resources
2190 * @rx_ring: ring to clean the resources from
2191 *
2192 * Free all receive software resources
2193 **/
2194 void igb_free_rx_resources(struct igb_ring *rx_ring)
2195 {
2196 struct pci_dev *pdev = rx_ring->adapter->pdev;
2197
2198 igb_clean_rx_ring(rx_ring);
2199
2200 vfree(rx_ring->buffer_info);
2201 rx_ring->buffer_info = NULL;
2202
2203 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2204
2205 rx_ring->desc = NULL;
2206 }
2207
2208 /**
2209 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2210 * @adapter: board private structure
2211 *
2212 * Free all receive software resources
2213 **/
2214 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2215 {
2216 int i;
2217
2218 for (i = 0; i < adapter->num_rx_queues; i++)
2219 igb_free_rx_resources(&adapter->rx_ring[i]);
2220 }
2221
2222 /**
2223 * igb_clean_rx_ring - Free Rx Buffers per Queue
2224 * @rx_ring: ring to free buffers from
2225 **/
2226 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2227 {
2228 struct igb_adapter *adapter = rx_ring->adapter;
2229 struct igb_buffer *buffer_info;
2230 struct pci_dev *pdev = adapter->pdev;
2231 unsigned long size;
2232 unsigned int i;
2233
2234 if (!rx_ring->buffer_info)
2235 return;
2236 /* Free all the Rx ring sk_buffs */
2237 for (i = 0; i < rx_ring->count; i++) {
2238 buffer_info = &rx_ring->buffer_info[i];
2239 if (buffer_info->dma) {
2240 if (adapter->rx_ps_hdr_size)
2241 pci_unmap_single(pdev, buffer_info->dma,
2242 adapter->rx_ps_hdr_size,
2243 PCI_DMA_FROMDEVICE);
2244 else
2245 pci_unmap_single(pdev, buffer_info->dma,
2246 adapter->rx_buffer_len,
2247 PCI_DMA_FROMDEVICE);
2248 buffer_info->dma = 0;
2249 }
2250
2251 if (buffer_info->skb) {
2252 dev_kfree_skb(buffer_info->skb);
2253 buffer_info->skb = NULL;
2254 }
2255 if (buffer_info->page) {
2256 if (buffer_info->page_dma)
2257 pci_unmap_page(pdev, buffer_info->page_dma,
2258 PAGE_SIZE / 2,
2259 PCI_DMA_FROMDEVICE);
2260 put_page(buffer_info->page);
2261 buffer_info->page = NULL;
2262 buffer_info->page_dma = 0;
2263 buffer_info->page_offset = 0;
2264 }
2265 }
2266
2267 size = sizeof(struct igb_buffer) * rx_ring->count;
2268 memset(rx_ring->buffer_info, 0, size);
2269
2270 /* Zero out the descriptor ring */
2271 memset(rx_ring->desc, 0, rx_ring->size);
2272
2273 rx_ring->next_to_clean = 0;
2274 rx_ring->next_to_use = 0;
2275
2276 writel(0, adapter->hw.hw_addr + rx_ring->head);
2277 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2278 }
2279
2280 /**
2281 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2282 * @adapter: board private structure
2283 **/
2284 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2285 {
2286 int i;
2287
2288 for (i = 0; i < adapter->num_rx_queues; i++)
2289 igb_clean_rx_ring(&adapter->rx_ring[i]);
2290 }
2291
2292 /**
2293 * igb_set_mac - Change the Ethernet Address of the NIC
2294 * @netdev: network interface device structure
2295 * @p: pointer to an address structure
2296 *
2297 * Returns 0 on success, negative on failure
2298 **/
2299 static int igb_set_mac(struct net_device *netdev, void *p)
2300 {
2301 struct igb_adapter *adapter = netdev_priv(netdev);
2302 struct e1000_hw *hw = &adapter->hw;
2303 struct sockaddr *addr = p;
2304
2305 if (!is_valid_ether_addr(addr->sa_data))
2306 return -EADDRNOTAVAIL;
2307
2308 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2309 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2310
2311 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2312
2313 return 0;
2314 }
2315
2316 /**
2317 * igb_set_multi - Multicast and Promiscuous mode set
2318 * @netdev: network interface device structure
2319 *
2320 * The set_multi entry point is called whenever the multicast address
2321 * list or the network interface flags are updated. This routine is
2322 * responsible for configuring the hardware for proper multicast,
2323 * promiscuous mode, and all-multi behavior.
2324 **/
2325 static void igb_set_multi(struct net_device *netdev)
2326 {
2327 struct igb_adapter *adapter = netdev_priv(netdev);
2328 struct e1000_hw *hw = &adapter->hw;
2329 struct e1000_mac_info *mac = &hw->mac;
2330 struct dev_mc_list *mc_ptr;
2331 u8 *mta_list;
2332 u32 rctl;
2333 int i;
2334
2335 /* Check for Promiscuous and All Multicast modes */
2336
2337 rctl = rd32(E1000_RCTL);
2338
2339 if (netdev->flags & IFF_PROMISC) {
2340 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2341 rctl &= ~E1000_RCTL_VFE;
2342 } else {
2343 if (netdev->flags & IFF_ALLMULTI) {
2344 rctl |= E1000_RCTL_MPE;
2345 rctl &= ~E1000_RCTL_UPE;
2346 } else
2347 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2348 rctl |= E1000_RCTL_VFE;
2349 }
2350 wr32(E1000_RCTL, rctl);
2351
2352 if (!netdev->mc_count) {
2353 /* nothing to program, so clear mc list */
2354 igb_update_mc_addr_list(hw, NULL, 0, 1,
2355 mac->rar_entry_count);
2356 return;
2357 }
2358
2359 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2360 if (!mta_list)
2361 return;
2362
2363 /* The shared function expects a packed array of only addresses. */
2364 mc_ptr = netdev->mc_list;
2365
2366 for (i = 0; i < netdev->mc_count; i++) {
2367 if (!mc_ptr)
2368 break;
2369 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2370 mc_ptr = mc_ptr->next;
2371 }
2372 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2373 kfree(mta_list);
2374 }
2375
2376 /* Need to wait a few seconds after link up to get diagnostic information from
2377 * the phy */
2378 static void igb_update_phy_info(unsigned long data)
2379 {
2380 struct igb_adapter *adapter = (struct igb_adapter *) data;
2381 igb_get_phy_info(&adapter->hw);
2382 }
2383
2384 /**
2385 * igb_has_link - check shared code for link and determine up/down
2386 * @adapter: pointer to driver private info
2387 **/
2388 static bool igb_has_link(struct igb_adapter *adapter)
2389 {
2390 struct e1000_hw *hw = &adapter->hw;
2391 bool link_active = false;
2392 s32 ret_val = 0;
2393
2394 /* get_link_status is set on LSC (link status) interrupt or
2395 * rx sequence error interrupt. get_link_status will stay
2396 * false until the e1000_check_for_link establishes link
2397 * for copper adapters ONLY
2398 */
2399 switch (hw->phy.media_type) {
2400 case e1000_media_type_copper:
2401 if (hw->mac.get_link_status) {
2402 ret_val = hw->mac.ops.check_for_link(hw);
2403 link_active = !hw->mac.get_link_status;
2404 } else {
2405 link_active = true;
2406 }
2407 break;
2408 case e1000_media_type_fiber:
2409 ret_val = hw->mac.ops.check_for_link(hw);
2410 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2411 break;
2412 case e1000_media_type_internal_serdes:
2413 ret_val = hw->mac.ops.check_for_link(hw);
2414 link_active = hw->mac.serdes_has_link;
2415 break;
2416 default:
2417 case e1000_media_type_unknown:
2418 break;
2419 }
2420
2421 return link_active;
2422 }
2423
2424 /**
2425 * igb_watchdog - Timer Call-back
2426 * @data: pointer to adapter cast into an unsigned long
2427 **/
2428 static void igb_watchdog(unsigned long data)
2429 {
2430 struct igb_adapter *adapter = (struct igb_adapter *)data;
2431 /* Do the rest outside of interrupt context */
2432 schedule_work(&adapter->watchdog_task);
2433 }
2434
2435 static void igb_watchdog_task(struct work_struct *work)
2436 {
2437 struct igb_adapter *adapter = container_of(work,
2438 struct igb_adapter, watchdog_task);
2439 struct e1000_hw *hw = &adapter->hw;
2440 struct net_device *netdev = adapter->netdev;
2441 struct igb_ring *tx_ring = adapter->tx_ring;
2442 u32 link;
2443 u32 eics = 0;
2444 int i;
2445
2446 link = igb_has_link(adapter);
2447 if ((netif_carrier_ok(netdev)) && link)
2448 goto link_up;
2449
2450 if (link) {
2451 if (!netif_carrier_ok(netdev)) {
2452 u32 ctrl;
2453 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2454 &adapter->link_speed,
2455 &adapter->link_duplex);
2456
2457 ctrl = rd32(E1000_CTRL);
2458 /* Links status message must follow this format */
2459 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2460 "Flow Control: %s\n",
2461 netdev->name,
2462 adapter->link_speed,
2463 adapter->link_duplex == FULL_DUPLEX ?
2464 "Full Duplex" : "Half Duplex",
2465 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2466 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2467 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2468 E1000_CTRL_TFCE) ? "TX" : "None")));
2469
2470 /* tweak tx_queue_len according to speed/duplex and
2471 * adjust the timeout factor */
2472 netdev->tx_queue_len = adapter->tx_queue_len;
2473 adapter->tx_timeout_factor = 1;
2474 switch (adapter->link_speed) {
2475 case SPEED_10:
2476 netdev->tx_queue_len = 10;
2477 adapter->tx_timeout_factor = 14;
2478 break;
2479 case SPEED_100:
2480 netdev->tx_queue_len = 100;
2481 /* maybe add some timeout factor ? */
2482 break;
2483 }
2484
2485 netif_carrier_on(netdev);
2486 netif_tx_wake_all_queues(netdev);
2487
2488 /* link state has changed, schedule phy info update */
2489 if (!test_bit(__IGB_DOWN, &adapter->state))
2490 mod_timer(&adapter->phy_info_timer,
2491 round_jiffies(jiffies + 2 * HZ));
2492 }
2493 } else {
2494 if (netif_carrier_ok(netdev)) {
2495 adapter->link_speed = 0;
2496 adapter->link_duplex = 0;
2497 /* Links status message must follow this format */
2498 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2499 netdev->name);
2500 netif_carrier_off(netdev);
2501 netif_tx_stop_all_queues(netdev);
2502
2503 /* link state has changed, schedule phy info update */
2504 if (!test_bit(__IGB_DOWN, &adapter->state))
2505 mod_timer(&adapter->phy_info_timer,
2506 round_jiffies(jiffies + 2 * HZ));
2507 }
2508 }
2509
2510 link_up:
2511 igb_update_stats(adapter);
2512
2513 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2514 adapter->tpt_old = adapter->stats.tpt;
2515 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2516 adapter->colc_old = adapter->stats.colc;
2517
2518 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2519 adapter->gorc_old = adapter->stats.gorc;
2520 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2521 adapter->gotc_old = adapter->stats.gotc;
2522
2523 igb_update_adaptive(&adapter->hw);
2524
2525 if (!netif_carrier_ok(netdev)) {
2526 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2527 /* We've lost link, so the controller stops DMA,
2528 * but we've got queued Tx work that's never going
2529 * to get done, so reset controller to flush Tx.
2530 * (Do the reset outside of interrupt context). */
2531 adapter->tx_timeout_count++;
2532 schedule_work(&adapter->reset_task);
2533 }
2534 }
2535
2536 /* Cause software interrupt to ensure rx ring is cleaned */
2537 if (adapter->msix_entries) {
2538 for (i = 0; i < adapter->num_rx_queues; i++)
2539 eics |= adapter->rx_ring[i].eims_value;
2540 wr32(E1000_EICS, eics);
2541 } else {
2542 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2543 }
2544
2545 /* Force detection of hung controller every watchdog period */
2546 tx_ring->detect_tx_hung = true;
2547
2548 /* Reset the timer */
2549 if (!test_bit(__IGB_DOWN, &adapter->state))
2550 mod_timer(&adapter->watchdog_timer,
2551 round_jiffies(jiffies + 2 * HZ));
2552 }
2553
2554 enum latency_range {
2555 lowest_latency = 0,
2556 low_latency = 1,
2557 bulk_latency = 2,
2558 latency_invalid = 255
2559 };
2560
2561
2562 /**
2563 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2564 *
2565 * Stores a new ITR value based on strictly on packet size. This
2566 * algorithm is less sophisticated than that used in igb_update_itr,
2567 * due to the difficulty of synchronizing statistics across multiple
2568 * receive rings. The divisors and thresholds used by this fuction
2569 * were determined based on theoretical maximum wire speed and testing
2570 * data, in order to minimize response time while increasing bulk
2571 * throughput.
2572 * This functionality is controlled by the InterruptThrottleRate module
2573 * parameter (see igb_param.c)
2574 * NOTE: This function is called only when operating in a multiqueue
2575 * receive environment.
2576 * @rx_ring: pointer to ring
2577 **/
2578 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2579 {
2580 int new_val = rx_ring->itr_val;
2581 int avg_wire_size = 0;
2582 struct igb_adapter *adapter = rx_ring->adapter;
2583
2584 if (!rx_ring->total_packets)
2585 goto clear_counts; /* no packets, so don't do anything */
2586
2587 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2588 * ints/sec - ITR timer value of 120 ticks.
2589 */
2590 if (adapter->link_speed != SPEED_1000) {
2591 new_val = 120;
2592 goto set_itr_val;
2593 }
2594 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2595
2596 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2597 avg_wire_size += 24;
2598
2599 /* Don't starve jumbo frames */
2600 avg_wire_size = min(avg_wire_size, 3000);
2601
2602 /* Give a little boost to mid-size frames */
2603 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2604 new_val = avg_wire_size / 3;
2605 else
2606 new_val = avg_wire_size / 2;
2607
2608 set_itr_val:
2609 if (new_val != rx_ring->itr_val) {
2610 rx_ring->itr_val = new_val;
2611 rx_ring->set_itr = 1;
2612 }
2613 clear_counts:
2614 rx_ring->total_bytes = 0;
2615 rx_ring->total_packets = 0;
2616 }
2617
2618 /**
2619 * igb_update_itr - update the dynamic ITR value based on statistics
2620 * Stores a new ITR value based on packets and byte
2621 * counts during the last interrupt. The advantage of per interrupt
2622 * computation is faster updates and more accurate ITR for the current
2623 * traffic pattern. Constants in this function were computed
2624 * based on theoretical maximum wire speed and thresholds were set based
2625 * on testing data as well as attempting to minimize response time
2626 * while increasing bulk throughput.
2627 * this functionality is controlled by the InterruptThrottleRate module
2628 * parameter (see igb_param.c)
2629 * NOTE: These calculations are only valid when operating in a single-
2630 * queue environment.
2631 * @adapter: pointer to adapter
2632 * @itr_setting: current adapter->itr
2633 * @packets: the number of packets during this measurement interval
2634 * @bytes: the number of bytes during this measurement interval
2635 **/
2636 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2637 int packets, int bytes)
2638 {
2639 unsigned int retval = itr_setting;
2640
2641 if (packets == 0)
2642 goto update_itr_done;
2643
2644 switch (itr_setting) {
2645 case lowest_latency:
2646 /* handle TSO and jumbo frames */
2647 if (bytes/packets > 8000)
2648 retval = bulk_latency;
2649 else if ((packets < 5) && (bytes > 512))
2650 retval = low_latency;
2651 break;
2652 case low_latency: /* 50 usec aka 20000 ints/s */
2653 if (bytes > 10000) {
2654 /* this if handles the TSO accounting */
2655 if (bytes/packets > 8000) {
2656 retval = bulk_latency;
2657 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2658 retval = bulk_latency;
2659 } else if ((packets > 35)) {
2660 retval = lowest_latency;
2661 }
2662 } else if (bytes/packets > 2000) {
2663 retval = bulk_latency;
2664 } else if (packets <= 2 && bytes < 512) {
2665 retval = lowest_latency;
2666 }
2667 break;
2668 case bulk_latency: /* 250 usec aka 4000 ints/s */
2669 if (bytes > 25000) {
2670 if (packets > 35)
2671 retval = low_latency;
2672 } else if (bytes < 6000) {
2673 retval = low_latency;
2674 }
2675 break;
2676 }
2677
2678 update_itr_done:
2679 return retval;
2680 }
2681
2682 static void igb_set_itr(struct igb_adapter *adapter)
2683 {
2684 u16 current_itr;
2685 u32 new_itr = adapter->itr;
2686
2687 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2688 if (adapter->link_speed != SPEED_1000) {
2689 current_itr = 0;
2690 new_itr = 4000;
2691 goto set_itr_now;
2692 }
2693
2694 adapter->rx_itr = igb_update_itr(adapter,
2695 adapter->rx_itr,
2696 adapter->rx_ring->total_packets,
2697 adapter->rx_ring->total_bytes);
2698
2699 if (adapter->rx_ring->buddy) {
2700 adapter->tx_itr = igb_update_itr(adapter,
2701 adapter->tx_itr,
2702 adapter->tx_ring->total_packets,
2703 adapter->tx_ring->total_bytes);
2704
2705 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2706 } else {
2707 current_itr = adapter->rx_itr;
2708 }
2709
2710 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2711 if (adapter->itr_setting == 3 &&
2712 current_itr == lowest_latency)
2713 current_itr = low_latency;
2714
2715 switch (current_itr) {
2716 /* counts and packets in update_itr are dependent on these numbers */
2717 case lowest_latency:
2718 new_itr = 70000;
2719 break;
2720 case low_latency:
2721 new_itr = 20000; /* aka hwitr = ~200 */
2722 break;
2723 case bulk_latency:
2724 new_itr = 4000;
2725 break;
2726 default:
2727 break;
2728 }
2729
2730 set_itr_now:
2731 adapter->rx_ring->total_bytes = 0;
2732 adapter->rx_ring->total_packets = 0;
2733 if (adapter->rx_ring->buddy) {
2734 adapter->rx_ring->buddy->total_bytes = 0;
2735 adapter->rx_ring->buddy->total_packets = 0;
2736 }
2737
2738 if (new_itr != adapter->itr) {
2739 /* this attempts to bias the interrupt rate towards Bulk
2740 * by adding intermediate steps when interrupt rate is
2741 * increasing */
2742 new_itr = new_itr > adapter->itr ?
2743 min(adapter->itr + (new_itr >> 2), new_itr) :
2744 new_itr;
2745 /* Don't write the value here; it resets the adapter's
2746 * internal timer, and causes us to delay far longer than
2747 * we should between interrupts. Instead, we write the ITR
2748 * value at the beginning of the next interrupt so the timing
2749 * ends up being correct.
2750 */
2751 adapter->itr = new_itr;
2752 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2753 adapter->rx_ring->set_itr = 1;
2754 }
2755
2756 return;
2757 }
2758
2759
2760 #define IGB_TX_FLAGS_CSUM 0x00000001
2761 #define IGB_TX_FLAGS_VLAN 0x00000002
2762 #define IGB_TX_FLAGS_TSO 0x00000004
2763 #define IGB_TX_FLAGS_IPV4 0x00000008
2764 #define IGB_TX_FLAGS_TSTAMP 0x00000010
2765 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2766 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2767
2768 static inline int igb_tso_adv(struct igb_adapter *adapter,
2769 struct igb_ring *tx_ring,
2770 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2771 {
2772 struct e1000_adv_tx_context_desc *context_desc;
2773 unsigned int i;
2774 int err;
2775 struct igb_buffer *buffer_info;
2776 u32 info = 0, tu_cmd = 0;
2777 u32 mss_l4len_idx, l4len;
2778 *hdr_len = 0;
2779
2780 if (skb_header_cloned(skb)) {
2781 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2782 if (err)
2783 return err;
2784 }
2785
2786 l4len = tcp_hdrlen(skb);
2787 *hdr_len += l4len;
2788
2789 if (skb->protocol == htons(ETH_P_IP)) {
2790 struct iphdr *iph = ip_hdr(skb);
2791 iph->tot_len = 0;
2792 iph->check = 0;
2793 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2794 iph->daddr, 0,
2795 IPPROTO_TCP,
2796 0);
2797 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2798 ipv6_hdr(skb)->payload_len = 0;
2799 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2800 &ipv6_hdr(skb)->daddr,
2801 0, IPPROTO_TCP, 0);
2802 }
2803
2804 i = tx_ring->next_to_use;
2805
2806 buffer_info = &tx_ring->buffer_info[i];
2807 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2808 /* VLAN MACLEN IPLEN */
2809 if (tx_flags & IGB_TX_FLAGS_VLAN)
2810 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2811 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2812 *hdr_len += skb_network_offset(skb);
2813 info |= skb_network_header_len(skb);
2814 *hdr_len += skb_network_header_len(skb);
2815 context_desc->vlan_macip_lens = cpu_to_le32(info);
2816
2817 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2818 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2819
2820 if (skb->protocol == htons(ETH_P_IP))
2821 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2822 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2823
2824 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2825
2826 /* MSS L4LEN IDX */
2827 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2828 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2829
2830 /* Context index must be unique per ring. */
2831 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2832 mss_l4len_idx |= tx_ring->queue_index << 4;
2833
2834 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2835 context_desc->seqnum_seed = 0;
2836
2837 buffer_info->time_stamp = jiffies;
2838 buffer_info->next_to_watch = i;
2839 buffer_info->dma = 0;
2840 i++;
2841 if (i == tx_ring->count)
2842 i = 0;
2843
2844 tx_ring->next_to_use = i;
2845
2846 return true;
2847 }
2848
2849 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2850 struct igb_ring *tx_ring,
2851 struct sk_buff *skb, u32 tx_flags)
2852 {
2853 struct e1000_adv_tx_context_desc *context_desc;
2854 unsigned int i;
2855 struct igb_buffer *buffer_info;
2856 u32 info = 0, tu_cmd = 0;
2857
2858 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2859 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2860 i = tx_ring->next_to_use;
2861 buffer_info = &tx_ring->buffer_info[i];
2862 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2863
2864 if (tx_flags & IGB_TX_FLAGS_VLAN)
2865 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2866 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2867 if (skb->ip_summed == CHECKSUM_PARTIAL)
2868 info |= skb_network_header_len(skb);
2869
2870 context_desc->vlan_macip_lens = cpu_to_le32(info);
2871
2872 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2873
2874 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2875 switch (skb->protocol) {
2876 case cpu_to_be16(ETH_P_IP):
2877 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2878 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2879 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2880 break;
2881 case cpu_to_be16(ETH_P_IPV6):
2882 /* XXX what about other V6 headers?? */
2883 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2884 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2885 break;
2886 default:
2887 if (unlikely(net_ratelimit()))
2888 dev_warn(&adapter->pdev->dev,
2889 "partial checksum but proto=%x!\n",
2890 skb->protocol);
2891 break;
2892 }
2893 }
2894
2895 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2896 context_desc->seqnum_seed = 0;
2897 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2898 context_desc->mss_l4len_idx =
2899 cpu_to_le32(tx_ring->queue_index << 4);
2900 else
2901 context_desc->mss_l4len_idx = 0;
2902
2903 buffer_info->time_stamp = jiffies;
2904 buffer_info->next_to_watch = i;
2905 buffer_info->dma = 0;
2906
2907 i++;
2908 if (i == tx_ring->count)
2909 i = 0;
2910 tx_ring->next_to_use = i;
2911
2912 return true;
2913 }
2914
2915
2916 return false;
2917 }
2918
2919 #define IGB_MAX_TXD_PWR 16
2920 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2921
2922 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2923 struct igb_ring *tx_ring, struct sk_buff *skb,
2924 unsigned int first)
2925 {
2926 struct igb_buffer *buffer_info;
2927 unsigned int len = skb_headlen(skb);
2928 unsigned int count = 0, i;
2929 unsigned int f;
2930
2931 i = tx_ring->next_to_use;
2932
2933 buffer_info = &tx_ring->buffer_info[i];
2934 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2935 buffer_info->length = len;
2936 /* set time_stamp *before* dma to help avoid a possible race */
2937 buffer_info->time_stamp = jiffies;
2938 buffer_info->next_to_watch = i;
2939 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2940 PCI_DMA_TODEVICE);
2941 count++;
2942 i++;
2943 if (i == tx_ring->count)
2944 i = 0;
2945
2946 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2947 struct skb_frag_struct *frag;
2948
2949 frag = &skb_shinfo(skb)->frags[f];
2950 len = frag->size;
2951
2952 buffer_info = &tx_ring->buffer_info[i];
2953 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2954 buffer_info->length = len;
2955 buffer_info->time_stamp = jiffies;
2956 buffer_info->next_to_watch = i;
2957 buffer_info->dma = pci_map_page(adapter->pdev,
2958 frag->page,
2959 frag->page_offset,
2960 len,
2961 PCI_DMA_TODEVICE);
2962
2963 count++;
2964 i++;
2965 if (i == tx_ring->count)
2966 i = 0;
2967 }
2968
2969 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2970 tx_ring->buffer_info[i].skb = skb;
2971 tx_ring->buffer_info[first].next_to_watch = i;
2972
2973 return count;
2974 }
2975
2976 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2977 struct igb_ring *tx_ring,
2978 int tx_flags, int count, u32 paylen,
2979 u8 hdr_len)
2980 {
2981 union e1000_adv_tx_desc *tx_desc = NULL;
2982 struct igb_buffer *buffer_info;
2983 u32 olinfo_status = 0, cmd_type_len;
2984 unsigned int i;
2985
2986 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2987 E1000_ADVTXD_DCMD_DEXT);
2988
2989 if (tx_flags & IGB_TX_FLAGS_VLAN)
2990 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2991
2992 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
2993 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
2994
2995 if (tx_flags & IGB_TX_FLAGS_TSO) {
2996 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2997
2998 /* insert tcp checksum */
2999 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3000
3001 /* insert ip checksum */
3002 if (tx_flags & IGB_TX_FLAGS_IPV4)
3003 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3004
3005 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3006 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3007 }
3008
3009 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3010 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3011 IGB_TX_FLAGS_VLAN)))
3012 olinfo_status |= tx_ring->queue_index << 4;
3013
3014 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3015
3016 i = tx_ring->next_to_use;
3017 while (count--) {
3018 buffer_info = &tx_ring->buffer_info[i];
3019 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3020 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3021 tx_desc->read.cmd_type_len =
3022 cpu_to_le32(cmd_type_len | buffer_info->length);
3023 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3024 i++;
3025 if (i == tx_ring->count)
3026 i = 0;
3027 }
3028
3029 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3030 /* Force memory writes to complete before letting h/w
3031 * know there are new descriptors to fetch. (Only
3032 * applicable for weak-ordered memory model archs,
3033 * such as IA-64). */
3034 wmb();
3035
3036 tx_ring->next_to_use = i;
3037 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3038 /* we need this if more than one processor can write to our tail
3039 * at a time, it syncronizes IO on IA64/Altix systems */
3040 mmiowb();
3041 }
3042
3043 static int __igb_maybe_stop_tx(struct net_device *netdev,
3044 struct igb_ring *tx_ring, int size)
3045 {
3046 struct igb_adapter *adapter = netdev_priv(netdev);
3047
3048 netif_stop_subqueue(netdev, tx_ring->queue_index);
3049
3050 /* Herbert's original patch had:
3051 * smp_mb__after_netif_stop_queue();
3052 * but since that doesn't exist yet, just open code it. */
3053 smp_mb();
3054
3055 /* We need to check again in a case another CPU has just
3056 * made room available. */
3057 if (IGB_DESC_UNUSED(tx_ring) < size)
3058 return -EBUSY;
3059
3060 /* A reprieve! */
3061 netif_wake_subqueue(netdev, tx_ring->queue_index);
3062 ++adapter->restart_queue;
3063 return 0;
3064 }
3065
3066 static int igb_maybe_stop_tx(struct net_device *netdev,
3067 struct igb_ring *tx_ring, int size)
3068 {
3069 if (IGB_DESC_UNUSED(tx_ring) >= size)
3070 return 0;
3071 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3072 }
3073
3074 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
3075
3076 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3077 struct net_device *netdev,
3078 struct igb_ring *tx_ring)
3079 {
3080 struct igb_adapter *adapter = netdev_priv(netdev);
3081 unsigned int first;
3082 unsigned int tx_flags = 0;
3083 u8 hdr_len = 0;
3084 int tso = 0;
3085 union skb_shared_tx *shtx;
3086
3087 if (test_bit(__IGB_DOWN, &adapter->state)) {
3088 dev_kfree_skb_any(skb);
3089 return NETDEV_TX_OK;
3090 }
3091
3092 if (skb->len <= 0) {
3093 dev_kfree_skb_any(skb);
3094 return NETDEV_TX_OK;
3095 }
3096
3097 /* need: 1 descriptor per page,
3098 * + 2 desc gap to keep tail from touching head,
3099 * + 1 desc for skb->data,
3100 * + 1 desc for context descriptor,
3101 * otherwise try next time */
3102 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3103 /* this is a hard error */
3104 return NETDEV_TX_BUSY;
3105 }
3106
3107 /*
3108 * TODO: check that there currently is no other packet with
3109 * time stamping in the queue
3110 *
3111 * When doing time stamping, keep the connection to the socket
3112 * a while longer: it is still needed by skb_hwtstamp_tx(),
3113 * called either in igb_tx_hwtstamp() or by our caller when
3114 * doing software time stamping.
3115 */
3116 shtx = skb_tx(skb);
3117 if (unlikely(shtx->hardware)) {
3118 shtx->in_progress = 1;
3119 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3120 } else if (likely(!shtx->software)) {
3121 /*
3122 * TODO: can this be solved in dev.c:dev_hard_start_xmit()?
3123 * There are probably unmodified driver which do something
3124 * like this and thus don't work in combination with
3125 * SOF_TIMESTAMPING_TX_SOFTWARE.
3126 */
3127 skb_orphan(skb);
3128 }
3129
3130 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3131 tx_flags |= IGB_TX_FLAGS_VLAN;
3132 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3133 }
3134
3135 if (skb->protocol == htons(ETH_P_IP))
3136 tx_flags |= IGB_TX_FLAGS_IPV4;
3137
3138 first = tx_ring->next_to_use;
3139
3140 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3141 &hdr_len) : 0;
3142
3143 if (tso < 0) {
3144 dev_kfree_skb_any(skb);
3145 return NETDEV_TX_OK;
3146 }
3147
3148 if (tso)
3149 tx_flags |= IGB_TX_FLAGS_TSO;
3150 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3151 if (skb->ip_summed == CHECKSUM_PARTIAL)
3152 tx_flags |= IGB_TX_FLAGS_CSUM;
3153
3154 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3155 igb_tx_map_adv(adapter, tx_ring, skb, first),
3156 skb->len, hdr_len);
3157
3158 netdev->trans_start = jiffies;
3159
3160 /* Make sure there is space in the ring for the next send. */
3161 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3162
3163 return NETDEV_TX_OK;
3164 }
3165
3166 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3167 {
3168 struct igb_adapter *adapter = netdev_priv(netdev);
3169 struct igb_ring *tx_ring;
3170
3171 int r_idx = 0;
3172 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3173 tx_ring = adapter->multi_tx_table[r_idx];
3174
3175 /* This goes back to the question of how to logically map a tx queue
3176 * to a flow. Right now, performance is impacted slightly negatively
3177 * if using multiple tx queues. If the stack breaks away from a
3178 * single qdisc implementation, we can look at this again. */
3179 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3180 }
3181
3182 /**
3183 * igb_tx_timeout - Respond to a Tx Hang
3184 * @netdev: network interface device structure
3185 **/
3186 static void igb_tx_timeout(struct net_device *netdev)
3187 {
3188 struct igb_adapter *adapter = netdev_priv(netdev);
3189 struct e1000_hw *hw = &adapter->hw;
3190
3191 /* Do the reset outside of interrupt context */
3192 adapter->tx_timeout_count++;
3193 schedule_work(&adapter->reset_task);
3194 wr32(E1000_EICS,
3195 (adapter->eims_enable_mask & ~adapter->eims_other));
3196 }
3197
3198 static void igb_reset_task(struct work_struct *work)
3199 {
3200 struct igb_adapter *adapter;
3201 adapter = container_of(work, struct igb_adapter, reset_task);
3202
3203 igb_reinit_locked(adapter);
3204 }
3205
3206 /**
3207 * igb_get_stats - Get System Network Statistics
3208 * @netdev: network interface device structure
3209 *
3210 * Returns the address of the device statistics structure.
3211 * The statistics are actually updated from the timer callback.
3212 **/
3213 static struct net_device_stats *
3214 igb_get_stats(struct net_device *netdev)
3215 {
3216 struct igb_adapter *adapter = netdev_priv(netdev);
3217
3218 /* only return the current stats */
3219 return &adapter->net_stats;
3220 }
3221
3222 /**
3223 * igb_change_mtu - Change the Maximum Transfer Unit
3224 * @netdev: network interface device structure
3225 * @new_mtu: new value for maximum frame size
3226 *
3227 * Returns 0 on success, negative on failure
3228 **/
3229 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3230 {
3231 struct igb_adapter *adapter = netdev_priv(netdev);
3232 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3233
3234 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3235 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3236 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3237 return -EINVAL;
3238 }
3239
3240 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3241 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3242 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3243 return -EINVAL;
3244 }
3245
3246 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3247 msleep(1);
3248 /* igb_down has a dependency on max_frame_size */
3249 adapter->max_frame_size = max_frame;
3250 if (netif_running(netdev))
3251 igb_down(adapter);
3252
3253 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3254 * means we reserve 2 more, this pushes us to allocate from the next
3255 * larger slab size.
3256 * i.e. RXBUFFER_2048 --> size-4096 slab
3257 */
3258
3259 if (max_frame <= IGB_RXBUFFER_256)
3260 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3261 else if (max_frame <= IGB_RXBUFFER_512)
3262 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3263 else if (max_frame <= IGB_RXBUFFER_1024)
3264 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3265 else if (max_frame <= IGB_RXBUFFER_2048)
3266 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3267 else
3268 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3269 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3270 #else
3271 adapter->rx_buffer_len = PAGE_SIZE / 2;
3272 #endif
3273 /* adjust allocation if LPE protects us, and we aren't using SBP */
3274 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3275 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3276 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3277
3278 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3279 netdev->mtu, new_mtu);
3280 netdev->mtu = new_mtu;
3281
3282 if (netif_running(netdev))
3283 igb_up(adapter);
3284 else
3285 igb_reset(adapter);
3286
3287 clear_bit(__IGB_RESETTING, &adapter->state);
3288
3289 return 0;
3290 }
3291
3292 /**
3293 * igb_update_stats - Update the board statistics counters
3294 * @adapter: board private structure
3295 **/
3296
3297 void igb_update_stats(struct igb_adapter *adapter)
3298 {
3299 struct e1000_hw *hw = &adapter->hw;
3300 struct pci_dev *pdev = adapter->pdev;
3301 u16 phy_tmp;
3302
3303 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3304
3305 /*
3306 * Prevent stats update while adapter is being reset, or if the pci
3307 * connection is down.
3308 */
3309 if (adapter->link_speed == 0)
3310 return;
3311 if (pci_channel_offline(pdev))
3312 return;
3313
3314 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3315 adapter->stats.gprc += rd32(E1000_GPRC);
3316 adapter->stats.gorc += rd32(E1000_GORCL);
3317 rd32(E1000_GORCH); /* clear GORCL */
3318 adapter->stats.bprc += rd32(E1000_BPRC);
3319 adapter->stats.mprc += rd32(E1000_MPRC);
3320 adapter->stats.roc += rd32(E1000_ROC);
3321
3322 adapter->stats.prc64 += rd32(E1000_PRC64);
3323 adapter->stats.prc127 += rd32(E1000_PRC127);
3324 adapter->stats.prc255 += rd32(E1000_PRC255);
3325 adapter->stats.prc511 += rd32(E1000_PRC511);
3326 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3327 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3328 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3329 adapter->stats.sec += rd32(E1000_SEC);
3330
3331 adapter->stats.mpc += rd32(E1000_MPC);
3332 adapter->stats.scc += rd32(E1000_SCC);
3333 adapter->stats.ecol += rd32(E1000_ECOL);
3334 adapter->stats.mcc += rd32(E1000_MCC);
3335 adapter->stats.latecol += rd32(E1000_LATECOL);
3336 adapter->stats.dc += rd32(E1000_DC);
3337 adapter->stats.rlec += rd32(E1000_RLEC);
3338 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3339 adapter->stats.xontxc += rd32(E1000_XONTXC);
3340 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3341 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3342 adapter->stats.fcruc += rd32(E1000_FCRUC);
3343 adapter->stats.gptc += rd32(E1000_GPTC);
3344 adapter->stats.gotc += rd32(E1000_GOTCL);
3345 rd32(E1000_GOTCH); /* clear GOTCL */
3346 adapter->stats.rnbc += rd32(E1000_RNBC);
3347 adapter->stats.ruc += rd32(E1000_RUC);
3348 adapter->stats.rfc += rd32(E1000_RFC);
3349 adapter->stats.rjc += rd32(E1000_RJC);
3350 adapter->stats.tor += rd32(E1000_TORH);
3351 adapter->stats.tot += rd32(E1000_TOTH);
3352 adapter->stats.tpr += rd32(E1000_TPR);
3353
3354 adapter->stats.ptc64 += rd32(E1000_PTC64);
3355 adapter->stats.ptc127 += rd32(E1000_PTC127);
3356 adapter->stats.ptc255 += rd32(E1000_PTC255);
3357 adapter->stats.ptc511 += rd32(E1000_PTC511);
3358 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3359 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3360
3361 adapter->stats.mptc += rd32(E1000_MPTC);
3362 adapter->stats.bptc += rd32(E1000_BPTC);
3363
3364 /* used for adaptive IFS */
3365
3366 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3367 adapter->stats.tpt += hw->mac.tx_packet_delta;
3368 hw->mac.collision_delta = rd32(E1000_COLC);
3369 adapter->stats.colc += hw->mac.collision_delta;
3370
3371 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3372 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3373 adapter->stats.tncrs += rd32(E1000_TNCRS);
3374 adapter->stats.tsctc += rd32(E1000_TSCTC);
3375 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3376
3377 adapter->stats.iac += rd32(E1000_IAC);
3378 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3379 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3380 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3381 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3382 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3383 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3384 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3385 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3386
3387 /* Fill out the OS statistics structure */
3388 adapter->net_stats.multicast = adapter->stats.mprc;
3389 adapter->net_stats.collisions = adapter->stats.colc;
3390
3391 /* Rx Errors */
3392
3393 /* RLEC on some newer hardware can be incorrect so build
3394 * our own version based on RUC and ROC */
3395 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3396 adapter->stats.crcerrs + adapter->stats.algnerrc +
3397 adapter->stats.ruc + adapter->stats.roc +
3398 adapter->stats.cexterr;
3399 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3400 adapter->stats.roc;
3401 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3402 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3403 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3404
3405 /* Tx Errors */
3406 adapter->net_stats.tx_errors = adapter->stats.ecol +
3407 adapter->stats.latecol;
3408 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3409 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3410 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3411
3412 /* Tx Dropped needs to be maintained elsewhere */
3413
3414 /* Phy Stats */
3415 if (hw->phy.media_type == e1000_media_type_copper) {
3416 if ((adapter->link_speed == SPEED_1000) &&
3417 (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3418 &phy_tmp))) {
3419 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3420 adapter->phy_stats.idle_errors += phy_tmp;
3421 }
3422 }
3423
3424 /* Management Stats */
3425 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3426 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3427 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3428 }
3429
3430
3431 static irqreturn_t igb_msix_other(int irq, void *data)
3432 {
3433 struct net_device *netdev = data;
3434 struct igb_adapter *adapter = netdev_priv(netdev);
3435 struct e1000_hw *hw = &adapter->hw;
3436 u32 icr = rd32(E1000_ICR);
3437
3438 /* reading ICR causes bit 31 of EICR to be cleared */
3439
3440 if(icr & E1000_ICR_DOUTSYNC) {
3441 /* HW is reporting DMA is out of sync */
3442 adapter->stats.doosync++;
3443 }
3444 if (!(icr & E1000_ICR_LSC))
3445 goto no_link_interrupt;
3446 hw->mac.get_link_status = 1;
3447 /* guard against interrupt when we're going down */
3448 if (!test_bit(__IGB_DOWN, &adapter->state))
3449 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3450
3451 no_link_interrupt:
3452 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3453 wr32(E1000_EIMS, adapter->eims_other);
3454
3455 return IRQ_HANDLED;
3456 }
3457
3458 static irqreturn_t igb_msix_tx(int irq, void *data)
3459 {
3460 struct igb_ring *tx_ring = data;
3461 struct igb_adapter *adapter = tx_ring->adapter;
3462 struct e1000_hw *hw = &adapter->hw;
3463
3464 #ifdef CONFIG_IGB_DCA
3465 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3466 igb_update_tx_dca(tx_ring);
3467 #endif
3468 tx_ring->total_bytes = 0;
3469 tx_ring->total_packets = 0;
3470
3471 /* auto mask will automatically reenable the interrupt when we write
3472 * EICS */
3473 if (!igb_clean_tx_irq(tx_ring))
3474 /* Ring was not completely cleaned, so fire another interrupt */
3475 wr32(E1000_EICS, tx_ring->eims_value);
3476 else
3477 wr32(E1000_EIMS, tx_ring->eims_value);
3478
3479 return IRQ_HANDLED;
3480 }
3481
3482 static void igb_write_itr(struct igb_ring *ring)
3483 {
3484 struct e1000_hw *hw = &ring->adapter->hw;
3485 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3486 switch (hw->mac.type) {
3487 case e1000_82576:
3488 wr32(ring->itr_register,
3489 ring->itr_val |
3490 0x80000000);
3491 break;
3492 default:
3493 wr32(ring->itr_register,
3494 ring->itr_val |
3495 (ring->itr_val << 16));
3496 break;
3497 }
3498 ring->set_itr = 0;
3499 }
3500 }
3501
3502 static irqreturn_t igb_msix_rx(int irq, void *data)
3503 {
3504 struct igb_ring *rx_ring = data;
3505
3506 /* Write the ITR value calculated at the end of the
3507 * previous interrupt.
3508 */
3509
3510 igb_write_itr(rx_ring);
3511
3512 if (napi_schedule_prep(&rx_ring->napi))
3513 __napi_schedule(&rx_ring->napi);
3514
3515 #ifdef CONFIG_IGB_DCA
3516 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3517 igb_update_rx_dca(rx_ring);
3518 #endif
3519 return IRQ_HANDLED;
3520 }
3521
3522 #ifdef CONFIG_IGB_DCA
3523 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3524 {
3525 u32 dca_rxctrl;
3526 struct igb_adapter *adapter = rx_ring->adapter;
3527 struct e1000_hw *hw = &adapter->hw;
3528 int cpu = get_cpu();
3529 int q = rx_ring->reg_idx;
3530
3531 if (rx_ring->cpu != cpu) {
3532 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3533 if (hw->mac.type == e1000_82576) {
3534 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3535 dca_rxctrl |= dca_get_tag(cpu) <<
3536 E1000_DCA_RXCTRL_CPUID_SHIFT;
3537 } else {
3538 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3539 dca_rxctrl |= dca_get_tag(cpu);
3540 }
3541 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3542 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3543 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3544 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3545 rx_ring->cpu = cpu;
3546 }
3547 put_cpu();
3548 }
3549
3550 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3551 {
3552 u32 dca_txctrl;
3553 struct igb_adapter *adapter = tx_ring->adapter;
3554 struct e1000_hw *hw = &adapter->hw;
3555 int cpu = get_cpu();
3556 int q = tx_ring->reg_idx;
3557
3558 if (tx_ring->cpu != cpu) {
3559 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3560 if (hw->mac.type == e1000_82576) {
3561 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3562 dca_txctrl |= dca_get_tag(cpu) <<
3563 E1000_DCA_TXCTRL_CPUID_SHIFT;
3564 } else {
3565 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3566 dca_txctrl |= dca_get_tag(cpu);
3567 }
3568 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3569 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3570 tx_ring->cpu = cpu;
3571 }
3572 put_cpu();
3573 }
3574
3575 static void igb_setup_dca(struct igb_adapter *adapter)
3576 {
3577 int i;
3578
3579 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3580 return;
3581
3582 for (i = 0; i < adapter->num_tx_queues; i++) {
3583 adapter->tx_ring[i].cpu = -1;
3584 igb_update_tx_dca(&adapter->tx_ring[i]);
3585 }
3586 for (i = 0; i < adapter->num_rx_queues; i++) {
3587 adapter->rx_ring[i].cpu = -1;
3588 igb_update_rx_dca(&adapter->rx_ring[i]);
3589 }
3590 }
3591
3592 static int __igb_notify_dca(struct device *dev, void *data)
3593 {
3594 struct net_device *netdev = dev_get_drvdata(dev);
3595 struct igb_adapter *adapter = netdev_priv(netdev);
3596 struct e1000_hw *hw = &adapter->hw;
3597 unsigned long event = *(unsigned long *)data;
3598
3599 switch (event) {
3600 case DCA_PROVIDER_ADD:
3601 /* if already enabled, don't do it again */
3602 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3603 break;
3604 /* Always use CB2 mode, difference is masked
3605 * in the CB driver. */
3606 wr32(E1000_DCA_CTRL, 2);
3607 if (dca_add_requester(dev) == 0) {
3608 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3609 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3610 igb_setup_dca(adapter);
3611 break;
3612 }
3613 /* Fall Through since DCA is disabled. */
3614 case DCA_PROVIDER_REMOVE:
3615 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3616 /* without this a class_device is left
3617 * hanging around in the sysfs model */
3618 dca_remove_requester(dev);
3619 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3620 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3621 wr32(E1000_DCA_CTRL, 1);
3622 }
3623 break;
3624 }
3625
3626 return 0;
3627 }
3628
3629 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3630 void *p)
3631 {
3632 int ret_val;
3633
3634 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3635 __igb_notify_dca);
3636
3637 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3638 }
3639 #endif /* CONFIG_IGB_DCA */
3640
3641 /**
3642 * igb_intr_msi - Interrupt Handler
3643 * @irq: interrupt number
3644 * @data: pointer to a network interface device structure
3645 **/
3646 static irqreturn_t igb_intr_msi(int irq, void *data)
3647 {
3648 struct net_device *netdev = data;
3649 struct igb_adapter *adapter = netdev_priv(netdev);
3650 struct e1000_hw *hw = &adapter->hw;
3651 /* read ICR disables interrupts using IAM */
3652 u32 icr = rd32(E1000_ICR);
3653
3654 igb_write_itr(adapter->rx_ring);
3655
3656 if(icr & E1000_ICR_DOUTSYNC) {
3657 /* HW is reporting DMA is out of sync */
3658 adapter->stats.doosync++;
3659 }
3660
3661 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3662 hw->mac.get_link_status = 1;
3663 if (!test_bit(__IGB_DOWN, &adapter->state))
3664 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3665 }
3666
3667 napi_schedule(&adapter->rx_ring[0].napi);
3668
3669 return IRQ_HANDLED;
3670 }
3671
3672 /**
3673 * igb_intr - Legacy Interrupt Handler
3674 * @irq: interrupt number
3675 * @data: pointer to a network interface device structure
3676 **/
3677 static irqreturn_t igb_intr(int irq, void *data)
3678 {
3679 struct net_device *netdev = data;
3680 struct igb_adapter *adapter = netdev_priv(netdev);
3681 struct e1000_hw *hw = &adapter->hw;
3682 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3683 * need for the IMC write */
3684 u32 icr = rd32(E1000_ICR);
3685 if (!icr)
3686 return IRQ_NONE; /* Not our interrupt */
3687
3688 igb_write_itr(adapter->rx_ring);
3689
3690 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3691 * not set, then the adapter didn't send an interrupt */
3692 if (!(icr & E1000_ICR_INT_ASSERTED))
3693 return IRQ_NONE;
3694
3695 if(icr & E1000_ICR_DOUTSYNC) {
3696 /* HW is reporting DMA is out of sync */
3697 adapter->stats.doosync++;
3698 }
3699
3700 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3701 hw->mac.get_link_status = 1;
3702 /* guard against interrupt when we're going down */
3703 if (!test_bit(__IGB_DOWN, &adapter->state))
3704 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3705 }
3706
3707 napi_schedule(&adapter->rx_ring[0].napi);
3708
3709 return IRQ_HANDLED;
3710 }
3711
3712 /**
3713 * igb_poll - NAPI Rx polling callback
3714 * @napi: napi polling structure
3715 * @budget: count of how many packets we should handle
3716 **/
3717 static int igb_poll(struct napi_struct *napi, int budget)
3718 {
3719 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3720 struct igb_adapter *adapter = rx_ring->adapter;
3721 struct net_device *netdev = adapter->netdev;
3722 int tx_clean_complete, work_done = 0;
3723
3724 /* this poll routine only supports one tx and one rx queue */
3725 #ifdef CONFIG_IGB_DCA
3726 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3727 igb_update_tx_dca(&adapter->tx_ring[0]);
3728 #endif
3729 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3730
3731 #ifdef CONFIG_IGB_DCA
3732 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3733 igb_update_rx_dca(&adapter->rx_ring[0]);
3734 #endif
3735 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3736
3737 /* If no Tx and not enough Rx work done, exit the polling mode */
3738 if ((tx_clean_complete && (work_done < budget)) ||
3739 !netif_running(netdev)) {
3740 if (adapter->itr_setting & 3)
3741 igb_set_itr(adapter);
3742 napi_complete(napi);
3743 if (!test_bit(__IGB_DOWN, &adapter->state))
3744 igb_irq_enable(adapter);
3745 return 0;
3746 }
3747
3748 return 1;
3749 }
3750
3751 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3752 {
3753 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3754 struct igb_adapter *adapter = rx_ring->adapter;
3755 struct e1000_hw *hw = &adapter->hw;
3756 struct net_device *netdev = adapter->netdev;
3757 int work_done = 0;
3758
3759 #ifdef CONFIG_IGB_DCA
3760 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3761 igb_update_rx_dca(rx_ring);
3762 #endif
3763 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3764
3765
3766 /* If not enough Rx work done, exit the polling mode */
3767 if ((work_done == 0) || !netif_running(netdev)) {
3768 napi_complete(napi);
3769
3770 if (adapter->itr_setting & 3) {
3771 if (adapter->num_rx_queues == 1)
3772 igb_set_itr(adapter);
3773 else
3774 igb_update_ring_itr(rx_ring);
3775 }
3776
3777 if (!test_bit(__IGB_DOWN, &adapter->state))
3778 wr32(E1000_EIMS, rx_ring->eims_value);
3779
3780 return 0;
3781 }
3782
3783 return 1;
3784 }
3785
3786 /**
3787 * igb_hwtstamp - utility function which checks for TX time stamp
3788 * @adapter: board private structure
3789 * @skb: packet that was just sent
3790 *
3791 * If we were asked to do hardware stamping and such a time stamp is
3792 * available, then it must have been for this skb here because we only
3793 * allow only one such packet into the queue.
3794 */
3795 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
3796 {
3797 union skb_shared_tx *shtx = skb_tx(skb);
3798 struct e1000_hw *hw = &adapter->hw;
3799
3800 if (unlikely(shtx->hardware)) {
3801 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
3802 if (valid) {
3803 u64 regval = rd32(E1000_TXSTMPL);
3804 u64 ns;
3805 struct skb_shared_hwtstamps shhwtstamps;
3806
3807 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3808 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
3809 ns = timecounter_cyc2time(&adapter->clock,
3810 regval);
3811 timecompare_update(&adapter->compare, ns);
3812 shhwtstamps.hwtstamp = ns_to_ktime(ns);
3813 shhwtstamps.syststamp =
3814 timecompare_transform(&adapter->compare, ns);
3815 skb_tstamp_tx(skb, &shhwtstamps);
3816 }
3817
3818 /* delayed orphaning: skb_tstamp_tx() needs the socket */
3819 skb_orphan(skb);
3820 }
3821 }
3822
3823 /**
3824 * igb_clean_tx_irq - Reclaim resources after transmit completes
3825 * @adapter: board private structure
3826 * returns true if ring is completely cleaned
3827 **/
3828 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3829 {
3830 struct igb_adapter *adapter = tx_ring->adapter;
3831 struct net_device *netdev = adapter->netdev;
3832 struct e1000_hw *hw = &adapter->hw;
3833 struct igb_buffer *buffer_info;
3834 struct sk_buff *skb;
3835 union e1000_adv_tx_desc *tx_desc, *eop_desc;
3836 unsigned int total_bytes = 0, total_packets = 0;
3837 unsigned int i, eop, count = 0;
3838 bool cleaned = false;
3839
3840 i = tx_ring->next_to_clean;
3841 eop = tx_ring->buffer_info[i].next_to_watch;
3842 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3843
3844 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3845 (count < tx_ring->count)) {
3846 for (cleaned = false; !cleaned; count++) {
3847 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3848 buffer_info = &tx_ring->buffer_info[i];
3849 cleaned = (i == eop);
3850 skb = buffer_info->skb;
3851
3852 if (skb) {
3853 unsigned int segs, bytecount;
3854 /* gso_segs is currently only valid for tcp */
3855 segs = skb_shinfo(skb)->gso_segs ?: 1;
3856 /* multiply data chunks by size of headers */
3857 bytecount = ((segs - 1) * skb_headlen(skb)) +
3858 skb->len;
3859 total_packets += segs;
3860 total_bytes += bytecount;
3861
3862 igb_tx_hwtstamp(adapter, skb);
3863 }
3864
3865 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3866 tx_desc->wb.status = 0;
3867
3868 i++;
3869 if (i == tx_ring->count)
3870 i = 0;
3871 }
3872
3873 eop = tx_ring->buffer_info[i].next_to_watch;
3874 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3875 }
3876
3877 tx_ring->next_to_clean = i;
3878
3879 if (unlikely(count &&
3880 netif_carrier_ok(netdev) &&
3881 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3882 /* Make sure that anybody stopping the queue after this
3883 * sees the new next_to_clean.
3884 */
3885 smp_mb();
3886 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3887 !(test_bit(__IGB_DOWN, &adapter->state))) {
3888 netif_wake_subqueue(netdev, tx_ring->queue_index);
3889 ++adapter->restart_queue;
3890 }
3891 }
3892
3893 if (tx_ring->detect_tx_hung) {
3894 /* Detect a transmit hang in hardware, this serializes the
3895 * check with the clearing of time_stamp and movement of i */
3896 tx_ring->detect_tx_hung = false;
3897 if (tx_ring->buffer_info[i].time_stamp &&
3898 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3899 (adapter->tx_timeout_factor * HZ))
3900 && !(rd32(E1000_STATUS) &
3901 E1000_STATUS_TXOFF)) {
3902
3903 /* detected Tx unit hang */
3904 dev_err(&adapter->pdev->dev,
3905 "Detected Tx Unit Hang\n"
3906 " Tx Queue <%d>\n"
3907 " TDH <%x>\n"
3908 " TDT <%x>\n"
3909 " next_to_use <%x>\n"
3910 " next_to_clean <%x>\n"
3911 "buffer_info[next_to_clean]\n"
3912 " time_stamp <%lx>\n"
3913 " next_to_watch <%x>\n"
3914 " jiffies <%lx>\n"
3915 " desc.status <%x>\n",
3916 tx_ring->queue_index,
3917 readl(adapter->hw.hw_addr + tx_ring->head),
3918 readl(adapter->hw.hw_addr + tx_ring->tail),
3919 tx_ring->next_to_use,
3920 tx_ring->next_to_clean,
3921 tx_ring->buffer_info[i].time_stamp,
3922 eop,
3923 jiffies,
3924 eop_desc->wb.status);
3925 netif_stop_subqueue(netdev, tx_ring->queue_index);
3926 }
3927 }
3928 tx_ring->total_bytes += total_bytes;
3929 tx_ring->total_packets += total_packets;
3930 tx_ring->tx_stats.bytes += total_bytes;
3931 tx_ring->tx_stats.packets += total_packets;
3932 adapter->net_stats.tx_bytes += total_bytes;
3933 adapter->net_stats.tx_packets += total_packets;
3934 return (count < tx_ring->count);
3935 }
3936
3937 /**
3938 * igb_receive_skb - helper function to handle rx indications
3939 * @ring: pointer to receive ring receving this packet
3940 * @status: descriptor status field as written by hardware
3941 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3942 * @skb: pointer to sk_buff to be indicated to stack
3943 **/
3944 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3945 union e1000_adv_rx_desc * rx_desc,
3946 struct sk_buff *skb)
3947 {
3948 struct igb_adapter * adapter = ring->adapter;
3949 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3950
3951 skb_record_rx_queue(skb, ring->queue_index);
3952 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3953 if (vlan_extracted)
3954 vlan_gro_receive(&ring->napi, adapter->vlgrp,
3955 le16_to_cpu(rx_desc->wb.upper.vlan),
3956 skb);
3957 else
3958 napi_gro_receive(&ring->napi, skb);
3959 } else {
3960 if (vlan_extracted)
3961 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3962 le16_to_cpu(rx_desc->wb.upper.vlan));
3963 else
3964 netif_receive_skb(skb);
3965 }
3966 }
3967
3968
3969 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3970 u32 status_err, struct sk_buff *skb)
3971 {
3972 skb->ip_summed = CHECKSUM_NONE;
3973
3974 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3975 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3976 return;
3977 /* TCP/UDP checksum error bit is set */
3978 if (status_err &
3979 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3980 /* let the stack verify checksum errors */
3981 adapter->hw_csum_err++;
3982 return;
3983 }
3984 /* It must be a TCP or UDP packet with a valid checksum */
3985 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3986 skb->ip_summed = CHECKSUM_UNNECESSARY;
3987
3988 adapter->hw_csum_good++;
3989 }
3990
3991 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3992 int *work_done, int budget)
3993 {
3994 struct igb_adapter *adapter = rx_ring->adapter;
3995 struct net_device *netdev = adapter->netdev;
3996 struct e1000_hw *hw = &adapter->hw;
3997 struct pci_dev *pdev = adapter->pdev;
3998 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3999 struct igb_buffer *buffer_info , *next_buffer;
4000 struct sk_buff *skb;
4001 unsigned int i;
4002 u32 length, hlen, staterr;
4003 bool cleaned = false;
4004 int cleaned_count = 0;
4005 unsigned int total_bytes = 0, total_packets = 0;
4006
4007 i = rx_ring->next_to_clean;
4008 buffer_info = &rx_ring->buffer_info[i];
4009 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4010 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4011
4012 while (staterr & E1000_RXD_STAT_DD) {
4013 if (*work_done >= budget)
4014 break;
4015 (*work_done)++;
4016
4017 skb = buffer_info->skb;
4018 prefetch(skb->data - NET_IP_ALIGN);
4019 buffer_info->skb = NULL;
4020
4021 i++;
4022 if (i == rx_ring->count)
4023 i = 0;
4024 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4025 prefetch(next_rxd);
4026 next_buffer = &rx_ring->buffer_info[i];
4027
4028 length = le16_to_cpu(rx_desc->wb.upper.length);
4029 cleaned = true;
4030 cleaned_count++;
4031
4032 if (!adapter->rx_ps_hdr_size) {
4033 pci_unmap_single(pdev, buffer_info->dma,
4034 adapter->rx_buffer_len +
4035 NET_IP_ALIGN,
4036 PCI_DMA_FROMDEVICE);
4037 skb_put(skb, length);
4038 goto send_up;
4039 }
4040
4041 /* HW will not DMA in data larger than the given buffer, even
4042 * if it parses the (NFS, of course) header to be larger. In
4043 * that case, it fills the header buffer and spills the rest
4044 * into the page.
4045 */
4046 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4047 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4048 if (hlen > adapter->rx_ps_hdr_size)
4049 hlen = adapter->rx_ps_hdr_size;
4050
4051 if (!skb_shinfo(skb)->nr_frags) {
4052 pci_unmap_single(pdev, buffer_info->dma,
4053 adapter->rx_ps_hdr_size +
4054 NET_IP_ALIGN,
4055 PCI_DMA_FROMDEVICE);
4056 skb_put(skb, hlen);
4057 }
4058
4059 if (length) {
4060 pci_unmap_page(pdev, buffer_info->page_dma,
4061 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4062 buffer_info->page_dma = 0;
4063
4064 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4065 buffer_info->page,
4066 buffer_info->page_offset,
4067 length);
4068
4069 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4070 (page_count(buffer_info->page) != 1))
4071 buffer_info->page = NULL;
4072 else
4073 get_page(buffer_info->page);
4074
4075 skb->len += length;
4076 skb->data_len += length;
4077
4078 skb->truesize += length;
4079 }
4080
4081 if (!(staterr & E1000_RXD_STAT_EOP)) {
4082 buffer_info->skb = next_buffer->skb;
4083 buffer_info->dma = next_buffer->dma;
4084 next_buffer->skb = skb;
4085 next_buffer->dma = 0;
4086 goto next_desc;
4087 }
4088 send_up:
4089 /*
4090 * If this bit is set, then the RX registers contain
4091 * the time stamp. No other packet will be time
4092 * stamped until we read these registers, so read the
4093 * registers to make them available again. Because
4094 * only one packet can be time stamped at a time, we
4095 * know that the register values must belong to this
4096 * one here and therefore we don't need to compare
4097 * any of the additional attributes stored for it.
4098 *
4099 * If nothing went wrong, then it should have a
4100 * skb_shared_tx that we can turn into a
4101 * skb_shared_hwtstamps.
4102 *
4103 * TODO: can time stamping be triggered (thus locking
4104 * the registers) without the packet reaching this point
4105 * here? In that case RX time stamping would get stuck.
4106 *
4107 * TODO: in "time stamp all packets" mode this bit is
4108 * not set. Need a global flag for this mode and then
4109 * always read the registers. Cannot be done without
4110 * a race condition.
4111 */
4112 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4113 u64 regval;
4114 u64 ns;
4115 struct skb_shared_hwtstamps *shhwtstamps =
4116 skb_hwtstamps(skb);
4117
4118 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4119 "igb: no RX time stamp available for time stamped packet");
4120 regval = rd32(E1000_RXSTMPL);
4121 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4122 ns = timecounter_cyc2time(&adapter->clock, regval);
4123 timecompare_update(&adapter->compare, ns);
4124 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4125 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4126 shhwtstamps->syststamp =
4127 timecompare_transform(&adapter->compare, ns);
4128 }
4129
4130 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4131 dev_kfree_skb_irq(skb);
4132 goto next_desc;
4133 }
4134
4135 total_bytes += skb->len;
4136 total_packets++;
4137
4138 igb_rx_checksum_adv(adapter, staterr, skb);
4139
4140 skb->protocol = eth_type_trans(skb, netdev);
4141
4142 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4143
4144 next_desc:
4145 rx_desc->wb.upper.status_error = 0;
4146
4147 /* return some buffers to hardware, one at a time is too slow */
4148 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4149 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4150 cleaned_count = 0;
4151 }
4152
4153 /* use prefetched values */
4154 rx_desc = next_rxd;
4155 buffer_info = next_buffer;
4156 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4157 }
4158
4159 rx_ring->next_to_clean = i;
4160 cleaned_count = IGB_DESC_UNUSED(rx_ring);
4161
4162 if (cleaned_count)
4163 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4164
4165 rx_ring->total_packets += total_packets;
4166 rx_ring->total_bytes += total_bytes;
4167 rx_ring->rx_stats.packets += total_packets;
4168 rx_ring->rx_stats.bytes += total_bytes;
4169 adapter->net_stats.rx_bytes += total_bytes;
4170 adapter->net_stats.rx_packets += total_packets;
4171 return cleaned;
4172 }
4173
4174
4175 /**
4176 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4177 * @adapter: address of board private structure
4178 **/
4179 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4180 int cleaned_count)
4181 {
4182 struct igb_adapter *adapter = rx_ring->adapter;
4183 struct net_device *netdev = adapter->netdev;
4184 struct pci_dev *pdev = adapter->pdev;
4185 union e1000_adv_rx_desc *rx_desc;
4186 struct igb_buffer *buffer_info;
4187 struct sk_buff *skb;
4188 unsigned int i;
4189 int bufsz;
4190
4191 i = rx_ring->next_to_use;
4192 buffer_info = &rx_ring->buffer_info[i];
4193
4194 if (adapter->rx_ps_hdr_size)
4195 bufsz = adapter->rx_ps_hdr_size;
4196 else
4197 bufsz = adapter->rx_buffer_len;
4198 bufsz += NET_IP_ALIGN;
4199
4200 while (cleaned_count--) {
4201 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4202
4203 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4204 if (!buffer_info->page) {
4205 buffer_info->page = alloc_page(GFP_ATOMIC);
4206 if (!buffer_info->page) {
4207 adapter->alloc_rx_buff_failed++;
4208 goto no_buffers;
4209 }
4210 buffer_info->page_offset = 0;
4211 } else {
4212 buffer_info->page_offset ^= PAGE_SIZE / 2;
4213 }
4214 buffer_info->page_dma =
4215 pci_map_page(pdev, buffer_info->page,
4216 buffer_info->page_offset,
4217 PAGE_SIZE / 2,
4218 PCI_DMA_FROMDEVICE);
4219 }
4220
4221 if (!buffer_info->skb) {
4222 skb = netdev_alloc_skb(netdev, bufsz);
4223 if (!skb) {
4224 adapter->alloc_rx_buff_failed++;
4225 goto no_buffers;
4226 }
4227
4228 /* Make buffer alignment 2 beyond a 16 byte boundary
4229 * this will result in a 16 byte aligned IP header after
4230 * the 14 byte MAC header is removed
4231 */
4232 skb_reserve(skb, NET_IP_ALIGN);
4233
4234 buffer_info->skb = skb;
4235 buffer_info->dma = pci_map_single(pdev, skb->data,
4236 bufsz,
4237 PCI_DMA_FROMDEVICE);
4238 }
4239 /* Refresh the desc even if buffer_addrs didn't change because
4240 * each write-back erases this info. */
4241 if (adapter->rx_ps_hdr_size) {
4242 rx_desc->read.pkt_addr =
4243 cpu_to_le64(buffer_info->page_dma);
4244 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4245 } else {
4246 rx_desc->read.pkt_addr =
4247 cpu_to_le64(buffer_info->dma);
4248 rx_desc->read.hdr_addr = 0;
4249 }
4250
4251 i++;
4252 if (i == rx_ring->count)
4253 i = 0;
4254 buffer_info = &rx_ring->buffer_info[i];
4255 }
4256
4257 no_buffers:
4258 if (rx_ring->next_to_use != i) {
4259 rx_ring->next_to_use = i;
4260 if (i == 0)
4261 i = (rx_ring->count - 1);
4262 else
4263 i--;
4264
4265 /* Force memory writes to complete before letting h/w
4266 * know there are new descriptors to fetch. (Only
4267 * applicable for weak-ordered memory model archs,
4268 * such as IA-64). */
4269 wmb();
4270 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4271 }
4272 }
4273
4274 /**
4275 * igb_mii_ioctl -
4276 * @netdev:
4277 * @ifreq:
4278 * @cmd:
4279 **/
4280 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4281 {
4282 struct igb_adapter *adapter = netdev_priv(netdev);
4283 struct mii_ioctl_data *data = if_mii(ifr);
4284
4285 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4286 return -EOPNOTSUPP;
4287
4288 switch (cmd) {
4289 case SIOCGMIIPHY:
4290 data->phy_id = adapter->hw.phy.addr;
4291 break;
4292 case SIOCGMIIREG:
4293 if (!capable(CAP_NET_ADMIN))
4294 return -EPERM;
4295 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4296 &data->val_out))
4297 return -EIO;
4298 break;
4299 case SIOCSMIIREG:
4300 default:
4301 return -EOPNOTSUPP;
4302 }
4303 return 0;
4304 }
4305
4306 /**
4307 * igb_hwtstamp_ioctl - control hardware time stamping
4308 * @netdev:
4309 * @ifreq:
4310 * @cmd:
4311 *
4312 * Outgoing time stamping can be enabled and disabled. Play nice and
4313 * disable it when requested, although it shouldn't case any overhead
4314 * when no packet needs it. At most one packet in the queue may be
4315 * marked for time stamping, otherwise it would be impossible to tell
4316 * for sure to which packet the hardware time stamp belongs.
4317 *
4318 * Incoming time stamping has to be configured via the hardware
4319 * filters. Not all combinations are supported, in particular event
4320 * type has to be specified. Matching the kind of event packet is
4321 * not supported, with the exception of "all V2 events regardless of
4322 * level 2 or 4".
4323 *
4324 **/
4325 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4326 struct ifreq *ifr, int cmd)
4327 {
4328 struct igb_adapter *adapter = netdev_priv(netdev);
4329 struct e1000_hw *hw = &adapter->hw;
4330 struct hwtstamp_config config;
4331 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4332 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4333 u32 tsync_rx_ctl_type = 0;
4334 u32 tsync_rx_cfg = 0;
4335 int is_l4 = 0;
4336 int is_l2 = 0;
4337 short port = 319; /* PTP */
4338 u32 regval;
4339
4340 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4341 return -EFAULT;
4342
4343 /* reserved for future extensions */
4344 if (config.flags)
4345 return -EINVAL;
4346
4347 switch (config.tx_type) {
4348 case HWTSTAMP_TX_OFF:
4349 tsync_tx_ctl_bit = 0;
4350 break;
4351 case HWTSTAMP_TX_ON:
4352 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4353 break;
4354 default:
4355 return -ERANGE;
4356 }
4357
4358 switch (config.rx_filter) {
4359 case HWTSTAMP_FILTER_NONE:
4360 tsync_rx_ctl_bit = 0;
4361 break;
4362 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4363 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4364 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4365 case HWTSTAMP_FILTER_ALL:
4366 /*
4367 * register TSYNCRXCFG must be set, therefore it is not
4368 * possible to time stamp both Sync and Delay_Req messages
4369 * => fall back to time stamping all packets
4370 */
4371 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4372 config.rx_filter = HWTSTAMP_FILTER_ALL;
4373 break;
4374 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4375 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4376 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4377 is_l4 = 1;
4378 break;
4379 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4380 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4381 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4382 is_l4 = 1;
4383 break;
4384 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4385 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4386 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4387 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4388 is_l2 = 1;
4389 is_l4 = 1;
4390 config.rx_filter = HWTSTAMP_FILTER_SOME;
4391 break;
4392 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4393 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4394 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4395 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4396 is_l2 = 1;
4397 is_l4 = 1;
4398 config.rx_filter = HWTSTAMP_FILTER_SOME;
4399 break;
4400 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4401 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4402 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4403 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4404 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4405 is_l2 = 1;
4406 break;
4407 default:
4408 return -ERANGE;
4409 }
4410
4411 /* enable/disable TX */
4412 regval = rd32(E1000_TSYNCTXCTL);
4413 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4414 wr32(E1000_TSYNCTXCTL, regval);
4415
4416 /* enable/disable RX, define which PTP packets are time stamped */
4417 regval = rd32(E1000_TSYNCRXCTL);
4418 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4419 regval = (regval & ~0xE) | tsync_rx_ctl_type;
4420 wr32(E1000_TSYNCRXCTL, regval);
4421 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4422
4423 /*
4424 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4425 * (Ethertype to filter on)
4426 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4427 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4428 */
4429 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4430
4431 /* L4 Queue Filter[0]: only filter by source and destination port */
4432 wr32(E1000_SPQF0, htons(port));
4433 wr32(E1000_IMIREXT(0), is_l4 ?
4434 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4435 wr32(E1000_IMIR(0), is_l4 ?
4436 (htons(port)
4437 | (0<<16) /* immediate interrupt disabled */
4438 | 0 /* (1<<17) bit cleared: do not bypass
4439 destination port check */)
4440 : 0);
4441 wr32(E1000_FTQF0, is_l4 ?
4442 (0x11 /* UDP */
4443 | (1<<15) /* VF not compared */
4444 | (1<<27) /* Enable Timestamping */
4445 | (7<<28) /* only source port filter enabled,
4446 source/target address and protocol
4447 masked */)
4448 : ((1<<15) | (15<<28) /* all mask bits set = filter not
4449 enabled */));
4450
4451 wrfl();
4452
4453 adapter->hwtstamp_config = config;
4454
4455 /* clear TX/RX time stamp registers, just to be sure */
4456 regval = rd32(E1000_TXSTMPH);
4457 regval = rd32(E1000_RXSTMPH);
4458
4459 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4460 -EFAULT : 0;
4461 }
4462
4463 /**
4464 * igb_ioctl -
4465 * @netdev:
4466 * @ifreq:
4467 * @cmd:
4468 **/
4469 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4470 {
4471 switch (cmd) {
4472 case SIOCGMIIPHY:
4473 case SIOCGMIIREG:
4474 case SIOCSMIIREG:
4475 return igb_mii_ioctl(netdev, ifr, cmd);
4476 case SIOCSHWTSTAMP:
4477 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
4478 default:
4479 return -EOPNOTSUPP;
4480 }
4481 }
4482
4483 static void igb_vlan_rx_register(struct net_device *netdev,
4484 struct vlan_group *grp)
4485 {
4486 struct igb_adapter *adapter = netdev_priv(netdev);
4487 struct e1000_hw *hw = &adapter->hw;
4488 u32 ctrl, rctl;
4489
4490 igb_irq_disable(adapter);
4491 adapter->vlgrp = grp;
4492
4493 if (grp) {
4494 /* enable VLAN tag insert/strip */
4495 ctrl = rd32(E1000_CTRL);
4496 ctrl |= E1000_CTRL_VME;
4497 wr32(E1000_CTRL, ctrl);
4498
4499 /* enable VLAN receive filtering */
4500 rctl = rd32(E1000_RCTL);
4501 rctl &= ~E1000_RCTL_CFIEN;
4502 wr32(E1000_RCTL, rctl);
4503 igb_update_mng_vlan(adapter);
4504 wr32(E1000_RLPML,
4505 adapter->max_frame_size + VLAN_TAG_SIZE);
4506 } else {
4507 /* disable VLAN tag insert/strip */
4508 ctrl = rd32(E1000_CTRL);
4509 ctrl &= ~E1000_CTRL_VME;
4510 wr32(E1000_CTRL, ctrl);
4511
4512 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4513 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4514 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4515 }
4516 wr32(E1000_RLPML,
4517 adapter->max_frame_size);
4518 }
4519
4520 if (!test_bit(__IGB_DOWN, &adapter->state))
4521 igb_irq_enable(adapter);
4522 }
4523
4524 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4525 {
4526 struct igb_adapter *adapter = netdev_priv(netdev);
4527 struct e1000_hw *hw = &adapter->hw;
4528 u32 vfta, index;
4529
4530 if ((hw->mng_cookie.status &
4531 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4532 (vid == adapter->mng_vlan_id))
4533 return;
4534 /* add VID to filter table */
4535 index = (vid >> 5) & 0x7F;
4536 vfta = array_rd32(E1000_VFTA, index);
4537 vfta |= (1 << (vid & 0x1F));
4538 igb_write_vfta(&adapter->hw, index, vfta);
4539 }
4540
4541 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4542 {
4543 struct igb_adapter *adapter = netdev_priv(netdev);
4544 struct e1000_hw *hw = &adapter->hw;
4545 u32 vfta, index;
4546
4547 igb_irq_disable(adapter);
4548 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4549
4550 if (!test_bit(__IGB_DOWN, &adapter->state))
4551 igb_irq_enable(adapter);
4552
4553 if ((adapter->hw.mng_cookie.status &
4554 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4555 (vid == adapter->mng_vlan_id)) {
4556 /* release control to f/w */
4557 igb_release_hw_control(adapter);
4558 return;
4559 }
4560
4561 /* remove VID from filter table */
4562 index = (vid >> 5) & 0x7F;
4563 vfta = array_rd32(E1000_VFTA, index);
4564 vfta &= ~(1 << (vid & 0x1F));
4565 igb_write_vfta(&adapter->hw, index, vfta);
4566 }
4567
4568 static void igb_restore_vlan(struct igb_adapter *adapter)
4569 {
4570 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4571
4572 if (adapter->vlgrp) {
4573 u16 vid;
4574 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4575 if (!vlan_group_get_device(adapter->vlgrp, vid))
4576 continue;
4577 igb_vlan_rx_add_vid(adapter->netdev, vid);
4578 }
4579 }
4580 }
4581
4582 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4583 {
4584 struct e1000_mac_info *mac = &adapter->hw.mac;
4585
4586 mac->autoneg = 0;
4587
4588 /* Fiber NICs only allow 1000 gbps Full duplex */
4589 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4590 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4591 dev_err(&adapter->pdev->dev,
4592 "Unsupported Speed/Duplex configuration\n");
4593 return -EINVAL;
4594 }
4595
4596 switch (spddplx) {
4597 case SPEED_10 + DUPLEX_HALF:
4598 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4599 break;
4600 case SPEED_10 + DUPLEX_FULL:
4601 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4602 break;
4603 case SPEED_100 + DUPLEX_HALF:
4604 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4605 break;
4606 case SPEED_100 + DUPLEX_FULL:
4607 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4608 break;
4609 case SPEED_1000 + DUPLEX_FULL:
4610 mac->autoneg = 1;
4611 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4612 break;
4613 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4614 default:
4615 dev_err(&adapter->pdev->dev,
4616 "Unsupported Speed/Duplex configuration\n");
4617 return -EINVAL;
4618 }
4619 return 0;
4620 }
4621
4622
4623 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4624 {
4625 struct net_device *netdev = pci_get_drvdata(pdev);
4626 struct igb_adapter *adapter = netdev_priv(netdev);
4627 struct e1000_hw *hw = &adapter->hw;
4628 u32 ctrl, rctl, status;
4629 u32 wufc = adapter->wol;
4630 #ifdef CONFIG_PM
4631 int retval = 0;
4632 #endif
4633
4634 netif_device_detach(netdev);
4635
4636 if (netif_running(netdev))
4637 igb_close(netdev);
4638
4639 igb_reset_interrupt_capability(adapter);
4640
4641 igb_free_queues(adapter);
4642
4643 #ifdef CONFIG_PM
4644 retval = pci_save_state(pdev);
4645 if (retval)
4646 return retval;
4647 #endif
4648
4649 status = rd32(E1000_STATUS);
4650 if (status & E1000_STATUS_LU)
4651 wufc &= ~E1000_WUFC_LNKC;
4652
4653 if (wufc) {
4654 igb_setup_rctl(adapter);
4655 igb_set_multi(netdev);
4656
4657 /* turn on all-multi mode if wake on multicast is enabled */
4658 if (wufc & E1000_WUFC_MC) {
4659 rctl = rd32(E1000_RCTL);
4660 rctl |= E1000_RCTL_MPE;
4661 wr32(E1000_RCTL, rctl);
4662 }
4663
4664 ctrl = rd32(E1000_CTRL);
4665 /* advertise wake from D3Cold */
4666 #define E1000_CTRL_ADVD3WUC 0x00100000
4667 /* phy power management enable */
4668 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4669 ctrl |= E1000_CTRL_ADVD3WUC;
4670 wr32(E1000_CTRL, ctrl);
4671
4672 /* Allow time for pending master requests to run */
4673 igb_disable_pcie_master(&adapter->hw);
4674
4675 wr32(E1000_WUC, E1000_WUC_PME_EN);
4676 wr32(E1000_WUFC, wufc);
4677 } else {
4678 wr32(E1000_WUC, 0);
4679 wr32(E1000_WUFC, 0);
4680 }
4681
4682 /* make sure adapter isn't asleep if manageability/wol is enabled */
4683 if (wufc || adapter->en_mng_pt) {
4684 pci_enable_wake(pdev, PCI_D3hot, 1);
4685 pci_enable_wake(pdev, PCI_D3cold, 1);
4686 } else {
4687 igb_shutdown_fiber_serdes_link_82575(hw);
4688 pci_enable_wake(pdev, PCI_D3hot, 0);
4689 pci_enable_wake(pdev, PCI_D3cold, 0);
4690 }
4691
4692 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4693 * would have already happened in close and is redundant. */
4694 igb_release_hw_control(adapter);
4695
4696 pci_disable_device(pdev);
4697
4698 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4699
4700 return 0;
4701 }
4702
4703 #ifdef CONFIG_PM
4704 static int igb_resume(struct pci_dev *pdev)
4705 {
4706 struct net_device *netdev = pci_get_drvdata(pdev);
4707 struct igb_adapter *adapter = netdev_priv(netdev);
4708 struct e1000_hw *hw = &adapter->hw;
4709 u32 err;
4710
4711 pci_set_power_state(pdev, PCI_D0);
4712 pci_restore_state(pdev);
4713
4714 err = pci_enable_device_mem(pdev);
4715 if (err) {
4716 dev_err(&pdev->dev,
4717 "igb: Cannot enable PCI device from suspend\n");
4718 return err;
4719 }
4720 pci_set_master(pdev);
4721
4722 pci_enable_wake(pdev, PCI_D3hot, 0);
4723 pci_enable_wake(pdev, PCI_D3cold, 0);
4724
4725 igb_set_interrupt_capability(adapter);
4726
4727 if (igb_alloc_queues(adapter)) {
4728 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4729 return -ENOMEM;
4730 }
4731
4732 /* e1000_power_up_phy(adapter); */
4733
4734 igb_reset(adapter);
4735
4736 /* let the f/w know that the h/w is now under the control of the
4737 * driver. */
4738 igb_get_hw_control(adapter);
4739
4740 wr32(E1000_WUS, ~0);
4741
4742 if (netif_running(netdev)) {
4743 err = igb_open(netdev);
4744 if (err)
4745 return err;
4746 }
4747
4748 netif_device_attach(netdev);
4749
4750 return 0;
4751 }
4752 #endif
4753
4754 static void igb_shutdown(struct pci_dev *pdev)
4755 {
4756 igb_suspend(pdev, PMSG_SUSPEND);
4757 }
4758
4759 #ifdef CONFIG_NET_POLL_CONTROLLER
4760 /*
4761 * Polling 'interrupt' - used by things like netconsole to send skbs
4762 * without having to re-enable interrupts. It's not called while
4763 * the interrupt routine is executing.
4764 */
4765 static void igb_netpoll(struct net_device *netdev)
4766 {
4767 struct igb_adapter *adapter = netdev_priv(netdev);
4768 struct e1000_hw *hw = &adapter->hw;
4769 int i;
4770
4771 if (!adapter->msix_entries) {
4772 igb_irq_disable(adapter);
4773 napi_schedule(&adapter->rx_ring[0].napi);
4774 return;
4775 }
4776
4777 for (i = 0; i < adapter->num_tx_queues; i++) {
4778 struct igb_ring *tx_ring = &adapter->tx_ring[i];
4779 wr32(E1000_EIMC, tx_ring->eims_value);
4780 igb_clean_tx_irq(tx_ring);
4781 wr32(E1000_EIMS, tx_ring->eims_value);
4782 }
4783
4784 for (i = 0; i < adapter->num_rx_queues; i++) {
4785 struct igb_ring *rx_ring = &adapter->rx_ring[i];
4786 wr32(E1000_EIMC, rx_ring->eims_value);
4787 napi_schedule(&rx_ring->napi);
4788 }
4789 }
4790 #endif /* CONFIG_NET_POLL_CONTROLLER */
4791
4792 /**
4793 * igb_io_error_detected - called when PCI error is detected
4794 * @pdev: Pointer to PCI device
4795 * @state: The current pci connection state
4796 *
4797 * This function is called after a PCI bus error affecting
4798 * this device has been detected.
4799 */
4800 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4801 pci_channel_state_t state)
4802 {
4803 struct net_device *netdev = pci_get_drvdata(pdev);
4804 struct igb_adapter *adapter = netdev_priv(netdev);
4805
4806 netif_device_detach(netdev);
4807
4808 if (netif_running(netdev))
4809 igb_down(adapter);
4810 pci_disable_device(pdev);
4811
4812 /* Request a slot slot reset. */
4813 return PCI_ERS_RESULT_NEED_RESET;
4814 }
4815
4816 /**
4817 * igb_io_slot_reset - called after the pci bus has been reset.
4818 * @pdev: Pointer to PCI device
4819 *
4820 * Restart the card from scratch, as if from a cold-boot. Implementation
4821 * resembles the first-half of the igb_resume routine.
4822 */
4823 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4824 {
4825 struct net_device *netdev = pci_get_drvdata(pdev);
4826 struct igb_adapter *adapter = netdev_priv(netdev);
4827 struct e1000_hw *hw = &adapter->hw;
4828 pci_ers_result_t result;
4829 int err;
4830
4831 if (pci_enable_device_mem(pdev)) {
4832 dev_err(&pdev->dev,
4833 "Cannot re-enable PCI device after reset.\n");
4834 result = PCI_ERS_RESULT_DISCONNECT;
4835 } else {
4836 pci_set_master(pdev);
4837 pci_restore_state(pdev);
4838
4839 pci_enable_wake(pdev, PCI_D3hot, 0);
4840 pci_enable_wake(pdev, PCI_D3cold, 0);
4841
4842 igb_reset(adapter);
4843 wr32(E1000_WUS, ~0);
4844 result = PCI_ERS_RESULT_RECOVERED;
4845 }
4846
4847 err = pci_cleanup_aer_uncorrect_error_status(pdev);
4848 if (err) {
4849 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4850 "failed 0x%0x\n", err);
4851 /* non-fatal, continue */
4852 }
4853
4854 return result;
4855 }
4856
4857 /**
4858 * igb_io_resume - called when traffic can start flowing again.
4859 * @pdev: Pointer to PCI device
4860 *
4861 * This callback is called when the error recovery driver tells us that
4862 * its OK to resume normal operation. Implementation resembles the
4863 * second-half of the igb_resume routine.
4864 */
4865 static void igb_io_resume(struct pci_dev *pdev)
4866 {
4867 struct net_device *netdev = pci_get_drvdata(pdev);
4868 struct igb_adapter *adapter = netdev_priv(netdev);
4869
4870 if (netif_running(netdev)) {
4871 if (igb_up(adapter)) {
4872 dev_err(&pdev->dev, "igb_up failed after reset\n");
4873 return;
4874 }
4875 }
4876
4877 netif_device_attach(netdev);
4878
4879 /* let the f/w know that the h/w is now under the control of the
4880 * driver. */
4881 igb_get_hw_control(adapter);
4882 }
4883
4884 /* igb_main.c */
This page took 0.205274 seconds and 6 git commands to generate.