Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
50
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
60 };
61
62 static struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69 /* required last entry */
70 {0, }
71 };
72
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98 struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 #ifdef CONFIG_IGB_LRO
119 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
120 #endif
121 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
122 static void igb_tx_timeout(struct net_device *);
123 static void igb_reset_task(struct work_struct *);
124 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
125 static void igb_vlan_rx_add_vid(struct net_device *, u16);
126 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
127 static void igb_restore_vlan(struct igb_adapter *);
128
129 static int igb_suspend(struct pci_dev *, pm_message_t);
130 #ifdef CONFIG_PM
131 static int igb_resume(struct pci_dev *);
132 #endif
133 static void igb_shutdown(struct pci_dev *);
134 #ifdef CONFIG_IGB_DCA
135 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
136 static struct notifier_block dca_notifier = {
137 .notifier_call = igb_notify_dca,
138 .next = NULL,
139 .priority = 0
140 };
141 #endif
142
143 #ifdef CONFIG_NET_POLL_CONTROLLER
144 /* for netdump / net console */
145 static void igb_netpoll(struct net_device *);
146 #endif
147
148 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
149 pci_channel_state_t);
150 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
151 static void igb_io_resume(struct pci_dev *);
152
153 static struct pci_error_handlers igb_err_handler = {
154 .error_detected = igb_io_error_detected,
155 .slot_reset = igb_io_slot_reset,
156 .resume = igb_io_resume,
157 };
158
159
160 static struct pci_driver igb_driver = {
161 .name = igb_driver_name,
162 .id_table = igb_pci_tbl,
163 .probe = igb_probe,
164 .remove = __devexit_p(igb_remove),
165 #ifdef CONFIG_PM
166 /* Power Managment Hooks */
167 .suspend = igb_suspend,
168 .resume = igb_resume,
169 #endif
170 .shutdown = igb_shutdown,
171 .err_handler = &igb_err_handler
172 };
173
174 static int global_quad_port_a; /* global quad port a indication */
175
176 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
177 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
178 MODULE_LICENSE("GPL");
179 MODULE_VERSION(DRV_VERSION);
180
181 #ifdef DEBUG
182 /**
183 * igb_get_hw_dev_name - return device name string
184 * used by hardware layer to print debugging information
185 **/
186 char *igb_get_hw_dev_name(struct e1000_hw *hw)
187 {
188 struct igb_adapter *adapter = hw->back;
189 return adapter->netdev->name;
190 }
191 #endif
192
193 /**
194 * igb_init_module - Driver Registration Routine
195 *
196 * igb_init_module is the first routine called when the driver is
197 * loaded. All it does is register with the PCI subsystem.
198 **/
199 static int __init igb_init_module(void)
200 {
201 int ret;
202 printk(KERN_INFO "%s - version %s\n",
203 igb_driver_string, igb_driver_version);
204
205 printk(KERN_INFO "%s\n", igb_copyright);
206
207 global_quad_port_a = 0;
208
209 ret = pci_register_driver(&igb_driver);
210 #ifdef CONFIG_IGB_DCA
211 dca_register_notify(&dca_notifier);
212 #endif
213 return ret;
214 }
215
216 module_init(igb_init_module);
217
218 /**
219 * igb_exit_module - Driver Exit Cleanup Routine
220 *
221 * igb_exit_module is called just before the driver is removed
222 * from memory.
223 **/
224 static void __exit igb_exit_module(void)
225 {
226 #ifdef CONFIG_IGB_DCA
227 dca_unregister_notify(&dca_notifier);
228 #endif
229 pci_unregister_driver(&igb_driver);
230 }
231
232 module_exit(igb_exit_module);
233
234 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
235 /**
236 * igb_cache_ring_register - Descriptor ring to register mapping
237 * @adapter: board private structure to initialize
238 *
239 * Once we know the feature-set enabled for the device, we'll cache
240 * the register offset the descriptor ring is assigned to.
241 **/
242 static void igb_cache_ring_register(struct igb_adapter *adapter)
243 {
244 int i;
245
246 switch (adapter->hw.mac.type) {
247 case e1000_82576:
248 /* The queues are allocated for virtualization such that VF 0
249 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
250 * In order to avoid collision we start at the first free queue
251 * and continue consuming queues in the same sequence
252 */
253 for (i = 0; i < adapter->num_rx_queues; i++)
254 adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
255 for (i = 0; i < adapter->num_tx_queues; i++)
256 adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
257 break;
258 case e1000_82575:
259 default:
260 for (i = 0; i < adapter->num_rx_queues; i++)
261 adapter->rx_ring[i].reg_idx = i;
262 for (i = 0; i < adapter->num_tx_queues; i++)
263 adapter->tx_ring[i].reg_idx = i;
264 break;
265 }
266 }
267
268 /**
269 * igb_alloc_queues - Allocate memory for all rings
270 * @adapter: board private structure to initialize
271 *
272 * We allocate one ring per queue at run-time since we don't know the
273 * number of queues at compile-time.
274 **/
275 static int igb_alloc_queues(struct igb_adapter *adapter)
276 {
277 int i;
278
279 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
280 sizeof(struct igb_ring), GFP_KERNEL);
281 if (!adapter->tx_ring)
282 return -ENOMEM;
283
284 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
285 sizeof(struct igb_ring), GFP_KERNEL);
286 if (!adapter->rx_ring) {
287 kfree(adapter->tx_ring);
288 return -ENOMEM;
289 }
290
291 adapter->rx_ring->buddy = adapter->tx_ring;
292
293 for (i = 0; i < adapter->num_tx_queues; i++) {
294 struct igb_ring *ring = &(adapter->tx_ring[i]);
295 ring->count = adapter->tx_ring_count;
296 ring->adapter = adapter;
297 ring->queue_index = i;
298 }
299 for (i = 0; i < adapter->num_rx_queues; i++) {
300 struct igb_ring *ring = &(adapter->rx_ring[i]);
301 ring->count = adapter->rx_ring_count;
302 ring->adapter = adapter;
303 ring->queue_index = i;
304 ring->itr_register = E1000_ITR;
305
306 /* set a default napi handler for each rx_ring */
307 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
308 }
309
310 igb_cache_ring_register(adapter);
311 return 0;
312 }
313
314 static void igb_free_queues(struct igb_adapter *adapter)
315 {
316 int i;
317
318 for (i = 0; i < adapter->num_rx_queues; i++)
319 netif_napi_del(&adapter->rx_ring[i].napi);
320
321 kfree(adapter->tx_ring);
322 kfree(adapter->rx_ring);
323 }
324
325 #define IGB_N0_QUEUE -1
326 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
327 int tx_queue, int msix_vector)
328 {
329 u32 msixbm = 0;
330 struct e1000_hw *hw = &adapter->hw;
331 u32 ivar, index;
332
333 switch (hw->mac.type) {
334 case e1000_82575:
335 /* The 82575 assigns vectors using a bitmask, which matches the
336 bitmask for the EICR/EIMS/EIMC registers. To assign one
337 or more queues to a vector, we write the appropriate bits
338 into the MSIXBM register for that vector. */
339 if (rx_queue > IGB_N0_QUEUE) {
340 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
341 adapter->rx_ring[rx_queue].eims_value = msixbm;
342 }
343 if (tx_queue > IGB_N0_QUEUE) {
344 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
345 adapter->tx_ring[tx_queue].eims_value =
346 E1000_EICR_TX_QUEUE0 << tx_queue;
347 }
348 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
349 break;
350 case e1000_82576:
351 /* 82576 uses a table-based method for assigning vectors.
352 Each queue has a single entry in the table to which we write
353 a vector number along with a "valid" bit. Sadly, the layout
354 of the table is somewhat counterintuitive. */
355 if (rx_queue > IGB_N0_QUEUE) {
356 index = (rx_queue >> 1);
357 ivar = array_rd32(E1000_IVAR0, index);
358 if (rx_queue & 0x1) {
359 /* vector goes into third byte of register */
360 ivar = ivar & 0xFF00FFFF;
361 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
362 } else {
363 /* vector goes into low byte of register */
364 ivar = ivar & 0xFFFFFF00;
365 ivar |= msix_vector | E1000_IVAR_VALID;
366 }
367 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
368 array_wr32(E1000_IVAR0, index, ivar);
369 }
370 if (tx_queue > IGB_N0_QUEUE) {
371 index = (tx_queue >> 1);
372 ivar = array_rd32(E1000_IVAR0, index);
373 if (tx_queue & 0x1) {
374 /* vector goes into high byte of register */
375 ivar = ivar & 0x00FFFFFF;
376 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
377 } else {
378 /* vector goes into second byte of register */
379 ivar = ivar & 0xFFFF00FF;
380 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
381 }
382 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
383 array_wr32(E1000_IVAR0, index, ivar);
384 }
385 break;
386 default:
387 BUG();
388 break;
389 }
390 }
391
392 /**
393 * igb_configure_msix - Configure MSI-X hardware
394 *
395 * igb_configure_msix sets up the hardware to properly
396 * generate MSI-X interrupts.
397 **/
398 static void igb_configure_msix(struct igb_adapter *adapter)
399 {
400 u32 tmp;
401 int i, vector = 0;
402 struct e1000_hw *hw = &adapter->hw;
403
404 adapter->eims_enable_mask = 0;
405 if (hw->mac.type == e1000_82576)
406 /* Turn on MSI-X capability first, or our settings
407 * won't stick. And it will take days to debug. */
408 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
409 E1000_GPIE_PBA | E1000_GPIE_EIAME |
410 E1000_GPIE_NSICR);
411
412 for (i = 0; i < adapter->num_tx_queues; i++) {
413 struct igb_ring *tx_ring = &adapter->tx_ring[i];
414 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
415 adapter->eims_enable_mask |= tx_ring->eims_value;
416 if (tx_ring->itr_val)
417 writel(tx_ring->itr_val,
418 hw->hw_addr + tx_ring->itr_register);
419 else
420 writel(1, hw->hw_addr + tx_ring->itr_register);
421 }
422
423 for (i = 0; i < adapter->num_rx_queues; i++) {
424 struct igb_ring *rx_ring = &adapter->rx_ring[i];
425 rx_ring->buddy = NULL;
426 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
427 adapter->eims_enable_mask |= rx_ring->eims_value;
428 if (rx_ring->itr_val)
429 writel(rx_ring->itr_val,
430 hw->hw_addr + rx_ring->itr_register);
431 else
432 writel(1, hw->hw_addr + rx_ring->itr_register);
433 }
434
435
436 /* set vector for other causes, i.e. link changes */
437 switch (hw->mac.type) {
438 case e1000_82575:
439 array_wr32(E1000_MSIXBM(0), vector++,
440 E1000_EIMS_OTHER);
441
442 tmp = rd32(E1000_CTRL_EXT);
443 /* enable MSI-X PBA support*/
444 tmp |= E1000_CTRL_EXT_PBA_CLR;
445
446 /* Auto-Mask interrupts upon ICR read. */
447 tmp |= E1000_CTRL_EXT_EIAME;
448 tmp |= E1000_CTRL_EXT_IRCA;
449
450 wr32(E1000_CTRL_EXT, tmp);
451 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
452 adapter->eims_other = E1000_EIMS_OTHER;
453
454 break;
455
456 case e1000_82576:
457 tmp = (vector++ | E1000_IVAR_VALID) << 8;
458 wr32(E1000_IVAR_MISC, tmp);
459
460 adapter->eims_enable_mask = (1 << (vector)) - 1;
461 adapter->eims_other = 1 << (vector - 1);
462 break;
463 default:
464 /* do nothing, since nothing else supports MSI-X */
465 break;
466 } /* switch (hw->mac.type) */
467 wrfl();
468 }
469
470 /**
471 * igb_request_msix - Initialize MSI-X interrupts
472 *
473 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
474 * kernel.
475 **/
476 static int igb_request_msix(struct igb_adapter *adapter)
477 {
478 struct net_device *netdev = adapter->netdev;
479 int i, err = 0, vector = 0;
480
481 vector = 0;
482
483 for (i = 0; i < adapter->num_tx_queues; i++) {
484 struct igb_ring *ring = &(adapter->tx_ring[i]);
485 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
486 err = request_irq(adapter->msix_entries[vector].vector,
487 &igb_msix_tx, 0, ring->name,
488 &(adapter->tx_ring[i]));
489 if (err)
490 goto out;
491 ring->itr_register = E1000_EITR(0) + (vector << 2);
492 ring->itr_val = 976; /* ~4000 ints/sec */
493 vector++;
494 }
495 for (i = 0; i < adapter->num_rx_queues; i++) {
496 struct igb_ring *ring = &(adapter->rx_ring[i]);
497 if (strlen(netdev->name) < (IFNAMSIZ - 5))
498 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
499 else
500 memcpy(ring->name, netdev->name, IFNAMSIZ);
501 err = request_irq(adapter->msix_entries[vector].vector,
502 &igb_msix_rx, 0, ring->name,
503 &(adapter->rx_ring[i]));
504 if (err)
505 goto out;
506 ring->itr_register = E1000_EITR(0) + (vector << 2);
507 ring->itr_val = adapter->itr;
508 /* overwrite the poll routine for MSIX, we've already done
509 * netif_napi_add */
510 ring->napi.poll = &igb_clean_rx_ring_msix;
511 vector++;
512 }
513
514 err = request_irq(adapter->msix_entries[vector].vector,
515 &igb_msix_other, 0, netdev->name, netdev);
516 if (err)
517 goto out;
518
519 igb_configure_msix(adapter);
520 return 0;
521 out:
522 return err;
523 }
524
525 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
526 {
527 if (adapter->msix_entries) {
528 pci_disable_msix(adapter->pdev);
529 kfree(adapter->msix_entries);
530 adapter->msix_entries = NULL;
531 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
532 pci_disable_msi(adapter->pdev);
533 return;
534 }
535
536
537 /**
538 * igb_set_interrupt_capability - set MSI or MSI-X if supported
539 *
540 * Attempt to configure interrupts using the best available
541 * capabilities of the hardware and kernel.
542 **/
543 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
544 {
545 int err;
546 int numvecs, i;
547
548 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
549 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
550 GFP_KERNEL);
551 if (!adapter->msix_entries)
552 goto msi_only;
553
554 for (i = 0; i < numvecs; i++)
555 adapter->msix_entries[i].entry = i;
556
557 err = pci_enable_msix(adapter->pdev,
558 adapter->msix_entries,
559 numvecs);
560 if (err == 0)
561 goto out;
562
563 igb_reset_interrupt_capability(adapter);
564
565 /* If we can't do MSI-X, try MSI */
566 msi_only:
567 adapter->num_rx_queues = 1;
568 adapter->num_tx_queues = 1;
569 if (!pci_enable_msi(adapter->pdev))
570 adapter->flags |= IGB_FLAG_HAS_MSI;
571 out:
572 /* Notify the stack of the (possibly) reduced Tx Queue count. */
573 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
574 return;
575 }
576
577 /**
578 * igb_request_irq - initialize interrupts
579 *
580 * Attempts to configure interrupts using the best available
581 * capabilities of the hardware and kernel.
582 **/
583 static int igb_request_irq(struct igb_adapter *adapter)
584 {
585 struct net_device *netdev = adapter->netdev;
586 struct e1000_hw *hw = &adapter->hw;
587 int err = 0;
588
589 if (adapter->msix_entries) {
590 err = igb_request_msix(adapter);
591 if (!err)
592 goto request_done;
593 /* fall back to MSI */
594 igb_reset_interrupt_capability(adapter);
595 if (!pci_enable_msi(adapter->pdev))
596 adapter->flags |= IGB_FLAG_HAS_MSI;
597 igb_free_all_tx_resources(adapter);
598 igb_free_all_rx_resources(adapter);
599 adapter->num_rx_queues = 1;
600 igb_alloc_queues(adapter);
601 } else {
602 switch (hw->mac.type) {
603 case e1000_82575:
604 wr32(E1000_MSIXBM(0),
605 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
606 break;
607 case e1000_82576:
608 wr32(E1000_IVAR0, E1000_IVAR_VALID);
609 break;
610 default:
611 break;
612 }
613 }
614
615 if (adapter->flags & IGB_FLAG_HAS_MSI) {
616 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
617 netdev->name, netdev);
618 if (!err)
619 goto request_done;
620 /* fall back to legacy interrupts */
621 igb_reset_interrupt_capability(adapter);
622 adapter->flags &= ~IGB_FLAG_HAS_MSI;
623 }
624
625 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
626 netdev->name, netdev);
627
628 if (err)
629 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
630 err);
631
632 request_done:
633 return err;
634 }
635
636 static void igb_free_irq(struct igb_adapter *adapter)
637 {
638 struct net_device *netdev = adapter->netdev;
639
640 if (adapter->msix_entries) {
641 int vector = 0, i;
642
643 for (i = 0; i < adapter->num_tx_queues; i++)
644 free_irq(adapter->msix_entries[vector++].vector,
645 &(adapter->tx_ring[i]));
646 for (i = 0; i < adapter->num_rx_queues; i++)
647 free_irq(adapter->msix_entries[vector++].vector,
648 &(adapter->rx_ring[i]));
649
650 free_irq(adapter->msix_entries[vector++].vector, netdev);
651 return;
652 }
653
654 free_irq(adapter->pdev->irq, netdev);
655 }
656
657 /**
658 * igb_irq_disable - Mask off interrupt generation on the NIC
659 * @adapter: board private structure
660 **/
661 static void igb_irq_disable(struct igb_adapter *adapter)
662 {
663 struct e1000_hw *hw = &adapter->hw;
664
665 if (adapter->msix_entries) {
666 wr32(E1000_EIAM, 0);
667 wr32(E1000_EIMC, ~0);
668 wr32(E1000_EIAC, 0);
669 }
670
671 wr32(E1000_IAM, 0);
672 wr32(E1000_IMC, ~0);
673 wrfl();
674 synchronize_irq(adapter->pdev->irq);
675 }
676
677 /**
678 * igb_irq_enable - Enable default interrupt generation settings
679 * @adapter: board private structure
680 **/
681 static void igb_irq_enable(struct igb_adapter *adapter)
682 {
683 struct e1000_hw *hw = &adapter->hw;
684
685 if (adapter->msix_entries) {
686 wr32(E1000_EIAC, adapter->eims_enable_mask);
687 wr32(E1000_EIAM, adapter->eims_enable_mask);
688 wr32(E1000_EIMS, adapter->eims_enable_mask);
689 wr32(E1000_IMS, E1000_IMS_LSC);
690 } else {
691 wr32(E1000_IMS, IMS_ENABLE_MASK);
692 wr32(E1000_IAM, IMS_ENABLE_MASK);
693 }
694 }
695
696 static void igb_update_mng_vlan(struct igb_adapter *adapter)
697 {
698 struct net_device *netdev = adapter->netdev;
699 u16 vid = adapter->hw.mng_cookie.vlan_id;
700 u16 old_vid = adapter->mng_vlan_id;
701 if (adapter->vlgrp) {
702 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
703 if (adapter->hw.mng_cookie.status &
704 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
705 igb_vlan_rx_add_vid(netdev, vid);
706 adapter->mng_vlan_id = vid;
707 } else
708 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
709
710 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
711 (vid != old_vid) &&
712 !vlan_group_get_device(adapter->vlgrp, old_vid))
713 igb_vlan_rx_kill_vid(netdev, old_vid);
714 } else
715 adapter->mng_vlan_id = vid;
716 }
717 }
718
719 /**
720 * igb_release_hw_control - release control of the h/w to f/w
721 * @adapter: address of board private structure
722 *
723 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
724 * For ASF and Pass Through versions of f/w this means that the
725 * driver is no longer loaded.
726 *
727 **/
728 static void igb_release_hw_control(struct igb_adapter *adapter)
729 {
730 struct e1000_hw *hw = &adapter->hw;
731 u32 ctrl_ext;
732
733 /* Let firmware take over control of h/w */
734 ctrl_ext = rd32(E1000_CTRL_EXT);
735 wr32(E1000_CTRL_EXT,
736 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
737 }
738
739
740 /**
741 * igb_get_hw_control - get control of the h/w from f/w
742 * @adapter: address of board private structure
743 *
744 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
745 * For ASF and Pass Through versions of f/w this means that
746 * the driver is loaded.
747 *
748 **/
749 static void igb_get_hw_control(struct igb_adapter *adapter)
750 {
751 struct e1000_hw *hw = &adapter->hw;
752 u32 ctrl_ext;
753
754 /* Let firmware know the driver has taken over */
755 ctrl_ext = rd32(E1000_CTRL_EXT);
756 wr32(E1000_CTRL_EXT,
757 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
758 }
759
760 /**
761 * igb_configure - configure the hardware for RX and TX
762 * @adapter: private board structure
763 **/
764 static void igb_configure(struct igb_adapter *adapter)
765 {
766 struct net_device *netdev = adapter->netdev;
767 int i;
768
769 igb_get_hw_control(adapter);
770 igb_set_multi(netdev);
771
772 igb_restore_vlan(adapter);
773
774 igb_configure_tx(adapter);
775 igb_setup_rctl(adapter);
776 igb_configure_rx(adapter);
777
778 igb_rx_fifo_flush_82575(&adapter->hw);
779
780 /* call IGB_DESC_UNUSED which always leaves
781 * at least 1 descriptor unused to make sure
782 * next_to_use != next_to_clean */
783 for (i = 0; i < adapter->num_rx_queues; i++) {
784 struct igb_ring *ring = &adapter->rx_ring[i];
785 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
786 }
787
788
789 adapter->tx_queue_len = netdev->tx_queue_len;
790 }
791
792
793 /**
794 * igb_up - Open the interface and prepare it to handle traffic
795 * @adapter: board private structure
796 **/
797
798 int igb_up(struct igb_adapter *adapter)
799 {
800 struct e1000_hw *hw = &adapter->hw;
801 int i;
802
803 /* hardware has been reset, we need to reload some things */
804 igb_configure(adapter);
805
806 clear_bit(__IGB_DOWN, &adapter->state);
807
808 for (i = 0; i < adapter->num_rx_queues; i++)
809 napi_enable(&adapter->rx_ring[i].napi);
810 if (adapter->msix_entries)
811 igb_configure_msix(adapter);
812
813 /* Clear any pending interrupts. */
814 rd32(E1000_ICR);
815 igb_irq_enable(adapter);
816
817 /* Fire a link change interrupt to start the watchdog. */
818 wr32(E1000_ICS, E1000_ICS_LSC);
819 return 0;
820 }
821
822 void igb_down(struct igb_adapter *adapter)
823 {
824 struct e1000_hw *hw = &adapter->hw;
825 struct net_device *netdev = adapter->netdev;
826 u32 tctl, rctl;
827 int i;
828
829 /* signal that we're down so the interrupt handler does not
830 * reschedule our watchdog timer */
831 set_bit(__IGB_DOWN, &adapter->state);
832
833 /* disable receives in the hardware */
834 rctl = rd32(E1000_RCTL);
835 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
836 /* flush and sleep below */
837
838 netif_tx_stop_all_queues(netdev);
839
840 /* disable transmits in the hardware */
841 tctl = rd32(E1000_TCTL);
842 tctl &= ~E1000_TCTL_EN;
843 wr32(E1000_TCTL, tctl);
844 /* flush both disables and wait for them to finish */
845 wrfl();
846 msleep(10);
847
848 for (i = 0; i < adapter->num_rx_queues; i++)
849 napi_disable(&adapter->rx_ring[i].napi);
850
851 igb_irq_disable(adapter);
852
853 del_timer_sync(&adapter->watchdog_timer);
854 del_timer_sync(&adapter->phy_info_timer);
855
856 netdev->tx_queue_len = adapter->tx_queue_len;
857 netif_carrier_off(netdev);
858 adapter->link_speed = 0;
859 adapter->link_duplex = 0;
860
861 if (!pci_channel_offline(adapter->pdev))
862 igb_reset(adapter);
863 igb_clean_all_tx_rings(adapter);
864 igb_clean_all_rx_rings(adapter);
865 }
866
867 void igb_reinit_locked(struct igb_adapter *adapter)
868 {
869 WARN_ON(in_interrupt());
870 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
871 msleep(1);
872 igb_down(adapter);
873 igb_up(adapter);
874 clear_bit(__IGB_RESETTING, &adapter->state);
875 }
876
877 void igb_reset(struct igb_adapter *adapter)
878 {
879 struct e1000_hw *hw = &adapter->hw;
880 struct e1000_mac_info *mac = &hw->mac;
881 struct e1000_fc_info *fc = &hw->fc;
882 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
883 u16 hwm;
884
885 /* Repartition Pba for greater than 9k mtu
886 * To take effect CTRL.RST is required.
887 */
888 if (mac->type != e1000_82576) {
889 pba = E1000_PBA_34K;
890 }
891 else {
892 pba = E1000_PBA_64K;
893 }
894
895 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
896 (mac->type < e1000_82576)) {
897 /* adjust PBA for jumbo frames */
898 wr32(E1000_PBA, pba);
899
900 /* To maintain wire speed transmits, the Tx FIFO should be
901 * large enough to accommodate two full transmit packets,
902 * rounded up to the next 1KB and expressed in KB. Likewise,
903 * the Rx FIFO should be large enough to accommodate at least
904 * one full receive packet and is similarly rounded up and
905 * expressed in KB. */
906 pba = rd32(E1000_PBA);
907 /* upper 16 bits has Tx packet buffer allocation size in KB */
908 tx_space = pba >> 16;
909 /* lower 16 bits has Rx packet buffer allocation size in KB */
910 pba &= 0xffff;
911 /* the tx fifo also stores 16 bytes of information about the tx
912 * but don't include ethernet FCS because hardware appends it */
913 min_tx_space = (adapter->max_frame_size +
914 sizeof(struct e1000_tx_desc) -
915 ETH_FCS_LEN) * 2;
916 min_tx_space = ALIGN(min_tx_space, 1024);
917 min_tx_space >>= 10;
918 /* software strips receive CRC, so leave room for it */
919 min_rx_space = adapter->max_frame_size;
920 min_rx_space = ALIGN(min_rx_space, 1024);
921 min_rx_space >>= 10;
922
923 /* If current Tx allocation is less than the min Tx FIFO size,
924 * and the min Tx FIFO size is less than the current Rx FIFO
925 * allocation, take space away from current Rx allocation */
926 if (tx_space < min_tx_space &&
927 ((min_tx_space - tx_space) < pba)) {
928 pba = pba - (min_tx_space - tx_space);
929
930 /* if short on rx space, rx wins and must trump tx
931 * adjustment */
932 if (pba < min_rx_space)
933 pba = min_rx_space;
934 }
935 wr32(E1000_PBA, pba);
936 }
937
938 /* flow control settings */
939 /* The high water mark must be low enough to fit one full frame
940 * (or the size used for early receive) above it in the Rx FIFO.
941 * Set it to the lower of:
942 * - 90% of the Rx FIFO size, or
943 * - the full Rx FIFO size minus one full frame */
944 hwm = min(((pba << 10) * 9 / 10),
945 ((pba << 10) - 2 * adapter->max_frame_size));
946
947 if (mac->type < e1000_82576) {
948 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
949 fc->low_water = fc->high_water - 8;
950 } else {
951 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
952 fc->low_water = fc->high_water - 16;
953 }
954 fc->pause_time = 0xFFFF;
955 fc->send_xon = 1;
956 fc->type = fc->original_type;
957
958 /* Allow time for pending master requests to run */
959 adapter->hw.mac.ops.reset_hw(&adapter->hw);
960 wr32(E1000_WUC, 0);
961
962 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
963 dev_err(&adapter->pdev->dev, "Hardware Error\n");
964
965 igb_update_mng_vlan(adapter);
966
967 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
968 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
969
970 igb_reset_adaptive(&adapter->hw);
971 igb_get_phy_info(&adapter->hw);
972 }
973
974 /**
975 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
976 * @pdev: PCI device information struct
977 *
978 * Returns true if an adapter needs ioport resources
979 **/
980 static int igb_is_need_ioport(struct pci_dev *pdev)
981 {
982 switch (pdev->device) {
983 /* Currently there are no adapters that need ioport resources */
984 default:
985 return false;
986 }
987 }
988
989 static const struct net_device_ops igb_netdev_ops = {
990 .ndo_open = igb_open,
991 .ndo_stop = igb_close,
992 .ndo_start_xmit = igb_xmit_frame_adv,
993 .ndo_get_stats = igb_get_stats,
994 .ndo_set_multicast_list = igb_set_multi,
995 .ndo_set_mac_address = igb_set_mac,
996 .ndo_change_mtu = igb_change_mtu,
997 .ndo_do_ioctl = igb_ioctl,
998 .ndo_tx_timeout = igb_tx_timeout,
999 .ndo_validate_addr = eth_validate_addr,
1000 .ndo_vlan_rx_register = igb_vlan_rx_register,
1001 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1002 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1003 #ifdef CONFIG_NET_POLL_CONTROLLER
1004 .ndo_poll_controller = igb_netpoll,
1005 #endif
1006 };
1007
1008 /**
1009 * igb_probe - Device Initialization Routine
1010 * @pdev: PCI device information struct
1011 * @ent: entry in igb_pci_tbl
1012 *
1013 * Returns 0 on success, negative on failure
1014 *
1015 * igb_probe initializes an adapter identified by a pci_dev structure.
1016 * The OS initialization, configuring of the adapter private structure,
1017 * and a hardware reset occur.
1018 **/
1019 static int __devinit igb_probe(struct pci_dev *pdev,
1020 const struct pci_device_id *ent)
1021 {
1022 struct net_device *netdev;
1023 struct igb_adapter *adapter;
1024 struct e1000_hw *hw;
1025 struct pci_dev *us_dev;
1026 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1027 unsigned long mmio_start, mmio_len;
1028 int i, err, pci_using_dac, pos;
1029 u16 eeprom_data = 0, state = 0;
1030 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1031 u32 part_num;
1032 int bars, need_ioport;
1033
1034 /* do not allocate ioport bars when not needed */
1035 need_ioport = igb_is_need_ioport(pdev);
1036 if (need_ioport) {
1037 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1038 err = pci_enable_device(pdev);
1039 } else {
1040 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1041 err = pci_enable_device_mem(pdev);
1042 }
1043 if (err)
1044 return err;
1045
1046 pci_using_dac = 0;
1047 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1048 if (!err) {
1049 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1050 if (!err)
1051 pci_using_dac = 1;
1052 } else {
1053 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1054 if (err) {
1055 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1056 if (err) {
1057 dev_err(&pdev->dev, "No usable DMA "
1058 "configuration, aborting\n");
1059 goto err_dma;
1060 }
1061 }
1062 }
1063
1064 /* 82575 requires that the pci-e link partner disable the L0s state */
1065 switch (pdev->device) {
1066 case E1000_DEV_ID_82575EB_COPPER:
1067 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1068 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1069 us_dev = pdev->bus->self;
1070 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1071 if (pos) {
1072 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1073 &state);
1074 state &= ~PCIE_LINK_STATE_L0S;
1075 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1076 state);
1077 dev_info(&pdev->dev,
1078 "Disabling ASPM L0s upstream switch port %s\n",
1079 pci_name(us_dev));
1080 }
1081 default:
1082 break;
1083 }
1084
1085 err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1086 if (err)
1087 goto err_pci_reg;
1088
1089 err = pci_enable_pcie_error_reporting(pdev);
1090 if (err) {
1091 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1092 "0x%x\n", err);
1093 /* non-fatal, continue */
1094 }
1095
1096 pci_set_master(pdev);
1097 pci_save_state(pdev);
1098
1099 err = -ENOMEM;
1100 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1101 if (!netdev)
1102 goto err_alloc_etherdev;
1103
1104 SET_NETDEV_DEV(netdev, &pdev->dev);
1105
1106 pci_set_drvdata(pdev, netdev);
1107 adapter = netdev_priv(netdev);
1108 adapter->netdev = netdev;
1109 adapter->pdev = pdev;
1110 hw = &adapter->hw;
1111 hw->back = adapter;
1112 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1113 adapter->bars = bars;
1114 adapter->need_ioport = need_ioport;
1115
1116 mmio_start = pci_resource_start(pdev, 0);
1117 mmio_len = pci_resource_len(pdev, 0);
1118
1119 err = -EIO;
1120 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1121 if (!adapter->hw.hw_addr)
1122 goto err_ioremap;
1123
1124 netdev->netdev_ops = &igb_netdev_ops;
1125 igb_set_ethtool_ops(netdev);
1126 netdev->watchdog_timeo = 5 * HZ;
1127
1128 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1129
1130 netdev->mem_start = mmio_start;
1131 netdev->mem_end = mmio_start + mmio_len;
1132
1133 /* PCI config space info */
1134 hw->vendor_id = pdev->vendor;
1135 hw->device_id = pdev->device;
1136 hw->revision_id = pdev->revision;
1137 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1138 hw->subsystem_device_id = pdev->subsystem_device;
1139
1140 /* setup the private structure */
1141 hw->back = adapter;
1142 /* Copy the default MAC, PHY and NVM function pointers */
1143 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1144 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1145 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1146 /* Initialize skew-specific constants */
1147 err = ei->get_invariants(hw);
1148 if (err)
1149 goto err_hw_init;
1150
1151 err = igb_sw_init(adapter);
1152 if (err)
1153 goto err_sw_init;
1154
1155 igb_get_bus_info_pcie(hw);
1156
1157 /* set flags */
1158 switch (hw->mac.type) {
1159 case e1000_82576:
1160 case e1000_82575:
1161 adapter->flags |= IGB_FLAG_HAS_DCA;
1162 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1163 break;
1164 default:
1165 break;
1166 }
1167
1168 hw->phy.autoneg_wait_to_complete = false;
1169 hw->mac.adaptive_ifs = true;
1170
1171 /* Copper options */
1172 if (hw->phy.media_type == e1000_media_type_copper) {
1173 hw->phy.mdix = AUTO_ALL_MODES;
1174 hw->phy.disable_polarity_correction = false;
1175 hw->phy.ms_type = e1000_ms_hw_default;
1176 }
1177
1178 if (igb_check_reset_block(hw))
1179 dev_info(&pdev->dev,
1180 "PHY reset is blocked due to SOL/IDER session.\n");
1181
1182 netdev->features = NETIF_F_SG |
1183 NETIF_F_HW_CSUM |
1184 NETIF_F_HW_VLAN_TX |
1185 NETIF_F_HW_VLAN_RX |
1186 NETIF_F_HW_VLAN_FILTER;
1187
1188 netdev->features |= NETIF_F_TSO;
1189 netdev->features |= NETIF_F_TSO6;
1190
1191 #ifdef CONFIG_IGB_LRO
1192 netdev->features |= NETIF_F_LRO;
1193 #endif
1194
1195 netdev->vlan_features |= NETIF_F_TSO;
1196 netdev->vlan_features |= NETIF_F_TSO6;
1197 netdev->vlan_features |= NETIF_F_HW_CSUM;
1198 netdev->vlan_features |= NETIF_F_SG;
1199
1200 if (pci_using_dac)
1201 netdev->features |= NETIF_F_HIGHDMA;
1202
1203 netdev->features |= NETIF_F_LLTX;
1204 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1205
1206 /* before reading the NVM, reset the controller to put the device in a
1207 * known good starting state */
1208 hw->mac.ops.reset_hw(hw);
1209
1210 /* make sure the NVM is good */
1211 if (igb_validate_nvm_checksum(hw) < 0) {
1212 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1213 err = -EIO;
1214 goto err_eeprom;
1215 }
1216
1217 /* copy the MAC address out of the NVM */
1218 if (hw->mac.ops.read_mac_addr(hw))
1219 dev_err(&pdev->dev, "NVM Read Error\n");
1220
1221 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1222 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1223
1224 if (!is_valid_ether_addr(netdev->perm_addr)) {
1225 dev_err(&pdev->dev, "Invalid MAC Address\n");
1226 err = -EIO;
1227 goto err_eeprom;
1228 }
1229
1230 init_timer(&adapter->watchdog_timer);
1231 adapter->watchdog_timer.function = &igb_watchdog;
1232 adapter->watchdog_timer.data = (unsigned long) adapter;
1233
1234 init_timer(&adapter->phy_info_timer);
1235 adapter->phy_info_timer.function = &igb_update_phy_info;
1236 adapter->phy_info_timer.data = (unsigned long) adapter;
1237
1238 INIT_WORK(&adapter->reset_task, igb_reset_task);
1239 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1240
1241 /* Initialize link & ring properties that are user-changeable */
1242 adapter->tx_ring->count = 256;
1243 for (i = 0; i < adapter->num_tx_queues; i++)
1244 adapter->tx_ring[i].count = adapter->tx_ring->count;
1245 adapter->rx_ring->count = 256;
1246 for (i = 0; i < adapter->num_rx_queues; i++)
1247 adapter->rx_ring[i].count = adapter->rx_ring->count;
1248
1249 adapter->fc_autoneg = true;
1250 hw->mac.autoneg = true;
1251 hw->phy.autoneg_advertised = 0x2f;
1252
1253 hw->fc.original_type = e1000_fc_default;
1254 hw->fc.type = e1000_fc_default;
1255
1256 adapter->itr_setting = 3;
1257 adapter->itr = IGB_START_ITR;
1258
1259 igb_validate_mdi_setting(hw);
1260
1261 adapter->rx_csum = 1;
1262
1263 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1264 * enable the ACPI Magic Packet filter
1265 */
1266
1267 if (hw->bus.func == 0 ||
1268 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1269 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1270 &eeprom_data);
1271
1272 if (eeprom_data & eeprom_apme_mask)
1273 adapter->eeprom_wol |= E1000_WUFC_MAG;
1274
1275 /* now that we have the eeprom settings, apply the special cases where
1276 * the eeprom may be wrong or the board simply won't support wake on
1277 * lan on a particular port */
1278 switch (pdev->device) {
1279 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1280 adapter->eeprom_wol = 0;
1281 break;
1282 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1283 case E1000_DEV_ID_82576_FIBER:
1284 case E1000_DEV_ID_82576_SERDES:
1285 /* Wake events only supported on port A for dual fiber
1286 * regardless of eeprom setting */
1287 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1288 adapter->eeprom_wol = 0;
1289 break;
1290 }
1291
1292 /* initialize the wol settings based on the eeprom settings */
1293 adapter->wol = adapter->eeprom_wol;
1294 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1295
1296 /* reset the hardware with the new settings */
1297 igb_reset(adapter);
1298
1299 /* let the f/w know that the h/w is now under the control of the
1300 * driver. */
1301 igb_get_hw_control(adapter);
1302
1303 /* tell the stack to leave us alone until igb_open() is called */
1304 netif_carrier_off(netdev);
1305 netif_tx_stop_all_queues(netdev);
1306
1307 strcpy(netdev->name, "eth%d");
1308 err = register_netdev(netdev);
1309 if (err)
1310 goto err_register;
1311
1312 #ifdef CONFIG_IGB_DCA
1313 if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1314 (dca_add_requester(&pdev->dev) == 0)) {
1315 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1316 dev_info(&pdev->dev, "DCA enabled\n");
1317 /* Always use CB2 mode, difference is masked
1318 * in the CB driver. */
1319 wr32(E1000_DCA_CTRL, 2);
1320 igb_setup_dca(adapter);
1321 }
1322 #endif
1323
1324 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1325 /* print bus type/speed/width info */
1326 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1327 netdev->name,
1328 ((hw->bus.speed == e1000_bus_speed_2500)
1329 ? "2.5Gb/s" : "unknown"),
1330 ((hw->bus.width == e1000_bus_width_pcie_x4)
1331 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1332 ? "Width x1" : "unknown"),
1333 netdev->dev_addr);
1334
1335 igb_read_part_num(hw, &part_num);
1336 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1337 (part_num >> 8), (part_num & 0xff));
1338
1339 dev_info(&pdev->dev,
1340 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1341 adapter->msix_entries ? "MSI-X" :
1342 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1343 adapter->num_rx_queues, adapter->num_tx_queues);
1344
1345 return 0;
1346
1347 err_register:
1348 igb_release_hw_control(adapter);
1349 err_eeprom:
1350 if (!igb_check_reset_block(hw))
1351 igb_reset_phy(hw);
1352
1353 if (hw->flash_address)
1354 iounmap(hw->flash_address);
1355
1356 igb_remove_device(hw);
1357 igb_free_queues(adapter);
1358 err_sw_init:
1359 err_hw_init:
1360 iounmap(hw->hw_addr);
1361 err_ioremap:
1362 free_netdev(netdev);
1363 err_alloc_etherdev:
1364 pci_release_selected_regions(pdev, bars);
1365 err_pci_reg:
1366 err_dma:
1367 pci_disable_device(pdev);
1368 return err;
1369 }
1370
1371 /**
1372 * igb_remove - Device Removal Routine
1373 * @pdev: PCI device information struct
1374 *
1375 * igb_remove is called by the PCI subsystem to alert the driver
1376 * that it should release a PCI device. The could be caused by a
1377 * Hot-Plug event, or because the driver is going to be removed from
1378 * memory.
1379 **/
1380 static void __devexit igb_remove(struct pci_dev *pdev)
1381 {
1382 struct net_device *netdev = pci_get_drvdata(pdev);
1383 struct igb_adapter *adapter = netdev_priv(netdev);
1384 #ifdef CONFIG_IGB_DCA
1385 struct e1000_hw *hw = &adapter->hw;
1386 #endif
1387 int err;
1388
1389 /* flush_scheduled work may reschedule our watchdog task, so
1390 * explicitly disable watchdog tasks from being rescheduled */
1391 set_bit(__IGB_DOWN, &adapter->state);
1392 del_timer_sync(&adapter->watchdog_timer);
1393 del_timer_sync(&adapter->phy_info_timer);
1394
1395 flush_scheduled_work();
1396
1397 #ifdef CONFIG_IGB_DCA
1398 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1399 dev_info(&pdev->dev, "DCA disabled\n");
1400 dca_remove_requester(&pdev->dev);
1401 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1402 wr32(E1000_DCA_CTRL, 1);
1403 }
1404 #endif
1405
1406 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1407 * would have already happened in close and is redundant. */
1408 igb_release_hw_control(adapter);
1409
1410 unregister_netdev(netdev);
1411
1412 if (!igb_check_reset_block(&adapter->hw))
1413 igb_reset_phy(&adapter->hw);
1414
1415 igb_remove_device(&adapter->hw);
1416 igb_reset_interrupt_capability(adapter);
1417
1418 igb_free_queues(adapter);
1419
1420 iounmap(adapter->hw.hw_addr);
1421 if (adapter->hw.flash_address)
1422 iounmap(adapter->hw.flash_address);
1423 pci_release_selected_regions(pdev, adapter->bars);
1424
1425 free_netdev(netdev);
1426
1427 err = pci_disable_pcie_error_reporting(pdev);
1428 if (err)
1429 dev_err(&pdev->dev,
1430 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1431
1432 pci_disable_device(pdev);
1433 }
1434
1435 /**
1436 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1437 * @adapter: board private structure to initialize
1438 *
1439 * igb_sw_init initializes the Adapter private data structure.
1440 * Fields are initialized based on PCI device information and
1441 * OS network device settings (MTU size).
1442 **/
1443 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1444 {
1445 struct e1000_hw *hw = &adapter->hw;
1446 struct net_device *netdev = adapter->netdev;
1447 struct pci_dev *pdev = adapter->pdev;
1448
1449 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1450
1451 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1452 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1453 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1454 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1455 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1456 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1457
1458 /* Number of supported queues. */
1459 /* Having more queues than CPUs doesn't make sense. */
1460 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1461 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
1462
1463 /* This call may decrease the number of queues depending on
1464 * interrupt mode. */
1465 igb_set_interrupt_capability(adapter);
1466
1467 if (igb_alloc_queues(adapter)) {
1468 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1469 return -ENOMEM;
1470 }
1471
1472 /* Explicitly disable IRQ since the NIC can be in any state. */
1473 igb_irq_disable(adapter);
1474
1475 set_bit(__IGB_DOWN, &adapter->state);
1476 return 0;
1477 }
1478
1479 /**
1480 * igb_open - Called when a network interface is made active
1481 * @netdev: network interface device structure
1482 *
1483 * Returns 0 on success, negative value on failure
1484 *
1485 * The open entry point is called when a network interface is made
1486 * active by the system (IFF_UP). At this point all resources needed
1487 * for transmit and receive operations are allocated, the interrupt
1488 * handler is registered with the OS, the watchdog timer is started,
1489 * and the stack is notified that the interface is ready.
1490 **/
1491 static int igb_open(struct net_device *netdev)
1492 {
1493 struct igb_adapter *adapter = netdev_priv(netdev);
1494 struct e1000_hw *hw = &adapter->hw;
1495 int err;
1496 int i;
1497
1498 /* disallow open during test */
1499 if (test_bit(__IGB_TESTING, &adapter->state))
1500 return -EBUSY;
1501
1502 /* allocate transmit descriptors */
1503 err = igb_setup_all_tx_resources(adapter);
1504 if (err)
1505 goto err_setup_tx;
1506
1507 /* allocate receive descriptors */
1508 err = igb_setup_all_rx_resources(adapter);
1509 if (err)
1510 goto err_setup_rx;
1511
1512 /* e1000_power_up_phy(adapter); */
1513
1514 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1515 if ((adapter->hw.mng_cookie.status &
1516 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1517 igb_update_mng_vlan(adapter);
1518
1519 /* before we allocate an interrupt, we must be ready to handle it.
1520 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1521 * as soon as we call pci_request_irq, so we have to setup our
1522 * clean_rx handler before we do so. */
1523 igb_configure(adapter);
1524
1525 err = igb_request_irq(adapter);
1526 if (err)
1527 goto err_req_irq;
1528
1529 /* From here on the code is the same as igb_up() */
1530 clear_bit(__IGB_DOWN, &adapter->state);
1531
1532 for (i = 0; i < adapter->num_rx_queues; i++)
1533 napi_enable(&adapter->rx_ring[i].napi);
1534
1535 /* Clear any pending interrupts. */
1536 rd32(E1000_ICR);
1537
1538 igb_irq_enable(adapter);
1539
1540 netif_tx_start_all_queues(netdev);
1541
1542 /* Fire a link status change interrupt to start the watchdog. */
1543 wr32(E1000_ICS, E1000_ICS_LSC);
1544
1545 return 0;
1546
1547 err_req_irq:
1548 igb_release_hw_control(adapter);
1549 /* e1000_power_down_phy(adapter); */
1550 igb_free_all_rx_resources(adapter);
1551 err_setup_rx:
1552 igb_free_all_tx_resources(adapter);
1553 err_setup_tx:
1554 igb_reset(adapter);
1555
1556 return err;
1557 }
1558
1559 /**
1560 * igb_close - Disables a network interface
1561 * @netdev: network interface device structure
1562 *
1563 * Returns 0, this is not allowed to fail
1564 *
1565 * The close entry point is called when an interface is de-activated
1566 * by the OS. The hardware is still under the driver's control, but
1567 * needs to be disabled. A global MAC reset is issued to stop the
1568 * hardware, and all transmit and receive resources are freed.
1569 **/
1570 static int igb_close(struct net_device *netdev)
1571 {
1572 struct igb_adapter *adapter = netdev_priv(netdev);
1573
1574 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1575 igb_down(adapter);
1576
1577 igb_free_irq(adapter);
1578
1579 igb_free_all_tx_resources(adapter);
1580 igb_free_all_rx_resources(adapter);
1581
1582 /* kill manageability vlan ID if supported, but not if a vlan with
1583 * the same ID is registered on the host OS (let 8021q kill it) */
1584 if ((adapter->hw.mng_cookie.status &
1585 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1586 !(adapter->vlgrp &&
1587 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1588 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1589
1590 return 0;
1591 }
1592
1593 /**
1594 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1595 * @adapter: board private structure
1596 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1597 *
1598 * Return 0 on success, negative on failure
1599 **/
1600
1601 int igb_setup_tx_resources(struct igb_adapter *adapter,
1602 struct igb_ring *tx_ring)
1603 {
1604 struct pci_dev *pdev = adapter->pdev;
1605 int size;
1606
1607 size = sizeof(struct igb_buffer) * tx_ring->count;
1608 tx_ring->buffer_info = vmalloc(size);
1609 if (!tx_ring->buffer_info)
1610 goto err;
1611 memset(tx_ring->buffer_info, 0, size);
1612
1613 /* round up to nearest 4K */
1614 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1615 tx_ring->size = ALIGN(tx_ring->size, 4096);
1616
1617 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1618 &tx_ring->dma);
1619
1620 if (!tx_ring->desc)
1621 goto err;
1622
1623 tx_ring->adapter = adapter;
1624 tx_ring->next_to_use = 0;
1625 tx_ring->next_to_clean = 0;
1626 return 0;
1627
1628 err:
1629 vfree(tx_ring->buffer_info);
1630 dev_err(&adapter->pdev->dev,
1631 "Unable to allocate memory for the transmit descriptor ring\n");
1632 return -ENOMEM;
1633 }
1634
1635 /**
1636 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1637 * (Descriptors) for all queues
1638 * @adapter: board private structure
1639 *
1640 * Return 0 on success, negative on failure
1641 **/
1642 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1643 {
1644 int i, err = 0;
1645 int r_idx;
1646
1647 for (i = 0; i < adapter->num_tx_queues; i++) {
1648 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1649 if (err) {
1650 dev_err(&adapter->pdev->dev,
1651 "Allocation for Tx Queue %u failed\n", i);
1652 for (i--; i >= 0; i--)
1653 igb_free_tx_resources(&adapter->tx_ring[i]);
1654 break;
1655 }
1656 }
1657
1658 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1659 r_idx = i % adapter->num_tx_queues;
1660 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1661 }
1662 return err;
1663 }
1664
1665 /**
1666 * igb_configure_tx - Configure transmit Unit after Reset
1667 * @adapter: board private structure
1668 *
1669 * Configure the Tx unit of the MAC after a reset.
1670 **/
1671 static void igb_configure_tx(struct igb_adapter *adapter)
1672 {
1673 u64 tdba;
1674 struct e1000_hw *hw = &adapter->hw;
1675 u32 tctl;
1676 u32 txdctl, txctrl;
1677 int i, j;
1678
1679 for (i = 0; i < adapter->num_tx_queues; i++) {
1680 struct igb_ring *ring = &(adapter->tx_ring[i]);
1681 j = ring->reg_idx;
1682 wr32(E1000_TDLEN(j),
1683 ring->count * sizeof(struct e1000_tx_desc));
1684 tdba = ring->dma;
1685 wr32(E1000_TDBAL(j),
1686 tdba & 0x00000000ffffffffULL);
1687 wr32(E1000_TDBAH(j), tdba >> 32);
1688
1689 ring->head = E1000_TDH(j);
1690 ring->tail = E1000_TDT(j);
1691 writel(0, hw->hw_addr + ring->tail);
1692 writel(0, hw->hw_addr + ring->head);
1693 txdctl = rd32(E1000_TXDCTL(j));
1694 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1695 wr32(E1000_TXDCTL(j), txdctl);
1696
1697 /* Turn off Relaxed Ordering on head write-backs. The
1698 * writebacks MUST be delivered in order or it will
1699 * completely screw up our bookeeping.
1700 */
1701 txctrl = rd32(E1000_DCA_TXCTRL(j));
1702 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1703 wr32(E1000_DCA_TXCTRL(j), txctrl);
1704 }
1705
1706
1707
1708 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1709
1710 /* Program the Transmit Control Register */
1711
1712 tctl = rd32(E1000_TCTL);
1713 tctl &= ~E1000_TCTL_CT;
1714 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1715 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1716
1717 igb_config_collision_dist(hw);
1718
1719 /* Setup Transmit Descriptor Settings for eop descriptor */
1720 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1721
1722 /* Enable transmits */
1723 tctl |= E1000_TCTL_EN;
1724
1725 wr32(E1000_TCTL, tctl);
1726 }
1727
1728 /**
1729 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1730 * @adapter: board private structure
1731 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1732 *
1733 * Returns 0 on success, negative on failure
1734 **/
1735
1736 int igb_setup_rx_resources(struct igb_adapter *adapter,
1737 struct igb_ring *rx_ring)
1738 {
1739 struct pci_dev *pdev = adapter->pdev;
1740 int size, desc_len;
1741
1742 #ifdef CONFIG_IGB_LRO
1743 size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1744 rx_ring->lro_mgr.lro_arr = vmalloc(size);
1745 if (!rx_ring->lro_mgr.lro_arr)
1746 goto err;
1747 memset(rx_ring->lro_mgr.lro_arr, 0, size);
1748 #endif
1749
1750 size = sizeof(struct igb_buffer) * rx_ring->count;
1751 rx_ring->buffer_info = vmalloc(size);
1752 if (!rx_ring->buffer_info)
1753 goto err;
1754 memset(rx_ring->buffer_info, 0, size);
1755
1756 desc_len = sizeof(union e1000_adv_rx_desc);
1757
1758 /* Round up to nearest 4K */
1759 rx_ring->size = rx_ring->count * desc_len;
1760 rx_ring->size = ALIGN(rx_ring->size, 4096);
1761
1762 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1763 &rx_ring->dma);
1764
1765 if (!rx_ring->desc)
1766 goto err;
1767
1768 rx_ring->next_to_clean = 0;
1769 rx_ring->next_to_use = 0;
1770
1771 rx_ring->adapter = adapter;
1772
1773 return 0;
1774
1775 err:
1776 #ifdef CONFIG_IGB_LRO
1777 vfree(rx_ring->lro_mgr.lro_arr);
1778 rx_ring->lro_mgr.lro_arr = NULL;
1779 #endif
1780 vfree(rx_ring->buffer_info);
1781 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1782 "the receive descriptor ring\n");
1783 return -ENOMEM;
1784 }
1785
1786 /**
1787 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1788 * (Descriptors) for all queues
1789 * @adapter: board private structure
1790 *
1791 * Return 0 on success, negative on failure
1792 **/
1793 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1794 {
1795 int i, err = 0;
1796
1797 for (i = 0; i < adapter->num_rx_queues; i++) {
1798 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1799 if (err) {
1800 dev_err(&adapter->pdev->dev,
1801 "Allocation for Rx Queue %u failed\n", i);
1802 for (i--; i >= 0; i--)
1803 igb_free_rx_resources(&adapter->rx_ring[i]);
1804 break;
1805 }
1806 }
1807
1808 return err;
1809 }
1810
1811 /**
1812 * igb_setup_rctl - configure the receive control registers
1813 * @adapter: Board private structure
1814 **/
1815 static void igb_setup_rctl(struct igb_adapter *adapter)
1816 {
1817 struct e1000_hw *hw = &adapter->hw;
1818 u32 rctl;
1819 u32 srrctl = 0;
1820 int i, j;
1821
1822 rctl = rd32(E1000_RCTL);
1823
1824 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1825 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1826
1827 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1828 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1829
1830 /*
1831 * enable stripping of CRC. It's unlikely this will break BMC
1832 * redirection as it did with e1000. Newer features require
1833 * that the HW strips the CRC.
1834 */
1835 rctl |= E1000_RCTL_SECRC;
1836
1837 /*
1838 * disable store bad packets, long packet enable, and clear size bits.
1839 */
1840 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_LPE | E1000_RCTL_SZ_256);
1841
1842 if (adapter->netdev->mtu > ETH_DATA_LEN)
1843 rctl |= E1000_RCTL_LPE;
1844
1845 /* Setup buffer sizes */
1846 switch (adapter->rx_buffer_len) {
1847 case IGB_RXBUFFER_256:
1848 rctl |= E1000_RCTL_SZ_256;
1849 break;
1850 case IGB_RXBUFFER_512:
1851 rctl |= E1000_RCTL_SZ_512;
1852 break;
1853 default:
1854 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1855 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1856 break;
1857 }
1858
1859 /* 82575 and greater support packet-split where the protocol
1860 * header is placed in skb->data and the packet data is
1861 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1862 * In the case of a non-split, skb->data is linearly filled,
1863 * followed by the page buffers. Therefore, skb->data is
1864 * sized to hold the largest protocol header.
1865 */
1866 /* allocations using alloc_page take too long for regular MTU
1867 * so only enable packet split for jumbo frames */
1868 if (rctl & E1000_RCTL_LPE) {
1869 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1870 srrctl |= adapter->rx_ps_hdr_size <<
1871 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1872 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1873 } else {
1874 adapter->rx_ps_hdr_size = 0;
1875 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1876 }
1877
1878 for (i = 0; i < adapter->num_rx_queues; i++) {
1879 j = adapter->rx_ring[i].reg_idx;
1880 wr32(E1000_SRRCTL(j), srrctl);
1881 }
1882
1883 wr32(E1000_RCTL, rctl);
1884 }
1885
1886 /**
1887 * igb_configure_rx - Configure receive Unit after Reset
1888 * @adapter: board private structure
1889 *
1890 * Configure the Rx unit of the MAC after a reset.
1891 **/
1892 static void igb_configure_rx(struct igb_adapter *adapter)
1893 {
1894 u64 rdba;
1895 struct e1000_hw *hw = &adapter->hw;
1896 u32 rctl, rxcsum;
1897 u32 rxdctl;
1898 int i, j;
1899
1900 /* disable receives while setting up the descriptors */
1901 rctl = rd32(E1000_RCTL);
1902 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1903 wrfl();
1904 mdelay(10);
1905
1906 if (adapter->itr_setting > 3)
1907 wr32(E1000_ITR, adapter->itr);
1908
1909 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1910 * the Base and Length of the Rx Descriptor Ring */
1911 for (i = 0; i < adapter->num_rx_queues; i++) {
1912 struct igb_ring *ring = &(adapter->rx_ring[i]);
1913 j = ring->reg_idx;
1914 rdba = ring->dma;
1915 wr32(E1000_RDBAL(j),
1916 rdba & 0x00000000ffffffffULL);
1917 wr32(E1000_RDBAH(j), rdba >> 32);
1918 wr32(E1000_RDLEN(j),
1919 ring->count * sizeof(union e1000_adv_rx_desc));
1920
1921 ring->head = E1000_RDH(j);
1922 ring->tail = E1000_RDT(j);
1923 writel(0, hw->hw_addr + ring->tail);
1924 writel(0, hw->hw_addr + ring->head);
1925
1926 rxdctl = rd32(E1000_RXDCTL(j));
1927 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1928 rxdctl &= 0xFFF00000;
1929 rxdctl |= IGB_RX_PTHRESH;
1930 rxdctl |= IGB_RX_HTHRESH << 8;
1931 rxdctl |= IGB_RX_WTHRESH << 16;
1932 wr32(E1000_RXDCTL(j), rxdctl);
1933 #ifdef CONFIG_IGB_LRO
1934 /* Intitial LRO Settings */
1935 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1936 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1937 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1938 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1939 ring->lro_mgr.dev = adapter->netdev;
1940 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1941 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1942 #endif
1943 }
1944
1945 if (adapter->num_rx_queues > 1) {
1946 u32 random[10];
1947 u32 mrqc;
1948 u32 j, shift;
1949 union e1000_reta {
1950 u32 dword;
1951 u8 bytes[4];
1952 } reta;
1953
1954 get_random_bytes(&random[0], 40);
1955
1956 if (hw->mac.type >= e1000_82576)
1957 shift = 0;
1958 else
1959 shift = 6;
1960 for (j = 0; j < (32 * 4); j++) {
1961 reta.bytes[j & 3] =
1962 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1963 if ((j & 3) == 3)
1964 writel(reta.dword,
1965 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1966 }
1967 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1968
1969 /* Fill out hash function seeds */
1970 for (j = 0; j < 10; j++)
1971 array_wr32(E1000_RSSRK(0), j, random[j]);
1972
1973 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1974 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1975 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1976 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1977 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1978 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1979 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1980 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1981
1982
1983 wr32(E1000_MRQC, mrqc);
1984
1985 /* Multiqueue and raw packet checksumming are mutually
1986 * exclusive. Note that this not the same as TCP/IP
1987 * checksumming, which works fine. */
1988 rxcsum = rd32(E1000_RXCSUM);
1989 rxcsum |= E1000_RXCSUM_PCSD;
1990 wr32(E1000_RXCSUM, rxcsum);
1991 } else {
1992 /* Enable Receive Checksum Offload for TCP and UDP */
1993 rxcsum = rd32(E1000_RXCSUM);
1994 if (adapter->rx_csum) {
1995 rxcsum |= E1000_RXCSUM_TUOFL;
1996
1997 /* Enable IPv4 payload checksum for UDP fragments
1998 * Must be used in conjunction with packet-split. */
1999 if (adapter->rx_ps_hdr_size)
2000 rxcsum |= E1000_RXCSUM_IPPCSE;
2001 } else {
2002 rxcsum &= ~E1000_RXCSUM_TUOFL;
2003 /* don't need to clear IPPCSE as it defaults to 0 */
2004 }
2005 wr32(E1000_RXCSUM, rxcsum);
2006 }
2007
2008 if (adapter->vlgrp)
2009 wr32(E1000_RLPML,
2010 adapter->max_frame_size + VLAN_TAG_SIZE);
2011 else
2012 wr32(E1000_RLPML, adapter->max_frame_size);
2013
2014 /* Enable Receives */
2015 wr32(E1000_RCTL, rctl);
2016 }
2017
2018 /**
2019 * igb_free_tx_resources - Free Tx Resources per Queue
2020 * @tx_ring: Tx descriptor ring for a specific queue
2021 *
2022 * Free all transmit software resources
2023 **/
2024 void igb_free_tx_resources(struct igb_ring *tx_ring)
2025 {
2026 struct pci_dev *pdev = tx_ring->adapter->pdev;
2027
2028 igb_clean_tx_ring(tx_ring);
2029
2030 vfree(tx_ring->buffer_info);
2031 tx_ring->buffer_info = NULL;
2032
2033 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2034
2035 tx_ring->desc = NULL;
2036 }
2037
2038 /**
2039 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2040 * @adapter: board private structure
2041 *
2042 * Free all transmit software resources
2043 **/
2044 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2045 {
2046 int i;
2047
2048 for (i = 0; i < adapter->num_tx_queues; i++)
2049 igb_free_tx_resources(&adapter->tx_ring[i]);
2050 }
2051
2052 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2053 struct igb_buffer *buffer_info)
2054 {
2055 if (buffer_info->dma) {
2056 pci_unmap_page(adapter->pdev,
2057 buffer_info->dma,
2058 buffer_info->length,
2059 PCI_DMA_TODEVICE);
2060 buffer_info->dma = 0;
2061 }
2062 if (buffer_info->skb) {
2063 dev_kfree_skb_any(buffer_info->skb);
2064 buffer_info->skb = NULL;
2065 }
2066 buffer_info->time_stamp = 0;
2067 /* buffer_info must be completely set up in the transmit path */
2068 }
2069
2070 /**
2071 * igb_clean_tx_ring - Free Tx Buffers
2072 * @tx_ring: ring to be cleaned
2073 **/
2074 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2075 {
2076 struct igb_adapter *adapter = tx_ring->adapter;
2077 struct igb_buffer *buffer_info;
2078 unsigned long size;
2079 unsigned int i;
2080
2081 if (!tx_ring->buffer_info)
2082 return;
2083 /* Free all the Tx ring sk_buffs */
2084
2085 for (i = 0; i < tx_ring->count; i++) {
2086 buffer_info = &tx_ring->buffer_info[i];
2087 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2088 }
2089
2090 size = sizeof(struct igb_buffer) * tx_ring->count;
2091 memset(tx_ring->buffer_info, 0, size);
2092
2093 /* Zero out the descriptor ring */
2094
2095 memset(tx_ring->desc, 0, tx_ring->size);
2096
2097 tx_ring->next_to_use = 0;
2098 tx_ring->next_to_clean = 0;
2099
2100 writel(0, adapter->hw.hw_addr + tx_ring->head);
2101 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2102 }
2103
2104 /**
2105 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2106 * @adapter: board private structure
2107 **/
2108 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2109 {
2110 int i;
2111
2112 for (i = 0; i < adapter->num_tx_queues; i++)
2113 igb_clean_tx_ring(&adapter->tx_ring[i]);
2114 }
2115
2116 /**
2117 * igb_free_rx_resources - Free Rx Resources
2118 * @rx_ring: ring to clean the resources from
2119 *
2120 * Free all receive software resources
2121 **/
2122 void igb_free_rx_resources(struct igb_ring *rx_ring)
2123 {
2124 struct pci_dev *pdev = rx_ring->adapter->pdev;
2125
2126 igb_clean_rx_ring(rx_ring);
2127
2128 vfree(rx_ring->buffer_info);
2129 rx_ring->buffer_info = NULL;
2130
2131 #ifdef CONFIG_IGB_LRO
2132 vfree(rx_ring->lro_mgr.lro_arr);
2133 rx_ring->lro_mgr.lro_arr = NULL;
2134 #endif
2135
2136 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2137
2138 rx_ring->desc = NULL;
2139 }
2140
2141 /**
2142 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2143 * @adapter: board private structure
2144 *
2145 * Free all receive software resources
2146 **/
2147 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2148 {
2149 int i;
2150
2151 for (i = 0; i < adapter->num_rx_queues; i++)
2152 igb_free_rx_resources(&adapter->rx_ring[i]);
2153 }
2154
2155 /**
2156 * igb_clean_rx_ring - Free Rx Buffers per Queue
2157 * @rx_ring: ring to free buffers from
2158 **/
2159 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2160 {
2161 struct igb_adapter *adapter = rx_ring->adapter;
2162 struct igb_buffer *buffer_info;
2163 struct pci_dev *pdev = adapter->pdev;
2164 unsigned long size;
2165 unsigned int i;
2166
2167 if (!rx_ring->buffer_info)
2168 return;
2169 /* Free all the Rx ring sk_buffs */
2170 for (i = 0; i < rx_ring->count; i++) {
2171 buffer_info = &rx_ring->buffer_info[i];
2172 if (buffer_info->dma) {
2173 if (adapter->rx_ps_hdr_size)
2174 pci_unmap_single(pdev, buffer_info->dma,
2175 adapter->rx_ps_hdr_size,
2176 PCI_DMA_FROMDEVICE);
2177 else
2178 pci_unmap_single(pdev, buffer_info->dma,
2179 adapter->rx_buffer_len,
2180 PCI_DMA_FROMDEVICE);
2181 buffer_info->dma = 0;
2182 }
2183
2184 if (buffer_info->skb) {
2185 dev_kfree_skb(buffer_info->skb);
2186 buffer_info->skb = NULL;
2187 }
2188 if (buffer_info->page) {
2189 if (buffer_info->page_dma)
2190 pci_unmap_page(pdev, buffer_info->page_dma,
2191 PAGE_SIZE / 2,
2192 PCI_DMA_FROMDEVICE);
2193 put_page(buffer_info->page);
2194 buffer_info->page = NULL;
2195 buffer_info->page_dma = 0;
2196 buffer_info->page_offset = 0;
2197 }
2198 }
2199
2200 size = sizeof(struct igb_buffer) * rx_ring->count;
2201 memset(rx_ring->buffer_info, 0, size);
2202
2203 /* Zero out the descriptor ring */
2204 memset(rx_ring->desc, 0, rx_ring->size);
2205
2206 rx_ring->next_to_clean = 0;
2207 rx_ring->next_to_use = 0;
2208
2209 writel(0, adapter->hw.hw_addr + rx_ring->head);
2210 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2211 }
2212
2213 /**
2214 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2215 * @adapter: board private structure
2216 **/
2217 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2218 {
2219 int i;
2220
2221 for (i = 0; i < adapter->num_rx_queues; i++)
2222 igb_clean_rx_ring(&adapter->rx_ring[i]);
2223 }
2224
2225 /**
2226 * igb_set_mac - Change the Ethernet Address of the NIC
2227 * @netdev: network interface device structure
2228 * @p: pointer to an address structure
2229 *
2230 * Returns 0 on success, negative on failure
2231 **/
2232 static int igb_set_mac(struct net_device *netdev, void *p)
2233 {
2234 struct igb_adapter *adapter = netdev_priv(netdev);
2235 struct sockaddr *addr = p;
2236
2237 if (!is_valid_ether_addr(addr->sa_data))
2238 return -EADDRNOTAVAIL;
2239
2240 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2241 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2242
2243 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2244
2245 return 0;
2246 }
2247
2248 /**
2249 * igb_set_multi - Multicast and Promiscuous mode set
2250 * @netdev: network interface device structure
2251 *
2252 * The set_multi entry point is called whenever the multicast address
2253 * list or the network interface flags are updated. This routine is
2254 * responsible for configuring the hardware for proper multicast,
2255 * promiscuous mode, and all-multi behavior.
2256 **/
2257 static void igb_set_multi(struct net_device *netdev)
2258 {
2259 struct igb_adapter *adapter = netdev_priv(netdev);
2260 struct e1000_hw *hw = &adapter->hw;
2261 struct e1000_mac_info *mac = &hw->mac;
2262 struct dev_mc_list *mc_ptr;
2263 u8 *mta_list;
2264 u32 rctl;
2265 int i;
2266
2267 /* Check for Promiscuous and All Multicast modes */
2268
2269 rctl = rd32(E1000_RCTL);
2270
2271 if (netdev->flags & IFF_PROMISC) {
2272 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2273 rctl &= ~E1000_RCTL_VFE;
2274 } else {
2275 if (netdev->flags & IFF_ALLMULTI) {
2276 rctl |= E1000_RCTL_MPE;
2277 rctl &= ~E1000_RCTL_UPE;
2278 } else
2279 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2280 rctl |= E1000_RCTL_VFE;
2281 }
2282 wr32(E1000_RCTL, rctl);
2283
2284 if (!netdev->mc_count) {
2285 /* nothing to program, so clear mc list */
2286 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2287 mac->rar_entry_count);
2288 return;
2289 }
2290
2291 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2292 if (!mta_list)
2293 return;
2294
2295 /* The shared function expects a packed array of only addresses. */
2296 mc_ptr = netdev->mc_list;
2297
2298 for (i = 0; i < netdev->mc_count; i++) {
2299 if (!mc_ptr)
2300 break;
2301 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2302 mc_ptr = mc_ptr->next;
2303 }
2304 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2305 mac->rar_entry_count);
2306 kfree(mta_list);
2307 }
2308
2309 /* Need to wait a few seconds after link up to get diagnostic information from
2310 * the phy */
2311 static void igb_update_phy_info(unsigned long data)
2312 {
2313 struct igb_adapter *adapter = (struct igb_adapter *) data;
2314 igb_get_phy_info(&adapter->hw);
2315 }
2316
2317 /**
2318 * igb_watchdog - Timer Call-back
2319 * @data: pointer to adapter cast into an unsigned long
2320 **/
2321 static void igb_watchdog(unsigned long data)
2322 {
2323 struct igb_adapter *adapter = (struct igb_adapter *)data;
2324 /* Do the rest outside of interrupt context */
2325 schedule_work(&adapter->watchdog_task);
2326 }
2327
2328 static void igb_watchdog_task(struct work_struct *work)
2329 {
2330 struct igb_adapter *adapter = container_of(work,
2331 struct igb_adapter, watchdog_task);
2332 struct e1000_hw *hw = &adapter->hw;
2333
2334 struct net_device *netdev = adapter->netdev;
2335 struct igb_ring *tx_ring = adapter->tx_ring;
2336 struct e1000_mac_info *mac = &adapter->hw.mac;
2337 u32 link;
2338 u32 eics = 0;
2339 s32 ret_val;
2340 int i;
2341
2342 if ((netif_carrier_ok(netdev)) &&
2343 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2344 goto link_up;
2345
2346 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2347 if ((ret_val == E1000_ERR_PHY) &&
2348 (hw->phy.type == e1000_phy_igp_3) &&
2349 (rd32(E1000_CTRL) &
2350 E1000_PHY_CTRL_GBE_DISABLE))
2351 dev_info(&adapter->pdev->dev,
2352 "Gigabit has been disabled, downgrading speed\n");
2353
2354 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2355 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2356 link = mac->serdes_has_link;
2357 else
2358 link = rd32(E1000_STATUS) &
2359 E1000_STATUS_LU;
2360
2361 if (link) {
2362 if (!netif_carrier_ok(netdev)) {
2363 u32 ctrl;
2364 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2365 &adapter->link_speed,
2366 &adapter->link_duplex);
2367
2368 ctrl = rd32(E1000_CTRL);
2369 /* Links status message must follow this format */
2370 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2371 "Flow Control: %s\n",
2372 netdev->name,
2373 adapter->link_speed,
2374 adapter->link_duplex == FULL_DUPLEX ?
2375 "Full Duplex" : "Half Duplex",
2376 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2377 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2378 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2379 E1000_CTRL_TFCE) ? "TX" : "None")));
2380
2381 /* tweak tx_queue_len according to speed/duplex and
2382 * adjust the timeout factor */
2383 netdev->tx_queue_len = adapter->tx_queue_len;
2384 adapter->tx_timeout_factor = 1;
2385 switch (adapter->link_speed) {
2386 case SPEED_10:
2387 netdev->tx_queue_len = 10;
2388 adapter->tx_timeout_factor = 14;
2389 break;
2390 case SPEED_100:
2391 netdev->tx_queue_len = 100;
2392 /* maybe add some timeout factor ? */
2393 break;
2394 }
2395
2396 netif_carrier_on(netdev);
2397 netif_tx_wake_all_queues(netdev);
2398
2399 if (!test_bit(__IGB_DOWN, &adapter->state))
2400 mod_timer(&adapter->phy_info_timer,
2401 round_jiffies(jiffies + 2 * HZ));
2402 }
2403 } else {
2404 if (netif_carrier_ok(netdev)) {
2405 adapter->link_speed = 0;
2406 adapter->link_duplex = 0;
2407 /* Links status message must follow this format */
2408 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2409 netdev->name);
2410 netif_carrier_off(netdev);
2411 netif_tx_stop_all_queues(netdev);
2412 if (!test_bit(__IGB_DOWN, &adapter->state))
2413 mod_timer(&adapter->phy_info_timer,
2414 round_jiffies(jiffies + 2 * HZ));
2415 }
2416 }
2417
2418 link_up:
2419 igb_update_stats(adapter);
2420
2421 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2422 adapter->tpt_old = adapter->stats.tpt;
2423 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2424 adapter->colc_old = adapter->stats.colc;
2425
2426 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2427 adapter->gorc_old = adapter->stats.gorc;
2428 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2429 adapter->gotc_old = adapter->stats.gotc;
2430
2431 igb_update_adaptive(&adapter->hw);
2432
2433 if (!netif_carrier_ok(netdev)) {
2434 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2435 /* We've lost link, so the controller stops DMA,
2436 * but we've got queued Tx work that's never going
2437 * to get done, so reset controller to flush Tx.
2438 * (Do the reset outside of interrupt context). */
2439 adapter->tx_timeout_count++;
2440 schedule_work(&adapter->reset_task);
2441 }
2442 }
2443
2444 /* Cause software interrupt to ensure rx ring is cleaned */
2445 if (adapter->msix_entries) {
2446 for (i = 0; i < adapter->num_rx_queues; i++)
2447 eics |= adapter->rx_ring[i].eims_value;
2448 wr32(E1000_EICS, eics);
2449 } else {
2450 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2451 }
2452
2453 /* Force detection of hung controller every watchdog period */
2454 tx_ring->detect_tx_hung = true;
2455
2456 /* Reset the timer */
2457 if (!test_bit(__IGB_DOWN, &adapter->state))
2458 mod_timer(&adapter->watchdog_timer,
2459 round_jiffies(jiffies + 2 * HZ));
2460 }
2461
2462 enum latency_range {
2463 lowest_latency = 0,
2464 low_latency = 1,
2465 bulk_latency = 2,
2466 latency_invalid = 255
2467 };
2468
2469
2470 /**
2471 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2472 *
2473 * Stores a new ITR value based on strictly on packet size. This
2474 * algorithm is less sophisticated than that used in igb_update_itr,
2475 * due to the difficulty of synchronizing statistics across multiple
2476 * receive rings. The divisors and thresholds used by this fuction
2477 * were determined based on theoretical maximum wire speed and testing
2478 * data, in order to minimize response time while increasing bulk
2479 * throughput.
2480 * This functionality is controlled by the InterruptThrottleRate module
2481 * parameter (see igb_param.c)
2482 * NOTE: This function is called only when operating in a multiqueue
2483 * receive environment.
2484 * @rx_ring: pointer to ring
2485 **/
2486 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2487 {
2488 int new_val = rx_ring->itr_val;
2489 int avg_wire_size = 0;
2490 struct igb_adapter *adapter = rx_ring->adapter;
2491
2492 if (!rx_ring->total_packets)
2493 goto clear_counts; /* no packets, so don't do anything */
2494
2495 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2496 * ints/sec - ITR timer value of 120 ticks.
2497 */
2498 if (adapter->link_speed != SPEED_1000) {
2499 new_val = 120;
2500 goto set_itr_val;
2501 }
2502 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2503
2504 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2505 avg_wire_size += 24;
2506
2507 /* Don't starve jumbo frames */
2508 avg_wire_size = min(avg_wire_size, 3000);
2509
2510 /* Give a little boost to mid-size frames */
2511 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2512 new_val = avg_wire_size / 3;
2513 else
2514 new_val = avg_wire_size / 2;
2515
2516 set_itr_val:
2517 if (new_val != rx_ring->itr_val) {
2518 rx_ring->itr_val = new_val;
2519 rx_ring->set_itr = 1;
2520 }
2521 clear_counts:
2522 rx_ring->total_bytes = 0;
2523 rx_ring->total_packets = 0;
2524 }
2525
2526 /**
2527 * igb_update_itr - update the dynamic ITR value based on statistics
2528 * Stores a new ITR value based on packets and byte
2529 * counts during the last interrupt. The advantage of per interrupt
2530 * computation is faster updates and more accurate ITR for the current
2531 * traffic pattern. Constants in this function were computed
2532 * based on theoretical maximum wire speed and thresholds were set based
2533 * on testing data as well as attempting to minimize response time
2534 * while increasing bulk throughput.
2535 * this functionality is controlled by the InterruptThrottleRate module
2536 * parameter (see igb_param.c)
2537 * NOTE: These calculations are only valid when operating in a single-
2538 * queue environment.
2539 * @adapter: pointer to adapter
2540 * @itr_setting: current adapter->itr
2541 * @packets: the number of packets during this measurement interval
2542 * @bytes: the number of bytes during this measurement interval
2543 **/
2544 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2545 int packets, int bytes)
2546 {
2547 unsigned int retval = itr_setting;
2548
2549 if (packets == 0)
2550 goto update_itr_done;
2551
2552 switch (itr_setting) {
2553 case lowest_latency:
2554 /* handle TSO and jumbo frames */
2555 if (bytes/packets > 8000)
2556 retval = bulk_latency;
2557 else if ((packets < 5) && (bytes > 512))
2558 retval = low_latency;
2559 break;
2560 case low_latency: /* 50 usec aka 20000 ints/s */
2561 if (bytes > 10000) {
2562 /* this if handles the TSO accounting */
2563 if (bytes/packets > 8000) {
2564 retval = bulk_latency;
2565 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2566 retval = bulk_latency;
2567 } else if ((packets > 35)) {
2568 retval = lowest_latency;
2569 }
2570 } else if (bytes/packets > 2000) {
2571 retval = bulk_latency;
2572 } else if (packets <= 2 && bytes < 512) {
2573 retval = lowest_latency;
2574 }
2575 break;
2576 case bulk_latency: /* 250 usec aka 4000 ints/s */
2577 if (bytes > 25000) {
2578 if (packets > 35)
2579 retval = low_latency;
2580 } else if (bytes < 6000) {
2581 retval = low_latency;
2582 }
2583 break;
2584 }
2585
2586 update_itr_done:
2587 return retval;
2588 }
2589
2590 static void igb_set_itr(struct igb_adapter *adapter)
2591 {
2592 u16 current_itr;
2593 u32 new_itr = adapter->itr;
2594
2595 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2596 if (adapter->link_speed != SPEED_1000) {
2597 current_itr = 0;
2598 new_itr = 4000;
2599 goto set_itr_now;
2600 }
2601
2602 adapter->rx_itr = igb_update_itr(adapter,
2603 adapter->rx_itr,
2604 adapter->rx_ring->total_packets,
2605 adapter->rx_ring->total_bytes);
2606
2607 if (adapter->rx_ring->buddy) {
2608 adapter->tx_itr = igb_update_itr(adapter,
2609 adapter->tx_itr,
2610 adapter->tx_ring->total_packets,
2611 adapter->tx_ring->total_bytes);
2612
2613 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2614 } else {
2615 current_itr = adapter->rx_itr;
2616 }
2617
2618 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2619 if (adapter->itr_setting == 3 &&
2620 current_itr == lowest_latency)
2621 current_itr = low_latency;
2622
2623 switch (current_itr) {
2624 /* counts and packets in update_itr are dependent on these numbers */
2625 case lowest_latency:
2626 new_itr = 70000;
2627 break;
2628 case low_latency:
2629 new_itr = 20000; /* aka hwitr = ~200 */
2630 break;
2631 case bulk_latency:
2632 new_itr = 4000;
2633 break;
2634 default:
2635 break;
2636 }
2637
2638 set_itr_now:
2639 adapter->rx_ring->total_bytes = 0;
2640 adapter->rx_ring->total_packets = 0;
2641 if (adapter->rx_ring->buddy) {
2642 adapter->rx_ring->buddy->total_bytes = 0;
2643 adapter->rx_ring->buddy->total_packets = 0;
2644 }
2645
2646 if (new_itr != adapter->itr) {
2647 /* this attempts to bias the interrupt rate towards Bulk
2648 * by adding intermediate steps when interrupt rate is
2649 * increasing */
2650 new_itr = new_itr > adapter->itr ?
2651 min(adapter->itr + (new_itr >> 2), new_itr) :
2652 new_itr;
2653 /* Don't write the value here; it resets the adapter's
2654 * internal timer, and causes us to delay far longer than
2655 * we should between interrupts. Instead, we write the ITR
2656 * value at the beginning of the next interrupt so the timing
2657 * ends up being correct.
2658 */
2659 adapter->itr = new_itr;
2660 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2661 adapter->rx_ring->set_itr = 1;
2662 }
2663
2664 return;
2665 }
2666
2667
2668 #define IGB_TX_FLAGS_CSUM 0x00000001
2669 #define IGB_TX_FLAGS_VLAN 0x00000002
2670 #define IGB_TX_FLAGS_TSO 0x00000004
2671 #define IGB_TX_FLAGS_IPV4 0x00000008
2672 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2673 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2674
2675 static inline int igb_tso_adv(struct igb_adapter *adapter,
2676 struct igb_ring *tx_ring,
2677 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2678 {
2679 struct e1000_adv_tx_context_desc *context_desc;
2680 unsigned int i;
2681 int err;
2682 struct igb_buffer *buffer_info;
2683 u32 info = 0, tu_cmd = 0;
2684 u32 mss_l4len_idx, l4len;
2685 *hdr_len = 0;
2686
2687 if (skb_header_cloned(skb)) {
2688 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2689 if (err)
2690 return err;
2691 }
2692
2693 l4len = tcp_hdrlen(skb);
2694 *hdr_len += l4len;
2695
2696 if (skb->protocol == htons(ETH_P_IP)) {
2697 struct iphdr *iph = ip_hdr(skb);
2698 iph->tot_len = 0;
2699 iph->check = 0;
2700 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2701 iph->daddr, 0,
2702 IPPROTO_TCP,
2703 0);
2704 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2705 ipv6_hdr(skb)->payload_len = 0;
2706 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2707 &ipv6_hdr(skb)->daddr,
2708 0, IPPROTO_TCP, 0);
2709 }
2710
2711 i = tx_ring->next_to_use;
2712
2713 buffer_info = &tx_ring->buffer_info[i];
2714 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2715 /* VLAN MACLEN IPLEN */
2716 if (tx_flags & IGB_TX_FLAGS_VLAN)
2717 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2718 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2719 *hdr_len += skb_network_offset(skb);
2720 info |= skb_network_header_len(skb);
2721 *hdr_len += skb_network_header_len(skb);
2722 context_desc->vlan_macip_lens = cpu_to_le32(info);
2723
2724 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2725 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2726
2727 if (skb->protocol == htons(ETH_P_IP))
2728 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2729 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2730
2731 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2732
2733 /* MSS L4LEN IDX */
2734 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2735 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2736
2737 /* Context index must be unique per ring. */
2738 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2739 mss_l4len_idx |= tx_ring->queue_index << 4;
2740
2741 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2742 context_desc->seqnum_seed = 0;
2743
2744 buffer_info->time_stamp = jiffies;
2745 buffer_info->next_to_watch = i;
2746 buffer_info->dma = 0;
2747 i++;
2748 if (i == tx_ring->count)
2749 i = 0;
2750
2751 tx_ring->next_to_use = i;
2752
2753 return true;
2754 }
2755
2756 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2757 struct igb_ring *tx_ring,
2758 struct sk_buff *skb, u32 tx_flags)
2759 {
2760 struct e1000_adv_tx_context_desc *context_desc;
2761 unsigned int i;
2762 struct igb_buffer *buffer_info;
2763 u32 info = 0, tu_cmd = 0;
2764
2765 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2766 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2767 i = tx_ring->next_to_use;
2768 buffer_info = &tx_ring->buffer_info[i];
2769 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2770
2771 if (tx_flags & IGB_TX_FLAGS_VLAN)
2772 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2773 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2774 if (skb->ip_summed == CHECKSUM_PARTIAL)
2775 info |= skb_network_header_len(skb);
2776
2777 context_desc->vlan_macip_lens = cpu_to_le32(info);
2778
2779 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2780
2781 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2782 switch (skb->protocol) {
2783 case __constant_htons(ETH_P_IP):
2784 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2785 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2786 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2787 break;
2788 case __constant_htons(ETH_P_IPV6):
2789 /* XXX what about other V6 headers?? */
2790 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2791 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2792 break;
2793 default:
2794 if (unlikely(net_ratelimit()))
2795 dev_warn(&adapter->pdev->dev,
2796 "partial checksum but proto=%x!\n",
2797 skb->protocol);
2798 break;
2799 }
2800 }
2801
2802 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2803 context_desc->seqnum_seed = 0;
2804 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2805 context_desc->mss_l4len_idx =
2806 cpu_to_le32(tx_ring->queue_index << 4);
2807
2808 buffer_info->time_stamp = jiffies;
2809 buffer_info->next_to_watch = i;
2810 buffer_info->dma = 0;
2811
2812 i++;
2813 if (i == tx_ring->count)
2814 i = 0;
2815 tx_ring->next_to_use = i;
2816
2817 return true;
2818 }
2819
2820
2821 return false;
2822 }
2823
2824 #define IGB_MAX_TXD_PWR 16
2825 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2826
2827 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2828 struct igb_ring *tx_ring, struct sk_buff *skb,
2829 unsigned int first)
2830 {
2831 struct igb_buffer *buffer_info;
2832 unsigned int len = skb_headlen(skb);
2833 unsigned int count = 0, i;
2834 unsigned int f;
2835
2836 i = tx_ring->next_to_use;
2837
2838 buffer_info = &tx_ring->buffer_info[i];
2839 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2840 buffer_info->length = len;
2841 /* set time_stamp *before* dma to help avoid a possible race */
2842 buffer_info->time_stamp = jiffies;
2843 buffer_info->next_to_watch = i;
2844 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2845 PCI_DMA_TODEVICE);
2846 count++;
2847 i++;
2848 if (i == tx_ring->count)
2849 i = 0;
2850
2851 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2852 struct skb_frag_struct *frag;
2853
2854 frag = &skb_shinfo(skb)->frags[f];
2855 len = frag->size;
2856
2857 buffer_info = &tx_ring->buffer_info[i];
2858 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2859 buffer_info->length = len;
2860 buffer_info->time_stamp = jiffies;
2861 buffer_info->next_to_watch = i;
2862 buffer_info->dma = pci_map_page(adapter->pdev,
2863 frag->page,
2864 frag->page_offset,
2865 len,
2866 PCI_DMA_TODEVICE);
2867
2868 count++;
2869 i++;
2870 if (i == tx_ring->count)
2871 i = 0;
2872 }
2873
2874 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2875 tx_ring->buffer_info[i].skb = skb;
2876 tx_ring->buffer_info[first].next_to_watch = i;
2877
2878 return count;
2879 }
2880
2881 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2882 struct igb_ring *tx_ring,
2883 int tx_flags, int count, u32 paylen,
2884 u8 hdr_len)
2885 {
2886 union e1000_adv_tx_desc *tx_desc = NULL;
2887 struct igb_buffer *buffer_info;
2888 u32 olinfo_status = 0, cmd_type_len;
2889 unsigned int i;
2890
2891 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2892 E1000_ADVTXD_DCMD_DEXT);
2893
2894 if (tx_flags & IGB_TX_FLAGS_VLAN)
2895 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2896
2897 if (tx_flags & IGB_TX_FLAGS_TSO) {
2898 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2899
2900 /* insert tcp checksum */
2901 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2902
2903 /* insert ip checksum */
2904 if (tx_flags & IGB_TX_FLAGS_IPV4)
2905 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2906
2907 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2908 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2909 }
2910
2911 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2912 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2913 IGB_TX_FLAGS_VLAN)))
2914 olinfo_status |= tx_ring->queue_index << 4;
2915
2916 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2917
2918 i = tx_ring->next_to_use;
2919 while (count--) {
2920 buffer_info = &tx_ring->buffer_info[i];
2921 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2922 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2923 tx_desc->read.cmd_type_len =
2924 cpu_to_le32(cmd_type_len | buffer_info->length);
2925 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2926 i++;
2927 if (i == tx_ring->count)
2928 i = 0;
2929 }
2930
2931 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2932 /* Force memory writes to complete before letting h/w
2933 * know there are new descriptors to fetch. (Only
2934 * applicable for weak-ordered memory model archs,
2935 * such as IA-64). */
2936 wmb();
2937
2938 tx_ring->next_to_use = i;
2939 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2940 /* we need this if more than one processor can write to our tail
2941 * at a time, it syncronizes IO on IA64/Altix systems */
2942 mmiowb();
2943 }
2944
2945 static int __igb_maybe_stop_tx(struct net_device *netdev,
2946 struct igb_ring *tx_ring, int size)
2947 {
2948 struct igb_adapter *adapter = netdev_priv(netdev);
2949
2950 netif_stop_subqueue(netdev, tx_ring->queue_index);
2951
2952 /* Herbert's original patch had:
2953 * smp_mb__after_netif_stop_queue();
2954 * but since that doesn't exist yet, just open code it. */
2955 smp_mb();
2956
2957 /* We need to check again in a case another CPU has just
2958 * made room available. */
2959 if (IGB_DESC_UNUSED(tx_ring) < size)
2960 return -EBUSY;
2961
2962 /* A reprieve! */
2963 netif_wake_subqueue(netdev, tx_ring->queue_index);
2964 ++adapter->restart_queue;
2965 return 0;
2966 }
2967
2968 static int igb_maybe_stop_tx(struct net_device *netdev,
2969 struct igb_ring *tx_ring, int size)
2970 {
2971 if (IGB_DESC_UNUSED(tx_ring) >= size)
2972 return 0;
2973 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2974 }
2975
2976 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2977
2978 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2979 struct net_device *netdev,
2980 struct igb_ring *tx_ring)
2981 {
2982 struct igb_adapter *adapter = netdev_priv(netdev);
2983 unsigned int first;
2984 unsigned int tx_flags = 0;
2985 unsigned int len;
2986 u8 hdr_len = 0;
2987 int tso = 0;
2988
2989 len = skb_headlen(skb);
2990
2991 if (test_bit(__IGB_DOWN, &adapter->state)) {
2992 dev_kfree_skb_any(skb);
2993 return NETDEV_TX_OK;
2994 }
2995
2996 if (skb->len <= 0) {
2997 dev_kfree_skb_any(skb);
2998 return NETDEV_TX_OK;
2999 }
3000
3001 /* need: 1 descriptor per page,
3002 * + 2 desc gap to keep tail from touching head,
3003 * + 1 desc for skb->data,
3004 * + 1 desc for context descriptor,
3005 * otherwise try next time */
3006 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3007 /* this is a hard error */
3008 return NETDEV_TX_BUSY;
3009 }
3010 skb_orphan(skb);
3011
3012 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3013 tx_flags |= IGB_TX_FLAGS_VLAN;
3014 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3015 }
3016
3017 if (skb->protocol == htons(ETH_P_IP))
3018 tx_flags |= IGB_TX_FLAGS_IPV4;
3019
3020 first = tx_ring->next_to_use;
3021
3022 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3023 &hdr_len) : 0;
3024
3025 if (tso < 0) {
3026 dev_kfree_skb_any(skb);
3027 return NETDEV_TX_OK;
3028 }
3029
3030 if (tso)
3031 tx_flags |= IGB_TX_FLAGS_TSO;
3032 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3033 if (skb->ip_summed == CHECKSUM_PARTIAL)
3034 tx_flags |= IGB_TX_FLAGS_CSUM;
3035
3036 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3037 igb_tx_map_adv(adapter, tx_ring, skb, first),
3038 skb->len, hdr_len);
3039
3040 netdev->trans_start = jiffies;
3041
3042 /* Make sure there is space in the ring for the next send. */
3043 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3044
3045 return NETDEV_TX_OK;
3046 }
3047
3048 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3049 {
3050 struct igb_adapter *adapter = netdev_priv(netdev);
3051 struct igb_ring *tx_ring;
3052
3053 int r_idx = 0;
3054 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3055 tx_ring = adapter->multi_tx_table[r_idx];
3056
3057 /* This goes back to the question of how to logically map a tx queue
3058 * to a flow. Right now, performance is impacted slightly negatively
3059 * if using multiple tx queues. If the stack breaks away from a
3060 * single qdisc implementation, we can look at this again. */
3061 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3062 }
3063
3064 /**
3065 * igb_tx_timeout - Respond to a Tx Hang
3066 * @netdev: network interface device structure
3067 **/
3068 static void igb_tx_timeout(struct net_device *netdev)
3069 {
3070 struct igb_adapter *adapter = netdev_priv(netdev);
3071 struct e1000_hw *hw = &adapter->hw;
3072
3073 /* Do the reset outside of interrupt context */
3074 adapter->tx_timeout_count++;
3075 schedule_work(&adapter->reset_task);
3076 wr32(E1000_EICS, adapter->eims_enable_mask &
3077 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3078 }
3079
3080 static void igb_reset_task(struct work_struct *work)
3081 {
3082 struct igb_adapter *adapter;
3083 adapter = container_of(work, struct igb_adapter, reset_task);
3084
3085 igb_reinit_locked(adapter);
3086 }
3087
3088 /**
3089 * igb_get_stats - Get System Network Statistics
3090 * @netdev: network interface device structure
3091 *
3092 * Returns the address of the device statistics structure.
3093 * The statistics are actually updated from the timer callback.
3094 **/
3095 static struct net_device_stats *
3096 igb_get_stats(struct net_device *netdev)
3097 {
3098 struct igb_adapter *adapter = netdev_priv(netdev);
3099
3100 /* only return the current stats */
3101 return &adapter->net_stats;
3102 }
3103
3104 /**
3105 * igb_change_mtu - Change the Maximum Transfer Unit
3106 * @netdev: network interface device structure
3107 * @new_mtu: new value for maximum frame size
3108 *
3109 * Returns 0 on success, negative on failure
3110 **/
3111 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3112 {
3113 struct igb_adapter *adapter = netdev_priv(netdev);
3114 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3115
3116 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3117 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3118 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3119 return -EINVAL;
3120 }
3121
3122 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3123 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3124 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3125 return -EINVAL;
3126 }
3127
3128 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3129 msleep(1);
3130 /* igb_down has a dependency on max_frame_size */
3131 adapter->max_frame_size = max_frame;
3132 if (netif_running(netdev))
3133 igb_down(adapter);
3134
3135 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3136 * means we reserve 2 more, this pushes us to allocate from the next
3137 * larger slab size.
3138 * i.e. RXBUFFER_2048 --> size-4096 slab
3139 */
3140
3141 if (max_frame <= IGB_RXBUFFER_256)
3142 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3143 else if (max_frame <= IGB_RXBUFFER_512)
3144 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3145 else if (max_frame <= IGB_RXBUFFER_1024)
3146 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3147 else if (max_frame <= IGB_RXBUFFER_2048)
3148 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3149 else
3150 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3151 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3152 #else
3153 adapter->rx_buffer_len = PAGE_SIZE / 2;
3154 #endif
3155 /* adjust allocation if LPE protects us, and we aren't using SBP */
3156 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3157 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3158 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3159
3160 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3161 netdev->mtu, new_mtu);
3162 netdev->mtu = new_mtu;
3163
3164 if (netif_running(netdev))
3165 igb_up(adapter);
3166 else
3167 igb_reset(adapter);
3168
3169 clear_bit(__IGB_RESETTING, &adapter->state);
3170
3171 return 0;
3172 }
3173
3174 /**
3175 * igb_update_stats - Update the board statistics counters
3176 * @adapter: board private structure
3177 **/
3178
3179 void igb_update_stats(struct igb_adapter *adapter)
3180 {
3181 struct e1000_hw *hw = &adapter->hw;
3182 struct pci_dev *pdev = adapter->pdev;
3183 u16 phy_tmp;
3184
3185 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3186
3187 /*
3188 * Prevent stats update while adapter is being reset, or if the pci
3189 * connection is down.
3190 */
3191 if (adapter->link_speed == 0)
3192 return;
3193 if (pci_channel_offline(pdev))
3194 return;
3195
3196 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3197 adapter->stats.gprc += rd32(E1000_GPRC);
3198 adapter->stats.gorc += rd32(E1000_GORCL);
3199 rd32(E1000_GORCH); /* clear GORCL */
3200 adapter->stats.bprc += rd32(E1000_BPRC);
3201 adapter->stats.mprc += rd32(E1000_MPRC);
3202 adapter->stats.roc += rd32(E1000_ROC);
3203
3204 adapter->stats.prc64 += rd32(E1000_PRC64);
3205 adapter->stats.prc127 += rd32(E1000_PRC127);
3206 adapter->stats.prc255 += rd32(E1000_PRC255);
3207 adapter->stats.prc511 += rd32(E1000_PRC511);
3208 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3209 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3210 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3211 adapter->stats.sec += rd32(E1000_SEC);
3212
3213 adapter->stats.mpc += rd32(E1000_MPC);
3214 adapter->stats.scc += rd32(E1000_SCC);
3215 adapter->stats.ecol += rd32(E1000_ECOL);
3216 adapter->stats.mcc += rd32(E1000_MCC);
3217 adapter->stats.latecol += rd32(E1000_LATECOL);
3218 adapter->stats.dc += rd32(E1000_DC);
3219 adapter->stats.rlec += rd32(E1000_RLEC);
3220 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3221 adapter->stats.xontxc += rd32(E1000_XONTXC);
3222 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3223 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3224 adapter->stats.fcruc += rd32(E1000_FCRUC);
3225 adapter->stats.gptc += rd32(E1000_GPTC);
3226 adapter->stats.gotc += rd32(E1000_GOTCL);
3227 rd32(E1000_GOTCH); /* clear GOTCL */
3228 adapter->stats.rnbc += rd32(E1000_RNBC);
3229 adapter->stats.ruc += rd32(E1000_RUC);
3230 adapter->stats.rfc += rd32(E1000_RFC);
3231 adapter->stats.rjc += rd32(E1000_RJC);
3232 adapter->stats.tor += rd32(E1000_TORH);
3233 adapter->stats.tot += rd32(E1000_TOTH);
3234 adapter->stats.tpr += rd32(E1000_TPR);
3235
3236 adapter->stats.ptc64 += rd32(E1000_PTC64);
3237 adapter->stats.ptc127 += rd32(E1000_PTC127);
3238 adapter->stats.ptc255 += rd32(E1000_PTC255);
3239 adapter->stats.ptc511 += rd32(E1000_PTC511);
3240 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3241 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3242
3243 adapter->stats.mptc += rd32(E1000_MPTC);
3244 adapter->stats.bptc += rd32(E1000_BPTC);
3245
3246 /* used for adaptive IFS */
3247
3248 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3249 adapter->stats.tpt += hw->mac.tx_packet_delta;
3250 hw->mac.collision_delta = rd32(E1000_COLC);
3251 adapter->stats.colc += hw->mac.collision_delta;
3252
3253 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3254 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3255 adapter->stats.tncrs += rd32(E1000_TNCRS);
3256 adapter->stats.tsctc += rd32(E1000_TSCTC);
3257 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3258
3259 adapter->stats.iac += rd32(E1000_IAC);
3260 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3261 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3262 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3263 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3264 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3265 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3266 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3267 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3268
3269 /* Fill out the OS statistics structure */
3270 adapter->net_stats.multicast = adapter->stats.mprc;
3271 adapter->net_stats.collisions = adapter->stats.colc;
3272
3273 /* Rx Errors */
3274
3275 /* RLEC on some newer hardware can be incorrect so build
3276 * our own version based on RUC and ROC */
3277 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3278 adapter->stats.crcerrs + adapter->stats.algnerrc +
3279 adapter->stats.ruc + adapter->stats.roc +
3280 adapter->stats.cexterr;
3281 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3282 adapter->stats.roc;
3283 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3284 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3285 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3286
3287 /* Tx Errors */
3288 adapter->net_stats.tx_errors = adapter->stats.ecol +
3289 adapter->stats.latecol;
3290 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3291 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3292 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3293
3294 /* Tx Dropped needs to be maintained elsewhere */
3295
3296 /* Phy Stats */
3297 if (hw->phy.media_type == e1000_media_type_copper) {
3298 if ((adapter->link_speed == SPEED_1000) &&
3299 (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3300 &phy_tmp))) {
3301 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3302 adapter->phy_stats.idle_errors += phy_tmp;
3303 }
3304 }
3305
3306 /* Management Stats */
3307 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3308 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3309 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3310 }
3311
3312
3313 static irqreturn_t igb_msix_other(int irq, void *data)
3314 {
3315 struct net_device *netdev = data;
3316 struct igb_adapter *adapter = netdev_priv(netdev);
3317 struct e1000_hw *hw = &adapter->hw;
3318 u32 icr = rd32(E1000_ICR);
3319
3320 /* reading ICR causes bit 31 of EICR to be cleared */
3321 if (!(icr & E1000_ICR_LSC))
3322 goto no_link_interrupt;
3323 hw->mac.get_link_status = 1;
3324 /* guard against interrupt when we're going down */
3325 if (!test_bit(__IGB_DOWN, &adapter->state))
3326 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3327
3328 no_link_interrupt:
3329 wr32(E1000_IMS, E1000_IMS_LSC);
3330 wr32(E1000_EIMS, adapter->eims_other);
3331
3332 return IRQ_HANDLED;
3333 }
3334
3335 static irqreturn_t igb_msix_tx(int irq, void *data)
3336 {
3337 struct igb_ring *tx_ring = data;
3338 struct igb_adapter *adapter = tx_ring->adapter;
3339 struct e1000_hw *hw = &adapter->hw;
3340
3341 #ifdef CONFIG_IGB_DCA
3342 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3343 igb_update_tx_dca(tx_ring);
3344 #endif
3345 tx_ring->total_bytes = 0;
3346 tx_ring->total_packets = 0;
3347
3348 /* auto mask will automatically reenable the interrupt when we write
3349 * EICS */
3350 if (!igb_clean_tx_irq(tx_ring))
3351 /* Ring was not completely cleaned, so fire another interrupt */
3352 wr32(E1000_EICS, tx_ring->eims_value);
3353 else
3354 wr32(E1000_EIMS, tx_ring->eims_value);
3355
3356 return IRQ_HANDLED;
3357 }
3358
3359 static void igb_write_itr(struct igb_ring *ring)
3360 {
3361 struct e1000_hw *hw = &ring->adapter->hw;
3362 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3363 switch (hw->mac.type) {
3364 case e1000_82576:
3365 wr32(ring->itr_register,
3366 ring->itr_val |
3367 0x80000000);
3368 break;
3369 default:
3370 wr32(ring->itr_register,
3371 ring->itr_val |
3372 (ring->itr_val << 16));
3373 break;
3374 }
3375 ring->set_itr = 0;
3376 }
3377 }
3378
3379 static irqreturn_t igb_msix_rx(int irq, void *data)
3380 {
3381 struct igb_ring *rx_ring = data;
3382
3383 /* Write the ITR value calculated at the end of the
3384 * previous interrupt.
3385 */
3386
3387 igb_write_itr(rx_ring);
3388
3389 if (netif_rx_schedule_prep(&rx_ring->napi))
3390 __netif_rx_schedule(&rx_ring->napi);
3391
3392 #ifdef CONFIG_IGB_DCA
3393 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3394 igb_update_rx_dca(rx_ring);
3395 #endif
3396 return IRQ_HANDLED;
3397 }
3398
3399 #ifdef CONFIG_IGB_DCA
3400 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3401 {
3402 u32 dca_rxctrl;
3403 struct igb_adapter *adapter = rx_ring->adapter;
3404 struct e1000_hw *hw = &adapter->hw;
3405 int cpu = get_cpu();
3406 int q = rx_ring->reg_idx;
3407
3408 if (rx_ring->cpu != cpu) {
3409 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3410 if (hw->mac.type == e1000_82576) {
3411 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3412 dca_rxctrl |= dca_get_tag(cpu) <<
3413 E1000_DCA_RXCTRL_CPUID_SHIFT;
3414 } else {
3415 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3416 dca_rxctrl |= dca_get_tag(cpu);
3417 }
3418 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3419 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3420 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3421 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3422 rx_ring->cpu = cpu;
3423 }
3424 put_cpu();
3425 }
3426
3427 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3428 {
3429 u32 dca_txctrl;
3430 struct igb_adapter *adapter = tx_ring->adapter;
3431 struct e1000_hw *hw = &adapter->hw;
3432 int cpu = get_cpu();
3433 int q = tx_ring->reg_idx;
3434
3435 if (tx_ring->cpu != cpu) {
3436 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3437 if (hw->mac.type == e1000_82576) {
3438 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3439 dca_txctrl |= dca_get_tag(cpu) <<
3440 E1000_DCA_TXCTRL_CPUID_SHIFT;
3441 } else {
3442 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3443 dca_txctrl |= dca_get_tag(cpu);
3444 }
3445 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3446 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3447 tx_ring->cpu = cpu;
3448 }
3449 put_cpu();
3450 }
3451
3452 static void igb_setup_dca(struct igb_adapter *adapter)
3453 {
3454 int i;
3455
3456 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3457 return;
3458
3459 for (i = 0; i < adapter->num_tx_queues; i++) {
3460 adapter->tx_ring[i].cpu = -1;
3461 igb_update_tx_dca(&adapter->tx_ring[i]);
3462 }
3463 for (i = 0; i < adapter->num_rx_queues; i++) {
3464 adapter->rx_ring[i].cpu = -1;
3465 igb_update_rx_dca(&adapter->rx_ring[i]);
3466 }
3467 }
3468
3469 static int __igb_notify_dca(struct device *dev, void *data)
3470 {
3471 struct net_device *netdev = dev_get_drvdata(dev);
3472 struct igb_adapter *adapter = netdev_priv(netdev);
3473 struct e1000_hw *hw = &adapter->hw;
3474 unsigned long event = *(unsigned long *)data;
3475
3476 if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3477 goto out;
3478
3479 switch (event) {
3480 case DCA_PROVIDER_ADD:
3481 /* if already enabled, don't do it again */
3482 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3483 break;
3484 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3485 /* Always use CB2 mode, difference is masked
3486 * in the CB driver. */
3487 wr32(E1000_DCA_CTRL, 2);
3488 if (dca_add_requester(dev) == 0) {
3489 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3490 igb_setup_dca(adapter);
3491 break;
3492 }
3493 /* Fall Through since DCA is disabled. */
3494 case DCA_PROVIDER_REMOVE:
3495 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3496 /* without this a class_device is left
3497 * hanging around in the sysfs model */
3498 dca_remove_requester(dev);
3499 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3500 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3501 wr32(E1000_DCA_CTRL, 1);
3502 }
3503 break;
3504 }
3505 out:
3506 return 0;
3507 }
3508
3509 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3510 void *p)
3511 {
3512 int ret_val;
3513
3514 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3515 __igb_notify_dca);
3516
3517 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3518 }
3519 #endif /* CONFIG_IGB_DCA */
3520
3521 /**
3522 * igb_intr_msi - Interrupt Handler
3523 * @irq: interrupt number
3524 * @data: pointer to a network interface device structure
3525 **/
3526 static irqreturn_t igb_intr_msi(int irq, void *data)
3527 {
3528 struct net_device *netdev = data;
3529 struct igb_adapter *adapter = netdev_priv(netdev);
3530 struct e1000_hw *hw = &adapter->hw;
3531 /* read ICR disables interrupts using IAM */
3532 u32 icr = rd32(E1000_ICR);
3533
3534 igb_write_itr(adapter->rx_ring);
3535
3536 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3537 hw->mac.get_link_status = 1;
3538 if (!test_bit(__IGB_DOWN, &adapter->state))
3539 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3540 }
3541
3542 netif_rx_schedule(&adapter->rx_ring[0].napi);
3543
3544 return IRQ_HANDLED;
3545 }
3546
3547 /**
3548 * igb_intr - Interrupt Handler
3549 * @irq: interrupt number
3550 * @data: pointer to a network interface device structure
3551 **/
3552 static irqreturn_t igb_intr(int irq, void *data)
3553 {
3554 struct net_device *netdev = data;
3555 struct igb_adapter *adapter = netdev_priv(netdev);
3556 struct e1000_hw *hw = &adapter->hw;
3557 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3558 * need for the IMC write */
3559 u32 icr = rd32(E1000_ICR);
3560 u32 eicr = 0;
3561 if (!icr)
3562 return IRQ_NONE; /* Not our interrupt */
3563
3564 igb_write_itr(adapter->rx_ring);
3565
3566 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3567 * not set, then the adapter didn't send an interrupt */
3568 if (!(icr & E1000_ICR_INT_ASSERTED))
3569 return IRQ_NONE;
3570
3571 eicr = rd32(E1000_EICR);
3572
3573 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3574 hw->mac.get_link_status = 1;
3575 /* guard against interrupt when we're going down */
3576 if (!test_bit(__IGB_DOWN, &adapter->state))
3577 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3578 }
3579
3580 netif_rx_schedule(&adapter->rx_ring[0].napi);
3581
3582 return IRQ_HANDLED;
3583 }
3584
3585 /**
3586 * igb_poll - NAPI Rx polling callback
3587 * @napi: napi polling structure
3588 * @budget: count of how many packets we should handle
3589 **/
3590 static int igb_poll(struct napi_struct *napi, int budget)
3591 {
3592 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3593 struct igb_adapter *adapter = rx_ring->adapter;
3594 struct net_device *netdev = adapter->netdev;
3595 int tx_clean_complete, work_done = 0;
3596
3597 /* this poll routine only supports one tx and one rx queue */
3598 #ifdef CONFIG_IGB_DCA
3599 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3600 igb_update_tx_dca(&adapter->tx_ring[0]);
3601 #endif
3602 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3603
3604 #ifdef CONFIG_IGB_DCA
3605 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3606 igb_update_rx_dca(&adapter->rx_ring[0]);
3607 #endif
3608 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3609
3610 /* If no Tx and not enough Rx work done, exit the polling mode */
3611 if ((tx_clean_complete && (work_done < budget)) ||
3612 !netif_running(netdev)) {
3613 if (adapter->itr_setting & 3)
3614 igb_set_itr(adapter);
3615 netif_rx_complete(napi);
3616 if (!test_bit(__IGB_DOWN, &adapter->state))
3617 igb_irq_enable(adapter);
3618 return 0;
3619 }
3620
3621 return 1;
3622 }
3623
3624 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3625 {
3626 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3627 struct igb_adapter *adapter = rx_ring->adapter;
3628 struct e1000_hw *hw = &adapter->hw;
3629 struct net_device *netdev = adapter->netdev;
3630 int work_done = 0;
3631
3632 #ifdef CONFIG_IGB_DCA
3633 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3634 igb_update_rx_dca(rx_ring);
3635 #endif
3636 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3637
3638
3639 /* If not enough Rx work done, exit the polling mode */
3640 if ((work_done == 0) || !netif_running(netdev)) {
3641 netif_rx_complete(napi);
3642
3643 if (adapter->itr_setting & 3) {
3644 if (adapter->num_rx_queues == 1)
3645 igb_set_itr(adapter);
3646 else
3647 igb_update_ring_itr(rx_ring);
3648 }
3649
3650 if (!test_bit(__IGB_DOWN, &adapter->state))
3651 wr32(E1000_EIMS, rx_ring->eims_value);
3652
3653 return 0;
3654 }
3655
3656 return 1;
3657 }
3658
3659 /**
3660 * igb_clean_tx_irq - Reclaim resources after transmit completes
3661 * @adapter: board private structure
3662 * returns true if ring is completely cleaned
3663 **/
3664 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3665 {
3666 struct igb_adapter *adapter = tx_ring->adapter;
3667 struct net_device *netdev = adapter->netdev;
3668 struct e1000_hw *hw = &adapter->hw;
3669 struct igb_buffer *buffer_info;
3670 struct sk_buff *skb;
3671 union e1000_adv_tx_desc *tx_desc, *eop_desc;
3672 unsigned int total_bytes = 0, total_packets = 0;
3673 unsigned int i, eop, count = 0;
3674 bool cleaned = false;
3675
3676 i = tx_ring->next_to_clean;
3677 eop = tx_ring->buffer_info[i].next_to_watch;
3678 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3679
3680 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3681 (count < tx_ring->count)) {
3682 for (cleaned = false; !cleaned; count++) {
3683 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3684 buffer_info = &tx_ring->buffer_info[i];
3685 cleaned = (i == eop);
3686 skb = buffer_info->skb;
3687
3688 if (skb) {
3689 unsigned int segs, bytecount;
3690 /* gso_segs is currently only valid for tcp */
3691 segs = skb_shinfo(skb)->gso_segs ?: 1;
3692 /* multiply data chunks by size of headers */
3693 bytecount = ((segs - 1) * skb_headlen(skb)) +
3694 skb->len;
3695 total_packets += segs;
3696 total_bytes += bytecount;
3697 }
3698
3699 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3700 tx_desc->wb.status = 0;
3701
3702 i++;
3703 if (i == tx_ring->count)
3704 i = 0;
3705 }
3706
3707 eop = tx_ring->buffer_info[i].next_to_watch;
3708 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3709 }
3710
3711 tx_ring->next_to_clean = i;
3712
3713 if (unlikely(count &&
3714 netif_carrier_ok(netdev) &&
3715 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3716 /* Make sure that anybody stopping the queue after this
3717 * sees the new next_to_clean.
3718 */
3719 smp_mb();
3720 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3721 !(test_bit(__IGB_DOWN, &adapter->state))) {
3722 netif_wake_subqueue(netdev, tx_ring->queue_index);
3723 ++adapter->restart_queue;
3724 }
3725 }
3726
3727 if (tx_ring->detect_tx_hung) {
3728 /* Detect a transmit hang in hardware, this serializes the
3729 * check with the clearing of time_stamp and movement of i */
3730 tx_ring->detect_tx_hung = false;
3731 if (tx_ring->buffer_info[i].time_stamp &&
3732 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3733 (adapter->tx_timeout_factor * HZ))
3734 && !(rd32(E1000_STATUS) &
3735 E1000_STATUS_TXOFF)) {
3736
3737 /* detected Tx unit hang */
3738 dev_err(&adapter->pdev->dev,
3739 "Detected Tx Unit Hang\n"
3740 " Tx Queue <%d>\n"
3741 " TDH <%x>\n"
3742 " TDT <%x>\n"
3743 " next_to_use <%x>\n"
3744 " next_to_clean <%x>\n"
3745 "buffer_info[next_to_clean]\n"
3746 " time_stamp <%lx>\n"
3747 " next_to_watch <%x>\n"
3748 " jiffies <%lx>\n"
3749 " desc.status <%x>\n",
3750 tx_ring->queue_index,
3751 readl(adapter->hw.hw_addr + tx_ring->head),
3752 readl(adapter->hw.hw_addr + tx_ring->tail),
3753 tx_ring->next_to_use,
3754 tx_ring->next_to_clean,
3755 tx_ring->buffer_info[i].time_stamp,
3756 eop,
3757 jiffies,
3758 eop_desc->wb.status);
3759 netif_stop_subqueue(netdev, tx_ring->queue_index);
3760 }
3761 }
3762 tx_ring->total_bytes += total_bytes;
3763 tx_ring->total_packets += total_packets;
3764 tx_ring->tx_stats.bytes += total_bytes;
3765 tx_ring->tx_stats.packets += total_packets;
3766 adapter->net_stats.tx_bytes += total_bytes;
3767 adapter->net_stats.tx_packets += total_packets;
3768 return (count < tx_ring->count);
3769 }
3770
3771 #ifdef CONFIG_IGB_LRO
3772 /**
3773 * igb_get_skb_hdr - helper function for LRO header processing
3774 * @skb: pointer to sk_buff to be added to LRO packet
3775 * @iphdr: pointer to ip header structure
3776 * @tcph: pointer to tcp header structure
3777 * @hdr_flags: pointer to header flags
3778 * @priv: pointer to the receive descriptor for the current sk_buff
3779 **/
3780 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3781 u64 *hdr_flags, void *priv)
3782 {
3783 union e1000_adv_rx_desc *rx_desc = priv;
3784 u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3785 (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3786
3787 /* Verify that this is a valid IPv4 TCP packet */
3788 if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3789 E1000_RXDADV_PKTTYPE_TCP))
3790 return -1;
3791
3792 /* Set network headers */
3793 skb_reset_network_header(skb);
3794 skb_set_transport_header(skb, ip_hdrlen(skb));
3795 *iphdr = ip_hdr(skb);
3796 *tcph = tcp_hdr(skb);
3797 *hdr_flags = LRO_IPV4 | LRO_TCP;
3798
3799 return 0;
3800
3801 }
3802 #endif /* CONFIG_IGB_LRO */
3803
3804 /**
3805 * igb_receive_skb - helper function to handle rx indications
3806 * @ring: pointer to receive ring receving this packet
3807 * @status: descriptor status field as written by hardware
3808 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3809 * @skb: pointer to sk_buff to be indicated to stack
3810 **/
3811 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3812 union e1000_adv_rx_desc * rx_desc,
3813 struct sk_buff *skb)
3814 {
3815 struct igb_adapter * adapter = ring->adapter;
3816 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3817
3818 #ifdef CONFIG_IGB_LRO
3819 if (adapter->netdev->features & NETIF_F_LRO &&
3820 skb->ip_summed == CHECKSUM_UNNECESSARY) {
3821 if (vlan_extracted)
3822 lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3823 adapter->vlgrp,
3824 le16_to_cpu(rx_desc->wb.upper.vlan),
3825 rx_desc);
3826 else
3827 lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3828 ring->lro_used = 1;
3829 } else {
3830 #endif
3831 if (vlan_extracted)
3832 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3833 le16_to_cpu(rx_desc->wb.upper.vlan));
3834 else
3835
3836 netif_receive_skb(skb);
3837 #ifdef CONFIG_IGB_LRO
3838 }
3839 #endif
3840 }
3841
3842
3843 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3844 u32 status_err, struct sk_buff *skb)
3845 {
3846 skb->ip_summed = CHECKSUM_NONE;
3847
3848 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3849 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3850 return;
3851 /* TCP/UDP checksum error bit is set */
3852 if (status_err &
3853 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3854 /* let the stack verify checksum errors */
3855 adapter->hw_csum_err++;
3856 return;
3857 }
3858 /* It must be a TCP or UDP packet with a valid checksum */
3859 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3860 skb->ip_summed = CHECKSUM_UNNECESSARY;
3861
3862 adapter->hw_csum_good++;
3863 }
3864
3865 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3866 int *work_done, int budget)
3867 {
3868 struct igb_adapter *adapter = rx_ring->adapter;
3869 struct net_device *netdev = adapter->netdev;
3870 struct pci_dev *pdev = adapter->pdev;
3871 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3872 struct igb_buffer *buffer_info , *next_buffer;
3873 struct sk_buff *skb;
3874 unsigned int i;
3875 u32 length, hlen, staterr;
3876 bool cleaned = false;
3877 int cleaned_count = 0;
3878 unsigned int total_bytes = 0, total_packets = 0;
3879
3880 i = rx_ring->next_to_clean;
3881 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3882 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3883
3884 while (staterr & E1000_RXD_STAT_DD) {
3885 if (*work_done >= budget)
3886 break;
3887 (*work_done)++;
3888 buffer_info = &rx_ring->buffer_info[i];
3889
3890 /* HW will not DMA in data larger than the given buffer, even
3891 * if it parses the (NFS, of course) header to be larger. In
3892 * that case, it fills the header buffer and spills the rest
3893 * into the page.
3894 */
3895 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3896 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3897 if (hlen > adapter->rx_ps_hdr_size)
3898 hlen = adapter->rx_ps_hdr_size;
3899
3900 length = le16_to_cpu(rx_desc->wb.upper.length);
3901 cleaned = true;
3902 cleaned_count++;
3903
3904 skb = buffer_info->skb;
3905 prefetch(skb->data - NET_IP_ALIGN);
3906 buffer_info->skb = NULL;
3907 if (!adapter->rx_ps_hdr_size) {
3908 pci_unmap_single(pdev, buffer_info->dma,
3909 adapter->rx_buffer_len +
3910 NET_IP_ALIGN,
3911 PCI_DMA_FROMDEVICE);
3912 skb_put(skb, length);
3913 goto send_up;
3914 }
3915
3916 if (!skb_shinfo(skb)->nr_frags) {
3917 pci_unmap_single(pdev, buffer_info->dma,
3918 adapter->rx_ps_hdr_size +
3919 NET_IP_ALIGN,
3920 PCI_DMA_FROMDEVICE);
3921 skb_put(skb, hlen);
3922 }
3923
3924 if (length) {
3925 pci_unmap_page(pdev, buffer_info->page_dma,
3926 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3927 buffer_info->page_dma = 0;
3928
3929 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3930 buffer_info->page,
3931 buffer_info->page_offset,
3932 length);
3933
3934 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3935 (page_count(buffer_info->page) != 1))
3936 buffer_info->page = NULL;
3937 else
3938 get_page(buffer_info->page);
3939
3940 skb->len += length;
3941 skb->data_len += length;
3942
3943 skb->truesize += length;
3944 }
3945 send_up:
3946 i++;
3947 if (i == rx_ring->count)
3948 i = 0;
3949 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3950 prefetch(next_rxd);
3951 next_buffer = &rx_ring->buffer_info[i];
3952
3953 if (!(staterr & E1000_RXD_STAT_EOP)) {
3954 buffer_info->skb = next_buffer->skb;
3955 buffer_info->dma = next_buffer->dma;
3956 next_buffer->skb = skb;
3957 next_buffer->dma = 0;
3958 goto next_desc;
3959 }
3960
3961 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3962 dev_kfree_skb_irq(skb);
3963 goto next_desc;
3964 }
3965
3966 total_bytes += skb->len;
3967 total_packets++;
3968
3969 igb_rx_checksum_adv(adapter, staterr, skb);
3970
3971 skb->protocol = eth_type_trans(skb, netdev);
3972
3973 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3974
3975 next_desc:
3976 rx_desc->wb.upper.status_error = 0;
3977
3978 /* return some buffers to hardware, one at a time is too slow */
3979 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3980 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3981 cleaned_count = 0;
3982 }
3983
3984 /* use prefetched values */
3985 rx_desc = next_rxd;
3986 buffer_info = next_buffer;
3987
3988 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3989 }
3990
3991 rx_ring->next_to_clean = i;
3992 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3993
3994 #ifdef CONFIG_IGB_LRO
3995 if (rx_ring->lro_used) {
3996 lro_flush_all(&rx_ring->lro_mgr);
3997 rx_ring->lro_used = 0;
3998 }
3999 #endif
4000
4001 if (cleaned_count)
4002 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4003
4004 rx_ring->total_packets += total_packets;
4005 rx_ring->total_bytes += total_bytes;
4006 rx_ring->rx_stats.packets += total_packets;
4007 rx_ring->rx_stats.bytes += total_bytes;
4008 adapter->net_stats.rx_bytes += total_bytes;
4009 adapter->net_stats.rx_packets += total_packets;
4010 return cleaned;
4011 }
4012
4013
4014 /**
4015 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4016 * @adapter: address of board private structure
4017 **/
4018 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4019 int cleaned_count)
4020 {
4021 struct igb_adapter *adapter = rx_ring->adapter;
4022 struct net_device *netdev = adapter->netdev;
4023 struct pci_dev *pdev = adapter->pdev;
4024 union e1000_adv_rx_desc *rx_desc;
4025 struct igb_buffer *buffer_info;
4026 struct sk_buff *skb;
4027 unsigned int i;
4028
4029 i = rx_ring->next_to_use;
4030 buffer_info = &rx_ring->buffer_info[i];
4031
4032 while (cleaned_count--) {
4033 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4034
4035 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4036 if (!buffer_info->page) {
4037 buffer_info->page = alloc_page(GFP_ATOMIC);
4038 if (!buffer_info->page) {
4039 adapter->alloc_rx_buff_failed++;
4040 goto no_buffers;
4041 }
4042 buffer_info->page_offset = 0;
4043 } else {
4044 buffer_info->page_offset ^= PAGE_SIZE / 2;
4045 }
4046 buffer_info->page_dma =
4047 pci_map_page(pdev,
4048 buffer_info->page,
4049 buffer_info->page_offset,
4050 PAGE_SIZE / 2,
4051 PCI_DMA_FROMDEVICE);
4052 }
4053
4054 if (!buffer_info->skb) {
4055 int bufsz;
4056
4057 if (adapter->rx_ps_hdr_size)
4058 bufsz = adapter->rx_ps_hdr_size;
4059 else
4060 bufsz = adapter->rx_buffer_len;
4061 bufsz += NET_IP_ALIGN;
4062 skb = netdev_alloc_skb(netdev, bufsz);
4063
4064 if (!skb) {
4065 adapter->alloc_rx_buff_failed++;
4066 goto no_buffers;
4067 }
4068
4069 /* Make buffer alignment 2 beyond a 16 byte boundary
4070 * this will result in a 16 byte aligned IP header after
4071 * the 14 byte MAC header is removed
4072 */
4073 skb_reserve(skb, NET_IP_ALIGN);
4074
4075 buffer_info->skb = skb;
4076 buffer_info->dma = pci_map_single(pdev, skb->data,
4077 bufsz,
4078 PCI_DMA_FROMDEVICE);
4079
4080 }
4081 /* Refresh the desc even if buffer_addrs didn't change because
4082 * each write-back erases this info. */
4083 if (adapter->rx_ps_hdr_size) {
4084 rx_desc->read.pkt_addr =
4085 cpu_to_le64(buffer_info->page_dma);
4086 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4087 } else {
4088 rx_desc->read.pkt_addr =
4089 cpu_to_le64(buffer_info->dma);
4090 rx_desc->read.hdr_addr = 0;
4091 }
4092
4093 i++;
4094 if (i == rx_ring->count)
4095 i = 0;
4096 buffer_info = &rx_ring->buffer_info[i];
4097 }
4098
4099 no_buffers:
4100 if (rx_ring->next_to_use != i) {
4101 rx_ring->next_to_use = i;
4102 if (i == 0)
4103 i = (rx_ring->count - 1);
4104 else
4105 i--;
4106
4107 /* Force memory writes to complete before letting h/w
4108 * know there are new descriptors to fetch. (Only
4109 * applicable for weak-ordered memory model archs,
4110 * such as IA-64). */
4111 wmb();
4112 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4113 }
4114 }
4115
4116 /**
4117 * igb_mii_ioctl -
4118 * @netdev:
4119 * @ifreq:
4120 * @cmd:
4121 **/
4122 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4123 {
4124 struct igb_adapter *adapter = netdev_priv(netdev);
4125 struct mii_ioctl_data *data = if_mii(ifr);
4126
4127 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4128 return -EOPNOTSUPP;
4129
4130 switch (cmd) {
4131 case SIOCGMIIPHY:
4132 data->phy_id = adapter->hw.phy.addr;
4133 break;
4134 case SIOCGMIIREG:
4135 if (!capable(CAP_NET_ADMIN))
4136 return -EPERM;
4137 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4138 &data->val_out))
4139 return -EIO;
4140 break;
4141 case SIOCSMIIREG:
4142 default:
4143 return -EOPNOTSUPP;
4144 }
4145 return 0;
4146 }
4147
4148 /**
4149 * igb_ioctl -
4150 * @netdev:
4151 * @ifreq:
4152 * @cmd:
4153 **/
4154 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4155 {
4156 switch (cmd) {
4157 case SIOCGMIIPHY:
4158 case SIOCGMIIREG:
4159 case SIOCSMIIREG:
4160 return igb_mii_ioctl(netdev, ifr, cmd);
4161 default:
4162 return -EOPNOTSUPP;
4163 }
4164 }
4165
4166 static void igb_vlan_rx_register(struct net_device *netdev,
4167 struct vlan_group *grp)
4168 {
4169 struct igb_adapter *adapter = netdev_priv(netdev);
4170 struct e1000_hw *hw = &adapter->hw;
4171 u32 ctrl, rctl;
4172
4173 igb_irq_disable(adapter);
4174 adapter->vlgrp = grp;
4175
4176 if (grp) {
4177 /* enable VLAN tag insert/strip */
4178 ctrl = rd32(E1000_CTRL);
4179 ctrl |= E1000_CTRL_VME;
4180 wr32(E1000_CTRL, ctrl);
4181
4182 /* enable VLAN receive filtering */
4183 rctl = rd32(E1000_RCTL);
4184 rctl &= ~E1000_RCTL_CFIEN;
4185 wr32(E1000_RCTL, rctl);
4186 igb_update_mng_vlan(adapter);
4187 wr32(E1000_RLPML,
4188 adapter->max_frame_size + VLAN_TAG_SIZE);
4189 } else {
4190 /* disable VLAN tag insert/strip */
4191 ctrl = rd32(E1000_CTRL);
4192 ctrl &= ~E1000_CTRL_VME;
4193 wr32(E1000_CTRL, ctrl);
4194
4195 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4196 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4197 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4198 }
4199 wr32(E1000_RLPML,
4200 adapter->max_frame_size);
4201 }
4202
4203 if (!test_bit(__IGB_DOWN, &adapter->state))
4204 igb_irq_enable(adapter);
4205 }
4206
4207 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4208 {
4209 struct igb_adapter *adapter = netdev_priv(netdev);
4210 struct e1000_hw *hw = &adapter->hw;
4211 u32 vfta, index;
4212
4213 if ((adapter->hw.mng_cookie.status &
4214 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4215 (vid == adapter->mng_vlan_id))
4216 return;
4217 /* add VID to filter table */
4218 index = (vid >> 5) & 0x7F;
4219 vfta = array_rd32(E1000_VFTA, index);
4220 vfta |= (1 << (vid & 0x1F));
4221 igb_write_vfta(&adapter->hw, index, vfta);
4222 }
4223
4224 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4225 {
4226 struct igb_adapter *adapter = netdev_priv(netdev);
4227 struct e1000_hw *hw = &adapter->hw;
4228 u32 vfta, index;
4229
4230 igb_irq_disable(adapter);
4231 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4232
4233 if (!test_bit(__IGB_DOWN, &adapter->state))
4234 igb_irq_enable(adapter);
4235
4236 if ((adapter->hw.mng_cookie.status &
4237 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4238 (vid == adapter->mng_vlan_id)) {
4239 /* release control to f/w */
4240 igb_release_hw_control(adapter);
4241 return;
4242 }
4243
4244 /* remove VID from filter table */
4245 index = (vid >> 5) & 0x7F;
4246 vfta = array_rd32(E1000_VFTA, index);
4247 vfta &= ~(1 << (vid & 0x1F));
4248 igb_write_vfta(&adapter->hw, index, vfta);
4249 }
4250
4251 static void igb_restore_vlan(struct igb_adapter *adapter)
4252 {
4253 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4254
4255 if (adapter->vlgrp) {
4256 u16 vid;
4257 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4258 if (!vlan_group_get_device(adapter->vlgrp, vid))
4259 continue;
4260 igb_vlan_rx_add_vid(adapter->netdev, vid);
4261 }
4262 }
4263 }
4264
4265 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4266 {
4267 struct e1000_mac_info *mac = &adapter->hw.mac;
4268
4269 mac->autoneg = 0;
4270
4271 /* Fiber NICs only allow 1000 gbps Full duplex */
4272 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4273 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4274 dev_err(&adapter->pdev->dev,
4275 "Unsupported Speed/Duplex configuration\n");
4276 return -EINVAL;
4277 }
4278
4279 switch (spddplx) {
4280 case SPEED_10 + DUPLEX_HALF:
4281 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4282 break;
4283 case SPEED_10 + DUPLEX_FULL:
4284 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4285 break;
4286 case SPEED_100 + DUPLEX_HALF:
4287 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4288 break;
4289 case SPEED_100 + DUPLEX_FULL:
4290 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4291 break;
4292 case SPEED_1000 + DUPLEX_FULL:
4293 mac->autoneg = 1;
4294 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4295 break;
4296 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4297 default:
4298 dev_err(&adapter->pdev->dev,
4299 "Unsupported Speed/Duplex configuration\n");
4300 return -EINVAL;
4301 }
4302 return 0;
4303 }
4304
4305
4306 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4307 {
4308 struct net_device *netdev = pci_get_drvdata(pdev);
4309 struct igb_adapter *adapter = netdev_priv(netdev);
4310 struct e1000_hw *hw = &adapter->hw;
4311 u32 ctrl, rctl, status;
4312 u32 wufc = adapter->wol;
4313 #ifdef CONFIG_PM
4314 int retval = 0;
4315 #endif
4316
4317 netif_device_detach(netdev);
4318
4319 if (netif_running(netdev))
4320 igb_close(netdev);
4321
4322 igb_reset_interrupt_capability(adapter);
4323
4324 igb_free_queues(adapter);
4325
4326 #ifdef CONFIG_PM
4327 retval = pci_save_state(pdev);
4328 if (retval)
4329 return retval;
4330 #endif
4331
4332 status = rd32(E1000_STATUS);
4333 if (status & E1000_STATUS_LU)
4334 wufc &= ~E1000_WUFC_LNKC;
4335
4336 if (wufc) {
4337 igb_setup_rctl(adapter);
4338 igb_set_multi(netdev);
4339
4340 /* turn on all-multi mode if wake on multicast is enabled */
4341 if (wufc & E1000_WUFC_MC) {
4342 rctl = rd32(E1000_RCTL);
4343 rctl |= E1000_RCTL_MPE;
4344 wr32(E1000_RCTL, rctl);
4345 }
4346
4347 ctrl = rd32(E1000_CTRL);
4348 /* advertise wake from D3Cold */
4349 #define E1000_CTRL_ADVD3WUC 0x00100000
4350 /* phy power management enable */
4351 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4352 ctrl |= E1000_CTRL_ADVD3WUC;
4353 wr32(E1000_CTRL, ctrl);
4354
4355 /* Allow time for pending master requests to run */
4356 igb_disable_pcie_master(&adapter->hw);
4357
4358 wr32(E1000_WUC, E1000_WUC_PME_EN);
4359 wr32(E1000_WUFC, wufc);
4360 } else {
4361 wr32(E1000_WUC, 0);
4362 wr32(E1000_WUFC, 0);
4363 }
4364
4365 /* make sure adapter isn't asleep if manageability/wol is enabled */
4366 if (wufc || adapter->en_mng_pt) {
4367 pci_enable_wake(pdev, PCI_D3hot, 1);
4368 pci_enable_wake(pdev, PCI_D3cold, 1);
4369 } else {
4370 igb_shutdown_fiber_serdes_link_82575(hw);
4371 pci_enable_wake(pdev, PCI_D3hot, 0);
4372 pci_enable_wake(pdev, PCI_D3cold, 0);
4373 }
4374
4375 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4376 * would have already happened in close and is redundant. */
4377 igb_release_hw_control(adapter);
4378
4379 pci_disable_device(pdev);
4380
4381 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4382
4383 return 0;
4384 }
4385
4386 #ifdef CONFIG_PM
4387 static int igb_resume(struct pci_dev *pdev)
4388 {
4389 struct net_device *netdev = pci_get_drvdata(pdev);
4390 struct igb_adapter *adapter = netdev_priv(netdev);
4391 struct e1000_hw *hw = &adapter->hw;
4392 u32 err;
4393
4394 pci_set_power_state(pdev, PCI_D0);
4395 pci_restore_state(pdev);
4396
4397 if (adapter->need_ioport)
4398 err = pci_enable_device(pdev);
4399 else
4400 err = pci_enable_device_mem(pdev);
4401 if (err) {
4402 dev_err(&pdev->dev,
4403 "igb: Cannot enable PCI device from suspend\n");
4404 return err;
4405 }
4406 pci_set_master(pdev);
4407
4408 pci_enable_wake(pdev, PCI_D3hot, 0);
4409 pci_enable_wake(pdev, PCI_D3cold, 0);
4410
4411 igb_set_interrupt_capability(adapter);
4412
4413 if (igb_alloc_queues(adapter)) {
4414 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4415 return -ENOMEM;
4416 }
4417
4418 /* e1000_power_up_phy(adapter); */
4419
4420 igb_reset(adapter);
4421 wr32(E1000_WUS, ~0);
4422
4423 if (netif_running(netdev)) {
4424 err = igb_open(netdev);
4425 if (err)
4426 return err;
4427 }
4428
4429 netif_device_attach(netdev);
4430
4431 /* let the f/w know that the h/w is now under the control of the
4432 * driver. */
4433 igb_get_hw_control(adapter);
4434
4435 return 0;
4436 }
4437 #endif
4438
4439 static void igb_shutdown(struct pci_dev *pdev)
4440 {
4441 igb_suspend(pdev, PMSG_SUSPEND);
4442 }
4443
4444 #ifdef CONFIG_NET_POLL_CONTROLLER
4445 /*
4446 * Polling 'interrupt' - used by things like netconsole to send skbs
4447 * without having to re-enable interrupts. It's not called while
4448 * the interrupt routine is executing.
4449 */
4450 static void igb_netpoll(struct net_device *netdev)
4451 {
4452 struct igb_adapter *adapter = netdev_priv(netdev);
4453 int i;
4454 int work_done = 0;
4455
4456 igb_irq_disable(adapter);
4457 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4458
4459 for (i = 0; i < adapter->num_tx_queues; i++)
4460 igb_clean_tx_irq(&adapter->tx_ring[i]);
4461
4462 for (i = 0; i < adapter->num_rx_queues; i++)
4463 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4464 &work_done,
4465 adapter->rx_ring[i].napi.weight);
4466
4467 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4468 igb_irq_enable(adapter);
4469 }
4470 #endif /* CONFIG_NET_POLL_CONTROLLER */
4471
4472 /**
4473 * igb_io_error_detected - called when PCI error is detected
4474 * @pdev: Pointer to PCI device
4475 * @state: The current pci connection state
4476 *
4477 * This function is called after a PCI bus error affecting
4478 * this device has been detected.
4479 */
4480 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4481 pci_channel_state_t state)
4482 {
4483 struct net_device *netdev = pci_get_drvdata(pdev);
4484 struct igb_adapter *adapter = netdev_priv(netdev);
4485
4486 netif_device_detach(netdev);
4487
4488 if (netif_running(netdev))
4489 igb_down(adapter);
4490 pci_disable_device(pdev);
4491
4492 /* Request a slot slot reset. */
4493 return PCI_ERS_RESULT_NEED_RESET;
4494 }
4495
4496 /**
4497 * igb_io_slot_reset - called after the pci bus has been reset.
4498 * @pdev: Pointer to PCI device
4499 *
4500 * Restart the card from scratch, as if from a cold-boot. Implementation
4501 * resembles the first-half of the igb_resume routine.
4502 */
4503 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4504 {
4505 struct net_device *netdev = pci_get_drvdata(pdev);
4506 struct igb_adapter *adapter = netdev_priv(netdev);
4507 struct e1000_hw *hw = &adapter->hw;
4508 pci_ers_result_t result;
4509 int err;
4510
4511 if (adapter->need_ioport)
4512 err = pci_enable_device(pdev);
4513 else
4514 err = pci_enable_device_mem(pdev);
4515
4516 if (err) {
4517 dev_err(&pdev->dev,
4518 "Cannot re-enable PCI device after reset.\n");
4519 result = PCI_ERS_RESULT_DISCONNECT;
4520 } else {
4521 pci_set_master(pdev);
4522 pci_restore_state(pdev);
4523
4524 pci_enable_wake(pdev, PCI_D3hot, 0);
4525 pci_enable_wake(pdev, PCI_D3cold, 0);
4526
4527 igb_reset(adapter);
4528 wr32(E1000_WUS, ~0);
4529 result = PCI_ERS_RESULT_RECOVERED;
4530 }
4531
4532 err = pci_cleanup_aer_uncorrect_error_status(pdev);
4533 if (err) {
4534 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4535 "failed 0x%0x\n", err);
4536 /* non-fatal, continue */
4537 }
4538
4539 return result;
4540 }
4541
4542 /**
4543 * igb_io_resume - called when traffic can start flowing again.
4544 * @pdev: Pointer to PCI device
4545 *
4546 * This callback is called when the error recovery driver tells us that
4547 * its OK to resume normal operation. Implementation resembles the
4548 * second-half of the igb_resume routine.
4549 */
4550 static void igb_io_resume(struct pci_dev *pdev)
4551 {
4552 struct net_device *netdev = pci_get_drvdata(pdev);
4553 struct igb_adapter *adapter = netdev_priv(netdev);
4554
4555 if (netif_running(netdev)) {
4556 if (igb_up(adapter)) {
4557 dev_err(&pdev->dev, "igb_up failed after reset\n");
4558 return;
4559 }
4560 }
4561
4562 netif_device_attach(netdev);
4563
4564 /* let the f/w know that the h/w is now under the control of the
4565 * driver. */
4566 igb_get_hw_control(adapter);
4567 }
4568
4569 /* igb_main.c */
This page took 0.157966 seconds and 6 git commands to generate.