net: use netdev_mc_count and netdev_mc_empty when appropriate
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "2.1.0-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
79 /* required last entry */
80 {0, }
81 };
82
83 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
84
85 void igb_reset(struct igb_adapter *);
86 static int igb_setup_all_tx_resources(struct igb_adapter *);
87 static int igb_setup_all_rx_resources(struct igb_adapter *);
88 static void igb_free_all_tx_resources(struct igb_adapter *);
89 static void igb_free_all_rx_resources(struct igb_adapter *);
90 static void igb_setup_mrqc(struct igb_adapter *);
91 void igb_update_stats(struct igb_adapter *);
92 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
93 static void __devexit igb_remove(struct pci_dev *pdev);
94 static int igb_sw_init(struct igb_adapter *);
95 static int igb_open(struct net_device *);
96 static int igb_close(struct net_device *);
97 static void igb_configure_tx(struct igb_adapter *);
98 static void igb_configure_rx(struct igb_adapter *);
99 static void igb_clean_all_tx_rings(struct igb_adapter *);
100 static void igb_clean_all_rx_rings(struct igb_adapter *);
101 static void igb_clean_tx_ring(struct igb_ring *);
102 static void igb_clean_rx_ring(struct igb_ring *);
103 static void igb_set_rx_mode(struct net_device *);
104 static void igb_update_phy_info(unsigned long);
105 static void igb_watchdog(unsigned long);
106 static void igb_watchdog_task(struct work_struct *);
107 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
108 static struct net_device_stats *igb_get_stats(struct net_device *);
109 static int igb_change_mtu(struct net_device *, int);
110 static int igb_set_mac(struct net_device *, void *);
111 static void igb_set_uta(struct igb_adapter *adapter);
112 static irqreturn_t igb_intr(int irq, void *);
113 static irqreturn_t igb_intr_msi(int irq, void *);
114 static irqreturn_t igb_msix_other(int irq, void *);
115 static irqreturn_t igb_msix_ring(int irq, void *);
116 #ifdef CONFIG_IGB_DCA
117 static void igb_update_dca(struct igb_q_vector *);
118 static void igb_setup_dca(struct igb_adapter *);
119 #endif /* CONFIG_IGB_DCA */
120 static bool igb_clean_tx_irq(struct igb_q_vector *);
121 static int igb_poll(struct napi_struct *, int);
122 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
123 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124 static void igb_tx_timeout(struct net_device *);
125 static void igb_reset_task(struct work_struct *);
126 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127 static void igb_vlan_rx_add_vid(struct net_device *, u16);
128 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129 static void igb_restore_vlan(struct igb_adapter *);
130 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
131 static void igb_ping_all_vfs(struct igb_adapter *);
132 static void igb_msg_task(struct igb_adapter *);
133 static void igb_vmm_control(struct igb_adapter *);
134 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
135 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
136
137 #ifdef CONFIG_PM
138 static int igb_suspend(struct pci_dev *, pm_message_t);
139 static int igb_resume(struct pci_dev *);
140 #endif
141 static void igb_shutdown(struct pci_dev *);
142 #ifdef CONFIG_IGB_DCA
143 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
144 static struct notifier_block dca_notifier = {
145 .notifier_call = igb_notify_dca,
146 .next = NULL,
147 .priority = 0
148 };
149 #endif
150 #ifdef CONFIG_NET_POLL_CONTROLLER
151 /* for netdump / net console */
152 static void igb_netpoll(struct net_device *);
153 #endif
154 #ifdef CONFIG_PCI_IOV
155 static unsigned int max_vfs = 0;
156 module_param(max_vfs, uint, 0);
157 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
158 "per physical function");
159 #endif /* CONFIG_PCI_IOV */
160
161 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
162 pci_channel_state_t);
163 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
164 static void igb_io_resume(struct pci_dev *);
165
166 static struct pci_error_handlers igb_err_handler = {
167 .error_detected = igb_io_error_detected,
168 .slot_reset = igb_io_slot_reset,
169 .resume = igb_io_resume,
170 };
171
172
173 static struct pci_driver igb_driver = {
174 .name = igb_driver_name,
175 .id_table = igb_pci_tbl,
176 .probe = igb_probe,
177 .remove = __devexit_p(igb_remove),
178 #ifdef CONFIG_PM
179 /* Power Managment Hooks */
180 .suspend = igb_suspend,
181 .resume = igb_resume,
182 #endif
183 .shutdown = igb_shutdown,
184 .err_handler = &igb_err_handler
185 };
186
187 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
188 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
189 MODULE_LICENSE("GPL");
190 MODULE_VERSION(DRV_VERSION);
191
192 /**
193 * igb_read_clock - read raw cycle counter (to be used by time counter)
194 */
195 static cycle_t igb_read_clock(const struct cyclecounter *tc)
196 {
197 struct igb_adapter *adapter =
198 container_of(tc, struct igb_adapter, cycles);
199 struct e1000_hw *hw = &adapter->hw;
200 u64 stamp = 0;
201 int shift = 0;
202
203 /*
204 * The timestamp latches on lowest register read. For the 82580
205 * the lowest register is SYSTIMR instead of SYSTIML. However we never
206 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
207 */
208 if (hw->mac.type == e1000_82580) {
209 stamp = rd32(E1000_SYSTIMR) >> 8;
210 shift = IGB_82580_TSYNC_SHIFT;
211 }
212
213 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
214 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
215 return stamp;
216 }
217
218 #ifdef DEBUG
219 /**
220 * igb_get_hw_dev_name - return device name string
221 * used by hardware layer to print debugging information
222 **/
223 char *igb_get_hw_dev_name(struct e1000_hw *hw)
224 {
225 struct igb_adapter *adapter = hw->back;
226 return adapter->netdev->name;
227 }
228
229 /**
230 * igb_get_time_str - format current NIC and system time as string
231 */
232 static char *igb_get_time_str(struct igb_adapter *adapter,
233 char buffer[160])
234 {
235 cycle_t hw = adapter->cycles.read(&adapter->cycles);
236 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
237 struct timespec sys;
238 struct timespec delta;
239 getnstimeofday(&sys);
240
241 delta = timespec_sub(nic, sys);
242
243 sprintf(buffer,
244 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
245 hw,
246 (long)nic.tv_sec, nic.tv_nsec,
247 (long)sys.tv_sec, sys.tv_nsec,
248 (long)delta.tv_sec, delta.tv_nsec);
249
250 return buffer;
251 }
252 #endif
253
254 /**
255 * igb_init_module - Driver Registration Routine
256 *
257 * igb_init_module is the first routine called when the driver is
258 * loaded. All it does is register with the PCI subsystem.
259 **/
260 static int __init igb_init_module(void)
261 {
262 int ret;
263 printk(KERN_INFO "%s - version %s\n",
264 igb_driver_string, igb_driver_version);
265
266 printk(KERN_INFO "%s\n", igb_copyright);
267
268 #ifdef CONFIG_IGB_DCA
269 dca_register_notify(&dca_notifier);
270 #endif
271 ret = pci_register_driver(&igb_driver);
272 return ret;
273 }
274
275 module_init(igb_init_module);
276
277 /**
278 * igb_exit_module - Driver Exit Cleanup Routine
279 *
280 * igb_exit_module is called just before the driver is removed
281 * from memory.
282 **/
283 static void __exit igb_exit_module(void)
284 {
285 #ifdef CONFIG_IGB_DCA
286 dca_unregister_notify(&dca_notifier);
287 #endif
288 pci_unregister_driver(&igb_driver);
289 }
290
291 module_exit(igb_exit_module);
292
293 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
294 /**
295 * igb_cache_ring_register - Descriptor ring to register mapping
296 * @adapter: board private structure to initialize
297 *
298 * Once we know the feature-set enabled for the device, we'll cache
299 * the register offset the descriptor ring is assigned to.
300 **/
301 static void igb_cache_ring_register(struct igb_adapter *adapter)
302 {
303 int i = 0, j = 0;
304 u32 rbase_offset = adapter->vfs_allocated_count;
305
306 switch (adapter->hw.mac.type) {
307 case e1000_82576:
308 /* The queues are allocated for virtualization such that VF 0
309 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
310 * In order to avoid collision we start at the first free queue
311 * and continue consuming queues in the same sequence
312 */
313 if (adapter->vfs_allocated_count) {
314 for (; i < adapter->rss_queues; i++)
315 adapter->rx_ring[i].reg_idx = rbase_offset +
316 Q_IDX_82576(i);
317 for (; j < adapter->rss_queues; j++)
318 adapter->tx_ring[j].reg_idx = rbase_offset +
319 Q_IDX_82576(j);
320 }
321 case e1000_82575:
322 case e1000_82580:
323 default:
324 for (; i < adapter->num_rx_queues; i++)
325 adapter->rx_ring[i].reg_idx = rbase_offset + i;
326 for (; j < adapter->num_tx_queues; j++)
327 adapter->tx_ring[j].reg_idx = rbase_offset + j;
328 break;
329 }
330 }
331
332 static void igb_free_queues(struct igb_adapter *adapter)
333 {
334 kfree(adapter->tx_ring);
335 kfree(adapter->rx_ring);
336
337 adapter->tx_ring = NULL;
338 adapter->rx_ring = NULL;
339
340 adapter->num_rx_queues = 0;
341 adapter->num_tx_queues = 0;
342 }
343
344 /**
345 * igb_alloc_queues - Allocate memory for all rings
346 * @adapter: board private structure to initialize
347 *
348 * We allocate one ring per queue at run-time since we don't know the
349 * number of queues at compile-time.
350 **/
351 static int igb_alloc_queues(struct igb_adapter *adapter)
352 {
353 int i;
354
355 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
356 sizeof(struct igb_ring), GFP_KERNEL);
357 if (!adapter->tx_ring)
358 goto err;
359
360 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
361 sizeof(struct igb_ring), GFP_KERNEL);
362 if (!adapter->rx_ring)
363 goto err;
364
365 for (i = 0; i < adapter->num_tx_queues; i++) {
366 struct igb_ring *ring = &(adapter->tx_ring[i]);
367 ring->count = adapter->tx_ring_count;
368 ring->queue_index = i;
369 ring->pdev = adapter->pdev;
370 ring->netdev = adapter->netdev;
371 /* For 82575, context index must be unique per ring. */
372 if (adapter->hw.mac.type == e1000_82575)
373 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
374 }
375
376 for (i = 0; i < adapter->num_rx_queues; i++) {
377 struct igb_ring *ring = &(adapter->rx_ring[i]);
378 ring->count = adapter->rx_ring_count;
379 ring->queue_index = i;
380 ring->pdev = adapter->pdev;
381 ring->netdev = adapter->netdev;
382 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
383 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
384 /* set flag indicating ring supports SCTP checksum offload */
385 if (adapter->hw.mac.type >= e1000_82576)
386 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
387 }
388
389 igb_cache_ring_register(adapter);
390
391 return 0;
392
393 err:
394 igb_free_queues(adapter);
395
396 return -ENOMEM;
397 }
398
399 #define IGB_N0_QUEUE -1
400 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
401 {
402 u32 msixbm = 0;
403 struct igb_adapter *adapter = q_vector->adapter;
404 struct e1000_hw *hw = &adapter->hw;
405 u32 ivar, index;
406 int rx_queue = IGB_N0_QUEUE;
407 int tx_queue = IGB_N0_QUEUE;
408
409 if (q_vector->rx_ring)
410 rx_queue = q_vector->rx_ring->reg_idx;
411 if (q_vector->tx_ring)
412 tx_queue = q_vector->tx_ring->reg_idx;
413
414 switch (hw->mac.type) {
415 case e1000_82575:
416 /* The 82575 assigns vectors using a bitmask, which matches the
417 bitmask for the EICR/EIMS/EIMC registers. To assign one
418 or more queues to a vector, we write the appropriate bits
419 into the MSIXBM register for that vector. */
420 if (rx_queue > IGB_N0_QUEUE)
421 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
422 if (tx_queue > IGB_N0_QUEUE)
423 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
424 if (!adapter->msix_entries && msix_vector == 0)
425 msixbm |= E1000_EIMS_OTHER;
426 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
427 q_vector->eims_value = msixbm;
428 break;
429 case e1000_82576:
430 /* 82576 uses a table-based method for assigning vectors.
431 Each queue has a single entry in the table to which we write
432 a vector number along with a "valid" bit. Sadly, the layout
433 of the table is somewhat counterintuitive. */
434 if (rx_queue > IGB_N0_QUEUE) {
435 index = (rx_queue & 0x7);
436 ivar = array_rd32(E1000_IVAR0, index);
437 if (rx_queue < 8) {
438 /* vector goes into low byte of register */
439 ivar = ivar & 0xFFFFFF00;
440 ivar |= msix_vector | E1000_IVAR_VALID;
441 } else {
442 /* vector goes into third byte of register */
443 ivar = ivar & 0xFF00FFFF;
444 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
445 }
446 array_wr32(E1000_IVAR0, index, ivar);
447 }
448 if (tx_queue > IGB_N0_QUEUE) {
449 index = (tx_queue & 0x7);
450 ivar = array_rd32(E1000_IVAR0, index);
451 if (tx_queue < 8) {
452 /* vector goes into second byte of register */
453 ivar = ivar & 0xFFFF00FF;
454 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
455 } else {
456 /* vector goes into high byte of register */
457 ivar = ivar & 0x00FFFFFF;
458 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
459 }
460 array_wr32(E1000_IVAR0, index, ivar);
461 }
462 q_vector->eims_value = 1 << msix_vector;
463 break;
464 case e1000_82580:
465 /* 82580 uses the same table-based approach as 82576 but has fewer
466 entries as a result we carry over for queues greater than 4. */
467 if (rx_queue > IGB_N0_QUEUE) {
468 index = (rx_queue >> 1);
469 ivar = array_rd32(E1000_IVAR0, index);
470 if (rx_queue & 0x1) {
471 /* vector goes into third byte of register */
472 ivar = ivar & 0xFF00FFFF;
473 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
474 } else {
475 /* vector goes into low byte of register */
476 ivar = ivar & 0xFFFFFF00;
477 ivar |= msix_vector | E1000_IVAR_VALID;
478 }
479 array_wr32(E1000_IVAR0, index, ivar);
480 }
481 if (tx_queue > IGB_N0_QUEUE) {
482 index = (tx_queue >> 1);
483 ivar = array_rd32(E1000_IVAR0, index);
484 if (tx_queue & 0x1) {
485 /* vector goes into high byte of register */
486 ivar = ivar & 0x00FFFFFF;
487 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
488 } else {
489 /* vector goes into second byte of register */
490 ivar = ivar & 0xFFFF00FF;
491 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
492 }
493 array_wr32(E1000_IVAR0, index, ivar);
494 }
495 q_vector->eims_value = 1 << msix_vector;
496 break;
497 default:
498 BUG();
499 break;
500 }
501 }
502
503 /**
504 * igb_configure_msix - Configure MSI-X hardware
505 *
506 * igb_configure_msix sets up the hardware to properly
507 * generate MSI-X interrupts.
508 **/
509 static void igb_configure_msix(struct igb_adapter *adapter)
510 {
511 u32 tmp;
512 int i, vector = 0;
513 struct e1000_hw *hw = &adapter->hw;
514
515 adapter->eims_enable_mask = 0;
516
517 /* set vector for other causes, i.e. link changes */
518 switch (hw->mac.type) {
519 case e1000_82575:
520 tmp = rd32(E1000_CTRL_EXT);
521 /* enable MSI-X PBA support*/
522 tmp |= E1000_CTRL_EXT_PBA_CLR;
523
524 /* Auto-Mask interrupts upon ICR read. */
525 tmp |= E1000_CTRL_EXT_EIAME;
526 tmp |= E1000_CTRL_EXT_IRCA;
527
528 wr32(E1000_CTRL_EXT, tmp);
529
530 /* enable msix_other interrupt */
531 array_wr32(E1000_MSIXBM(0), vector++,
532 E1000_EIMS_OTHER);
533 adapter->eims_other = E1000_EIMS_OTHER;
534
535 break;
536
537 case e1000_82576:
538 case e1000_82580:
539 /* Turn on MSI-X capability first, or our settings
540 * won't stick. And it will take days to debug. */
541 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
542 E1000_GPIE_PBA | E1000_GPIE_EIAME |
543 E1000_GPIE_NSICR);
544
545 /* enable msix_other interrupt */
546 adapter->eims_other = 1 << vector;
547 tmp = (vector++ | E1000_IVAR_VALID) << 8;
548
549 wr32(E1000_IVAR_MISC, tmp);
550 break;
551 default:
552 /* do nothing, since nothing else supports MSI-X */
553 break;
554 } /* switch (hw->mac.type) */
555
556 adapter->eims_enable_mask |= adapter->eims_other;
557
558 for (i = 0; i < adapter->num_q_vectors; i++) {
559 struct igb_q_vector *q_vector = adapter->q_vector[i];
560 igb_assign_vector(q_vector, vector++);
561 adapter->eims_enable_mask |= q_vector->eims_value;
562 }
563
564 wrfl();
565 }
566
567 /**
568 * igb_request_msix - Initialize MSI-X interrupts
569 *
570 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
571 * kernel.
572 **/
573 static int igb_request_msix(struct igb_adapter *adapter)
574 {
575 struct net_device *netdev = adapter->netdev;
576 struct e1000_hw *hw = &adapter->hw;
577 int i, err = 0, vector = 0;
578
579 err = request_irq(adapter->msix_entries[vector].vector,
580 igb_msix_other, 0, netdev->name, adapter);
581 if (err)
582 goto out;
583 vector++;
584
585 for (i = 0; i < adapter->num_q_vectors; i++) {
586 struct igb_q_vector *q_vector = adapter->q_vector[i];
587
588 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
589
590 if (q_vector->rx_ring && q_vector->tx_ring)
591 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
592 q_vector->rx_ring->queue_index);
593 else if (q_vector->tx_ring)
594 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
595 q_vector->tx_ring->queue_index);
596 else if (q_vector->rx_ring)
597 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
598 q_vector->rx_ring->queue_index);
599 else
600 sprintf(q_vector->name, "%s-unused", netdev->name);
601
602 err = request_irq(adapter->msix_entries[vector].vector,
603 igb_msix_ring, 0, q_vector->name,
604 q_vector);
605 if (err)
606 goto out;
607 vector++;
608 }
609
610 igb_configure_msix(adapter);
611 return 0;
612 out:
613 return err;
614 }
615
616 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
617 {
618 if (adapter->msix_entries) {
619 pci_disable_msix(adapter->pdev);
620 kfree(adapter->msix_entries);
621 adapter->msix_entries = NULL;
622 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
623 pci_disable_msi(adapter->pdev);
624 }
625 }
626
627 /**
628 * igb_free_q_vectors - Free memory allocated for interrupt vectors
629 * @adapter: board private structure to initialize
630 *
631 * This function frees the memory allocated to the q_vectors. In addition if
632 * NAPI is enabled it will delete any references to the NAPI struct prior
633 * to freeing the q_vector.
634 **/
635 static void igb_free_q_vectors(struct igb_adapter *adapter)
636 {
637 int v_idx;
638
639 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
640 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
641 adapter->q_vector[v_idx] = NULL;
642 netif_napi_del(&q_vector->napi);
643 kfree(q_vector);
644 }
645 adapter->num_q_vectors = 0;
646 }
647
648 /**
649 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
650 *
651 * This function resets the device so that it has 0 rx queues, tx queues, and
652 * MSI-X interrupts allocated.
653 */
654 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
655 {
656 igb_free_queues(adapter);
657 igb_free_q_vectors(adapter);
658 igb_reset_interrupt_capability(adapter);
659 }
660
661 /**
662 * igb_set_interrupt_capability - set MSI or MSI-X if supported
663 *
664 * Attempt to configure interrupts using the best available
665 * capabilities of the hardware and kernel.
666 **/
667 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
668 {
669 int err;
670 int numvecs, i;
671
672 /* Number of supported queues. */
673 adapter->num_rx_queues = adapter->rss_queues;
674 adapter->num_tx_queues = adapter->rss_queues;
675
676 /* start with one vector for every rx queue */
677 numvecs = adapter->num_rx_queues;
678
679 /* if tx handler is seperate add 1 for every tx queue */
680 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
681 numvecs += adapter->num_tx_queues;
682
683 /* store the number of vectors reserved for queues */
684 adapter->num_q_vectors = numvecs;
685
686 /* add 1 vector for link status interrupts */
687 numvecs++;
688 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
689 GFP_KERNEL);
690 if (!adapter->msix_entries)
691 goto msi_only;
692
693 for (i = 0; i < numvecs; i++)
694 adapter->msix_entries[i].entry = i;
695
696 err = pci_enable_msix(adapter->pdev,
697 adapter->msix_entries,
698 numvecs);
699 if (err == 0)
700 goto out;
701
702 igb_reset_interrupt_capability(adapter);
703
704 /* If we can't do MSI-X, try MSI */
705 msi_only:
706 #ifdef CONFIG_PCI_IOV
707 /* disable SR-IOV for non MSI-X configurations */
708 if (adapter->vf_data) {
709 struct e1000_hw *hw = &adapter->hw;
710 /* disable iov and allow time for transactions to clear */
711 pci_disable_sriov(adapter->pdev);
712 msleep(500);
713
714 kfree(adapter->vf_data);
715 adapter->vf_data = NULL;
716 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
717 msleep(100);
718 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
719 }
720 #endif
721 adapter->vfs_allocated_count = 0;
722 adapter->rss_queues = 1;
723 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
724 adapter->num_rx_queues = 1;
725 adapter->num_tx_queues = 1;
726 adapter->num_q_vectors = 1;
727 if (!pci_enable_msi(adapter->pdev))
728 adapter->flags |= IGB_FLAG_HAS_MSI;
729 out:
730 /* Notify the stack of the (possibly) reduced Tx Queue count. */
731 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
732 return;
733 }
734
735 /**
736 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
737 * @adapter: board private structure to initialize
738 *
739 * We allocate one q_vector per queue interrupt. If allocation fails we
740 * return -ENOMEM.
741 **/
742 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
743 {
744 struct igb_q_vector *q_vector;
745 struct e1000_hw *hw = &adapter->hw;
746 int v_idx;
747
748 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
749 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
750 if (!q_vector)
751 goto err_out;
752 q_vector->adapter = adapter;
753 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
754 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
755 q_vector->itr_val = IGB_START_ITR;
756 q_vector->set_itr = 1;
757 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
758 adapter->q_vector[v_idx] = q_vector;
759 }
760 return 0;
761
762 err_out:
763 while (v_idx) {
764 v_idx--;
765 q_vector = adapter->q_vector[v_idx];
766 netif_napi_del(&q_vector->napi);
767 kfree(q_vector);
768 adapter->q_vector[v_idx] = NULL;
769 }
770 return -ENOMEM;
771 }
772
773 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
774 int ring_idx, int v_idx)
775 {
776 struct igb_q_vector *q_vector;
777
778 q_vector = adapter->q_vector[v_idx];
779 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
780 q_vector->rx_ring->q_vector = q_vector;
781 q_vector->itr_val = adapter->rx_itr_setting;
782 if (q_vector->itr_val && q_vector->itr_val <= 3)
783 q_vector->itr_val = IGB_START_ITR;
784 }
785
786 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
787 int ring_idx, int v_idx)
788 {
789 struct igb_q_vector *q_vector;
790
791 q_vector = adapter->q_vector[v_idx];
792 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
793 q_vector->tx_ring->q_vector = q_vector;
794 q_vector->itr_val = adapter->tx_itr_setting;
795 if (q_vector->itr_val && q_vector->itr_val <= 3)
796 q_vector->itr_val = IGB_START_ITR;
797 }
798
799 /**
800 * igb_map_ring_to_vector - maps allocated queues to vectors
801 *
802 * This function maps the recently allocated queues to vectors.
803 **/
804 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
805 {
806 int i;
807 int v_idx = 0;
808
809 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
810 (adapter->num_q_vectors < adapter->num_tx_queues))
811 return -ENOMEM;
812
813 if (adapter->num_q_vectors >=
814 (adapter->num_rx_queues + adapter->num_tx_queues)) {
815 for (i = 0; i < adapter->num_rx_queues; i++)
816 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
817 for (i = 0; i < adapter->num_tx_queues; i++)
818 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
819 } else {
820 for (i = 0; i < adapter->num_rx_queues; i++) {
821 if (i < adapter->num_tx_queues)
822 igb_map_tx_ring_to_vector(adapter, i, v_idx);
823 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
824 }
825 for (; i < adapter->num_tx_queues; i++)
826 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
827 }
828 return 0;
829 }
830
831 /**
832 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
833 *
834 * This function initializes the interrupts and allocates all of the queues.
835 **/
836 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
837 {
838 struct pci_dev *pdev = adapter->pdev;
839 int err;
840
841 igb_set_interrupt_capability(adapter);
842
843 err = igb_alloc_q_vectors(adapter);
844 if (err) {
845 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
846 goto err_alloc_q_vectors;
847 }
848
849 err = igb_alloc_queues(adapter);
850 if (err) {
851 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
852 goto err_alloc_queues;
853 }
854
855 err = igb_map_ring_to_vector(adapter);
856 if (err) {
857 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
858 goto err_map_queues;
859 }
860
861
862 return 0;
863 err_map_queues:
864 igb_free_queues(adapter);
865 err_alloc_queues:
866 igb_free_q_vectors(adapter);
867 err_alloc_q_vectors:
868 igb_reset_interrupt_capability(adapter);
869 return err;
870 }
871
872 /**
873 * igb_request_irq - initialize interrupts
874 *
875 * Attempts to configure interrupts using the best available
876 * capabilities of the hardware and kernel.
877 **/
878 static int igb_request_irq(struct igb_adapter *adapter)
879 {
880 struct net_device *netdev = adapter->netdev;
881 struct pci_dev *pdev = adapter->pdev;
882 int err = 0;
883
884 if (adapter->msix_entries) {
885 err = igb_request_msix(adapter);
886 if (!err)
887 goto request_done;
888 /* fall back to MSI */
889 igb_clear_interrupt_scheme(adapter);
890 if (!pci_enable_msi(adapter->pdev))
891 adapter->flags |= IGB_FLAG_HAS_MSI;
892 igb_free_all_tx_resources(adapter);
893 igb_free_all_rx_resources(adapter);
894 adapter->num_tx_queues = 1;
895 adapter->num_rx_queues = 1;
896 adapter->num_q_vectors = 1;
897 err = igb_alloc_q_vectors(adapter);
898 if (err) {
899 dev_err(&pdev->dev,
900 "Unable to allocate memory for vectors\n");
901 goto request_done;
902 }
903 err = igb_alloc_queues(adapter);
904 if (err) {
905 dev_err(&pdev->dev,
906 "Unable to allocate memory for queues\n");
907 igb_free_q_vectors(adapter);
908 goto request_done;
909 }
910 igb_setup_all_tx_resources(adapter);
911 igb_setup_all_rx_resources(adapter);
912 } else {
913 igb_assign_vector(adapter->q_vector[0], 0);
914 }
915
916 if (adapter->flags & IGB_FLAG_HAS_MSI) {
917 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
918 netdev->name, adapter);
919 if (!err)
920 goto request_done;
921
922 /* fall back to legacy interrupts */
923 igb_reset_interrupt_capability(adapter);
924 adapter->flags &= ~IGB_FLAG_HAS_MSI;
925 }
926
927 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
928 netdev->name, adapter);
929
930 if (err)
931 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
932 err);
933
934 request_done:
935 return err;
936 }
937
938 static void igb_free_irq(struct igb_adapter *adapter)
939 {
940 if (adapter->msix_entries) {
941 int vector = 0, i;
942
943 free_irq(adapter->msix_entries[vector++].vector, adapter);
944
945 for (i = 0; i < adapter->num_q_vectors; i++) {
946 struct igb_q_vector *q_vector = adapter->q_vector[i];
947 free_irq(adapter->msix_entries[vector++].vector,
948 q_vector);
949 }
950 } else {
951 free_irq(adapter->pdev->irq, adapter);
952 }
953 }
954
955 /**
956 * igb_irq_disable - Mask off interrupt generation on the NIC
957 * @adapter: board private structure
958 **/
959 static void igb_irq_disable(struct igb_adapter *adapter)
960 {
961 struct e1000_hw *hw = &adapter->hw;
962
963 /*
964 * we need to be careful when disabling interrupts. The VFs are also
965 * mapped into these registers and so clearing the bits can cause
966 * issues on the VF drivers so we only need to clear what we set
967 */
968 if (adapter->msix_entries) {
969 u32 regval = rd32(E1000_EIAM);
970 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
971 wr32(E1000_EIMC, adapter->eims_enable_mask);
972 regval = rd32(E1000_EIAC);
973 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
974 }
975
976 wr32(E1000_IAM, 0);
977 wr32(E1000_IMC, ~0);
978 wrfl();
979 synchronize_irq(adapter->pdev->irq);
980 }
981
982 /**
983 * igb_irq_enable - Enable default interrupt generation settings
984 * @adapter: board private structure
985 **/
986 static void igb_irq_enable(struct igb_adapter *adapter)
987 {
988 struct e1000_hw *hw = &adapter->hw;
989
990 if (adapter->msix_entries) {
991 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
992 u32 regval = rd32(E1000_EIAC);
993 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
994 regval = rd32(E1000_EIAM);
995 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
996 wr32(E1000_EIMS, adapter->eims_enable_mask);
997 if (adapter->vfs_allocated_count) {
998 wr32(E1000_MBVFIMR, 0xFF);
999 ims |= E1000_IMS_VMMB;
1000 }
1001 if (adapter->hw.mac.type == e1000_82580)
1002 ims |= E1000_IMS_DRSTA;
1003
1004 wr32(E1000_IMS, ims);
1005 } else {
1006 wr32(E1000_IMS, IMS_ENABLE_MASK |
1007 E1000_IMS_DRSTA);
1008 wr32(E1000_IAM, IMS_ENABLE_MASK |
1009 E1000_IMS_DRSTA);
1010 }
1011 }
1012
1013 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1014 {
1015 struct e1000_hw *hw = &adapter->hw;
1016 u16 vid = adapter->hw.mng_cookie.vlan_id;
1017 u16 old_vid = adapter->mng_vlan_id;
1018
1019 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1020 /* add VID to filter table */
1021 igb_vfta_set(hw, vid, true);
1022 adapter->mng_vlan_id = vid;
1023 } else {
1024 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1025 }
1026
1027 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1028 (vid != old_vid) &&
1029 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1030 /* remove VID from filter table */
1031 igb_vfta_set(hw, old_vid, false);
1032 }
1033 }
1034
1035 /**
1036 * igb_release_hw_control - release control of the h/w to f/w
1037 * @adapter: address of board private structure
1038 *
1039 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1040 * For ASF and Pass Through versions of f/w this means that the
1041 * driver is no longer loaded.
1042 *
1043 **/
1044 static void igb_release_hw_control(struct igb_adapter *adapter)
1045 {
1046 struct e1000_hw *hw = &adapter->hw;
1047 u32 ctrl_ext;
1048
1049 /* Let firmware take over control of h/w */
1050 ctrl_ext = rd32(E1000_CTRL_EXT);
1051 wr32(E1000_CTRL_EXT,
1052 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1053 }
1054
1055 /**
1056 * igb_get_hw_control - get control of the h/w from f/w
1057 * @adapter: address of board private structure
1058 *
1059 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1060 * For ASF and Pass Through versions of f/w this means that
1061 * the driver is loaded.
1062 *
1063 **/
1064 static void igb_get_hw_control(struct igb_adapter *adapter)
1065 {
1066 struct e1000_hw *hw = &adapter->hw;
1067 u32 ctrl_ext;
1068
1069 /* Let firmware know the driver has taken over */
1070 ctrl_ext = rd32(E1000_CTRL_EXT);
1071 wr32(E1000_CTRL_EXT,
1072 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1073 }
1074
1075 /**
1076 * igb_configure - configure the hardware for RX and TX
1077 * @adapter: private board structure
1078 **/
1079 static void igb_configure(struct igb_adapter *adapter)
1080 {
1081 struct net_device *netdev = adapter->netdev;
1082 int i;
1083
1084 igb_get_hw_control(adapter);
1085 igb_set_rx_mode(netdev);
1086
1087 igb_restore_vlan(adapter);
1088
1089 igb_setup_tctl(adapter);
1090 igb_setup_mrqc(adapter);
1091 igb_setup_rctl(adapter);
1092
1093 igb_configure_tx(adapter);
1094 igb_configure_rx(adapter);
1095
1096 igb_rx_fifo_flush_82575(&adapter->hw);
1097
1098 /* call igb_desc_unused which always leaves
1099 * at least 1 descriptor unused to make sure
1100 * next_to_use != next_to_clean */
1101 for (i = 0; i < adapter->num_rx_queues; i++) {
1102 struct igb_ring *ring = &adapter->rx_ring[i];
1103 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1104 }
1105
1106
1107 adapter->tx_queue_len = netdev->tx_queue_len;
1108 }
1109
1110
1111 /**
1112 * igb_up - Open the interface and prepare it to handle traffic
1113 * @adapter: board private structure
1114 **/
1115 int igb_up(struct igb_adapter *adapter)
1116 {
1117 struct e1000_hw *hw = &adapter->hw;
1118 int i;
1119
1120 /* hardware has been reset, we need to reload some things */
1121 igb_configure(adapter);
1122
1123 clear_bit(__IGB_DOWN, &adapter->state);
1124
1125 for (i = 0; i < adapter->num_q_vectors; i++) {
1126 struct igb_q_vector *q_vector = adapter->q_vector[i];
1127 napi_enable(&q_vector->napi);
1128 }
1129 if (adapter->msix_entries)
1130 igb_configure_msix(adapter);
1131 else
1132 igb_assign_vector(adapter->q_vector[0], 0);
1133
1134 /* Clear any pending interrupts. */
1135 rd32(E1000_ICR);
1136 igb_irq_enable(adapter);
1137
1138 /* notify VFs that reset has been completed */
1139 if (adapter->vfs_allocated_count) {
1140 u32 reg_data = rd32(E1000_CTRL_EXT);
1141 reg_data |= E1000_CTRL_EXT_PFRSTD;
1142 wr32(E1000_CTRL_EXT, reg_data);
1143 }
1144
1145 netif_tx_start_all_queues(adapter->netdev);
1146
1147 /* start the watchdog. */
1148 hw->mac.get_link_status = 1;
1149 schedule_work(&adapter->watchdog_task);
1150
1151 return 0;
1152 }
1153
1154 void igb_down(struct igb_adapter *adapter)
1155 {
1156 struct net_device *netdev = adapter->netdev;
1157 struct e1000_hw *hw = &adapter->hw;
1158 u32 tctl, rctl;
1159 int i;
1160
1161 /* signal that we're down so the interrupt handler does not
1162 * reschedule our watchdog timer */
1163 set_bit(__IGB_DOWN, &adapter->state);
1164
1165 /* disable receives in the hardware */
1166 rctl = rd32(E1000_RCTL);
1167 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1168 /* flush and sleep below */
1169
1170 netif_tx_stop_all_queues(netdev);
1171
1172 /* disable transmits in the hardware */
1173 tctl = rd32(E1000_TCTL);
1174 tctl &= ~E1000_TCTL_EN;
1175 wr32(E1000_TCTL, tctl);
1176 /* flush both disables and wait for them to finish */
1177 wrfl();
1178 msleep(10);
1179
1180 for (i = 0; i < adapter->num_q_vectors; i++) {
1181 struct igb_q_vector *q_vector = adapter->q_vector[i];
1182 napi_disable(&q_vector->napi);
1183 }
1184
1185 igb_irq_disable(adapter);
1186
1187 del_timer_sync(&adapter->watchdog_timer);
1188 del_timer_sync(&adapter->phy_info_timer);
1189
1190 netdev->tx_queue_len = adapter->tx_queue_len;
1191 netif_carrier_off(netdev);
1192
1193 /* record the stats before reset*/
1194 igb_update_stats(adapter);
1195
1196 adapter->link_speed = 0;
1197 adapter->link_duplex = 0;
1198
1199 if (!pci_channel_offline(adapter->pdev))
1200 igb_reset(adapter);
1201 igb_clean_all_tx_rings(adapter);
1202 igb_clean_all_rx_rings(adapter);
1203 #ifdef CONFIG_IGB_DCA
1204
1205 /* since we reset the hardware DCA settings were cleared */
1206 igb_setup_dca(adapter);
1207 #endif
1208 }
1209
1210 void igb_reinit_locked(struct igb_adapter *adapter)
1211 {
1212 WARN_ON(in_interrupt());
1213 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1214 msleep(1);
1215 igb_down(adapter);
1216 igb_up(adapter);
1217 clear_bit(__IGB_RESETTING, &adapter->state);
1218 }
1219
1220 void igb_reset(struct igb_adapter *adapter)
1221 {
1222 struct pci_dev *pdev = adapter->pdev;
1223 struct e1000_hw *hw = &adapter->hw;
1224 struct e1000_mac_info *mac = &hw->mac;
1225 struct e1000_fc_info *fc = &hw->fc;
1226 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1227 u16 hwm;
1228
1229 /* Repartition Pba for greater than 9k mtu
1230 * To take effect CTRL.RST is required.
1231 */
1232 switch (mac->type) {
1233 case e1000_82580:
1234 pba = rd32(E1000_RXPBS);
1235 pba = igb_rxpbs_adjust_82580(pba);
1236 break;
1237 case e1000_82576:
1238 pba = rd32(E1000_RXPBS);
1239 pba &= E1000_RXPBS_SIZE_MASK_82576;
1240 break;
1241 case e1000_82575:
1242 default:
1243 pba = E1000_PBA_34K;
1244 break;
1245 }
1246
1247 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1248 (mac->type < e1000_82576)) {
1249 /* adjust PBA for jumbo frames */
1250 wr32(E1000_PBA, pba);
1251
1252 /* To maintain wire speed transmits, the Tx FIFO should be
1253 * large enough to accommodate two full transmit packets,
1254 * rounded up to the next 1KB and expressed in KB. Likewise,
1255 * the Rx FIFO should be large enough to accommodate at least
1256 * one full receive packet and is similarly rounded up and
1257 * expressed in KB. */
1258 pba = rd32(E1000_PBA);
1259 /* upper 16 bits has Tx packet buffer allocation size in KB */
1260 tx_space = pba >> 16;
1261 /* lower 16 bits has Rx packet buffer allocation size in KB */
1262 pba &= 0xffff;
1263 /* the tx fifo also stores 16 bytes of information about the tx
1264 * but don't include ethernet FCS because hardware appends it */
1265 min_tx_space = (adapter->max_frame_size +
1266 sizeof(union e1000_adv_tx_desc) -
1267 ETH_FCS_LEN) * 2;
1268 min_tx_space = ALIGN(min_tx_space, 1024);
1269 min_tx_space >>= 10;
1270 /* software strips receive CRC, so leave room for it */
1271 min_rx_space = adapter->max_frame_size;
1272 min_rx_space = ALIGN(min_rx_space, 1024);
1273 min_rx_space >>= 10;
1274
1275 /* If current Tx allocation is less than the min Tx FIFO size,
1276 * and the min Tx FIFO size is less than the current Rx FIFO
1277 * allocation, take space away from current Rx allocation */
1278 if (tx_space < min_tx_space &&
1279 ((min_tx_space - tx_space) < pba)) {
1280 pba = pba - (min_tx_space - tx_space);
1281
1282 /* if short on rx space, rx wins and must trump tx
1283 * adjustment */
1284 if (pba < min_rx_space)
1285 pba = min_rx_space;
1286 }
1287 wr32(E1000_PBA, pba);
1288 }
1289
1290 /* flow control settings */
1291 /* The high water mark must be low enough to fit one full frame
1292 * (or the size used for early receive) above it in the Rx FIFO.
1293 * Set it to the lower of:
1294 * - 90% of the Rx FIFO size, or
1295 * - the full Rx FIFO size minus one full frame */
1296 hwm = min(((pba << 10) * 9 / 10),
1297 ((pba << 10) - 2 * adapter->max_frame_size));
1298
1299 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1300 fc->low_water = fc->high_water - 16;
1301 fc->pause_time = 0xFFFF;
1302 fc->send_xon = 1;
1303 fc->current_mode = fc->requested_mode;
1304
1305 /* disable receive for all VFs and wait one second */
1306 if (adapter->vfs_allocated_count) {
1307 int i;
1308 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1309 adapter->vf_data[i].flags = 0;
1310
1311 /* ping all the active vfs to let them know we are going down */
1312 igb_ping_all_vfs(adapter);
1313
1314 /* disable transmits and receives */
1315 wr32(E1000_VFRE, 0);
1316 wr32(E1000_VFTE, 0);
1317 }
1318
1319 /* Allow time for pending master requests to run */
1320 hw->mac.ops.reset_hw(hw);
1321 wr32(E1000_WUC, 0);
1322
1323 if (hw->mac.ops.init_hw(hw))
1324 dev_err(&pdev->dev, "Hardware Error\n");
1325
1326 if (hw->mac.type == e1000_82580) {
1327 u32 reg = rd32(E1000_PCIEMISC);
1328 wr32(E1000_PCIEMISC,
1329 reg & ~E1000_PCIEMISC_LX_DECISION);
1330 }
1331 igb_update_mng_vlan(adapter);
1332
1333 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1334 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1335
1336 igb_reset_adaptive(hw);
1337 igb_get_phy_info(hw);
1338 }
1339
1340 static const struct net_device_ops igb_netdev_ops = {
1341 .ndo_open = igb_open,
1342 .ndo_stop = igb_close,
1343 .ndo_start_xmit = igb_xmit_frame_adv,
1344 .ndo_get_stats = igb_get_stats,
1345 .ndo_set_rx_mode = igb_set_rx_mode,
1346 .ndo_set_multicast_list = igb_set_rx_mode,
1347 .ndo_set_mac_address = igb_set_mac,
1348 .ndo_change_mtu = igb_change_mtu,
1349 .ndo_do_ioctl = igb_ioctl,
1350 .ndo_tx_timeout = igb_tx_timeout,
1351 .ndo_validate_addr = eth_validate_addr,
1352 .ndo_vlan_rx_register = igb_vlan_rx_register,
1353 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1354 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1355 #ifdef CONFIG_NET_POLL_CONTROLLER
1356 .ndo_poll_controller = igb_netpoll,
1357 #endif
1358 };
1359
1360 /**
1361 * igb_probe - Device Initialization Routine
1362 * @pdev: PCI device information struct
1363 * @ent: entry in igb_pci_tbl
1364 *
1365 * Returns 0 on success, negative on failure
1366 *
1367 * igb_probe initializes an adapter identified by a pci_dev structure.
1368 * The OS initialization, configuring of the adapter private structure,
1369 * and a hardware reset occur.
1370 **/
1371 static int __devinit igb_probe(struct pci_dev *pdev,
1372 const struct pci_device_id *ent)
1373 {
1374 struct net_device *netdev;
1375 struct igb_adapter *adapter;
1376 struct e1000_hw *hw;
1377 u16 eeprom_data = 0;
1378 static int global_quad_port_a; /* global quad port a indication */
1379 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1380 unsigned long mmio_start, mmio_len;
1381 int err, pci_using_dac;
1382 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1383 u32 part_num;
1384
1385 err = pci_enable_device_mem(pdev);
1386 if (err)
1387 return err;
1388
1389 pci_using_dac = 0;
1390 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1391 if (!err) {
1392 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1393 if (!err)
1394 pci_using_dac = 1;
1395 } else {
1396 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1397 if (err) {
1398 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1399 if (err) {
1400 dev_err(&pdev->dev, "No usable DMA "
1401 "configuration, aborting\n");
1402 goto err_dma;
1403 }
1404 }
1405 }
1406
1407 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1408 IORESOURCE_MEM),
1409 igb_driver_name);
1410 if (err)
1411 goto err_pci_reg;
1412
1413 pci_enable_pcie_error_reporting(pdev);
1414
1415 pci_set_master(pdev);
1416 pci_save_state(pdev);
1417
1418 err = -ENOMEM;
1419 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1420 IGB_ABS_MAX_TX_QUEUES);
1421 if (!netdev)
1422 goto err_alloc_etherdev;
1423
1424 SET_NETDEV_DEV(netdev, &pdev->dev);
1425
1426 pci_set_drvdata(pdev, netdev);
1427 adapter = netdev_priv(netdev);
1428 adapter->netdev = netdev;
1429 adapter->pdev = pdev;
1430 hw = &adapter->hw;
1431 hw->back = adapter;
1432 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1433
1434 mmio_start = pci_resource_start(pdev, 0);
1435 mmio_len = pci_resource_len(pdev, 0);
1436
1437 err = -EIO;
1438 hw->hw_addr = ioremap(mmio_start, mmio_len);
1439 if (!hw->hw_addr)
1440 goto err_ioremap;
1441
1442 netdev->netdev_ops = &igb_netdev_ops;
1443 igb_set_ethtool_ops(netdev);
1444 netdev->watchdog_timeo = 5 * HZ;
1445
1446 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1447
1448 netdev->mem_start = mmio_start;
1449 netdev->mem_end = mmio_start + mmio_len;
1450
1451 /* PCI config space info */
1452 hw->vendor_id = pdev->vendor;
1453 hw->device_id = pdev->device;
1454 hw->revision_id = pdev->revision;
1455 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1456 hw->subsystem_device_id = pdev->subsystem_device;
1457
1458 /* Copy the default MAC, PHY and NVM function pointers */
1459 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1460 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1461 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1462 /* Initialize skew-specific constants */
1463 err = ei->get_invariants(hw);
1464 if (err)
1465 goto err_sw_init;
1466
1467 /* setup the private structure */
1468 err = igb_sw_init(adapter);
1469 if (err)
1470 goto err_sw_init;
1471
1472 igb_get_bus_info_pcie(hw);
1473
1474 hw->phy.autoneg_wait_to_complete = false;
1475 hw->mac.adaptive_ifs = true;
1476
1477 /* Copper options */
1478 if (hw->phy.media_type == e1000_media_type_copper) {
1479 hw->phy.mdix = AUTO_ALL_MODES;
1480 hw->phy.disable_polarity_correction = false;
1481 hw->phy.ms_type = e1000_ms_hw_default;
1482 }
1483
1484 if (igb_check_reset_block(hw))
1485 dev_info(&pdev->dev,
1486 "PHY reset is blocked due to SOL/IDER session.\n");
1487
1488 netdev->features = NETIF_F_SG |
1489 NETIF_F_IP_CSUM |
1490 NETIF_F_HW_VLAN_TX |
1491 NETIF_F_HW_VLAN_RX |
1492 NETIF_F_HW_VLAN_FILTER;
1493
1494 netdev->features |= NETIF_F_IPV6_CSUM;
1495 netdev->features |= NETIF_F_TSO;
1496 netdev->features |= NETIF_F_TSO6;
1497 netdev->features |= NETIF_F_GRO;
1498
1499 netdev->vlan_features |= NETIF_F_TSO;
1500 netdev->vlan_features |= NETIF_F_TSO6;
1501 netdev->vlan_features |= NETIF_F_IP_CSUM;
1502 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1503 netdev->vlan_features |= NETIF_F_SG;
1504
1505 if (pci_using_dac)
1506 netdev->features |= NETIF_F_HIGHDMA;
1507
1508 if (hw->mac.type >= e1000_82576)
1509 netdev->features |= NETIF_F_SCTP_CSUM;
1510
1511 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1512
1513 /* before reading the NVM, reset the controller to put the device in a
1514 * known good starting state */
1515 hw->mac.ops.reset_hw(hw);
1516
1517 /* make sure the NVM is good */
1518 if (igb_validate_nvm_checksum(hw) < 0) {
1519 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1520 err = -EIO;
1521 goto err_eeprom;
1522 }
1523
1524 /* copy the MAC address out of the NVM */
1525 if (hw->mac.ops.read_mac_addr(hw))
1526 dev_err(&pdev->dev, "NVM Read Error\n");
1527
1528 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1529 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1530
1531 if (!is_valid_ether_addr(netdev->perm_addr)) {
1532 dev_err(&pdev->dev, "Invalid MAC Address\n");
1533 err = -EIO;
1534 goto err_eeprom;
1535 }
1536
1537 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1538 (unsigned long) adapter);
1539 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1540 (unsigned long) adapter);
1541
1542 INIT_WORK(&adapter->reset_task, igb_reset_task);
1543 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1544
1545 /* Initialize link properties that are user-changeable */
1546 adapter->fc_autoneg = true;
1547 hw->mac.autoneg = true;
1548 hw->phy.autoneg_advertised = 0x2f;
1549
1550 hw->fc.requested_mode = e1000_fc_default;
1551 hw->fc.current_mode = e1000_fc_default;
1552
1553 igb_validate_mdi_setting(hw);
1554
1555 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1556 * enable the ACPI Magic Packet filter
1557 */
1558
1559 if (hw->bus.func == 0)
1560 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1561 else if (hw->mac.type == e1000_82580)
1562 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1563 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1564 &eeprom_data);
1565 else if (hw->bus.func == 1)
1566 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1567
1568 if (eeprom_data & eeprom_apme_mask)
1569 adapter->eeprom_wol |= E1000_WUFC_MAG;
1570
1571 /* now that we have the eeprom settings, apply the special cases where
1572 * the eeprom may be wrong or the board simply won't support wake on
1573 * lan on a particular port */
1574 switch (pdev->device) {
1575 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1576 adapter->eeprom_wol = 0;
1577 break;
1578 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1579 case E1000_DEV_ID_82576_FIBER:
1580 case E1000_DEV_ID_82576_SERDES:
1581 /* Wake events only supported on port A for dual fiber
1582 * regardless of eeprom setting */
1583 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1584 adapter->eeprom_wol = 0;
1585 break;
1586 case E1000_DEV_ID_82576_QUAD_COPPER:
1587 /* if quad port adapter, disable WoL on all but port A */
1588 if (global_quad_port_a != 0)
1589 adapter->eeprom_wol = 0;
1590 else
1591 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1592 /* Reset for multiple quad port adapters */
1593 if (++global_quad_port_a == 4)
1594 global_quad_port_a = 0;
1595 break;
1596 }
1597
1598 /* initialize the wol settings based on the eeprom settings */
1599 adapter->wol = adapter->eeprom_wol;
1600 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1601
1602 /* reset the hardware with the new settings */
1603 igb_reset(adapter);
1604
1605 /* let the f/w know that the h/w is now under the control of the
1606 * driver. */
1607 igb_get_hw_control(adapter);
1608
1609 strcpy(netdev->name, "eth%d");
1610 err = register_netdev(netdev);
1611 if (err)
1612 goto err_register;
1613
1614 /* carrier off reporting is important to ethtool even BEFORE open */
1615 netif_carrier_off(netdev);
1616
1617 #ifdef CONFIG_IGB_DCA
1618 if (dca_add_requester(&pdev->dev) == 0) {
1619 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1620 dev_info(&pdev->dev, "DCA enabled\n");
1621 igb_setup_dca(adapter);
1622 }
1623
1624 #endif
1625 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1626 /* print bus type/speed/width info */
1627 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1628 netdev->name,
1629 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1630 "unknown"),
1631 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1632 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1633 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1634 "unknown"),
1635 netdev->dev_addr);
1636
1637 igb_read_part_num(hw, &part_num);
1638 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1639 (part_num >> 8), (part_num & 0xff));
1640
1641 dev_info(&pdev->dev,
1642 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1643 adapter->msix_entries ? "MSI-X" :
1644 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1645 adapter->num_rx_queues, adapter->num_tx_queues);
1646
1647 return 0;
1648
1649 err_register:
1650 igb_release_hw_control(adapter);
1651 err_eeprom:
1652 if (!igb_check_reset_block(hw))
1653 igb_reset_phy(hw);
1654
1655 if (hw->flash_address)
1656 iounmap(hw->flash_address);
1657 err_sw_init:
1658 igb_clear_interrupt_scheme(adapter);
1659 iounmap(hw->hw_addr);
1660 err_ioremap:
1661 free_netdev(netdev);
1662 err_alloc_etherdev:
1663 pci_release_selected_regions(pdev,
1664 pci_select_bars(pdev, IORESOURCE_MEM));
1665 err_pci_reg:
1666 err_dma:
1667 pci_disable_device(pdev);
1668 return err;
1669 }
1670
1671 /**
1672 * igb_remove - Device Removal Routine
1673 * @pdev: PCI device information struct
1674 *
1675 * igb_remove is called by the PCI subsystem to alert the driver
1676 * that it should release a PCI device. The could be caused by a
1677 * Hot-Plug event, or because the driver is going to be removed from
1678 * memory.
1679 **/
1680 static void __devexit igb_remove(struct pci_dev *pdev)
1681 {
1682 struct net_device *netdev = pci_get_drvdata(pdev);
1683 struct igb_adapter *adapter = netdev_priv(netdev);
1684 struct e1000_hw *hw = &adapter->hw;
1685
1686 /* flush_scheduled work may reschedule our watchdog task, so
1687 * explicitly disable watchdog tasks from being rescheduled */
1688 set_bit(__IGB_DOWN, &adapter->state);
1689 del_timer_sync(&adapter->watchdog_timer);
1690 del_timer_sync(&adapter->phy_info_timer);
1691
1692 flush_scheduled_work();
1693
1694 #ifdef CONFIG_IGB_DCA
1695 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1696 dev_info(&pdev->dev, "DCA disabled\n");
1697 dca_remove_requester(&pdev->dev);
1698 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1699 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1700 }
1701 #endif
1702
1703 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1704 * would have already happened in close and is redundant. */
1705 igb_release_hw_control(adapter);
1706
1707 unregister_netdev(netdev);
1708
1709 if (!igb_check_reset_block(hw))
1710 igb_reset_phy(hw);
1711
1712 igb_clear_interrupt_scheme(adapter);
1713
1714 #ifdef CONFIG_PCI_IOV
1715 /* reclaim resources allocated to VFs */
1716 if (adapter->vf_data) {
1717 /* disable iov and allow time for transactions to clear */
1718 pci_disable_sriov(pdev);
1719 msleep(500);
1720
1721 kfree(adapter->vf_data);
1722 adapter->vf_data = NULL;
1723 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1724 msleep(100);
1725 dev_info(&pdev->dev, "IOV Disabled\n");
1726 }
1727 #endif
1728
1729 iounmap(hw->hw_addr);
1730 if (hw->flash_address)
1731 iounmap(hw->flash_address);
1732 pci_release_selected_regions(pdev,
1733 pci_select_bars(pdev, IORESOURCE_MEM));
1734
1735 free_netdev(netdev);
1736
1737 pci_disable_pcie_error_reporting(pdev);
1738
1739 pci_disable_device(pdev);
1740 }
1741
1742 /**
1743 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1744 * @adapter: board private structure to initialize
1745 *
1746 * This function initializes the vf specific data storage and then attempts to
1747 * allocate the VFs. The reason for ordering it this way is because it is much
1748 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1749 * the memory for the VFs.
1750 **/
1751 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1752 {
1753 #ifdef CONFIG_PCI_IOV
1754 struct pci_dev *pdev = adapter->pdev;
1755
1756 if (adapter->vfs_allocated_count > 7)
1757 adapter->vfs_allocated_count = 7;
1758
1759 if (adapter->vfs_allocated_count) {
1760 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1761 sizeof(struct vf_data_storage),
1762 GFP_KERNEL);
1763 /* if allocation failed then we do not support SR-IOV */
1764 if (!adapter->vf_data) {
1765 adapter->vfs_allocated_count = 0;
1766 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1767 "Data Storage\n");
1768 }
1769 }
1770
1771 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1772 kfree(adapter->vf_data);
1773 adapter->vf_data = NULL;
1774 #endif /* CONFIG_PCI_IOV */
1775 adapter->vfs_allocated_count = 0;
1776 #ifdef CONFIG_PCI_IOV
1777 } else {
1778 unsigned char mac_addr[ETH_ALEN];
1779 int i;
1780 dev_info(&pdev->dev, "%d vfs allocated\n",
1781 adapter->vfs_allocated_count);
1782 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1783 random_ether_addr(mac_addr);
1784 igb_set_vf_mac(adapter, i, mac_addr);
1785 }
1786 }
1787 #endif /* CONFIG_PCI_IOV */
1788 }
1789
1790
1791 /**
1792 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1793 * @adapter: board private structure to initialize
1794 *
1795 * igb_init_hw_timer initializes the function pointer and values for the hw
1796 * timer found in hardware.
1797 **/
1798 static void igb_init_hw_timer(struct igb_adapter *adapter)
1799 {
1800 struct e1000_hw *hw = &adapter->hw;
1801
1802 switch (hw->mac.type) {
1803 case e1000_82580:
1804 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1805 adapter->cycles.read = igb_read_clock;
1806 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1807 adapter->cycles.mult = 1;
1808 /*
1809 * The 82580 timesync updates the system timer every 8ns by 8ns
1810 * and the value cannot be shifted. Instead we need to shift
1811 * the registers to generate a 64bit timer value. As a result
1812 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
1813 * 24 in order to generate a larger value for synchronization.
1814 */
1815 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
1816 /* disable system timer temporarily by setting bit 31 */
1817 wr32(E1000_TSAUXC, 0x80000000);
1818 wrfl();
1819
1820 /* Set registers so that rollover occurs soon to test this. */
1821 wr32(E1000_SYSTIMR, 0x00000000);
1822 wr32(E1000_SYSTIML, 0x80000000);
1823 wr32(E1000_SYSTIMH, 0x000000FF);
1824 wrfl();
1825
1826 /* enable system timer by clearing bit 31 */
1827 wr32(E1000_TSAUXC, 0x0);
1828 wrfl();
1829
1830 timecounter_init(&adapter->clock,
1831 &adapter->cycles,
1832 ktime_to_ns(ktime_get_real()));
1833 /*
1834 * Synchronize our NIC clock against system wall clock. NIC
1835 * time stamp reading requires ~3us per sample, each sample
1836 * was pretty stable even under load => only require 10
1837 * samples for each offset comparison.
1838 */
1839 memset(&adapter->compare, 0, sizeof(adapter->compare));
1840 adapter->compare.source = &adapter->clock;
1841 adapter->compare.target = ktime_get_real;
1842 adapter->compare.num_samples = 10;
1843 timecompare_update(&adapter->compare, 0);
1844 break;
1845 case e1000_82576:
1846 /*
1847 * Initialize hardware timer: we keep it running just in case
1848 * that some program needs it later on.
1849 */
1850 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1851 adapter->cycles.read = igb_read_clock;
1852 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1853 adapter->cycles.mult = 1;
1854 /**
1855 * Scale the NIC clock cycle by a large factor so that
1856 * relatively small clock corrections can be added or
1857 * substracted at each clock tick. The drawbacks of a large
1858 * factor are a) that the clock register overflows more quickly
1859 * (not such a big deal) and b) that the increment per tick has
1860 * to fit into 24 bits. As a result we need to use a shift of
1861 * 19 so we can fit a value of 16 into the TIMINCA register.
1862 */
1863 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1864 wr32(E1000_TIMINCA,
1865 (1 << E1000_TIMINCA_16NS_SHIFT) |
1866 (16 << IGB_82576_TSYNC_SHIFT));
1867
1868 /* Set registers so that rollover occurs soon to test this. */
1869 wr32(E1000_SYSTIML, 0x00000000);
1870 wr32(E1000_SYSTIMH, 0xFF800000);
1871 wrfl();
1872
1873 timecounter_init(&adapter->clock,
1874 &adapter->cycles,
1875 ktime_to_ns(ktime_get_real()));
1876 /*
1877 * Synchronize our NIC clock against system wall clock. NIC
1878 * time stamp reading requires ~3us per sample, each sample
1879 * was pretty stable even under load => only require 10
1880 * samples for each offset comparison.
1881 */
1882 memset(&adapter->compare, 0, sizeof(adapter->compare));
1883 adapter->compare.source = &adapter->clock;
1884 adapter->compare.target = ktime_get_real;
1885 adapter->compare.num_samples = 10;
1886 timecompare_update(&adapter->compare, 0);
1887 break;
1888 case e1000_82575:
1889 /* 82575 does not support timesync */
1890 default:
1891 break;
1892 }
1893
1894 }
1895
1896 /**
1897 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1898 * @adapter: board private structure to initialize
1899 *
1900 * igb_sw_init initializes the Adapter private data structure.
1901 * Fields are initialized based on PCI device information and
1902 * OS network device settings (MTU size).
1903 **/
1904 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1905 {
1906 struct e1000_hw *hw = &adapter->hw;
1907 struct net_device *netdev = adapter->netdev;
1908 struct pci_dev *pdev = adapter->pdev;
1909
1910 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1911
1912 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1913 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1914 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1915 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1916
1917 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1918 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1919
1920 #ifdef CONFIG_PCI_IOV
1921 if (hw->mac.type == e1000_82576)
1922 adapter->vfs_allocated_count = max_vfs;
1923
1924 #endif /* CONFIG_PCI_IOV */
1925 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1926
1927 /*
1928 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1929 * then we should combine the queues into a queue pair in order to
1930 * conserve interrupts due to limited supply
1931 */
1932 if ((adapter->rss_queues > 4) ||
1933 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1934 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1935
1936 /* This call may decrease the number of queues */
1937 if (igb_init_interrupt_scheme(adapter)) {
1938 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1939 return -ENOMEM;
1940 }
1941
1942 igb_init_hw_timer(adapter);
1943 igb_probe_vfs(adapter);
1944
1945 /* Explicitly disable IRQ since the NIC can be in any state. */
1946 igb_irq_disable(adapter);
1947
1948 set_bit(__IGB_DOWN, &adapter->state);
1949 return 0;
1950 }
1951
1952 /**
1953 * igb_open - Called when a network interface is made active
1954 * @netdev: network interface device structure
1955 *
1956 * Returns 0 on success, negative value on failure
1957 *
1958 * The open entry point is called when a network interface is made
1959 * active by the system (IFF_UP). At this point all resources needed
1960 * for transmit and receive operations are allocated, the interrupt
1961 * handler is registered with the OS, the watchdog timer is started,
1962 * and the stack is notified that the interface is ready.
1963 **/
1964 static int igb_open(struct net_device *netdev)
1965 {
1966 struct igb_adapter *adapter = netdev_priv(netdev);
1967 struct e1000_hw *hw = &adapter->hw;
1968 int err;
1969 int i;
1970
1971 /* disallow open during test */
1972 if (test_bit(__IGB_TESTING, &adapter->state))
1973 return -EBUSY;
1974
1975 netif_carrier_off(netdev);
1976
1977 /* allocate transmit descriptors */
1978 err = igb_setup_all_tx_resources(adapter);
1979 if (err)
1980 goto err_setup_tx;
1981
1982 /* allocate receive descriptors */
1983 err = igb_setup_all_rx_resources(adapter);
1984 if (err)
1985 goto err_setup_rx;
1986
1987 /* e1000_power_up_phy(adapter); */
1988
1989 /* before we allocate an interrupt, we must be ready to handle it.
1990 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1991 * as soon as we call pci_request_irq, so we have to setup our
1992 * clean_rx handler before we do so. */
1993 igb_configure(adapter);
1994
1995 err = igb_request_irq(adapter);
1996 if (err)
1997 goto err_req_irq;
1998
1999 /* From here on the code is the same as igb_up() */
2000 clear_bit(__IGB_DOWN, &adapter->state);
2001
2002 for (i = 0; i < adapter->num_q_vectors; i++) {
2003 struct igb_q_vector *q_vector = adapter->q_vector[i];
2004 napi_enable(&q_vector->napi);
2005 }
2006
2007 /* Clear any pending interrupts. */
2008 rd32(E1000_ICR);
2009
2010 igb_irq_enable(adapter);
2011
2012 /* notify VFs that reset has been completed */
2013 if (adapter->vfs_allocated_count) {
2014 u32 reg_data = rd32(E1000_CTRL_EXT);
2015 reg_data |= E1000_CTRL_EXT_PFRSTD;
2016 wr32(E1000_CTRL_EXT, reg_data);
2017 }
2018
2019 netif_tx_start_all_queues(netdev);
2020
2021 /* start the watchdog. */
2022 hw->mac.get_link_status = 1;
2023 schedule_work(&adapter->watchdog_task);
2024
2025 return 0;
2026
2027 err_req_irq:
2028 igb_release_hw_control(adapter);
2029 /* e1000_power_down_phy(adapter); */
2030 igb_free_all_rx_resources(adapter);
2031 err_setup_rx:
2032 igb_free_all_tx_resources(adapter);
2033 err_setup_tx:
2034 igb_reset(adapter);
2035
2036 return err;
2037 }
2038
2039 /**
2040 * igb_close - Disables a network interface
2041 * @netdev: network interface device structure
2042 *
2043 * Returns 0, this is not allowed to fail
2044 *
2045 * The close entry point is called when an interface is de-activated
2046 * by the OS. The hardware is still under the driver's control, but
2047 * needs to be disabled. A global MAC reset is issued to stop the
2048 * hardware, and all transmit and receive resources are freed.
2049 **/
2050 static int igb_close(struct net_device *netdev)
2051 {
2052 struct igb_adapter *adapter = netdev_priv(netdev);
2053
2054 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2055 igb_down(adapter);
2056
2057 igb_free_irq(adapter);
2058
2059 igb_free_all_tx_resources(adapter);
2060 igb_free_all_rx_resources(adapter);
2061
2062 return 0;
2063 }
2064
2065 /**
2066 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2067 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2068 *
2069 * Return 0 on success, negative on failure
2070 **/
2071 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2072 {
2073 struct pci_dev *pdev = tx_ring->pdev;
2074 int size;
2075
2076 size = sizeof(struct igb_buffer) * tx_ring->count;
2077 tx_ring->buffer_info = vmalloc(size);
2078 if (!tx_ring->buffer_info)
2079 goto err;
2080 memset(tx_ring->buffer_info, 0, size);
2081
2082 /* round up to nearest 4K */
2083 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2084 tx_ring->size = ALIGN(tx_ring->size, 4096);
2085
2086 tx_ring->desc = pci_alloc_consistent(pdev,
2087 tx_ring->size,
2088 &tx_ring->dma);
2089
2090 if (!tx_ring->desc)
2091 goto err;
2092
2093 tx_ring->next_to_use = 0;
2094 tx_ring->next_to_clean = 0;
2095 return 0;
2096
2097 err:
2098 vfree(tx_ring->buffer_info);
2099 dev_err(&pdev->dev,
2100 "Unable to allocate memory for the transmit descriptor ring\n");
2101 return -ENOMEM;
2102 }
2103
2104 /**
2105 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2106 * (Descriptors) for all queues
2107 * @adapter: board private structure
2108 *
2109 * Return 0 on success, negative on failure
2110 **/
2111 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2112 {
2113 struct pci_dev *pdev = adapter->pdev;
2114 int i, err = 0;
2115
2116 for (i = 0; i < adapter->num_tx_queues; i++) {
2117 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2118 if (err) {
2119 dev_err(&pdev->dev,
2120 "Allocation for Tx Queue %u failed\n", i);
2121 for (i--; i >= 0; i--)
2122 igb_free_tx_resources(&adapter->tx_ring[i]);
2123 break;
2124 }
2125 }
2126
2127 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2128 int r_idx = i % adapter->num_tx_queues;
2129 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2130 }
2131 return err;
2132 }
2133
2134 /**
2135 * igb_setup_tctl - configure the transmit control registers
2136 * @adapter: Board private structure
2137 **/
2138 void igb_setup_tctl(struct igb_adapter *adapter)
2139 {
2140 struct e1000_hw *hw = &adapter->hw;
2141 u32 tctl;
2142
2143 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2144 wr32(E1000_TXDCTL(0), 0);
2145
2146 /* Program the Transmit Control Register */
2147 tctl = rd32(E1000_TCTL);
2148 tctl &= ~E1000_TCTL_CT;
2149 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2150 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2151
2152 igb_config_collision_dist(hw);
2153
2154 /* Enable transmits */
2155 tctl |= E1000_TCTL_EN;
2156
2157 wr32(E1000_TCTL, tctl);
2158 }
2159
2160 /**
2161 * igb_configure_tx_ring - Configure transmit ring after Reset
2162 * @adapter: board private structure
2163 * @ring: tx ring to configure
2164 *
2165 * Configure a transmit ring after a reset.
2166 **/
2167 void igb_configure_tx_ring(struct igb_adapter *adapter,
2168 struct igb_ring *ring)
2169 {
2170 struct e1000_hw *hw = &adapter->hw;
2171 u32 txdctl;
2172 u64 tdba = ring->dma;
2173 int reg_idx = ring->reg_idx;
2174
2175 /* disable the queue */
2176 txdctl = rd32(E1000_TXDCTL(reg_idx));
2177 wr32(E1000_TXDCTL(reg_idx),
2178 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2179 wrfl();
2180 mdelay(10);
2181
2182 wr32(E1000_TDLEN(reg_idx),
2183 ring->count * sizeof(union e1000_adv_tx_desc));
2184 wr32(E1000_TDBAL(reg_idx),
2185 tdba & 0x00000000ffffffffULL);
2186 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2187
2188 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2189 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2190 writel(0, ring->head);
2191 writel(0, ring->tail);
2192
2193 txdctl |= IGB_TX_PTHRESH;
2194 txdctl |= IGB_TX_HTHRESH << 8;
2195 txdctl |= IGB_TX_WTHRESH << 16;
2196
2197 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2198 wr32(E1000_TXDCTL(reg_idx), txdctl);
2199 }
2200
2201 /**
2202 * igb_configure_tx - Configure transmit Unit after Reset
2203 * @adapter: board private structure
2204 *
2205 * Configure the Tx unit of the MAC after a reset.
2206 **/
2207 static void igb_configure_tx(struct igb_adapter *adapter)
2208 {
2209 int i;
2210
2211 for (i = 0; i < adapter->num_tx_queues; i++)
2212 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2213 }
2214
2215 /**
2216 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2217 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2218 *
2219 * Returns 0 on success, negative on failure
2220 **/
2221 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2222 {
2223 struct pci_dev *pdev = rx_ring->pdev;
2224 int size, desc_len;
2225
2226 size = sizeof(struct igb_buffer) * rx_ring->count;
2227 rx_ring->buffer_info = vmalloc(size);
2228 if (!rx_ring->buffer_info)
2229 goto err;
2230 memset(rx_ring->buffer_info, 0, size);
2231
2232 desc_len = sizeof(union e1000_adv_rx_desc);
2233
2234 /* Round up to nearest 4K */
2235 rx_ring->size = rx_ring->count * desc_len;
2236 rx_ring->size = ALIGN(rx_ring->size, 4096);
2237
2238 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2239 &rx_ring->dma);
2240
2241 if (!rx_ring->desc)
2242 goto err;
2243
2244 rx_ring->next_to_clean = 0;
2245 rx_ring->next_to_use = 0;
2246
2247 return 0;
2248
2249 err:
2250 vfree(rx_ring->buffer_info);
2251 rx_ring->buffer_info = NULL;
2252 dev_err(&pdev->dev, "Unable to allocate memory for "
2253 "the receive descriptor ring\n");
2254 return -ENOMEM;
2255 }
2256
2257 /**
2258 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2259 * (Descriptors) for all queues
2260 * @adapter: board private structure
2261 *
2262 * Return 0 on success, negative on failure
2263 **/
2264 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2265 {
2266 struct pci_dev *pdev = adapter->pdev;
2267 int i, err = 0;
2268
2269 for (i = 0; i < adapter->num_rx_queues; i++) {
2270 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2271 if (err) {
2272 dev_err(&pdev->dev,
2273 "Allocation for Rx Queue %u failed\n", i);
2274 for (i--; i >= 0; i--)
2275 igb_free_rx_resources(&adapter->rx_ring[i]);
2276 break;
2277 }
2278 }
2279
2280 return err;
2281 }
2282
2283 /**
2284 * igb_setup_mrqc - configure the multiple receive queue control registers
2285 * @adapter: Board private structure
2286 **/
2287 static void igb_setup_mrqc(struct igb_adapter *adapter)
2288 {
2289 struct e1000_hw *hw = &adapter->hw;
2290 u32 mrqc, rxcsum;
2291 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2292 union e1000_reta {
2293 u32 dword;
2294 u8 bytes[4];
2295 } reta;
2296 static const u8 rsshash[40] = {
2297 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2298 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2299 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2300 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2301
2302 /* Fill out hash function seeds */
2303 for (j = 0; j < 10; j++) {
2304 u32 rsskey = rsshash[(j * 4)];
2305 rsskey |= rsshash[(j * 4) + 1] << 8;
2306 rsskey |= rsshash[(j * 4) + 2] << 16;
2307 rsskey |= rsshash[(j * 4) + 3] << 24;
2308 array_wr32(E1000_RSSRK(0), j, rsskey);
2309 }
2310
2311 num_rx_queues = adapter->rss_queues;
2312
2313 if (adapter->vfs_allocated_count) {
2314 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2315 switch (hw->mac.type) {
2316 case e1000_82580:
2317 num_rx_queues = 1;
2318 shift = 0;
2319 break;
2320 case e1000_82576:
2321 shift = 3;
2322 num_rx_queues = 2;
2323 break;
2324 case e1000_82575:
2325 shift = 2;
2326 shift2 = 6;
2327 default:
2328 break;
2329 }
2330 } else {
2331 if (hw->mac.type == e1000_82575)
2332 shift = 6;
2333 }
2334
2335 for (j = 0; j < (32 * 4); j++) {
2336 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2337 if (shift2)
2338 reta.bytes[j & 3] |= num_rx_queues << shift2;
2339 if ((j & 3) == 3)
2340 wr32(E1000_RETA(j >> 2), reta.dword);
2341 }
2342
2343 /*
2344 * Disable raw packet checksumming so that RSS hash is placed in
2345 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2346 * offloads as they are enabled by default
2347 */
2348 rxcsum = rd32(E1000_RXCSUM);
2349 rxcsum |= E1000_RXCSUM_PCSD;
2350
2351 if (adapter->hw.mac.type >= e1000_82576)
2352 /* Enable Receive Checksum Offload for SCTP */
2353 rxcsum |= E1000_RXCSUM_CRCOFL;
2354
2355 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2356 wr32(E1000_RXCSUM, rxcsum);
2357
2358 /* If VMDq is enabled then we set the appropriate mode for that, else
2359 * we default to RSS so that an RSS hash is calculated per packet even
2360 * if we are only using one queue */
2361 if (adapter->vfs_allocated_count) {
2362 if (hw->mac.type > e1000_82575) {
2363 /* Set the default pool for the PF's first queue */
2364 u32 vtctl = rd32(E1000_VT_CTL);
2365 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2366 E1000_VT_CTL_DISABLE_DEF_POOL);
2367 vtctl |= adapter->vfs_allocated_count <<
2368 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2369 wr32(E1000_VT_CTL, vtctl);
2370 }
2371 if (adapter->rss_queues > 1)
2372 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2373 else
2374 mrqc = E1000_MRQC_ENABLE_VMDQ;
2375 } else {
2376 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2377 }
2378 igb_vmm_control(adapter);
2379
2380 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2381 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2382 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2383 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2384 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2385 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2386 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2387 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2388
2389 wr32(E1000_MRQC, mrqc);
2390 }
2391
2392 /**
2393 * igb_setup_rctl - configure the receive control registers
2394 * @adapter: Board private structure
2395 **/
2396 void igb_setup_rctl(struct igb_adapter *adapter)
2397 {
2398 struct e1000_hw *hw = &adapter->hw;
2399 u32 rctl;
2400
2401 rctl = rd32(E1000_RCTL);
2402
2403 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2404 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2405
2406 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2407 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2408
2409 /*
2410 * enable stripping of CRC. It's unlikely this will break BMC
2411 * redirection as it did with e1000. Newer features require
2412 * that the HW strips the CRC.
2413 */
2414 rctl |= E1000_RCTL_SECRC;
2415
2416 /* disable store bad packets and clear size bits. */
2417 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2418
2419 /* enable LPE to prevent packets larger than max_frame_size */
2420 rctl |= E1000_RCTL_LPE;
2421
2422 /* disable queue 0 to prevent tail write w/o re-config */
2423 wr32(E1000_RXDCTL(0), 0);
2424
2425 /* Attention!!! For SR-IOV PF driver operations you must enable
2426 * queue drop for all VF and PF queues to prevent head of line blocking
2427 * if an un-trusted VF does not provide descriptors to hardware.
2428 */
2429 if (adapter->vfs_allocated_count) {
2430 /* set all queue drop enable bits */
2431 wr32(E1000_QDE, ALL_QUEUES);
2432 }
2433
2434 wr32(E1000_RCTL, rctl);
2435 }
2436
2437 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2438 int vfn)
2439 {
2440 struct e1000_hw *hw = &adapter->hw;
2441 u32 vmolr;
2442
2443 /* if it isn't the PF check to see if VFs are enabled and
2444 * increase the size to support vlan tags */
2445 if (vfn < adapter->vfs_allocated_count &&
2446 adapter->vf_data[vfn].vlans_enabled)
2447 size += VLAN_TAG_SIZE;
2448
2449 vmolr = rd32(E1000_VMOLR(vfn));
2450 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2451 vmolr |= size | E1000_VMOLR_LPE;
2452 wr32(E1000_VMOLR(vfn), vmolr);
2453
2454 return 0;
2455 }
2456
2457 /**
2458 * igb_rlpml_set - set maximum receive packet size
2459 * @adapter: board private structure
2460 *
2461 * Configure maximum receivable packet size.
2462 **/
2463 static void igb_rlpml_set(struct igb_adapter *adapter)
2464 {
2465 u32 max_frame_size = adapter->max_frame_size;
2466 struct e1000_hw *hw = &adapter->hw;
2467 u16 pf_id = adapter->vfs_allocated_count;
2468
2469 if (adapter->vlgrp)
2470 max_frame_size += VLAN_TAG_SIZE;
2471
2472 /* if vfs are enabled we set RLPML to the largest possible request
2473 * size and set the VMOLR RLPML to the size we need */
2474 if (pf_id) {
2475 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2476 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2477 }
2478
2479 wr32(E1000_RLPML, max_frame_size);
2480 }
2481
2482 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2483 {
2484 struct e1000_hw *hw = &adapter->hw;
2485 u32 vmolr;
2486
2487 /*
2488 * This register exists only on 82576 and newer so if we are older then
2489 * we should exit and do nothing
2490 */
2491 if (hw->mac.type < e1000_82576)
2492 return;
2493
2494 vmolr = rd32(E1000_VMOLR(vfn));
2495 vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */
2496 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2497
2498 /* clear all bits that might not be set */
2499 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2500
2501 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2502 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2503 /*
2504 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2505 * multicast packets
2506 */
2507 if (vfn <= adapter->vfs_allocated_count)
2508 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2509
2510 wr32(E1000_VMOLR(vfn), vmolr);
2511 }
2512
2513 /**
2514 * igb_configure_rx_ring - Configure a receive ring after Reset
2515 * @adapter: board private structure
2516 * @ring: receive ring to be configured
2517 *
2518 * Configure the Rx unit of the MAC after a reset.
2519 **/
2520 void igb_configure_rx_ring(struct igb_adapter *adapter,
2521 struct igb_ring *ring)
2522 {
2523 struct e1000_hw *hw = &adapter->hw;
2524 u64 rdba = ring->dma;
2525 int reg_idx = ring->reg_idx;
2526 u32 srrctl, rxdctl;
2527
2528 /* disable the queue */
2529 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2530 wr32(E1000_RXDCTL(reg_idx),
2531 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2532
2533 /* Set DMA base address registers */
2534 wr32(E1000_RDBAL(reg_idx),
2535 rdba & 0x00000000ffffffffULL);
2536 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2537 wr32(E1000_RDLEN(reg_idx),
2538 ring->count * sizeof(union e1000_adv_rx_desc));
2539
2540 /* initialize head and tail */
2541 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2542 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2543 writel(0, ring->head);
2544 writel(0, ring->tail);
2545
2546 /* set descriptor configuration */
2547 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2548 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2549 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2550 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2551 srrctl |= IGB_RXBUFFER_16384 >>
2552 E1000_SRRCTL_BSIZEPKT_SHIFT;
2553 #else
2554 srrctl |= (PAGE_SIZE / 2) >>
2555 E1000_SRRCTL_BSIZEPKT_SHIFT;
2556 #endif
2557 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2558 } else {
2559 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2560 E1000_SRRCTL_BSIZEPKT_SHIFT;
2561 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2562 }
2563
2564 wr32(E1000_SRRCTL(reg_idx), srrctl);
2565
2566 /* set filtering for VMDQ pools */
2567 igb_set_vmolr(adapter, reg_idx & 0x7);
2568
2569 /* enable receive descriptor fetching */
2570 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2571 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2572 rxdctl &= 0xFFF00000;
2573 rxdctl |= IGB_RX_PTHRESH;
2574 rxdctl |= IGB_RX_HTHRESH << 8;
2575 rxdctl |= IGB_RX_WTHRESH << 16;
2576 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2577 }
2578
2579 /**
2580 * igb_configure_rx - Configure receive Unit after Reset
2581 * @adapter: board private structure
2582 *
2583 * Configure the Rx unit of the MAC after a reset.
2584 **/
2585 static void igb_configure_rx(struct igb_adapter *adapter)
2586 {
2587 int i;
2588
2589 /* set UTA to appropriate mode */
2590 igb_set_uta(adapter);
2591
2592 /* set the correct pool for the PF default MAC address in entry 0 */
2593 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2594 adapter->vfs_allocated_count);
2595
2596 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2597 * the Base and Length of the Rx Descriptor Ring */
2598 for (i = 0; i < adapter->num_rx_queues; i++)
2599 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2600 }
2601
2602 /**
2603 * igb_free_tx_resources - Free Tx Resources per Queue
2604 * @tx_ring: Tx descriptor ring for a specific queue
2605 *
2606 * Free all transmit software resources
2607 **/
2608 void igb_free_tx_resources(struct igb_ring *tx_ring)
2609 {
2610 igb_clean_tx_ring(tx_ring);
2611
2612 vfree(tx_ring->buffer_info);
2613 tx_ring->buffer_info = NULL;
2614
2615 /* if not set, then don't free */
2616 if (!tx_ring->desc)
2617 return;
2618
2619 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2620 tx_ring->desc, tx_ring->dma);
2621
2622 tx_ring->desc = NULL;
2623 }
2624
2625 /**
2626 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2627 * @adapter: board private structure
2628 *
2629 * Free all transmit software resources
2630 **/
2631 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2632 {
2633 int i;
2634
2635 for (i = 0; i < adapter->num_tx_queues; i++)
2636 igb_free_tx_resources(&adapter->tx_ring[i]);
2637 }
2638
2639 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2640 struct igb_buffer *buffer_info)
2641 {
2642 if (buffer_info->dma) {
2643 if (buffer_info->mapped_as_page)
2644 pci_unmap_page(tx_ring->pdev,
2645 buffer_info->dma,
2646 buffer_info->length,
2647 PCI_DMA_TODEVICE);
2648 else
2649 pci_unmap_single(tx_ring->pdev,
2650 buffer_info->dma,
2651 buffer_info->length,
2652 PCI_DMA_TODEVICE);
2653 buffer_info->dma = 0;
2654 }
2655 if (buffer_info->skb) {
2656 dev_kfree_skb_any(buffer_info->skb);
2657 buffer_info->skb = NULL;
2658 }
2659 buffer_info->time_stamp = 0;
2660 buffer_info->length = 0;
2661 buffer_info->next_to_watch = 0;
2662 buffer_info->mapped_as_page = false;
2663 }
2664
2665 /**
2666 * igb_clean_tx_ring - Free Tx Buffers
2667 * @tx_ring: ring to be cleaned
2668 **/
2669 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2670 {
2671 struct igb_buffer *buffer_info;
2672 unsigned long size;
2673 unsigned int i;
2674
2675 if (!tx_ring->buffer_info)
2676 return;
2677 /* Free all the Tx ring sk_buffs */
2678
2679 for (i = 0; i < tx_ring->count; i++) {
2680 buffer_info = &tx_ring->buffer_info[i];
2681 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2682 }
2683
2684 size = sizeof(struct igb_buffer) * tx_ring->count;
2685 memset(tx_ring->buffer_info, 0, size);
2686
2687 /* Zero out the descriptor ring */
2688 memset(tx_ring->desc, 0, tx_ring->size);
2689
2690 tx_ring->next_to_use = 0;
2691 tx_ring->next_to_clean = 0;
2692 }
2693
2694 /**
2695 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2696 * @adapter: board private structure
2697 **/
2698 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2699 {
2700 int i;
2701
2702 for (i = 0; i < adapter->num_tx_queues; i++)
2703 igb_clean_tx_ring(&adapter->tx_ring[i]);
2704 }
2705
2706 /**
2707 * igb_free_rx_resources - Free Rx Resources
2708 * @rx_ring: ring to clean the resources from
2709 *
2710 * Free all receive software resources
2711 **/
2712 void igb_free_rx_resources(struct igb_ring *rx_ring)
2713 {
2714 igb_clean_rx_ring(rx_ring);
2715
2716 vfree(rx_ring->buffer_info);
2717 rx_ring->buffer_info = NULL;
2718
2719 /* if not set, then don't free */
2720 if (!rx_ring->desc)
2721 return;
2722
2723 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2724 rx_ring->desc, rx_ring->dma);
2725
2726 rx_ring->desc = NULL;
2727 }
2728
2729 /**
2730 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2731 * @adapter: board private structure
2732 *
2733 * Free all receive software resources
2734 **/
2735 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2736 {
2737 int i;
2738
2739 for (i = 0; i < adapter->num_rx_queues; i++)
2740 igb_free_rx_resources(&adapter->rx_ring[i]);
2741 }
2742
2743 /**
2744 * igb_clean_rx_ring - Free Rx Buffers per Queue
2745 * @rx_ring: ring to free buffers from
2746 **/
2747 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2748 {
2749 struct igb_buffer *buffer_info;
2750 unsigned long size;
2751 unsigned int i;
2752
2753 if (!rx_ring->buffer_info)
2754 return;
2755
2756 /* Free all the Rx ring sk_buffs */
2757 for (i = 0; i < rx_ring->count; i++) {
2758 buffer_info = &rx_ring->buffer_info[i];
2759 if (buffer_info->dma) {
2760 pci_unmap_single(rx_ring->pdev,
2761 buffer_info->dma,
2762 rx_ring->rx_buffer_len,
2763 PCI_DMA_FROMDEVICE);
2764 buffer_info->dma = 0;
2765 }
2766
2767 if (buffer_info->skb) {
2768 dev_kfree_skb(buffer_info->skb);
2769 buffer_info->skb = NULL;
2770 }
2771 if (buffer_info->page_dma) {
2772 pci_unmap_page(rx_ring->pdev,
2773 buffer_info->page_dma,
2774 PAGE_SIZE / 2,
2775 PCI_DMA_FROMDEVICE);
2776 buffer_info->page_dma = 0;
2777 }
2778 if (buffer_info->page) {
2779 put_page(buffer_info->page);
2780 buffer_info->page = NULL;
2781 buffer_info->page_offset = 0;
2782 }
2783 }
2784
2785 size = sizeof(struct igb_buffer) * rx_ring->count;
2786 memset(rx_ring->buffer_info, 0, size);
2787
2788 /* Zero out the descriptor ring */
2789 memset(rx_ring->desc, 0, rx_ring->size);
2790
2791 rx_ring->next_to_clean = 0;
2792 rx_ring->next_to_use = 0;
2793 }
2794
2795 /**
2796 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2797 * @adapter: board private structure
2798 **/
2799 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2800 {
2801 int i;
2802
2803 for (i = 0; i < adapter->num_rx_queues; i++)
2804 igb_clean_rx_ring(&adapter->rx_ring[i]);
2805 }
2806
2807 /**
2808 * igb_set_mac - Change the Ethernet Address of the NIC
2809 * @netdev: network interface device structure
2810 * @p: pointer to an address structure
2811 *
2812 * Returns 0 on success, negative on failure
2813 **/
2814 static int igb_set_mac(struct net_device *netdev, void *p)
2815 {
2816 struct igb_adapter *adapter = netdev_priv(netdev);
2817 struct e1000_hw *hw = &adapter->hw;
2818 struct sockaddr *addr = p;
2819
2820 if (!is_valid_ether_addr(addr->sa_data))
2821 return -EADDRNOTAVAIL;
2822
2823 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2824 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2825
2826 /* set the correct pool for the new PF MAC address in entry 0 */
2827 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2828 adapter->vfs_allocated_count);
2829
2830 return 0;
2831 }
2832
2833 /**
2834 * igb_write_mc_addr_list - write multicast addresses to MTA
2835 * @netdev: network interface device structure
2836 *
2837 * Writes multicast address list to the MTA hash table.
2838 * Returns: -ENOMEM on failure
2839 * 0 on no addresses written
2840 * X on writing X addresses to MTA
2841 **/
2842 static int igb_write_mc_addr_list(struct net_device *netdev)
2843 {
2844 struct igb_adapter *adapter = netdev_priv(netdev);
2845 struct e1000_hw *hw = &adapter->hw;
2846 struct dev_mc_list *mc_ptr = netdev->mc_list;
2847 u8 *mta_list;
2848 u32 vmolr = 0;
2849 int i;
2850
2851 if (netdev_mc_empty(netdev)) {
2852 /* nothing to program, so clear mc list */
2853 igb_update_mc_addr_list(hw, NULL, 0);
2854 igb_restore_vf_multicasts(adapter);
2855 return 0;
2856 }
2857
2858 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
2859 if (!mta_list)
2860 return -ENOMEM;
2861
2862 /* set vmolr receive overflow multicast bit */
2863 vmolr |= E1000_VMOLR_ROMPE;
2864
2865 /* The shared function expects a packed array of only addresses. */
2866 mc_ptr = netdev->mc_list;
2867
2868 for (i = 0; i < netdev_mc_count(netdev); i++) {
2869 if (!mc_ptr)
2870 break;
2871 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2872 mc_ptr = mc_ptr->next;
2873 }
2874 igb_update_mc_addr_list(hw, mta_list, i);
2875 kfree(mta_list);
2876
2877 return netdev_mc_count(netdev);
2878 }
2879
2880 /**
2881 * igb_write_uc_addr_list - write unicast addresses to RAR table
2882 * @netdev: network interface device structure
2883 *
2884 * Writes unicast address list to the RAR table.
2885 * Returns: -ENOMEM on failure/insufficient address space
2886 * 0 on no addresses written
2887 * X on writing X addresses to the RAR table
2888 **/
2889 static int igb_write_uc_addr_list(struct net_device *netdev)
2890 {
2891 struct igb_adapter *adapter = netdev_priv(netdev);
2892 struct e1000_hw *hw = &adapter->hw;
2893 unsigned int vfn = adapter->vfs_allocated_count;
2894 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2895 int count = 0;
2896
2897 /* return ENOMEM indicating insufficient memory for addresses */
2898 if (netdev_uc_count(netdev) > rar_entries)
2899 return -ENOMEM;
2900
2901 if (!netdev_uc_empty(netdev) && rar_entries) {
2902 struct netdev_hw_addr *ha;
2903
2904 netdev_for_each_uc_addr(ha, netdev) {
2905 if (!rar_entries)
2906 break;
2907 igb_rar_set_qsel(adapter, ha->addr,
2908 rar_entries--,
2909 vfn);
2910 count++;
2911 }
2912 }
2913 /* write the addresses in reverse order to avoid write combining */
2914 for (; rar_entries > 0 ; rar_entries--) {
2915 wr32(E1000_RAH(rar_entries), 0);
2916 wr32(E1000_RAL(rar_entries), 0);
2917 }
2918 wrfl();
2919
2920 return count;
2921 }
2922
2923 /**
2924 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2925 * @netdev: network interface device structure
2926 *
2927 * The set_rx_mode entry point is called whenever the unicast or multicast
2928 * address lists or the network interface flags are updated. This routine is
2929 * responsible for configuring the hardware for proper unicast, multicast,
2930 * promiscuous mode, and all-multi behavior.
2931 **/
2932 static void igb_set_rx_mode(struct net_device *netdev)
2933 {
2934 struct igb_adapter *adapter = netdev_priv(netdev);
2935 struct e1000_hw *hw = &adapter->hw;
2936 unsigned int vfn = adapter->vfs_allocated_count;
2937 u32 rctl, vmolr = 0;
2938 int count;
2939
2940 /* Check for Promiscuous and All Multicast modes */
2941 rctl = rd32(E1000_RCTL);
2942
2943 /* clear the effected bits */
2944 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2945
2946 if (netdev->flags & IFF_PROMISC) {
2947 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2948 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2949 } else {
2950 if (netdev->flags & IFF_ALLMULTI) {
2951 rctl |= E1000_RCTL_MPE;
2952 vmolr |= E1000_VMOLR_MPME;
2953 } else {
2954 /*
2955 * Write addresses to the MTA, if the attempt fails
2956 * then we should just turn on promiscous mode so
2957 * that we can at least receive multicast traffic
2958 */
2959 count = igb_write_mc_addr_list(netdev);
2960 if (count < 0) {
2961 rctl |= E1000_RCTL_MPE;
2962 vmolr |= E1000_VMOLR_MPME;
2963 } else if (count) {
2964 vmolr |= E1000_VMOLR_ROMPE;
2965 }
2966 }
2967 /*
2968 * Write addresses to available RAR registers, if there is not
2969 * sufficient space to store all the addresses then enable
2970 * unicast promiscous mode
2971 */
2972 count = igb_write_uc_addr_list(netdev);
2973 if (count < 0) {
2974 rctl |= E1000_RCTL_UPE;
2975 vmolr |= E1000_VMOLR_ROPE;
2976 }
2977 rctl |= E1000_RCTL_VFE;
2978 }
2979 wr32(E1000_RCTL, rctl);
2980
2981 /*
2982 * In order to support SR-IOV and eventually VMDq it is necessary to set
2983 * the VMOLR to enable the appropriate modes. Without this workaround
2984 * we will have issues with VLAN tag stripping not being done for frames
2985 * that are only arriving because we are the default pool
2986 */
2987 if (hw->mac.type < e1000_82576)
2988 return;
2989
2990 vmolr |= rd32(E1000_VMOLR(vfn)) &
2991 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2992 wr32(E1000_VMOLR(vfn), vmolr);
2993 igb_restore_vf_multicasts(adapter);
2994 }
2995
2996 /* Need to wait a few seconds after link up to get diagnostic information from
2997 * the phy */
2998 static void igb_update_phy_info(unsigned long data)
2999 {
3000 struct igb_adapter *adapter = (struct igb_adapter *) data;
3001 igb_get_phy_info(&adapter->hw);
3002 }
3003
3004 /**
3005 * igb_has_link - check shared code for link and determine up/down
3006 * @adapter: pointer to driver private info
3007 **/
3008 static bool igb_has_link(struct igb_adapter *adapter)
3009 {
3010 struct e1000_hw *hw = &adapter->hw;
3011 bool link_active = false;
3012 s32 ret_val = 0;
3013
3014 /* get_link_status is set on LSC (link status) interrupt or
3015 * rx sequence error interrupt. get_link_status will stay
3016 * false until the e1000_check_for_link establishes link
3017 * for copper adapters ONLY
3018 */
3019 switch (hw->phy.media_type) {
3020 case e1000_media_type_copper:
3021 if (hw->mac.get_link_status) {
3022 ret_val = hw->mac.ops.check_for_link(hw);
3023 link_active = !hw->mac.get_link_status;
3024 } else {
3025 link_active = true;
3026 }
3027 break;
3028 case e1000_media_type_internal_serdes:
3029 ret_val = hw->mac.ops.check_for_link(hw);
3030 link_active = hw->mac.serdes_has_link;
3031 break;
3032 default:
3033 case e1000_media_type_unknown:
3034 break;
3035 }
3036
3037 return link_active;
3038 }
3039
3040 /**
3041 * igb_watchdog - Timer Call-back
3042 * @data: pointer to adapter cast into an unsigned long
3043 **/
3044 static void igb_watchdog(unsigned long data)
3045 {
3046 struct igb_adapter *adapter = (struct igb_adapter *)data;
3047 /* Do the rest outside of interrupt context */
3048 schedule_work(&adapter->watchdog_task);
3049 }
3050
3051 static void igb_watchdog_task(struct work_struct *work)
3052 {
3053 struct igb_adapter *adapter = container_of(work,
3054 struct igb_adapter,
3055 watchdog_task);
3056 struct e1000_hw *hw = &adapter->hw;
3057 struct net_device *netdev = adapter->netdev;
3058 u32 link;
3059 int i;
3060
3061 link = igb_has_link(adapter);
3062 if (link) {
3063 if (!netif_carrier_ok(netdev)) {
3064 u32 ctrl;
3065 hw->mac.ops.get_speed_and_duplex(hw,
3066 &adapter->link_speed,
3067 &adapter->link_duplex);
3068
3069 ctrl = rd32(E1000_CTRL);
3070 /* Links status message must follow this format */
3071 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3072 "Flow Control: %s\n",
3073 netdev->name,
3074 adapter->link_speed,
3075 adapter->link_duplex == FULL_DUPLEX ?
3076 "Full Duplex" : "Half Duplex",
3077 ((ctrl & E1000_CTRL_TFCE) &&
3078 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3079 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3080 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
3081
3082 /* tweak tx_queue_len according to speed/duplex and
3083 * adjust the timeout factor */
3084 netdev->tx_queue_len = adapter->tx_queue_len;
3085 adapter->tx_timeout_factor = 1;
3086 switch (adapter->link_speed) {
3087 case SPEED_10:
3088 netdev->tx_queue_len = 10;
3089 adapter->tx_timeout_factor = 14;
3090 break;
3091 case SPEED_100:
3092 netdev->tx_queue_len = 100;
3093 /* maybe add some timeout factor ? */
3094 break;
3095 }
3096
3097 netif_carrier_on(netdev);
3098
3099 igb_ping_all_vfs(adapter);
3100
3101 /* link state has changed, schedule phy info update */
3102 if (!test_bit(__IGB_DOWN, &adapter->state))
3103 mod_timer(&adapter->phy_info_timer,
3104 round_jiffies(jiffies + 2 * HZ));
3105 }
3106 } else {
3107 if (netif_carrier_ok(netdev)) {
3108 adapter->link_speed = 0;
3109 adapter->link_duplex = 0;
3110 /* Links status message must follow this format */
3111 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3112 netdev->name);
3113 netif_carrier_off(netdev);
3114
3115 igb_ping_all_vfs(adapter);
3116
3117 /* link state has changed, schedule phy info update */
3118 if (!test_bit(__IGB_DOWN, &adapter->state))
3119 mod_timer(&adapter->phy_info_timer,
3120 round_jiffies(jiffies + 2 * HZ));
3121 }
3122 }
3123
3124 igb_update_stats(adapter);
3125 igb_update_adaptive(hw);
3126
3127 for (i = 0; i < adapter->num_tx_queues; i++) {
3128 struct igb_ring *tx_ring = &adapter->tx_ring[i];
3129 if (!netif_carrier_ok(netdev)) {
3130 /* We've lost link, so the controller stops DMA,
3131 * but we've got queued Tx work that's never going
3132 * to get done, so reset controller to flush Tx.
3133 * (Do the reset outside of interrupt context). */
3134 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3135 adapter->tx_timeout_count++;
3136 schedule_work(&adapter->reset_task);
3137 /* return immediately since reset is imminent */
3138 return;
3139 }
3140 }
3141
3142 /* Force detection of hung controller every watchdog period */
3143 tx_ring->detect_tx_hung = true;
3144 }
3145
3146 /* Cause software interrupt to ensure rx ring is cleaned */
3147 if (adapter->msix_entries) {
3148 u32 eics = 0;
3149 for (i = 0; i < adapter->num_q_vectors; i++) {
3150 struct igb_q_vector *q_vector = adapter->q_vector[i];
3151 eics |= q_vector->eims_value;
3152 }
3153 wr32(E1000_EICS, eics);
3154 } else {
3155 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3156 }
3157
3158 /* Reset the timer */
3159 if (!test_bit(__IGB_DOWN, &adapter->state))
3160 mod_timer(&adapter->watchdog_timer,
3161 round_jiffies(jiffies + 2 * HZ));
3162 }
3163
3164 enum latency_range {
3165 lowest_latency = 0,
3166 low_latency = 1,
3167 bulk_latency = 2,
3168 latency_invalid = 255
3169 };
3170
3171 /**
3172 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3173 *
3174 * Stores a new ITR value based on strictly on packet size. This
3175 * algorithm is less sophisticated than that used in igb_update_itr,
3176 * due to the difficulty of synchronizing statistics across multiple
3177 * receive rings. The divisors and thresholds used by this fuction
3178 * were determined based on theoretical maximum wire speed and testing
3179 * data, in order to minimize response time while increasing bulk
3180 * throughput.
3181 * This functionality is controlled by the InterruptThrottleRate module
3182 * parameter (see igb_param.c)
3183 * NOTE: This function is called only when operating in a multiqueue
3184 * receive environment.
3185 * @q_vector: pointer to q_vector
3186 **/
3187 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3188 {
3189 int new_val = q_vector->itr_val;
3190 int avg_wire_size = 0;
3191 struct igb_adapter *adapter = q_vector->adapter;
3192
3193 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3194 * ints/sec - ITR timer value of 120 ticks.
3195 */
3196 if (adapter->link_speed != SPEED_1000) {
3197 new_val = 976;
3198 goto set_itr_val;
3199 }
3200
3201 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3202 struct igb_ring *ring = q_vector->rx_ring;
3203 avg_wire_size = ring->total_bytes / ring->total_packets;
3204 }
3205
3206 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3207 struct igb_ring *ring = q_vector->tx_ring;
3208 avg_wire_size = max_t(u32, avg_wire_size,
3209 (ring->total_bytes /
3210 ring->total_packets));
3211 }
3212
3213 /* if avg_wire_size isn't set no work was done */
3214 if (!avg_wire_size)
3215 goto clear_counts;
3216
3217 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3218 avg_wire_size += 24;
3219
3220 /* Don't starve jumbo frames */
3221 avg_wire_size = min(avg_wire_size, 3000);
3222
3223 /* Give a little boost to mid-size frames */
3224 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3225 new_val = avg_wire_size / 3;
3226 else
3227 new_val = avg_wire_size / 2;
3228
3229 set_itr_val:
3230 if (new_val != q_vector->itr_val) {
3231 q_vector->itr_val = new_val;
3232 q_vector->set_itr = 1;
3233 }
3234 clear_counts:
3235 if (q_vector->rx_ring) {
3236 q_vector->rx_ring->total_bytes = 0;
3237 q_vector->rx_ring->total_packets = 0;
3238 }
3239 if (q_vector->tx_ring) {
3240 q_vector->tx_ring->total_bytes = 0;
3241 q_vector->tx_ring->total_packets = 0;
3242 }
3243 }
3244
3245 /**
3246 * igb_update_itr - update the dynamic ITR value based on statistics
3247 * Stores a new ITR value based on packets and byte
3248 * counts during the last interrupt. The advantage of per interrupt
3249 * computation is faster updates and more accurate ITR for the current
3250 * traffic pattern. Constants in this function were computed
3251 * based on theoretical maximum wire speed and thresholds were set based
3252 * on testing data as well as attempting to minimize response time
3253 * while increasing bulk throughput.
3254 * this functionality is controlled by the InterruptThrottleRate module
3255 * parameter (see igb_param.c)
3256 * NOTE: These calculations are only valid when operating in a single-
3257 * queue environment.
3258 * @adapter: pointer to adapter
3259 * @itr_setting: current q_vector->itr_val
3260 * @packets: the number of packets during this measurement interval
3261 * @bytes: the number of bytes during this measurement interval
3262 **/
3263 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3264 int packets, int bytes)
3265 {
3266 unsigned int retval = itr_setting;
3267
3268 if (packets == 0)
3269 goto update_itr_done;
3270
3271 switch (itr_setting) {
3272 case lowest_latency:
3273 /* handle TSO and jumbo frames */
3274 if (bytes/packets > 8000)
3275 retval = bulk_latency;
3276 else if ((packets < 5) && (bytes > 512))
3277 retval = low_latency;
3278 break;
3279 case low_latency: /* 50 usec aka 20000 ints/s */
3280 if (bytes > 10000) {
3281 /* this if handles the TSO accounting */
3282 if (bytes/packets > 8000) {
3283 retval = bulk_latency;
3284 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3285 retval = bulk_latency;
3286 } else if ((packets > 35)) {
3287 retval = lowest_latency;
3288 }
3289 } else if (bytes/packets > 2000) {
3290 retval = bulk_latency;
3291 } else if (packets <= 2 && bytes < 512) {
3292 retval = lowest_latency;
3293 }
3294 break;
3295 case bulk_latency: /* 250 usec aka 4000 ints/s */
3296 if (bytes > 25000) {
3297 if (packets > 35)
3298 retval = low_latency;
3299 } else if (bytes < 1500) {
3300 retval = low_latency;
3301 }
3302 break;
3303 }
3304
3305 update_itr_done:
3306 return retval;
3307 }
3308
3309 static void igb_set_itr(struct igb_adapter *adapter)
3310 {
3311 struct igb_q_vector *q_vector = adapter->q_vector[0];
3312 u16 current_itr;
3313 u32 new_itr = q_vector->itr_val;
3314
3315 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3316 if (adapter->link_speed != SPEED_1000) {
3317 current_itr = 0;
3318 new_itr = 4000;
3319 goto set_itr_now;
3320 }
3321
3322 adapter->rx_itr = igb_update_itr(adapter,
3323 adapter->rx_itr,
3324 adapter->rx_ring->total_packets,
3325 adapter->rx_ring->total_bytes);
3326
3327 adapter->tx_itr = igb_update_itr(adapter,
3328 adapter->tx_itr,
3329 adapter->tx_ring->total_packets,
3330 adapter->tx_ring->total_bytes);
3331 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3332
3333 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3334 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3335 current_itr = low_latency;
3336
3337 switch (current_itr) {
3338 /* counts and packets in update_itr are dependent on these numbers */
3339 case lowest_latency:
3340 new_itr = 56; /* aka 70,000 ints/sec */
3341 break;
3342 case low_latency:
3343 new_itr = 196; /* aka 20,000 ints/sec */
3344 break;
3345 case bulk_latency:
3346 new_itr = 980; /* aka 4,000 ints/sec */
3347 break;
3348 default:
3349 break;
3350 }
3351
3352 set_itr_now:
3353 adapter->rx_ring->total_bytes = 0;
3354 adapter->rx_ring->total_packets = 0;
3355 adapter->tx_ring->total_bytes = 0;
3356 adapter->tx_ring->total_packets = 0;
3357
3358 if (new_itr != q_vector->itr_val) {
3359 /* this attempts to bias the interrupt rate towards Bulk
3360 * by adding intermediate steps when interrupt rate is
3361 * increasing */
3362 new_itr = new_itr > q_vector->itr_val ?
3363 max((new_itr * q_vector->itr_val) /
3364 (new_itr + (q_vector->itr_val >> 2)),
3365 new_itr) :
3366 new_itr;
3367 /* Don't write the value here; it resets the adapter's
3368 * internal timer, and causes us to delay far longer than
3369 * we should between interrupts. Instead, we write the ITR
3370 * value at the beginning of the next interrupt so the timing
3371 * ends up being correct.
3372 */
3373 q_vector->itr_val = new_itr;
3374 q_vector->set_itr = 1;
3375 }
3376
3377 return;
3378 }
3379
3380 #define IGB_TX_FLAGS_CSUM 0x00000001
3381 #define IGB_TX_FLAGS_VLAN 0x00000002
3382 #define IGB_TX_FLAGS_TSO 0x00000004
3383 #define IGB_TX_FLAGS_IPV4 0x00000008
3384 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3385 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3386 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3387
3388 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3389 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3390 {
3391 struct e1000_adv_tx_context_desc *context_desc;
3392 unsigned int i;
3393 int err;
3394 struct igb_buffer *buffer_info;
3395 u32 info = 0, tu_cmd = 0;
3396 u32 mss_l4len_idx, l4len;
3397 *hdr_len = 0;
3398
3399 if (skb_header_cloned(skb)) {
3400 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3401 if (err)
3402 return err;
3403 }
3404
3405 l4len = tcp_hdrlen(skb);
3406 *hdr_len += l4len;
3407
3408 if (skb->protocol == htons(ETH_P_IP)) {
3409 struct iphdr *iph = ip_hdr(skb);
3410 iph->tot_len = 0;
3411 iph->check = 0;
3412 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3413 iph->daddr, 0,
3414 IPPROTO_TCP,
3415 0);
3416 } else if (skb_is_gso_v6(skb)) {
3417 ipv6_hdr(skb)->payload_len = 0;
3418 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3419 &ipv6_hdr(skb)->daddr,
3420 0, IPPROTO_TCP, 0);
3421 }
3422
3423 i = tx_ring->next_to_use;
3424
3425 buffer_info = &tx_ring->buffer_info[i];
3426 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3427 /* VLAN MACLEN IPLEN */
3428 if (tx_flags & IGB_TX_FLAGS_VLAN)
3429 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3430 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3431 *hdr_len += skb_network_offset(skb);
3432 info |= skb_network_header_len(skb);
3433 *hdr_len += skb_network_header_len(skb);
3434 context_desc->vlan_macip_lens = cpu_to_le32(info);
3435
3436 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3437 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3438
3439 if (skb->protocol == htons(ETH_P_IP))
3440 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3441 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3442
3443 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3444
3445 /* MSS L4LEN IDX */
3446 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3447 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3448
3449 /* For 82575, context index must be unique per ring. */
3450 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3451 mss_l4len_idx |= tx_ring->reg_idx << 4;
3452
3453 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3454 context_desc->seqnum_seed = 0;
3455
3456 buffer_info->time_stamp = jiffies;
3457 buffer_info->next_to_watch = i;
3458 buffer_info->dma = 0;
3459 i++;
3460 if (i == tx_ring->count)
3461 i = 0;
3462
3463 tx_ring->next_to_use = i;
3464
3465 return true;
3466 }
3467
3468 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3469 struct sk_buff *skb, u32 tx_flags)
3470 {
3471 struct e1000_adv_tx_context_desc *context_desc;
3472 struct pci_dev *pdev = tx_ring->pdev;
3473 struct igb_buffer *buffer_info;
3474 u32 info = 0, tu_cmd = 0;
3475 unsigned int i;
3476
3477 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3478 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3479 i = tx_ring->next_to_use;
3480 buffer_info = &tx_ring->buffer_info[i];
3481 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3482
3483 if (tx_flags & IGB_TX_FLAGS_VLAN)
3484 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3485
3486 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3487 if (skb->ip_summed == CHECKSUM_PARTIAL)
3488 info |= skb_network_header_len(skb);
3489
3490 context_desc->vlan_macip_lens = cpu_to_le32(info);
3491
3492 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3493
3494 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3495 __be16 protocol;
3496
3497 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3498 const struct vlan_ethhdr *vhdr =
3499 (const struct vlan_ethhdr*)skb->data;
3500
3501 protocol = vhdr->h_vlan_encapsulated_proto;
3502 } else {
3503 protocol = skb->protocol;
3504 }
3505
3506 switch (protocol) {
3507 case cpu_to_be16(ETH_P_IP):
3508 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3509 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3510 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3511 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3512 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3513 break;
3514 case cpu_to_be16(ETH_P_IPV6):
3515 /* XXX what about other V6 headers?? */
3516 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3517 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3518 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3519 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3520 break;
3521 default:
3522 if (unlikely(net_ratelimit()))
3523 dev_warn(&pdev->dev,
3524 "partial checksum but proto=%x!\n",
3525 skb->protocol);
3526 break;
3527 }
3528 }
3529
3530 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3531 context_desc->seqnum_seed = 0;
3532 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3533 context_desc->mss_l4len_idx =
3534 cpu_to_le32(tx_ring->reg_idx << 4);
3535
3536 buffer_info->time_stamp = jiffies;
3537 buffer_info->next_to_watch = i;
3538 buffer_info->dma = 0;
3539
3540 i++;
3541 if (i == tx_ring->count)
3542 i = 0;
3543 tx_ring->next_to_use = i;
3544
3545 return true;
3546 }
3547 return false;
3548 }
3549
3550 #define IGB_MAX_TXD_PWR 16
3551 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3552
3553 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3554 unsigned int first)
3555 {
3556 struct igb_buffer *buffer_info;
3557 struct pci_dev *pdev = tx_ring->pdev;
3558 unsigned int len = skb_headlen(skb);
3559 unsigned int count = 0, i;
3560 unsigned int f;
3561
3562 i = tx_ring->next_to_use;
3563
3564 buffer_info = &tx_ring->buffer_info[i];
3565 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3566 buffer_info->length = len;
3567 /* set time_stamp *before* dma to help avoid a possible race */
3568 buffer_info->time_stamp = jiffies;
3569 buffer_info->next_to_watch = i;
3570 buffer_info->dma = pci_map_single(pdev, skb->data, len,
3571 PCI_DMA_TODEVICE);
3572 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3573 goto dma_error;
3574
3575 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3576 struct skb_frag_struct *frag;
3577
3578 count++;
3579 i++;
3580 if (i == tx_ring->count)
3581 i = 0;
3582
3583 frag = &skb_shinfo(skb)->frags[f];
3584 len = frag->size;
3585
3586 buffer_info = &tx_ring->buffer_info[i];
3587 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3588 buffer_info->length = len;
3589 buffer_info->time_stamp = jiffies;
3590 buffer_info->next_to_watch = i;
3591 buffer_info->mapped_as_page = true;
3592 buffer_info->dma = pci_map_page(pdev,
3593 frag->page,
3594 frag->page_offset,
3595 len,
3596 PCI_DMA_TODEVICE);
3597 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3598 goto dma_error;
3599
3600 }
3601
3602 tx_ring->buffer_info[i].skb = skb;
3603 tx_ring->buffer_info[first].next_to_watch = i;
3604
3605 return ++count;
3606
3607 dma_error:
3608 dev_err(&pdev->dev, "TX DMA map failed\n");
3609
3610 /* clear timestamp and dma mappings for failed buffer_info mapping */
3611 buffer_info->dma = 0;
3612 buffer_info->time_stamp = 0;
3613 buffer_info->length = 0;
3614 buffer_info->next_to_watch = 0;
3615 buffer_info->mapped_as_page = false;
3616 count--;
3617
3618 /* clear timestamp and dma mappings for remaining portion of packet */
3619 while (count >= 0) {
3620 count--;
3621 i--;
3622 if (i < 0)
3623 i += tx_ring->count;
3624 buffer_info = &tx_ring->buffer_info[i];
3625 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3626 }
3627
3628 return 0;
3629 }
3630
3631 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3632 int tx_flags, int count, u32 paylen,
3633 u8 hdr_len)
3634 {
3635 union e1000_adv_tx_desc *tx_desc;
3636 struct igb_buffer *buffer_info;
3637 u32 olinfo_status = 0, cmd_type_len;
3638 unsigned int i = tx_ring->next_to_use;
3639
3640 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3641 E1000_ADVTXD_DCMD_DEXT);
3642
3643 if (tx_flags & IGB_TX_FLAGS_VLAN)
3644 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3645
3646 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3647 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3648
3649 if (tx_flags & IGB_TX_FLAGS_TSO) {
3650 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3651
3652 /* insert tcp checksum */
3653 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3654
3655 /* insert ip checksum */
3656 if (tx_flags & IGB_TX_FLAGS_IPV4)
3657 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3658
3659 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3660 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3661 }
3662
3663 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3664 (tx_flags & (IGB_TX_FLAGS_CSUM |
3665 IGB_TX_FLAGS_TSO |
3666 IGB_TX_FLAGS_VLAN)))
3667 olinfo_status |= tx_ring->reg_idx << 4;
3668
3669 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3670
3671 do {
3672 buffer_info = &tx_ring->buffer_info[i];
3673 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3674 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3675 tx_desc->read.cmd_type_len =
3676 cpu_to_le32(cmd_type_len | buffer_info->length);
3677 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3678 count--;
3679 i++;
3680 if (i == tx_ring->count)
3681 i = 0;
3682 } while (count > 0);
3683
3684 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3685 /* Force memory writes to complete before letting h/w
3686 * know there are new descriptors to fetch. (Only
3687 * applicable for weak-ordered memory model archs,
3688 * such as IA-64). */
3689 wmb();
3690
3691 tx_ring->next_to_use = i;
3692 writel(i, tx_ring->tail);
3693 /* we need this if more than one processor can write to our tail
3694 * at a time, it syncronizes IO on IA64/Altix systems */
3695 mmiowb();
3696 }
3697
3698 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3699 {
3700 struct net_device *netdev = tx_ring->netdev;
3701
3702 netif_stop_subqueue(netdev, tx_ring->queue_index);
3703
3704 /* Herbert's original patch had:
3705 * smp_mb__after_netif_stop_queue();
3706 * but since that doesn't exist yet, just open code it. */
3707 smp_mb();
3708
3709 /* We need to check again in a case another CPU has just
3710 * made room available. */
3711 if (igb_desc_unused(tx_ring) < size)
3712 return -EBUSY;
3713
3714 /* A reprieve! */
3715 netif_wake_subqueue(netdev, tx_ring->queue_index);
3716 tx_ring->tx_stats.restart_queue++;
3717 return 0;
3718 }
3719
3720 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3721 {
3722 if (igb_desc_unused(tx_ring) >= size)
3723 return 0;
3724 return __igb_maybe_stop_tx(tx_ring, size);
3725 }
3726
3727 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3728 struct igb_ring *tx_ring)
3729 {
3730 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3731 unsigned int first;
3732 unsigned int tx_flags = 0;
3733 u8 hdr_len = 0;
3734 int tso = 0, count;
3735 union skb_shared_tx *shtx = skb_tx(skb);
3736
3737 /* need: 1 descriptor per page,
3738 * + 2 desc gap to keep tail from touching head,
3739 * + 1 desc for skb->data,
3740 * + 1 desc for context descriptor,
3741 * otherwise try next time */
3742 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3743 /* this is a hard error */
3744 return NETDEV_TX_BUSY;
3745 }
3746
3747 if (unlikely(shtx->hardware)) {
3748 shtx->in_progress = 1;
3749 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3750 }
3751
3752 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3753 tx_flags |= IGB_TX_FLAGS_VLAN;
3754 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3755 }
3756
3757 if (skb->protocol == htons(ETH_P_IP))
3758 tx_flags |= IGB_TX_FLAGS_IPV4;
3759
3760 first = tx_ring->next_to_use;
3761 if (skb_is_gso(skb)) {
3762 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3763
3764 if (tso < 0) {
3765 dev_kfree_skb_any(skb);
3766 return NETDEV_TX_OK;
3767 }
3768 }
3769
3770 if (tso)
3771 tx_flags |= IGB_TX_FLAGS_TSO;
3772 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3773 (skb->ip_summed == CHECKSUM_PARTIAL))
3774 tx_flags |= IGB_TX_FLAGS_CSUM;
3775
3776 /*
3777 * count reflects descriptors mapped, if 0 or less then mapping error
3778 * has occured and we need to rewind the descriptor queue
3779 */
3780 count = igb_tx_map_adv(tx_ring, skb, first);
3781 if (!count) {
3782 dev_kfree_skb_any(skb);
3783 tx_ring->buffer_info[first].time_stamp = 0;
3784 tx_ring->next_to_use = first;
3785 return NETDEV_TX_OK;
3786 }
3787
3788 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3789
3790 /* Make sure there is space in the ring for the next send. */
3791 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3792
3793 return NETDEV_TX_OK;
3794 }
3795
3796 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3797 struct net_device *netdev)
3798 {
3799 struct igb_adapter *adapter = netdev_priv(netdev);
3800 struct igb_ring *tx_ring;
3801 int r_idx = 0;
3802
3803 if (test_bit(__IGB_DOWN, &adapter->state)) {
3804 dev_kfree_skb_any(skb);
3805 return NETDEV_TX_OK;
3806 }
3807
3808 if (skb->len <= 0) {
3809 dev_kfree_skb_any(skb);
3810 return NETDEV_TX_OK;
3811 }
3812
3813 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3814 tx_ring = adapter->multi_tx_table[r_idx];
3815
3816 /* This goes back to the question of how to logically map a tx queue
3817 * to a flow. Right now, performance is impacted slightly negatively
3818 * if using multiple tx queues. If the stack breaks away from a
3819 * single qdisc implementation, we can look at this again. */
3820 return igb_xmit_frame_ring_adv(skb, tx_ring);
3821 }
3822
3823 /**
3824 * igb_tx_timeout - Respond to a Tx Hang
3825 * @netdev: network interface device structure
3826 **/
3827 static void igb_tx_timeout(struct net_device *netdev)
3828 {
3829 struct igb_adapter *adapter = netdev_priv(netdev);
3830 struct e1000_hw *hw = &adapter->hw;
3831
3832 /* Do the reset outside of interrupt context */
3833 adapter->tx_timeout_count++;
3834
3835 if (hw->mac.type == e1000_82580)
3836 hw->dev_spec._82575.global_device_reset = true;
3837
3838 schedule_work(&adapter->reset_task);
3839 wr32(E1000_EICS,
3840 (adapter->eims_enable_mask & ~adapter->eims_other));
3841 }
3842
3843 static void igb_reset_task(struct work_struct *work)
3844 {
3845 struct igb_adapter *adapter;
3846 adapter = container_of(work, struct igb_adapter, reset_task);
3847
3848 igb_reinit_locked(adapter);
3849 }
3850
3851 /**
3852 * igb_get_stats - Get System Network Statistics
3853 * @netdev: network interface device structure
3854 *
3855 * Returns the address of the device statistics structure.
3856 * The statistics are actually updated from the timer callback.
3857 **/
3858 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3859 {
3860 /* only return the current stats */
3861 return &netdev->stats;
3862 }
3863
3864 /**
3865 * igb_change_mtu - Change the Maximum Transfer Unit
3866 * @netdev: network interface device structure
3867 * @new_mtu: new value for maximum frame size
3868 *
3869 * Returns 0 on success, negative on failure
3870 **/
3871 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3872 {
3873 struct igb_adapter *adapter = netdev_priv(netdev);
3874 struct pci_dev *pdev = adapter->pdev;
3875 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3876 u32 rx_buffer_len, i;
3877
3878 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3879 dev_err(&pdev->dev, "Invalid MTU setting\n");
3880 return -EINVAL;
3881 }
3882
3883 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3884 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3885 return -EINVAL;
3886 }
3887
3888 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3889 msleep(1);
3890
3891 /* igb_down has a dependency on max_frame_size */
3892 adapter->max_frame_size = max_frame;
3893
3894 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3895 * means we reserve 2 more, this pushes us to allocate from the next
3896 * larger slab size.
3897 * i.e. RXBUFFER_2048 --> size-4096 slab
3898 */
3899
3900 if (max_frame <= IGB_RXBUFFER_1024)
3901 rx_buffer_len = IGB_RXBUFFER_1024;
3902 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3903 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3904 else
3905 rx_buffer_len = IGB_RXBUFFER_128;
3906
3907 if (netif_running(netdev))
3908 igb_down(adapter);
3909
3910 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3911 netdev->mtu, new_mtu);
3912 netdev->mtu = new_mtu;
3913
3914 for (i = 0; i < adapter->num_rx_queues; i++)
3915 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3916
3917 if (netif_running(netdev))
3918 igb_up(adapter);
3919 else
3920 igb_reset(adapter);
3921
3922 clear_bit(__IGB_RESETTING, &adapter->state);
3923
3924 return 0;
3925 }
3926
3927 /**
3928 * igb_update_stats - Update the board statistics counters
3929 * @adapter: board private structure
3930 **/
3931
3932 void igb_update_stats(struct igb_adapter *adapter)
3933 {
3934 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
3935 struct e1000_hw *hw = &adapter->hw;
3936 struct pci_dev *pdev = adapter->pdev;
3937 u32 rnbc;
3938 u16 phy_tmp;
3939 int i;
3940 u64 bytes, packets;
3941
3942 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3943
3944 /*
3945 * Prevent stats update while adapter is being reset, or if the pci
3946 * connection is down.
3947 */
3948 if (adapter->link_speed == 0)
3949 return;
3950 if (pci_channel_offline(pdev))
3951 return;
3952
3953 bytes = 0;
3954 packets = 0;
3955 for (i = 0; i < adapter->num_rx_queues; i++) {
3956 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3957 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3958 net_stats->rx_fifo_errors += rqdpc_tmp;
3959 bytes += adapter->rx_ring[i].rx_stats.bytes;
3960 packets += adapter->rx_ring[i].rx_stats.packets;
3961 }
3962
3963 net_stats->rx_bytes = bytes;
3964 net_stats->rx_packets = packets;
3965
3966 bytes = 0;
3967 packets = 0;
3968 for (i = 0; i < adapter->num_tx_queues; i++) {
3969 bytes += adapter->tx_ring[i].tx_stats.bytes;
3970 packets += adapter->tx_ring[i].tx_stats.packets;
3971 }
3972 net_stats->tx_bytes = bytes;
3973 net_stats->tx_packets = packets;
3974
3975 /* read stats registers */
3976 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3977 adapter->stats.gprc += rd32(E1000_GPRC);
3978 adapter->stats.gorc += rd32(E1000_GORCL);
3979 rd32(E1000_GORCH); /* clear GORCL */
3980 adapter->stats.bprc += rd32(E1000_BPRC);
3981 adapter->stats.mprc += rd32(E1000_MPRC);
3982 adapter->stats.roc += rd32(E1000_ROC);
3983
3984 adapter->stats.prc64 += rd32(E1000_PRC64);
3985 adapter->stats.prc127 += rd32(E1000_PRC127);
3986 adapter->stats.prc255 += rd32(E1000_PRC255);
3987 adapter->stats.prc511 += rd32(E1000_PRC511);
3988 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3989 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3990 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3991 adapter->stats.sec += rd32(E1000_SEC);
3992
3993 adapter->stats.mpc += rd32(E1000_MPC);
3994 adapter->stats.scc += rd32(E1000_SCC);
3995 adapter->stats.ecol += rd32(E1000_ECOL);
3996 adapter->stats.mcc += rd32(E1000_MCC);
3997 adapter->stats.latecol += rd32(E1000_LATECOL);
3998 adapter->stats.dc += rd32(E1000_DC);
3999 adapter->stats.rlec += rd32(E1000_RLEC);
4000 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4001 adapter->stats.xontxc += rd32(E1000_XONTXC);
4002 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4003 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4004 adapter->stats.fcruc += rd32(E1000_FCRUC);
4005 adapter->stats.gptc += rd32(E1000_GPTC);
4006 adapter->stats.gotc += rd32(E1000_GOTCL);
4007 rd32(E1000_GOTCH); /* clear GOTCL */
4008 rnbc = rd32(E1000_RNBC);
4009 adapter->stats.rnbc += rnbc;
4010 net_stats->rx_fifo_errors += rnbc;
4011 adapter->stats.ruc += rd32(E1000_RUC);
4012 adapter->stats.rfc += rd32(E1000_RFC);
4013 adapter->stats.rjc += rd32(E1000_RJC);
4014 adapter->stats.tor += rd32(E1000_TORH);
4015 adapter->stats.tot += rd32(E1000_TOTH);
4016 adapter->stats.tpr += rd32(E1000_TPR);
4017
4018 adapter->stats.ptc64 += rd32(E1000_PTC64);
4019 adapter->stats.ptc127 += rd32(E1000_PTC127);
4020 adapter->stats.ptc255 += rd32(E1000_PTC255);
4021 adapter->stats.ptc511 += rd32(E1000_PTC511);
4022 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4023 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4024
4025 adapter->stats.mptc += rd32(E1000_MPTC);
4026 adapter->stats.bptc += rd32(E1000_BPTC);
4027
4028 /* used for adaptive IFS */
4029 hw->mac.tx_packet_delta = rd32(E1000_TPT);
4030 adapter->stats.tpt += hw->mac.tx_packet_delta;
4031 hw->mac.collision_delta = rd32(E1000_COLC);
4032 adapter->stats.colc += hw->mac.collision_delta;
4033
4034 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4035 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4036 adapter->stats.tncrs += rd32(E1000_TNCRS);
4037 adapter->stats.tsctc += rd32(E1000_TSCTC);
4038 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4039
4040 adapter->stats.iac += rd32(E1000_IAC);
4041 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4042 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4043 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4044 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4045 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4046 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4047 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4048 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4049
4050 /* Fill out the OS statistics structure */
4051 net_stats->multicast = adapter->stats.mprc;
4052 net_stats->collisions = adapter->stats.colc;
4053
4054 /* Rx Errors */
4055
4056 /* RLEC on some newer hardware can be incorrect so build
4057 * our own version based on RUC and ROC */
4058 net_stats->rx_errors = adapter->stats.rxerrc +
4059 adapter->stats.crcerrs + adapter->stats.algnerrc +
4060 adapter->stats.ruc + adapter->stats.roc +
4061 adapter->stats.cexterr;
4062 net_stats->rx_length_errors = adapter->stats.ruc +
4063 adapter->stats.roc;
4064 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4065 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4066 net_stats->rx_missed_errors = adapter->stats.mpc;
4067
4068 /* Tx Errors */
4069 net_stats->tx_errors = adapter->stats.ecol +
4070 adapter->stats.latecol;
4071 net_stats->tx_aborted_errors = adapter->stats.ecol;
4072 net_stats->tx_window_errors = adapter->stats.latecol;
4073 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4074
4075 /* Tx Dropped needs to be maintained elsewhere */
4076
4077 /* Phy Stats */
4078 if (hw->phy.media_type == e1000_media_type_copper) {
4079 if ((adapter->link_speed == SPEED_1000) &&
4080 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4081 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4082 adapter->phy_stats.idle_errors += phy_tmp;
4083 }
4084 }
4085
4086 /* Management Stats */
4087 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4088 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4089 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4090 }
4091
4092 static irqreturn_t igb_msix_other(int irq, void *data)
4093 {
4094 struct igb_adapter *adapter = data;
4095 struct e1000_hw *hw = &adapter->hw;
4096 u32 icr = rd32(E1000_ICR);
4097 /* reading ICR causes bit 31 of EICR to be cleared */
4098
4099 if (icr & E1000_ICR_DRSTA)
4100 schedule_work(&adapter->reset_task);
4101
4102 if (icr & E1000_ICR_DOUTSYNC) {
4103 /* HW is reporting DMA is out of sync */
4104 adapter->stats.doosync++;
4105 }
4106
4107 /* Check for a mailbox event */
4108 if (icr & E1000_ICR_VMMB)
4109 igb_msg_task(adapter);
4110
4111 if (icr & E1000_ICR_LSC) {
4112 hw->mac.get_link_status = 1;
4113 /* guard against interrupt when we're going down */
4114 if (!test_bit(__IGB_DOWN, &adapter->state))
4115 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4116 }
4117
4118 if (adapter->vfs_allocated_count)
4119 wr32(E1000_IMS, E1000_IMS_LSC |
4120 E1000_IMS_VMMB |
4121 E1000_IMS_DOUTSYNC);
4122 else
4123 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4124 wr32(E1000_EIMS, adapter->eims_other);
4125
4126 return IRQ_HANDLED;
4127 }
4128
4129 static void igb_write_itr(struct igb_q_vector *q_vector)
4130 {
4131 u32 itr_val = q_vector->itr_val & 0x7FFC;
4132
4133 if (!q_vector->set_itr)
4134 return;
4135
4136 if (!itr_val)
4137 itr_val = 0x4;
4138
4139 if (q_vector->itr_shift)
4140 itr_val |= itr_val << q_vector->itr_shift;
4141 else
4142 itr_val |= 0x8000000;
4143
4144 writel(itr_val, q_vector->itr_register);
4145 q_vector->set_itr = 0;
4146 }
4147
4148 static irqreturn_t igb_msix_ring(int irq, void *data)
4149 {
4150 struct igb_q_vector *q_vector = data;
4151
4152 /* Write the ITR value calculated from the previous interrupt. */
4153 igb_write_itr(q_vector);
4154
4155 napi_schedule(&q_vector->napi);
4156
4157 return IRQ_HANDLED;
4158 }
4159
4160 #ifdef CONFIG_IGB_DCA
4161 static void igb_update_dca(struct igb_q_vector *q_vector)
4162 {
4163 struct igb_adapter *adapter = q_vector->adapter;
4164 struct e1000_hw *hw = &adapter->hw;
4165 int cpu = get_cpu();
4166
4167 if (q_vector->cpu == cpu)
4168 goto out_no_update;
4169
4170 if (q_vector->tx_ring) {
4171 int q = q_vector->tx_ring->reg_idx;
4172 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4173 if (hw->mac.type == e1000_82575) {
4174 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4175 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4176 } else {
4177 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4178 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4179 E1000_DCA_TXCTRL_CPUID_SHIFT;
4180 }
4181 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4182 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4183 }
4184 if (q_vector->rx_ring) {
4185 int q = q_vector->rx_ring->reg_idx;
4186 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4187 if (hw->mac.type == e1000_82575) {
4188 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4189 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4190 } else {
4191 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4192 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4193 E1000_DCA_RXCTRL_CPUID_SHIFT;
4194 }
4195 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4196 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4197 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4198 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4199 }
4200 q_vector->cpu = cpu;
4201 out_no_update:
4202 put_cpu();
4203 }
4204
4205 static void igb_setup_dca(struct igb_adapter *adapter)
4206 {
4207 struct e1000_hw *hw = &adapter->hw;
4208 int i;
4209
4210 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4211 return;
4212
4213 /* Always use CB2 mode, difference is masked in the CB driver. */
4214 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4215
4216 for (i = 0; i < adapter->num_q_vectors; i++) {
4217 struct igb_q_vector *q_vector = adapter->q_vector[i];
4218 q_vector->cpu = -1;
4219 igb_update_dca(q_vector);
4220 }
4221 }
4222
4223 static int __igb_notify_dca(struct device *dev, void *data)
4224 {
4225 struct net_device *netdev = dev_get_drvdata(dev);
4226 struct igb_adapter *adapter = netdev_priv(netdev);
4227 struct pci_dev *pdev = adapter->pdev;
4228 struct e1000_hw *hw = &adapter->hw;
4229 unsigned long event = *(unsigned long *)data;
4230
4231 switch (event) {
4232 case DCA_PROVIDER_ADD:
4233 /* if already enabled, don't do it again */
4234 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4235 break;
4236 if (dca_add_requester(dev) == 0) {
4237 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4238 dev_info(&pdev->dev, "DCA enabled\n");
4239 igb_setup_dca(adapter);
4240 break;
4241 }
4242 /* Fall Through since DCA is disabled. */
4243 case DCA_PROVIDER_REMOVE:
4244 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4245 /* without this a class_device is left
4246 * hanging around in the sysfs model */
4247 dca_remove_requester(dev);
4248 dev_info(&pdev->dev, "DCA disabled\n");
4249 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4250 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4251 }
4252 break;
4253 }
4254
4255 return 0;
4256 }
4257
4258 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4259 void *p)
4260 {
4261 int ret_val;
4262
4263 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4264 __igb_notify_dca);
4265
4266 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4267 }
4268 #endif /* CONFIG_IGB_DCA */
4269
4270 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4271 {
4272 struct e1000_hw *hw = &adapter->hw;
4273 u32 ping;
4274 int i;
4275
4276 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4277 ping = E1000_PF_CONTROL_MSG;
4278 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4279 ping |= E1000_VT_MSGTYPE_CTS;
4280 igb_write_mbx(hw, &ping, 1, i);
4281 }
4282 }
4283
4284 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4285 {
4286 struct e1000_hw *hw = &adapter->hw;
4287 u32 vmolr = rd32(E1000_VMOLR(vf));
4288 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4289
4290 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4291 IGB_VF_FLAG_MULTI_PROMISC);
4292 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4293
4294 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4295 vmolr |= E1000_VMOLR_MPME;
4296 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4297 } else {
4298 /*
4299 * if we have hashes and we are clearing a multicast promisc
4300 * flag we need to write the hashes to the MTA as this step
4301 * was previously skipped
4302 */
4303 if (vf_data->num_vf_mc_hashes > 30) {
4304 vmolr |= E1000_VMOLR_MPME;
4305 } else if (vf_data->num_vf_mc_hashes) {
4306 int j;
4307 vmolr |= E1000_VMOLR_ROMPE;
4308 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4309 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4310 }
4311 }
4312
4313 wr32(E1000_VMOLR(vf), vmolr);
4314
4315 /* there are flags left unprocessed, likely not supported */
4316 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4317 return -EINVAL;
4318
4319 return 0;
4320
4321 }
4322
4323 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4324 u32 *msgbuf, u32 vf)
4325 {
4326 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4327 u16 *hash_list = (u16 *)&msgbuf[1];
4328 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4329 int i;
4330
4331 /* salt away the number of multicast addresses assigned
4332 * to this VF for later use to restore when the PF multi cast
4333 * list changes
4334 */
4335 vf_data->num_vf_mc_hashes = n;
4336
4337 /* only up to 30 hash values supported */
4338 if (n > 30)
4339 n = 30;
4340
4341 /* store the hashes for later use */
4342 for (i = 0; i < n; i++)
4343 vf_data->vf_mc_hashes[i] = hash_list[i];
4344
4345 /* Flush and reset the mta with the new values */
4346 igb_set_rx_mode(adapter->netdev);
4347
4348 return 0;
4349 }
4350
4351 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4352 {
4353 struct e1000_hw *hw = &adapter->hw;
4354 struct vf_data_storage *vf_data;
4355 int i, j;
4356
4357 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4358 u32 vmolr = rd32(E1000_VMOLR(i));
4359 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4360
4361 vf_data = &adapter->vf_data[i];
4362
4363 if ((vf_data->num_vf_mc_hashes > 30) ||
4364 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4365 vmolr |= E1000_VMOLR_MPME;
4366 } else if (vf_data->num_vf_mc_hashes) {
4367 vmolr |= E1000_VMOLR_ROMPE;
4368 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4369 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4370 }
4371 wr32(E1000_VMOLR(i), vmolr);
4372 }
4373 }
4374
4375 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4376 {
4377 struct e1000_hw *hw = &adapter->hw;
4378 u32 pool_mask, reg, vid;
4379 int i;
4380
4381 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4382
4383 /* Find the vlan filter for this id */
4384 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4385 reg = rd32(E1000_VLVF(i));
4386
4387 /* remove the vf from the pool */
4388 reg &= ~pool_mask;
4389
4390 /* if pool is empty then remove entry from vfta */
4391 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4392 (reg & E1000_VLVF_VLANID_ENABLE)) {
4393 reg = 0;
4394 vid = reg & E1000_VLVF_VLANID_MASK;
4395 igb_vfta_set(hw, vid, false);
4396 }
4397
4398 wr32(E1000_VLVF(i), reg);
4399 }
4400
4401 adapter->vf_data[vf].vlans_enabled = 0;
4402 }
4403
4404 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4405 {
4406 struct e1000_hw *hw = &adapter->hw;
4407 u32 reg, i;
4408
4409 /* The vlvf table only exists on 82576 hardware and newer */
4410 if (hw->mac.type < e1000_82576)
4411 return -1;
4412
4413 /* we only need to do this if VMDq is enabled */
4414 if (!adapter->vfs_allocated_count)
4415 return -1;
4416
4417 /* Find the vlan filter for this id */
4418 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4419 reg = rd32(E1000_VLVF(i));
4420 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4421 vid == (reg & E1000_VLVF_VLANID_MASK))
4422 break;
4423 }
4424
4425 if (add) {
4426 if (i == E1000_VLVF_ARRAY_SIZE) {
4427 /* Did not find a matching VLAN ID entry that was
4428 * enabled. Search for a free filter entry, i.e.
4429 * one without the enable bit set
4430 */
4431 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4432 reg = rd32(E1000_VLVF(i));
4433 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4434 break;
4435 }
4436 }
4437 if (i < E1000_VLVF_ARRAY_SIZE) {
4438 /* Found an enabled/available entry */
4439 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4440
4441 /* if !enabled we need to set this up in vfta */
4442 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4443 /* add VID to filter table */
4444 igb_vfta_set(hw, vid, true);
4445 reg |= E1000_VLVF_VLANID_ENABLE;
4446 }
4447 reg &= ~E1000_VLVF_VLANID_MASK;
4448 reg |= vid;
4449 wr32(E1000_VLVF(i), reg);
4450
4451 /* do not modify RLPML for PF devices */
4452 if (vf >= adapter->vfs_allocated_count)
4453 return 0;
4454
4455 if (!adapter->vf_data[vf].vlans_enabled) {
4456 u32 size;
4457 reg = rd32(E1000_VMOLR(vf));
4458 size = reg & E1000_VMOLR_RLPML_MASK;
4459 size += 4;
4460 reg &= ~E1000_VMOLR_RLPML_MASK;
4461 reg |= size;
4462 wr32(E1000_VMOLR(vf), reg);
4463 }
4464
4465 adapter->vf_data[vf].vlans_enabled++;
4466 return 0;
4467 }
4468 } else {
4469 if (i < E1000_VLVF_ARRAY_SIZE) {
4470 /* remove vf from the pool */
4471 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4472 /* if pool is empty then remove entry from vfta */
4473 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4474 reg = 0;
4475 igb_vfta_set(hw, vid, false);
4476 }
4477 wr32(E1000_VLVF(i), reg);
4478
4479 /* do not modify RLPML for PF devices */
4480 if (vf >= adapter->vfs_allocated_count)
4481 return 0;
4482
4483 adapter->vf_data[vf].vlans_enabled--;
4484 if (!adapter->vf_data[vf].vlans_enabled) {
4485 u32 size;
4486 reg = rd32(E1000_VMOLR(vf));
4487 size = reg & E1000_VMOLR_RLPML_MASK;
4488 size -= 4;
4489 reg &= ~E1000_VMOLR_RLPML_MASK;
4490 reg |= size;
4491 wr32(E1000_VMOLR(vf), reg);
4492 }
4493 return 0;
4494 }
4495 }
4496 return -1;
4497 }
4498
4499 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4500 {
4501 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4502 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4503
4504 return igb_vlvf_set(adapter, vid, add, vf);
4505 }
4506
4507 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4508 {
4509 /* clear all flags */
4510 adapter->vf_data[vf].flags = 0;
4511 adapter->vf_data[vf].last_nack = jiffies;
4512
4513 /* reset offloads to defaults */
4514 igb_set_vmolr(adapter, vf);
4515
4516 /* reset vlans for device */
4517 igb_clear_vf_vfta(adapter, vf);
4518
4519 /* reset multicast table array for vf */
4520 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4521
4522 /* Flush and reset the mta with the new values */
4523 igb_set_rx_mode(adapter->netdev);
4524 }
4525
4526 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4527 {
4528 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4529
4530 /* generate a new mac address as we were hotplug removed/added */
4531 random_ether_addr(vf_mac);
4532
4533 /* process remaining reset events */
4534 igb_vf_reset(adapter, vf);
4535 }
4536
4537 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4538 {
4539 struct e1000_hw *hw = &adapter->hw;
4540 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4541 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4542 u32 reg, msgbuf[3];
4543 u8 *addr = (u8 *)(&msgbuf[1]);
4544
4545 /* process all the same items cleared in a function level reset */
4546 igb_vf_reset(adapter, vf);
4547
4548 /* set vf mac address */
4549 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4550
4551 /* enable transmit and receive for vf */
4552 reg = rd32(E1000_VFTE);
4553 wr32(E1000_VFTE, reg | (1 << vf));
4554 reg = rd32(E1000_VFRE);
4555 wr32(E1000_VFRE, reg | (1 << vf));
4556
4557 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4558
4559 /* reply to reset with ack and vf mac address */
4560 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4561 memcpy(addr, vf_mac, 6);
4562 igb_write_mbx(hw, msgbuf, 3, vf);
4563 }
4564
4565 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4566 {
4567 unsigned char *addr = (char *)&msg[1];
4568 int err = -1;
4569
4570 if (is_valid_ether_addr(addr))
4571 err = igb_set_vf_mac(adapter, vf, addr);
4572
4573 return err;
4574 }
4575
4576 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4577 {
4578 struct e1000_hw *hw = &adapter->hw;
4579 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4580 u32 msg = E1000_VT_MSGTYPE_NACK;
4581
4582 /* if device isn't clear to send it shouldn't be reading either */
4583 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4584 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4585 igb_write_mbx(hw, &msg, 1, vf);
4586 vf_data->last_nack = jiffies;
4587 }
4588 }
4589
4590 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4591 {
4592 struct pci_dev *pdev = adapter->pdev;
4593 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4594 struct e1000_hw *hw = &adapter->hw;
4595 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4596 s32 retval;
4597
4598 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4599
4600 if (retval) {
4601 /* if receive failed revoke VF CTS stats and restart init */
4602 dev_err(&pdev->dev, "Error receiving message from VF\n");
4603 vf_data->flags &= ~IGB_VF_FLAG_CTS;
4604 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4605 return;
4606 goto out;
4607 }
4608
4609 /* this is a message we already processed, do nothing */
4610 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4611 return;
4612
4613 /*
4614 * until the vf completes a reset it should not be
4615 * allowed to start any configuration.
4616 */
4617
4618 if (msgbuf[0] == E1000_VF_RESET) {
4619 igb_vf_reset_msg(adapter, vf);
4620 return;
4621 }
4622
4623 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4624 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4625 return;
4626 retval = -1;
4627 goto out;
4628 }
4629
4630 switch ((msgbuf[0] & 0xFFFF)) {
4631 case E1000_VF_SET_MAC_ADDR:
4632 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4633 break;
4634 case E1000_VF_SET_PROMISC:
4635 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4636 break;
4637 case E1000_VF_SET_MULTICAST:
4638 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4639 break;
4640 case E1000_VF_SET_LPE:
4641 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4642 break;
4643 case E1000_VF_SET_VLAN:
4644 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4645 break;
4646 default:
4647 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4648 retval = -1;
4649 break;
4650 }
4651
4652 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4653 out:
4654 /* notify the VF of the results of what it sent us */
4655 if (retval)
4656 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4657 else
4658 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4659
4660 igb_write_mbx(hw, msgbuf, 1, vf);
4661 }
4662
4663 static void igb_msg_task(struct igb_adapter *adapter)
4664 {
4665 struct e1000_hw *hw = &adapter->hw;
4666 u32 vf;
4667
4668 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4669 /* process any reset requests */
4670 if (!igb_check_for_rst(hw, vf))
4671 igb_vf_reset_event(adapter, vf);
4672
4673 /* process any messages pending */
4674 if (!igb_check_for_msg(hw, vf))
4675 igb_rcv_msg_from_vf(adapter, vf);
4676
4677 /* process any acks */
4678 if (!igb_check_for_ack(hw, vf))
4679 igb_rcv_ack_from_vf(adapter, vf);
4680 }
4681 }
4682
4683 /**
4684 * igb_set_uta - Set unicast filter table address
4685 * @adapter: board private structure
4686 *
4687 * The unicast table address is a register array of 32-bit registers.
4688 * The table is meant to be used in a way similar to how the MTA is used
4689 * however due to certain limitations in the hardware it is necessary to
4690 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4691 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4692 **/
4693 static void igb_set_uta(struct igb_adapter *adapter)
4694 {
4695 struct e1000_hw *hw = &adapter->hw;
4696 int i;
4697
4698 /* The UTA table only exists on 82576 hardware and newer */
4699 if (hw->mac.type < e1000_82576)
4700 return;
4701
4702 /* we only need to do this if VMDq is enabled */
4703 if (!adapter->vfs_allocated_count)
4704 return;
4705
4706 for (i = 0; i < hw->mac.uta_reg_count; i++)
4707 array_wr32(E1000_UTA, i, ~0);
4708 }
4709
4710 /**
4711 * igb_intr_msi - Interrupt Handler
4712 * @irq: interrupt number
4713 * @data: pointer to a network interface device structure
4714 **/
4715 static irqreturn_t igb_intr_msi(int irq, void *data)
4716 {
4717 struct igb_adapter *adapter = data;
4718 struct igb_q_vector *q_vector = adapter->q_vector[0];
4719 struct e1000_hw *hw = &adapter->hw;
4720 /* read ICR disables interrupts using IAM */
4721 u32 icr = rd32(E1000_ICR);
4722
4723 igb_write_itr(q_vector);
4724
4725 if (icr & E1000_ICR_DRSTA)
4726 schedule_work(&adapter->reset_task);
4727
4728 if (icr & E1000_ICR_DOUTSYNC) {
4729 /* HW is reporting DMA is out of sync */
4730 adapter->stats.doosync++;
4731 }
4732
4733 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4734 hw->mac.get_link_status = 1;
4735 if (!test_bit(__IGB_DOWN, &adapter->state))
4736 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4737 }
4738
4739 napi_schedule(&q_vector->napi);
4740
4741 return IRQ_HANDLED;
4742 }
4743
4744 /**
4745 * igb_intr - Legacy Interrupt Handler
4746 * @irq: interrupt number
4747 * @data: pointer to a network interface device structure
4748 **/
4749 static irqreturn_t igb_intr(int irq, void *data)
4750 {
4751 struct igb_adapter *adapter = data;
4752 struct igb_q_vector *q_vector = adapter->q_vector[0];
4753 struct e1000_hw *hw = &adapter->hw;
4754 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4755 * need for the IMC write */
4756 u32 icr = rd32(E1000_ICR);
4757 if (!icr)
4758 return IRQ_NONE; /* Not our interrupt */
4759
4760 igb_write_itr(q_vector);
4761
4762 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4763 * not set, then the adapter didn't send an interrupt */
4764 if (!(icr & E1000_ICR_INT_ASSERTED))
4765 return IRQ_NONE;
4766
4767 if (icr & E1000_ICR_DRSTA)
4768 schedule_work(&adapter->reset_task);
4769
4770 if (icr & E1000_ICR_DOUTSYNC) {
4771 /* HW is reporting DMA is out of sync */
4772 adapter->stats.doosync++;
4773 }
4774
4775 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4776 hw->mac.get_link_status = 1;
4777 /* guard against interrupt when we're going down */
4778 if (!test_bit(__IGB_DOWN, &adapter->state))
4779 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4780 }
4781
4782 napi_schedule(&q_vector->napi);
4783
4784 return IRQ_HANDLED;
4785 }
4786
4787 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4788 {
4789 struct igb_adapter *adapter = q_vector->adapter;
4790 struct e1000_hw *hw = &adapter->hw;
4791
4792 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4793 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4794 if (!adapter->msix_entries)
4795 igb_set_itr(adapter);
4796 else
4797 igb_update_ring_itr(q_vector);
4798 }
4799
4800 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4801 if (adapter->msix_entries)
4802 wr32(E1000_EIMS, q_vector->eims_value);
4803 else
4804 igb_irq_enable(adapter);
4805 }
4806 }
4807
4808 /**
4809 * igb_poll - NAPI Rx polling callback
4810 * @napi: napi polling structure
4811 * @budget: count of how many packets we should handle
4812 **/
4813 static int igb_poll(struct napi_struct *napi, int budget)
4814 {
4815 struct igb_q_vector *q_vector = container_of(napi,
4816 struct igb_q_vector,
4817 napi);
4818 int tx_clean_complete = 1, work_done = 0;
4819
4820 #ifdef CONFIG_IGB_DCA
4821 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4822 igb_update_dca(q_vector);
4823 #endif
4824 if (q_vector->tx_ring)
4825 tx_clean_complete = igb_clean_tx_irq(q_vector);
4826
4827 if (q_vector->rx_ring)
4828 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4829
4830 if (!tx_clean_complete)
4831 work_done = budget;
4832
4833 /* If not enough Rx work done, exit the polling mode */
4834 if (work_done < budget) {
4835 napi_complete(napi);
4836 igb_ring_irq_enable(q_vector);
4837 }
4838
4839 return work_done;
4840 }
4841
4842 /**
4843 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4844 * @adapter: board private structure
4845 * @shhwtstamps: timestamp structure to update
4846 * @regval: unsigned 64bit system time value.
4847 *
4848 * We need to convert the system time value stored in the RX/TXSTMP registers
4849 * into a hwtstamp which can be used by the upper level timestamping functions
4850 */
4851 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4852 struct skb_shared_hwtstamps *shhwtstamps,
4853 u64 regval)
4854 {
4855 u64 ns;
4856
4857 /*
4858 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
4859 * 24 to match clock shift we setup earlier.
4860 */
4861 if (adapter->hw.mac.type == e1000_82580)
4862 regval <<= IGB_82580_TSYNC_SHIFT;
4863
4864 ns = timecounter_cyc2time(&adapter->clock, regval);
4865 timecompare_update(&adapter->compare, ns);
4866 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4867 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4868 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4869 }
4870
4871 /**
4872 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4873 * @q_vector: pointer to q_vector containing needed info
4874 * @skb: packet that was just sent
4875 *
4876 * If we were asked to do hardware stamping and such a time stamp is
4877 * available, then it must have been for this skb here because we only
4878 * allow only one such packet into the queue.
4879 */
4880 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4881 {
4882 struct igb_adapter *adapter = q_vector->adapter;
4883 union skb_shared_tx *shtx = skb_tx(skb);
4884 struct e1000_hw *hw = &adapter->hw;
4885 struct skb_shared_hwtstamps shhwtstamps;
4886 u64 regval;
4887
4888 /* if skb does not support hw timestamp or TX stamp not valid exit */
4889 if (likely(!shtx->hardware) ||
4890 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4891 return;
4892
4893 regval = rd32(E1000_TXSTMPL);
4894 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4895
4896 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4897 skb_tstamp_tx(skb, &shhwtstamps);
4898 }
4899
4900 /**
4901 * igb_clean_tx_irq - Reclaim resources after transmit completes
4902 * @q_vector: pointer to q_vector containing needed info
4903 * returns true if ring is completely cleaned
4904 **/
4905 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4906 {
4907 struct igb_adapter *adapter = q_vector->adapter;
4908 struct igb_ring *tx_ring = q_vector->tx_ring;
4909 struct net_device *netdev = tx_ring->netdev;
4910 struct e1000_hw *hw = &adapter->hw;
4911 struct igb_buffer *buffer_info;
4912 struct sk_buff *skb;
4913 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4914 unsigned int total_bytes = 0, total_packets = 0;
4915 unsigned int i, eop, count = 0;
4916 bool cleaned = false;
4917
4918 i = tx_ring->next_to_clean;
4919 eop = tx_ring->buffer_info[i].next_to_watch;
4920 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4921
4922 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4923 (count < tx_ring->count)) {
4924 for (cleaned = false; !cleaned; count++) {
4925 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4926 buffer_info = &tx_ring->buffer_info[i];
4927 cleaned = (i == eop);
4928 skb = buffer_info->skb;
4929
4930 if (skb) {
4931 unsigned int segs, bytecount;
4932 /* gso_segs is currently only valid for tcp */
4933 segs = skb_shinfo(skb)->gso_segs ?: 1;
4934 /* multiply data chunks by size of headers */
4935 bytecount = ((segs - 1) * skb_headlen(skb)) +
4936 skb->len;
4937 total_packets += segs;
4938 total_bytes += bytecount;
4939
4940 igb_tx_hwtstamp(q_vector, skb);
4941 }
4942
4943 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4944 tx_desc->wb.status = 0;
4945
4946 i++;
4947 if (i == tx_ring->count)
4948 i = 0;
4949 }
4950 eop = tx_ring->buffer_info[i].next_to_watch;
4951 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4952 }
4953
4954 tx_ring->next_to_clean = i;
4955
4956 if (unlikely(count &&
4957 netif_carrier_ok(netdev) &&
4958 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4959 /* Make sure that anybody stopping the queue after this
4960 * sees the new next_to_clean.
4961 */
4962 smp_mb();
4963 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4964 !(test_bit(__IGB_DOWN, &adapter->state))) {
4965 netif_wake_subqueue(netdev, tx_ring->queue_index);
4966 tx_ring->tx_stats.restart_queue++;
4967 }
4968 }
4969
4970 if (tx_ring->detect_tx_hung) {
4971 /* Detect a transmit hang in hardware, this serializes the
4972 * check with the clearing of time_stamp and movement of i */
4973 tx_ring->detect_tx_hung = false;
4974 if (tx_ring->buffer_info[i].time_stamp &&
4975 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4976 (adapter->tx_timeout_factor * HZ)) &&
4977 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
4978
4979 /* detected Tx unit hang */
4980 dev_err(&tx_ring->pdev->dev,
4981 "Detected Tx Unit Hang\n"
4982 " Tx Queue <%d>\n"
4983 " TDH <%x>\n"
4984 " TDT <%x>\n"
4985 " next_to_use <%x>\n"
4986 " next_to_clean <%x>\n"
4987 "buffer_info[next_to_clean]\n"
4988 " time_stamp <%lx>\n"
4989 " next_to_watch <%x>\n"
4990 " jiffies <%lx>\n"
4991 " desc.status <%x>\n",
4992 tx_ring->queue_index,
4993 readl(tx_ring->head),
4994 readl(tx_ring->tail),
4995 tx_ring->next_to_use,
4996 tx_ring->next_to_clean,
4997 tx_ring->buffer_info[eop].time_stamp,
4998 eop,
4999 jiffies,
5000 eop_desc->wb.status);
5001 netif_stop_subqueue(netdev, tx_ring->queue_index);
5002 }
5003 }
5004 tx_ring->total_bytes += total_bytes;
5005 tx_ring->total_packets += total_packets;
5006 tx_ring->tx_stats.bytes += total_bytes;
5007 tx_ring->tx_stats.packets += total_packets;
5008 return (count < tx_ring->count);
5009 }
5010
5011 /**
5012 * igb_receive_skb - helper function to handle rx indications
5013 * @q_vector: structure containing interrupt and ring information
5014 * @skb: packet to send up
5015 * @vlan_tag: vlan tag for packet
5016 **/
5017 static void igb_receive_skb(struct igb_q_vector *q_vector,
5018 struct sk_buff *skb,
5019 u16 vlan_tag)
5020 {
5021 struct igb_adapter *adapter = q_vector->adapter;
5022
5023 if (vlan_tag)
5024 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5025 vlan_tag, skb);
5026 else
5027 napi_gro_receive(&q_vector->napi, skb);
5028 }
5029
5030 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5031 u32 status_err, struct sk_buff *skb)
5032 {
5033 skb->ip_summed = CHECKSUM_NONE;
5034
5035 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5036 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5037 (status_err & E1000_RXD_STAT_IXSM))
5038 return;
5039
5040 /* TCP/UDP checksum error bit is set */
5041 if (status_err &
5042 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5043 /*
5044 * work around errata with sctp packets where the TCPE aka
5045 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5046 * packets, (aka let the stack check the crc32c)
5047 */
5048 if ((skb->len == 60) &&
5049 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5050 ring->rx_stats.csum_err++;
5051
5052 /* let the stack verify checksum errors */
5053 return;
5054 }
5055 /* It must be a TCP or UDP packet with a valid checksum */
5056 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5057 skb->ip_summed = CHECKSUM_UNNECESSARY;
5058
5059 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
5060 }
5061
5062 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5063 struct sk_buff *skb)
5064 {
5065 struct igb_adapter *adapter = q_vector->adapter;
5066 struct e1000_hw *hw = &adapter->hw;
5067 u64 regval;
5068
5069 /*
5070 * If this bit is set, then the RX registers contain the time stamp. No
5071 * other packet will be time stamped until we read these registers, so
5072 * read the registers to make them available again. Because only one
5073 * packet can be time stamped at a time, we know that the register
5074 * values must belong to this one here and therefore we don't need to
5075 * compare any of the additional attributes stored for it.
5076 *
5077 * If nothing went wrong, then it should have a skb_shared_tx that we
5078 * can turn into a skb_shared_hwtstamps.
5079 */
5080 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
5081 return;
5082 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5083 return;
5084
5085 regval = rd32(E1000_RXSTMPL);
5086 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5087
5088 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5089 }
5090 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5091 union e1000_adv_rx_desc *rx_desc)
5092 {
5093 /* HW will not DMA in data larger than the given buffer, even if it
5094 * parses the (NFS, of course) header to be larger. In that case, it
5095 * fills the header buffer and spills the rest into the page.
5096 */
5097 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5098 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5099 if (hlen > rx_ring->rx_buffer_len)
5100 hlen = rx_ring->rx_buffer_len;
5101 return hlen;
5102 }
5103
5104 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5105 int *work_done, int budget)
5106 {
5107 struct igb_ring *rx_ring = q_vector->rx_ring;
5108 struct net_device *netdev = rx_ring->netdev;
5109 struct pci_dev *pdev = rx_ring->pdev;
5110 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5111 struct igb_buffer *buffer_info , *next_buffer;
5112 struct sk_buff *skb;
5113 bool cleaned = false;
5114 int cleaned_count = 0;
5115 int current_node = numa_node_id();
5116 unsigned int total_bytes = 0, total_packets = 0;
5117 unsigned int i;
5118 u32 staterr;
5119 u16 length;
5120 u16 vlan_tag;
5121
5122 i = rx_ring->next_to_clean;
5123 buffer_info = &rx_ring->buffer_info[i];
5124 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5125 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5126
5127 while (staterr & E1000_RXD_STAT_DD) {
5128 if (*work_done >= budget)
5129 break;
5130 (*work_done)++;
5131
5132 skb = buffer_info->skb;
5133 prefetch(skb->data - NET_IP_ALIGN);
5134 buffer_info->skb = NULL;
5135
5136 i++;
5137 if (i == rx_ring->count)
5138 i = 0;
5139
5140 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5141 prefetch(next_rxd);
5142 next_buffer = &rx_ring->buffer_info[i];
5143
5144 length = le16_to_cpu(rx_desc->wb.upper.length);
5145 cleaned = true;
5146 cleaned_count++;
5147
5148 if (buffer_info->dma) {
5149 pci_unmap_single(pdev, buffer_info->dma,
5150 rx_ring->rx_buffer_len,
5151 PCI_DMA_FROMDEVICE);
5152 buffer_info->dma = 0;
5153 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5154 skb_put(skb, length);
5155 goto send_up;
5156 }
5157 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5158 }
5159
5160 if (length) {
5161 pci_unmap_page(pdev, buffer_info->page_dma,
5162 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
5163 buffer_info->page_dma = 0;
5164
5165 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
5166 buffer_info->page,
5167 buffer_info->page_offset,
5168 length);
5169
5170 if ((page_count(buffer_info->page) != 1) ||
5171 (page_to_nid(buffer_info->page) != current_node))
5172 buffer_info->page = NULL;
5173 else
5174 get_page(buffer_info->page);
5175
5176 skb->len += length;
5177 skb->data_len += length;
5178 skb->truesize += length;
5179 }
5180
5181 if (!(staterr & E1000_RXD_STAT_EOP)) {
5182 buffer_info->skb = next_buffer->skb;
5183 buffer_info->dma = next_buffer->dma;
5184 next_buffer->skb = skb;
5185 next_buffer->dma = 0;
5186 goto next_desc;
5187 }
5188 send_up:
5189 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5190 dev_kfree_skb_irq(skb);
5191 goto next_desc;
5192 }
5193
5194 igb_rx_hwtstamp(q_vector, staterr, skb);
5195 total_bytes += skb->len;
5196 total_packets++;
5197
5198 igb_rx_checksum_adv(rx_ring, staterr, skb);
5199
5200 skb->protocol = eth_type_trans(skb, netdev);
5201 skb_record_rx_queue(skb, rx_ring->queue_index);
5202
5203 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5204 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5205
5206 igb_receive_skb(q_vector, skb, vlan_tag);
5207
5208 next_desc:
5209 rx_desc->wb.upper.status_error = 0;
5210
5211 /* return some buffers to hardware, one at a time is too slow */
5212 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5213 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5214 cleaned_count = 0;
5215 }
5216
5217 /* use prefetched values */
5218 rx_desc = next_rxd;
5219 buffer_info = next_buffer;
5220 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5221 }
5222
5223 rx_ring->next_to_clean = i;
5224 cleaned_count = igb_desc_unused(rx_ring);
5225
5226 if (cleaned_count)
5227 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5228
5229 rx_ring->total_packets += total_packets;
5230 rx_ring->total_bytes += total_bytes;
5231 rx_ring->rx_stats.packets += total_packets;
5232 rx_ring->rx_stats.bytes += total_bytes;
5233 return cleaned;
5234 }
5235
5236 /**
5237 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5238 * @adapter: address of board private structure
5239 **/
5240 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5241 {
5242 struct net_device *netdev = rx_ring->netdev;
5243 union e1000_adv_rx_desc *rx_desc;
5244 struct igb_buffer *buffer_info;
5245 struct sk_buff *skb;
5246 unsigned int i;
5247 int bufsz;
5248
5249 i = rx_ring->next_to_use;
5250 buffer_info = &rx_ring->buffer_info[i];
5251
5252 bufsz = rx_ring->rx_buffer_len;
5253
5254 while (cleaned_count--) {
5255 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5256
5257 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5258 if (!buffer_info->page) {
5259 buffer_info->page = netdev_alloc_page(netdev);
5260 if (!buffer_info->page) {
5261 rx_ring->rx_stats.alloc_failed++;
5262 goto no_buffers;
5263 }
5264 buffer_info->page_offset = 0;
5265 } else {
5266 buffer_info->page_offset ^= PAGE_SIZE / 2;
5267 }
5268 buffer_info->page_dma =
5269 pci_map_page(rx_ring->pdev, buffer_info->page,
5270 buffer_info->page_offset,
5271 PAGE_SIZE / 2,
5272 PCI_DMA_FROMDEVICE);
5273 if (pci_dma_mapping_error(rx_ring->pdev,
5274 buffer_info->page_dma)) {
5275 buffer_info->page_dma = 0;
5276 rx_ring->rx_stats.alloc_failed++;
5277 goto no_buffers;
5278 }
5279 }
5280
5281 skb = buffer_info->skb;
5282 if (!skb) {
5283 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5284 if (!skb) {
5285 rx_ring->rx_stats.alloc_failed++;
5286 goto no_buffers;
5287 }
5288
5289 buffer_info->skb = skb;
5290 }
5291 if (!buffer_info->dma) {
5292 buffer_info->dma = pci_map_single(rx_ring->pdev,
5293 skb->data,
5294 bufsz,
5295 PCI_DMA_FROMDEVICE);
5296 if (pci_dma_mapping_error(rx_ring->pdev,
5297 buffer_info->dma)) {
5298 buffer_info->dma = 0;
5299 rx_ring->rx_stats.alloc_failed++;
5300 goto no_buffers;
5301 }
5302 }
5303 /* Refresh the desc even if buffer_addrs didn't change because
5304 * each write-back erases this info. */
5305 if (bufsz < IGB_RXBUFFER_1024) {
5306 rx_desc->read.pkt_addr =
5307 cpu_to_le64(buffer_info->page_dma);
5308 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5309 } else {
5310 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5311 rx_desc->read.hdr_addr = 0;
5312 }
5313
5314 i++;
5315 if (i == rx_ring->count)
5316 i = 0;
5317 buffer_info = &rx_ring->buffer_info[i];
5318 }
5319
5320 no_buffers:
5321 if (rx_ring->next_to_use != i) {
5322 rx_ring->next_to_use = i;
5323 if (i == 0)
5324 i = (rx_ring->count - 1);
5325 else
5326 i--;
5327
5328 /* Force memory writes to complete before letting h/w
5329 * know there are new descriptors to fetch. (Only
5330 * applicable for weak-ordered memory model archs,
5331 * such as IA-64). */
5332 wmb();
5333 writel(i, rx_ring->tail);
5334 }
5335 }
5336
5337 /**
5338 * igb_mii_ioctl -
5339 * @netdev:
5340 * @ifreq:
5341 * @cmd:
5342 **/
5343 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5344 {
5345 struct igb_adapter *adapter = netdev_priv(netdev);
5346 struct mii_ioctl_data *data = if_mii(ifr);
5347
5348 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5349 return -EOPNOTSUPP;
5350
5351 switch (cmd) {
5352 case SIOCGMIIPHY:
5353 data->phy_id = adapter->hw.phy.addr;
5354 break;
5355 case SIOCGMIIREG:
5356 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5357 &data->val_out))
5358 return -EIO;
5359 break;
5360 case SIOCSMIIREG:
5361 default:
5362 return -EOPNOTSUPP;
5363 }
5364 return 0;
5365 }
5366
5367 /**
5368 * igb_hwtstamp_ioctl - control hardware time stamping
5369 * @netdev:
5370 * @ifreq:
5371 * @cmd:
5372 *
5373 * Outgoing time stamping can be enabled and disabled. Play nice and
5374 * disable it when requested, although it shouldn't case any overhead
5375 * when no packet needs it. At most one packet in the queue may be
5376 * marked for time stamping, otherwise it would be impossible to tell
5377 * for sure to which packet the hardware time stamp belongs.
5378 *
5379 * Incoming time stamping has to be configured via the hardware
5380 * filters. Not all combinations are supported, in particular event
5381 * type has to be specified. Matching the kind of event packet is
5382 * not supported, with the exception of "all V2 events regardless of
5383 * level 2 or 4".
5384 *
5385 **/
5386 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5387 struct ifreq *ifr, int cmd)
5388 {
5389 struct igb_adapter *adapter = netdev_priv(netdev);
5390 struct e1000_hw *hw = &adapter->hw;
5391 struct hwtstamp_config config;
5392 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5393 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5394 u32 tsync_rx_cfg = 0;
5395 bool is_l4 = false;
5396 bool is_l2 = false;
5397 u32 regval;
5398
5399 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5400 return -EFAULT;
5401
5402 /* reserved for future extensions */
5403 if (config.flags)
5404 return -EINVAL;
5405
5406 switch (config.tx_type) {
5407 case HWTSTAMP_TX_OFF:
5408 tsync_tx_ctl = 0;
5409 case HWTSTAMP_TX_ON:
5410 break;
5411 default:
5412 return -ERANGE;
5413 }
5414
5415 switch (config.rx_filter) {
5416 case HWTSTAMP_FILTER_NONE:
5417 tsync_rx_ctl = 0;
5418 break;
5419 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5420 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5421 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5422 case HWTSTAMP_FILTER_ALL:
5423 /*
5424 * register TSYNCRXCFG must be set, therefore it is not
5425 * possible to time stamp both Sync and Delay_Req messages
5426 * => fall back to time stamping all packets
5427 */
5428 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5429 config.rx_filter = HWTSTAMP_FILTER_ALL;
5430 break;
5431 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5432 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5433 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5434 is_l4 = true;
5435 break;
5436 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5437 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5438 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5439 is_l4 = true;
5440 break;
5441 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5442 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5443 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5444 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5445 is_l2 = true;
5446 is_l4 = true;
5447 config.rx_filter = HWTSTAMP_FILTER_SOME;
5448 break;
5449 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5450 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5451 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5452 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5453 is_l2 = true;
5454 is_l4 = true;
5455 config.rx_filter = HWTSTAMP_FILTER_SOME;
5456 break;
5457 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5458 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5459 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5460 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5461 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5462 is_l2 = true;
5463 break;
5464 default:
5465 return -ERANGE;
5466 }
5467
5468 if (hw->mac.type == e1000_82575) {
5469 if (tsync_rx_ctl | tsync_tx_ctl)
5470 return -EINVAL;
5471 return 0;
5472 }
5473
5474 /* enable/disable TX */
5475 regval = rd32(E1000_TSYNCTXCTL);
5476 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5477 regval |= tsync_tx_ctl;
5478 wr32(E1000_TSYNCTXCTL, regval);
5479
5480 /* enable/disable RX */
5481 regval = rd32(E1000_TSYNCRXCTL);
5482 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5483 regval |= tsync_rx_ctl;
5484 wr32(E1000_TSYNCRXCTL, regval);
5485
5486 /* define which PTP packets are time stamped */
5487 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5488
5489 /* define ethertype filter for timestamped packets */
5490 if (is_l2)
5491 wr32(E1000_ETQF(3),
5492 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5493 E1000_ETQF_1588 | /* enable timestamping */
5494 ETH_P_1588)); /* 1588 eth protocol type */
5495 else
5496 wr32(E1000_ETQF(3), 0);
5497
5498 #define PTP_PORT 319
5499 /* L4 Queue Filter[3]: filter by destination port and protocol */
5500 if (is_l4) {
5501 u32 ftqf = (IPPROTO_UDP /* UDP */
5502 | E1000_FTQF_VF_BP /* VF not compared */
5503 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5504 | E1000_FTQF_MASK); /* mask all inputs */
5505 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5506
5507 wr32(E1000_IMIR(3), htons(PTP_PORT));
5508 wr32(E1000_IMIREXT(3),
5509 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5510 if (hw->mac.type == e1000_82576) {
5511 /* enable source port check */
5512 wr32(E1000_SPQF(3), htons(PTP_PORT));
5513 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5514 }
5515 wr32(E1000_FTQF(3), ftqf);
5516 } else {
5517 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5518 }
5519 wrfl();
5520
5521 adapter->hwtstamp_config = config;
5522
5523 /* clear TX/RX time stamp registers, just to be sure */
5524 regval = rd32(E1000_TXSTMPH);
5525 regval = rd32(E1000_RXSTMPH);
5526
5527 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5528 -EFAULT : 0;
5529 }
5530
5531 /**
5532 * igb_ioctl -
5533 * @netdev:
5534 * @ifreq:
5535 * @cmd:
5536 **/
5537 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5538 {
5539 switch (cmd) {
5540 case SIOCGMIIPHY:
5541 case SIOCGMIIREG:
5542 case SIOCSMIIREG:
5543 return igb_mii_ioctl(netdev, ifr, cmd);
5544 case SIOCSHWTSTAMP:
5545 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5546 default:
5547 return -EOPNOTSUPP;
5548 }
5549 }
5550
5551 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5552 {
5553 struct igb_adapter *adapter = hw->back;
5554 u16 cap_offset;
5555
5556 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5557 if (!cap_offset)
5558 return -E1000_ERR_CONFIG;
5559
5560 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5561
5562 return 0;
5563 }
5564
5565 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5566 {
5567 struct igb_adapter *adapter = hw->back;
5568 u16 cap_offset;
5569
5570 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5571 if (!cap_offset)
5572 return -E1000_ERR_CONFIG;
5573
5574 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5575
5576 return 0;
5577 }
5578
5579 static void igb_vlan_rx_register(struct net_device *netdev,
5580 struct vlan_group *grp)
5581 {
5582 struct igb_adapter *adapter = netdev_priv(netdev);
5583 struct e1000_hw *hw = &adapter->hw;
5584 u32 ctrl, rctl;
5585
5586 igb_irq_disable(adapter);
5587 adapter->vlgrp = grp;
5588
5589 if (grp) {
5590 /* enable VLAN tag insert/strip */
5591 ctrl = rd32(E1000_CTRL);
5592 ctrl |= E1000_CTRL_VME;
5593 wr32(E1000_CTRL, ctrl);
5594
5595 /* Disable CFI check */
5596 rctl = rd32(E1000_RCTL);
5597 rctl &= ~E1000_RCTL_CFIEN;
5598 wr32(E1000_RCTL, rctl);
5599 } else {
5600 /* disable VLAN tag insert/strip */
5601 ctrl = rd32(E1000_CTRL);
5602 ctrl &= ~E1000_CTRL_VME;
5603 wr32(E1000_CTRL, ctrl);
5604 }
5605
5606 igb_rlpml_set(adapter);
5607
5608 if (!test_bit(__IGB_DOWN, &adapter->state))
5609 igb_irq_enable(adapter);
5610 }
5611
5612 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5613 {
5614 struct igb_adapter *adapter = netdev_priv(netdev);
5615 struct e1000_hw *hw = &adapter->hw;
5616 int pf_id = adapter->vfs_allocated_count;
5617
5618 /* attempt to add filter to vlvf array */
5619 igb_vlvf_set(adapter, vid, true, pf_id);
5620
5621 /* add the filter since PF can receive vlans w/o entry in vlvf */
5622 igb_vfta_set(hw, vid, true);
5623 }
5624
5625 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5626 {
5627 struct igb_adapter *adapter = netdev_priv(netdev);
5628 struct e1000_hw *hw = &adapter->hw;
5629 int pf_id = adapter->vfs_allocated_count;
5630 s32 err;
5631
5632 igb_irq_disable(adapter);
5633 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5634
5635 if (!test_bit(__IGB_DOWN, &adapter->state))
5636 igb_irq_enable(adapter);
5637
5638 /* remove vlan from VLVF table array */
5639 err = igb_vlvf_set(adapter, vid, false, pf_id);
5640
5641 /* if vid was not present in VLVF just remove it from table */
5642 if (err)
5643 igb_vfta_set(hw, vid, false);
5644 }
5645
5646 static void igb_restore_vlan(struct igb_adapter *adapter)
5647 {
5648 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5649
5650 if (adapter->vlgrp) {
5651 u16 vid;
5652 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5653 if (!vlan_group_get_device(adapter->vlgrp, vid))
5654 continue;
5655 igb_vlan_rx_add_vid(adapter->netdev, vid);
5656 }
5657 }
5658 }
5659
5660 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5661 {
5662 struct pci_dev *pdev = adapter->pdev;
5663 struct e1000_mac_info *mac = &adapter->hw.mac;
5664
5665 mac->autoneg = 0;
5666
5667 switch (spddplx) {
5668 case SPEED_10 + DUPLEX_HALF:
5669 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5670 break;
5671 case SPEED_10 + DUPLEX_FULL:
5672 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5673 break;
5674 case SPEED_100 + DUPLEX_HALF:
5675 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5676 break;
5677 case SPEED_100 + DUPLEX_FULL:
5678 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5679 break;
5680 case SPEED_1000 + DUPLEX_FULL:
5681 mac->autoneg = 1;
5682 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5683 break;
5684 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5685 default:
5686 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5687 return -EINVAL;
5688 }
5689 return 0;
5690 }
5691
5692 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5693 {
5694 struct net_device *netdev = pci_get_drvdata(pdev);
5695 struct igb_adapter *adapter = netdev_priv(netdev);
5696 struct e1000_hw *hw = &adapter->hw;
5697 u32 ctrl, rctl, status;
5698 u32 wufc = adapter->wol;
5699 #ifdef CONFIG_PM
5700 int retval = 0;
5701 #endif
5702
5703 netif_device_detach(netdev);
5704
5705 if (netif_running(netdev))
5706 igb_close(netdev);
5707
5708 igb_clear_interrupt_scheme(adapter);
5709
5710 #ifdef CONFIG_PM
5711 retval = pci_save_state(pdev);
5712 if (retval)
5713 return retval;
5714 #endif
5715
5716 status = rd32(E1000_STATUS);
5717 if (status & E1000_STATUS_LU)
5718 wufc &= ~E1000_WUFC_LNKC;
5719
5720 if (wufc) {
5721 igb_setup_rctl(adapter);
5722 igb_set_rx_mode(netdev);
5723
5724 /* turn on all-multi mode if wake on multicast is enabled */
5725 if (wufc & E1000_WUFC_MC) {
5726 rctl = rd32(E1000_RCTL);
5727 rctl |= E1000_RCTL_MPE;
5728 wr32(E1000_RCTL, rctl);
5729 }
5730
5731 ctrl = rd32(E1000_CTRL);
5732 /* advertise wake from D3Cold */
5733 #define E1000_CTRL_ADVD3WUC 0x00100000
5734 /* phy power management enable */
5735 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5736 ctrl |= E1000_CTRL_ADVD3WUC;
5737 wr32(E1000_CTRL, ctrl);
5738
5739 /* Allow time for pending master requests to run */
5740 igb_disable_pcie_master(hw);
5741
5742 wr32(E1000_WUC, E1000_WUC_PME_EN);
5743 wr32(E1000_WUFC, wufc);
5744 } else {
5745 wr32(E1000_WUC, 0);
5746 wr32(E1000_WUFC, 0);
5747 }
5748
5749 *enable_wake = wufc || adapter->en_mng_pt;
5750 if (!*enable_wake)
5751 igb_shutdown_serdes_link_82575(hw);
5752
5753 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5754 * would have already happened in close and is redundant. */
5755 igb_release_hw_control(adapter);
5756
5757 pci_disable_device(pdev);
5758
5759 return 0;
5760 }
5761
5762 #ifdef CONFIG_PM
5763 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5764 {
5765 int retval;
5766 bool wake;
5767
5768 retval = __igb_shutdown(pdev, &wake);
5769 if (retval)
5770 return retval;
5771
5772 if (wake) {
5773 pci_prepare_to_sleep(pdev);
5774 } else {
5775 pci_wake_from_d3(pdev, false);
5776 pci_set_power_state(pdev, PCI_D3hot);
5777 }
5778
5779 return 0;
5780 }
5781
5782 static int igb_resume(struct pci_dev *pdev)
5783 {
5784 struct net_device *netdev = pci_get_drvdata(pdev);
5785 struct igb_adapter *adapter = netdev_priv(netdev);
5786 struct e1000_hw *hw = &adapter->hw;
5787 u32 err;
5788
5789 pci_set_power_state(pdev, PCI_D0);
5790 pci_restore_state(pdev);
5791
5792 err = pci_enable_device_mem(pdev);
5793 if (err) {
5794 dev_err(&pdev->dev,
5795 "igb: Cannot enable PCI device from suspend\n");
5796 return err;
5797 }
5798 pci_set_master(pdev);
5799
5800 pci_enable_wake(pdev, PCI_D3hot, 0);
5801 pci_enable_wake(pdev, PCI_D3cold, 0);
5802
5803 if (igb_init_interrupt_scheme(adapter)) {
5804 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5805 return -ENOMEM;
5806 }
5807
5808 /* e1000_power_up_phy(adapter); */
5809
5810 igb_reset(adapter);
5811
5812 /* let the f/w know that the h/w is now under the control of the
5813 * driver. */
5814 igb_get_hw_control(adapter);
5815
5816 wr32(E1000_WUS, ~0);
5817
5818 if (netif_running(netdev)) {
5819 err = igb_open(netdev);
5820 if (err)
5821 return err;
5822 }
5823
5824 netif_device_attach(netdev);
5825
5826 return 0;
5827 }
5828 #endif
5829
5830 static void igb_shutdown(struct pci_dev *pdev)
5831 {
5832 bool wake;
5833
5834 __igb_shutdown(pdev, &wake);
5835
5836 if (system_state == SYSTEM_POWER_OFF) {
5837 pci_wake_from_d3(pdev, wake);
5838 pci_set_power_state(pdev, PCI_D3hot);
5839 }
5840 }
5841
5842 #ifdef CONFIG_NET_POLL_CONTROLLER
5843 /*
5844 * Polling 'interrupt' - used by things like netconsole to send skbs
5845 * without having to re-enable interrupts. It's not called while
5846 * the interrupt routine is executing.
5847 */
5848 static void igb_netpoll(struct net_device *netdev)
5849 {
5850 struct igb_adapter *adapter = netdev_priv(netdev);
5851 struct e1000_hw *hw = &adapter->hw;
5852 int i;
5853
5854 if (!adapter->msix_entries) {
5855 struct igb_q_vector *q_vector = adapter->q_vector[0];
5856 igb_irq_disable(adapter);
5857 napi_schedule(&q_vector->napi);
5858 return;
5859 }
5860
5861 for (i = 0; i < adapter->num_q_vectors; i++) {
5862 struct igb_q_vector *q_vector = adapter->q_vector[i];
5863 wr32(E1000_EIMC, q_vector->eims_value);
5864 napi_schedule(&q_vector->napi);
5865 }
5866 }
5867 #endif /* CONFIG_NET_POLL_CONTROLLER */
5868
5869 /**
5870 * igb_io_error_detected - called when PCI error is detected
5871 * @pdev: Pointer to PCI device
5872 * @state: The current pci connection state
5873 *
5874 * This function is called after a PCI bus error affecting
5875 * this device has been detected.
5876 */
5877 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5878 pci_channel_state_t state)
5879 {
5880 struct net_device *netdev = pci_get_drvdata(pdev);
5881 struct igb_adapter *adapter = netdev_priv(netdev);
5882
5883 netif_device_detach(netdev);
5884
5885 if (state == pci_channel_io_perm_failure)
5886 return PCI_ERS_RESULT_DISCONNECT;
5887
5888 if (netif_running(netdev))
5889 igb_down(adapter);
5890 pci_disable_device(pdev);
5891
5892 /* Request a slot slot reset. */
5893 return PCI_ERS_RESULT_NEED_RESET;
5894 }
5895
5896 /**
5897 * igb_io_slot_reset - called after the pci bus has been reset.
5898 * @pdev: Pointer to PCI device
5899 *
5900 * Restart the card from scratch, as if from a cold-boot. Implementation
5901 * resembles the first-half of the igb_resume routine.
5902 */
5903 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5904 {
5905 struct net_device *netdev = pci_get_drvdata(pdev);
5906 struct igb_adapter *adapter = netdev_priv(netdev);
5907 struct e1000_hw *hw = &adapter->hw;
5908 pci_ers_result_t result;
5909 int err;
5910
5911 if (pci_enable_device_mem(pdev)) {
5912 dev_err(&pdev->dev,
5913 "Cannot re-enable PCI device after reset.\n");
5914 result = PCI_ERS_RESULT_DISCONNECT;
5915 } else {
5916 pci_set_master(pdev);
5917 pci_restore_state(pdev);
5918
5919 pci_enable_wake(pdev, PCI_D3hot, 0);
5920 pci_enable_wake(pdev, PCI_D3cold, 0);
5921
5922 igb_reset(adapter);
5923 wr32(E1000_WUS, ~0);
5924 result = PCI_ERS_RESULT_RECOVERED;
5925 }
5926
5927 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5928 if (err) {
5929 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5930 "failed 0x%0x\n", err);
5931 /* non-fatal, continue */
5932 }
5933
5934 return result;
5935 }
5936
5937 /**
5938 * igb_io_resume - called when traffic can start flowing again.
5939 * @pdev: Pointer to PCI device
5940 *
5941 * This callback is called when the error recovery driver tells us that
5942 * its OK to resume normal operation. Implementation resembles the
5943 * second-half of the igb_resume routine.
5944 */
5945 static void igb_io_resume(struct pci_dev *pdev)
5946 {
5947 struct net_device *netdev = pci_get_drvdata(pdev);
5948 struct igb_adapter *adapter = netdev_priv(netdev);
5949
5950 if (netif_running(netdev)) {
5951 if (igb_up(adapter)) {
5952 dev_err(&pdev->dev, "igb_up failed after reset\n");
5953 return;
5954 }
5955 }
5956
5957 netif_device_attach(netdev);
5958
5959 /* let the f/w know that the h/w is now under the control of the
5960 * driver. */
5961 igb_get_hw_control(adapter);
5962 }
5963
5964 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5965 u8 qsel)
5966 {
5967 u32 rar_low, rar_high;
5968 struct e1000_hw *hw = &adapter->hw;
5969
5970 /* HW expects these in little endian so we reverse the byte order
5971 * from network order (big endian) to little endian
5972 */
5973 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5974 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5975 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5976
5977 /* Indicate to hardware the Address is Valid. */
5978 rar_high |= E1000_RAH_AV;
5979
5980 if (hw->mac.type == e1000_82575)
5981 rar_high |= E1000_RAH_POOL_1 * qsel;
5982 else
5983 rar_high |= E1000_RAH_POOL_1 << qsel;
5984
5985 wr32(E1000_RAL(index), rar_low);
5986 wrfl();
5987 wr32(E1000_RAH(index), rar_high);
5988 wrfl();
5989 }
5990
5991 static int igb_set_vf_mac(struct igb_adapter *adapter,
5992 int vf, unsigned char *mac_addr)
5993 {
5994 struct e1000_hw *hw = &adapter->hw;
5995 /* VF MAC addresses start at end of receive addresses and moves
5996 * torwards the first, as a result a collision should not be possible */
5997 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5998
5999 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6000
6001 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6002
6003 return 0;
6004 }
6005
6006 static void igb_vmm_control(struct igb_adapter *adapter)
6007 {
6008 struct e1000_hw *hw = &adapter->hw;
6009 u32 reg;
6010
6011 /* replication is not supported for 82575 */
6012 if (hw->mac.type == e1000_82575)
6013 return;
6014
6015 /* enable replication vlan tag stripping */
6016 reg = rd32(E1000_RPLOLR);
6017 reg |= E1000_RPLOLR_STRVLAN;
6018 wr32(E1000_RPLOLR, reg);
6019
6020 /* notify HW that the MAC is adding vlan tags */
6021 reg = rd32(E1000_DTXCTL);
6022 reg |= E1000_DTXCTL_VLAN_ADDED;
6023 wr32(E1000_DTXCTL, reg);
6024
6025 if (adapter->vfs_allocated_count) {
6026 igb_vmdq_set_loopback_pf(hw, true);
6027 igb_vmdq_set_replication_pf(hw, true);
6028 } else {
6029 igb_vmdq_set_loopback_pf(hw, false);
6030 igb_vmdq_set_replication_pf(hw, false);
6031 }
6032 }
6033
6034 /* igb_main.c */
This page took 0.151073 seconds and 6 git commands to generate.