igb: add link check function
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
50
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
60 };
61
62 static struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69 /* required last entry */
70 {0, }
71 };
72
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98 struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125
126 static int igb_suspend(struct pci_dev *, pm_message_t);
127 #ifdef CONFIG_PM
128 static int igb_resume(struct pci_dev *);
129 #endif
130 static void igb_shutdown(struct pci_dev *);
131 #ifdef CONFIG_IGB_DCA
132 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
133 static struct notifier_block dca_notifier = {
134 .notifier_call = igb_notify_dca,
135 .next = NULL,
136 .priority = 0
137 };
138 #endif
139
140 #ifdef CONFIG_NET_POLL_CONTROLLER
141 /* for netdump / net console */
142 static void igb_netpoll(struct net_device *);
143 #endif
144
145 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
146 pci_channel_state_t);
147 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
148 static void igb_io_resume(struct pci_dev *);
149
150 static struct pci_error_handlers igb_err_handler = {
151 .error_detected = igb_io_error_detected,
152 .slot_reset = igb_io_slot_reset,
153 .resume = igb_io_resume,
154 };
155
156
157 static struct pci_driver igb_driver = {
158 .name = igb_driver_name,
159 .id_table = igb_pci_tbl,
160 .probe = igb_probe,
161 .remove = __devexit_p(igb_remove),
162 #ifdef CONFIG_PM
163 /* Power Managment Hooks */
164 .suspend = igb_suspend,
165 .resume = igb_resume,
166 #endif
167 .shutdown = igb_shutdown,
168 .err_handler = &igb_err_handler
169 };
170
171 static int global_quad_port_a; /* global quad port a indication */
172
173 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177
178 #ifdef DEBUG
179 /**
180 * igb_get_hw_dev_name - return device name string
181 * used by hardware layer to print debugging information
182 **/
183 char *igb_get_hw_dev_name(struct e1000_hw *hw)
184 {
185 struct igb_adapter *adapter = hw->back;
186 return adapter->netdev->name;
187 }
188 #endif
189
190 /**
191 * igb_init_module - Driver Registration Routine
192 *
193 * igb_init_module is the first routine called when the driver is
194 * loaded. All it does is register with the PCI subsystem.
195 **/
196 static int __init igb_init_module(void)
197 {
198 int ret;
199 printk(KERN_INFO "%s - version %s\n",
200 igb_driver_string, igb_driver_version);
201
202 printk(KERN_INFO "%s\n", igb_copyright);
203
204 global_quad_port_a = 0;
205
206 #ifdef CONFIG_IGB_DCA
207 dca_register_notify(&dca_notifier);
208 #endif
209
210 ret = pci_register_driver(&igb_driver);
211 return ret;
212 }
213
214 module_init(igb_init_module);
215
216 /**
217 * igb_exit_module - Driver Exit Cleanup Routine
218 *
219 * igb_exit_module is called just before the driver is removed
220 * from memory.
221 **/
222 static void __exit igb_exit_module(void)
223 {
224 #ifdef CONFIG_IGB_DCA
225 dca_unregister_notify(&dca_notifier);
226 #endif
227 pci_unregister_driver(&igb_driver);
228 }
229
230 module_exit(igb_exit_module);
231
232 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
233 /**
234 * igb_cache_ring_register - Descriptor ring to register mapping
235 * @adapter: board private structure to initialize
236 *
237 * Once we know the feature-set enabled for the device, we'll cache
238 * the register offset the descriptor ring is assigned to.
239 **/
240 static void igb_cache_ring_register(struct igb_adapter *adapter)
241 {
242 int i;
243
244 switch (adapter->hw.mac.type) {
245 case e1000_82576:
246 /* The queues are allocated for virtualization such that VF 0
247 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
248 * In order to avoid collision we start at the first free queue
249 * and continue consuming queues in the same sequence
250 */
251 for (i = 0; i < adapter->num_rx_queues; i++)
252 adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
253 for (i = 0; i < adapter->num_tx_queues; i++)
254 adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
255 break;
256 case e1000_82575:
257 default:
258 for (i = 0; i < adapter->num_rx_queues; i++)
259 adapter->rx_ring[i].reg_idx = i;
260 for (i = 0; i < adapter->num_tx_queues; i++)
261 adapter->tx_ring[i].reg_idx = i;
262 break;
263 }
264 }
265
266 /**
267 * igb_alloc_queues - Allocate memory for all rings
268 * @adapter: board private structure to initialize
269 *
270 * We allocate one ring per queue at run-time since we don't know the
271 * number of queues at compile-time.
272 **/
273 static int igb_alloc_queues(struct igb_adapter *adapter)
274 {
275 int i;
276
277 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
278 sizeof(struct igb_ring), GFP_KERNEL);
279 if (!adapter->tx_ring)
280 return -ENOMEM;
281
282 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
283 sizeof(struct igb_ring), GFP_KERNEL);
284 if (!adapter->rx_ring) {
285 kfree(adapter->tx_ring);
286 return -ENOMEM;
287 }
288
289 adapter->rx_ring->buddy = adapter->tx_ring;
290
291 for (i = 0; i < adapter->num_tx_queues; i++) {
292 struct igb_ring *ring = &(adapter->tx_ring[i]);
293 ring->count = adapter->tx_ring_count;
294 ring->adapter = adapter;
295 ring->queue_index = i;
296 }
297 for (i = 0; i < adapter->num_rx_queues; i++) {
298 struct igb_ring *ring = &(adapter->rx_ring[i]);
299 ring->count = adapter->rx_ring_count;
300 ring->adapter = adapter;
301 ring->queue_index = i;
302 ring->itr_register = E1000_ITR;
303
304 /* set a default napi handler for each rx_ring */
305 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
306 }
307
308 igb_cache_ring_register(adapter);
309 return 0;
310 }
311
312 static void igb_free_queues(struct igb_adapter *adapter)
313 {
314 int i;
315
316 for (i = 0; i < adapter->num_rx_queues; i++)
317 netif_napi_del(&adapter->rx_ring[i].napi);
318
319 kfree(adapter->tx_ring);
320 kfree(adapter->rx_ring);
321 }
322
323 #define IGB_N0_QUEUE -1
324 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
325 int tx_queue, int msix_vector)
326 {
327 u32 msixbm = 0;
328 struct e1000_hw *hw = &adapter->hw;
329 u32 ivar, index;
330
331 switch (hw->mac.type) {
332 case e1000_82575:
333 /* The 82575 assigns vectors using a bitmask, which matches the
334 bitmask for the EICR/EIMS/EIMC registers. To assign one
335 or more queues to a vector, we write the appropriate bits
336 into the MSIXBM register for that vector. */
337 if (rx_queue > IGB_N0_QUEUE) {
338 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
339 adapter->rx_ring[rx_queue].eims_value = msixbm;
340 }
341 if (tx_queue > IGB_N0_QUEUE) {
342 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
343 adapter->tx_ring[tx_queue].eims_value =
344 E1000_EICR_TX_QUEUE0 << tx_queue;
345 }
346 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
347 break;
348 case e1000_82576:
349 /* 82576 uses a table-based method for assigning vectors.
350 Each queue has a single entry in the table to which we write
351 a vector number along with a "valid" bit. Sadly, the layout
352 of the table is somewhat counterintuitive. */
353 if (rx_queue > IGB_N0_QUEUE) {
354 index = (rx_queue >> 1);
355 ivar = array_rd32(E1000_IVAR0, index);
356 if (rx_queue & 0x1) {
357 /* vector goes into third byte of register */
358 ivar = ivar & 0xFF00FFFF;
359 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
360 } else {
361 /* vector goes into low byte of register */
362 ivar = ivar & 0xFFFFFF00;
363 ivar |= msix_vector | E1000_IVAR_VALID;
364 }
365 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
366 array_wr32(E1000_IVAR0, index, ivar);
367 }
368 if (tx_queue > IGB_N0_QUEUE) {
369 index = (tx_queue >> 1);
370 ivar = array_rd32(E1000_IVAR0, index);
371 if (tx_queue & 0x1) {
372 /* vector goes into high byte of register */
373 ivar = ivar & 0x00FFFFFF;
374 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
375 } else {
376 /* vector goes into second byte of register */
377 ivar = ivar & 0xFFFF00FF;
378 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
379 }
380 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
381 array_wr32(E1000_IVAR0, index, ivar);
382 }
383 break;
384 default:
385 BUG();
386 break;
387 }
388 }
389
390 /**
391 * igb_configure_msix - Configure MSI-X hardware
392 *
393 * igb_configure_msix sets up the hardware to properly
394 * generate MSI-X interrupts.
395 **/
396 static void igb_configure_msix(struct igb_adapter *adapter)
397 {
398 u32 tmp;
399 int i, vector = 0;
400 struct e1000_hw *hw = &adapter->hw;
401
402 adapter->eims_enable_mask = 0;
403 if (hw->mac.type == e1000_82576)
404 /* Turn on MSI-X capability first, or our settings
405 * won't stick. And it will take days to debug. */
406 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
407 E1000_GPIE_PBA | E1000_GPIE_EIAME |
408 E1000_GPIE_NSICR);
409
410 for (i = 0; i < adapter->num_tx_queues; i++) {
411 struct igb_ring *tx_ring = &adapter->tx_ring[i];
412 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
413 adapter->eims_enable_mask |= tx_ring->eims_value;
414 if (tx_ring->itr_val)
415 writel(tx_ring->itr_val,
416 hw->hw_addr + tx_ring->itr_register);
417 else
418 writel(1, hw->hw_addr + tx_ring->itr_register);
419 }
420
421 for (i = 0; i < adapter->num_rx_queues; i++) {
422 struct igb_ring *rx_ring = &adapter->rx_ring[i];
423 rx_ring->buddy = NULL;
424 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
425 adapter->eims_enable_mask |= rx_ring->eims_value;
426 if (rx_ring->itr_val)
427 writel(rx_ring->itr_val,
428 hw->hw_addr + rx_ring->itr_register);
429 else
430 writel(1, hw->hw_addr + rx_ring->itr_register);
431 }
432
433
434 /* set vector for other causes, i.e. link changes */
435 switch (hw->mac.type) {
436 case e1000_82575:
437 array_wr32(E1000_MSIXBM(0), vector++,
438 E1000_EIMS_OTHER);
439
440 tmp = rd32(E1000_CTRL_EXT);
441 /* enable MSI-X PBA support*/
442 tmp |= E1000_CTRL_EXT_PBA_CLR;
443
444 /* Auto-Mask interrupts upon ICR read. */
445 tmp |= E1000_CTRL_EXT_EIAME;
446 tmp |= E1000_CTRL_EXT_IRCA;
447
448 wr32(E1000_CTRL_EXT, tmp);
449 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
450 adapter->eims_other = E1000_EIMS_OTHER;
451
452 break;
453
454 case e1000_82576:
455 tmp = (vector++ | E1000_IVAR_VALID) << 8;
456 wr32(E1000_IVAR_MISC, tmp);
457
458 adapter->eims_enable_mask = (1 << (vector)) - 1;
459 adapter->eims_other = 1 << (vector - 1);
460 break;
461 default:
462 /* do nothing, since nothing else supports MSI-X */
463 break;
464 } /* switch (hw->mac.type) */
465 wrfl();
466 }
467
468 /**
469 * igb_request_msix - Initialize MSI-X interrupts
470 *
471 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
472 * kernel.
473 **/
474 static int igb_request_msix(struct igb_adapter *adapter)
475 {
476 struct net_device *netdev = adapter->netdev;
477 int i, err = 0, vector = 0;
478
479 vector = 0;
480
481 for (i = 0; i < adapter->num_tx_queues; i++) {
482 struct igb_ring *ring = &(adapter->tx_ring[i]);
483 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
484 err = request_irq(adapter->msix_entries[vector].vector,
485 &igb_msix_tx, 0, ring->name,
486 &(adapter->tx_ring[i]));
487 if (err)
488 goto out;
489 ring->itr_register = E1000_EITR(0) + (vector << 2);
490 ring->itr_val = 976; /* ~4000 ints/sec */
491 vector++;
492 }
493 for (i = 0; i < adapter->num_rx_queues; i++) {
494 struct igb_ring *ring = &(adapter->rx_ring[i]);
495 if (strlen(netdev->name) < (IFNAMSIZ - 5))
496 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
497 else
498 memcpy(ring->name, netdev->name, IFNAMSIZ);
499 err = request_irq(adapter->msix_entries[vector].vector,
500 &igb_msix_rx, 0, ring->name,
501 &(adapter->rx_ring[i]));
502 if (err)
503 goto out;
504 ring->itr_register = E1000_EITR(0) + (vector << 2);
505 ring->itr_val = adapter->itr;
506 /* overwrite the poll routine for MSIX, we've already done
507 * netif_napi_add */
508 ring->napi.poll = &igb_clean_rx_ring_msix;
509 vector++;
510 }
511
512 err = request_irq(adapter->msix_entries[vector].vector,
513 &igb_msix_other, 0, netdev->name, netdev);
514 if (err)
515 goto out;
516
517 igb_configure_msix(adapter);
518 return 0;
519 out:
520 return err;
521 }
522
523 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
524 {
525 if (adapter->msix_entries) {
526 pci_disable_msix(adapter->pdev);
527 kfree(adapter->msix_entries);
528 adapter->msix_entries = NULL;
529 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
530 pci_disable_msi(adapter->pdev);
531 return;
532 }
533
534
535 /**
536 * igb_set_interrupt_capability - set MSI or MSI-X if supported
537 *
538 * Attempt to configure interrupts using the best available
539 * capabilities of the hardware and kernel.
540 **/
541 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
542 {
543 int err;
544 int numvecs, i;
545
546 /* Number of supported queues. */
547 /* Having more queues than CPUs doesn't make sense. */
548 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
549 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
550
551 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
552 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
553 GFP_KERNEL);
554 if (!adapter->msix_entries)
555 goto msi_only;
556
557 for (i = 0; i < numvecs; i++)
558 adapter->msix_entries[i].entry = i;
559
560 err = pci_enable_msix(adapter->pdev,
561 adapter->msix_entries,
562 numvecs);
563 if (err == 0)
564 goto out;
565
566 igb_reset_interrupt_capability(adapter);
567
568 /* If we can't do MSI-X, try MSI */
569 msi_only:
570 adapter->num_rx_queues = 1;
571 adapter->num_tx_queues = 1;
572 if (!pci_enable_msi(adapter->pdev))
573 adapter->flags |= IGB_FLAG_HAS_MSI;
574 out:
575 /* Notify the stack of the (possibly) reduced Tx Queue count. */
576 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
577 return;
578 }
579
580 /**
581 * igb_request_irq - initialize interrupts
582 *
583 * Attempts to configure interrupts using the best available
584 * capabilities of the hardware and kernel.
585 **/
586 static int igb_request_irq(struct igb_adapter *adapter)
587 {
588 struct net_device *netdev = adapter->netdev;
589 struct e1000_hw *hw = &adapter->hw;
590 int err = 0;
591
592 if (adapter->msix_entries) {
593 err = igb_request_msix(adapter);
594 if (!err)
595 goto request_done;
596 /* fall back to MSI */
597 igb_reset_interrupt_capability(adapter);
598 if (!pci_enable_msi(adapter->pdev))
599 adapter->flags |= IGB_FLAG_HAS_MSI;
600 igb_free_all_tx_resources(adapter);
601 igb_free_all_rx_resources(adapter);
602 adapter->num_rx_queues = 1;
603 igb_alloc_queues(adapter);
604 } else {
605 switch (hw->mac.type) {
606 case e1000_82575:
607 wr32(E1000_MSIXBM(0),
608 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
609 break;
610 case e1000_82576:
611 wr32(E1000_IVAR0, E1000_IVAR_VALID);
612 break;
613 default:
614 break;
615 }
616 }
617
618 if (adapter->flags & IGB_FLAG_HAS_MSI) {
619 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
620 netdev->name, netdev);
621 if (!err)
622 goto request_done;
623 /* fall back to legacy interrupts */
624 igb_reset_interrupt_capability(adapter);
625 adapter->flags &= ~IGB_FLAG_HAS_MSI;
626 }
627
628 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
629 netdev->name, netdev);
630
631 if (err)
632 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
633 err);
634
635 request_done:
636 return err;
637 }
638
639 static void igb_free_irq(struct igb_adapter *adapter)
640 {
641 struct net_device *netdev = adapter->netdev;
642
643 if (adapter->msix_entries) {
644 int vector = 0, i;
645
646 for (i = 0; i < adapter->num_tx_queues; i++)
647 free_irq(adapter->msix_entries[vector++].vector,
648 &(adapter->tx_ring[i]));
649 for (i = 0; i < adapter->num_rx_queues; i++)
650 free_irq(adapter->msix_entries[vector++].vector,
651 &(adapter->rx_ring[i]));
652
653 free_irq(adapter->msix_entries[vector++].vector, netdev);
654 return;
655 }
656
657 free_irq(adapter->pdev->irq, netdev);
658 }
659
660 /**
661 * igb_irq_disable - Mask off interrupt generation on the NIC
662 * @adapter: board private structure
663 **/
664 static void igb_irq_disable(struct igb_adapter *adapter)
665 {
666 struct e1000_hw *hw = &adapter->hw;
667
668 if (adapter->msix_entries) {
669 wr32(E1000_EIAM, 0);
670 wr32(E1000_EIMC, ~0);
671 wr32(E1000_EIAC, 0);
672 }
673
674 wr32(E1000_IAM, 0);
675 wr32(E1000_IMC, ~0);
676 wrfl();
677 synchronize_irq(adapter->pdev->irq);
678 }
679
680 /**
681 * igb_irq_enable - Enable default interrupt generation settings
682 * @adapter: board private structure
683 **/
684 static void igb_irq_enable(struct igb_adapter *adapter)
685 {
686 struct e1000_hw *hw = &adapter->hw;
687
688 if (adapter->msix_entries) {
689 wr32(E1000_EIAC, adapter->eims_enable_mask);
690 wr32(E1000_EIAM, adapter->eims_enable_mask);
691 wr32(E1000_EIMS, adapter->eims_enable_mask);
692 wr32(E1000_IMS, E1000_IMS_LSC);
693 } else {
694 wr32(E1000_IMS, IMS_ENABLE_MASK);
695 wr32(E1000_IAM, IMS_ENABLE_MASK);
696 }
697 }
698
699 static void igb_update_mng_vlan(struct igb_adapter *adapter)
700 {
701 struct net_device *netdev = adapter->netdev;
702 u16 vid = adapter->hw.mng_cookie.vlan_id;
703 u16 old_vid = adapter->mng_vlan_id;
704 if (adapter->vlgrp) {
705 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
706 if (adapter->hw.mng_cookie.status &
707 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
708 igb_vlan_rx_add_vid(netdev, vid);
709 adapter->mng_vlan_id = vid;
710 } else
711 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
712
713 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
714 (vid != old_vid) &&
715 !vlan_group_get_device(adapter->vlgrp, old_vid))
716 igb_vlan_rx_kill_vid(netdev, old_vid);
717 } else
718 adapter->mng_vlan_id = vid;
719 }
720 }
721
722 /**
723 * igb_release_hw_control - release control of the h/w to f/w
724 * @adapter: address of board private structure
725 *
726 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
727 * For ASF and Pass Through versions of f/w this means that the
728 * driver is no longer loaded.
729 *
730 **/
731 static void igb_release_hw_control(struct igb_adapter *adapter)
732 {
733 struct e1000_hw *hw = &adapter->hw;
734 u32 ctrl_ext;
735
736 /* Let firmware take over control of h/w */
737 ctrl_ext = rd32(E1000_CTRL_EXT);
738 wr32(E1000_CTRL_EXT,
739 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
740 }
741
742
743 /**
744 * igb_get_hw_control - get control of the h/w from f/w
745 * @adapter: address of board private structure
746 *
747 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
748 * For ASF and Pass Through versions of f/w this means that
749 * the driver is loaded.
750 *
751 **/
752 static void igb_get_hw_control(struct igb_adapter *adapter)
753 {
754 struct e1000_hw *hw = &adapter->hw;
755 u32 ctrl_ext;
756
757 /* Let firmware know the driver has taken over */
758 ctrl_ext = rd32(E1000_CTRL_EXT);
759 wr32(E1000_CTRL_EXT,
760 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
761 }
762
763 /**
764 * igb_configure - configure the hardware for RX and TX
765 * @adapter: private board structure
766 **/
767 static void igb_configure(struct igb_adapter *adapter)
768 {
769 struct net_device *netdev = adapter->netdev;
770 int i;
771
772 igb_get_hw_control(adapter);
773 igb_set_multi(netdev);
774
775 igb_restore_vlan(adapter);
776
777 igb_configure_tx(adapter);
778 igb_setup_rctl(adapter);
779 igb_configure_rx(adapter);
780
781 igb_rx_fifo_flush_82575(&adapter->hw);
782
783 /* call IGB_DESC_UNUSED which always leaves
784 * at least 1 descriptor unused to make sure
785 * next_to_use != next_to_clean */
786 for (i = 0; i < adapter->num_rx_queues; i++) {
787 struct igb_ring *ring = &adapter->rx_ring[i];
788 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
789 }
790
791
792 adapter->tx_queue_len = netdev->tx_queue_len;
793 }
794
795
796 /**
797 * igb_up - Open the interface and prepare it to handle traffic
798 * @adapter: board private structure
799 **/
800
801 int igb_up(struct igb_adapter *adapter)
802 {
803 struct e1000_hw *hw = &adapter->hw;
804 int i;
805
806 /* hardware has been reset, we need to reload some things */
807 igb_configure(adapter);
808
809 clear_bit(__IGB_DOWN, &adapter->state);
810
811 for (i = 0; i < adapter->num_rx_queues; i++)
812 napi_enable(&adapter->rx_ring[i].napi);
813 if (adapter->msix_entries)
814 igb_configure_msix(adapter);
815
816 /* Clear any pending interrupts. */
817 rd32(E1000_ICR);
818 igb_irq_enable(adapter);
819
820 /* Fire a link change interrupt to start the watchdog. */
821 wr32(E1000_ICS, E1000_ICS_LSC);
822 return 0;
823 }
824
825 void igb_down(struct igb_adapter *adapter)
826 {
827 struct e1000_hw *hw = &adapter->hw;
828 struct net_device *netdev = adapter->netdev;
829 u32 tctl, rctl;
830 int i;
831
832 /* signal that we're down so the interrupt handler does not
833 * reschedule our watchdog timer */
834 set_bit(__IGB_DOWN, &adapter->state);
835
836 /* disable receives in the hardware */
837 rctl = rd32(E1000_RCTL);
838 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
839 /* flush and sleep below */
840
841 netif_tx_stop_all_queues(netdev);
842
843 /* disable transmits in the hardware */
844 tctl = rd32(E1000_TCTL);
845 tctl &= ~E1000_TCTL_EN;
846 wr32(E1000_TCTL, tctl);
847 /* flush both disables and wait for them to finish */
848 wrfl();
849 msleep(10);
850
851 for (i = 0; i < adapter->num_rx_queues; i++)
852 napi_disable(&adapter->rx_ring[i].napi);
853
854 igb_irq_disable(adapter);
855
856 del_timer_sync(&adapter->watchdog_timer);
857 del_timer_sync(&adapter->phy_info_timer);
858
859 netdev->tx_queue_len = adapter->tx_queue_len;
860 netif_carrier_off(netdev);
861 adapter->link_speed = 0;
862 adapter->link_duplex = 0;
863
864 if (!pci_channel_offline(adapter->pdev))
865 igb_reset(adapter);
866 igb_clean_all_tx_rings(adapter);
867 igb_clean_all_rx_rings(adapter);
868 }
869
870 void igb_reinit_locked(struct igb_adapter *adapter)
871 {
872 WARN_ON(in_interrupt());
873 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
874 msleep(1);
875 igb_down(adapter);
876 igb_up(adapter);
877 clear_bit(__IGB_RESETTING, &adapter->state);
878 }
879
880 void igb_reset(struct igb_adapter *adapter)
881 {
882 struct e1000_hw *hw = &adapter->hw;
883 struct e1000_mac_info *mac = &hw->mac;
884 struct e1000_fc_info *fc = &hw->fc;
885 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
886 u16 hwm;
887
888 /* Repartition Pba for greater than 9k mtu
889 * To take effect CTRL.RST is required.
890 */
891 if (mac->type != e1000_82576) {
892 pba = E1000_PBA_34K;
893 }
894 else {
895 pba = E1000_PBA_64K;
896 }
897
898 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
899 (mac->type < e1000_82576)) {
900 /* adjust PBA for jumbo frames */
901 wr32(E1000_PBA, pba);
902
903 /* To maintain wire speed transmits, the Tx FIFO should be
904 * large enough to accommodate two full transmit packets,
905 * rounded up to the next 1KB and expressed in KB. Likewise,
906 * the Rx FIFO should be large enough to accommodate at least
907 * one full receive packet and is similarly rounded up and
908 * expressed in KB. */
909 pba = rd32(E1000_PBA);
910 /* upper 16 bits has Tx packet buffer allocation size in KB */
911 tx_space = pba >> 16;
912 /* lower 16 bits has Rx packet buffer allocation size in KB */
913 pba &= 0xffff;
914 /* the tx fifo also stores 16 bytes of information about the tx
915 * but don't include ethernet FCS because hardware appends it */
916 min_tx_space = (adapter->max_frame_size +
917 sizeof(struct e1000_tx_desc) -
918 ETH_FCS_LEN) * 2;
919 min_tx_space = ALIGN(min_tx_space, 1024);
920 min_tx_space >>= 10;
921 /* software strips receive CRC, so leave room for it */
922 min_rx_space = adapter->max_frame_size;
923 min_rx_space = ALIGN(min_rx_space, 1024);
924 min_rx_space >>= 10;
925
926 /* If current Tx allocation is less than the min Tx FIFO size,
927 * and the min Tx FIFO size is less than the current Rx FIFO
928 * allocation, take space away from current Rx allocation */
929 if (tx_space < min_tx_space &&
930 ((min_tx_space - tx_space) < pba)) {
931 pba = pba - (min_tx_space - tx_space);
932
933 /* if short on rx space, rx wins and must trump tx
934 * adjustment */
935 if (pba < min_rx_space)
936 pba = min_rx_space;
937 }
938 wr32(E1000_PBA, pba);
939 }
940
941 /* flow control settings */
942 /* The high water mark must be low enough to fit one full frame
943 * (or the size used for early receive) above it in the Rx FIFO.
944 * Set it to the lower of:
945 * - 90% of the Rx FIFO size, or
946 * - the full Rx FIFO size minus one full frame */
947 hwm = min(((pba << 10) * 9 / 10),
948 ((pba << 10) - 2 * adapter->max_frame_size));
949
950 if (mac->type < e1000_82576) {
951 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
952 fc->low_water = fc->high_water - 8;
953 } else {
954 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
955 fc->low_water = fc->high_water - 16;
956 }
957 fc->pause_time = 0xFFFF;
958 fc->send_xon = 1;
959 fc->type = fc->original_type;
960
961 /* Allow time for pending master requests to run */
962 adapter->hw.mac.ops.reset_hw(&adapter->hw);
963 wr32(E1000_WUC, 0);
964
965 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
966 dev_err(&adapter->pdev->dev, "Hardware Error\n");
967
968 igb_update_mng_vlan(adapter);
969
970 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
971 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
972
973 igb_reset_adaptive(&adapter->hw);
974 igb_get_phy_info(&adapter->hw);
975 }
976
977 static const struct net_device_ops igb_netdev_ops = {
978 .ndo_open = igb_open,
979 .ndo_stop = igb_close,
980 .ndo_start_xmit = igb_xmit_frame_adv,
981 .ndo_get_stats = igb_get_stats,
982 .ndo_set_multicast_list = igb_set_multi,
983 .ndo_set_mac_address = igb_set_mac,
984 .ndo_change_mtu = igb_change_mtu,
985 .ndo_do_ioctl = igb_ioctl,
986 .ndo_tx_timeout = igb_tx_timeout,
987 .ndo_validate_addr = eth_validate_addr,
988 .ndo_vlan_rx_register = igb_vlan_rx_register,
989 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
990 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
991 #ifdef CONFIG_NET_POLL_CONTROLLER
992 .ndo_poll_controller = igb_netpoll,
993 #endif
994 };
995
996 /**
997 * igb_probe - Device Initialization Routine
998 * @pdev: PCI device information struct
999 * @ent: entry in igb_pci_tbl
1000 *
1001 * Returns 0 on success, negative on failure
1002 *
1003 * igb_probe initializes an adapter identified by a pci_dev structure.
1004 * The OS initialization, configuring of the adapter private structure,
1005 * and a hardware reset occur.
1006 **/
1007 static int __devinit igb_probe(struct pci_dev *pdev,
1008 const struct pci_device_id *ent)
1009 {
1010 struct net_device *netdev;
1011 struct igb_adapter *adapter;
1012 struct e1000_hw *hw;
1013 struct pci_dev *us_dev;
1014 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1015 unsigned long mmio_start, mmio_len;
1016 int i, err, pci_using_dac, pos;
1017 u16 eeprom_data = 0, state = 0;
1018 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1019 u32 part_num;
1020
1021 err = pci_enable_device_mem(pdev);
1022 if (err)
1023 return err;
1024
1025 pci_using_dac = 0;
1026 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1027 if (!err) {
1028 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1029 if (!err)
1030 pci_using_dac = 1;
1031 } else {
1032 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1033 if (err) {
1034 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1035 if (err) {
1036 dev_err(&pdev->dev, "No usable DMA "
1037 "configuration, aborting\n");
1038 goto err_dma;
1039 }
1040 }
1041 }
1042
1043 /* 82575 requires that the pci-e link partner disable the L0s state */
1044 switch (pdev->device) {
1045 case E1000_DEV_ID_82575EB_COPPER:
1046 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1047 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1048 us_dev = pdev->bus->self;
1049 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1050 if (pos) {
1051 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1052 &state);
1053 state &= ~PCIE_LINK_STATE_L0S;
1054 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1055 state);
1056 dev_info(&pdev->dev,
1057 "Disabling ASPM L0s upstream switch port %s\n",
1058 pci_name(us_dev));
1059 }
1060 default:
1061 break;
1062 }
1063
1064 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1065 IORESOURCE_MEM),
1066 igb_driver_name);
1067 if (err)
1068 goto err_pci_reg;
1069
1070 err = pci_enable_pcie_error_reporting(pdev);
1071 if (err) {
1072 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1073 "0x%x\n", err);
1074 /* non-fatal, continue */
1075 }
1076
1077 pci_set_master(pdev);
1078 pci_save_state(pdev);
1079
1080 err = -ENOMEM;
1081 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1082 if (!netdev)
1083 goto err_alloc_etherdev;
1084
1085 SET_NETDEV_DEV(netdev, &pdev->dev);
1086
1087 pci_set_drvdata(pdev, netdev);
1088 adapter = netdev_priv(netdev);
1089 adapter->netdev = netdev;
1090 adapter->pdev = pdev;
1091 hw = &adapter->hw;
1092 hw->back = adapter;
1093 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1094
1095 mmio_start = pci_resource_start(pdev, 0);
1096 mmio_len = pci_resource_len(pdev, 0);
1097
1098 err = -EIO;
1099 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1100 if (!adapter->hw.hw_addr)
1101 goto err_ioremap;
1102
1103 netdev->netdev_ops = &igb_netdev_ops;
1104 igb_set_ethtool_ops(netdev);
1105 netdev->watchdog_timeo = 5 * HZ;
1106
1107 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1108
1109 netdev->mem_start = mmio_start;
1110 netdev->mem_end = mmio_start + mmio_len;
1111
1112 /* PCI config space info */
1113 hw->vendor_id = pdev->vendor;
1114 hw->device_id = pdev->device;
1115 hw->revision_id = pdev->revision;
1116 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1117 hw->subsystem_device_id = pdev->subsystem_device;
1118
1119 /* setup the private structure */
1120 hw->back = adapter;
1121 /* Copy the default MAC, PHY and NVM function pointers */
1122 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1123 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1124 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1125 /* Initialize skew-specific constants */
1126 err = ei->get_invariants(hw);
1127 if (err)
1128 goto err_hw_init;
1129
1130 err = igb_sw_init(adapter);
1131 if (err)
1132 goto err_sw_init;
1133
1134 igb_get_bus_info_pcie(hw);
1135
1136 /* set flags */
1137 switch (hw->mac.type) {
1138 case e1000_82575:
1139 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1140 break;
1141 case e1000_82576:
1142 default:
1143 break;
1144 }
1145
1146 hw->phy.autoneg_wait_to_complete = false;
1147 hw->mac.adaptive_ifs = true;
1148
1149 /* Copper options */
1150 if (hw->phy.media_type == e1000_media_type_copper) {
1151 hw->phy.mdix = AUTO_ALL_MODES;
1152 hw->phy.disable_polarity_correction = false;
1153 hw->phy.ms_type = e1000_ms_hw_default;
1154 }
1155
1156 if (igb_check_reset_block(hw))
1157 dev_info(&pdev->dev,
1158 "PHY reset is blocked due to SOL/IDER session.\n");
1159
1160 netdev->features = NETIF_F_SG |
1161 NETIF_F_HW_CSUM |
1162 NETIF_F_HW_VLAN_TX |
1163 NETIF_F_HW_VLAN_RX |
1164 NETIF_F_HW_VLAN_FILTER;
1165
1166 netdev->features |= NETIF_F_TSO;
1167 netdev->features |= NETIF_F_TSO6;
1168
1169 #ifdef CONFIG_IGB_LRO
1170 netdev->features |= NETIF_F_GRO;
1171 #endif
1172
1173 netdev->vlan_features |= NETIF_F_TSO;
1174 netdev->vlan_features |= NETIF_F_TSO6;
1175 netdev->vlan_features |= NETIF_F_HW_CSUM;
1176 netdev->vlan_features |= NETIF_F_SG;
1177
1178 if (pci_using_dac)
1179 netdev->features |= NETIF_F_HIGHDMA;
1180
1181 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1182
1183 /* before reading the NVM, reset the controller to put the device in a
1184 * known good starting state */
1185 hw->mac.ops.reset_hw(hw);
1186
1187 /* make sure the NVM is good */
1188 if (igb_validate_nvm_checksum(hw) < 0) {
1189 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1190 err = -EIO;
1191 goto err_eeprom;
1192 }
1193
1194 /* copy the MAC address out of the NVM */
1195 if (hw->mac.ops.read_mac_addr(hw))
1196 dev_err(&pdev->dev, "NVM Read Error\n");
1197
1198 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1199 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1200
1201 if (!is_valid_ether_addr(netdev->perm_addr)) {
1202 dev_err(&pdev->dev, "Invalid MAC Address\n");
1203 err = -EIO;
1204 goto err_eeprom;
1205 }
1206
1207 init_timer(&adapter->watchdog_timer);
1208 adapter->watchdog_timer.function = &igb_watchdog;
1209 adapter->watchdog_timer.data = (unsigned long) adapter;
1210
1211 init_timer(&adapter->phy_info_timer);
1212 adapter->phy_info_timer.function = &igb_update_phy_info;
1213 adapter->phy_info_timer.data = (unsigned long) adapter;
1214
1215 INIT_WORK(&adapter->reset_task, igb_reset_task);
1216 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1217
1218 /* Initialize link & ring properties that are user-changeable */
1219 adapter->tx_ring->count = 256;
1220 for (i = 0; i < adapter->num_tx_queues; i++)
1221 adapter->tx_ring[i].count = adapter->tx_ring->count;
1222 adapter->rx_ring->count = 256;
1223 for (i = 0; i < adapter->num_rx_queues; i++)
1224 adapter->rx_ring[i].count = adapter->rx_ring->count;
1225
1226 adapter->fc_autoneg = true;
1227 hw->mac.autoneg = true;
1228 hw->phy.autoneg_advertised = 0x2f;
1229
1230 hw->fc.original_type = e1000_fc_default;
1231 hw->fc.type = e1000_fc_default;
1232
1233 adapter->itr_setting = 3;
1234 adapter->itr = IGB_START_ITR;
1235
1236 igb_validate_mdi_setting(hw);
1237
1238 adapter->rx_csum = 1;
1239
1240 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1241 * enable the ACPI Magic Packet filter
1242 */
1243
1244 if (hw->bus.func == 0 ||
1245 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1246 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1247 &eeprom_data);
1248
1249 if (eeprom_data & eeprom_apme_mask)
1250 adapter->eeprom_wol |= E1000_WUFC_MAG;
1251
1252 /* now that we have the eeprom settings, apply the special cases where
1253 * the eeprom may be wrong or the board simply won't support wake on
1254 * lan on a particular port */
1255 switch (pdev->device) {
1256 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1257 adapter->eeprom_wol = 0;
1258 break;
1259 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1260 case E1000_DEV_ID_82576_FIBER:
1261 case E1000_DEV_ID_82576_SERDES:
1262 /* Wake events only supported on port A for dual fiber
1263 * regardless of eeprom setting */
1264 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1265 adapter->eeprom_wol = 0;
1266 break;
1267 }
1268
1269 /* initialize the wol settings based on the eeprom settings */
1270 adapter->wol = adapter->eeprom_wol;
1271 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1272
1273 /* reset the hardware with the new settings */
1274 igb_reset(adapter);
1275
1276 /* let the f/w know that the h/w is now under the control of the
1277 * driver. */
1278 igb_get_hw_control(adapter);
1279
1280 /* tell the stack to leave us alone until igb_open() is called */
1281 netif_carrier_off(netdev);
1282 netif_tx_stop_all_queues(netdev);
1283
1284 strcpy(netdev->name, "eth%d");
1285 err = register_netdev(netdev);
1286 if (err)
1287 goto err_register;
1288
1289 #ifdef CONFIG_IGB_DCA
1290 if (dca_add_requester(&pdev->dev) == 0) {
1291 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1292 dev_info(&pdev->dev, "DCA enabled\n");
1293 /* Always use CB2 mode, difference is masked
1294 * in the CB driver. */
1295 wr32(E1000_DCA_CTRL, 2);
1296 igb_setup_dca(adapter);
1297 }
1298 #endif
1299
1300 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1301 /* print bus type/speed/width info */
1302 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1303 netdev->name,
1304 ((hw->bus.speed == e1000_bus_speed_2500)
1305 ? "2.5Gb/s" : "unknown"),
1306 ((hw->bus.width == e1000_bus_width_pcie_x4)
1307 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1308 ? "Width x1" : "unknown"),
1309 netdev->dev_addr);
1310
1311 igb_read_part_num(hw, &part_num);
1312 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1313 (part_num >> 8), (part_num & 0xff));
1314
1315 dev_info(&pdev->dev,
1316 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1317 adapter->msix_entries ? "MSI-X" :
1318 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1319 adapter->num_rx_queues, adapter->num_tx_queues);
1320
1321 return 0;
1322
1323 err_register:
1324 igb_release_hw_control(adapter);
1325 err_eeprom:
1326 if (!igb_check_reset_block(hw))
1327 igb_reset_phy(hw);
1328
1329 if (hw->flash_address)
1330 iounmap(hw->flash_address);
1331
1332 igb_remove_device(hw);
1333 igb_free_queues(adapter);
1334 err_sw_init:
1335 err_hw_init:
1336 iounmap(hw->hw_addr);
1337 err_ioremap:
1338 free_netdev(netdev);
1339 err_alloc_etherdev:
1340 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1341 IORESOURCE_MEM));
1342 err_pci_reg:
1343 err_dma:
1344 pci_disable_device(pdev);
1345 return err;
1346 }
1347
1348 /**
1349 * igb_remove - Device Removal Routine
1350 * @pdev: PCI device information struct
1351 *
1352 * igb_remove is called by the PCI subsystem to alert the driver
1353 * that it should release a PCI device. The could be caused by a
1354 * Hot-Plug event, or because the driver is going to be removed from
1355 * memory.
1356 **/
1357 static void __devexit igb_remove(struct pci_dev *pdev)
1358 {
1359 struct net_device *netdev = pci_get_drvdata(pdev);
1360 struct igb_adapter *adapter = netdev_priv(netdev);
1361 #ifdef CONFIG_IGB_DCA
1362 struct e1000_hw *hw = &adapter->hw;
1363 #endif
1364 int err;
1365
1366 /* flush_scheduled work may reschedule our watchdog task, so
1367 * explicitly disable watchdog tasks from being rescheduled */
1368 set_bit(__IGB_DOWN, &adapter->state);
1369 del_timer_sync(&adapter->watchdog_timer);
1370 del_timer_sync(&adapter->phy_info_timer);
1371
1372 flush_scheduled_work();
1373
1374 #ifdef CONFIG_IGB_DCA
1375 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1376 dev_info(&pdev->dev, "DCA disabled\n");
1377 dca_remove_requester(&pdev->dev);
1378 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1379 wr32(E1000_DCA_CTRL, 1);
1380 }
1381 #endif
1382
1383 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1384 * would have already happened in close and is redundant. */
1385 igb_release_hw_control(adapter);
1386
1387 unregister_netdev(netdev);
1388
1389 if (!igb_check_reset_block(&adapter->hw))
1390 igb_reset_phy(&adapter->hw);
1391
1392 igb_remove_device(&adapter->hw);
1393 igb_reset_interrupt_capability(adapter);
1394
1395 igb_free_queues(adapter);
1396
1397 iounmap(adapter->hw.hw_addr);
1398 if (adapter->hw.flash_address)
1399 iounmap(adapter->hw.flash_address);
1400 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1401 IORESOURCE_MEM));
1402
1403 free_netdev(netdev);
1404
1405 err = pci_disable_pcie_error_reporting(pdev);
1406 if (err)
1407 dev_err(&pdev->dev,
1408 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1409
1410 pci_disable_device(pdev);
1411 }
1412
1413 /**
1414 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1415 * @adapter: board private structure to initialize
1416 *
1417 * igb_sw_init initializes the Adapter private data structure.
1418 * Fields are initialized based on PCI device information and
1419 * OS network device settings (MTU size).
1420 **/
1421 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1422 {
1423 struct e1000_hw *hw = &adapter->hw;
1424 struct net_device *netdev = adapter->netdev;
1425 struct pci_dev *pdev = adapter->pdev;
1426
1427 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1428
1429 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1430 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1431 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1432 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1433 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1434 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1435
1436 /* This call may decrease the number of queues depending on
1437 * interrupt mode. */
1438 igb_set_interrupt_capability(adapter);
1439
1440 if (igb_alloc_queues(adapter)) {
1441 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1442 return -ENOMEM;
1443 }
1444
1445 /* Explicitly disable IRQ since the NIC can be in any state. */
1446 igb_irq_disable(adapter);
1447
1448 set_bit(__IGB_DOWN, &adapter->state);
1449 return 0;
1450 }
1451
1452 /**
1453 * igb_open - Called when a network interface is made active
1454 * @netdev: network interface device structure
1455 *
1456 * Returns 0 on success, negative value on failure
1457 *
1458 * The open entry point is called when a network interface is made
1459 * active by the system (IFF_UP). At this point all resources needed
1460 * for transmit and receive operations are allocated, the interrupt
1461 * handler is registered with the OS, the watchdog timer is started,
1462 * and the stack is notified that the interface is ready.
1463 **/
1464 static int igb_open(struct net_device *netdev)
1465 {
1466 struct igb_adapter *adapter = netdev_priv(netdev);
1467 struct e1000_hw *hw = &adapter->hw;
1468 int err;
1469 int i;
1470
1471 /* disallow open during test */
1472 if (test_bit(__IGB_TESTING, &adapter->state))
1473 return -EBUSY;
1474
1475 /* allocate transmit descriptors */
1476 err = igb_setup_all_tx_resources(adapter);
1477 if (err)
1478 goto err_setup_tx;
1479
1480 /* allocate receive descriptors */
1481 err = igb_setup_all_rx_resources(adapter);
1482 if (err)
1483 goto err_setup_rx;
1484
1485 /* e1000_power_up_phy(adapter); */
1486
1487 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1488 if ((adapter->hw.mng_cookie.status &
1489 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1490 igb_update_mng_vlan(adapter);
1491
1492 /* before we allocate an interrupt, we must be ready to handle it.
1493 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1494 * as soon as we call pci_request_irq, so we have to setup our
1495 * clean_rx handler before we do so. */
1496 igb_configure(adapter);
1497
1498 err = igb_request_irq(adapter);
1499 if (err)
1500 goto err_req_irq;
1501
1502 /* From here on the code is the same as igb_up() */
1503 clear_bit(__IGB_DOWN, &adapter->state);
1504
1505 for (i = 0; i < adapter->num_rx_queues; i++)
1506 napi_enable(&adapter->rx_ring[i].napi);
1507
1508 /* Clear any pending interrupts. */
1509 rd32(E1000_ICR);
1510
1511 igb_irq_enable(adapter);
1512
1513 netif_tx_start_all_queues(netdev);
1514
1515 /* Fire a link status change interrupt to start the watchdog. */
1516 wr32(E1000_ICS, E1000_ICS_LSC);
1517
1518 return 0;
1519
1520 err_req_irq:
1521 igb_release_hw_control(adapter);
1522 /* e1000_power_down_phy(adapter); */
1523 igb_free_all_rx_resources(adapter);
1524 err_setup_rx:
1525 igb_free_all_tx_resources(adapter);
1526 err_setup_tx:
1527 igb_reset(adapter);
1528
1529 return err;
1530 }
1531
1532 /**
1533 * igb_close - Disables a network interface
1534 * @netdev: network interface device structure
1535 *
1536 * Returns 0, this is not allowed to fail
1537 *
1538 * The close entry point is called when an interface is de-activated
1539 * by the OS. The hardware is still under the driver's control, but
1540 * needs to be disabled. A global MAC reset is issued to stop the
1541 * hardware, and all transmit and receive resources are freed.
1542 **/
1543 static int igb_close(struct net_device *netdev)
1544 {
1545 struct igb_adapter *adapter = netdev_priv(netdev);
1546
1547 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1548 igb_down(adapter);
1549
1550 igb_free_irq(adapter);
1551
1552 igb_free_all_tx_resources(adapter);
1553 igb_free_all_rx_resources(adapter);
1554
1555 /* kill manageability vlan ID if supported, but not if a vlan with
1556 * the same ID is registered on the host OS (let 8021q kill it) */
1557 if ((adapter->hw.mng_cookie.status &
1558 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1559 !(adapter->vlgrp &&
1560 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1561 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1562
1563 return 0;
1564 }
1565
1566 /**
1567 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1568 * @adapter: board private structure
1569 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1570 *
1571 * Return 0 on success, negative on failure
1572 **/
1573
1574 int igb_setup_tx_resources(struct igb_adapter *adapter,
1575 struct igb_ring *tx_ring)
1576 {
1577 struct pci_dev *pdev = adapter->pdev;
1578 int size;
1579
1580 size = sizeof(struct igb_buffer) * tx_ring->count;
1581 tx_ring->buffer_info = vmalloc(size);
1582 if (!tx_ring->buffer_info)
1583 goto err;
1584 memset(tx_ring->buffer_info, 0, size);
1585
1586 /* round up to nearest 4K */
1587 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1588 tx_ring->size = ALIGN(tx_ring->size, 4096);
1589
1590 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1591 &tx_ring->dma);
1592
1593 if (!tx_ring->desc)
1594 goto err;
1595
1596 tx_ring->adapter = adapter;
1597 tx_ring->next_to_use = 0;
1598 tx_ring->next_to_clean = 0;
1599 return 0;
1600
1601 err:
1602 vfree(tx_ring->buffer_info);
1603 dev_err(&adapter->pdev->dev,
1604 "Unable to allocate memory for the transmit descriptor ring\n");
1605 return -ENOMEM;
1606 }
1607
1608 /**
1609 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1610 * (Descriptors) for all queues
1611 * @adapter: board private structure
1612 *
1613 * Return 0 on success, negative on failure
1614 **/
1615 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1616 {
1617 int i, err = 0;
1618 int r_idx;
1619
1620 for (i = 0; i < adapter->num_tx_queues; i++) {
1621 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1622 if (err) {
1623 dev_err(&adapter->pdev->dev,
1624 "Allocation for Tx Queue %u failed\n", i);
1625 for (i--; i >= 0; i--)
1626 igb_free_tx_resources(&adapter->tx_ring[i]);
1627 break;
1628 }
1629 }
1630
1631 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1632 r_idx = i % adapter->num_tx_queues;
1633 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1634 }
1635 return err;
1636 }
1637
1638 /**
1639 * igb_configure_tx - Configure transmit Unit after Reset
1640 * @adapter: board private structure
1641 *
1642 * Configure the Tx unit of the MAC after a reset.
1643 **/
1644 static void igb_configure_tx(struct igb_adapter *adapter)
1645 {
1646 u64 tdba;
1647 struct e1000_hw *hw = &adapter->hw;
1648 u32 tctl;
1649 u32 txdctl, txctrl;
1650 int i, j;
1651
1652 for (i = 0; i < adapter->num_tx_queues; i++) {
1653 struct igb_ring *ring = &(adapter->tx_ring[i]);
1654 j = ring->reg_idx;
1655 wr32(E1000_TDLEN(j),
1656 ring->count * sizeof(struct e1000_tx_desc));
1657 tdba = ring->dma;
1658 wr32(E1000_TDBAL(j),
1659 tdba & 0x00000000ffffffffULL);
1660 wr32(E1000_TDBAH(j), tdba >> 32);
1661
1662 ring->head = E1000_TDH(j);
1663 ring->tail = E1000_TDT(j);
1664 writel(0, hw->hw_addr + ring->tail);
1665 writel(0, hw->hw_addr + ring->head);
1666 txdctl = rd32(E1000_TXDCTL(j));
1667 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1668 wr32(E1000_TXDCTL(j), txdctl);
1669
1670 /* Turn off Relaxed Ordering on head write-backs. The
1671 * writebacks MUST be delivered in order or it will
1672 * completely screw up our bookeeping.
1673 */
1674 txctrl = rd32(E1000_DCA_TXCTRL(j));
1675 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1676 wr32(E1000_DCA_TXCTRL(j), txctrl);
1677 }
1678
1679
1680
1681 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1682
1683 /* Program the Transmit Control Register */
1684
1685 tctl = rd32(E1000_TCTL);
1686 tctl &= ~E1000_TCTL_CT;
1687 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1688 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1689
1690 igb_config_collision_dist(hw);
1691
1692 /* Setup Transmit Descriptor Settings for eop descriptor */
1693 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1694
1695 /* Enable transmits */
1696 tctl |= E1000_TCTL_EN;
1697
1698 wr32(E1000_TCTL, tctl);
1699 }
1700
1701 /**
1702 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1703 * @adapter: board private structure
1704 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1705 *
1706 * Returns 0 on success, negative on failure
1707 **/
1708
1709 int igb_setup_rx_resources(struct igb_adapter *adapter,
1710 struct igb_ring *rx_ring)
1711 {
1712 struct pci_dev *pdev = adapter->pdev;
1713 int size, desc_len;
1714
1715 size = sizeof(struct igb_buffer) * rx_ring->count;
1716 rx_ring->buffer_info = vmalloc(size);
1717 if (!rx_ring->buffer_info)
1718 goto err;
1719 memset(rx_ring->buffer_info, 0, size);
1720
1721 desc_len = sizeof(union e1000_adv_rx_desc);
1722
1723 /* Round up to nearest 4K */
1724 rx_ring->size = rx_ring->count * desc_len;
1725 rx_ring->size = ALIGN(rx_ring->size, 4096);
1726
1727 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1728 &rx_ring->dma);
1729
1730 if (!rx_ring->desc)
1731 goto err;
1732
1733 rx_ring->next_to_clean = 0;
1734 rx_ring->next_to_use = 0;
1735
1736 rx_ring->adapter = adapter;
1737
1738 return 0;
1739
1740 err:
1741 vfree(rx_ring->buffer_info);
1742 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1743 "the receive descriptor ring\n");
1744 return -ENOMEM;
1745 }
1746
1747 /**
1748 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1749 * (Descriptors) for all queues
1750 * @adapter: board private structure
1751 *
1752 * Return 0 on success, negative on failure
1753 **/
1754 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1755 {
1756 int i, err = 0;
1757
1758 for (i = 0; i < adapter->num_rx_queues; i++) {
1759 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1760 if (err) {
1761 dev_err(&adapter->pdev->dev,
1762 "Allocation for Rx Queue %u failed\n", i);
1763 for (i--; i >= 0; i--)
1764 igb_free_rx_resources(&adapter->rx_ring[i]);
1765 break;
1766 }
1767 }
1768
1769 return err;
1770 }
1771
1772 /**
1773 * igb_setup_rctl - configure the receive control registers
1774 * @adapter: Board private structure
1775 **/
1776 static void igb_setup_rctl(struct igb_adapter *adapter)
1777 {
1778 struct e1000_hw *hw = &adapter->hw;
1779 u32 rctl;
1780 u32 srrctl = 0;
1781 int i, j;
1782
1783 rctl = rd32(E1000_RCTL);
1784
1785 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1786 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1787
1788 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1789 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1790
1791 /*
1792 * enable stripping of CRC. It's unlikely this will break BMC
1793 * redirection as it did with e1000. Newer features require
1794 * that the HW strips the CRC.
1795 */
1796 rctl |= E1000_RCTL_SECRC;
1797
1798 /*
1799 * disable store bad packets and clear size bits.
1800 */
1801 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1802
1803 /* enable LPE when to prevent packets larger than max_frame_size */
1804 rctl |= E1000_RCTL_LPE;
1805
1806 /* Setup buffer sizes */
1807 switch (adapter->rx_buffer_len) {
1808 case IGB_RXBUFFER_256:
1809 rctl |= E1000_RCTL_SZ_256;
1810 break;
1811 case IGB_RXBUFFER_512:
1812 rctl |= E1000_RCTL_SZ_512;
1813 break;
1814 default:
1815 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1816 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1817 break;
1818 }
1819
1820 /* 82575 and greater support packet-split where the protocol
1821 * header is placed in skb->data and the packet data is
1822 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1823 * In the case of a non-split, skb->data is linearly filled,
1824 * followed by the page buffers. Therefore, skb->data is
1825 * sized to hold the largest protocol header.
1826 */
1827 /* allocations using alloc_page take too long for regular MTU
1828 * so only enable packet split for jumbo frames */
1829 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1830 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1831 srrctl |= adapter->rx_ps_hdr_size <<
1832 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1833 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1834 } else {
1835 adapter->rx_ps_hdr_size = 0;
1836 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1837 }
1838
1839 for (i = 0; i < adapter->num_rx_queues; i++) {
1840 j = adapter->rx_ring[i].reg_idx;
1841 wr32(E1000_SRRCTL(j), srrctl);
1842 }
1843
1844 wr32(E1000_RCTL, rctl);
1845 }
1846
1847 /**
1848 * igb_configure_rx - Configure receive Unit after Reset
1849 * @adapter: board private structure
1850 *
1851 * Configure the Rx unit of the MAC after a reset.
1852 **/
1853 static void igb_configure_rx(struct igb_adapter *adapter)
1854 {
1855 u64 rdba;
1856 struct e1000_hw *hw = &adapter->hw;
1857 u32 rctl, rxcsum;
1858 u32 rxdctl;
1859 int i, j;
1860
1861 /* disable receives while setting up the descriptors */
1862 rctl = rd32(E1000_RCTL);
1863 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1864 wrfl();
1865 mdelay(10);
1866
1867 if (adapter->itr_setting > 3)
1868 wr32(E1000_ITR, adapter->itr);
1869
1870 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1871 * the Base and Length of the Rx Descriptor Ring */
1872 for (i = 0; i < adapter->num_rx_queues; i++) {
1873 struct igb_ring *ring = &(adapter->rx_ring[i]);
1874 j = ring->reg_idx;
1875 rdba = ring->dma;
1876 wr32(E1000_RDBAL(j),
1877 rdba & 0x00000000ffffffffULL);
1878 wr32(E1000_RDBAH(j), rdba >> 32);
1879 wr32(E1000_RDLEN(j),
1880 ring->count * sizeof(union e1000_adv_rx_desc));
1881
1882 ring->head = E1000_RDH(j);
1883 ring->tail = E1000_RDT(j);
1884 writel(0, hw->hw_addr + ring->tail);
1885 writel(0, hw->hw_addr + ring->head);
1886
1887 rxdctl = rd32(E1000_RXDCTL(j));
1888 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1889 rxdctl &= 0xFFF00000;
1890 rxdctl |= IGB_RX_PTHRESH;
1891 rxdctl |= IGB_RX_HTHRESH << 8;
1892 rxdctl |= IGB_RX_WTHRESH << 16;
1893 wr32(E1000_RXDCTL(j), rxdctl);
1894 }
1895
1896 if (adapter->num_rx_queues > 1) {
1897 u32 random[10];
1898 u32 mrqc;
1899 u32 j, shift;
1900 union e1000_reta {
1901 u32 dword;
1902 u8 bytes[4];
1903 } reta;
1904
1905 get_random_bytes(&random[0], 40);
1906
1907 if (hw->mac.type >= e1000_82576)
1908 shift = 0;
1909 else
1910 shift = 6;
1911 for (j = 0; j < (32 * 4); j++) {
1912 reta.bytes[j & 3] =
1913 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1914 if ((j & 3) == 3)
1915 writel(reta.dword,
1916 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1917 }
1918 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1919
1920 /* Fill out hash function seeds */
1921 for (j = 0; j < 10; j++)
1922 array_wr32(E1000_RSSRK(0), j, random[j]);
1923
1924 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1925 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1926 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1927 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1928 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1929 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1930 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1931 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1932
1933
1934 wr32(E1000_MRQC, mrqc);
1935
1936 /* Multiqueue and raw packet checksumming are mutually
1937 * exclusive. Note that this not the same as TCP/IP
1938 * checksumming, which works fine. */
1939 rxcsum = rd32(E1000_RXCSUM);
1940 rxcsum |= E1000_RXCSUM_PCSD;
1941 wr32(E1000_RXCSUM, rxcsum);
1942 } else {
1943 /* Enable Receive Checksum Offload for TCP and UDP */
1944 rxcsum = rd32(E1000_RXCSUM);
1945 if (adapter->rx_csum) {
1946 rxcsum |= E1000_RXCSUM_TUOFL;
1947
1948 /* Enable IPv4 payload checksum for UDP fragments
1949 * Must be used in conjunction with packet-split. */
1950 if (adapter->rx_ps_hdr_size)
1951 rxcsum |= E1000_RXCSUM_IPPCSE;
1952 } else {
1953 rxcsum &= ~E1000_RXCSUM_TUOFL;
1954 /* don't need to clear IPPCSE as it defaults to 0 */
1955 }
1956 wr32(E1000_RXCSUM, rxcsum);
1957 }
1958
1959 if (adapter->vlgrp)
1960 wr32(E1000_RLPML,
1961 adapter->max_frame_size + VLAN_TAG_SIZE);
1962 else
1963 wr32(E1000_RLPML, adapter->max_frame_size);
1964
1965 /* Enable Receives */
1966 wr32(E1000_RCTL, rctl);
1967 }
1968
1969 /**
1970 * igb_free_tx_resources - Free Tx Resources per Queue
1971 * @tx_ring: Tx descriptor ring for a specific queue
1972 *
1973 * Free all transmit software resources
1974 **/
1975 void igb_free_tx_resources(struct igb_ring *tx_ring)
1976 {
1977 struct pci_dev *pdev = tx_ring->adapter->pdev;
1978
1979 igb_clean_tx_ring(tx_ring);
1980
1981 vfree(tx_ring->buffer_info);
1982 tx_ring->buffer_info = NULL;
1983
1984 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1985
1986 tx_ring->desc = NULL;
1987 }
1988
1989 /**
1990 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1991 * @adapter: board private structure
1992 *
1993 * Free all transmit software resources
1994 **/
1995 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1996 {
1997 int i;
1998
1999 for (i = 0; i < adapter->num_tx_queues; i++)
2000 igb_free_tx_resources(&adapter->tx_ring[i]);
2001 }
2002
2003 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2004 struct igb_buffer *buffer_info)
2005 {
2006 if (buffer_info->dma) {
2007 pci_unmap_page(adapter->pdev,
2008 buffer_info->dma,
2009 buffer_info->length,
2010 PCI_DMA_TODEVICE);
2011 buffer_info->dma = 0;
2012 }
2013 if (buffer_info->skb) {
2014 dev_kfree_skb_any(buffer_info->skb);
2015 buffer_info->skb = NULL;
2016 }
2017 buffer_info->time_stamp = 0;
2018 /* buffer_info must be completely set up in the transmit path */
2019 }
2020
2021 /**
2022 * igb_clean_tx_ring - Free Tx Buffers
2023 * @tx_ring: ring to be cleaned
2024 **/
2025 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2026 {
2027 struct igb_adapter *adapter = tx_ring->adapter;
2028 struct igb_buffer *buffer_info;
2029 unsigned long size;
2030 unsigned int i;
2031
2032 if (!tx_ring->buffer_info)
2033 return;
2034 /* Free all the Tx ring sk_buffs */
2035
2036 for (i = 0; i < tx_ring->count; i++) {
2037 buffer_info = &tx_ring->buffer_info[i];
2038 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2039 }
2040
2041 size = sizeof(struct igb_buffer) * tx_ring->count;
2042 memset(tx_ring->buffer_info, 0, size);
2043
2044 /* Zero out the descriptor ring */
2045
2046 memset(tx_ring->desc, 0, tx_ring->size);
2047
2048 tx_ring->next_to_use = 0;
2049 tx_ring->next_to_clean = 0;
2050
2051 writel(0, adapter->hw.hw_addr + tx_ring->head);
2052 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2053 }
2054
2055 /**
2056 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2057 * @adapter: board private structure
2058 **/
2059 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2060 {
2061 int i;
2062
2063 for (i = 0; i < adapter->num_tx_queues; i++)
2064 igb_clean_tx_ring(&adapter->tx_ring[i]);
2065 }
2066
2067 /**
2068 * igb_free_rx_resources - Free Rx Resources
2069 * @rx_ring: ring to clean the resources from
2070 *
2071 * Free all receive software resources
2072 **/
2073 void igb_free_rx_resources(struct igb_ring *rx_ring)
2074 {
2075 struct pci_dev *pdev = rx_ring->adapter->pdev;
2076
2077 igb_clean_rx_ring(rx_ring);
2078
2079 vfree(rx_ring->buffer_info);
2080 rx_ring->buffer_info = NULL;
2081
2082 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2083
2084 rx_ring->desc = NULL;
2085 }
2086
2087 /**
2088 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2089 * @adapter: board private structure
2090 *
2091 * Free all receive software resources
2092 **/
2093 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2094 {
2095 int i;
2096
2097 for (i = 0; i < adapter->num_rx_queues; i++)
2098 igb_free_rx_resources(&adapter->rx_ring[i]);
2099 }
2100
2101 /**
2102 * igb_clean_rx_ring - Free Rx Buffers per Queue
2103 * @rx_ring: ring to free buffers from
2104 **/
2105 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2106 {
2107 struct igb_adapter *adapter = rx_ring->adapter;
2108 struct igb_buffer *buffer_info;
2109 struct pci_dev *pdev = adapter->pdev;
2110 unsigned long size;
2111 unsigned int i;
2112
2113 if (!rx_ring->buffer_info)
2114 return;
2115 /* Free all the Rx ring sk_buffs */
2116 for (i = 0; i < rx_ring->count; i++) {
2117 buffer_info = &rx_ring->buffer_info[i];
2118 if (buffer_info->dma) {
2119 if (adapter->rx_ps_hdr_size)
2120 pci_unmap_single(pdev, buffer_info->dma,
2121 adapter->rx_ps_hdr_size,
2122 PCI_DMA_FROMDEVICE);
2123 else
2124 pci_unmap_single(pdev, buffer_info->dma,
2125 adapter->rx_buffer_len,
2126 PCI_DMA_FROMDEVICE);
2127 buffer_info->dma = 0;
2128 }
2129
2130 if (buffer_info->skb) {
2131 dev_kfree_skb(buffer_info->skb);
2132 buffer_info->skb = NULL;
2133 }
2134 if (buffer_info->page) {
2135 if (buffer_info->page_dma)
2136 pci_unmap_page(pdev, buffer_info->page_dma,
2137 PAGE_SIZE / 2,
2138 PCI_DMA_FROMDEVICE);
2139 put_page(buffer_info->page);
2140 buffer_info->page = NULL;
2141 buffer_info->page_dma = 0;
2142 buffer_info->page_offset = 0;
2143 }
2144 }
2145
2146 size = sizeof(struct igb_buffer) * rx_ring->count;
2147 memset(rx_ring->buffer_info, 0, size);
2148
2149 /* Zero out the descriptor ring */
2150 memset(rx_ring->desc, 0, rx_ring->size);
2151
2152 rx_ring->next_to_clean = 0;
2153 rx_ring->next_to_use = 0;
2154
2155 writel(0, adapter->hw.hw_addr + rx_ring->head);
2156 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2157 }
2158
2159 /**
2160 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2161 * @adapter: board private structure
2162 **/
2163 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2164 {
2165 int i;
2166
2167 for (i = 0; i < adapter->num_rx_queues; i++)
2168 igb_clean_rx_ring(&adapter->rx_ring[i]);
2169 }
2170
2171 /**
2172 * igb_set_mac - Change the Ethernet Address of the NIC
2173 * @netdev: network interface device structure
2174 * @p: pointer to an address structure
2175 *
2176 * Returns 0 on success, negative on failure
2177 **/
2178 static int igb_set_mac(struct net_device *netdev, void *p)
2179 {
2180 struct igb_adapter *adapter = netdev_priv(netdev);
2181 struct sockaddr *addr = p;
2182
2183 if (!is_valid_ether_addr(addr->sa_data))
2184 return -EADDRNOTAVAIL;
2185
2186 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2187 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2188
2189 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2190
2191 return 0;
2192 }
2193
2194 /**
2195 * igb_set_multi - Multicast and Promiscuous mode set
2196 * @netdev: network interface device structure
2197 *
2198 * The set_multi entry point is called whenever the multicast address
2199 * list or the network interface flags are updated. This routine is
2200 * responsible for configuring the hardware for proper multicast,
2201 * promiscuous mode, and all-multi behavior.
2202 **/
2203 static void igb_set_multi(struct net_device *netdev)
2204 {
2205 struct igb_adapter *adapter = netdev_priv(netdev);
2206 struct e1000_hw *hw = &adapter->hw;
2207 struct e1000_mac_info *mac = &hw->mac;
2208 struct dev_mc_list *mc_ptr;
2209 u8 *mta_list;
2210 u32 rctl;
2211 int i;
2212
2213 /* Check for Promiscuous and All Multicast modes */
2214
2215 rctl = rd32(E1000_RCTL);
2216
2217 if (netdev->flags & IFF_PROMISC) {
2218 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2219 rctl &= ~E1000_RCTL_VFE;
2220 } else {
2221 if (netdev->flags & IFF_ALLMULTI) {
2222 rctl |= E1000_RCTL_MPE;
2223 rctl &= ~E1000_RCTL_UPE;
2224 } else
2225 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2226 rctl |= E1000_RCTL_VFE;
2227 }
2228 wr32(E1000_RCTL, rctl);
2229
2230 if (!netdev->mc_count) {
2231 /* nothing to program, so clear mc list */
2232 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2233 mac->rar_entry_count);
2234 return;
2235 }
2236
2237 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2238 if (!mta_list)
2239 return;
2240
2241 /* The shared function expects a packed array of only addresses. */
2242 mc_ptr = netdev->mc_list;
2243
2244 for (i = 0; i < netdev->mc_count; i++) {
2245 if (!mc_ptr)
2246 break;
2247 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2248 mc_ptr = mc_ptr->next;
2249 }
2250 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2251 mac->rar_entry_count);
2252 kfree(mta_list);
2253 }
2254
2255 /* Need to wait a few seconds after link up to get diagnostic information from
2256 * the phy */
2257 static void igb_update_phy_info(unsigned long data)
2258 {
2259 struct igb_adapter *adapter = (struct igb_adapter *) data;
2260 igb_get_phy_info(&adapter->hw);
2261 }
2262
2263 /**
2264 * igb_has_link - check shared code for link and determine up/down
2265 * @adapter: pointer to driver private info
2266 **/
2267 static bool igb_has_link(struct igb_adapter *adapter)
2268 {
2269 struct e1000_hw *hw = &adapter->hw;
2270 bool link_active = false;
2271 s32 ret_val = 0;
2272
2273 /* get_link_status is set on LSC (link status) interrupt or
2274 * rx sequence error interrupt. get_link_status will stay
2275 * false until the e1000_check_for_link establishes link
2276 * for copper adapters ONLY
2277 */
2278 switch (hw->phy.media_type) {
2279 case e1000_media_type_copper:
2280 if (hw->mac.get_link_status) {
2281 ret_val = hw->mac.ops.check_for_link(hw);
2282 link_active = !hw->mac.get_link_status;
2283 } else {
2284 link_active = true;
2285 }
2286 break;
2287 case e1000_media_type_fiber:
2288 ret_val = hw->mac.ops.check_for_link(hw);
2289 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2290 break;
2291 case e1000_media_type_internal_serdes:
2292 ret_val = hw->mac.ops.check_for_link(hw);
2293 link_active = hw->mac.serdes_has_link;
2294 break;
2295 default:
2296 case e1000_media_type_unknown:
2297 break;
2298 }
2299
2300 return link_active;
2301 }
2302
2303 /**
2304 * igb_watchdog - Timer Call-back
2305 * @data: pointer to adapter cast into an unsigned long
2306 **/
2307 static void igb_watchdog(unsigned long data)
2308 {
2309 struct igb_adapter *adapter = (struct igb_adapter *)data;
2310 /* Do the rest outside of interrupt context */
2311 schedule_work(&adapter->watchdog_task);
2312 }
2313
2314 static void igb_watchdog_task(struct work_struct *work)
2315 {
2316 struct igb_adapter *adapter = container_of(work,
2317 struct igb_adapter, watchdog_task);
2318 struct e1000_hw *hw = &adapter->hw;
2319
2320 struct net_device *netdev = adapter->netdev;
2321 struct igb_ring *tx_ring = adapter->tx_ring;
2322 struct e1000_mac_info *mac = &adapter->hw.mac;
2323 u32 link;
2324 u32 eics = 0;
2325 s32 ret_val;
2326 int i;
2327
2328 link = igb_has_link(adapter);
2329 if ((netif_carrier_ok(netdev)) && link)
2330 goto link_up;
2331
2332 if (link) {
2333 if (!netif_carrier_ok(netdev)) {
2334 u32 ctrl;
2335 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2336 &adapter->link_speed,
2337 &adapter->link_duplex);
2338
2339 ctrl = rd32(E1000_CTRL);
2340 /* Links status message must follow this format */
2341 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2342 "Flow Control: %s\n",
2343 netdev->name,
2344 adapter->link_speed,
2345 adapter->link_duplex == FULL_DUPLEX ?
2346 "Full Duplex" : "Half Duplex",
2347 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2348 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2349 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2350 E1000_CTRL_TFCE) ? "TX" : "None")));
2351
2352 /* tweak tx_queue_len according to speed/duplex and
2353 * adjust the timeout factor */
2354 netdev->tx_queue_len = adapter->tx_queue_len;
2355 adapter->tx_timeout_factor = 1;
2356 switch (adapter->link_speed) {
2357 case SPEED_10:
2358 netdev->tx_queue_len = 10;
2359 adapter->tx_timeout_factor = 14;
2360 break;
2361 case SPEED_100:
2362 netdev->tx_queue_len = 100;
2363 /* maybe add some timeout factor ? */
2364 break;
2365 }
2366
2367 netif_carrier_on(netdev);
2368 netif_tx_wake_all_queues(netdev);
2369
2370 if (!test_bit(__IGB_DOWN, &adapter->state))
2371 mod_timer(&adapter->phy_info_timer,
2372 round_jiffies(jiffies + 2 * HZ));
2373 }
2374 } else {
2375 if (netif_carrier_ok(netdev)) {
2376 adapter->link_speed = 0;
2377 adapter->link_duplex = 0;
2378 /* Links status message must follow this format */
2379 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2380 netdev->name);
2381 netif_carrier_off(netdev);
2382 netif_tx_stop_all_queues(netdev);
2383 if (!test_bit(__IGB_DOWN, &adapter->state))
2384 mod_timer(&adapter->phy_info_timer,
2385 round_jiffies(jiffies + 2 * HZ));
2386 }
2387 }
2388
2389 link_up:
2390 igb_update_stats(adapter);
2391
2392 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2393 adapter->tpt_old = adapter->stats.tpt;
2394 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2395 adapter->colc_old = adapter->stats.colc;
2396
2397 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2398 adapter->gorc_old = adapter->stats.gorc;
2399 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2400 adapter->gotc_old = adapter->stats.gotc;
2401
2402 igb_update_adaptive(&adapter->hw);
2403
2404 if (!netif_carrier_ok(netdev)) {
2405 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2406 /* We've lost link, so the controller stops DMA,
2407 * but we've got queued Tx work that's never going
2408 * to get done, so reset controller to flush Tx.
2409 * (Do the reset outside of interrupt context). */
2410 adapter->tx_timeout_count++;
2411 schedule_work(&adapter->reset_task);
2412 }
2413 }
2414
2415 /* Cause software interrupt to ensure rx ring is cleaned */
2416 if (adapter->msix_entries) {
2417 for (i = 0; i < adapter->num_rx_queues; i++)
2418 eics |= adapter->rx_ring[i].eims_value;
2419 wr32(E1000_EICS, eics);
2420 } else {
2421 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2422 }
2423
2424 /* Force detection of hung controller every watchdog period */
2425 tx_ring->detect_tx_hung = true;
2426
2427 /* Reset the timer */
2428 if (!test_bit(__IGB_DOWN, &adapter->state))
2429 mod_timer(&adapter->watchdog_timer,
2430 round_jiffies(jiffies + 2 * HZ));
2431 }
2432
2433 enum latency_range {
2434 lowest_latency = 0,
2435 low_latency = 1,
2436 bulk_latency = 2,
2437 latency_invalid = 255
2438 };
2439
2440
2441 /**
2442 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2443 *
2444 * Stores a new ITR value based on strictly on packet size. This
2445 * algorithm is less sophisticated than that used in igb_update_itr,
2446 * due to the difficulty of synchronizing statistics across multiple
2447 * receive rings. The divisors and thresholds used by this fuction
2448 * were determined based on theoretical maximum wire speed and testing
2449 * data, in order to minimize response time while increasing bulk
2450 * throughput.
2451 * This functionality is controlled by the InterruptThrottleRate module
2452 * parameter (see igb_param.c)
2453 * NOTE: This function is called only when operating in a multiqueue
2454 * receive environment.
2455 * @rx_ring: pointer to ring
2456 **/
2457 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2458 {
2459 int new_val = rx_ring->itr_val;
2460 int avg_wire_size = 0;
2461 struct igb_adapter *adapter = rx_ring->adapter;
2462
2463 if (!rx_ring->total_packets)
2464 goto clear_counts; /* no packets, so don't do anything */
2465
2466 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2467 * ints/sec - ITR timer value of 120 ticks.
2468 */
2469 if (adapter->link_speed != SPEED_1000) {
2470 new_val = 120;
2471 goto set_itr_val;
2472 }
2473 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2474
2475 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2476 avg_wire_size += 24;
2477
2478 /* Don't starve jumbo frames */
2479 avg_wire_size = min(avg_wire_size, 3000);
2480
2481 /* Give a little boost to mid-size frames */
2482 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2483 new_val = avg_wire_size / 3;
2484 else
2485 new_val = avg_wire_size / 2;
2486
2487 set_itr_val:
2488 if (new_val != rx_ring->itr_val) {
2489 rx_ring->itr_val = new_val;
2490 rx_ring->set_itr = 1;
2491 }
2492 clear_counts:
2493 rx_ring->total_bytes = 0;
2494 rx_ring->total_packets = 0;
2495 }
2496
2497 /**
2498 * igb_update_itr - update the dynamic ITR value based on statistics
2499 * Stores a new ITR value based on packets and byte
2500 * counts during the last interrupt. The advantage of per interrupt
2501 * computation is faster updates and more accurate ITR for the current
2502 * traffic pattern. Constants in this function were computed
2503 * based on theoretical maximum wire speed and thresholds were set based
2504 * on testing data as well as attempting to minimize response time
2505 * while increasing bulk throughput.
2506 * this functionality is controlled by the InterruptThrottleRate module
2507 * parameter (see igb_param.c)
2508 * NOTE: These calculations are only valid when operating in a single-
2509 * queue environment.
2510 * @adapter: pointer to adapter
2511 * @itr_setting: current adapter->itr
2512 * @packets: the number of packets during this measurement interval
2513 * @bytes: the number of bytes during this measurement interval
2514 **/
2515 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2516 int packets, int bytes)
2517 {
2518 unsigned int retval = itr_setting;
2519
2520 if (packets == 0)
2521 goto update_itr_done;
2522
2523 switch (itr_setting) {
2524 case lowest_latency:
2525 /* handle TSO and jumbo frames */
2526 if (bytes/packets > 8000)
2527 retval = bulk_latency;
2528 else if ((packets < 5) && (bytes > 512))
2529 retval = low_latency;
2530 break;
2531 case low_latency: /* 50 usec aka 20000 ints/s */
2532 if (bytes > 10000) {
2533 /* this if handles the TSO accounting */
2534 if (bytes/packets > 8000) {
2535 retval = bulk_latency;
2536 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2537 retval = bulk_latency;
2538 } else if ((packets > 35)) {
2539 retval = lowest_latency;
2540 }
2541 } else if (bytes/packets > 2000) {
2542 retval = bulk_latency;
2543 } else if (packets <= 2 && bytes < 512) {
2544 retval = lowest_latency;
2545 }
2546 break;
2547 case bulk_latency: /* 250 usec aka 4000 ints/s */
2548 if (bytes > 25000) {
2549 if (packets > 35)
2550 retval = low_latency;
2551 } else if (bytes < 6000) {
2552 retval = low_latency;
2553 }
2554 break;
2555 }
2556
2557 update_itr_done:
2558 return retval;
2559 }
2560
2561 static void igb_set_itr(struct igb_adapter *adapter)
2562 {
2563 u16 current_itr;
2564 u32 new_itr = adapter->itr;
2565
2566 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2567 if (adapter->link_speed != SPEED_1000) {
2568 current_itr = 0;
2569 new_itr = 4000;
2570 goto set_itr_now;
2571 }
2572
2573 adapter->rx_itr = igb_update_itr(adapter,
2574 adapter->rx_itr,
2575 adapter->rx_ring->total_packets,
2576 adapter->rx_ring->total_bytes);
2577
2578 if (adapter->rx_ring->buddy) {
2579 adapter->tx_itr = igb_update_itr(adapter,
2580 adapter->tx_itr,
2581 adapter->tx_ring->total_packets,
2582 adapter->tx_ring->total_bytes);
2583
2584 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2585 } else {
2586 current_itr = adapter->rx_itr;
2587 }
2588
2589 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2590 if (adapter->itr_setting == 3 &&
2591 current_itr == lowest_latency)
2592 current_itr = low_latency;
2593
2594 switch (current_itr) {
2595 /* counts and packets in update_itr are dependent on these numbers */
2596 case lowest_latency:
2597 new_itr = 70000;
2598 break;
2599 case low_latency:
2600 new_itr = 20000; /* aka hwitr = ~200 */
2601 break;
2602 case bulk_latency:
2603 new_itr = 4000;
2604 break;
2605 default:
2606 break;
2607 }
2608
2609 set_itr_now:
2610 adapter->rx_ring->total_bytes = 0;
2611 adapter->rx_ring->total_packets = 0;
2612 if (adapter->rx_ring->buddy) {
2613 adapter->rx_ring->buddy->total_bytes = 0;
2614 adapter->rx_ring->buddy->total_packets = 0;
2615 }
2616
2617 if (new_itr != adapter->itr) {
2618 /* this attempts to bias the interrupt rate towards Bulk
2619 * by adding intermediate steps when interrupt rate is
2620 * increasing */
2621 new_itr = new_itr > adapter->itr ?
2622 min(adapter->itr + (new_itr >> 2), new_itr) :
2623 new_itr;
2624 /* Don't write the value here; it resets the adapter's
2625 * internal timer, and causes us to delay far longer than
2626 * we should between interrupts. Instead, we write the ITR
2627 * value at the beginning of the next interrupt so the timing
2628 * ends up being correct.
2629 */
2630 adapter->itr = new_itr;
2631 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2632 adapter->rx_ring->set_itr = 1;
2633 }
2634
2635 return;
2636 }
2637
2638
2639 #define IGB_TX_FLAGS_CSUM 0x00000001
2640 #define IGB_TX_FLAGS_VLAN 0x00000002
2641 #define IGB_TX_FLAGS_TSO 0x00000004
2642 #define IGB_TX_FLAGS_IPV4 0x00000008
2643 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2644 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2645
2646 static inline int igb_tso_adv(struct igb_adapter *adapter,
2647 struct igb_ring *tx_ring,
2648 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2649 {
2650 struct e1000_adv_tx_context_desc *context_desc;
2651 unsigned int i;
2652 int err;
2653 struct igb_buffer *buffer_info;
2654 u32 info = 0, tu_cmd = 0;
2655 u32 mss_l4len_idx, l4len;
2656 *hdr_len = 0;
2657
2658 if (skb_header_cloned(skb)) {
2659 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2660 if (err)
2661 return err;
2662 }
2663
2664 l4len = tcp_hdrlen(skb);
2665 *hdr_len += l4len;
2666
2667 if (skb->protocol == htons(ETH_P_IP)) {
2668 struct iphdr *iph = ip_hdr(skb);
2669 iph->tot_len = 0;
2670 iph->check = 0;
2671 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2672 iph->daddr, 0,
2673 IPPROTO_TCP,
2674 0);
2675 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2676 ipv6_hdr(skb)->payload_len = 0;
2677 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2678 &ipv6_hdr(skb)->daddr,
2679 0, IPPROTO_TCP, 0);
2680 }
2681
2682 i = tx_ring->next_to_use;
2683
2684 buffer_info = &tx_ring->buffer_info[i];
2685 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2686 /* VLAN MACLEN IPLEN */
2687 if (tx_flags & IGB_TX_FLAGS_VLAN)
2688 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2689 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2690 *hdr_len += skb_network_offset(skb);
2691 info |= skb_network_header_len(skb);
2692 *hdr_len += skb_network_header_len(skb);
2693 context_desc->vlan_macip_lens = cpu_to_le32(info);
2694
2695 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2696 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2697
2698 if (skb->protocol == htons(ETH_P_IP))
2699 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2700 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2701
2702 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2703
2704 /* MSS L4LEN IDX */
2705 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2706 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2707
2708 /* Context index must be unique per ring. */
2709 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2710 mss_l4len_idx |= tx_ring->queue_index << 4;
2711
2712 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2713 context_desc->seqnum_seed = 0;
2714
2715 buffer_info->time_stamp = jiffies;
2716 buffer_info->next_to_watch = i;
2717 buffer_info->dma = 0;
2718 i++;
2719 if (i == tx_ring->count)
2720 i = 0;
2721
2722 tx_ring->next_to_use = i;
2723
2724 return true;
2725 }
2726
2727 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2728 struct igb_ring *tx_ring,
2729 struct sk_buff *skb, u32 tx_flags)
2730 {
2731 struct e1000_adv_tx_context_desc *context_desc;
2732 unsigned int i;
2733 struct igb_buffer *buffer_info;
2734 u32 info = 0, tu_cmd = 0;
2735
2736 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2737 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2738 i = tx_ring->next_to_use;
2739 buffer_info = &tx_ring->buffer_info[i];
2740 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2741
2742 if (tx_flags & IGB_TX_FLAGS_VLAN)
2743 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2744 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2745 if (skb->ip_summed == CHECKSUM_PARTIAL)
2746 info |= skb_network_header_len(skb);
2747
2748 context_desc->vlan_macip_lens = cpu_to_le32(info);
2749
2750 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2751
2752 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2753 switch (skb->protocol) {
2754 case cpu_to_be16(ETH_P_IP):
2755 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2756 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2757 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2758 break;
2759 case cpu_to_be16(ETH_P_IPV6):
2760 /* XXX what about other V6 headers?? */
2761 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2762 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2763 break;
2764 default:
2765 if (unlikely(net_ratelimit()))
2766 dev_warn(&adapter->pdev->dev,
2767 "partial checksum but proto=%x!\n",
2768 skb->protocol);
2769 break;
2770 }
2771 }
2772
2773 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2774 context_desc->seqnum_seed = 0;
2775 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2776 context_desc->mss_l4len_idx =
2777 cpu_to_le32(tx_ring->queue_index << 4);
2778
2779 buffer_info->time_stamp = jiffies;
2780 buffer_info->next_to_watch = i;
2781 buffer_info->dma = 0;
2782
2783 i++;
2784 if (i == tx_ring->count)
2785 i = 0;
2786 tx_ring->next_to_use = i;
2787
2788 return true;
2789 }
2790
2791
2792 return false;
2793 }
2794
2795 #define IGB_MAX_TXD_PWR 16
2796 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2797
2798 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2799 struct igb_ring *tx_ring, struct sk_buff *skb,
2800 unsigned int first)
2801 {
2802 struct igb_buffer *buffer_info;
2803 unsigned int len = skb_headlen(skb);
2804 unsigned int count = 0, i;
2805 unsigned int f;
2806
2807 i = tx_ring->next_to_use;
2808
2809 buffer_info = &tx_ring->buffer_info[i];
2810 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2811 buffer_info->length = len;
2812 /* set time_stamp *before* dma to help avoid a possible race */
2813 buffer_info->time_stamp = jiffies;
2814 buffer_info->next_to_watch = i;
2815 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2816 PCI_DMA_TODEVICE);
2817 count++;
2818 i++;
2819 if (i == tx_ring->count)
2820 i = 0;
2821
2822 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2823 struct skb_frag_struct *frag;
2824
2825 frag = &skb_shinfo(skb)->frags[f];
2826 len = frag->size;
2827
2828 buffer_info = &tx_ring->buffer_info[i];
2829 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2830 buffer_info->length = len;
2831 buffer_info->time_stamp = jiffies;
2832 buffer_info->next_to_watch = i;
2833 buffer_info->dma = pci_map_page(adapter->pdev,
2834 frag->page,
2835 frag->page_offset,
2836 len,
2837 PCI_DMA_TODEVICE);
2838
2839 count++;
2840 i++;
2841 if (i == tx_ring->count)
2842 i = 0;
2843 }
2844
2845 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2846 tx_ring->buffer_info[i].skb = skb;
2847 tx_ring->buffer_info[first].next_to_watch = i;
2848
2849 return count;
2850 }
2851
2852 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2853 struct igb_ring *tx_ring,
2854 int tx_flags, int count, u32 paylen,
2855 u8 hdr_len)
2856 {
2857 union e1000_adv_tx_desc *tx_desc = NULL;
2858 struct igb_buffer *buffer_info;
2859 u32 olinfo_status = 0, cmd_type_len;
2860 unsigned int i;
2861
2862 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2863 E1000_ADVTXD_DCMD_DEXT);
2864
2865 if (tx_flags & IGB_TX_FLAGS_VLAN)
2866 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2867
2868 if (tx_flags & IGB_TX_FLAGS_TSO) {
2869 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2870
2871 /* insert tcp checksum */
2872 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2873
2874 /* insert ip checksum */
2875 if (tx_flags & IGB_TX_FLAGS_IPV4)
2876 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2877
2878 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2879 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2880 }
2881
2882 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2883 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2884 IGB_TX_FLAGS_VLAN)))
2885 olinfo_status |= tx_ring->queue_index << 4;
2886
2887 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2888
2889 i = tx_ring->next_to_use;
2890 while (count--) {
2891 buffer_info = &tx_ring->buffer_info[i];
2892 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2893 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2894 tx_desc->read.cmd_type_len =
2895 cpu_to_le32(cmd_type_len | buffer_info->length);
2896 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2897 i++;
2898 if (i == tx_ring->count)
2899 i = 0;
2900 }
2901
2902 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2903 /* Force memory writes to complete before letting h/w
2904 * know there are new descriptors to fetch. (Only
2905 * applicable for weak-ordered memory model archs,
2906 * such as IA-64). */
2907 wmb();
2908
2909 tx_ring->next_to_use = i;
2910 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2911 /* we need this if more than one processor can write to our tail
2912 * at a time, it syncronizes IO on IA64/Altix systems */
2913 mmiowb();
2914 }
2915
2916 static int __igb_maybe_stop_tx(struct net_device *netdev,
2917 struct igb_ring *tx_ring, int size)
2918 {
2919 struct igb_adapter *adapter = netdev_priv(netdev);
2920
2921 netif_stop_subqueue(netdev, tx_ring->queue_index);
2922
2923 /* Herbert's original patch had:
2924 * smp_mb__after_netif_stop_queue();
2925 * but since that doesn't exist yet, just open code it. */
2926 smp_mb();
2927
2928 /* We need to check again in a case another CPU has just
2929 * made room available. */
2930 if (IGB_DESC_UNUSED(tx_ring) < size)
2931 return -EBUSY;
2932
2933 /* A reprieve! */
2934 netif_wake_subqueue(netdev, tx_ring->queue_index);
2935 ++adapter->restart_queue;
2936 return 0;
2937 }
2938
2939 static int igb_maybe_stop_tx(struct net_device *netdev,
2940 struct igb_ring *tx_ring, int size)
2941 {
2942 if (IGB_DESC_UNUSED(tx_ring) >= size)
2943 return 0;
2944 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2945 }
2946
2947 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2948
2949 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2950 struct net_device *netdev,
2951 struct igb_ring *tx_ring)
2952 {
2953 struct igb_adapter *adapter = netdev_priv(netdev);
2954 unsigned int first;
2955 unsigned int tx_flags = 0;
2956 unsigned int len;
2957 u8 hdr_len = 0;
2958 int tso = 0;
2959
2960 len = skb_headlen(skb);
2961
2962 if (test_bit(__IGB_DOWN, &adapter->state)) {
2963 dev_kfree_skb_any(skb);
2964 return NETDEV_TX_OK;
2965 }
2966
2967 if (skb->len <= 0) {
2968 dev_kfree_skb_any(skb);
2969 return NETDEV_TX_OK;
2970 }
2971
2972 /* need: 1 descriptor per page,
2973 * + 2 desc gap to keep tail from touching head,
2974 * + 1 desc for skb->data,
2975 * + 1 desc for context descriptor,
2976 * otherwise try next time */
2977 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2978 /* this is a hard error */
2979 return NETDEV_TX_BUSY;
2980 }
2981 skb_orphan(skb);
2982
2983 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2984 tx_flags |= IGB_TX_FLAGS_VLAN;
2985 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2986 }
2987
2988 if (skb->protocol == htons(ETH_P_IP))
2989 tx_flags |= IGB_TX_FLAGS_IPV4;
2990
2991 first = tx_ring->next_to_use;
2992
2993 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2994 &hdr_len) : 0;
2995
2996 if (tso < 0) {
2997 dev_kfree_skb_any(skb);
2998 return NETDEV_TX_OK;
2999 }
3000
3001 if (tso)
3002 tx_flags |= IGB_TX_FLAGS_TSO;
3003 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3004 if (skb->ip_summed == CHECKSUM_PARTIAL)
3005 tx_flags |= IGB_TX_FLAGS_CSUM;
3006
3007 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3008 igb_tx_map_adv(adapter, tx_ring, skb, first),
3009 skb->len, hdr_len);
3010
3011 netdev->trans_start = jiffies;
3012
3013 /* Make sure there is space in the ring for the next send. */
3014 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3015
3016 return NETDEV_TX_OK;
3017 }
3018
3019 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3020 {
3021 struct igb_adapter *adapter = netdev_priv(netdev);
3022 struct igb_ring *tx_ring;
3023
3024 int r_idx = 0;
3025 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3026 tx_ring = adapter->multi_tx_table[r_idx];
3027
3028 /* This goes back to the question of how to logically map a tx queue
3029 * to a flow. Right now, performance is impacted slightly negatively
3030 * if using multiple tx queues. If the stack breaks away from a
3031 * single qdisc implementation, we can look at this again. */
3032 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3033 }
3034
3035 /**
3036 * igb_tx_timeout - Respond to a Tx Hang
3037 * @netdev: network interface device structure
3038 **/
3039 static void igb_tx_timeout(struct net_device *netdev)
3040 {
3041 struct igb_adapter *adapter = netdev_priv(netdev);
3042 struct e1000_hw *hw = &adapter->hw;
3043
3044 /* Do the reset outside of interrupt context */
3045 adapter->tx_timeout_count++;
3046 schedule_work(&adapter->reset_task);
3047 wr32(E1000_EICS, adapter->eims_enable_mask &
3048 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3049 }
3050
3051 static void igb_reset_task(struct work_struct *work)
3052 {
3053 struct igb_adapter *adapter;
3054 adapter = container_of(work, struct igb_adapter, reset_task);
3055
3056 igb_reinit_locked(adapter);
3057 }
3058
3059 /**
3060 * igb_get_stats - Get System Network Statistics
3061 * @netdev: network interface device structure
3062 *
3063 * Returns the address of the device statistics structure.
3064 * The statistics are actually updated from the timer callback.
3065 **/
3066 static struct net_device_stats *
3067 igb_get_stats(struct net_device *netdev)
3068 {
3069 struct igb_adapter *adapter = netdev_priv(netdev);
3070
3071 /* only return the current stats */
3072 return &adapter->net_stats;
3073 }
3074
3075 /**
3076 * igb_change_mtu - Change the Maximum Transfer Unit
3077 * @netdev: network interface device structure
3078 * @new_mtu: new value for maximum frame size
3079 *
3080 * Returns 0 on success, negative on failure
3081 **/
3082 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3083 {
3084 struct igb_adapter *adapter = netdev_priv(netdev);
3085 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3086
3087 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3088 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3089 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3090 return -EINVAL;
3091 }
3092
3093 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3094 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3095 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3096 return -EINVAL;
3097 }
3098
3099 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3100 msleep(1);
3101 /* igb_down has a dependency on max_frame_size */
3102 adapter->max_frame_size = max_frame;
3103 if (netif_running(netdev))
3104 igb_down(adapter);
3105
3106 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3107 * means we reserve 2 more, this pushes us to allocate from the next
3108 * larger slab size.
3109 * i.e. RXBUFFER_2048 --> size-4096 slab
3110 */
3111
3112 if (max_frame <= IGB_RXBUFFER_256)
3113 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3114 else if (max_frame <= IGB_RXBUFFER_512)
3115 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3116 else if (max_frame <= IGB_RXBUFFER_1024)
3117 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3118 else if (max_frame <= IGB_RXBUFFER_2048)
3119 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3120 else
3121 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3122 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3123 #else
3124 adapter->rx_buffer_len = PAGE_SIZE / 2;
3125 #endif
3126 /* adjust allocation if LPE protects us, and we aren't using SBP */
3127 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3128 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3129 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3130
3131 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3132 netdev->mtu, new_mtu);
3133 netdev->mtu = new_mtu;
3134
3135 if (netif_running(netdev))
3136 igb_up(adapter);
3137 else
3138 igb_reset(adapter);
3139
3140 clear_bit(__IGB_RESETTING, &adapter->state);
3141
3142 return 0;
3143 }
3144
3145 /**
3146 * igb_update_stats - Update the board statistics counters
3147 * @adapter: board private structure
3148 **/
3149
3150 void igb_update_stats(struct igb_adapter *adapter)
3151 {
3152 struct e1000_hw *hw = &adapter->hw;
3153 struct pci_dev *pdev = adapter->pdev;
3154 u16 phy_tmp;
3155
3156 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3157
3158 /*
3159 * Prevent stats update while adapter is being reset, or if the pci
3160 * connection is down.
3161 */
3162 if (adapter->link_speed == 0)
3163 return;
3164 if (pci_channel_offline(pdev))
3165 return;
3166
3167 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3168 adapter->stats.gprc += rd32(E1000_GPRC);
3169 adapter->stats.gorc += rd32(E1000_GORCL);
3170 rd32(E1000_GORCH); /* clear GORCL */
3171 adapter->stats.bprc += rd32(E1000_BPRC);
3172 adapter->stats.mprc += rd32(E1000_MPRC);
3173 adapter->stats.roc += rd32(E1000_ROC);
3174
3175 adapter->stats.prc64 += rd32(E1000_PRC64);
3176 adapter->stats.prc127 += rd32(E1000_PRC127);
3177 adapter->stats.prc255 += rd32(E1000_PRC255);
3178 adapter->stats.prc511 += rd32(E1000_PRC511);
3179 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3180 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3181 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3182 adapter->stats.sec += rd32(E1000_SEC);
3183
3184 adapter->stats.mpc += rd32(E1000_MPC);
3185 adapter->stats.scc += rd32(E1000_SCC);
3186 adapter->stats.ecol += rd32(E1000_ECOL);
3187 adapter->stats.mcc += rd32(E1000_MCC);
3188 adapter->stats.latecol += rd32(E1000_LATECOL);
3189 adapter->stats.dc += rd32(E1000_DC);
3190 adapter->stats.rlec += rd32(E1000_RLEC);
3191 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3192 adapter->stats.xontxc += rd32(E1000_XONTXC);
3193 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3194 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3195 adapter->stats.fcruc += rd32(E1000_FCRUC);
3196 adapter->stats.gptc += rd32(E1000_GPTC);
3197 adapter->stats.gotc += rd32(E1000_GOTCL);
3198 rd32(E1000_GOTCH); /* clear GOTCL */
3199 adapter->stats.rnbc += rd32(E1000_RNBC);
3200 adapter->stats.ruc += rd32(E1000_RUC);
3201 adapter->stats.rfc += rd32(E1000_RFC);
3202 adapter->stats.rjc += rd32(E1000_RJC);
3203 adapter->stats.tor += rd32(E1000_TORH);
3204 adapter->stats.tot += rd32(E1000_TOTH);
3205 adapter->stats.tpr += rd32(E1000_TPR);
3206
3207 adapter->stats.ptc64 += rd32(E1000_PTC64);
3208 adapter->stats.ptc127 += rd32(E1000_PTC127);
3209 adapter->stats.ptc255 += rd32(E1000_PTC255);
3210 adapter->stats.ptc511 += rd32(E1000_PTC511);
3211 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3212 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3213
3214 adapter->stats.mptc += rd32(E1000_MPTC);
3215 adapter->stats.bptc += rd32(E1000_BPTC);
3216
3217 /* used for adaptive IFS */
3218
3219 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3220 adapter->stats.tpt += hw->mac.tx_packet_delta;
3221 hw->mac.collision_delta = rd32(E1000_COLC);
3222 adapter->stats.colc += hw->mac.collision_delta;
3223
3224 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3225 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3226 adapter->stats.tncrs += rd32(E1000_TNCRS);
3227 adapter->stats.tsctc += rd32(E1000_TSCTC);
3228 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3229
3230 adapter->stats.iac += rd32(E1000_IAC);
3231 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3232 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3233 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3234 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3235 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3236 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3237 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3238 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3239
3240 /* Fill out the OS statistics structure */
3241 adapter->net_stats.multicast = adapter->stats.mprc;
3242 adapter->net_stats.collisions = adapter->stats.colc;
3243
3244 /* Rx Errors */
3245
3246 /* RLEC on some newer hardware can be incorrect so build
3247 * our own version based on RUC and ROC */
3248 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3249 adapter->stats.crcerrs + adapter->stats.algnerrc +
3250 adapter->stats.ruc + adapter->stats.roc +
3251 adapter->stats.cexterr;
3252 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3253 adapter->stats.roc;
3254 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3255 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3256 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3257
3258 /* Tx Errors */
3259 adapter->net_stats.tx_errors = adapter->stats.ecol +
3260 adapter->stats.latecol;
3261 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3262 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3263 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3264
3265 /* Tx Dropped needs to be maintained elsewhere */
3266
3267 /* Phy Stats */
3268 if (hw->phy.media_type == e1000_media_type_copper) {
3269 if ((adapter->link_speed == SPEED_1000) &&
3270 (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3271 &phy_tmp))) {
3272 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3273 adapter->phy_stats.idle_errors += phy_tmp;
3274 }
3275 }
3276
3277 /* Management Stats */
3278 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3279 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3280 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3281 }
3282
3283
3284 static irqreturn_t igb_msix_other(int irq, void *data)
3285 {
3286 struct net_device *netdev = data;
3287 struct igb_adapter *adapter = netdev_priv(netdev);
3288 struct e1000_hw *hw = &adapter->hw;
3289 u32 icr = rd32(E1000_ICR);
3290
3291 /* reading ICR causes bit 31 of EICR to be cleared */
3292 if (!(icr & E1000_ICR_LSC))
3293 goto no_link_interrupt;
3294 hw->mac.get_link_status = 1;
3295 /* guard against interrupt when we're going down */
3296 if (!test_bit(__IGB_DOWN, &adapter->state))
3297 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3298
3299 no_link_interrupt:
3300 wr32(E1000_IMS, E1000_IMS_LSC);
3301 wr32(E1000_EIMS, adapter->eims_other);
3302
3303 return IRQ_HANDLED;
3304 }
3305
3306 static irqreturn_t igb_msix_tx(int irq, void *data)
3307 {
3308 struct igb_ring *tx_ring = data;
3309 struct igb_adapter *adapter = tx_ring->adapter;
3310 struct e1000_hw *hw = &adapter->hw;
3311
3312 #ifdef CONFIG_IGB_DCA
3313 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3314 igb_update_tx_dca(tx_ring);
3315 #endif
3316 tx_ring->total_bytes = 0;
3317 tx_ring->total_packets = 0;
3318
3319 /* auto mask will automatically reenable the interrupt when we write
3320 * EICS */
3321 if (!igb_clean_tx_irq(tx_ring))
3322 /* Ring was not completely cleaned, so fire another interrupt */
3323 wr32(E1000_EICS, tx_ring->eims_value);
3324 else
3325 wr32(E1000_EIMS, tx_ring->eims_value);
3326
3327 return IRQ_HANDLED;
3328 }
3329
3330 static void igb_write_itr(struct igb_ring *ring)
3331 {
3332 struct e1000_hw *hw = &ring->adapter->hw;
3333 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3334 switch (hw->mac.type) {
3335 case e1000_82576:
3336 wr32(ring->itr_register,
3337 ring->itr_val |
3338 0x80000000);
3339 break;
3340 default:
3341 wr32(ring->itr_register,
3342 ring->itr_val |
3343 (ring->itr_val << 16));
3344 break;
3345 }
3346 ring->set_itr = 0;
3347 }
3348 }
3349
3350 static irqreturn_t igb_msix_rx(int irq, void *data)
3351 {
3352 struct igb_ring *rx_ring = data;
3353
3354 /* Write the ITR value calculated at the end of the
3355 * previous interrupt.
3356 */
3357
3358 igb_write_itr(rx_ring);
3359
3360 if (napi_schedule_prep(&rx_ring->napi))
3361 __napi_schedule(&rx_ring->napi);
3362
3363 #ifdef CONFIG_IGB_DCA
3364 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3365 igb_update_rx_dca(rx_ring);
3366 #endif
3367 return IRQ_HANDLED;
3368 }
3369
3370 #ifdef CONFIG_IGB_DCA
3371 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3372 {
3373 u32 dca_rxctrl;
3374 struct igb_adapter *adapter = rx_ring->adapter;
3375 struct e1000_hw *hw = &adapter->hw;
3376 int cpu = get_cpu();
3377 int q = rx_ring->reg_idx;
3378
3379 if (rx_ring->cpu != cpu) {
3380 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3381 if (hw->mac.type == e1000_82576) {
3382 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3383 dca_rxctrl |= dca_get_tag(cpu) <<
3384 E1000_DCA_RXCTRL_CPUID_SHIFT;
3385 } else {
3386 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3387 dca_rxctrl |= dca_get_tag(cpu);
3388 }
3389 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3390 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3391 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3392 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3393 rx_ring->cpu = cpu;
3394 }
3395 put_cpu();
3396 }
3397
3398 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3399 {
3400 u32 dca_txctrl;
3401 struct igb_adapter *adapter = tx_ring->adapter;
3402 struct e1000_hw *hw = &adapter->hw;
3403 int cpu = get_cpu();
3404 int q = tx_ring->reg_idx;
3405
3406 if (tx_ring->cpu != cpu) {
3407 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3408 if (hw->mac.type == e1000_82576) {
3409 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3410 dca_txctrl |= dca_get_tag(cpu) <<
3411 E1000_DCA_TXCTRL_CPUID_SHIFT;
3412 } else {
3413 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3414 dca_txctrl |= dca_get_tag(cpu);
3415 }
3416 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3417 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3418 tx_ring->cpu = cpu;
3419 }
3420 put_cpu();
3421 }
3422
3423 static void igb_setup_dca(struct igb_adapter *adapter)
3424 {
3425 int i;
3426
3427 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3428 return;
3429
3430 for (i = 0; i < adapter->num_tx_queues; i++) {
3431 adapter->tx_ring[i].cpu = -1;
3432 igb_update_tx_dca(&adapter->tx_ring[i]);
3433 }
3434 for (i = 0; i < adapter->num_rx_queues; i++) {
3435 adapter->rx_ring[i].cpu = -1;
3436 igb_update_rx_dca(&adapter->rx_ring[i]);
3437 }
3438 }
3439
3440 static int __igb_notify_dca(struct device *dev, void *data)
3441 {
3442 struct net_device *netdev = dev_get_drvdata(dev);
3443 struct igb_adapter *adapter = netdev_priv(netdev);
3444 struct e1000_hw *hw = &adapter->hw;
3445 unsigned long event = *(unsigned long *)data;
3446
3447 switch (event) {
3448 case DCA_PROVIDER_ADD:
3449 /* if already enabled, don't do it again */
3450 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3451 break;
3452 /* Always use CB2 mode, difference is masked
3453 * in the CB driver. */
3454 wr32(E1000_DCA_CTRL, 2);
3455 if (dca_add_requester(dev) == 0) {
3456 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3457 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3458 igb_setup_dca(adapter);
3459 break;
3460 }
3461 /* Fall Through since DCA is disabled. */
3462 case DCA_PROVIDER_REMOVE:
3463 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3464 /* without this a class_device is left
3465 * hanging around in the sysfs model */
3466 dca_remove_requester(dev);
3467 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3468 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3469 wr32(E1000_DCA_CTRL, 1);
3470 }
3471 break;
3472 }
3473
3474 return 0;
3475 }
3476
3477 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3478 void *p)
3479 {
3480 int ret_val;
3481
3482 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3483 __igb_notify_dca);
3484
3485 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3486 }
3487 #endif /* CONFIG_IGB_DCA */
3488
3489 /**
3490 * igb_intr_msi - Interrupt Handler
3491 * @irq: interrupt number
3492 * @data: pointer to a network interface device structure
3493 **/
3494 static irqreturn_t igb_intr_msi(int irq, void *data)
3495 {
3496 struct net_device *netdev = data;
3497 struct igb_adapter *adapter = netdev_priv(netdev);
3498 struct e1000_hw *hw = &adapter->hw;
3499 /* read ICR disables interrupts using IAM */
3500 u32 icr = rd32(E1000_ICR);
3501
3502 igb_write_itr(adapter->rx_ring);
3503
3504 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3505 hw->mac.get_link_status = 1;
3506 if (!test_bit(__IGB_DOWN, &adapter->state))
3507 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3508 }
3509
3510 napi_schedule(&adapter->rx_ring[0].napi);
3511
3512 return IRQ_HANDLED;
3513 }
3514
3515 /**
3516 * igb_intr - Interrupt Handler
3517 * @irq: interrupt number
3518 * @data: pointer to a network interface device structure
3519 **/
3520 static irqreturn_t igb_intr(int irq, void *data)
3521 {
3522 struct net_device *netdev = data;
3523 struct igb_adapter *adapter = netdev_priv(netdev);
3524 struct e1000_hw *hw = &adapter->hw;
3525 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3526 * need for the IMC write */
3527 u32 icr = rd32(E1000_ICR);
3528 u32 eicr = 0;
3529 if (!icr)
3530 return IRQ_NONE; /* Not our interrupt */
3531
3532 igb_write_itr(adapter->rx_ring);
3533
3534 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3535 * not set, then the adapter didn't send an interrupt */
3536 if (!(icr & E1000_ICR_INT_ASSERTED))
3537 return IRQ_NONE;
3538
3539 eicr = rd32(E1000_EICR);
3540
3541 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3542 hw->mac.get_link_status = 1;
3543 /* guard against interrupt when we're going down */
3544 if (!test_bit(__IGB_DOWN, &adapter->state))
3545 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3546 }
3547
3548 napi_schedule(&adapter->rx_ring[0].napi);
3549
3550 return IRQ_HANDLED;
3551 }
3552
3553 /**
3554 * igb_poll - NAPI Rx polling callback
3555 * @napi: napi polling structure
3556 * @budget: count of how many packets we should handle
3557 **/
3558 static int igb_poll(struct napi_struct *napi, int budget)
3559 {
3560 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3561 struct igb_adapter *adapter = rx_ring->adapter;
3562 struct net_device *netdev = adapter->netdev;
3563 int tx_clean_complete, work_done = 0;
3564
3565 /* this poll routine only supports one tx and one rx queue */
3566 #ifdef CONFIG_IGB_DCA
3567 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3568 igb_update_tx_dca(&adapter->tx_ring[0]);
3569 #endif
3570 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3571
3572 #ifdef CONFIG_IGB_DCA
3573 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3574 igb_update_rx_dca(&adapter->rx_ring[0]);
3575 #endif
3576 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3577
3578 /* If no Tx and not enough Rx work done, exit the polling mode */
3579 if ((tx_clean_complete && (work_done < budget)) ||
3580 !netif_running(netdev)) {
3581 if (adapter->itr_setting & 3)
3582 igb_set_itr(adapter);
3583 napi_complete(napi);
3584 if (!test_bit(__IGB_DOWN, &adapter->state))
3585 igb_irq_enable(adapter);
3586 return 0;
3587 }
3588
3589 return 1;
3590 }
3591
3592 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3593 {
3594 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3595 struct igb_adapter *adapter = rx_ring->adapter;
3596 struct e1000_hw *hw = &adapter->hw;
3597 struct net_device *netdev = adapter->netdev;
3598 int work_done = 0;
3599
3600 #ifdef CONFIG_IGB_DCA
3601 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3602 igb_update_rx_dca(rx_ring);
3603 #endif
3604 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3605
3606
3607 /* If not enough Rx work done, exit the polling mode */
3608 if ((work_done == 0) || !netif_running(netdev)) {
3609 napi_complete(napi);
3610
3611 if (adapter->itr_setting & 3) {
3612 if (adapter->num_rx_queues == 1)
3613 igb_set_itr(adapter);
3614 else
3615 igb_update_ring_itr(rx_ring);
3616 }
3617
3618 if (!test_bit(__IGB_DOWN, &adapter->state))
3619 wr32(E1000_EIMS, rx_ring->eims_value);
3620
3621 return 0;
3622 }
3623
3624 return 1;
3625 }
3626
3627 /**
3628 * igb_clean_tx_irq - Reclaim resources after transmit completes
3629 * @adapter: board private structure
3630 * returns true if ring is completely cleaned
3631 **/
3632 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3633 {
3634 struct igb_adapter *adapter = tx_ring->adapter;
3635 struct net_device *netdev = adapter->netdev;
3636 struct e1000_hw *hw = &adapter->hw;
3637 struct igb_buffer *buffer_info;
3638 struct sk_buff *skb;
3639 union e1000_adv_tx_desc *tx_desc, *eop_desc;
3640 unsigned int total_bytes = 0, total_packets = 0;
3641 unsigned int i, eop, count = 0;
3642 bool cleaned = false;
3643
3644 i = tx_ring->next_to_clean;
3645 eop = tx_ring->buffer_info[i].next_to_watch;
3646 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3647
3648 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3649 (count < tx_ring->count)) {
3650 for (cleaned = false; !cleaned; count++) {
3651 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3652 buffer_info = &tx_ring->buffer_info[i];
3653 cleaned = (i == eop);
3654 skb = buffer_info->skb;
3655
3656 if (skb) {
3657 unsigned int segs, bytecount;
3658 /* gso_segs is currently only valid for tcp */
3659 segs = skb_shinfo(skb)->gso_segs ?: 1;
3660 /* multiply data chunks by size of headers */
3661 bytecount = ((segs - 1) * skb_headlen(skb)) +
3662 skb->len;
3663 total_packets += segs;
3664 total_bytes += bytecount;
3665 }
3666
3667 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3668 tx_desc->wb.status = 0;
3669
3670 i++;
3671 if (i == tx_ring->count)
3672 i = 0;
3673 }
3674
3675 eop = tx_ring->buffer_info[i].next_to_watch;
3676 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3677 }
3678
3679 tx_ring->next_to_clean = i;
3680
3681 if (unlikely(count &&
3682 netif_carrier_ok(netdev) &&
3683 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3684 /* Make sure that anybody stopping the queue after this
3685 * sees the new next_to_clean.
3686 */
3687 smp_mb();
3688 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3689 !(test_bit(__IGB_DOWN, &adapter->state))) {
3690 netif_wake_subqueue(netdev, tx_ring->queue_index);
3691 ++adapter->restart_queue;
3692 }
3693 }
3694
3695 if (tx_ring->detect_tx_hung) {
3696 /* Detect a transmit hang in hardware, this serializes the
3697 * check with the clearing of time_stamp and movement of i */
3698 tx_ring->detect_tx_hung = false;
3699 if (tx_ring->buffer_info[i].time_stamp &&
3700 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3701 (adapter->tx_timeout_factor * HZ))
3702 && !(rd32(E1000_STATUS) &
3703 E1000_STATUS_TXOFF)) {
3704
3705 /* detected Tx unit hang */
3706 dev_err(&adapter->pdev->dev,
3707 "Detected Tx Unit Hang\n"
3708 " Tx Queue <%d>\n"
3709 " TDH <%x>\n"
3710 " TDT <%x>\n"
3711 " next_to_use <%x>\n"
3712 " next_to_clean <%x>\n"
3713 "buffer_info[next_to_clean]\n"
3714 " time_stamp <%lx>\n"
3715 " next_to_watch <%x>\n"
3716 " jiffies <%lx>\n"
3717 " desc.status <%x>\n",
3718 tx_ring->queue_index,
3719 readl(adapter->hw.hw_addr + tx_ring->head),
3720 readl(adapter->hw.hw_addr + tx_ring->tail),
3721 tx_ring->next_to_use,
3722 tx_ring->next_to_clean,
3723 tx_ring->buffer_info[i].time_stamp,
3724 eop,
3725 jiffies,
3726 eop_desc->wb.status);
3727 netif_stop_subqueue(netdev, tx_ring->queue_index);
3728 }
3729 }
3730 tx_ring->total_bytes += total_bytes;
3731 tx_ring->total_packets += total_packets;
3732 tx_ring->tx_stats.bytes += total_bytes;
3733 tx_ring->tx_stats.packets += total_packets;
3734 adapter->net_stats.tx_bytes += total_bytes;
3735 adapter->net_stats.tx_packets += total_packets;
3736 return (count < tx_ring->count);
3737 }
3738
3739 /**
3740 * igb_receive_skb - helper function to handle rx indications
3741 * @ring: pointer to receive ring receving this packet
3742 * @status: descriptor status field as written by hardware
3743 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3744 * @skb: pointer to sk_buff to be indicated to stack
3745 **/
3746 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3747 union e1000_adv_rx_desc * rx_desc,
3748 struct sk_buff *skb)
3749 {
3750 struct igb_adapter * adapter = ring->adapter;
3751 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3752
3753 skb_record_rx_queue(skb, ring->queue_index);
3754 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3755 if (vlan_extracted)
3756 vlan_gro_receive(&ring->napi, adapter->vlgrp,
3757 le16_to_cpu(rx_desc->wb.upper.vlan),
3758 skb);
3759 else
3760 napi_gro_receive(&ring->napi, skb);
3761 } else {
3762 if (vlan_extracted)
3763 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3764 le16_to_cpu(rx_desc->wb.upper.vlan));
3765 else
3766 netif_receive_skb(skb);
3767 }
3768 }
3769
3770
3771 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3772 u32 status_err, struct sk_buff *skb)
3773 {
3774 skb->ip_summed = CHECKSUM_NONE;
3775
3776 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3777 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3778 return;
3779 /* TCP/UDP checksum error bit is set */
3780 if (status_err &
3781 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3782 /* let the stack verify checksum errors */
3783 adapter->hw_csum_err++;
3784 return;
3785 }
3786 /* It must be a TCP or UDP packet with a valid checksum */
3787 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3788 skb->ip_summed = CHECKSUM_UNNECESSARY;
3789
3790 adapter->hw_csum_good++;
3791 }
3792
3793 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3794 int *work_done, int budget)
3795 {
3796 struct igb_adapter *adapter = rx_ring->adapter;
3797 struct net_device *netdev = adapter->netdev;
3798 struct pci_dev *pdev = adapter->pdev;
3799 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3800 struct igb_buffer *buffer_info , *next_buffer;
3801 struct sk_buff *skb;
3802 unsigned int i;
3803 u32 length, hlen, staterr;
3804 bool cleaned = false;
3805 int cleaned_count = 0;
3806 unsigned int total_bytes = 0, total_packets = 0;
3807
3808 i = rx_ring->next_to_clean;
3809 buffer_info = &rx_ring->buffer_info[i];
3810 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3811 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3812
3813 while (staterr & E1000_RXD_STAT_DD) {
3814 if (*work_done >= budget)
3815 break;
3816 (*work_done)++;
3817
3818 skb = buffer_info->skb;
3819 prefetch(skb->data - NET_IP_ALIGN);
3820 buffer_info->skb = NULL;
3821
3822 i++;
3823 if (i == rx_ring->count)
3824 i = 0;
3825 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3826 prefetch(next_rxd);
3827 next_buffer = &rx_ring->buffer_info[i];
3828
3829 length = le16_to_cpu(rx_desc->wb.upper.length);
3830 cleaned = true;
3831 cleaned_count++;
3832
3833 if (!adapter->rx_ps_hdr_size) {
3834 pci_unmap_single(pdev, buffer_info->dma,
3835 adapter->rx_buffer_len +
3836 NET_IP_ALIGN,
3837 PCI_DMA_FROMDEVICE);
3838 skb_put(skb, length);
3839 goto send_up;
3840 }
3841
3842 /* HW will not DMA in data larger than the given buffer, even
3843 * if it parses the (NFS, of course) header to be larger. In
3844 * that case, it fills the header buffer and spills the rest
3845 * into the page.
3846 */
3847 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3848 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3849 if (hlen > adapter->rx_ps_hdr_size)
3850 hlen = adapter->rx_ps_hdr_size;
3851
3852 if (!skb_shinfo(skb)->nr_frags) {
3853 pci_unmap_single(pdev, buffer_info->dma,
3854 adapter->rx_ps_hdr_size +
3855 NET_IP_ALIGN,
3856 PCI_DMA_FROMDEVICE);
3857 skb_put(skb, hlen);
3858 }
3859
3860 if (length) {
3861 pci_unmap_page(pdev, buffer_info->page_dma,
3862 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3863 buffer_info->page_dma = 0;
3864
3865 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3866 buffer_info->page,
3867 buffer_info->page_offset,
3868 length);
3869
3870 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3871 (page_count(buffer_info->page) != 1))
3872 buffer_info->page = NULL;
3873 else
3874 get_page(buffer_info->page);
3875
3876 skb->len += length;
3877 skb->data_len += length;
3878
3879 skb->truesize += length;
3880 }
3881
3882 if (!(staterr & E1000_RXD_STAT_EOP)) {
3883 buffer_info->skb = next_buffer->skb;
3884 buffer_info->dma = next_buffer->dma;
3885 next_buffer->skb = skb;
3886 next_buffer->dma = 0;
3887 goto next_desc;
3888 }
3889 send_up:
3890 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3891 dev_kfree_skb_irq(skb);
3892 goto next_desc;
3893 }
3894
3895 total_bytes += skb->len;
3896 total_packets++;
3897
3898 igb_rx_checksum_adv(adapter, staterr, skb);
3899
3900 skb->protocol = eth_type_trans(skb, netdev);
3901
3902 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3903
3904 next_desc:
3905 rx_desc->wb.upper.status_error = 0;
3906
3907 /* return some buffers to hardware, one at a time is too slow */
3908 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3909 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3910 cleaned_count = 0;
3911 }
3912
3913 /* use prefetched values */
3914 rx_desc = next_rxd;
3915 buffer_info = next_buffer;
3916 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3917 }
3918
3919 rx_ring->next_to_clean = i;
3920 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3921
3922 if (cleaned_count)
3923 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3924
3925 rx_ring->total_packets += total_packets;
3926 rx_ring->total_bytes += total_bytes;
3927 rx_ring->rx_stats.packets += total_packets;
3928 rx_ring->rx_stats.bytes += total_bytes;
3929 adapter->net_stats.rx_bytes += total_bytes;
3930 adapter->net_stats.rx_packets += total_packets;
3931 return cleaned;
3932 }
3933
3934
3935 /**
3936 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3937 * @adapter: address of board private structure
3938 **/
3939 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3940 int cleaned_count)
3941 {
3942 struct igb_adapter *adapter = rx_ring->adapter;
3943 struct net_device *netdev = adapter->netdev;
3944 struct pci_dev *pdev = adapter->pdev;
3945 union e1000_adv_rx_desc *rx_desc;
3946 struct igb_buffer *buffer_info;
3947 struct sk_buff *skb;
3948 unsigned int i;
3949 int bufsz;
3950
3951 i = rx_ring->next_to_use;
3952 buffer_info = &rx_ring->buffer_info[i];
3953
3954 if (adapter->rx_ps_hdr_size)
3955 bufsz = adapter->rx_ps_hdr_size;
3956 else
3957 bufsz = adapter->rx_buffer_len;
3958 bufsz += NET_IP_ALIGN;
3959
3960 while (cleaned_count--) {
3961 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3962
3963 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3964 if (!buffer_info->page) {
3965 buffer_info->page = alloc_page(GFP_ATOMIC);
3966 if (!buffer_info->page) {
3967 adapter->alloc_rx_buff_failed++;
3968 goto no_buffers;
3969 }
3970 buffer_info->page_offset = 0;
3971 } else {
3972 buffer_info->page_offset ^= PAGE_SIZE / 2;
3973 }
3974 buffer_info->page_dma =
3975 pci_map_page(pdev, buffer_info->page,
3976 buffer_info->page_offset,
3977 PAGE_SIZE / 2,
3978 PCI_DMA_FROMDEVICE);
3979 }
3980
3981 if (!buffer_info->skb) {
3982 skb = netdev_alloc_skb(netdev, bufsz);
3983 if (!skb) {
3984 adapter->alloc_rx_buff_failed++;
3985 goto no_buffers;
3986 }
3987
3988 /* Make buffer alignment 2 beyond a 16 byte boundary
3989 * this will result in a 16 byte aligned IP header after
3990 * the 14 byte MAC header is removed
3991 */
3992 skb_reserve(skb, NET_IP_ALIGN);
3993
3994 buffer_info->skb = skb;
3995 buffer_info->dma = pci_map_single(pdev, skb->data,
3996 bufsz,
3997 PCI_DMA_FROMDEVICE);
3998 }
3999 /* Refresh the desc even if buffer_addrs didn't change because
4000 * each write-back erases this info. */
4001 if (adapter->rx_ps_hdr_size) {
4002 rx_desc->read.pkt_addr =
4003 cpu_to_le64(buffer_info->page_dma);
4004 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4005 } else {
4006 rx_desc->read.pkt_addr =
4007 cpu_to_le64(buffer_info->dma);
4008 rx_desc->read.hdr_addr = 0;
4009 }
4010
4011 i++;
4012 if (i == rx_ring->count)
4013 i = 0;
4014 buffer_info = &rx_ring->buffer_info[i];
4015 }
4016
4017 no_buffers:
4018 if (rx_ring->next_to_use != i) {
4019 rx_ring->next_to_use = i;
4020 if (i == 0)
4021 i = (rx_ring->count - 1);
4022 else
4023 i--;
4024
4025 /* Force memory writes to complete before letting h/w
4026 * know there are new descriptors to fetch. (Only
4027 * applicable for weak-ordered memory model archs,
4028 * such as IA-64). */
4029 wmb();
4030 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4031 }
4032 }
4033
4034 /**
4035 * igb_mii_ioctl -
4036 * @netdev:
4037 * @ifreq:
4038 * @cmd:
4039 **/
4040 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4041 {
4042 struct igb_adapter *adapter = netdev_priv(netdev);
4043 struct mii_ioctl_data *data = if_mii(ifr);
4044
4045 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4046 return -EOPNOTSUPP;
4047
4048 switch (cmd) {
4049 case SIOCGMIIPHY:
4050 data->phy_id = adapter->hw.phy.addr;
4051 break;
4052 case SIOCGMIIREG:
4053 if (!capable(CAP_NET_ADMIN))
4054 return -EPERM;
4055 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4056 &data->val_out))
4057 return -EIO;
4058 break;
4059 case SIOCSMIIREG:
4060 default:
4061 return -EOPNOTSUPP;
4062 }
4063 return 0;
4064 }
4065
4066 /**
4067 * igb_ioctl -
4068 * @netdev:
4069 * @ifreq:
4070 * @cmd:
4071 **/
4072 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4073 {
4074 switch (cmd) {
4075 case SIOCGMIIPHY:
4076 case SIOCGMIIREG:
4077 case SIOCSMIIREG:
4078 return igb_mii_ioctl(netdev, ifr, cmd);
4079 default:
4080 return -EOPNOTSUPP;
4081 }
4082 }
4083
4084 static void igb_vlan_rx_register(struct net_device *netdev,
4085 struct vlan_group *grp)
4086 {
4087 struct igb_adapter *adapter = netdev_priv(netdev);
4088 struct e1000_hw *hw = &adapter->hw;
4089 u32 ctrl, rctl;
4090
4091 igb_irq_disable(adapter);
4092 adapter->vlgrp = grp;
4093
4094 if (grp) {
4095 /* enable VLAN tag insert/strip */
4096 ctrl = rd32(E1000_CTRL);
4097 ctrl |= E1000_CTRL_VME;
4098 wr32(E1000_CTRL, ctrl);
4099
4100 /* enable VLAN receive filtering */
4101 rctl = rd32(E1000_RCTL);
4102 rctl &= ~E1000_RCTL_CFIEN;
4103 wr32(E1000_RCTL, rctl);
4104 igb_update_mng_vlan(adapter);
4105 wr32(E1000_RLPML,
4106 adapter->max_frame_size + VLAN_TAG_SIZE);
4107 } else {
4108 /* disable VLAN tag insert/strip */
4109 ctrl = rd32(E1000_CTRL);
4110 ctrl &= ~E1000_CTRL_VME;
4111 wr32(E1000_CTRL, ctrl);
4112
4113 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4114 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4115 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4116 }
4117 wr32(E1000_RLPML,
4118 adapter->max_frame_size);
4119 }
4120
4121 if (!test_bit(__IGB_DOWN, &adapter->state))
4122 igb_irq_enable(adapter);
4123 }
4124
4125 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4126 {
4127 struct igb_adapter *adapter = netdev_priv(netdev);
4128 struct e1000_hw *hw = &adapter->hw;
4129 u32 vfta, index;
4130
4131 if ((adapter->hw.mng_cookie.status &
4132 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4133 (vid == adapter->mng_vlan_id))
4134 return;
4135 /* add VID to filter table */
4136 index = (vid >> 5) & 0x7F;
4137 vfta = array_rd32(E1000_VFTA, index);
4138 vfta |= (1 << (vid & 0x1F));
4139 igb_write_vfta(&adapter->hw, index, vfta);
4140 }
4141
4142 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4143 {
4144 struct igb_adapter *adapter = netdev_priv(netdev);
4145 struct e1000_hw *hw = &adapter->hw;
4146 u32 vfta, index;
4147
4148 igb_irq_disable(adapter);
4149 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4150
4151 if (!test_bit(__IGB_DOWN, &adapter->state))
4152 igb_irq_enable(adapter);
4153
4154 if ((adapter->hw.mng_cookie.status &
4155 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4156 (vid == adapter->mng_vlan_id)) {
4157 /* release control to f/w */
4158 igb_release_hw_control(adapter);
4159 return;
4160 }
4161
4162 /* remove VID from filter table */
4163 index = (vid >> 5) & 0x7F;
4164 vfta = array_rd32(E1000_VFTA, index);
4165 vfta &= ~(1 << (vid & 0x1F));
4166 igb_write_vfta(&adapter->hw, index, vfta);
4167 }
4168
4169 static void igb_restore_vlan(struct igb_adapter *adapter)
4170 {
4171 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4172
4173 if (adapter->vlgrp) {
4174 u16 vid;
4175 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4176 if (!vlan_group_get_device(adapter->vlgrp, vid))
4177 continue;
4178 igb_vlan_rx_add_vid(adapter->netdev, vid);
4179 }
4180 }
4181 }
4182
4183 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4184 {
4185 struct e1000_mac_info *mac = &adapter->hw.mac;
4186
4187 mac->autoneg = 0;
4188
4189 /* Fiber NICs only allow 1000 gbps Full duplex */
4190 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4191 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4192 dev_err(&adapter->pdev->dev,
4193 "Unsupported Speed/Duplex configuration\n");
4194 return -EINVAL;
4195 }
4196
4197 switch (spddplx) {
4198 case SPEED_10 + DUPLEX_HALF:
4199 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4200 break;
4201 case SPEED_10 + DUPLEX_FULL:
4202 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4203 break;
4204 case SPEED_100 + DUPLEX_HALF:
4205 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4206 break;
4207 case SPEED_100 + DUPLEX_FULL:
4208 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4209 break;
4210 case SPEED_1000 + DUPLEX_FULL:
4211 mac->autoneg = 1;
4212 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4213 break;
4214 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4215 default:
4216 dev_err(&adapter->pdev->dev,
4217 "Unsupported Speed/Duplex configuration\n");
4218 return -EINVAL;
4219 }
4220 return 0;
4221 }
4222
4223
4224 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4225 {
4226 struct net_device *netdev = pci_get_drvdata(pdev);
4227 struct igb_adapter *adapter = netdev_priv(netdev);
4228 struct e1000_hw *hw = &adapter->hw;
4229 u32 ctrl, rctl, status;
4230 u32 wufc = adapter->wol;
4231 #ifdef CONFIG_PM
4232 int retval = 0;
4233 #endif
4234
4235 netif_device_detach(netdev);
4236
4237 if (netif_running(netdev))
4238 igb_close(netdev);
4239
4240 igb_reset_interrupt_capability(adapter);
4241
4242 igb_free_queues(adapter);
4243
4244 #ifdef CONFIG_PM
4245 retval = pci_save_state(pdev);
4246 if (retval)
4247 return retval;
4248 #endif
4249
4250 status = rd32(E1000_STATUS);
4251 if (status & E1000_STATUS_LU)
4252 wufc &= ~E1000_WUFC_LNKC;
4253
4254 if (wufc) {
4255 igb_setup_rctl(adapter);
4256 igb_set_multi(netdev);
4257
4258 /* turn on all-multi mode if wake on multicast is enabled */
4259 if (wufc & E1000_WUFC_MC) {
4260 rctl = rd32(E1000_RCTL);
4261 rctl |= E1000_RCTL_MPE;
4262 wr32(E1000_RCTL, rctl);
4263 }
4264
4265 ctrl = rd32(E1000_CTRL);
4266 /* advertise wake from D3Cold */
4267 #define E1000_CTRL_ADVD3WUC 0x00100000
4268 /* phy power management enable */
4269 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4270 ctrl |= E1000_CTRL_ADVD3WUC;
4271 wr32(E1000_CTRL, ctrl);
4272
4273 /* Allow time for pending master requests to run */
4274 igb_disable_pcie_master(&adapter->hw);
4275
4276 wr32(E1000_WUC, E1000_WUC_PME_EN);
4277 wr32(E1000_WUFC, wufc);
4278 } else {
4279 wr32(E1000_WUC, 0);
4280 wr32(E1000_WUFC, 0);
4281 }
4282
4283 /* make sure adapter isn't asleep if manageability/wol is enabled */
4284 if (wufc || adapter->en_mng_pt) {
4285 pci_enable_wake(pdev, PCI_D3hot, 1);
4286 pci_enable_wake(pdev, PCI_D3cold, 1);
4287 } else {
4288 igb_shutdown_fiber_serdes_link_82575(hw);
4289 pci_enable_wake(pdev, PCI_D3hot, 0);
4290 pci_enable_wake(pdev, PCI_D3cold, 0);
4291 }
4292
4293 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4294 * would have already happened in close and is redundant. */
4295 igb_release_hw_control(adapter);
4296
4297 pci_disable_device(pdev);
4298
4299 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4300
4301 return 0;
4302 }
4303
4304 #ifdef CONFIG_PM
4305 static int igb_resume(struct pci_dev *pdev)
4306 {
4307 struct net_device *netdev = pci_get_drvdata(pdev);
4308 struct igb_adapter *adapter = netdev_priv(netdev);
4309 struct e1000_hw *hw = &adapter->hw;
4310 u32 err;
4311
4312 pci_set_power_state(pdev, PCI_D0);
4313 pci_restore_state(pdev);
4314
4315 err = pci_enable_device_mem(pdev);
4316 if (err) {
4317 dev_err(&pdev->dev,
4318 "igb: Cannot enable PCI device from suspend\n");
4319 return err;
4320 }
4321 pci_set_master(pdev);
4322
4323 pci_enable_wake(pdev, PCI_D3hot, 0);
4324 pci_enable_wake(pdev, PCI_D3cold, 0);
4325
4326 igb_set_interrupt_capability(adapter);
4327
4328 if (igb_alloc_queues(adapter)) {
4329 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4330 return -ENOMEM;
4331 }
4332
4333 /* e1000_power_up_phy(adapter); */
4334
4335 igb_reset(adapter);
4336 wr32(E1000_WUS, ~0);
4337
4338 if (netif_running(netdev)) {
4339 err = igb_open(netdev);
4340 if (err)
4341 return err;
4342 }
4343
4344 netif_device_attach(netdev);
4345
4346 /* let the f/w know that the h/w is now under the control of the
4347 * driver. */
4348 igb_get_hw_control(adapter);
4349
4350 return 0;
4351 }
4352 #endif
4353
4354 static void igb_shutdown(struct pci_dev *pdev)
4355 {
4356 igb_suspend(pdev, PMSG_SUSPEND);
4357 }
4358
4359 #ifdef CONFIG_NET_POLL_CONTROLLER
4360 /*
4361 * Polling 'interrupt' - used by things like netconsole to send skbs
4362 * without having to re-enable interrupts. It's not called while
4363 * the interrupt routine is executing.
4364 */
4365 static void igb_netpoll(struct net_device *netdev)
4366 {
4367 struct igb_adapter *adapter = netdev_priv(netdev);
4368 int i;
4369 int work_done = 0;
4370
4371 igb_irq_disable(adapter);
4372 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4373
4374 for (i = 0; i < adapter->num_tx_queues; i++)
4375 igb_clean_tx_irq(&adapter->tx_ring[i]);
4376
4377 for (i = 0; i < adapter->num_rx_queues; i++)
4378 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4379 &work_done,
4380 adapter->rx_ring[i].napi.weight);
4381
4382 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4383 igb_irq_enable(adapter);
4384 }
4385 #endif /* CONFIG_NET_POLL_CONTROLLER */
4386
4387 /**
4388 * igb_io_error_detected - called when PCI error is detected
4389 * @pdev: Pointer to PCI device
4390 * @state: The current pci connection state
4391 *
4392 * This function is called after a PCI bus error affecting
4393 * this device has been detected.
4394 */
4395 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4396 pci_channel_state_t state)
4397 {
4398 struct net_device *netdev = pci_get_drvdata(pdev);
4399 struct igb_adapter *adapter = netdev_priv(netdev);
4400
4401 netif_device_detach(netdev);
4402
4403 if (netif_running(netdev))
4404 igb_down(adapter);
4405 pci_disable_device(pdev);
4406
4407 /* Request a slot slot reset. */
4408 return PCI_ERS_RESULT_NEED_RESET;
4409 }
4410
4411 /**
4412 * igb_io_slot_reset - called after the pci bus has been reset.
4413 * @pdev: Pointer to PCI device
4414 *
4415 * Restart the card from scratch, as if from a cold-boot. Implementation
4416 * resembles the first-half of the igb_resume routine.
4417 */
4418 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4419 {
4420 struct net_device *netdev = pci_get_drvdata(pdev);
4421 struct igb_adapter *adapter = netdev_priv(netdev);
4422 struct e1000_hw *hw = &adapter->hw;
4423 pci_ers_result_t result;
4424 int err;
4425
4426 if (pci_enable_device_mem(pdev)) {
4427 dev_err(&pdev->dev,
4428 "Cannot re-enable PCI device after reset.\n");
4429 result = PCI_ERS_RESULT_DISCONNECT;
4430 } else {
4431 pci_set_master(pdev);
4432 pci_restore_state(pdev);
4433
4434 pci_enable_wake(pdev, PCI_D3hot, 0);
4435 pci_enable_wake(pdev, PCI_D3cold, 0);
4436
4437 igb_reset(adapter);
4438 wr32(E1000_WUS, ~0);
4439 result = PCI_ERS_RESULT_RECOVERED;
4440 }
4441
4442 err = pci_cleanup_aer_uncorrect_error_status(pdev);
4443 if (err) {
4444 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4445 "failed 0x%0x\n", err);
4446 /* non-fatal, continue */
4447 }
4448
4449 return result;
4450 }
4451
4452 /**
4453 * igb_io_resume - called when traffic can start flowing again.
4454 * @pdev: Pointer to PCI device
4455 *
4456 * This callback is called when the error recovery driver tells us that
4457 * its OK to resume normal operation. Implementation resembles the
4458 * second-half of the igb_resume routine.
4459 */
4460 static void igb_io_resume(struct pci_dev *pdev)
4461 {
4462 struct net_device *netdev = pci_get_drvdata(pdev);
4463 struct igb_adapter *adapter = netdev_priv(netdev);
4464
4465 if (netif_running(netdev)) {
4466 if (igb_up(adapter)) {
4467 dev_err(&pdev->dev, "igb_up failed after reset\n");
4468 return;
4469 }
4470 }
4471
4472 netif_device_attach(netdev);
4473
4474 /* let the f/w know that the h/w is now under the control of the
4475 * driver. */
4476 igb_get_hw_control(adapter);
4477 }
4478
4479 /* igb_main.c */
This page took 0.162293 seconds and 6 git commands to generate.