Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "2.1.0-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
79 /* required last entry */
80 {0, }
81 };
82
83 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
84
85 void igb_reset(struct igb_adapter *);
86 static int igb_setup_all_tx_resources(struct igb_adapter *);
87 static int igb_setup_all_rx_resources(struct igb_adapter *);
88 static void igb_free_all_tx_resources(struct igb_adapter *);
89 static void igb_free_all_rx_resources(struct igb_adapter *);
90 static void igb_setup_mrqc(struct igb_adapter *);
91 void igb_update_stats(struct igb_adapter *);
92 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
93 static void __devexit igb_remove(struct pci_dev *pdev);
94 static int igb_sw_init(struct igb_adapter *);
95 static int igb_open(struct net_device *);
96 static int igb_close(struct net_device *);
97 static void igb_configure_tx(struct igb_adapter *);
98 static void igb_configure_rx(struct igb_adapter *);
99 static void igb_clean_all_tx_rings(struct igb_adapter *);
100 static void igb_clean_all_rx_rings(struct igb_adapter *);
101 static void igb_clean_tx_ring(struct igb_ring *);
102 static void igb_clean_rx_ring(struct igb_ring *);
103 static void igb_set_rx_mode(struct net_device *);
104 static void igb_update_phy_info(unsigned long);
105 static void igb_watchdog(unsigned long);
106 static void igb_watchdog_task(struct work_struct *);
107 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
108 static struct net_device_stats *igb_get_stats(struct net_device *);
109 static int igb_change_mtu(struct net_device *, int);
110 static int igb_set_mac(struct net_device *, void *);
111 static void igb_set_uta(struct igb_adapter *adapter);
112 static irqreturn_t igb_intr(int irq, void *);
113 static irqreturn_t igb_intr_msi(int irq, void *);
114 static irqreturn_t igb_msix_other(int irq, void *);
115 static irqreturn_t igb_msix_ring(int irq, void *);
116 #ifdef CONFIG_IGB_DCA
117 static void igb_update_dca(struct igb_q_vector *);
118 static void igb_setup_dca(struct igb_adapter *);
119 #endif /* CONFIG_IGB_DCA */
120 static bool igb_clean_tx_irq(struct igb_q_vector *);
121 static int igb_poll(struct napi_struct *, int);
122 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
123 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124 static void igb_tx_timeout(struct net_device *);
125 static void igb_reset_task(struct work_struct *);
126 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127 static void igb_vlan_rx_add_vid(struct net_device *, u16);
128 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129 static void igb_restore_vlan(struct igb_adapter *);
130 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
131 static void igb_ping_all_vfs(struct igb_adapter *);
132 static void igb_msg_task(struct igb_adapter *);
133 static void igb_vmm_control(struct igb_adapter *);
134 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
135 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
136
137 #ifdef CONFIG_PM
138 static int igb_suspend(struct pci_dev *, pm_message_t);
139 static int igb_resume(struct pci_dev *);
140 #endif
141 static void igb_shutdown(struct pci_dev *);
142 #ifdef CONFIG_IGB_DCA
143 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
144 static struct notifier_block dca_notifier = {
145 .notifier_call = igb_notify_dca,
146 .next = NULL,
147 .priority = 0
148 };
149 #endif
150 #ifdef CONFIG_NET_POLL_CONTROLLER
151 /* for netdump / net console */
152 static void igb_netpoll(struct net_device *);
153 #endif
154 #ifdef CONFIG_PCI_IOV
155 static unsigned int max_vfs = 0;
156 module_param(max_vfs, uint, 0);
157 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
158 "per physical function");
159 #endif /* CONFIG_PCI_IOV */
160
161 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
162 pci_channel_state_t);
163 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
164 static void igb_io_resume(struct pci_dev *);
165
166 static struct pci_error_handlers igb_err_handler = {
167 .error_detected = igb_io_error_detected,
168 .slot_reset = igb_io_slot_reset,
169 .resume = igb_io_resume,
170 };
171
172
173 static struct pci_driver igb_driver = {
174 .name = igb_driver_name,
175 .id_table = igb_pci_tbl,
176 .probe = igb_probe,
177 .remove = __devexit_p(igb_remove),
178 #ifdef CONFIG_PM
179 /* Power Managment Hooks */
180 .suspend = igb_suspend,
181 .resume = igb_resume,
182 #endif
183 .shutdown = igb_shutdown,
184 .err_handler = &igb_err_handler
185 };
186
187 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
188 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
189 MODULE_LICENSE("GPL");
190 MODULE_VERSION(DRV_VERSION);
191
192 /**
193 * igb_read_clock - read raw cycle counter (to be used by time counter)
194 */
195 static cycle_t igb_read_clock(const struct cyclecounter *tc)
196 {
197 struct igb_adapter *adapter =
198 container_of(tc, struct igb_adapter, cycles);
199 struct e1000_hw *hw = &adapter->hw;
200 u64 stamp = 0;
201 int shift = 0;
202
203 /*
204 * The timestamp latches on lowest register read. For the 82580
205 * the lowest register is SYSTIMR instead of SYSTIML. However we never
206 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
207 */
208 if (hw->mac.type == e1000_82580) {
209 stamp = rd32(E1000_SYSTIMR) >> 8;
210 shift = IGB_82580_TSYNC_SHIFT;
211 }
212
213 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
214 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
215 return stamp;
216 }
217
218 #ifdef DEBUG
219 /**
220 * igb_get_hw_dev_name - return device name string
221 * used by hardware layer to print debugging information
222 **/
223 char *igb_get_hw_dev_name(struct e1000_hw *hw)
224 {
225 struct igb_adapter *adapter = hw->back;
226 return adapter->netdev->name;
227 }
228
229 /**
230 * igb_get_time_str - format current NIC and system time as string
231 */
232 static char *igb_get_time_str(struct igb_adapter *adapter,
233 char buffer[160])
234 {
235 cycle_t hw = adapter->cycles.read(&adapter->cycles);
236 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
237 struct timespec sys;
238 struct timespec delta;
239 getnstimeofday(&sys);
240
241 delta = timespec_sub(nic, sys);
242
243 sprintf(buffer,
244 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
245 hw,
246 (long)nic.tv_sec, nic.tv_nsec,
247 (long)sys.tv_sec, sys.tv_nsec,
248 (long)delta.tv_sec, delta.tv_nsec);
249
250 return buffer;
251 }
252 #endif
253
254 /**
255 * igb_init_module - Driver Registration Routine
256 *
257 * igb_init_module is the first routine called when the driver is
258 * loaded. All it does is register with the PCI subsystem.
259 **/
260 static int __init igb_init_module(void)
261 {
262 int ret;
263 printk(KERN_INFO "%s - version %s\n",
264 igb_driver_string, igb_driver_version);
265
266 printk(KERN_INFO "%s\n", igb_copyright);
267
268 #ifdef CONFIG_IGB_DCA
269 dca_register_notify(&dca_notifier);
270 #endif
271 ret = pci_register_driver(&igb_driver);
272 return ret;
273 }
274
275 module_init(igb_init_module);
276
277 /**
278 * igb_exit_module - Driver Exit Cleanup Routine
279 *
280 * igb_exit_module is called just before the driver is removed
281 * from memory.
282 **/
283 static void __exit igb_exit_module(void)
284 {
285 #ifdef CONFIG_IGB_DCA
286 dca_unregister_notify(&dca_notifier);
287 #endif
288 pci_unregister_driver(&igb_driver);
289 }
290
291 module_exit(igb_exit_module);
292
293 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
294 /**
295 * igb_cache_ring_register - Descriptor ring to register mapping
296 * @adapter: board private structure to initialize
297 *
298 * Once we know the feature-set enabled for the device, we'll cache
299 * the register offset the descriptor ring is assigned to.
300 **/
301 static void igb_cache_ring_register(struct igb_adapter *adapter)
302 {
303 int i = 0, j = 0;
304 u32 rbase_offset = adapter->vfs_allocated_count;
305
306 switch (adapter->hw.mac.type) {
307 case e1000_82576:
308 /* The queues are allocated for virtualization such that VF 0
309 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
310 * In order to avoid collision we start at the first free queue
311 * and continue consuming queues in the same sequence
312 */
313 if (adapter->vfs_allocated_count) {
314 for (; i < adapter->rss_queues; i++)
315 adapter->rx_ring[i].reg_idx = rbase_offset +
316 Q_IDX_82576(i);
317 for (; j < adapter->rss_queues; j++)
318 adapter->tx_ring[j].reg_idx = rbase_offset +
319 Q_IDX_82576(j);
320 }
321 case e1000_82575:
322 case e1000_82580:
323 default:
324 for (; i < adapter->num_rx_queues; i++)
325 adapter->rx_ring[i].reg_idx = rbase_offset + i;
326 for (; j < adapter->num_tx_queues; j++)
327 adapter->tx_ring[j].reg_idx = rbase_offset + j;
328 break;
329 }
330 }
331
332 static void igb_free_queues(struct igb_adapter *adapter)
333 {
334 kfree(adapter->tx_ring);
335 kfree(adapter->rx_ring);
336
337 adapter->tx_ring = NULL;
338 adapter->rx_ring = NULL;
339
340 adapter->num_rx_queues = 0;
341 adapter->num_tx_queues = 0;
342 }
343
344 /**
345 * igb_alloc_queues - Allocate memory for all rings
346 * @adapter: board private structure to initialize
347 *
348 * We allocate one ring per queue at run-time since we don't know the
349 * number of queues at compile-time.
350 **/
351 static int igb_alloc_queues(struct igb_adapter *adapter)
352 {
353 int i;
354
355 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
356 sizeof(struct igb_ring), GFP_KERNEL);
357 if (!adapter->tx_ring)
358 goto err;
359
360 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
361 sizeof(struct igb_ring), GFP_KERNEL);
362 if (!adapter->rx_ring)
363 goto err;
364
365 for (i = 0; i < adapter->num_tx_queues; i++) {
366 struct igb_ring *ring = &(adapter->tx_ring[i]);
367 ring->count = adapter->tx_ring_count;
368 ring->queue_index = i;
369 ring->pdev = adapter->pdev;
370 ring->netdev = adapter->netdev;
371 /* For 82575, context index must be unique per ring. */
372 if (adapter->hw.mac.type == e1000_82575)
373 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
374 }
375
376 for (i = 0; i < adapter->num_rx_queues; i++) {
377 struct igb_ring *ring = &(adapter->rx_ring[i]);
378 ring->count = adapter->rx_ring_count;
379 ring->queue_index = i;
380 ring->pdev = adapter->pdev;
381 ring->netdev = adapter->netdev;
382 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
383 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
384 /* set flag indicating ring supports SCTP checksum offload */
385 if (adapter->hw.mac.type >= e1000_82576)
386 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
387 }
388
389 igb_cache_ring_register(adapter);
390
391 return 0;
392
393 err:
394 igb_free_queues(adapter);
395
396 return -ENOMEM;
397 }
398
399 #define IGB_N0_QUEUE -1
400 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
401 {
402 u32 msixbm = 0;
403 struct igb_adapter *adapter = q_vector->adapter;
404 struct e1000_hw *hw = &adapter->hw;
405 u32 ivar, index;
406 int rx_queue = IGB_N0_QUEUE;
407 int tx_queue = IGB_N0_QUEUE;
408
409 if (q_vector->rx_ring)
410 rx_queue = q_vector->rx_ring->reg_idx;
411 if (q_vector->tx_ring)
412 tx_queue = q_vector->tx_ring->reg_idx;
413
414 switch (hw->mac.type) {
415 case e1000_82575:
416 /* The 82575 assigns vectors using a bitmask, which matches the
417 bitmask for the EICR/EIMS/EIMC registers. To assign one
418 or more queues to a vector, we write the appropriate bits
419 into the MSIXBM register for that vector. */
420 if (rx_queue > IGB_N0_QUEUE)
421 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
422 if (tx_queue > IGB_N0_QUEUE)
423 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
424 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
425 q_vector->eims_value = msixbm;
426 break;
427 case e1000_82576:
428 /* 82576 uses a table-based method for assigning vectors.
429 Each queue has a single entry in the table to which we write
430 a vector number along with a "valid" bit. Sadly, the layout
431 of the table is somewhat counterintuitive. */
432 if (rx_queue > IGB_N0_QUEUE) {
433 index = (rx_queue & 0x7);
434 ivar = array_rd32(E1000_IVAR0, index);
435 if (rx_queue < 8) {
436 /* vector goes into low byte of register */
437 ivar = ivar & 0xFFFFFF00;
438 ivar |= msix_vector | E1000_IVAR_VALID;
439 } else {
440 /* vector goes into third byte of register */
441 ivar = ivar & 0xFF00FFFF;
442 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
443 }
444 array_wr32(E1000_IVAR0, index, ivar);
445 }
446 if (tx_queue > IGB_N0_QUEUE) {
447 index = (tx_queue & 0x7);
448 ivar = array_rd32(E1000_IVAR0, index);
449 if (tx_queue < 8) {
450 /* vector goes into second byte of register */
451 ivar = ivar & 0xFFFF00FF;
452 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
453 } else {
454 /* vector goes into high byte of register */
455 ivar = ivar & 0x00FFFFFF;
456 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
457 }
458 array_wr32(E1000_IVAR0, index, ivar);
459 }
460 q_vector->eims_value = 1 << msix_vector;
461 break;
462 case e1000_82580:
463 /* 82580 uses the same table-based approach as 82576 but has fewer
464 entries as a result we carry over for queues greater than 4. */
465 if (rx_queue > IGB_N0_QUEUE) {
466 index = (rx_queue >> 1);
467 ivar = array_rd32(E1000_IVAR0, index);
468 if (rx_queue & 0x1) {
469 /* vector goes into third byte of register */
470 ivar = ivar & 0xFF00FFFF;
471 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
472 } else {
473 /* vector goes into low byte of register */
474 ivar = ivar & 0xFFFFFF00;
475 ivar |= msix_vector | E1000_IVAR_VALID;
476 }
477 array_wr32(E1000_IVAR0, index, ivar);
478 }
479 if (tx_queue > IGB_N0_QUEUE) {
480 index = (tx_queue >> 1);
481 ivar = array_rd32(E1000_IVAR0, index);
482 if (tx_queue & 0x1) {
483 /* vector goes into high byte of register */
484 ivar = ivar & 0x00FFFFFF;
485 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
486 } else {
487 /* vector goes into second byte of register */
488 ivar = ivar & 0xFFFF00FF;
489 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
490 }
491 array_wr32(E1000_IVAR0, index, ivar);
492 }
493 q_vector->eims_value = 1 << msix_vector;
494 break;
495 default:
496 BUG();
497 break;
498 }
499 }
500
501 /**
502 * igb_configure_msix - Configure MSI-X hardware
503 *
504 * igb_configure_msix sets up the hardware to properly
505 * generate MSI-X interrupts.
506 **/
507 static void igb_configure_msix(struct igb_adapter *adapter)
508 {
509 u32 tmp;
510 int i, vector = 0;
511 struct e1000_hw *hw = &adapter->hw;
512
513 adapter->eims_enable_mask = 0;
514
515 /* set vector for other causes, i.e. link changes */
516 switch (hw->mac.type) {
517 case e1000_82575:
518 tmp = rd32(E1000_CTRL_EXT);
519 /* enable MSI-X PBA support*/
520 tmp |= E1000_CTRL_EXT_PBA_CLR;
521
522 /* Auto-Mask interrupts upon ICR read. */
523 tmp |= E1000_CTRL_EXT_EIAME;
524 tmp |= E1000_CTRL_EXT_IRCA;
525
526 wr32(E1000_CTRL_EXT, tmp);
527
528 /* enable msix_other interrupt */
529 array_wr32(E1000_MSIXBM(0), vector++,
530 E1000_EIMS_OTHER);
531 adapter->eims_other = E1000_EIMS_OTHER;
532
533 break;
534
535 case e1000_82576:
536 case e1000_82580:
537 /* Turn on MSI-X capability first, or our settings
538 * won't stick. And it will take days to debug. */
539 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
540 E1000_GPIE_PBA | E1000_GPIE_EIAME |
541 E1000_GPIE_NSICR);
542
543 /* enable msix_other interrupt */
544 adapter->eims_other = 1 << vector;
545 tmp = (vector++ | E1000_IVAR_VALID) << 8;
546
547 wr32(E1000_IVAR_MISC, tmp);
548 break;
549 default:
550 /* do nothing, since nothing else supports MSI-X */
551 break;
552 } /* switch (hw->mac.type) */
553
554 adapter->eims_enable_mask |= adapter->eims_other;
555
556 for (i = 0; i < adapter->num_q_vectors; i++) {
557 struct igb_q_vector *q_vector = adapter->q_vector[i];
558 igb_assign_vector(q_vector, vector++);
559 adapter->eims_enable_mask |= q_vector->eims_value;
560 }
561
562 wrfl();
563 }
564
565 /**
566 * igb_request_msix - Initialize MSI-X interrupts
567 *
568 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
569 * kernel.
570 **/
571 static int igb_request_msix(struct igb_adapter *adapter)
572 {
573 struct net_device *netdev = adapter->netdev;
574 struct e1000_hw *hw = &adapter->hw;
575 int i, err = 0, vector = 0;
576
577 err = request_irq(adapter->msix_entries[vector].vector,
578 igb_msix_other, 0, netdev->name, adapter);
579 if (err)
580 goto out;
581 vector++;
582
583 for (i = 0; i < adapter->num_q_vectors; i++) {
584 struct igb_q_vector *q_vector = adapter->q_vector[i];
585
586 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
587
588 if (q_vector->rx_ring && q_vector->tx_ring)
589 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
590 q_vector->rx_ring->queue_index);
591 else if (q_vector->tx_ring)
592 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
593 q_vector->tx_ring->queue_index);
594 else if (q_vector->rx_ring)
595 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
596 q_vector->rx_ring->queue_index);
597 else
598 sprintf(q_vector->name, "%s-unused", netdev->name);
599
600 err = request_irq(adapter->msix_entries[vector].vector,
601 igb_msix_ring, 0, q_vector->name,
602 q_vector);
603 if (err)
604 goto out;
605 vector++;
606 }
607
608 igb_configure_msix(adapter);
609 return 0;
610 out:
611 return err;
612 }
613
614 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
615 {
616 if (adapter->msix_entries) {
617 pci_disable_msix(adapter->pdev);
618 kfree(adapter->msix_entries);
619 adapter->msix_entries = NULL;
620 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
621 pci_disable_msi(adapter->pdev);
622 }
623 }
624
625 /**
626 * igb_free_q_vectors - Free memory allocated for interrupt vectors
627 * @adapter: board private structure to initialize
628 *
629 * This function frees the memory allocated to the q_vectors. In addition if
630 * NAPI is enabled it will delete any references to the NAPI struct prior
631 * to freeing the q_vector.
632 **/
633 static void igb_free_q_vectors(struct igb_adapter *adapter)
634 {
635 int v_idx;
636
637 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
638 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
639 adapter->q_vector[v_idx] = NULL;
640 netif_napi_del(&q_vector->napi);
641 kfree(q_vector);
642 }
643 adapter->num_q_vectors = 0;
644 }
645
646 /**
647 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
648 *
649 * This function resets the device so that it has 0 rx queues, tx queues, and
650 * MSI-X interrupts allocated.
651 */
652 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
653 {
654 igb_free_queues(adapter);
655 igb_free_q_vectors(adapter);
656 igb_reset_interrupt_capability(adapter);
657 }
658
659 /**
660 * igb_set_interrupt_capability - set MSI or MSI-X if supported
661 *
662 * Attempt to configure interrupts using the best available
663 * capabilities of the hardware and kernel.
664 **/
665 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
666 {
667 int err;
668 int numvecs, i;
669
670 /* Number of supported queues. */
671 adapter->num_rx_queues = adapter->rss_queues;
672 adapter->num_tx_queues = adapter->rss_queues;
673
674 /* start with one vector for every rx queue */
675 numvecs = adapter->num_rx_queues;
676
677 /* if tx handler is seperate add 1 for every tx queue */
678 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
679 numvecs += adapter->num_tx_queues;
680
681 /* store the number of vectors reserved for queues */
682 adapter->num_q_vectors = numvecs;
683
684 /* add 1 vector for link status interrupts */
685 numvecs++;
686 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
687 GFP_KERNEL);
688 if (!adapter->msix_entries)
689 goto msi_only;
690
691 for (i = 0; i < numvecs; i++)
692 adapter->msix_entries[i].entry = i;
693
694 err = pci_enable_msix(adapter->pdev,
695 adapter->msix_entries,
696 numvecs);
697 if (err == 0)
698 goto out;
699
700 igb_reset_interrupt_capability(adapter);
701
702 /* If we can't do MSI-X, try MSI */
703 msi_only:
704 #ifdef CONFIG_PCI_IOV
705 /* disable SR-IOV for non MSI-X configurations */
706 if (adapter->vf_data) {
707 struct e1000_hw *hw = &adapter->hw;
708 /* disable iov and allow time for transactions to clear */
709 pci_disable_sriov(adapter->pdev);
710 msleep(500);
711
712 kfree(adapter->vf_data);
713 adapter->vf_data = NULL;
714 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
715 msleep(100);
716 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
717 }
718 #endif
719 adapter->vfs_allocated_count = 0;
720 adapter->rss_queues = 1;
721 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
722 adapter->num_rx_queues = 1;
723 adapter->num_tx_queues = 1;
724 adapter->num_q_vectors = 1;
725 if (!pci_enable_msi(adapter->pdev))
726 adapter->flags |= IGB_FLAG_HAS_MSI;
727 out:
728 /* Notify the stack of the (possibly) reduced Tx Queue count. */
729 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
730 return;
731 }
732
733 /**
734 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
735 * @adapter: board private structure to initialize
736 *
737 * We allocate one q_vector per queue interrupt. If allocation fails we
738 * return -ENOMEM.
739 **/
740 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
741 {
742 struct igb_q_vector *q_vector;
743 struct e1000_hw *hw = &adapter->hw;
744 int v_idx;
745
746 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
747 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
748 if (!q_vector)
749 goto err_out;
750 q_vector->adapter = adapter;
751 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
752 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
753 q_vector->itr_val = IGB_START_ITR;
754 q_vector->set_itr = 1;
755 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
756 adapter->q_vector[v_idx] = q_vector;
757 }
758 return 0;
759
760 err_out:
761 while (v_idx) {
762 v_idx--;
763 q_vector = adapter->q_vector[v_idx];
764 netif_napi_del(&q_vector->napi);
765 kfree(q_vector);
766 adapter->q_vector[v_idx] = NULL;
767 }
768 return -ENOMEM;
769 }
770
771 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
772 int ring_idx, int v_idx)
773 {
774 struct igb_q_vector *q_vector;
775
776 q_vector = adapter->q_vector[v_idx];
777 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
778 q_vector->rx_ring->q_vector = q_vector;
779 q_vector->itr_val = adapter->rx_itr_setting;
780 if (q_vector->itr_val && q_vector->itr_val <= 3)
781 q_vector->itr_val = IGB_START_ITR;
782 }
783
784 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
785 int ring_idx, int v_idx)
786 {
787 struct igb_q_vector *q_vector;
788
789 q_vector = adapter->q_vector[v_idx];
790 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
791 q_vector->tx_ring->q_vector = q_vector;
792 q_vector->itr_val = adapter->tx_itr_setting;
793 if (q_vector->itr_val && q_vector->itr_val <= 3)
794 q_vector->itr_val = IGB_START_ITR;
795 }
796
797 /**
798 * igb_map_ring_to_vector - maps allocated queues to vectors
799 *
800 * This function maps the recently allocated queues to vectors.
801 **/
802 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
803 {
804 int i;
805 int v_idx = 0;
806
807 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
808 (adapter->num_q_vectors < adapter->num_tx_queues))
809 return -ENOMEM;
810
811 if (adapter->num_q_vectors >=
812 (adapter->num_rx_queues + adapter->num_tx_queues)) {
813 for (i = 0; i < adapter->num_rx_queues; i++)
814 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
815 for (i = 0; i < adapter->num_tx_queues; i++)
816 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
817 } else {
818 for (i = 0; i < adapter->num_rx_queues; i++) {
819 if (i < adapter->num_tx_queues)
820 igb_map_tx_ring_to_vector(adapter, i, v_idx);
821 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
822 }
823 for (; i < adapter->num_tx_queues; i++)
824 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
825 }
826 return 0;
827 }
828
829 /**
830 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
831 *
832 * This function initializes the interrupts and allocates all of the queues.
833 **/
834 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
835 {
836 struct pci_dev *pdev = adapter->pdev;
837 int err;
838
839 igb_set_interrupt_capability(adapter);
840
841 err = igb_alloc_q_vectors(adapter);
842 if (err) {
843 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
844 goto err_alloc_q_vectors;
845 }
846
847 err = igb_alloc_queues(adapter);
848 if (err) {
849 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
850 goto err_alloc_queues;
851 }
852
853 err = igb_map_ring_to_vector(adapter);
854 if (err) {
855 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
856 goto err_map_queues;
857 }
858
859
860 return 0;
861 err_map_queues:
862 igb_free_queues(adapter);
863 err_alloc_queues:
864 igb_free_q_vectors(adapter);
865 err_alloc_q_vectors:
866 igb_reset_interrupt_capability(adapter);
867 return err;
868 }
869
870 /**
871 * igb_request_irq - initialize interrupts
872 *
873 * Attempts to configure interrupts using the best available
874 * capabilities of the hardware and kernel.
875 **/
876 static int igb_request_irq(struct igb_adapter *adapter)
877 {
878 struct net_device *netdev = adapter->netdev;
879 struct pci_dev *pdev = adapter->pdev;
880 struct e1000_hw *hw = &adapter->hw;
881 int err = 0;
882
883 if (adapter->msix_entries) {
884 err = igb_request_msix(adapter);
885 if (!err)
886 goto request_done;
887 /* fall back to MSI */
888 igb_clear_interrupt_scheme(adapter);
889 if (!pci_enable_msi(adapter->pdev))
890 adapter->flags |= IGB_FLAG_HAS_MSI;
891 igb_free_all_tx_resources(adapter);
892 igb_free_all_rx_resources(adapter);
893 adapter->num_tx_queues = 1;
894 adapter->num_rx_queues = 1;
895 adapter->num_q_vectors = 1;
896 err = igb_alloc_q_vectors(adapter);
897 if (err) {
898 dev_err(&pdev->dev,
899 "Unable to allocate memory for vectors\n");
900 goto request_done;
901 }
902 err = igb_alloc_queues(adapter);
903 if (err) {
904 dev_err(&pdev->dev,
905 "Unable to allocate memory for queues\n");
906 igb_free_q_vectors(adapter);
907 goto request_done;
908 }
909 igb_setup_all_tx_resources(adapter);
910 igb_setup_all_rx_resources(adapter);
911 } else {
912 switch (hw->mac.type) {
913 case e1000_82575:
914 wr32(E1000_MSIXBM(0),
915 (E1000_EICR_RX_QUEUE0 |
916 E1000_EICR_TX_QUEUE0 |
917 E1000_EIMS_OTHER));
918 break;
919 case e1000_82580:
920 case e1000_82576:
921 wr32(E1000_IVAR0, E1000_IVAR_VALID);
922 break;
923 default:
924 break;
925 }
926 }
927
928 if (adapter->flags & IGB_FLAG_HAS_MSI) {
929 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
930 netdev->name, adapter);
931 if (!err)
932 goto request_done;
933
934 /* fall back to legacy interrupts */
935 igb_reset_interrupt_capability(adapter);
936 adapter->flags &= ~IGB_FLAG_HAS_MSI;
937 }
938
939 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
940 netdev->name, adapter);
941
942 if (err)
943 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
944 err);
945
946 request_done:
947 return err;
948 }
949
950 static void igb_free_irq(struct igb_adapter *adapter)
951 {
952 if (adapter->msix_entries) {
953 int vector = 0, i;
954
955 free_irq(adapter->msix_entries[vector++].vector, adapter);
956
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959 free_irq(adapter->msix_entries[vector++].vector,
960 q_vector);
961 }
962 } else {
963 free_irq(adapter->pdev->irq, adapter);
964 }
965 }
966
967 /**
968 * igb_irq_disable - Mask off interrupt generation on the NIC
969 * @adapter: board private structure
970 **/
971 static void igb_irq_disable(struct igb_adapter *adapter)
972 {
973 struct e1000_hw *hw = &adapter->hw;
974
975 /*
976 * we need to be careful when disabling interrupts. The VFs are also
977 * mapped into these registers and so clearing the bits can cause
978 * issues on the VF drivers so we only need to clear what we set
979 */
980 if (adapter->msix_entries) {
981 u32 regval = rd32(E1000_EIAM);
982 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
983 wr32(E1000_EIMC, adapter->eims_enable_mask);
984 regval = rd32(E1000_EIAC);
985 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
986 }
987
988 wr32(E1000_IAM, 0);
989 wr32(E1000_IMC, ~0);
990 wrfl();
991 synchronize_irq(adapter->pdev->irq);
992 }
993
994 /**
995 * igb_irq_enable - Enable default interrupt generation settings
996 * @adapter: board private structure
997 **/
998 static void igb_irq_enable(struct igb_adapter *adapter)
999 {
1000 struct e1000_hw *hw = &adapter->hw;
1001
1002 if (adapter->msix_entries) {
1003 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1004 u32 regval = rd32(E1000_EIAC);
1005 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1006 regval = rd32(E1000_EIAM);
1007 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1008 wr32(E1000_EIMS, adapter->eims_enable_mask);
1009 if (adapter->vfs_allocated_count) {
1010 wr32(E1000_MBVFIMR, 0xFF);
1011 ims |= E1000_IMS_VMMB;
1012 }
1013 if (adapter->hw.mac.type == e1000_82580)
1014 ims |= E1000_IMS_DRSTA;
1015
1016 wr32(E1000_IMS, ims);
1017 } else {
1018 wr32(E1000_IMS, IMS_ENABLE_MASK |
1019 E1000_IMS_DRSTA);
1020 wr32(E1000_IAM, IMS_ENABLE_MASK |
1021 E1000_IMS_DRSTA);
1022 }
1023 }
1024
1025 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1026 {
1027 struct e1000_hw *hw = &adapter->hw;
1028 u16 vid = adapter->hw.mng_cookie.vlan_id;
1029 u16 old_vid = adapter->mng_vlan_id;
1030
1031 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1032 /* add VID to filter table */
1033 igb_vfta_set(hw, vid, true);
1034 adapter->mng_vlan_id = vid;
1035 } else {
1036 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1037 }
1038
1039 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1040 (vid != old_vid) &&
1041 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1042 /* remove VID from filter table */
1043 igb_vfta_set(hw, old_vid, false);
1044 }
1045 }
1046
1047 /**
1048 * igb_release_hw_control - release control of the h/w to f/w
1049 * @adapter: address of board private structure
1050 *
1051 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1052 * For ASF and Pass Through versions of f/w this means that the
1053 * driver is no longer loaded.
1054 *
1055 **/
1056 static void igb_release_hw_control(struct igb_adapter *adapter)
1057 {
1058 struct e1000_hw *hw = &adapter->hw;
1059 u32 ctrl_ext;
1060
1061 /* Let firmware take over control of h/w */
1062 ctrl_ext = rd32(E1000_CTRL_EXT);
1063 wr32(E1000_CTRL_EXT,
1064 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1065 }
1066
1067 /**
1068 * igb_get_hw_control - get control of the h/w from f/w
1069 * @adapter: address of board private structure
1070 *
1071 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1072 * For ASF and Pass Through versions of f/w this means that
1073 * the driver is loaded.
1074 *
1075 **/
1076 static void igb_get_hw_control(struct igb_adapter *adapter)
1077 {
1078 struct e1000_hw *hw = &adapter->hw;
1079 u32 ctrl_ext;
1080
1081 /* Let firmware know the driver has taken over */
1082 ctrl_ext = rd32(E1000_CTRL_EXT);
1083 wr32(E1000_CTRL_EXT,
1084 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1085 }
1086
1087 /**
1088 * igb_configure - configure the hardware for RX and TX
1089 * @adapter: private board structure
1090 **/
1091 static void igb_configure(struct igb_adapter *adapter)
1092 {
1093 struct net_device *netdev = adapter->netdev;
1094 int i;
1095
1096 igb_get_hw_control(adapter);
1097 igb_set_rx_mode(netdev);
1098
1099 igb_restore_vlan(adapter);
1100
1101 igb_setup_tctl(adapter);
1102 igb_setup_mrqc(adapter);
1103 igb_setup_rctl(adapter);
1104
1105 igb_configure_tx(adapter);
1106 igb_configure_rx(adapter);
1107
1108 igb_rx_fifo_flush_82575(&adapter->hw);
1109
1110 /* call igb_desc_unused which always leaves
1111 * at least 1 descriptor unused to make sure
1112 * next_to_use != next_to_clean */
1113 for (i = 0; i < adapter->num_rx_queues; i++) {
1114 struct igb_ring *ring = &adapter->rx_ring[i];
1115 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1116 }
1117
1118
1119 adapter->tx_queue_len = netdev->tx_queue_len;
1120 }
1121
1122
1123 /**
1124 * igb_up - Open the interface and prepare it to handle traffic
1125 * @adapter: board private structure
1126 **/
1127 int igb_up(struct igb_adapter *adapter)
1128 {
1129 struct e1000_hw *hw = &adapter->hw;
1130 int i;
1131
1132 /* hardware has been reset, we need to reload some things */
1133 igb_configure(adapter);
1134
1135 clear_bit(__IGB_DOWN, &adapter->state);
1136
1137 for (i = 0; i < adapter->num_q_vectors; i++) {
1138 struct igb_q_vector *q_vector = adapter->q_vector[i];
1139 napi_enable(&q_vector->napi);
1140 }
1141 if (adapter->msix_entries)
1142 igb_configure_msix(adapter);
1143
1144 /* Clear any pending interrupts. */
1145 rd32(E1000_ICR);
1146 igb_irq_enable(adapter);
1147
1148 /* notify VFs that reset has been completed */
1149 if (adapter->vfs_allocated_count) {
1150 u32 reg_data = rd32(E1000_CTRL_EXT);
1151 reg_data |= E1000_CTRL_EXT_PFRSTD;
1152 wr32(E1000_CTRL_EXT, reg_data);
1153 }
1154
1155 netif_tx_start_all_queues(adapter->netdev);
1156
1157 /* start the watchdog. */
1158 hw->mac.get_link_status = 1;
1159 schedule_work(&adapter->watchdog_task);
1160
1161 return 0;
1162 }
1163
1164 void igb_down(struct igb_adapter *adapter)
1165 {
1166 struct net_device *netdev = adapter->netdev;
1167 struct e1000_hw *hw = &adapter->hw;
1168 u32 tctl, rctl;
1169 int i;
1170
1171 /* signal that we're down so the interrupt handler does not
1172 * reschedule our watchdog timer */
1173 set_bit(__IGB_DOWN, &adapter->state);
1174
1175 /* disable receives in the hardware */
1176 rctl = rd32(E1000_RCTL);
1177 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1178 /* flush and sleep below */
1179
1180 netif_tx_stop_all_queues(netdev);
1181
1182 /* disable transmits in the hardware */
1183 tctl = rd32(E1000_TCTL);
1184 tctl &= ~E1000_TCTL_EN;
1185 wr32(E1000_TCTL, tctl);
1186 /* flush both disables and wait for them to finish */
1187 wrfl();
1188 msleep(10);
1189
1190 for (i = 0; i < adapter->num_q_vectors; i++) {
1191 struct igb_q_vector *q_vector = adapter->q_vector[i];
1192 napi_disable(&q_vector->napi);
1193 }
1194
1195 igb_irq_disable(adapter);
1196
1197 del_timer_sync(&adapter->watchdog_timer);
1198 del_timer_sync(&adapter->phy_info_timer);
1199
1200 netdev->tx_queue_len = adapter->tx_queue_len;
1201 netif_carrier_off(netdev);
1202
1203 /* record the stats before reset*/
1204 igb_update_stats(adapter);
1205
1206 adapter->link_speed = 0;
1207 adapter->link_duplex = 0;
1208
1209 if (!pci_channel_offline(adapter->pdev))
1210 igb_reset(adapter);
1211 igb_clean_all_tx_rings(adapter);
1212 igb_clean_all_rx_rings(adapter);
1213 #ifdef CONFIG_IGB_DCA
1214
1215 /* since we reset the hardware DCA settings were cleared */
1216 igb_setup_dca(adapter);
1217 #endif
1218 }
1219
1220 void igb_reinit_locked(struct igb_adapter *adapter)
1221 {
1222 WARN_ON(in_interrupt());
1223 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1224 msleep(1);
1225 igb_down(adapter);
1226 igb_up(adapter);
1227 clear_bit(__IGB_RESETTING, &adapter->state);
1228 }
1229
1230 void igb_reset(struct igb_adapter *adapter)
1231 {
1232 struct pci_dev *pdev = adapter->pdev;
1233 struct e1000_hw *hw = &adapter->hw;
1234 struct e1000_mac_info *mac = &hw->mac;
1235 struct e1000_fc_info *fc = &hw->fc;
1236 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1237 u16 hwm;
1238
1239 /* Repartition Pba for greater than 9k mtu
1240 * To take effect CTRL.RST is required.
1241 */
1242 switch (mac->type) {
1243 case e1000_82580:
1244 pba = rd32(E1000_RXPBS);
1245 pba = igb_rxpbs_adjust_82580(pba);
1246 break;
1247 case e1000_82576:
1248 pba = rd32(E1000_RXPBS);
1249 pba &= E1000_RXPBS_SIZE_MASK_82576;
1250 break;
1251 case e1000_82575:
1252 default:
1253 pba = E1000_PBA_34K;
1254 break;
1255 }
1256
1257 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1258 (mac->type < e1000_82576)) {
1259 /* adjust PBA for jumbo frames */
1260 wr32(E1000_PBA, pba);
1261
1262 /* To maintain wire speed transmits, the Tx FIFO should be
1263 * large enough to accommodate two full transmit packets,
1264 * rounded up to the next 1KB and expressed in KB. Likewise,
1265 * the Rx FIFO should be large enough to accommodate at least
1266 * one full receive packet and is similarly rounded up and
1267 * expressed in KB. */
1268 pba = rd32(E1000_PBA);
1269 /* upper 16 bits has Tx packet buffer allocation size in KB */
1270 tx_space = pba >> 16;
1271 /* lower 16 bits has Rx packet buffer allocation size in KB */
1272 pba &= 0xffff;
1273 /* the tx fifo also stores 16 bytes of information about the tx
1274 * but don't include ethernet FCS because hardware appends it */
1275 min_tx_space = (adapter->max_frame_size +
1276 sizeof(union e1000_adv_tx_desc) -
1277 ETH_FCS_LEN) * 2;
1278 min_tx_space = ALIGN(min_tx_space, 1024);
1279 min_tx_space >>= 10;
1280 /* software strips receive CRC, so leave room for it */
1281 min_rx_space = adapter->max_frame_size;
1282 min_rx_space = ALIGN(min_rx_space, 1024);
1283 min_rx_space >>= 10;
1284
1285 /* If current Tx allocation is less than the min Tx FIFO size,
1286 * and the min Tx FIFO size is less than the current Rx FIFO
1287 * allocation, take space away from current Rx allocation */
1288 if (tx_space < min_tx_space &&
1289 ((min_tx_space - tx_space) < pba)) {
1290 pba = pba - (min_tx_space - tx_space);
1291
1292 /* if short on rx space, rx wins and must trump tx
1293 * adjustment */
1294 if (pba < min_rx_space)
1295 pba = min_rx_space;
1296 }
1297 wr32(E1000_PBA, pba);
1298 }
1299
1300 /* flow control settings */
1301 /* The high water mark must be low enough to fit one full frame
1302 * (or the size used for early receive) above it in the Rx FIFO.
1303 * Set it to the lower of:
1304 * - 90% of the Rx FIFO size, or
1305 * - the full Rx FIFO size minus one full frame */
1306 hwm = min(((pba << 10) * 9 / 10),
1307 ((pba << 10) - 2 * adapter->max_frame_size));
1308
1309 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1310 fc->low_water = fc->high_water - 16;
1311 fc->pause_time = 0xFFFF;
1312 fc->send_xon = 1;
1313 fc->current_mode = fc->requested_mode;
1314
1315 /* disable receive for all VFs and wait one second */
1316 if (adapter->vfs_allocated_count) {
1317 int i;
1318 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1319 adapter->vf_data[i].flags = 0;
1320
1321 /* ping all the active vfs to let them know we are going down */
1322 igb_ping_all_vfs(adapter);
1323
1324 /* disable transmits and receives */
1325 wr32(E1000_VFRE, 0);
1326 wr32(E1000_VFTE, 0);
1327 }
1328
1329 /* Allow time for pending master requests to run */
1330 hw->mac.ops.reset_hw(hw);
1331 wr32(E1000_WUC, 0);
1332
1333 if (hw->mac.ops.init_hw(hw))
1334 dev_err(&pdev->dev, "Hardware Error\n");
1335
1336 if (hw->mac.type == e1000_82580) {
1337 u32 reg = rd32(E1000_PCIEMISC);
1338 wr32(E1000_PCIEMISC,
1339 reg & ~E1000_PCIEMISC_LX_DECISION);
1340 }
1341 igb_update_mng_vlan(adapter);
1342
1343 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1344 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1345
1346 igb_reset_adaptive(hw);
1347 igb_get_phy_info(hw);
1348 }
1349
1350 static const struct net_device_ops igb_netdev_ops = {
1351 .ndo_open = igb_open,
1352 .ndo_stop = igb_close,
1353 .ndo_start_xmit = igb_xmit_frame_adv,
1354 .ndo_get_stats = igb_get_stats,
1355 .ndo_set_rx_mode = igb_set_rx_mode,
1356 .ndo_set_multicast_list = igb_set_rx_mode,
1357 .ndo_set_mac_address = igb_set_mac,
1358 .ndo_change_mtu = igb_change_mtu,
1359 .ndo_do_ioctl = igb_ioctl,
1360 .ndo_tx_timeout = igb_tx_timeout,
1361 .ndo_validate_addr = eth_validate_addr,
1362 .ndo_vlan_rx_register = igb_vlan_rx_register,
1363 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1364 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1365 #ifdef CONFIG_NET_POLL_CONTROLLER
1366 .ndo_poll_controller = igb_netpoll,
1367 #endif
1368 };
1369
1370 /**
1371 * igb_probe - Device Initialization Routine
1372 * @pdev: PCI device information struct
1373 * @ent: entry in igb_pci_tbl
1374 *
1375 * Returns 0 on success, negative on failure
1376 *
1377 * igb_probe initializes an adapter identified by a pci_dev structure.
1378 * The OS initialization, configuring of the adapter private structure,
1379 * and a hardware reset occur.
1380 **/
1381 static int __devinit igb_probe(struct pci_dev *pdev,
1382 const struct pci_device_id *ent)
1383 {
1384 struct net_device *netdev;
1385 struct igb_adapter *adapter;
1386 struct e1000_hw *hw;
1387 u16 eeprom_data = 0;
1388 static int global_quad_port_a; /* global quad port a indication */
1389 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1390 unsigned long mmio_start, mmio_len;
1391 int err, pci_using_dac;
1392 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1393 u32 part_num;
1394
1395 err = pci_enable_device_mem(pdev);
1396 if (err)
1397 return err;
1398
1399 pci_using_dac = 0;
1400 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1401 if (!err) {
1402 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1403 if (!err)
1404 pci_using_dac = 1;
1405 } else {
1406 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1407 if (err) {
1408 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1409 if (err) {
1410 dev_err(&pdev->dev, "No usable DMA "
1411 "configuration, aborting\n");
1412 goto err_dma;
1413 }
1414 }
1415 }
1416
1417 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1418 IORESOURCE_MEM),
1419 igb_driver_name);
1420 if (err)
1421 goto err_pci_reg;
1422
1423 pci_enable_pcie_error_reporting(pdev);
1424
1425 pci_set_master(pdev);
1426 pci_save_state(pdev);
1427
1428 err = -ENOMEM;
1429 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1430 IGB_ABS_MAX_TX_QUEUES);
1431 if (!netdev)
1432 goto err_alloc_etherdev;
1433
1434 SET_NETDEV_DEV(netdev, &pdev->dev);
1435
1436 pci_set_drvdata(pdev, netdev);
1437 adapter = netdev_priv(netdev);
1438 adapter->netdev = netdev;
1439 adapter->pdev = pdev;
1440 hw = &adapter->hw;
1441 hw->back = adapter;
1442 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1443
1444 mmio_start = pci_resource_start(pdev, 0);
1445 mmio_len = pci_resource_len(pdev, 0);
1446
1447 err = -EIO;
1448 hw->hw_addr = ioremap(mmio_start, mmio_len);
1449 if (!hw->hw_addr)
1450 goto err_ioremap;
1451
1452 netdev->netdev_ops = &igb_netdev_ops;
1453 igb_set_ethtool_ops(netdev);
1454 netdev->watchdog_timeo = 5 * HZ;
1455
1456 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1457
1458 netdev->mem_start = mmio_start;
1459 netdev->mem_end = mmio_start + mmio_len;
1460
1461 /* PCI config space info */
1462 hw->vendor_id = pdev->vendor;
1463 hw->device_id = pdev->device;
1464 hw->revision_id = pdev->revision;
1465 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1466 hw->subsystem_device_id = pdev->subsystem_device;
1467
1468 /* Copy the default MAC, PHY and NVM function pointers */
1469 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1470 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1471 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1472 /* Initialize skew-specific constants */
1473 err = ei->get_invariants(hw);
1474 if (err)
1475 goto err_sw_init;
1476
1477 /* setup the private structure */
1478 err = igb_sw_init(adapter);
1479 if (err)
1480 goto err_sw_init;
1481
1482 igb_get_bus_info_pcie(hw);
1483
1484 hw->phy.autoneg_wait_to_complete = false;
1485 hw->mac.adaptive_ifs = true;
1486
1487 /* Copper options */
1488 if (hw->phy.media_type == e1000_media_type_copper) {
1489 hw->phy.mdix = AUTO_ALL_MODES;
1490 hw->phy.disable_polarity_correction = false;
1491 hw->phy.ms_type = e1000_ms_hw_default;
1492 }
1493
1494 if (igb_check_reset_block(hw))
1495 dev_info(&pdev->dev,
1496 "PHY reset is blocked due to SOL/IDER session.\n");
1497
1498 netdev->features = NETIF_F_SG |
1499 NETIF_F_IP_CSUM |
1500 NETIF_F_HW_VLAN_TX |
1501 NETIF_F_HW_VLAN_RX |
1502 NETIF_F_HW_VLAN_FILTER;
1503
1504 netdev->features |= NETIF_F_IPV6_CSUM;
1505 netdev->features |= NETIF_F_TSO;
1506 netdev->features |= NETIF_F_TSO6;
1507 netdev->features |= NETIF_F_GRO;
1508
1509 netdev->vlan_features |= NETIF_F_TSO;
1510 netdev->vlan_features |= NETIF_F_TSO6;
1511 netdev->vlan_features |= NETIF_F_IP_CSUM;
1512 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1513 netdev->vlan_features |= NETIF_F_SG;
1514
1515 if (pci_using_dac)
1516 netdev->features |= NETIF_F_HIGHDMA;
1517
1518 if (hw->mac.type >= e1000_82576)
1519 netdev->features |= NETIF_F_SCTP_CSUM;
1520
1521 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1522
1523 /* before reading the NVM, reset the controller to put the device in a
1524 * known good starting state */
1525 hw->mac.ops.reset_hw(hw);
1526
1527 /* make sure the NVM is good */
1528 if (igb_validate_nvm_checksum(hw) < 0) {
1529 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1530 err = -EIO;
1531 goto err_eeprom;
1532 }
1533
1534 /* copy the MAC address out of the NVM */
1535 if (hw->mac.ops.read_mac_addr(hw))
1536 dev_err(&pdev->dev, "NVM Read Error\n");
1537
1538 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1539 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1540
1541 if (!is_valid_ether_addr(netdev->perm_addr)) {
1542 dev_err(&pdev->dev, "Invalid MAC Address\n");
1543 err = -EIO;
1544 goto err_eeprom;
1545 }
1546
1547 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1548 (unsigned long) adapter);
1549 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1550 (unsigned long) adapter);
1551
1552 INIT_WORK(&adapter->reset_task, igb_reset_task);
1553 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1554
1555 /* Initialize link properties that are user-changeable */
1556 adapter->fc_autoneg = true;
1557 hw->mac.autoneg = true;
1558 hw->phy.autoneg_advertised = 0x2f;
1559
1560 hw->fc.requested_mode = e1000_fc_default;
1561 hw->fc.current_mode = e1000_fc_default;
1562
1563 igb_validate_mdi_setting(hw);
1564
1565 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1566 * enable the ACPI Magic Packet filter
1567 */
1568
1569 if (hw->bus.func == 0)
1570 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1571 else if (hw->mac.type == e1000_82580)
1572 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1573 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1574 &eeprom_data);
1575 else if (hw->bus.func == 1)
1576 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1577
1578 if (eeprom_data & eeprom_apme_mask)
1579 adapter->eeprom_wol |= E1000_WUFC_MAG;
1580
1581 /* now that we have the eeprom settings, apply the special cases where
1582 * the eeprom may be wrong or the board simply won't support wake on
1583 * lan on a particular port */
1584 switch (pdev->device) {
1585 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1586 adapter->eeprom_wol = 0;
1587 break;
1588 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1589 case E1000_DEV_ID_82576_FIBER:
1590 case E1000_DEV_ID_82576_SERDES:
1591 /* Wake events only supported on port A for dual fiber
1592 * regardless of eeprom setting */
1593 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1594 adapter->eeprom_wol = 0;
1595 break;
1596 case E1000_DEV_ID_82576_QUAD_COPPER:
1597 /* if quad port adapter, disable WoL on all but port A */
1598 if (global_quad_port_a != 0)
1599 adapter->eeprom_wol = 0;
1600 else
1601 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1602 /* Reset for multiple quad port adapters */
1603 if (++global_quad_port_a == 4)
1604 global_quad_port_a = 0;
1605 break;
1606 }
1607
1608 /* initialize the wol settings based on the eeprom settings */
1609 adapter->wol = adapter->eeprom_wol;
1610 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1611
1612 /* reset the hardware with the new settings */
1613 igb_reset(adapter);
1614
1615 /* let the f/w know that the h/w is now under the control of the
1616 * driver. */
1617 igb_get_hw_control(adapter);
1618
1619 strcpy(netdev->name, "eth%d");
1620 err = register_netdev(netdev);
1621 if (err)
1622 goto err_register;
1623
1624 /* carrier off reporting is important to ethtool even BEFORE open */
1625 netif_carrier_off(netdev);
1626
1627 #ifdef CONFIG_IGB_DCA
1628 if (dca_add_requester(&pdev->dev) == 0) {
1629 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1630 dev_info(&pdev->dev, "DCA enabled\n");
1631 igb_setup_dca(adapter);
1632 }
1633
1634 #endif
1635 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1636 /* print bus type/speed/width info */
1637 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1638 netdev->name,
1639 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1640 "unknown"),
1641 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1642 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1643 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1644 "unknown"),
1645 netdev->dev_addr);
1646
1647 igb_read_part_num(hw, &part_num);
1648 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1649 (part_num >> 8), (part_num & 0xff));
1650
1651 dev_info(&pdev->dev,
1652 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1653 adapter->msix_entries ? "MSI-X" :
1654 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1655 adapter->num_rx_queues, adapter->num_tx_queues);
1656
1657 return 0;
1658
1659 err_register:
1660 igb_release_hw_control(adapter);
1661 err_eeprom:
1662 if (!igb_check_reset_block(hw))
1663 igb_reset_phy(hw);
1664
1665 if (hw->flash_address)
1666 iounmap(hw->flash_address);
1667 err_sw_init:
1668 igb_clear_interrupt_scheme(adapter);
1669 iounmap(hw->hw_addr);
1670 err_ioremap:
1671 free_netdev(netdev);
1672 err_alloc_etherdev:
1673 pci_release_selected_regions(pdev,
1674 pci_select_bars(pdev, IORESOURCE_MEM));
1675 err_pci_reg:
1676 err_dma:
1677 pci_disable_device(pdev);
1678 return err;
1679 }
1680
1681 /**
1682 * igb_remove - Device Removal Routine
1683 * @pdev: PCI device information struct
1684 *
1685 * igb_remove is called by the PCI subsystem to alert the driver
1686 * that it should release a PCI device. The could be caused by a
1687 * Hot-Plug event, or because the driver is going to be removed from
1688 * memory.
1689 **/
1690 static void __devexit igb_remove(struct pci_dev *pdev)
1691 {
1692 struct net_device *netdev = pci_get_drvdata(pdev);
1693 struct igb_adapter *adapter = netdev_priv(netdev);
1694 struct e1000_hw *hw = &adapter->hw;
1695
1696 /* flush_scheduled work may reschedule our watchdog task, so
1697 * explicitly disable watchdog tasks from being rescheduled */
1698 set_bit(__IGB_DOWN, &adapter->state);
1699 del_timer_sync(&adapter->watchdog_timer);
1700 del_timer_sync(&adapter->phy_info_timer);
1701
1702 flush_scheduled_work();
1703
1704 #ifdef CONFIG_IGB_DCA
1705 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1706 dev_info(&pdev->dev, "DCA disabled\n");
1707 dca_remove_requester(&pdev->dev);
1708 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1709 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1710 }
1711 #endif
1712
1713 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1714 * would have already happened in close and is redundant. */
1715 igb_release_hw_control(adapter);
1716
1717 unregister_netdev(netdev);
1718
1719 if (!igb_check_reset_block(hw))
1720 igb_reset_phy(hw);
1721
1722 igb_clear_interrupt_scheme(adapter);
1723
1724 #ifdef CONFIG_PCI_IOV
1725 /* reclaim resources allocated to VFs */
1726 if (adapter->vf_data) {
1727 /* disable iov and allow time for transactions to clear */
1728 pci_disable_sriov(pdev);
1729 msleep(500);
1730
1731 kfree(adapter->vf_data);
1732 adapter->vf_data = NULL;
1733 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1734 msleep(100);
1735 dev_info(&pdev->dev, "IOV Disabled\n");
1736 }
1737 #endif
1738
1739 iounmap(hw->hw_addr);
1740 if (hw->flash_address)
1741 iounmap(hw->flash_address);
1742 pci_release_selected_regions(pdev,
1743 pci_select_bars(pdev, IORESOURCE_MEM));
1744
1745 free_netdev(netdev);
1746
1747 pci_disable_pcie_error_reporting(pdev);
1748
1749 pci_disable_device(pdev);
1750 }
1751
1752 /**
1753 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1754 * @adapter: board private structure to initialize
1755 *
1756 * This function initializes the vf specific data storage and then attempts to
1757 * allocate the VFs. The reason for ordering it this way is because it is much
1758 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1759 * the memory for the VFs.
1760 **/
1761 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1762 {
1763 #ifdef CONFIG_PCI_IOV
1764 struct pci_dev *pdev = adapter->pdev;
1765
1766 if (adapter->vfs_allocated_count > 7)
1767 adapter->vfs_allocated_count = 7;
1768
1769 if (adapter->vfs_allocated_count) {
1770 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1771 sizeof(struct vf_data_storage),
1772 GFP_KERNEL);
1773 /* if allocation failed then we do not support SR-IOV */
1774 if (!adapter->vf_data) {
1775 adapter->vfs_allocated_count = 0;
1776 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1777 "Data Storage\n");
1778 }
1779 }
1780
1781 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1782 kfree(adapter->vf_data);
1783 adapter->vf_data = NULL;
1784 #endif /* CONFIG_PCI_IOV */
1785 adapter->vfs_allocated_count = 0;
1786 #ifdef CONFIG_PCI_IOV
1787 } else {
1788 unsigned char mac_addr[ETH_ALEN];
1789 int i;
1790 dev_info(&pdev->dev, "%d vfs allocated\n",
1791 adapter->vfs_allocated_count);
1792 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1793 random_ether_addr(mac_addr);
1794 igb_set_vf_mac(adapter, i, mac_addr);
1795 }
1796 }
1797 #endif /* CONFIG_PCI_IOV */
1798 }
1799
1800
1801 /**
1802 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1803 * @adapter: board private structure to initialize
1804 *
1805 * igb_init_hw_timer initializes the function pointer and values for the hw
1806 * timer found in hardware.
1807 **/
1808 static void igb_init_hw_timer(struct igb_adapter *adapter)
1809 {
1810 struct e1000_hw *hw = &adapter->hw;
1811
1812 switch (hw->mac.type) {
1813 case e1000_82580:
1814 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1815 adapter->cycles.read = igb_read_clock;
1816 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1817 adapter->cycles.mult = 1;
1818 /*
1819 * The 82580 timesync updates the system timer every 8ns by 8ns
1820 * and the value cannot be shifted. Instead we need to shift
1821 * the registers to generate a 64bit timer value. As a result
1822 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
1823 * 24 in order to generate a larger value for synchronization.
1824 */
1825 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
1826 /* disable system timer temporarily by setting bit 31 */
1827 wr32(E1000_TSAUXC, 0x80000000);
1828 wrfl();
1829
1830 /* Set registers so that rollover occurs soon to test this. */
1831 wr32(E1000_SYSTIMR, 0x00000000);
1832 wr32(E1000_SYSTIML, 0x80000000);
1833 wr32(E1000_SYSTIMH, 0x000000FF);
1834 wrfl();
1835
1836 /* enable system timer by clearing bit 31 */
1837 wr32(E1000_TSAUXC, 0x0);
1838 wrfl();
1839
1840 timecounter_init(&adapter->clock,
1841 &adapter->cycles,
1842 ktime_to_ns(ktime_get_real()));
1843 /*
1844 * Synchronize our NIC clock against system wall clock. NIC
1845 * time stamp reading requires ~3us per sample, each sample
1846 * was pretty stable even under load => only require 10
1847 * samples for each offset comparison.
1848 */
1849 memset(&adapter->compare, 0, sizeof(adapter->compare));
1850 adapter->compare.source = &adapter->clock;
1851 adapter->compare.target = ktime_get_real;
1852 adapter->compare.num_samples = 10;
1853 timecompare_update(&adapter->compare, 0);
1854 break;
1855 case e1000_82576:
1856 /*
1857 * Initialize hardware timer: we keep it running just in case
1858 * that some program needs it later on.
1859 */
1860 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1861 adapter->cycles.read = igb_read_clock;
1862 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1863 adapter->cycles.mult = 1;
1864 /**
1865 * Scale the NIC clock cycle by a large factor so that
1866 * relatively small clock corrections can be added or
1867 * substracted at each clock tick. The drawbacks of a large
1868 * factor are a) that the clock register overflows more quickly
1869 * (not such a big deal) and b) that the increment per tick has
1870 * to fit into 24 bits. As a result we need to use a shift of
1871 * 19 so we can fit a value of 16 into the TIMINCA register.
1872 */
1873 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1874 wr32(E1000_TIMINCA,
1875 (1 << E1000_TIMINCA_16NS_SHIFT) |
1876 (16 << IGB_82576_TSYNC_SHIFT));
1877
1878 /* Set registers so that rollover occurs soon to test this. */
1879 wr32(E1000_SYSTIML, 0x00000000);
1880 wr32(E1000_SYSTIMH, 0xFF800000);
1881 wrfl();
1882
1883 timecounter_init(&adapter->clock,
1884 &adapter->cycles,
1885 ktime_to_ns(ktime_get_real()));
1886 /*
1887 * Synchronize our NIC clock against system wall clock. NIC
1888 * time stamp reading requires ~3us per sample, each sample
1889 * was pretty stable even under load => only require 10
1890 * samples for each offset comparison.
1891 */
1892 memset(&adapter->compare, 0, sizeof(adapter->compare));
1893 adapter->compare.source = &adapter->clock;
1894 adapter->compare.target = ktime_get_real;
1895 adapter->compare.num_samples = 10;
1896 timecompare_update(&adapter->compare, 0);
1897 break;
1898 case e1000_82575:
1899 /* 82575 does not support timesync */
1900 default:
1901 break;
1902 }
1903
1904 }
1905
1906 /**
1907 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1908 * @adapter: board private structure to initialize
1909 *
1910 * igb_sw_init initializes the Adapter private data structure.
1911 * Fields are initialized based on PCI device information and
1912 * OS network device settings (MTU size).
1913 **/
1914 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1915 {
1916 struct e1000_hw *hw = &adapter->hw;
1917 struct net_device *netdev = adapter->netdev;
1918 struct pci_dev *pdev = adapter->pdev;
1919
1920 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1921
1922 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1923 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1924 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1925 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1926
1927 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1928 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1929
1930 #ifdef CONFIG_PCI_IOV
1931 if (hw->mac.type == e1000_82576)
1932 adapter->vfs_allocated_count = max_vfs;
1933
1934 #endif /* CONFIG_PCI_IOV */
1935 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1936
1937 /*
1938 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1939 * then we should combine the queues into a queue pair in order to
1940 * conserve interrupts due to limited supply
1941 */
1942 if ((adapter->rss_queues > 4) ||
1943 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1944 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1945
1946 /* This call may decrease the number of queues */
1947 if (igb_init_interrupt_scheme(adapter)) {
1948 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1949 return -ENOMEM;
1950 }
1951
1952 igb_init_hw_timer(adapter);
1953 igb_probe_vfs(adapter);
1954
1955 /* Explicitly disable IRQ since the NIC can be in any state. */
1956 igb_irq_disable(adapter);
1957
1958 set_bit(__IGB_DOWN, &adapter->state);
1959 return 0;
1960 }
1961
1962 /**
1963 * igb_open - Called when a network interface is made active
1964 * @netdev: network interface device structure
1965 *
1966 * Returns 0 on success, negative value on failure
1967 *
1968 * The open entry point is called when a network interface is made
1969 * active by the system (IFF_UP). At this point all resources needed
1970 * for transmit and receive operations are allocated, the interrupt
1971 * handler is registered with the OS, the watchdog timer is started,
1972 * and the stack is notified that the interface is ready.
1973 **/
1974 static int igb_open(struct net_device *netdev)
1975 {
1976 struct igb_adapter *adapter = netdev_priv(netdev);
1977 struct e1000_hw *hw = &adapter->hw;
1978 int err;
1979 int i;
1980
1981 /* disallow open during test */
1982 if (test_bit(__IGB_TESTING, &adapter->state))
1983 return -EBUSY;
1984
1985 netif_carrier_off(netdev);
1986
1987 /* allocate transmit descriptors */
1988 err = igb_setup_all_tx_resources(adapter);
1989 if (err)
1990 goto err_setup_tx;
1991
1992 /* allocate receive descriptors */
1993 err = igb_setup_all_rx_resources(adapter);
1994 if (err)
1995 goto err_setup_rx;
1996
1997 /* e1000_power_up_phy(adapter); */
1998
1999 /* before we allocate an interrupt, we must be ready to handle it.
2000 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2001 * as soon as we call pci_request_irq, so we have to setup our
2002 * clean_rx handler before we do so. */
2003 igb_configure(adapter);
2004
2005 err = igb_request_irq(adapter);
2006 if (err)
2007 goto err_req_irq;
2008
2009 /* From here on the code is the same as igb_up() */
2010 clear_bit(__IGB_DOWN, &adapter->state);
2011
2012 for (i = 0; i < adapter->num_q_vectors; i++) {
2013 struct igb_q_vector *q_vector = adapter->q_vector[i];
2014 napi_enable(&q_vector->napi);
2015 }
2016
2017 /* Clear any pending interrupts. */
2018 rd32(E1000_ICR);
2019
2020 igb_irq_enable(adapter);
2021
2022 /* notify VFs that reset has been completed */
2023 if (adapter->vfs_allocated_count) {
2024 u32 reg_data = rd32(E1000_CTRL_EXT);
2025 reg_data |= E1000_CTRL_EXT_PFRSTD;
2026 wr32(E1000_CTRL_EXT, reg_data);
2027 }
2028
2029 netif_tx_start_all_queues(netdev);
2030
2031 /* start the watchdog. */
2032 hw->mac.get_link_status = 1;
2033 schedule_work(&adapter->watchdog_task);
2034
2035 return 0;
2036
2037 err_req_irq:
2038 igb_release_hw_control(adapter);
2039 /* e1000_power_down_phy(adapter); */
2040 igb_free_all_rx_resources(adapter);
2041 err_setup_rx:
2042 igb_free_all_tx_resources(adapter);
2043 err_setup_tx:
2044 igb_reset(adapter);
2045
2046 return err;
2047 }
2048
2049 /**
2050 * igb_close - Disables a network interface
2051 * @netdev: network interface device structure
2052 *
2053 * Returns 0, this is not allowed to fail
2054 *
2055 * The close entry point is called when an interface is de-activated
2056 * by the OS. The hardware is still under the driver's control, but
2057 * needs to be disabled. A global MAC reset is issued to stop the
2058 * hardware, and all transmit and receive resources are freed.
2059 **/
2060 static int igb_close(struct net_device *netdev)
2061 {
2062 struct igb_adapter *adapter = netdev_priv(netdev);
2063
2064 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2065 igb_down(adapter);
2066
2067 igb_free_irq(adapter);
2068
2069 igb_free_all_tx_resources(adapter);
2070 igb_free_all_rx_resources(adapter);
2071
2072 return 0;
2073 }
2074
2075 /**
2076 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2077 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2078 *
2079 * Return 0 on success, negative on failure
2080 **/
2081 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2082 {
2083 struct pci_dev *pdev = tx_ring->pdev;
2084 int size;
2085
2086 size = sizeof(struct igb_buffer) * tx_ring->count;
2087 tx_ring->buffer_info = vmalloc(size);
2088 if (!tx_ring->buffer_info)
2089 goto err;
2090 memset(tx_ring->buffer_info, 0, size);
2091
2092 /* round up to nearest 4K */
2093 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2094 tx_ring->size = ALIGN(tx_ring->size, 4096);
2095
2096 tx_ring->desc = pci_alloc_consistent(pdev,
2097 tx_ring->size,
2098 &tx_ring->dma);
2099
2100 if (!tx_ring->desc)
2101 goto err;
2102
2103 tx_ring->next_to_use = 0;
2104 tx_ring->next_to_clean = 0;
2105 return 0;
2106
2107 err:
2108 vfree(tx_ring->buffer_info);
2109 dev_err(&pdev->dev,
2110 "Unable to allocate memory for the transmit descriptor ring\n");
2111 return -ENOMEM;
2112 }
2113
2114 /**
2115 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2116 * (Descriptors) for all queues
2117 * @adapter: board private structure
2118 *
2119 * Return 0 on success, negative on failure
2120 **/
2121 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2122 {
2123 struct pci_dev *pdev = adapter->pdev;
2124 int i, err = 0;
2125
2126 for (i = 0; i < adapter->num_tx_queues; i++) {
2127 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2128 if (err) {
2129 dev_err(&pdev->dev,
2130 "Allocation for Tx Queue %u failed\n", i);
2131 for (i--; i >= 0; i--)
2132 igb_free_tx_resources(&adapter->tx_ring[i]);
2133 break;
2134 }
2135 }
2136
2137 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2138 int r_idx = i % adapter->num_tx_queues;
2139 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2140 }
2141 return err;
2142 }
2143
2144 /**
2145 * igb_setup_tctl - configure the transmit control registers
2146 * @adapter: Board private structure
2147 **/
2148 void igb_setup_tctl(struct igb_adapter *adapter)
2149 {
2150 struct e1000_hw *hw = &adapter->hw;
2151 u32 tctl;
2152
2153 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2154 wr32(E1000_TXDCTL(0), 0);
2155
2156 /* Program the Transmit Control Register */
2157 tctl = rd32(E1000_TCTL);
2158 tctl &= ~E1000_TCTL_CT;
2159 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2160 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2161
2162 igb_config_collision_dist(hw);
2163
2164 /* Enable transmits */
2165 tctl |= E1000_TCTL_EN;
2166
2167 wr32(E1000_TCTL, tctl);
2168 }
2169
2170 /**
2171 * igb_configure_tx_ring - Configure transmit ring after Reset
2172 * @adapter: board private structure
2173 * @ring: tx ring to configure
2174 *
2175 * Configure a transmit ring after a reset.
2176 **/
2177 void igb_configure_tx_ring(struct igb_adapter *adapter,
2178 struct igb_ring *ring)
2179 {
2180 struct e1000_hw *hw = &adapter->hw;
2181 u32 txdctl;
2182 u64 tdba = ring->dma;
2183 int reg_idx = ring->reg_idx;
2184
2185 /* disable the queue */
2186 txdctl = rd32(E1000_TXDCTL(reg_idx));
2187 wr32(E1000_TXDCTL(reg_idx),
2188 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2189 wrfl();
2190 mdelay(10);
2191
2192 wr32(E1000_TDLEN(reg_idx),
2193 ring->count * sizeof(union e1000_adv_tx_desc));
2194 wr32(E1000_TDBAL(reg_idx),
2195 tdba & 0x00000000ffffffffULL);
2196 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2197
2198 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2199 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2200 writel(0, ring->head);
2201 writel(0, ring->tail);
2202
2203 txdctl |= IGB_TX_PTHRESH;
2204 txdctl |= IGB_TX_HTHRESH << 8;
2205 txdctl |= IGB_TX_WTHRESH << 16;
2206
2207 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2208 wr32(E1000_TXDCTL(reg_idx), txdctl);
2209 }
2210
2211 /**
2212 * igb_configure_tx - Configure transmit Unit after Reset
2213 * @adapter: board private structure
2214 *
2215 * Configure the Tx unit of the MAC after a reset.
2216 **/
2217 static void igb_configure_tx(struct igb_adapter *adapter)
2218 {
2219 int i;
2220
2221 for (i = 0; i < adapter->num_tx_queues; i++)
2222 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2223 }
2224
2225 /**
2226 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2227 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2228 *
2229 * Returns 0 on success, negative on failure
2230 **/
2231 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2232 {
2233 struct pci_dev *pdev = rx_ring->pdev;
2234 int size, desc_len;
2235
2236 size = sizeof(struct igb_buffer) * rx_ring->count;
2237 rx_ring->buffer_info = vmalloc(size);
2238 if (!rx_ring->buffer_info)
2239 goto err;
2240 memset(rx_ring->buffer_info, 0, size);
2241
2242 desc_len = sizeof(union e1000_adv_rx_desc);
2243
2244 /* Round up to nearest 4K */
2245 rx_ring->size = rx_ring->count * desc_len;
2246 rx_ring->size = ALIGN(rx_ring->size, 4096);
2247
2248 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2249 &rx_ring->dma);
2250
2251 if (!rx_ring->desc)
2252 goto err;
2253
2254 rx_ring->next_to_clean = 0;
2255 rx_ring->next_to_use = 0;
2256
2257 return 0;
2258
2259 err:
2260 vfree(rx_ring->buffer_info);
2261 rx_ring->buffer_info = NULL;
2262 dev_err(&pdev->dev, "Unable to allocate memory for "
2263 "the receive descriptor ring\n");
2264 return -ENOMEM;
2265 }
2266
2267 /**
2268 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2269 * (Descriptors) for all queues
2270 * @adapter: board private structure
2271 *
2272 * Return 0 on success, negative on failure
2273 **/
2274 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2275 {
2276 struct pci_dev *pdev = adapter->pdev;
2277 int i, err = 0;
2278
2279 for (i = 0; i < adapter->num_rx_queues; i++) {
2280 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2281 if (err) {
2282 dev_err(&pdev->dev,
2283 "Allocation for Rx Queue %u failed\n", i);
2284 for (i--; i >= 0; i--)
2285 igb_free_rx_resources(&adapter->rx_ring[i]);
2286 break;
2287 }
2288 }
2289
2290 return err;
2291 }
2292
2293 /**
2294 * igb_setup_mrqc - configure the multiple receive queue control registers
2295 * @adapter: Board private structure
2296 **/
2297 static void igb_setup_mrqc(struct igb_adapter *adapter)
2298 {
2299 struct e1000_hw *hw = &adapter->hw;
2300 u32 mrqc, rxcsum;
2301 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2302 union e1000_reta {
2303 u32 dword;
2304 u8 bytes[4];
2305 } reta;
2306 static const u8 rsshash[40] = {
2307 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2308 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2309 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2310 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2311
2312 /* Fill out hash function seeds */
2313 for (j = 0; j < 10; j++) {
2314 u32 rsskey = rsshash[(j * 4)];
2315 rsskey |= rsshash[(j * 4) + 1] << 8;
2316 rsskey |= rsshash[(j * 4) + 2] << 16;
2317 rsskey |= rsshash[(j * 4) + 3] << 24;
2318 array_wr32(E1000_RSSRK(0), j, rsskey);
2319 }
2320
2321 num_rx_queues = adapter->rss_queues;
2322
2323 if (adapter->vfs_allocated_count) {
2324 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2325 switch (hw->mac.type) {
2326 case e1000_82580:
2327 num_rx_queues = 1;
2328 shift = 0;
2329 break;
2330 case e1000_82576:
2331 shift = 3;
2332 num_rx_queues = 2;
2333 break;
2334 case e1000_82575:
2335 shift = 2;
2336 shift2 = 6;
2337 default:
2338 break;
2339 }
2340 } else {
2341 if (hw->mac.type == e1000_82575)
2342 shift = 6;
2343 }
2344
2345 for (j = 0; j < (32 * 4); j++) {
2346 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2347 if (shift2)
2348 reta.bytes[j & 3] |= num_rx_queues << shift2;
2349 if ((j & 3) == 3)
2350 wr32(E1000_RETA(j >> 2), reta.dword);
2351 }
2352
2353 /*
2354 * Disable raw packet checksumming so that RSS hash is placed in
2355 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2356 * offloads as they are enabled by default
2357 */
2358 rxcsum = rd32(E1000_RXCSUM);
2359 rxcsum |= E1000_RXCSUM_PCSD;
2360
2361 if (adapter->hw.mac.type >= e1000_82576)
2362 /* Enable Receive Checksum Offload for SCTP */
2363 rxcsum |= E1000_RXCSUM_CRCOFL;
2364
2365 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2366 wr32(E1000_RXCSUM, rxcsum);
2367
2368 /* If VMDq is enabled then we set the appropriate mode for that, else
2369 * we default to RSS so that an RSS hash is calculated per packet even
2370 * if we are only using one queue */
2371 if (adapter->vfs_allocated_count) {
2372 if (hw->mac.type > e1000_82575) {
2373 /* Set the default pool for the PF's first queue */
2374 u32 vtctl = rd32(E1000_VT_CTL);
2375 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2376 E1000_VT_CTL_DISABLE_DEF_POOL);
2377 vtctl |= adapter->vfs_allocated_count <<
2378 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2379 wr32(E1000_VT_CTL, vtctl);
2380 }
2381 if (adapter->rss_queues > 1)
2382 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2383 else
2384 mrqc = E1000_MRQC_ENABLE_VMDQ;
2385 } else {
2386 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2387 }
2388 igb_vmm_control(adapter);
2389
2390 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2391 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2392 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2393 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2394 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2395 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2396 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2397 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2398
2399 wr32(E1000_MRQC, mrqc);
2400 }
2401
2402 /**
2403 * igb_setup_rctl - configure the receive control registers
2404 * @adapter: Board private structure
2405 **/
2406 void igb_setup_rctl(struct igb_adapter *adapter)
2407 {
2408 struct e1000_hw *hw = &adapter->hw;
2409 u32 rctl;
2410
2411 rctl = rd32(E1000_RCTL);
2412
2413 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2414 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2415
2416 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2417 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2418
2419 /*
2420 * enable stripping of CRC. It's unlikely this will break BMC
2421 * redirection as it did with e1000. Newer features require
2422 * that the HW strips the CRC.
2423 */
2424 rctl |= E1000_RCTL_SECRC;
2425
2426 /* disable store bad packets and clear size bits. */
2427 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2428
2429 /* enable LPE to prevent packets larger than max_frame_size */
2430 rctl |= E1000_RCTL_LPE;
2431
2432 /* disable queue 0 to prevent tail write w/o re-config */
2433 wr32(E1000_RXDCTL(0), 0);
2434
2435 /* Attention!!! For SR-IOV PF driver operations you must enable
2436 * queue drop for all VF and PF queues to prevent head of line blocking
2437 * if an un-trusted VF does not provide descriptors to hardware.
2438 */
2439 if (adapter->vfs_allocated_count) {
2440 /* set all queue drop enable bits */
2441 wr32(E1000_QDE, ALL_QUEUES);
2442 }
2443
2444 wr32(E1000_RCTL, rctl);
2445 }
2446
2447 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2448 int vfn)
2449 {
2450 struct e1000_hw *hw = &adapter->hw;
2451 u32 vmolr;
2452
2453 /* if it isn't the PF check to see if VFs are enabled and
2454 * increase the size to support vlan tags */
2455 if (vfn < adapter->vfs_allocated_count &&
2456 adapter->vf_data[vfn].vlans_enabled)
2457 size += VLAN_TAG_SIZE;
2458
2459 vmolr = rd32(E1000_VMOLR(vfn));
2460 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2461 vmolr |= size | E1000_VMOLR_LPE;
2462 wr32(E1000_VMOLR(vfn), vmolr);
2463
2464 return 0;
2465 }
2466
2467 /**
2468 * igb_rlpml_set - set maximum receive packet size
2469 * @adapter: board private structure
2470 *
2471 * Configure maximum receivable packet size.
2472 **/
2473 static void igb_rlpml_set(struct igb_adapter *adapter)
2474 {
2475 u32 max_frame_size = adapter->max_frame_size;
2476 struct e1000_hw *hw = &adapter->hw;
2477 u16 pf_id = adapter->vfs_allocated_count;
2478
2479 if (adapter->vlgrp)
2480 max_frame_size += VLAN_TAG_SIZE;
2481
2482 /* if vfs are enabled we set RLPML to the largest possible request
2483 * size and set the VMOLR RLPML to the size we need */
2484 if (pf_id) {
2485 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2486 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2487 }
2488
2489 wr32(E1000_RLPML, max_frame_size);
2490 }
2491
2492 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2493 {
2494 struct e1000_hw *hw = &adapter->hw;
2495 u32 vmolr;
2496
2497 /*
2498 * This register exists only on 82576 and newer so if we are older then
2499 * we should exit and do nothing
2500 */
2501 if (hw->mac.type < e1000_82576)
2502 return;
2503
2504 vmolr = rd32(E1000_VMOLR(vfn));
2505 vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */
2506 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2507
2508 /* clear all bits that might not be set */
2509 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2510
2511 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2512 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2513 /*
2514 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2515 * multicast packets
2516 */
2517 if (vfn <= adapter->vfs_allocated_count)
2518 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2519
2520 wr32(E1000_VMOLR(vfn), vmolr);
2521 }
2522
2523 /**
2524 * igb_configure_rx_ring - Configure a receive ring after Reset
2525 * @adapter: board private structure
2526 * @ring: receive ring to be configured
2527 *
2528 * Configure the Rx unit of the MAC after a reset.
2529 **/
2530 void igb_configure_rx_ring(struct igb_adapter *adapter,
2531 struct igb_ring *ring)
2532 {
2533 struct e1000_hw *hw = &adapter->hw;
2534 u64 rdba = ring->dma;
2535 int reg_idx = ring->reg_idx;
2536 u32 srrctl, rxdctl;
2537
2538 /* disable the queue */
2539 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2540 wr32(E1000_RXDCTL(reg_idx),
2541 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2542
2543 /* Set DMA base address registers */
2544 wr32(E1000_RDBAL(reg_idx),
2545 rdba & 0x00000000ffffffffULL);
2546 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2547 wr32(E1000_RDLEN(reg_idx),
2548 ring->count * sizeof(union e1000_adv_rx_desc));
2549
2550 /* initialize head and tail */
2551 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2552 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2553 writel(0, ring->head);
2554 writel(0, ring->tail);
2555
2556 /* set descriptor configuration */
2557 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2558 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2559 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2560 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2561 srrctl |= IGB_RXBUFFER_16384 >>
2562 E1000_SRRCTL_BSIZEPKT_SHIFT;
2563 #else
2564 srrctl |= (PAGE_SIZE / 2) >>
2565 E1000_SRRCTL_BSIZEPKT_SHIFT;
2566 #endif
2567 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2568 } else {
2569 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2570 E1000_SRRCTL_BSIZEPKT_SHIFT;
2571 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2572 }
2573
2574 wr32(E1000_SRRCTL(reg_idx), srrctl);
2575
2576 /* set filtering for VMDQ pools */
2577 igb_set_vmolr(adapter, reg_idx & 0x7);
2578
2579 /* enable receive descriptor fetching */
2580 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2581 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2582 rxdctl &= 0xFFF00000;
2583 rxdctl |= IGB_RX_PTHRESH;
2584 rxdctl |= IGB_RX_HTHRESH << 8;
2585 rxdctl |= IGB_RX_WTHRESH << 16;
2586 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2587 }
2588
2589 /**
2590 * igb_configure_rx - Configure receive Unit after Reset
2591 * @adapter: board private structure
2592 *
2593 * Configure the Rx unit of the MAC after a reset.
2594 **/
2595 static void igb_configure_rx(struct igb_adapter *adapter)
2596 {
2597 int i;
2598
2599 /* set UTA to appropriate mode */
2600 igb_set_uta(adapter);
2601
2602 /* set the correct pool for the PF default MAC address in entry 0 */
2603 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2604 adapter->vfs_allocated_count);
2605
2606 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2607 * the Base and Length of the Rx Descriptor Ring */
2608 for (i = 0; i < adapter->num_rx_queues; i++)
2609 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2610 }
2611
2612 /**
2613 * igb_free_tx_resources - Free Tx Resources per Queue
2614 * @tx_ring: Tx descriptor ring for a specific queue
2615 *
2616 * Free all transmit software resources
2617 **/
2618 void igb_free_tx_resources(struct igb_ring *tx_ring)
2619 {
2620 igb_clean_tx_ring(tx_ring);
2621
2622 vfree(tx_ring->buffer_info);
2623 tx_ring->buffer_info = NULL;
2624
2625 /* if not set, then don't free */
2626 if (!tx_ring->desc)
2627 return;
2628
2629 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2630 tx_ring->desc, tx_ring->dma);
2631
2632 tx_ring->desc = NULL;
2633 }
2634
2635 /**
2636 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2637 * @adapter: board private structure
2638 *
2639 * Free all transmit software resources
2640 **/
2641 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2642 {
2643 int i;
2644
2645 for (i = 0; i < adapter->num_tx_queues; i++)
2646 igb_free_tx_resources(&adapter->tx_ring[i]);
2647 }
2648
2649 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2650 struct igb_buffer *buffer_info)
2651 {
2652 if (buffer_info->dma) {
2653 if (buffer_info->mapped_as_page)
2654 pci_unmap_page(tx_ring->pdev,
2655 buffer_info->dma,
2656 buffer_info->length,
2657 PCI_DMA_TODEVICE);
2658 else
2659 pci_unmap_single(tx_ring->pdev,
2660 buffer_info->dma,
2661 buffer_info->length,
2662 PCI_DMA_TODEVICE);
2663 buffer_info->dma = 0;
2664 }
2665 if (buffer_info->skb) {
2666 dev_kfree_skb_any(buffer_info->skb);
2667 buffer_info->skb = NULL;
2668 }
2669 buffer_info->time_stamp = 0;
2670 buffer_info->length = 0;
2671 buffer_info->next_to_watch = 0;
2672 buffer_info->mapped_as_page = false;
2673 }
2674
2675 /**
2676 * igb_clean_tx_ring - Free Tx Buffers
2677 * @tx_ring: ring to be cleaned
2678 **/
2679 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2680 {
2681 struct igb_buffer *buffer_info;
2682 unsigned long size;
2683 unsigned int i;
2684
2685 if (!tx_ring->buffer_info)
2686 return;
2687 /* Free all the Tx ring sk_buffs */
2688
2689 for (i = 0; i < tx_ring->count; i++) {
2690 buffer_info = &tx_ring->buffer_info[i];
2691 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2692 }
2693
2694 size = sizeof(struct igb_buffer) * tx_ring->count;
2695 memset(tx_ring->buffer_info, 0, size);
2696
2697 /* Zero out the descriptor ring */
2698 memset(tx_ring->desc, 0, tx_ring->size);
2699
2700 tx_ring->next_to_use = 0;
2701 tx_ring->next_to_clean = 0;
2702 }
2703
2704 /**
2705 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2706 * @adapter: board private structure
2707 **/
2708 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2709 {
2710 int i;
2711
2712 for (i = 0; i < adapter->num_tx_queues; i++)
2713 igb_clean_tx_ring(&adapter->tx_ring[i]);
2714 }
2715
2716 /**
2717 * igb_free_rx_resources - Free Rx Resources
2718 * @rx_ring: ring to clean the resources from
2719 *
2720 * Free all receive software resources
2721 **/
2722 void igb_free_rx_resources(struct igb_ring *rx_ring)
2723 {
2724 igb_clean_rx_ring(rx_ring);
2725
2726 vfree(rx_ring->buffer_info);
2727 rx_ring->buffer_info = NULL;
2728
2729 /* if not set, then don't free */
2730 if (!rx_ring->desc)
2731 return;
2732
2733 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2734 rx_ring->desc, rx_ring->dma);
2735
2736 rx_ring->desc = NULL;
2737 }
2738
2739 /**
2740 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2741 * @adapter: board private structure
2742 *
2743 * Free all receive software resources
2744 **/
2745 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2746 {
2747 int i;
2748
2749 for (i = 0; i < adapter->num_rx_queues; i++)
2750 igb_free_rx_resources(&adapter->rx_ring[i]);
2751 }
2752
2753 /**
2754 * igb_clean_rx_ring - Free Rx Buffers per Queue
2755 * @rx_ring: ring to free buffers from
2756 **/
2757 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2758 {
2759 struct igb_buffer *buffer_info;
2760 unsigned long size;
2761 unsigned int i;
2762
2763 if (!rx_ring->buffer_info)
2764 return;
2765
2766 /* Free all the Rx ring sk_buffs */
2767 for (i = 0; i < rx_ring->count; i++) {
2768 buffer_info = &rx_ring->buffer_info[i];
2769 if (buffer_info->dma) {
2770 pci_unmap_single(rx_ring->pdev,
2771 buffer_info->dma,
2772 rx_ring->rx_buffer_len,
2773 PCI_DMA_FROMDEVICE);
2774 buffer_info->dma = 0;
2775 }
2776
2777 if (buffer_info->skb) {
2778 dev_kfree_skb(buffer_info->skb);
2779 buffer_info->skb = NULL;
2780 }
2781 if (buffer_info->page_dma) {
2782 pci_unmap_page(rx_ring->pdev,
2783 buffer_info->page_dma,
2784 PAGE_SIZE / 2,
2785 PCI_DMA_FROMDEVICE);
2786 buffer_info->page_dma = 0;
2787 }
2788 if (buffer_info->page) {
2789 put_page(buffer_info->page);
2790 buffer_info->page = NULL;
2791 buffer_info->page_offset = 0;
2792 }
2793 }
2794
2795 size = sizeof(struct igb_buffer) * rx_ring->count;
2796 memset(rx_ring->buffer_info, 0, size);
2797
2798 /* Zero out the descriptor ring */
2799 memset(rx_ring->desc, 0, rx_ring->size);
2800
2801 rx_ring->next_to_clean = 0;
2802 rx_ring->next_to_use = 0;
2803 }
2804
2805 /**
2806 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2807 * @adapter: board private structure
2808 **/
2809 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2810 {
2811 int i;
2812
2813 for (i = 0; i < adapter->num_rx_queues; i++)
2814 igb_clean_rx_ring(&adapter->rx_ring[i]);
2815 }
2816
2817 /**
2818 * igb_set_mac - Change the Ethernet Address of the NIC
2819 * @netdev: network interface device structure
2820 * @p: pointer to an address structure
2821 *
2822 * Returns 0 on success, negative on failure
2823 **/
2824 static int igb_set_mac(struct net_device *netdev, void *p)
2825 {
2826 struct igb_adapter *adapter = netdev_priv(netdev);
2827 struct e1000_hw *hw = &adapter->hw;
2828 struct sockaddr *addr = p;
2829
2830 if (!is_valid_ether_addr(addr->sa_data))
2831 return -EADDRNOTAVAIL;
2832
2833 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2834 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2835
2836 /* set the correct pool for the new PF MAC address in entry 0 */
2837 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2838 adapter->vfs_allocated_count);
2839
2840 return 0;
2841 }
2842
2843 /**
2844 * igb_write_mc_addr_list - write multicast addresses to MTA
2845 * @netdev: network interface device structure
2846 *
2847 * Writes multicast address list to the MTA hash table.
2848 * Returns: -ENOMEM on failure
2849 * 0 on no addresses written
2850 * X on writing X addresses to MTA
2851 **/
2852 static int igb_write_mc_addr_list(struct net_device *netdev)
2853 {
2854 struct igb_adapter *adapter = netdev_priv(netdev);
2855 struct e1000_hw *hw = &adapter->hw;
2856 struct dev_mc_list *mc_ptr = netdev->mc_list;
2857 u8 *mta_list;
2858 u32 vmolr = 0;
2859 int i;
2860
2861 if (!netdev->mc_count) {
2862 /* nothing to program, so clear mc list */
2863 igb_update_mc_addr_list(hw, NULL, 0);
2864 igb_restore_vf_multicasts(adapter);
2865 return 0;
2866 }
2867
2868 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2869 if (!mta_list)
2870 return -ENOMEM;
2871
2872 /* set vmolr receive overflow multicast bit */
2873 vmolr |= E1000_VMOLR_ROMPE;
2874
2875 /* The shared function expects a packed array of only addresses. */
2876 mc_ptr = netdev->mc_list;
2877
2878 for (i = 0; i < netdev->mc_count; i++) {
2879 if (!mc_ptr)
2880 break;
2881 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2882 mc_ptr = mc_ptr->next;
2883 }
2884 igb_update_mc_addr_list(hw, mta_list, i);
2885 kfree(mta_list);
2886
2887 return netdev->mc_count;
2888 }
2889
2890 /**
2891 * igb_write_uc_addr_list - write unicast addresses to RAR table
2892 * @netdev: network interface device structure
2893 *
2894 * Writes unicast address list to the RAR table.
2895 * Returns: -ENOMEM on failure/insufficient address space
2896 * 0 on no addresses written
2897 * X on writing X addresses to the RAR table
2898 **/
2899 static int igb_write_uc_addr_list(struct net_device *netdev)
2900 {
2901 struct igb_adapter *adapter = netdev_priv(netdev);
2902 struct e1000_hw *hw = &adapter->hw;
2903 unsigned int vfn = adapter->vfs_allocated_count;
2904 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2905 int count = 0;
2906
2907 /* return ENOMEM indicating insufficient memory for addresses */
2908 if (netdev->uc.count > rar_entries)
2909 return -ENOMEM;
2910
2911 if (netdev->uc.count && rar_entries) {
2912 struct netdev_hw_addr *ha;
2913 list_for_each_entry(ha, &netdev->uc.list, list) {
2914 if (!rar_entries)
2915 break;
2916 igb_rar_set_qsel(adapter, ha->addr,
2917 rar_entries--,
2918 vfn);
2919 count++;
2920 }
2921 }
2922 /* write the addresses in reverse order to avoid write combining */
2923 for (; rar_entries > 0 ; rar_entries--) {
2924 wr32(E1000_RAH(rar_entries), 0);
2925 wr32(E1000_RAL(rar_entries), 0);
2926 }
2927 wrfl();
2928
2929 return count;
2930 }
2931
2932 /**
2933 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2934 * @netdev: network interface device structure
2935 *
2936 * The set_rx_mode entry point is called whenever the unicast or multicast
2937 * address lists or the network interface flags are updated. This routine is
2938 * responsible for configuring the hardware for proper unicast, multicast,
2939 * promiscuous mode, and all-multi behavior.
2940 **/
2941 static void igb_set_rx_mode(struct net_device *netdev)
2942 {
2943 struct igb_adapter *adapter = netdev_priv(netdev);
2944 struct e1000_hw *hw = &adapter->hw;
2945 unsigned int vfn = adapter->vfs_allocated_count;
2946 u32 rctl, vmolr = 0;
2947 int count;
2948
2949 /* Check for Promiscuous and All Multicast modes */
2950 rctl = rd32(E1000_RCTL);
2951
2952 /* clear the effected bits */
2953 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2954
2955 if (netdev->flags & IFF_PROMISC) {
2956 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2957 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2958 } else {
2959 if (netdev->flags & IFF_ALLMULTI) {
2960 rctl |= E1000_RCTL_MPE;
2961 vmolr |= E1000_VMOLR_MPME;
2962 } else {
2963 /*
2964 * Write addresses to the MTA, if the attempt fails
2965 * then we should just turn on promiscous mode so
2966 * that we can at least receive multicast traffic
2967 */
2968 count = igb_write_mc_addr_list(netdev);
2969 if (count < 0) {
2970 rctl |= E1000_RCTL_MPE;
2971 vmolr |= E1000_VMOLR_MPME;
2972 } else if (count) {
2973 vmolr |= E1000_VMOLR_ROMPE;
2974 }
2975 }
2976 /*
2977 * Write addresses to available RAR registers, if there is not
2978 * sufficient space to store all the addresses then enable
2979 * unicast promiscous mode
2980 */
2981 count = igb_write_uc_addr_list(netdev);
2982 if (count < 0) {
2983 rctl |= E1000_RCTL_UPE;
2984 vmolr |= E1000_VMOLR_ROPE;
2985 }
2986 rctl |= E1000_RCTL_VFE;
2987 }
2988 wr32(E1000_RCTL, rctl);
2989
2990 /*
2991 * In order to support SR-IOV and eventually VMDq it is necessary to set
2992 * the VMOLR to enable the appropriate modes. Without this workaround
2993 * we will have issues with VLAN tag stripping not being done for frames
2994 * that are only arriving because we are the default pool
2995 */
2996 if (hw->mac.type < e1000_82576)
2997 return;
2998
2999 vmolr |= rd32(E1000_VMOLR(vfn)) &
3000 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3001 wr32(E1000_VMOLR(vfn), vmolr);
3002 igb_restore_vf_multicasts(adapter);
3003 }
3004
3005 /* Need to wait a few seconds after link up to get diagnostic information from
3006 * the phy */
3007 static void igb_update_phy_info(unsigned long data)
3008 {
3009 struct igb_adapter *adapter = (struct igb_adapter *) data;
3010 igb_get_phy_info(&adapter->hw);
3011 }
3012
3013 /**
3014 * igb_has_link - check shared code for link and determine up/down
3015 * @adapter: pointer to driver private info
3016 **/
3017 static bool igb_has_link(struct igb_adapter *adapter)
3018 {
3019 struct e1000_hw *hw = &adapter->hw;
3020 bool link_active = false;
3021 s32 ret_val = 0;
3022
3023 /* get_link_status is set on LSC (link status) interrupt or
3024 * rx sequence error interrupt. get_link_status will stay
3025 * false until the e1000_check_for_link establishes link
3026 * for copper adapters ONLY
3027 */
3028 switch (hw->phy.media_type) {
3029 case e1000_media_type_copper:
3030 if (hw->mac.get_link_status) {
3031 ret_val = hw->mac.ops.check_for_link(hw);
3032 link_active = !hw->mac.get_link_status;
3033 } else {
3034 link_active = true;
3035 }
3036 break;
3037 case e1000_media_type_internal_serdes:
3038 ret_val = hw->mac.ops.check_for_link(hw);
3039 link_active = hw->mac.serdes_has_link;
3040 break;
3041 default:
3042 case e1000_media_type_unknown:
3043 break;
3044 }
3045
3046 return link_active;
3047 }
3048
3049 /**
3050 * igb_watchdog - Timer Call-back
3051 * @data: pointer to adapter cast into an unsigned long
3052 **/
3053 static void igb_watchdog(unsigned long data)
3054 {
3055 struct igb_adapter *adapter = (struct igb_adapter *)data;
3056 /* Do the rest outside of interrupt context */
3057 schedule_work(&adapter->watchdog_task);
3058 }
3059
3060 static void igb_watchdog_task(struct work_struct *work)
3061 {
3062 struct igb_adapter *adapter = container_of(work,
3063 struct igb_adapter,
3064 watchdog_task);
3065 struct e1000_hw *hw = &adapter->hw;
3066 struct net_device *netdev = adapter->netdev;
3067 u32 link;
3068 int i;
3069
3070 link = igb_has_link(adapter);
3071 if (link) {
3072 if (!netif_carrier_ok(netdev)) {
3073 u32 ctrl;
3074 hw->mac.ops.get_speed_and_duplex(hw,
3075 &adapter->link_speed,
3076 &adapter->link_duplex);
3077
3078 ctrl = rd32(E1000_CTRL);
3079 /* Links status message must follow this format */
3080 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3081 "Flow Control: %s\n",
3082 netdev->name,
3083 adapter->link_speed,
3084 adapter->link_duplex == FULL_DUPLEX ?
3085 "Full Duplex" : "Half Duplex",
3086 ((ctrl & E1000_CTRL_TFCE) &&
3087 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3088 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3089 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
3090
3091 /* tweak tx_queue_len according to speed/duplex and
3092 * adjust the timeout factor */
3093 netdev->tx_queue_len = adapter->tx_queue_len;
3094 adapter->tx_timeout_factor = 1;
3095 switch (adapter->link_speed) {
3096 case SPEED_10:
3097 netdev->tx_queue_len = 10;
3098 adapter->tx_timeout_factor = 14;
3099 break;
3100 case SPEED_100:
3101 netdev->tx_queue_len = 100;
3102 /* maybe add some timeout factor ? */
3103 break;
3104 }
3105
3106 netif_carrier_on(netdev);
3107
3108 igb_ping_all_vfs(adapter);
3109
3110 /* link state has changed, schedule phy info update */
3111 if (!test_bit(__IGB_DOWN, &adapter->state))
3112 mod_timer(&adapter->phy_info_timer,
3113 round_jiffies(jiffies + 2 * HZ));
3114 }
3115 } else {
3116 if (netif_carrier_ok(netdev)) {
3117 adapter->link_speed = 0;
3118 adapter->link_duplex = 0;
3119 /* Links status message must follow this format */
3120 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3121 netdev->name);
3122 netif_carrier_off(netdev);
3123
3124 igb_ping_all_vfs(adapter);
3125
3126 /* link state has changed, schedule phy info update */
3127 if (!test_bit(__IGB_DOWN, &adapter->state))
3128 mod_timer(&adapter->phy_info_timer,
3129 round_jiffies(jiffies + 2 * HZ));
3130 }
3131 }
3132
3133 igb_update_stats(adapter);
3134 igb_update_adaptive(hw);
3135
3136 for (i = 0; i < adapter->num_tx_queues; i++) {
3137 struct igb_ring *tx_ring = &adapter->tx_ring[i];
3138 if (!netif_carrier_ok(netdev)) {
3139 /* We've lost link, so the controller stops DMA,
3140 * but we've got queued Tx work that's never going
3141 * to get done, so reset controller to flush Tx.
3142 * (Do the reset outside of interrupt context). */
3143 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3144 adapter->tx_timeout_count++;
3145 schedule_work(&adapter->reset_task);
3146 /* return immediately since reset is imminent */
3147 return;
3148 }
3149 }
3150
3151 /* Force detection of hung controller every watchdog period */
3152 tx_ring->detect_tx_hung = true;
3153 }
3154
3155 /* Cause software interrupt to ensure rx ring is cleaned */
3156 if (adapter->msix_entries) {
3157 u32 eics = 0;
3158 for (i = 0; i < adapter->num_q_vectors; i++) {
3159 struct igb_q_vector *q_vector = adapter->q_vector[i];
3160 eics |= q_vector->eims_value;
3161 }
3162 wr32(E1000_EICS, eics);
3163 } else {
3164 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3165 }
3166
3167 /* Reset the timer */
3168 if (!test_bit(__IGB_DOWN, &adapter->state))
3169 mod_timer(&adapter->watchdog_timer,
3170 round_jiffies(jiffies + 2 * HZ));
3171 }
3172
3173 enum latency_range {
3174 lowest_latency = 0,
3175 low_latency = 1,
3176 bulk_latency = 2,
3177 latency_invalid = 255
3178 };
3179
3180 /**
3181 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3182 *
3183 * Stores a new ITR value based on strictly on packet size. This
3184 * algorithm is less sophisticated than that used in igb_update_itr,
3185 * due to the difficulty of synchronizing statistics across multiple
3186 * receive rings. The divisors and thresholds used by this fuction
3187 * were determined based on theoretical maximum wire speed and testing
3188 * data, in order to minimize response time while increasing bulk
3189 * throughput.
3190 * This functionality is controlled by the InterruptThrottleRate module
3191 * parameter (see igb_param.c)
3192 * NOTE: This function is called only when operating in a multiqueue
3193 * receive environment.
3194 * @q_vector: pointer to q_vector
3195 **/
3196 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3197 {
3198 int new_val = q_vector->itr_val;
3199 int avg_wire_size = 0;
3200 struct igb_adapter *adapter = q_vector->adapter;
3201
3202 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3203 * ints/sec - ITR timer value of 120 ticks.
3204 */
3205 if (adapter->link_speed != SPEED_1000) {
3206 new_val = 976;
3207 goto set_itr_val;
3208 }
3209
3210 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3211 struct igb_ring *ring = q_vector->rx_ring;
3212 avg_wire_size = ring->total_bytes / ring->total_packets;
3213 }
3214
3215 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3216 struct igb_ring *ring = q_vector->tx_ring;
3217 avg_wire_size = max_t(u32, avg_wire_size,
3218 (ring->total_bytes /
3219 ring->total_packets));
3220 }
3221
3222 /* if avg_wire_size isn't set no work was done */
3223 if (!avg_wire_size)
3224 goto clear_counts;
3225
3226 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3227 avg_wire_size += 24;
3228
3229 /* Don't starve jumbo frames */
3230 avg_wire_size = min(avg_wire_size, 3000);
3231
3232 /* Give a little boost to mid-size frames */
3233 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3234 new_val = avg_wire_size / 3;
3235 else
3236 new_val = avg_wire_size / 2;
3237
3238 set_itr_val:
3239 if (new_val != q_vector->itr_val) {
3240 q_vector->itr_val = new_val;
3241 q_vector->set_itr = 1;
3242 }
3243 clear_counts:
3244 if (q_vector->rx_ring) {
3245 q_vector->rx_ring->total_bytes = 0;
3246 q_vector->rx_ring->total_packets = 0;
3247 }
3248 if (q_vector->tx_ring) {
3249 q_vector->tx_ring->total_bytes = 0;
3250 q_vector->tx_ring->total_packets = 0;
3251 }
3252 }
3253
3254 /**
3255 * igb_update_itr - update the dynamic ITR value based on statistics
3256 * Stores a new ITR value based on packets and byte
3257 * counts during the last interrupt. The advantage of per interrupt
3258 * computation is faster updates and more accurate ITR for the current
3259 * traffic pattern. Constants in this function were computed
3260 * based on theoretical maximum wire speed and thresholds were set based
3261 * on testing data as well as attempting to minimize response time
3262 * while increasing bulk throughput.
3263 * this functionality is controlled by the InterruptThrottleRate module
3264 * parameter (see igb_param.c)
3265 * NOTE: These calculations are only valid when operating in a single-
3266 * queue environment.
3267 * @adapter: pointer to adapter
3268 * @itr_setting: current q_vector->itr_val
3269 * @packets: the number of packets during this measurement interval
3270 * @bytes: the number of bytes during this measurement interval
3271 **/
3272 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3273 int packets, int bytes)
3274 {
3275 unsigned int retval = itr_setting;
3276
3277 if (packets == 0)
3278 goto update_itr_done;
3279
3280 switch (itr_setting) {
3281 case lowest_latency:
3282 /* handle TSO and jumbo frames */
3283 if (bytes/packets > 8000)
3284 retval = bulk_latency;
3285 else if ((packets < 5) && (bytes > 512))
3286 retval = low_latency;
3287 break;
3288 case low_latency: /* 50 usec aka 20000 ints/s */
3289 if (bytes > 10000) {
3290 /* this if handles the TSO accounting */
3291 if (bytes/packets > 8000) {
3292 retval = bulk_latency;
3293 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3294 retval = bulk_latency;
3295 } else if ((packets > 35)) {
3296 retval = lowest_latency;
3297 }
3298 } else if (bytes/packets > 2000) {
3299 retval = bulk_latency;
3300 } else if (packets <= 2 && bytes < 512) {
3301 retval = lowest_latency;
3302 }
3303 break;
3304 case bulk_latency: /* 250 usec aka 4000 ints/s */
3305 if (bytes > 25000) {
3306 if (packets > 35)
3307 retval = low_latency;
3308 } else if (bytes < 1500) {
3309 retval = low_latency;
3310 }
3311 break;
3312 }
3313
3314 update_itr_done:
3315 return retval;
3316 }
3317
3318 static void igb_set_itr(struct igb_adapter *adapter)
3319 {
3320 struct igb_q_vector *q_vector = adapter->q_vector[0];
3321 u16 current_itr;
3322 u32 new_itr = q_vector->itr_val;
3323
3324 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3325 if (adapter->link_speed != SPEED_1000) {
3326 current_itr = 0;
3327 new_itr = 4000;
3328 goto set_itr_now;
3329 }
3330
3331 adapter->rx_itr = igb_update_itr(adapter,
3332 adapter->rx_itr,
3333 adapter->rx_ring->total_packets,
3334 adapter->rx_ring->total_bytes);
3335
3336 adapter->tx_itr = igb_update_itr(adapter,
3337 adapter->tx_itr,
3338 adapter->tx_ring->total_packets,
3339 adapter->tx_ring->total_bytes);
3340 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3341
3342 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3343 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3344 current_itr = low_latency;
3345
3346 switch (current_itr) {
3347 /* counts and packets in update_itr are dependent on these numbers */
3348 case lowest_latency:
3349 new_itr = 56; /* aka 70,000 ints/sec */
3350 break;
3351 case low_latency:
3352 new_itr = 196; /* aka 20,000 ints/sec */
3353 break;
3354 case bulk_latency:
3355 new_itr = 980; /* aka 4,000 ints/sec */
3356 break;
3357 default:
3358 break;
3359 }
3360
3361 set_itr_now:
3362 adapter->rx_ring->total_bytes = 0;
3363 adapter->rx_ring->total_packets = 0;
3364 adapter->tx_ring->total_bytes = 0;
3365 adapter->tx_ring->total_packets = 0;
3366
3367 if (new_itr != q_vector->itr_val) {
3368 /* this attempts to bias the interrupt rate towards Bulk
3369 * by adding intermediate steps when interrupt rate is
3370 * increasing */
3371 new_itr = new_itr > q_vector->itr_val ?
3372 max((new_itr * q_vector->itr_val) /
3373 (new_itr + (q_vector->itr_val >> 2)),
3374 new_itr) :
3375 new_itr;
3376 /* Don't write the value here; it resets the adapter's
3377 * internal timer, and causes us to delay far longer than
3378 * we should between interrupts. Instead, we write the ITR
3379 * value at the beginning of the next interrupt so the timing
3380 * ends up being correct.
3381 */
3382 q_vector->itr_val = new_itr;
3383 q_vector->set_itr = 1;
3384 }
3385
3386 return;
3387 }
3388
3389 #define IGB_TX_FLAGS_CSUM 0x00000001
3390 #define IGB_TX_FLAGS_VLAN 0x00000002
3391 #define IGB_TX_FLAGS_TSO 0x00000004
3392 #define IGB_TX_FLAGS_IPV4 0x00000008
3393 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3394 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3395 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3396
3397 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3398 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3399 {
3400 struct e1000_adv_tx_context_desc *context_desc;
3401 unsigned int i;
3402 int err;
3403 struct igb_buffer *buffer_info;
3404 u32 info = 0, tu_cmd = 0;
3405 u32 mss_l4len_idx, l4len;
3406 *hdr_len = 0;
3407
3408 if (skb_header_cloned(skb)) {
3409 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3410 if (err)
3411 return err;
3412 }
3413
3414 l4len = tcp_hdrlen(skb);
3415 *hdr_len += l4len;
3416
3417 if (skb->protocol == htons(ETH_P_IP)) {
3418 struct iphdr *iph = ip_hdr(skb);
3419 iph->tot_len = 0;
3420 iph->check = 0;
3421 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3422 iph->daddr, 0,
3423 IPPROTO_TCP,
3424 0);
3425 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3426 ipv6_hdr(skb)->payload_len = 0;
3427 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3428 &ipv6_hdr(skb)->daddr,
3429 0, IPPROTO_TCP, 0);
3430 }
3431
3432 i = tx_ring->next_to_use;
3433
3434 buffer_info = &tx_ring->buffer_info[i];
3435 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3436 /* VLAN MACLEN IPLEN */
3437 if (tx_flags & IGB_TX_FLAGS_VLAN)
3438 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3439 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3440 *hdr_len += skb_network_offset(skb);
3441 info |= skb_network_header_len(skb);
3442 *hdr_len += skb_network_header_len(skb);
3443 context_desc->vlan_macip_lens = cpu_to_le32(info);
3444
3445 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3446 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3447
3448 if (skb->protocol == htons(ETH_P_IP))
3449 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3450 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3451
3452 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3453
3454 /* MSS L4LEN IDX */
3455 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3456 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3457
3458 /* For 82575, context index must be unique per ring. */
3459 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3460 mss_l4len_idx |= tx_ring->reg_idx << 4;
3461
3462 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3463 context_desc->seqnum_seed = 0;
3464
3465 buffer_info->time_stamp = jiffies;
3466 buffer_info->next_to_watch = i;
3467 buffer_info->dma = 0;
3468 i++;
3469 if (i == tx_ring->count)
3470 i = 0;
3471
3472 tx_ring->next_to_use = i;
3473
3474 return true;
3475 }
3476
3477 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3478 struct sk_buff *skb, u32 tx_flags)
3479 {
3480 struct e1000_adv_tx_context_desc *context_desc;
3481 struct pci_dev *pdev = tx_ring->pdev;
3482 struct igb_buffer *buffer_info;
3483 u32 info = 0, tu_cmd = 0;
3484 unsigned int i;
3485
3486 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3487 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3488 i = tx_ring->next_to_use;
3489 buffer_info = &tx_ring->buffer_info[i];
3490 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3491
3492 if (tx_flags & IGB_TX_FLAGS_VLAN)
3493 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3494
3495 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3496 if (skb->ip_summed == CHECKSUM_PARTIAL)
3497 info |= skb_network_header_len(skb);
3498
3499 context_desc->vlan_macip_lens = cpu_to_le32(info);
3500
3501 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3502
3503 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3504 __be16 protocol;
3505
3506 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3507 const struct vlan_ethhdr *vhdr =
3508 (const struct vlan_ethhdr*)skb->data;
3509
3510 protocol = vhdr->h_vlan_encapsulated_proto;
3511 } else {
3512 protocol = skb->protocol;
3513 }
3514
3515 switch (protocol) {
3516 case cpu_to_be16(ETH_P_IP):
3517 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3518 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3519 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3520 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3521 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3522 break;
3523 case cpu_to_be16(ETH_P_IPV6):
3524 /* XXX what about other V6 headers?? */
3525 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3526 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3527 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3528 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3529 break;
3530 default:
3531 if (unlikely(net_ratelimit()))
3532 dev_warn(&pdev->dev,
3533 "partial checksum but proto=%x!\n",
3534 skb->protocol);
3535 break;
3536 }
3537 }
3538
3539 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3540 context_desc->seqnum_seed = 0;
3541 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3542 context_desc->mss_l4len_idx =
3543 cpu_to_le32(tx_ring->reg_idx << 4);
3544
3545 buffer_info->time_stamp = jiffies;
3546 buffer_info->next_to_watch = i;
3547 buffer_info->dma = 0;
3548
3549 i++;
3550 if (i == tx_ring->count)
3551 i = 0;
3552 tx_ring->next_to_use = i;
3553
3554 return true;
3555 }
3556 return false;
3557 }
3558
3559 #define IGB_MAX_TXD_PWR 16
3560 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3561
3562 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3563 unsigned int first)
3564 {
3565 struct igb_buffer *buffer_info;
3566 struct pci_dev *pdev = tx_ring->pdev;
3567 unsigned int len = skb_headlen(skb);
3568 unsigned int count = 0, i;
3569 unsigned int f;
3570
3571 i = tx_ring->next_to_use;
3572
3573 buffer_info = &tx_ring->buffer_info[i];
3574 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3575 buffer_info->length = len;
3576 /* set time_stamp *before* dma to help avoid a possible race */
3577 buffer_info->time_stamp = jiffies;
3578 buffer_info->next_to_watch = i;
3579 buffer_info->dma = pci_map_single(pdev, skb->data, len,
3580 PCI_DMA_TODEVICE);
3581 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3582 goto dma_error;
3583
3584 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3585 struct skb_frag_struct *frag;
3586
3587 i++;
3588 if (i == tx_ring->count)
3589 i = 0;
3590
3591 frag = &skb_shinfo(skb)->frags[f];
3592 len = frag->size;
3593
3594 buffer_info = &tx_ring->buffer_info[i];
3595 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3596 buffer_info->length = len;
3597 buffer_info->time_stamp = jiffies;
3598 buffer_info->next_to_watch = i;
3599 buffer_info->mapped_as_page = true;
3600 buffer_info->dma = pci_map_page(pdev,
3601 frag->page,
3602 frag->page_offset,
3603 len,
3604 PCI_DMA_TODEVICE);
3605 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3606 goto dma_error;
3607
3608 count++;
3609 }
3610
3611 tx_ring->buffer_info[i].skb = skb;
3612 tx_ring->buffer_info[first].next_to_watch = i;
3613
3614 return ++count;
3615
3616 dma_error:
3617 dev_err(&pdev->dev, "TX DMA map failed\n");
3618
3619 /* clear timestamp and dma mappings for failed buffer_info mapping */
3620 buffer_info->dma = 0;
3621 buffer_info->time_stamp = 0;
3622 buffer_info->length = 0;
3623 buffer_info->next_to_watch = 0;
3624 buffer_info->mapped_as_page = false;
3625 count--;
3626
3627 /* clear timestamp and dma mappings for remaining portion of packet */
3628 while (count >= 0) {
3629 count--;
3630 i--;
3631 if (i < 0)
3632 i += tx_ring->count;
3633 buffer_info = &tx_ring->buffer_info[i];
3634 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3635 }
3636
3637 return 0;
3638 }
3639
3640 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3641 int tx_flags, int count, u32 paylen,
3642 u8 hdr_len)
3643 {
3644 union e1000_adv_tx_desc *tx_desc;
3645 struct igb_buffer *buffer_info;
3646 u32 olinfo_status = 0, cmd_type_len;
3647 unsigned int i = tx_ring->next_to_use;
3648
3649 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3650 E1000_ADVTXD_DCMD_DEXT);
3651
3652 if (tx_flags & IGB_TX_FLAGS_VLAN)
3653 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3654
3655 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3656 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3657
3658 if (tx_flags & IGB_TX_FLAGS_TSO) {
3659 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3660
3661 /* insert tcp checksum */
3662 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3663
3664 /* insert ip checksum */
3665 if (tx_flags & IGB_TX_FLAGS_IPV4)
3666 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3667
3668 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3669 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3670 }
3671
3672 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3673 (tx_flags & (IGB_TX_FLAGS_CSUM |
3674 IGB_TX_FLAGS_TSO |
3675 IGB_TX_FLAGS_VLAN)))
3676 olinfo_status |= tx_ring->reg_idx << 4;
3677
3678 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3679
3680 do {
3681 buffer_info = &tx_ring->buffer_info[i];
3682 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3683 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3684 tx_desc->read.cmd_type_len =
3685 cpu_to_le32(cmd_type_len | buffer_info->length);
3686 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3687 count--;
3688 i++;
3689 if (i == tx_ring->count)
3690 i = 0;
3691 } while (count > 0);
3692
3693 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3694 /* Force memory writes to complete before letting h/w
3695 * know there are new descriptors to fetch. (Only
3696 * applicable for weak-ordered memory model archs,
3697 * such as IA-64). */
3698 wmb();
3699
3700 tx_ring->next_to_use = i;
3701 writel(i, tx_ring->tail);
3702 /* we need this if more than one processor can write to our tail
3703 * at a time, it syncronizes IO on IA64/Altix systems */
3704 mmiowb();
3705 }
3706
3707 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3708 {
3709 struct net_device *netdev = tx_ring->netdev;
3710
3711 netif_stop_subqueue(netdev, tx_ring->queue_index);
3712
3713 /* Herbert's original patch had:
3714 * smp_mb__after_netif_stop_queue();
3715 * but since that doesn't exist yet, just open code it. */
3716 smp_mb();
3717
3718 /* We need to check again in a case another CPU has just
3719 * made room available. */
3720 if (igb_desc_unused(tx_ring) < size)
3721 return -EBUSY;
3722
3723 /* A reprieve! */
3724 netif_wake_subqueue(netdev, tx_ring->queue_index);
3725 tx_ring->tx_stats.restart_queue++;
3726 return 0;
3727 }
3728
3729 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3730 {
3731 if (igb_desc_unused(tx_ring) >= size)
3732 return 0;
3733 return __igb_maybe_stop_tx(tx_ring, size);
3734 }
3735
3736 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3737 struct igb_ring *tx_ring)
3738 {
3739 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3740 unsigned int first;
3741 unsigned int tx_flags = 0;
3742 u8 hdr_len = 0;
3743 int tso = 0, count;
3744 union skb_shared_tx *shtx = skb_tx(skb);
3745
3746 /* need: 1 descriptor per page,
3747 * + 2 desc gap to keep tail from touching head,
3748 * + 1 desc for skb->data,
3749 * + 1 desc for context descriptor,
3750 * otherwise try next time */
3751 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3752 /* this is a hard error */
3753 return NETDEV_TX_BUSY;
3754 }
3755
3756 if (unlikely(shtx->hardware)) {
3757 shtx->in_progress = 1;
3758 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3759 }
3760
3761 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3762 tx_flags |= IGB_TX_FLAGS_VLAN;
3763 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3764 }
3765
3766 if (skb->protocol == htons(ETH_P_IP))
3767 tx_flags |= IGB_TX_FLAGS_IPV4;
3768
3769 first = tx_ring->next_to_use;
3770 if (skb_is_gso(skb)) {
3771 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3772
3773 if (tso < 0) {
3774 dev_kfree_skb_any(skb);
3775 return NETDEV_TX_OK;
3776 }
3777 }
3778
3779 if (tso)
3780 tx_flags |= IGB_TX_FLAGS_TSO;
3781 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3782 (skb->ip_summed == CHECKSUM_PARTIAL))
3783 tx_flags |= IGB_TX_FLAGS_CSUM;
3784
3785 /*
3786 * count reflects descriptors mapped, if 0 or less then mapping error
3787 * has occured and we need to rewind the descriptor queue
3788 */
3789 count = igb_tx_map_adv(tx_ring, skb, first);
3790 if (!count) {
3791 dev_kfree_skb_any(skb);
3792 tx_ring->buffer_info[first].time_stamp = 0;
3793 tx_ring->next_to_use = first;
3794 return NETDEV_TX_OK;
3795 }
3796
3797 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3798
3799 /* Make sure there is space in the ring for the next send. */
3800 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3801
3802 return NETDEV_TX_OK;
3803 }
3804
3805 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3806 struct net_device *netdev)
3807 {
3808 struct igb_adapter *adapter = netdev_priv(netdev);
3809 struct igb_ring *tx_ring;
3810 int r_idx = 0;
3811
3812 if (test_bit(__IGB_DOWN, &adapter->state)) {
3813 dev_kfree_skb_any(skb);
3814 return NETDEV_TX_OK;
3815 }
3816
3817 if (skb->len <= 0) {
3818 dev_kfree_skb_any(skb);
3819 return NETDEV_TX_OK;
3820 }
3821
3822 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3823 tx_ring = adapter->multi_tx_table[r_idx];
3824
3825 /* This goes back to the question of how to logically map a tx queue
3826 * to a flow. Right now, performance is impacted slightly negatively
3827 * if using multiple tx queues. If the stack breaks away from a
3828 * single qdisc implementation, we can look at this again. */
3829 return igb_xmit_frame_ring_adv(skb, tx_ring);
3830 }
3831
3832 /**
3833 * igb_tx_timeout - Respond to a Tx Hang
3834 * @netdev: network interface device structure
3835 **/
3836 static void igb_tx_timeout(struct net_device *netdev)
3837 {
3838 struct igb_adapter *adapter = netdev_priv(netdev);
3839 struct e1000_hw *hw = &adapter->hw;
3840
3841 /* Do the reset outside of interrupt context */
3842 adapter->tx_timeout_count++;
3843
3844 if (hw->mac.type == e1000_82580)
3845 hw->dev_spec._82575.global_device_reset = true;
3846
3847 schedule_work(&adapter->reset_task);
3848 wr32(E1000_EICS,
3849 (adapter->eims_enable_mask & ~adapter->eims_other));
3850 }
3851
3852 static void igb_reset_task(struct work_struct *work)
3853 {
3854 struct igb_adapter *adapter;
3855 adapter = container_of(work, struct igb_adapter, reset_task);
3856
3857 igb_reinit_locked(adapter);
3858 }
3859
3860 /**
3861 * igb_get_stats - Get System Network Statistics
3862 * @netdev: network interface device structure
3863 *
3864 * Returns the address of the device statistics structure.
3865 * The statistics are actually updated from the timer callback.
3866 **/
3867 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3868 {
3869 /* only return the current stats */
3870 return &netdev->stats;
3871 }
3872
3873 /**
3874 * igb_change_mtu - Change the Maximum Transfer Unit
3875 * @netdev: network interface device structure
3876 * @new_mtu: new value for maximum frame size
3877 *
3878 * Returns 0 on success, negative on failure
3879 **/
3880 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3881 {
3882 struct igb_adapter *adapter = netdev_priv(netdev);
3883 struct pci_dev *pdev = adapter->pdev;
3884 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3885 u32 rx_buffer_len, i;
3886
3887 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3888 dev_err(&pdev->dev, "Invalid MTU setting\n");
3889 return -EINVAL;
3890 }
3891
3892 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3893 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3894 return -EINVAL;
3895 }
3896
3897 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3898 msleep(1);
3899
3900 /* igb_down has a dependency on max_frame_size */
3901 adapter->max_frame_size = max_frame;
3902
3903 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3904 * means we reserve 2 more, this pushes us to allocate from the next
3905 * larger slab size.
3906 * i.e. RXBUFFER_2048 --> size-4096 slab
3907 */
3908
3909 if (max_frame <= IGB_RXBUFFER_1024)
3910 rx_buffer_len = IGB_RXBUFFER_1024;
3911 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3912 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3913 else
3914 rx_buffer_len = IGB_RXBUFFER_128;
3915
3916 if (netif_running(netdev))
3917 igb_down(adapter);
3918
3919 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3920 netdev->mtu, new_mtu);
3921 netdev->mtu = new_mtu;
3922
3923 for (i = 0; i < adapter->num_rx_queues; i++)
3924 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3925
3926 if (netif_running(netdev))
3927 igb_up(adapter);
3928 else
3929 igb_reset(adapter);
3930
3931 clear_bit(__IGB_RESETTING, &adapter->state);
3932
3933 return 0;
3934 }
3935
3936 /**
3937 * igb_update_stats - Update the board statistics counters
3938 * @adapter: board private structure
3939 **/
3940
3941 void igb_update_stats(struct igb_adapter *adapter)
3942 {
3943 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
3944 struct e1000_hw *hw = &adapter->hw;
3945 struct pci_dev *pdev = adapter->pdev;
3946 u32 rnbc;
3947 u16 phy_tmp;
3948 int i;
3949 u64 bytes, packets;
3950
3951 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3952
3953 /*
3954 * Prevent stats update while adapter is being reset, or if the pci
3955 * connection is down.
3956 */
3957 if (adapter->link_speed == 0)
3958 return;
3959 if (pci_channel_offline(pdev))
3960 return;
3961
3962 bytes = 0;
3963 packets = 0;
3964 for (i = 0; i < adapter->num_rx_queues; i++) {
3965 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3966 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3967 net_stats->rx_fifo_errors += rqdpc_tmp;
3968 bytes += adapter->rx_ring[i].rx_stats.bytes;
3969 packets += adapter->rx_ring[i].rx_stats.packets;
3970 }
3971
3972 net_stats->rx_bytes = bytes;
3973 net_stats->rx_packets = packets;
3974
3975 bytes = 0;
3976 packets = 0;
3977 for (i = 0; i < adapter->num_tx_queues; i++) {
3978 bytes += adapter->tx_ring[i].tx_stats.bytes;
3979 packets += adapter->tx_ring[i].tx_stats.packets;
3980 }
3981 net_stats->tx_bytes = bytes;
3982 net_stats->tx_packets = packets;
3983
3984 /* read stats registers */
3985 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3986 adapter->stats.gprc += rd32(E1000_GPRC);
3987 adapter->stats.gorc += rd32(E1000_GORCL);
3988 rd32(E1000_GORCH); /* clear GORCL */
3989 adapter->stats.bprc += rd32(E1000_BPRC);
3990 adapter->stats.mprc += rd32(E1000_MPRC);
3991 adapter->stats.roc += rd32(E1000_ROC);
3992
3993 adapter->stats.prc64 += rd32(E1000_PRC64);
3994 adapter->stats.prc127 += rd32(E1000_PRC127);
3995 adapter->stats.prc255 += rd32(E1000_PRC255);
3996 adapter->stats.prc511 += rd32(E1000_PRC511);
3997 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3998 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3999 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4000 adapter->stats.sec += rd32(E1000_SEC);
4001
4002 adapter->stats.mpc += rd32(E1000_MPC);
4003 adapter->stats.scc += rd32(E1000_SCC);
4004 adapter->stats.ecol += rd32(E1000_ECOL);
4005 adapter->stats.mcc += rd32(E1000_MCC);
4006 adapter->stats.latecol += rd32(E1000_LATECOL);
4007 adapter->stats.dc += rd32(E1000_DC);
4008 adapter->stats.rlec += rd32(E1000_RLEC);
4009 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4010 adapter->stats.xontxc += rd32(E1000_XONTXC);
4011 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4012 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4013 adapter->stats.fcruc += rd32(E1000_FCRUC);
4014 adapter->stats.gptc += rd32(E1000_GPTC);
4015 adapter->stats.gotc += rd32(E1000_GOTCL);
4016 rd32(E1000_GOTCH); /* clear GOTCL */
4017 rnbc = rd32(E1000_RNBC);
4018 adapter->stats.rnbc += rnbc;
4019 net_stats->rx_fifo_errors += rnbc;
4020 adapter->stats.ruc += rd32(E1000_RUC);
4021 adapter->stats.rfc += rd32(E1000_RFC);
4022 adapter->stats.rjc += rd32(E1000_RJC);
4023 adapter->stats.tor += rd32(E1000_TORH);
4024 adapter->stats.tot += rd32(E1000_TOTH);
4025 adapter->stats.tpr += rd32(E1000_TPR);
4026
4027 adapter->stats.ptc64 += rd32(E1000_PTC64);
4028 adapter->stats.ptc127 += rd32(E1000_PTC127);
4029 adapter->stats.ptc255 += rd32(E1000_PTC255);
4030 adapter->stats.ptc511 += rd32(E1000_PTC511);
4031 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4032 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4033
4034 adapter->stats.mptc += rd32(E1000_MPTC);
4035 adapter->stats.bptc += rd32(E1000_BPTC);
4036
4037 /* used for adaptive IFS */
4038 hw->mac.tx_packet_delta = rd32(E1000_TPT);
4039 adapter->stats.tpt += hw->mac.tx_packet_delta;
4040 hw->mac.collision_delta = rd32(E1000_COLC);
4041 adapter->stats.colc += hw->mac.collision_delta;
4042
4043 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4044 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4045 adapter->stats.tncrs += rd32(E1000_TNCRS);
4046 adapter->stats.tsctc += rd32(E1000_TSCTC);
4047 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4048
4049 adapter->stats.iac += rd32(E1000_IAC);
4050 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4051 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4052 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4053 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4054 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4055 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4056 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4057 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4058
4059 /* Fill out the OS statistics structure */
4060 net_stats->multicast = adapter->stats.mprc;
4061 net_stats->collisions = adapter->stats.colc;
4062
4063 /* Rx Errors */
4064
4065 /* RLEC on some newer hardware can be incorrect so build
4066 * our own version based on RUC and ROC */
4067 net_stats->rx_errors = adapter->stats.rxerrc +
4068 adapter->stats.crcerrs + adapter->stats.algnerrc +
4069 adapter->stats.ruc + adapter->stats.roc +
4070 adapter->stats.cexterr;
4071 net_stats->rx_length_errors = adapter->stats.ruc +
4072 adapter->stats.roc;
4073 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4074 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4075 net_stats->rx_missed_errors = adapter->stats.mpc;
4076
4077 /* Tx Errors */
4078 net_stats->tx_errors = adapter->stats.ecol +
4079 adapter->stats.latecol;
4080 net_stats->tx_aborted_errors = adapter->stats.ecol;
4081 net_stats->tx_window_errors = adapter->stats.latecol;
4082 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4083
4084 /* Tx Dropped needs to be maintained elsewhere */
4085
4086 /* Phy Stats */
4087 if (hw->phy.media_type == e1000_media_type_copper) {
4088 if ((adapter->link_speed == SPEED_1000) &&
4089 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4090 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4091 adapter->phy_stats.idle_errors += phy_tmp;
4092 }
4093 }
4094
4095 /* Management Stats */
4096 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4097 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4098 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4099 }
4100
4101 static irqreturn_t igb_msix_other(int irq, void *data)
4102 {
4103 struct igb_adapter *adapter = data;
4104 struct e1000_hw *hw = &adapter->hw;
4105 u32 icr = rd32(E1000_ICR);
4106 /* reading ICR causes bit 31 of EICR to be cleared */
4107
4108 if (icr & E1000_ICR_DRSTA)
4109 schedule_work(&adapter->reset_task);
4110
4111 if (icr & E1000_ICR_DOUTSYNC) {
4112 /* HW is reporting DMA is out of sync */
4113 adapter->stats.doosync++;
4114 }
4115
4116 /* Check for a mailbox event */
4117 if (icr & E1000_ICR_VMMB)
4118 igb_msg_task(adapter);
4119
4120 if (icr & E1000_ICR_LSC) {
4121 hw->mac.get_link_status = 1;
4122 /* guard against interrupt when we're going down */
4123 if (!test_bit(__IGB_DOWN, &adapter->state))
4124 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4125 }
4126
4127 if (adapter->vfs_allocated_count)
4128 wr32(E1000_IMS, E1000_IMS_LSC |
4129 E1000_IMS_VMMB |
4130 E1000_IMS_DOUTSYNC);
4131 else
4132 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4133 wr32(E1000_EIMS, adapter->eims_other);
4134
4135 return IRQ_HANDLED;
4136 }
4137
4138 static void igb_write_itr(struct igb_q_vector *q_vector)
4139 {
4140 u32 itr_val = q_vector->itr_val & 0x7FFC;
4141
4142 if (!q_vector->set_itr)
4143 return;
4144
4145 if (!itr_val)
4146 itr_val = 0x4;
4147
4148 if (q_vector->itr_shift)
4149 itr_val |= itr_val << q_vector->itr_shift;
4150 else
4151 itr_val |= 0x8000000;
4152
4153 writel(itr_val, q_vector->itr_register);
4154 q_vector->set_itr = 0;
4155 }
4156
4157 static irqreturn_t igb_msix_ring(int irq, void *data)
4158 {
4159 struct igb_q_vector *q_vector = data;
4160
4161 /* Write the ITR value calculated from the previous interrupt. */
4162 igb_write_itr(q_vector);
4163
4164 napi_schedule(&q_vector->napi);
4165
4166 return IRQ_HANDLED;
4167 }
4168
4169 #ifdef CONFIG_IGB_DCA
4170 static void igb_update_dca(struct igb_q_vector *q_vector)
4171 {
4172 struct igb_adapter *adapter = q_vector->adapter;
4173 struct e1000_hw *hw = &adapter->hw;
4174 int cpu = get_cpu();
4175
4176 if (q_vector->cpu == cpu)
4177 goto out_no_update;
4178
4179 if (q_vector->tx_ring) {
4180 int q = q_vector->tx_ring->reg_idx;
4181 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4182 if (hw->mac.type == e1000_82575) {
4183 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4184 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4185 } else {
4186 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4187 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4188 E1000_DCA_TXCTRL_CPUID_SHIFT;
4189 }
4190 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4191 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4192 }
4193 if (q_vector->rx_ring) {
4194 int q = q_vector->rx_ring->reg_idx;
4195 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4196 if (hw->mac.type == e1000_82575) {
4197 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4198 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4199 } else {
4200 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4201 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4202 E1000_DCA_RXCTRL_CPUID_SHIFT;
4203 }
4204 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4205 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4206 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4207 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4208 }
4209 q_vector->cpu = cpu;
4210 out_no_update:
4211 put_cpu();
4212 }
4213
4214 static void igb_setup_dca(struct igb_adapter *adapter)
4215 {
4216 struct e1000_hw *hw = &adapter->hw;
4217 int i;
4218
4219 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4220 return;
4221
4222 /* Always use CB2 mode, difference is masked in the CB driver. */
4223 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4224
4225 for (i = 0; i < adapter->num_q_vectors; i++) {
4226 struct igb_q_vector *q_vector = adapter->q_vector[i];
4227 q_vector->cpu = -1;
4228 igb_update_dca(q_vector);
4229 }
4230 }
4231
4232 static int __igb_notify_dca(struct device *dev, void *data)
4233 {
4234 struct net_device *netdev = dev_get_drvdata(dev);
4235 struct igb_adapter *adapter = netdev_priv(netdev);
4236 struct pci_dev *pdev = adapter->pdev;
4237 struct e1000_hw *hw = &adapter->hw;
4238 unsigned long event = *(unsigned long *)data;
4239
4240 switch (event) {
4241 case DCA_PROVIDER_ADD:
4242 /* if already enabled, don't do it again */
4243 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4244 break;
4245 if (dca_add_requester(dev) == 0) {
4246 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4247 dev_info(&pdev->dev, "DCA enabled\n");
4248 igb_setup_dca(adapter);
4249 break;
4250 }
4251 /* Fall Through since DCA is disabled. */
4252 case DCA_PROVIDER_REMOVE:
4253 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4254 /* without this a class_device is left
4255 * hanging around in the sysfs model */
4256 dca_remove_requester(dev);
4257 dev_info(&pdev->dev, "DCA disabled\n");
4258 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4259 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4260 }
4261 break;
4262 }
4263
4264 return 0;
4265 }
4266
4267 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4268 void *p)
4269 {
4270 int ret_val;
4271
4272 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4273 __igb_notify_dca);
4274
4275 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4276 }
4277 #endif /* CONFIG_IGB_DCA */
4278
4279 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4280 {
4281 struct e1000_hw *hw = &adapter->hw;
4282 u32 ping;
4283 int i;
4284
4285 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4286 ping = E1000_PF_CONTROL_MSG;
4287 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4288 ping |= E1000_VT_MSGTYPE_CTS;
4289 igb_write_mbx(hw, &ping, 1, i);
4290 }
4291 }
4292
4293 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4294 {
4295 struct e1000_hw *hw = &adapter->hw;
4296 u32 vmolr = rd32(E1000_VMOLR(vf));
4297 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4298
4299 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4300 IGB_VF_FLAG_MULTI_PROMISC);
4301 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4302
4303 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4304 vmolr |= E1000_VMOLR_MPME;
4305 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4306 } else {
4307 /*
4308 * if we have hashes and we are clearing a multicast promisc
4309 * flag we need to write the hashes to the MTA as this step
4310 * was previously skipped
4311 */
4312 if (vf_data->num_vf_mc_hashes > 30) {
4313 vmolr |= E1000_VMOLR_MPME;
4314 } else if (vf_data->num_vf_mc_hashes) {
4315 int j;
4316 vmolr |= E1000_VMOLR_ROMPE;
4317 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4318 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4319 }
4320 }
4321
4322 wr32(E1000_VMOLR(vf), vmolr);
4323
4324 /* there are flags left unprocessed, likely not supported */
4325 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4326 return -EINVAL;
4327
4328 return 0;
4329
4330 }
4331
4332 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4333 u32 *msgbuf, u32 vf)
4334 {
4335 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4336 u16 *hash_list = (u16 *)&msgbuf[1];
4337 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4338 int i;
4339
4340 /* salt away the number of multicast addresses assigned
4341 * to this VF for later use to restore when the PF multi cast
4342 * list changes
4343 */
4344 vf_data->num_vf_mc_hashes = n;
4345
4346 /* only up to 30 hash values supported */
4347 if (n > 30)
4348 n = 30;
4349
4350 /* store the hashes for later use */
4351 for (i = 0; i < n; i++)
4352 vf_data->vf_mc_hashes[i] = hash_list[i];
4353
4354 /* Flush and reset the mta with the new values */
4355 igb_set_rx_mode(adapter->netdev);
4356
4357 return 0;
4358 }
4359
4360 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4361 {
4362 struct e1000_hw *hw = &adapter->hw;
4363 struct vf_data_storage *vf_data;
4364 int i, j;
4365
4366 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4367 u32 vmolr = rd32(E1000_VMOLR(i));
4368 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4369
4370 vf_data = &adapter->vf_data[i];
4371
4372 if ((vf_data->num_vf_mc_hashes > 30) ||
4373 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4374 vmolr |= E1000_VMOLR_MPME;
4375 } else if (vf_data->num_vf_mc_hashes) {
4376 vmolr |= E1000_VMOLR_ROMPE;
4377 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4378 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4379 }
4380 wr32(E1000_VMOLR(i), vmolr);
4381 }
4382 }
4383
4384 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4385 {
4386 struct e1000_hw *hw = &adapter->hw;
4387 u32 pool_mask, reg, vid;
4388 int i;
4389
4390 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4391
4392 /* Find the vlan filter for this id */
4393 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4394 reg = rd32(E1000_VLVF(i));
4395
4396 /* remove the vf from the pool */
4397 reg &= ~pool_mask;
4398
4399 /* if pool is empty then remove entry from vfta */
4400 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4401 (reg & E1000_VLVF_VLANID_ENABLE)) {
4402 reg = 0;
4403 vid = reg & E1000_VLVF_VLANID_MASK;
4404 igb_vfta_set(hw, vid, false);
4405 }
4406
4407 wr32(E1000_VLVF(i), reg);
4408 }
4409
4410 adapter->vf_data[vf].vlans_enabled = 0;
4411 }
4412
4413 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4414 {
4415 struct e1000_hw *hw = &adapter->hw;
4416 u32 reg, i;
4417
4418 /* The vlvf table only exists on 82576 hardware and newer */
4419 if (hw->mac.type < e1000_82576)
4420 return -1;
4421
4422 /* we only need to do this if VMDq is enabled */
4423 if (!adapter->vfs_allocated_count)
4424 return -1;
4425
4426 /* Find the vlan filter for this id */
4427 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4428 reg = rd32(E1000_VLVF(i));
4429 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4430 vid == (reg & E1000_VLVF_VLANID_MASK))
4431 break;
4432 }
4433
4434 if (add) {
4435 if (i == E1000_VLVF_ARRAY_SIZE) {
4436 /* Did not find a matching VLAN ID entry that was
4437 * enabled. Search for a free filter entry, i.e.
4438 * one without the enable bit set
4439 */
4440 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4441 reg = rd32(E1000_VLVF(i));
4442 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4443 break;
4444 }
4445 }
4446 if (i < E1000_VLVF_ARRAY_SIZE) {
4447 /* Found an enabled/available entry */
4448 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4449
4450 /* if !enabled we need to set this up in vfta */
4451 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4452 /* add VID to filter table */
4453 igb_vfta_set(hw, vid, true);
4454 reg |= E1000_VLVF_VLANID_ENABLE;
4455 }
4456 reg &= ~E1000_VLVF_VLANID_MASK;
4457 reg |= vid;
4458 wr32(E1000_VLVF(i), reg);
4459
4460 /* do not modify RLPML for PF devices */
4461 if (vf >= adapter->vfs_allocated_count)
4462 return 0;
4463
4464 if (!adapter->vf_data[vf].vlans_enabled) {
4465 u32 size;
4466 reg = rd32(E1000_VMOLR(vf));
4467 size = reg & E1000_VMOLR_RLPML_MASK;
4468 size += 4;
4469 reg &= ~E1000_VMOLR_RLPML_MASK;
4470 reg |= size;
4471 wr32(E1000_VMOLR(vf), reg);
4472 }
4473
4474 adapter->vf_data[vf].vlans_enabled++;
4475 return 0;
4476 }
4477 } else {
4478 if (i < E1000_VLVF_ARRAY_SIZE) {
4479 /* remove vf from the pool */
4480 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4481 /* if pool is empty then remove entry from vfta */
4482 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4483 reg = 0;
4484 igb_vfta_set(hw, vid, false);
4485 }
4486 wr32(E1000_VLVF(i), reg);
4487
4488 /* do not modify RLPML for PF devices */
4489 if (vf >= adapter->vfs_allocated_count)
4490 return 0;
4491
4492 adapter->vf_data[vf].vlans_enabled--;
4493 if (!adapter->vf_data[vf].vlans_enabled) {
4494 u32 size;
4495 reg = rd32(E1000_VMOLR(vf));
4496 size = reg & E1000_VMOLR_RLPML_MASK;
4497 size -= 4;
4498 reg &= ~E1000_VMOLR_RLPML_MASK;
4499 reg |= size;
4500 wr32(E1000_VMOLR(vf), reg);
4501 }
4502 return 0;
4503 }
4504 }
4505 return -1;
4506 }
4507
4508 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4509 {
4510 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4511 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4512
4513 return igb_vlvf_set(adapter, vid, add, vf);
4514 }
4515
4516 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4517 {
4518 /* clear all flags */
4519 adapter->vf_data[vf].flags = 0;
4520 adapter->vf_data[vf].last_nack = jiffies;
4521
4522 /* reset offloads to defaults */
4523 igb_set_vmolr(adapter, vf);
4524
4525 /* reset vlans for device */
4526 igb_clear_vf_vfta(adapter, vf);
4527
4528 /* reset multicast table array for vf */
4529 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4530
4531 /* Flush and reset the mta with the new values */
4532 igb_set_rx_mode(adapter->netdev);
4533 }
4534
4535 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4536 {
4537 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4538
4539 /* generate a new mac address as we were hotplug removed/added */
4540 random_ether_addr(vf_mac);
4541
4542 /* process remaining reset events */
4543 igb_vf_reset(adapter, vf);
4544 }
4545
4546 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4547 {
4548 struct e1000_hw *hw = &adapter->hw;
4549 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4550 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4551 u32 reg, msgbuf[3];
4552 u8 *addr = (u8 *)(&msgbuf[1]);
4553
4554 /* process all the same items cleared in a function level reset */
4555 igb_vf_reset(adapter, vf);
4556
4557 /* set vf mac address */
4558 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4559
4560 /* enable transmit and receive for vf */
4561 reg = rd32(E1000_VFTE);
4562 wr32(E1000_VFTE, reg | (1 << vf));
4563 reg = rd32(E1000_VFRE);
4564 wr32(E1000_VFRE, reg | (1 << vf));
4565
4566 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4567
4568 /* reply to reset with ack and vf mac address */
4569 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4570 memcpy(addr, vf_mac, 6);
4571 igb_write_mbx(hw, msgbuf, 3, vf);
4572 }
4573
4574 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4575 {
4576 unsigned char *addr = (char *)&msg[1];
4577 int err = -1;
4578
4579 if (is_valid_ether_addr(addr))
4580 err = igb_set_vf_mac(adapter, vf, addr);
4581
4582 return err;
4583 }
4584
4585 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4586 {
4587 struct e1000_hw *hw = &adapter->hw;
4588 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4589 u32 msg = E1000_VT_MSGTYPE_NACK;
4590
4591 /* if device isn't clear to send it shouldn't be reading either */
4592 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4593 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4594 igb_write_mbx(hw, &msg, 1, vf);
4595 vf_data->last_nack = jiffies;
4596 }
4597 }
4598
4599 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4600 {
4601 struct pci_dev *pdev = adapter->pdev;
4602 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4603 struct e1000_hw *hw = &adapter->hw;
4604 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4605 s32 retval;
4606
4607 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4608
4609 if (retval) {
4610 /* if receive failed revoke VF CTS stats and restart init */
4611 dev_err(&pdev->dev, "Error receiving message from VF\n");
4612 vf_data->flags &= ~IGB_VF_FLAG_CTS;
4613 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4614 return;
4615 goto out;
4616 }
4617
4618 /* this is a message we already processed, do nothing */
4619 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4620 return;
4621
4622 /*
4623 * until the vf completes a reset it should not be
4624 * allowed to start any configuration.
4625 */
4626
4627 if (msgbuf[0] == E1000_VF_RESET) {
4628 igb_vf_reset_msg(adapter, vf);
4629 return;
4630 }
4631
4632 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4633 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4634 return;
4635 retval = -1;
4636 goto out;
4637 }
4638
4639 switch ((msgbuf[0] & 0xFFFF)) {
4640 case E1000_VF_SET_MAC_ADDR:
4641 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4642 break;
4643 case E1000_VF_SET_PROMISC:
4644 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4645 break;
4646 case E1000_VF_SET_MULTICAST:
4647 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4648 break;
4649 case E1000_VF_SET_LPE:
4650 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4651 break;
4652 case E1000_VF_SET_VLAN:
4653 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4654 break;
4655 default:
4656 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4657 retval = -1;
4658 break;
4659 }
4660
4661 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4662 out:
4663 /* notify the VF of the results of what it sent us */
4664 if (retval)
4665 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4666 else
4667 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4668
4669 igb_write_mbx(hw, msgbuf, 1, vf);
4670 }
4671
4672 static void igb_msg_task(struct igb_adapter *adapter)
4673 {
4674 struct e1000_hw *hw = &adapter->hw;
4675 u32 vf;
4676
4677 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4678 /* process any reset requests */
4679 if (!igb_check_for_rst(hw, vf))
4680 igb_vf_reset_event(adapter, vf);
4681
4682 /* process any messages pending */
4683 if (!igb_check_for_msg(hw, vf))
4684 igb_rcv_msg_from_vf(adapter, vf);
4685
4686 /* process any acks */
4687 if (!igb_check_for_ack(hw, vf))
4688 igb_rcv_ack_from_vf(adapter, vf);
4689 }
4690 }
4691
4692 /**
4693 * igb_set_uta - Set unicast filter table address
4694 * @adapter: board private structure
4695 *
4696 * The unicast table address is a register array of 32-bit registers.
4697 * The table is meant to be used in a way similar to how the MTA is used
4698 * however due to certain limitations in the hardware it is necessary to
4699 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4700 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4701 **/
4702 static void igb_set_uta(struct igb_adapter *adapter)
4703 {
4704 struct e1000_hw *hw = &adapter->hw;
4705 int i;
4706
4707 /* The UTA table only exists on 82576 hardware and newer */
4708 if (hw->mac.type < e1000_82576)
4709 return;
4710
4711 /* we only need to do this if VMDq is enabled */
4712 if (!adapter->vfs_allocated_count)
4713 return;
4714
4715 for (i = 0; i < hw->mac.uta_reg_count; i++)
4716 array_wr32(E1000_UTA, i, ~0);
4717 }
4718
4719 /**
4720 * igb_intr_msi - Interrupt Handler
4721 * @irq: interrupt number
4722 * @data: pointer to a network interface device structure
4723 **/
4724 static irqreturn_t igb_intr_msi(int irq, void *data)
4725 {
4726 struct igb_adapter *adapter = data;
4727 struct igb_q_vector *q_vector = adapter->q_vector[0];
4728 struct e1000_hw *hw = &adapter->hw;
4729 /* read ICR disables interrupts using IAM */
4730 u32 icr = rd32(E1000_ICR);
4731
4732 igb_write_itr(q_vector);
4733
4734 if (icr & E1000_ICR_DRSTA)
4735 schedule_work(&adapter->reset_task);
4736
4737 if (icr & E1000_ICR_DOUTSYNC) {
4738 /* HW is reporting DMA is out of sync */
4739 adapter->stats.doosync++;
4740 }
4741
4742 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4743 hw->mac.get_link_status = 1;
4744 if (!test_bit(__IGB_DOWN, &adapter->state))
4745 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4746 }
4747
4748 napi_schedule(&q_vector->napi);
4749
4750 return IRQ_HANDLED;
4751 }
4752
4753 /**
4754 * igb_intr - Legacy Interrupt Handler
4755 * @irq: interrupt number
4756 * @data: pointer to a network interface device structure
4757 **/
4758 static irqreturn_t igb_intr(int irq, void *data)
4759 {
4760 struct igb_adapter *adapter = data;
4761 struct igb_q_vector *q_vector = adapter->q_vector[0];
4762 struct e1000_hw *hw = &adapter->hw;
4763 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4764 * need for the IMC write */
4765 u32 icr = rd32(E1000_ICR);
4766 if (!icr)
4767 return IRQ_NONE; /* Not our interrupt */
4768
4769 igb_write_itr(q_vector);
4770
4771 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4772 * not set, then the adapter didn't send an interrupt */
4773 if (!(icr & E1000_ICR_INT_ASSERTED))
4774 return IRQ_NONE;
4775
4776 if (icr & E1000_ICR_DRSTA)
4777 schedule_work(&adapter->reset_task);
4778
4779 if (icr & E1000_ICR_DOUTSYNC) {
4780 /* HW is reporting DMA is out of sync */
4781 adapter->stats.doosync++;
4782 }
4783
4784 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4785 hw->mac.get_link_status = 1;
4786 /* guard against interrupt when we're going down */
4787 if (!test_bit(__IGB_DOWN, &adapter->state))
4788 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4789 }
4790
4791 napi_schedule(&q_vector->napi);
4792
4793 return IRQ_HANDLED;
4794 }
4795
4796 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4797 {
4798 struct igb_adapter *adapter = q_vector->adapter;
4799 struct e1000_hw *hw = &adapter->hw;
4800
4801 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4802 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4803 if (!adapter->msix_entries)
4804 igb_set_itr(adapter);
4805 else
4806 igb_update_ring_itr(q_vector);
4807 }
4808
4809 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4810 if (adapter->msix_entries)
4811 wr32(E1000_EIMS, q_vector->eims_value);
4812 else
4813 igb_irq_enable(adapter);
4814 }
4815 }
4816
4817 /**
4818 * igb_poll - NAPI Rx polling callback
4819 * @napi: napi polling structure
4820 * @budget: count of how many packets we should handle
4821 **/
4822 static int igb_poll(struct napi_struct *napi, int budget)
4823 {
4824 struct igb_q_vector *q_vector = container_of(napi,
4825 struct igb_q_vector,
4826 napi);
4827 int tx_clean_complete = 1, work_done = 0;
4828
4829 #ifdef CONFIG_IGB_DCA
4830 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4831 igb_update_dca(q_vector);
4832 #endif
4833 if (q_vector->tx_ring)
4834 tx_clean_complete = igb_clean_tx_irq(q_vector);
4835
4836 if (q_vector->rx_ring)
4837 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4838
4839 if (!tx_clean_complete)
4840 work_done = budget;
4841
4842 /* If not enough Rx work done, exit the polling mode */
4843 if (work_done < budget) {
4844 napi_complete(napi);
4845 igb_ring_irq_enable(q_vector);
4846 }
4847
4848 return work_done;
4849 }
4850
4851 /**
4852 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4853 * @adapter: board private structure
4854 * @shhwtstamps: timestamp structure to update
4855 * @regval: unsigned 64bit system time value.
4856 *
4857 * We need to convert the system time value stored in the RX/TXSTMP registers
4858 * into a hwtstamp which can be used by the upper level timestamping functions
4859 */
4860 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4861 struct skb_shared_hwtstamps *shhwtstamps,
4862 u64 regval)
4863 {
4864 u64 ns;
4865
4866 /*
4867 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
4868 * 24 to match clock shift we setup earlier.
4869 */
4870 if (adapter->hw.mac.type == e1000_82580)
4871 regval <<= IGB_82580_TSYNC_SHIFT;
4872
4873 ns = timecounter_cyc2time(&adapter->clock, regval);
4874 timecompare_update(&adapter->compare, ns);
4875 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4876 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4877 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4878 }
4879
4880 /**
4881 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4882 * @q_vector: pointer to q_vector containing needed info
4883 * @skb: packet that was just sent
4884 *
4885 * If we were asked to do hardware stamping and such a time stamp is
4886 * available, then it must have been for this skb here because we only
4887 * allow only one such packet into the queue.
4888 */
4889 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4890 {
4891 struct igb_adapter *adapter = q_vector->adapter;
4892 union skb_shared_tx *shtx = skb_tx(skb);
4893 struct e1000_hw *hw = &adapter->hw;
4894 struct skb_shared_hwtstamps shhwtstamps;
4895 u64 regval;
4896
4897 /* if skb does not support hw timestamp or TX stamp not valid exit */
4898 if (likely(!shtx->hardware) ||
4899 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4900 return;
4901
4902 regval = rd32(E1000_TXSTMPL);
4903 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4904
4905 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4906 skb_tstamp_tx(skb, &shhwtstamps);
4907 }
4908
4909 /**
4910 * igb_clean_tx_irq - Reclaim resources after transmit completes
4911 * @q_vector: pointer to q_vector containing needed info
4912 * returns true if ring is completely cleaned
4913 **/
4914 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4915 {
4916 struct igb_adapter *adapter = q_vector->adapter;
4917 struct igb_ring *tx_ring = q_vector->tx_ring;
4918 struct net_device *netdev = tx_ring->netdev;
4919 struct e1000_hw *hw = &adapter->hw;
4920 struct igb_buffer *buffer_info;
4921 struct sk_buff *skb;
4922 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4923 unsigned int total_bytes = 0, total_packets = 0;
4924 unsigned int i, eop, count = 0;
4925 bool cleaned = false;
4926
4927 i = tx_ring->next_to_clean;
4928 eop = tx_ring->buffer_info[i].next_to_watch;
4929 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4930
4931 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4932 (count < tx_ring->count)) {
4933 for (cleaned = false; !cleaned; count++) {
4934 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4935 buffer_info = &tx_ring->buffer_info[i];
4936 cleaned = (i == eop);
4937 skb = buffer_info->skb;
4938
4939 if (skb) {
4940 unsigned int segs, bytecount;
4941 /* gso_segs is currently only valid for tcp */
4942 segs = skb_shinfo(skb)->gso_segs ?: 1;
4943 /* multiply data chunks by size of headers */
4944 bytecount = ((segs - 1) * skb_headlen(skb)) +
4945 skb->len;
4946 total_packets += segs;
4947 total_bytes += bytecount;
4948
4949 igb_tx_hwtstamp(q_vector, skb);
4950 }
4951
4952 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4953 tx_desc->wb.status = 0;
4954
4955 i++;
4956 if (i == tx_ring->count)
4957 i = 0;
4958 }
4959 eop = tx_ring->buffer_info[i].next_to_watch;
4960 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4961 }
4962
4963 tx_ring->next_to_clean = i;
4964
4965 if (unlikely(count &&
4966 netif_carrier_ok(netdev) &&
4967 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4968 /* Make sure that anybody stopping the queue after this
4969 * sees the new next_to_clean.
4970 */
4971 smp_mb();
4972 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4973 !(test_bit(__IGB_DOWN, &adapter->state))) {
4974 netif_wake_subqueue(netdev, tx_ring->queue_index);
4975 tx_ring->tx_stats.restart_queue++;
4976 }
4977 }
4978
4979 if (tx_ring->detect_tx_hung) {
4980 /* Detect a transmit hang in hardware, this serializes the
4981 * check with the clearing of time_stamp and movement of i */
4982 tx_ring->detect_tx_hung = false;
4983 if (tx_ring->buffer_info[i].time_stamp &&
4984 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4985 (adapter->tx_timeout_factor * HZ)) &&
4986 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
4987
4988 /* detected Tx unit hang */
4989 dev_err(&tx_ring->pdev->dev,
4990 "Detected Tx Unit Hang\n"
4991 " Tx Queue <%d>\n"
4992 " TDH <%x>\n"
4993 " TDT <%x>\n"
4994 " next_to_use <%x>\n"
4995 " next_to_clean <%x>\n"
4996 "buffer_info[next_to_clean]\n"
4997 " time_stamp <%lx>\n"
4998 " next_to_watch <%x>\n"
4999 " jiffies <%lx>\n"
5000 " desc.status <%x>\n",
5001 tx_ring->queue_index,
5002 readl(tx_ring->head),
5003 readl(tx_ring->tail),
5004 tx_ring->next_to_use,
5005 tx_ring->next_to_clean,
5006 tx_ring->buffer_info[eop].time_stamp,
5007 eop,
5008 jiffies,
5009 eop_desc->wb.status);
5010 netif_stop_subqueue(netdev, tx_ring->queue_index);
5011 }
5012 }
5013 tx_ring->total_bytes += total_bytes;
5014 tx_ring->total_packets += total_packets;
5015 tx_ring->tx_stats.bytes += total_bytes;
5016 tx_ring->tx_stats.packets += total_packets;
5017 return (count < tx_ring->count);
5018 }
5019
5020 /**
5021 * igb_receive_skb - helper function to handle rx indications
5022 * @q_vector: structure containing interrupt and ring information
5023 * @skb: packet to send up
5024 * @vlan_tag: vlan tag for packet
5025 **/
5026 static void igb_receive_skb(struct igb_q_vector *q_vector,
5027 struct sk_buff *skb,
5028 u16 vlan_tag)
5029 {
5030 struct igb_adapter *adapter = q_vector->adapter;
5031
5032 if (vlan_tag)
5033 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5034 vlan_tag, skb);
5035 else
5036 napi_gro_receive(&q_vector->napi, skb);
5037 }
5038
5039 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5040 u32 status_err, struct sk_buff *skb)
5041 {
5042 skb->ip_summed = CHECKSUM_NONE;
5043
5044 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5045 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5046 (status_err & E1000_RXD_STAT_IXSM))
5047 return;
5048
5049 /* TCP/UDP checksum error bit is set */
5050 if (status_err &
5051 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5052 /*
5053 * work around errata with sctp packets where the TCPE aka
5054 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5055 * packets, (aka let the stack check the crc32c)
5056 */
5057 if ((skb->len == 60) &&
5058 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5059 ring->rx_stats.csum_err++;
5060
5061 /* let the stack verify checksum errors */
5062 return;
5063 }
5064 /* It must be a TCP or UDP packet with a valid checksum */
5065 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5066 skb->ip_summed = CHECKSUM_UNNECESSARY;
5067
5068 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
5069 }
5070
5071 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5072 struct sk_buff *skb)
5073 {
5074 struct igb_adapter *adapter = q_vector->adapter;
5075 struct e1000_hw *hw = &adapter->hw;
5076 u64 regval;
5077
5078 /*
5079 * If this bit is set, then the RX registers contain the time stamp. No
5080 * other packet will be time stamped until we read these registers, so
5081 * read the registers to make them available again. Because only one
5082 * packet can be time stamped at a time, we know that the register
5083 * values must belong to this one here and therefore we don't need to
5084 * compare any of the additional attributes stored for it.
5085 *
5086 * If nothing went wrong, then it should have a skb_shared_tx that we
5087 * can turn into a skb_shared_hwtstamps.
5088 */
5089 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
5090 return;
5091 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5092 return;
5093
5094 regval = rd32(E1000_RXSTMPL);
5095 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5096
5097 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5098 }
5099 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5100 union e1000_adv_rx_desc *rx_desc)
5101 {
5102 /* HW will not DMA in data larger than the given buffer, even if it
5103 * parses the (NFS, of course) header to be larger. In that case, it
5104 * fills the header buffer and spills the rest into the page.
5105 */
5106 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5107 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5108 if (hlen > rx_ring->rx_buffer_len)
5109 hlen = rx_ring->rx_buffer_len;
5110 return hlen;
5111 }
5112
5113 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5114 int *work_done, int budget)
5115 {
5116 struct igb_ring *rx_ring = q_vector->rx_ring;
5117 struct net_device *netdev = rx_ring->netdev;
5118 struct pci_dev *pdev = rx_ring->pdev;
5119 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5120 struct igb_buffer *buffer_info , *next_buffer;
5121 struct sk_buff *skb;
5122 bool cleaned = false;
5123 int cleaned_count = 0;
5124 int current_node = numa_node_id();
5125 unsigned int total_bytes = 0, total_packets = 0;
5126 unsigned int i;
5127 u32 staterr;
5128 u16 length;
5129 u16 vlan_tag;
5130
5131 i = rx_ring->next_to_clean;
5132 buffer_info = &rx_ring->buffer_info[i];
5133 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5134 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5135
5136 while (staterr & E1000_RXD_STAT_DD) {
5137 if (*work_done >= budget)
5138 break;
5139 (*work_done)++;
5140
5141 skb = buffer_info->skb;
5142 prefetch(skb->data - NET_IP_ALIGN);
5143 buffer_info->skb = NULL;
5144
5145 i++;
5146 if (i == rx_ring->count)
5147 i = 0;
5148
5149 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5150 prefetch(next_rxd);
5151 next_buffer = &rx_ring->buffer_info[i];
5152
5153 length = le16_to_cpu(rx_desc->wb.upper.length);
5154 cleaned = true;
5155 cleaned_count++;
5156
5157 if (buffer_info->dma) {
5158 pci_unmap_single(pdev, buffer_info->dma,
5159 rx_ring->rx_buffer_len,
5160 PCI_DMA_FROMDEVICE);
5161 buffer_info->dma = 0;
5162 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5163 skb_put(skb, length);
5164 goto send_up;
5165 }
5166 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5167 }
5168
5169 if (length) {
5170 pci_unmap_page(pdev, buffer_info->page_dma,
5171 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
5172 buffer_info->page_dma = 0;
5173
5174 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
5175 buffer_info->page,
5176 buffer_info->page_offset,
5177 length);
5178
5179 if ((page_count(buffer_info->page) != 1) ||
5180 (page_to_nid(buffer_info->page) != current_node))
5181 buffer_info->page = NULL;
5182 else
5183 get_page(buffer_info->page);
5184
5185 skb->len += length;
5186 skb->data_len += length;
5187 skb->truesize += length;
5188 }
5189
5190 if (!(staterr & E1000_RXD_STAT_EOP)) {
5191 buffer_info->skb = next_buffer->skb;
5192 buffer_info->dma = next_buffer->dma;
5193 next_buffer->skb = skb;
5194 next_buffer->dma = 0;
5195 goto next_desc;
5196 }
5197 send_up:
5198 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5199 dev_kfree_skb_irq(skb);
5200 goto next_desc;
5201 }
5202
5203 igb_rx_hwtstamp(q_vector, staterr, skb);
5204 total_bytes += skb->len;
5205 total_packets++;
5206
5207 igb_rx_checksum_adv(rx_ring, staterr, skb);
5208
5209 skb->protocol = eth_type_trans(skb, netdev);
5210 skb_record_rx_queue(skb, rx_ring->queue_index);
5211
5212 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5213 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5214
5215 igb_receive_skb(q_vector, skb, vlan_tag);
5216
5217 next_desc:
5218 rx_desc->wb.upper.status_error = 0;
5219
5220 /* return some buffers to hardware, one at a time is too slow */
5221 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5222 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5223 cleaned_count = 0;
5224 }
5225
5226 /* use prefetched values */
5227 rx_desc = next_rxd;
5228 buffer_info = next_buffer;
5229 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5230 }
5231
5232 rx_ring->next_to_clean = i;
5233 cleaned_count = igb_desc_unused(rx_ring);
5234
5235 if (cleaned_count)
5236 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5237
5238 rx_ring->total_packets += total_packets;
5239 rx_ring->total_bytes += total_bytes;
5240 rx_ring->rx_stats.packets += total_packets;
5241 rx_ring->rx_stats.bytes += total_bytes;
5242 return cleaned;
5243 }
5244
5245 /**
5246 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5247 * @adapter: address of board private structure
5248 **/
5249 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5250 {
5251 struct net_device *netdev = rx_ring->netdev;
5252 union e1000_adv_rx_desc *rx_desc;
5253 struct igb_buffer *buffer_info;
5254 struct sk_buff *skb;
5255 unsigned int i;
5256 int bufsz;
5257
5258 i = rx_ring->next_to_use;
5259 buffer_info = &rx_ring->buffer_info[i];
5260
5261 bufsz = rx_ring->rx_buffer_len;
5262
5263 while (cleaned_count--) {
5264 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5265
5266 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5267 if (!buffer_info->page) {
5268 buffer_info->page = netdev_alloc_page(netdev);
5269 if (!buffer_info->page) {
5270 rx_ring->rx_stats.alloc_failed++;
5271 goto no_buffers;
5272 }
5273 buffer_info->page_offset = 0;
5274 } else {
5275 buffer_info->page_offset ^= PAGE_SIZE / 2;
5276 }
5277 buffer_info->page_dma =
5278 pci_map_page(rx_ring->pdev, buffer_info->page,
5279 buffer_info->page_offset,
5280 PAGE_SIZE / 2,
5281 PCI_DMA_FROMDEVICE);
5282 if (pci_dma_mapping_error(rx_ring->pdev,
5283 buffer_info->page_dma)) {
5284 buffer_info->page_dma = 0;
5285 rx_ring->rx_stats.alloc_failed++;
5286 goto no_buffers;
5287 }
5288 }
5289
5290 skb = buffer_info->skb;
5291 if (!skb) {
5292 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5293 if (!skb) {
5294 rx_ring->rx_stats.alloc_failed++;
5295 goto no_buffers;
5296 }
5297
5298 buffer_info->skb = skb;
5299 }
5300 if (!buffer_info->dma) {
5301 buffer_info->dma = pci_map_single(rx_ring->pdev,
5302 skb->data,
5303 bufsz,
5304 PCI_DMA_FROMDEVICE);
5305 if (pci_dma_mapping_error(rx_ring->pdev,
5306 buffer_info->dma)) {
5307 buffer_info->dma = 0;
5308 rx_ring->rx_stats.alloc_failed++;
5309 goto no_buffers;
5310 }
5311 }
5312 /* Refresh the desc even if buffer_addrs didn't change because
5313 * each write-back erases this info. */
5314 if (bufsz < IGB_RXBUFFER_1024) {
5315 rx_desc->read.pkt_addr =
5316 cpu_to_le64(buffer_info->page_dma);
5317 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5318 } else {
5319 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5320 rx_desc->read.hdr_addr = 0;
5321 }
5322
5323 i++;
5324 if (i == rx_ring->count)
5325 i = 0;
5326 buffer_info = &rx_ring->buffer_info[i];
5327 }
5328
5329 no_buffers:
5330 if (rx_ring->next_to_use != i) {
5331 rx_ring->next_to_use = i;
5332 if (i == 0)
5333 i = (rx_ring->count - 1);
5334 else
5335 i--;
5336
5337 /* Force memory writes to complete before letting h/w
5338 * know there are new descriptors to fetch. (Only
5339 * applicable for weak-ordered memory model archs,
5340 * such as IA-64). */
5341 wmb();
5342 writel(i, rx_ring->tail);
5343 }
5344 }
5345
5346 /**
5347 * igb_mii_ioctl -
5348 * @netdev:
5349 * @ifreq:
5350 * @cmd:
5351 **/
5352 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5353 {
5354 struct igb_adapter *adapter = netdev_priv(netdev);
5355 struct mii_ioctl_data *data = if_mii(ifr);
5356
5357 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5358 return -EOPNOTSUPP;
5359
5360 switch (cmd) {
5361 case SIOCGMIIPHY:
5362 data->phy_id = adapter->hw.phy.addr;
5363 break;
5364 case SIOCGMIIREG:
5365 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5366 &data->val_out))
5367 return -EIO;
5368 break;
5369 case SIOCSMIIREG:
5370 default:
5371 return -EOPNOTSUPP;
5372 }
5373 return 0;
5374 }
5375
5376 /**
5377 * igb_hwtstamp_ioctl - control hardware time stamping
5378 * @netdev:
5379 * @ifreq:
5380 * @cmd:
5381 *
5382 * Outgoing time stamping can be enabled and disabled. Play nice and
5383 * disable it when requested, although it shouldn't case any overhead
5384 * when no packet needs it. At most one packet in the queue may be
5385 * marked for time stamping, otherwise it would be impossible to tell
5386 * for sure to which packet the hardware time stamp belongs.
5387 *
5388 * Incoming time stamping has to be configured via the hardware
5389 * filters. Not all combinations are supported, in particular event
5390 * type has to be specified. Matching the kind of event packet is
5391 * not supported, with the exception of "all V2 events regardless of
5392 * level 2 or 4".
5393 *
5394 **/
5395 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5396 struct ifreq *ifr, int cmd)
5397 {
5398 struct igb_adapter *adapter = netdev_priv(netdev);
5399 struct e1000_hw *hw = &adapter->hw;
5400 struct hwtstamp_config config;
5401 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5402 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5403 u32 tsync_rx_cfg = 0;
5404 bool is_l4 = false;
5405 bool is_l2 = false;
5406 u32 regval;
5407
5408 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5409 return -EFAULT;
5410
5411 /* reserved for future extensions */
5412 if (config.flags)
5413 return -EINVAL;
5414
5415 switch (config.tx_type) {
5416 case HWTSTAMP_TX_OFF:
5417 tsync_tx_ctl = 0;
5418 case HWTSTAMP_TX_ON:
5419 break;
5420 default:
5421 return -ERANGE;
5422 }
5423
5424 switch (config.rx_filter) {
5425 case HWTSTAMP_FILTER_NONE:
5426 tsync_rx_ctl = 0;
5427 break;
5428 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5429 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5430 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5431 case HWTSTAMP_FILTER_ALL:
5432 /*
5433 * register TSYNCRXCFG must be set, therefore it is not
5434 * possible to time stamp both Sync and Delay_Req messages
5435 * => fall back to time stamping all packets
5436 */
5437 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5438 config.rx_filter = HWTSTAMP_FILTER_ALL;
5439 break;
5440 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5441 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5442 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5443 is_l4 = true;
5444 break;
5445 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5446 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5447 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5448 is_l4 = true;
5449 break;
5450 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5451 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5452 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5453 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5454 is_l2 = true;
5455 is_l4 = true;
5456 config.rx_filter = HWTSTAMP_FILTER_SOME;
5457 break;
5458 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5459 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5460 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5461 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5462 is_l2 = true;
5463 is_l4 = true;
5464 config.rx_filter = HWTSTAMP_FILTER_SOME;
5465 break;
5466 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5467 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5468 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5469 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5470 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5471 is_l2 = true;
5472 break;
5473 default:
5474 return -ERANGE;
5475 }
5476
5477 if (hw->mac.type == e1000_82575) {
5478 if (tsync_rx_ctl | tsync_tx_ctl)
5479 return -EINVAL;
5480 return 0;
5481 }
5482
5483 /* enable/disable TX */
5484 regval = rd32(E1000_TSYNCTXCTL);
5485 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5486 regval |= tsync_tx_ctl;
5487 wr32(E1000_TSYNCTXCTL, regval);
5488
5489 /* enable/disable RX */
5490 regval = rd32(E1000_TSYNCRXCTL);
5491 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5492 regval |= tsync_rx_ctl;
5493 wr32(E1000_TSYNCRXCTL, regval);
5494
5495 /* define which PTP packets are time stamped */
5496 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5497
5498 /* define ethertype filter for timestamped packets */
5499 if (is_l2)
5500 wr32(E1000_ETQF(3),
5501 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5502 E1000_ETQF_1588 | /* enable timestamping */
5503 ETH_P_1588)); /* 1588 eth protocol type */
5504 else
5505 wr32(E1000_ETQF(3), 0);
5506
5507 #define PTP_PORT 319
5508 /* L4 Queue Filter[3]: filter by destination port and protocol */
5509 if (is_l4) {
5510 u32 ftqf = (IPPROTO_UDP /* UDP */
5511 | E1000_FTQF_VF_BP /* VF not compared */
5512 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5513 | E1000_FTQF_MASK); /* mask all inputs */
5514 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5515
5516 wr32(E1000_IMIR(3), htons(PTP_PORT));
5517 wr32(E1000_IMIREXT(3),
5518 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5519 if (hw->mac.type == e1000_82576) {
5520 /* enable source port check */
5521 wr32(E1000_SPQF(3), htons(PTP_PORT));
5522 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5523 }
5524 wr32(E1000_FTQF(3), ftqf);
5525 } else {
5526 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5527 }
5528 wrfl();
5529
5530 adapter->hwtstamp_config = config;
5531
5532 /* clear TX/RX time stamp registers, just to be sure */
5533 regval = rd32(E1000_TXSTMPH);
5534 regval = rd32(E1000_RXSTMPH);
5535
5536 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5537 -EFAULT : 0;
5538 }
5539
5540 /**
5541 * igb_ioctl -
5542 * @netdev:
5543 * @ifreq:
5544 * @cmd:
5545 **/
5546 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5547 {
5548 switch (cmd) {
5549 case SIOCGMIIPHY:
5550 case SIOCGMIIREG:
5551 case SIOCSMIIREG:
5552 return igb_mii_ioctl(netdev, ifr, cmd);
5553 case SIOCSHWTSTAMP:
5554 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5555 default:
5556 return -EOPNOTSUPP;
5557 }
5558 }
5559
5560 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5561 {
5562 struct igb_adapter *adapter = hw->back;
5563 u16 cap_offset;
5564
5565 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5566 if (!cap_offset)
5567 return -E1000_ERR_CONFIG;
5568
5569 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5570
5571 return 0;
5572 }
5573
5574 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5575 {
5576 struct igb_adapter *adapter = hw->back;
5577 u16 cap_offset;
5578
5579 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5580 if (!cap_offset)
5581 return -E1000_ERR_CONFIG;
5582
5583 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5584
5585 return 0;
5586 }
5587
5588 static void igb_vlan_rx_register(struct net_device *netdev,
5589 struct vlan_group *grp)
5590 {
5591 struct igb_adapter *adapter = netdev_priv(netdev);
5592 struct e1000_hw *hw = &adapter->hw;
5593 u32 ctrl, rctl;
5594
5595 igb_irq_disable(adapter);
5596 adapter->vlgrp = grp;
5597
5598 if (grp) {
5599 /* enable VLAN tag insert/strip */
5600 ctrl = rd32(E1000_CTRL);
5601 ctrl |= E1000_CTRL_VME;
5602 wr32(E1000_CTRL, ctrl);
5603
5604 /* Disable CFI check */
5605 rctl = rd32(E1000_RCTL);
5606 rctl &= ~E1000_RCTL_CFIEN;
5607 wr32(E1000_RCTL, rctl);
5608 } else {
5609 /* disable VLAN tag insert/strip */
5610 ctrl = rd32(E1000_CTRL);
5611 ctrl &= ~E1000_CTRL_VME;
5612 wr32(E1000_CTRL, ctrl);
5613 }
5614
5615 igb_rlpml_set(adapter);
5616
5617 if (!test_bit(__IGB_DOWN, &adapter->state))
5618 igb_irq_enable(adapter);
5619 }
5620
5621 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5622 {
5623 struct igb_adapter *adapter = netdev_priv(netdev);
5624 struct e1000_hw *hw = &adapter->hw;
5625 int pf_id = adapter->vfs_allocated_count;
5626
5627 /* attempt to add filter to vlvf array */
5628 igb_vlvf_set(adapter, vid, true, pf_id);
5629
5630 /* add the filter since PF can receive vlans w/o entry in vlvf */
5631 igb_vfta_set(hw, vid, true);
5632 }
5633
5634 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5635 {
5636 struct igb_adapter *adapter = netdev_priv(netdev);
5637 struct e1000_hw *hw = &adapter->hw;
5638 int pf_id = adapter->vfs_allocated_count;
5639 s32 err;
5640
5641 igb_irq_disable(adapter);
5642 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5643
5644 if (!test_bit(__IGB_DOWN, &adapter->state))
5645 igb_irq_enable(adapter);
5646
5647 /* remove vlan from VLVF table array */
5648 err = igb_vlvf_set(adapter, vid, false, pf_id);
5649
5650 /* if vid was not present in VLVF just remove it from table */
5651 if (err)
5652 igb_vfta_set(hw, vid, false);
5653 }
5654
5655 static void igb_restore_vlan(struct igb_adapter *adapter)
5656 {
5657 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5658
5659 if (adapter->vlgrp) {
5660 u16 vid;
5661 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5662 if (!vlan_group_get_device(adapter->vlgrp, vid))
5663 continue;
5664 igb_vlan_rx_add_vid(adapter->netdev, vid);
5665 }
5666 }
5667 }
5668
5669 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5670 {
5671 struct pci_dev *pdev = adapter->pdev;
5672 struct e1000_mac_info *mac = &adapter->hw.mac;
5673
5674 mac->autoneg = 0;
5675
5676 switch (spddplx) {
5677 case SPEED_10 + DUPLEX_HALF:
5678 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5679 break;
5680 case SPEED_10 + DUPLEX_FULL:
5681 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5682 break;
5683 case SPEED_100 + DUPLEX_HALF:
5684 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5685 break;
5686 case SPEED_100 + DUPLEX_FULL:
5687 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5688 break;
5689 case SPEED_1000 + DUPLEX_FULL:
5690 mac->autoneg = 1;
5691 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5692 break;
5693 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5694 default:
5695 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5696 return -EINVAL;
5697 }
5698 return 0;
5699 }
5700
5701 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5702 {
5703 struct net_device *netdev = pci_get_drvdata(pdev);
5704 struct igb_adapter *adapter = netdev_priv(netdev);
5705 struct e1000_hw *hw = &adapter->hw;
5706 u32 ctrl, rctl, status;
5707 u32 wufc = adapter->wol;
5708 #ifdef CONFIG_PM
5709 int retval = 0;
5710 #endif
5711
5712 netif_device_detach(netdev);
5713
5714 if (netif_running(netdev))
5715 igb_close(netdev);
5716
5717 igb_clear_interrupt_scheme(adapter);
5718
5719 #ifdef CONFIG_PM
5720 retval = pci_save_state(pdev);
5721 if (retval)
5722 return retval;
5723 #endif
5724
5725 status = rd32(E1000_STATUS);
5726 if (status & E1000_STATUS_LU)
5727 wufc &= ~E1000_WUFC_LNKC;
5728
5729 if (wufc) {
5730 igb_setup_rctl(adapter);
5731 igb_set_rx_mode(netdev);
5732
5733 /* turn on all-multi mode if wake on multicast is enabled */
5734 if (wufc & E1000_WUFC_MC) {
5735 rctl = rd32(E1000_RCTL);
5736 rctl |= E1000_RCTL_MPE;
5737 wr32(E1000_RCTL, rctl);
5738 }
5739
5740 ctrl = rd32(E1000_CTRL);
5741 /* advertise wake from D3Cold */
5742 #define E1000_CTRL_ADVD3WUC 0x00100000
5743 /* phy power management enable */
5744 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5745 ctrl |= E1000_CTRL_ADVD3WUC;
5746 wr32(E1000_CTRL, ctrl);
5747
5748 /* Allow time for pending master requests to run */
5749 igb_disable_pcie_master(hw);
5750
5751 wr32(E1000_WUC, E1000_WUC_PME_EN);
5752 wr32(E1000_WUFC, wufc);
5753 } else {
5754 wr32(E1000_WUC, 0);
5755 wr32(E1000_WUFC, 0);
5756 }
5757
5758 *enable_wake = wufc || adapter->en_mng_pt;
5759 if (!*enable_wake)
5760 igb_shutdown_serdes_link_82575(hw);
5761
5762 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5763 * would have already happened in close and is redundant. */
5764 igb_release_hw_control(adapter);
5765
5766 pci_disable_device(pdev);
5767
5768 return 0;
5769 }
5770
5771 #ifdef CONFIG_PM
5772 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5773 {
5774 int retval;
5775 bool wake;
5776
5777 retval = __igb_shutdown(pdev, &wake);
5778 if (retval)
5779 return retval;
5780
5781 if (wake) {
5782 pci_prepare_to_sleep(pdev);
5783 } else {
5784 pci_wake_from_d3(pdev, false);
5785 pci_set_power_state(pdev, PCI_D3hot);
5786 }
5787
5788 return 0;
5789 }
5790
5791 static int igb_resume(struct pci_dev *pdev)
5792 {
5793 struct net_device *netdev = pci_get_drvdata(pdev);
5794 struct igb_adapter *adapter = netdev_priv(netdev);
5795 struct e1000_hw *hw = &adapter->hw;
5796 u32 err;
5797
5798 pci_set_power_state(pdev, PCI_D0);
5799 pci_restore_state(pdev);
5800
5801 err = pci_enable_device_mem(pdev);
5802 if (err) {
5803 dev_err(&pdev->dev,
5804 "igb: Cannot enable PCI device from suspend\n");
5805 return err;
5806 }
5807 pci_set_master(pdev);
5808
5809 pci_enable_wake(pdev, PCI_D3hot, 0);
5810 pci_enable_wake(pdev, PCI_D3cold, 0);
5811
5812 if (igb_init_interrupt_scheme(adapter)) {
5813 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5814 return -ENOMEM;
5815 }
5816
5817 /* e1000_power_up_phy(adapter); */
5818
5819 igb_reset(adapter);
5820
5821 /* let the f/w know that the h/w is now under the control of the
5822 * driver. */
5823 igb_get_hw_control(adapter);
5824
5825 wr32(E1000_WUS, ~0);
5826
5827 if (netif_running(netdev)) {
5828 err = igb_open(netdev);
5829 if (err)
5830 return err;
5831 }
5832
5833 netif_device_attach(netdev);
5834
5835 return 0;
5836 }
5837 #endif
5838
5839 static void igb_shutdown(struct pci_dev *pdev)
5840 {
5841 bool wake;
5842
5843 __igb_shutdown(pdev, &wake);
5844
5845 if (system_state == SYSTEM_POWER_OFF) {
5846 pci_wake_from_d3(pdev, wake);
5847 pci_set_power_state(pdev, PCI_D3hot);
5848 }
5849 }
5850
5851 #ifdef CONFIG_NET_POLL_CONTROLLER
5852 /*
5853 * Polling 'interrupt' - used by things like netconsole to send skbs
5854 * without having to re-enable interrupts. It's not called while
5855 * the interrupt routine is executing.
5856 */
5857 static void igb_netpoll(struct net_device *netdev)
5858 {
5859 struct igb_adapter *adapter = netdev_priv(netdev);
5860 struct e1000_hw *hw = &adapter->hw;
5861 int i;
5862
5863 if (!adapter->msix_entries) {
5864 struct igb_q_vector *q_vector = adapter->q_vector[0];
5865 igb_irq_disable(adapter);
5866 napi_schedule(&q_vector->napi);
5867 return;
5868 }
5869
5870 for (i = 0; i < adapter->num_q_vectors; i++) {
5871 struct igb_q_vector *q_vector = adapter->q_vector[i];
5872 wr32(E1000_EIMC, q_vector->eims_value);
5873 napi_schedule(&q_vector->napi);
5874 }
5875 }
5876 #endif /* CONFIG_NET_POLL_CONTROLLER */
5877
5878 /**
5879 * igb_io_error_detected - called when PCI error is detected
5880 * @pdev: Pointer to PCI device
5881 * @state: The current pci connection state
5882 *
5883 * This function is called after a PCI bus error affecting
5884 * this device has been detected.
5885 */
5886 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5887 pci_channel_state_t state)
5888 {
5889 struct net_device *netdev = pci_get_drvdata(pdev);
5890 struct igb_adapter *adapter = netdev_priv(netdev);
5891
5892 netif_device_detach(netdev);
5893
5894 if (state == pci_channel_io_perm_failure)
5895 return PCI_ERS_RESULT_DISCONNECT;
5896
5897 if (netif_running(netdev))
5898 igb_down(adapter);
5899 pci_disable_device(pdev);
5900
5901 /* Request a slot slot reset. */
5902 return PCI_ERS_RESULT_NEED_RESET;
5903 }
5904
5905 /**
5906 * igb_io_slot_reset - called after the pci bus has been reset.
5907 * @pdev: Pointer to PCI device
5908 *
5909 * Restart the card from scratch, as if from a cold-boot. Implementation
5910 * resembles the first-half of the igb_resume routine.
5911 */
5912 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5913 {
5914 struct net_device *netdev = pci_get_drvdata(pdev);
5915 struct igb_adapter *adapter = netdev_priv(netdev);
5916 struct e1000_hw *hw = &adapter->hw;
5917 pci_ers_result_t result;
5918 int err;
5919
5920 if (pci_enable_device_mem(pdev)) {
5921 dev_err(&pdev->dev,
5922 "Cannot re-enable PCI device after reset.\n");
5923 result = PCI_ERS_RESULT_DISCONNECT;
5924 } else {
5925 pci_set_master(pdev);
5926 pci_restore_state(pdev);
5927
5928 pci_enable_wake(pdev, PCI_D3hot, 0);
5929 pci_enable_wake(pdev, PCI_D3cold, 0);
5930
5931 igb_reset(adapter);
5932 wr32(E1000_WUS, ~0);
5933 result = PCI_ERS_RESULT_RECOVERED;
5934 }
5935
5936 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5937 if (err) {
5938 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5939 "failed 0x%0x\n", err);
5940 /* non-fatal, continue */
5941 }
5942
5943 return result;
5944 }
5945
5946 /**
5947 * igb_io_resume - called when traffic can start flowing again.
5948 * @pdev: Pointer to PCI device
5949 *
5950 * This callback is called when the error recovery driver tells us that
5951 * its OK to resume normal operation. Implementation resembles the
5952 * second-half of the igb_resume routine.
5953 */
5954 static void igb_io_resume(struct pci_dev *pdev)
5955 {
5956 struct net_device *netdev = pci_get_drvdata(pdev);
5957 struct igb_adapter *adapter = netdev_priv(netdev);
5958
5959 if (netif_running(netdev)) {
5960 if (igb_up(adapter)) {
5961 dev_err(&pdev->dev, "igb_up failed after reset\n");
5962 return;
5963 }
5964 }
5965
5966 netif_device_attach(netdev);
5967
5968 /* let the f/w know that the h/w is now under the control of the
5969 * driver. */
5970 igb_get_hw_control(adapter);
5971 }
5972
5973 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5974 u8 qsel)
5975 {
5976 u32 rar_low, rar_high;
5977 struct e1000_hw *hw = &adapter->hw;
5978
5979 /* HW expects these in little endian so we reverse the byte order
5980 * from network order (big endian) to little endian
5981 */
5982 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5983 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5984 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5985
5986 /* Indicate to hardware the Address is Valid. */
5987 rar_high |= E1000_RAH_AV;
5988
5989 if (hw->mac.type == e1000_82575)
5990 rar_high |= E1000_RAH_POOL_1 * qsel;
5991 else
5992 rar_high |= E1000_RAH_POOL_1 << qsel;
5993
5994 wr32(E1000_RAL(index), rar_low);
5995 wrfl();
5996 wr32(E1000_RAH(index), rar_high);
5997 wrfl();
5998 }
5999
6000 static int igb_set_vf_mac(struct igb_adapter *adapter,
6001 int vf, unsigned char *mac_addr)
6002 {
6003 struct e1000_hw *hw = &adapter->hw;
6004 /* VF MAC addresses start at end of receive addresses and moves
6005 * torwards the first, as a result a collision should not be possible */
6006 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6007
6008 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6009
6010 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6011
6012 return 0;
6013 }
6014
6015 static void igb_vmm_control(struct igb_adapter *adapter)
6016 {
6017 struct e1000_hw *hw = &adapter->hw;
6018 u32 reg;
6019
6020 /* replication is not supported for 82575 */
6021 if (hw->mac.type == e1000_82575)
6022 return;
6023
6024 /* enable replication vlan tag stripping */
6025 reg = rd32(E1000_RPLOLR);
6026 reg |= E1000_RPLOLR_STRVLAN;
6027 wr32(E1000_RPLOLR, reg);
6028
6029 /* notify HW that the MAC is adding vlan tags */
6030 reg = rd32(E1000_DTXCTL);
6031 reg |= E1000_DTXCTL_VLAN_ADDED;
6032 wr32(E1000_DTXCTL, reg);
6033
6034 if (adapter->vfs_allocated_count) {
6035 igb_vmdq_set_loopback_pf(hw, true);
6036 igb_vmdq_set_replication_pf(hw, true);
6037 } else {
6038 igb_vmdq_set_loopback_pf(hw, false);
6039 igb_vmdq_set_replication_pf(hw, false);
6040 }
6041 }
6042
6043 /* igb_main.c */
This page took 0.226394 seconds and 6 git commands to generate.