igb: remove dead code in transmit routine
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
50
51 #define DRV_VERSION "1.3.16-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
60 };
61
62 static struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69 /* required last entry */
70 {0, }
71 };
72
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98 struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125
126 static int igb_suspend(struct pci_dev *, pm_message_t);
127 #ifdef CONFIG_PM
128 static int igb_resume(struct pci_dev *);
129 #endif
130 static void igb_shutdown(struct pci_dev *);
131 #ifdef CONFIG_IGB_DCA
132 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
133 static struct notifier_block dca_notifier = {
134 .notifier_call = igb_notify_dca,
135 .next = NULL,
136 .priority = 0
137 };
138 #endif
139
140 #ifdef CONFIG_NET_POLL_CONTROLLER
141 /* for netdump / net console */
142 static void igb_netpoll(struct net_device *);
143 #endif
144
145 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
146 pci_channel_state_t);
147 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
148 static void igb_io_resume(struct pci_dev *);
149
150 static struct pci_error_handlers igb_err_handler = {
151 .error_detected = igb_io_error_detected,
152 .slot_reset = igb_io_slot_reset,
153 .resume = igb_io_resume,
154 };
155
156
157 static struct pci_driver igb_driver = {
158 .name = igb_driver_name,
159 .id_table = igb_pci_tbl,
160 .probe = igb_probe,
161 .remove = __devexit_p(igb_remove),
162 #ifdef CONFIG_PM
163 /* Power Managment Hooks */
164 .suspend = igb_suspend,
165 .resume = igb_resume,
166 #endif
167 .shutdown = igb_shutdown,
168 .err_handler = &igb_err_handler
169 };
170
171 static int global_quad_port_a; /* global quad port a indication */
172
173 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177
178 #ifdef DEBUG
179 /**
180 * igb_get_hw_dev_name - return device name string
181 * used by hardware layer to print debugging information
182 **/
183 char *igb_get_hw_dev_name(struct e1000_hw *hw)
184 {
185 struct igb_adapter *adapter = hw->back;
186 return adapter->netdev->name;
187 }
188 #endif
189
190 /**
191 * igb_init_module - Driver Registration Routine
192 *
193 * igb_init_module is the first routine called when the driver is
194 * loaded. All it does is register with the PCI subsystem.
195 **/
196 static int __init igb_init_module(void)
197 {
198 int ret;
199 printk(KERN_INFO "%s - version %s\n",
200 igb_driver_string, igb_driver_version);
201
202 printk(KERN_INFO "%s\n", igb_copyright);
203
204 global_quad_port_a = 0;
205
206 #ifdef CONFIG_IGB_DCA
207 dca_register_notify(&dca_notifier);
208 #endif
209
210 ret = pci_register_driver(&igb_driver);
211 return ret;
212 }
213
214 module_init(igb_init_module);
215
216 /**
217 * igb_exit_module - Driver Exit Cleanup Routine
218 *
219 * igb_exit_module is called just before the driver is removed
220 * from memory.
221 **/
222 static void __exit igb_exit_module(void)
223 {
224 #ifdef CONFIG_IGB_DCA
225 dca_unregister_notify(&dca_notifier);
226 #endif
227 pci_unregister_driver(&igb_driver);
228 }
229
230 module_exit(igb_exit_module);
231
232 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
233 /**
234 * igb_cache_ring_register - Descriptor ring to register mapping
235 * @adapter: board private structure to initialize
236 *
237 * Once we know the feature-set enabled for the device, we'll cache
238 * the register offset the descriptor ring is assigned to.
239 **/
240 static void igb_cache_ring_register(struct igb_adapter *adapter)
241 {
242 int i;
243
244 switch (adapter->hw.mac.type) {
245 case e1000_82576:
246 /* The queues are allocated for virtualization such that VF 0
247 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
248 * In order to avoid collision we start at the first free queue
249 * and continue consuming queues in the same sequence
250 */
251 for (i = 0; i < adapter->num_rx_queues; i++)
252 adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
253 for (i = 0; i < adapter->num_tx_queues; i++)
254 adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
255 break;
256 case e1000_82575:
257 default:
258 for (i = 0; i < adapter->num_rx_queues; i++)
259 adapter->rx_ring[i].reg_idx = i;
260 for (i = 0; i < adapter->num_tx_queues; i++)
261 adapter->tx_ring[i].reg_idx = i;
262 break;
263 }
264 }
265
266 /**
267 * igb_alloc_queues - Allocate memory for all rings
268 * @adapter: board private structure to initialize
269 *
270 * We allocate one ring per queue at run-time since we don't know the
271 * number of queues at compile-time.
272 **/
273 static int igb_alloc_queues(struct igb_adapter *adapter)
274 {
275 int i;
276
277 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
278 sizeof(struct igb_ring), GFP_KERNEL);
279 if (!adapter->tx_ring)
280 return -ENOMEM;
281
282 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
283 sizeof(struct igb_ring), GFP_KERNEL);
284 if (!adapter->rx_ring) {
285 kfree(adapter->tx_ring);
286 return -ENOMEM;
287 }
288
289 adapter->rx_ring->buddy = adapter->tx_ring;
290
291 for (i = 0; i < adapter->num_tx_queues; i++) {
292 struct igb_ring *ring = &(adapter->tx_ring[i]);
293 ring->count = adapter->tx_ring_count;
294 ring->adapter = adapter;
295 ring->queue_index = i;
296 }
297 for (i = 0; i < adapter->num_rx_queues; i++) {
298 struct igb_ring *ring = &(adapter->rx_ring[i]);
299 ring->count = adapter->rx_ring_count;
300 ring->adapter = adapter;
301 ring->queue_index = i;
302 ring->itr_register = E1000_ITR;
303
304 /* set a default napi handler for each rx_ring */
305 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
306 }
307
308 igb_cache_ring_register(adapter);
309 return 0;
310 }
311
312 static void igb_free_queues(struct igb_adapter *adapter)
313 {
314 int i;
315
316 for (i = 0; i < adapter->num_rx_queues; i++)
317 netif_napi_del(&adapter->rx_ring[i].napi);
318
319 kfree(adapter->tx_ring);
320 kfree(adapter->rx_ring);
321 }
322
323 #define IGB_N0_QUEUE -1
324 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
325 int tx_queue, int msix_vector)
326 {
327 u32 msixbm = 0;
328 struct e1000_hw *hw = &adapter->hw;
329 u32 ivar, index;
330
331 switch (hw->mac.type) {
332 case e1000_82575:
333 /* The 82575 assigns vectors using a bitmask, which matches the
334 bitmask for the EICR/EIMS/EIMC registers. To assign one
335 or more queues to a vector, we write the appropriate bits
336 into the MSIXBM register for that vector. */
337 if (rx_queue > IGB_N0_QUEUE) {
338 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
339 adapter->rx_ring[rx_queue].eims_value = msixbm;
340 }
341 if (tx_queue > IGB_N0_QUEUE) {
342 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
343 adapter->tx_ring[tx_queue].eims_value =
344 E1000_EICR_TX_QUEUE0 << tx_queue;
345 }
346 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
347 break;
348 case e1000_82576:
349 /* 82576 uses a table-based method for assigning vectors.
350 Each queue has a single entry in the table to which we write
351 a vector number along with a "valid" bit. Sadly, the layout
352 of the table is somewhat counterintuitive. */
353 if (rx_queue > IGB_N0_QUEUE) {
354 index = (rx_queue >> 1);
355 ivar = array_rd32(E1000_IVAR0, index);
356 if (rx_queue & 0x1) {
357 /* vector goes into third byte of register */
358 ivar = ivar & 0xFF00FFFF;
359 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
360 } else {
361 /* vector goes into low byte of register */
362 ivar = ivar & 0xFFFFFF00;
363 ivar |= msix_vector | E1000_IVAR_VALID;
364 }
365 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
366 array_wr32(E1000_IVAR0, index, ivar);
367 }
368 if (tx_queue > IGB_N0_QUEUE) {
369 index = (tx_queue >> 1);
370 ivar = array_rd32(E1000_IVAR0, index);
371 if (tx_queue & 0x1) {
372 /* vector goes into high byte of register */
373 ivar = ivar & 0x00FFFFFF;
374 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
375 } else {
376 /* vector goes into second byte of register */
377 ivar = ivar & 0xFFFF00FF;
378 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
379 }
380 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
381 array_wr32(E1000_IVAR0, index, ivar);
382 }
383 break;
384 default:
385 BUG();
386 break;
387 }
388 }
389
390 /**
391 * igb_configure_msix - Configure MSI-X hardware
392 *
393 * igb_configure_msix sets up the hardware to properly
394 * generate MSI-X interrupts.
395 **/
396 static void igb_configure_msix(struct igb_adapter *adapter)
397 {
398 u32 tmp;
399 int i, vector = 0;
400 struct e1000_hw *hw = &adapter->hw;
401
402 adapter->eims_enable_mask = 0;
403 if (hw->mac.type == e1000_82576)
404 /* Turn on MSI-X capability first, or our settings
405 * won't stick. And it will take days to debug. */
406 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
407 E1000_GPIE_PBA | E1000_GPIE_EIAME |
408 E1000_GPIE_NSICR);
409
410 for (i = 0; i < adapter->num_tx_queues; i++) {
411 struct igb_ring *tx_ring = &adapter->tx_ring[i];
412 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
413 adapter->eims_enable_mask |= tx_ring->eims_value;
414 if (tx_ring->itr_val)
415 writel(tx_ring->itr_val,
416 hw->hw_addr + tx_ring->itr_register);
417 else
418 writel(1, hw->hw_addr + tx_ring->itr_register);
419 }
420
421 for (i = 0; i < adapter->num_rx_queues; i++) {
422 struct igb_ring *rx_ring = &adapter->rx_ring[i];
423 rx_ring->buddy = NULL;
424 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
425 adapter->eims_enable_mask |= rx_ring->eims_value;
426 if (rx_ring->itr_val)
427 writel(rx_ring->itr_val,
428 hw->hw_addr + rx_ring->itr_register);
429 else
430 writel(1, hw->hw_addr + rx_ring->itr_register);
431 }
432
433
434 /* set vector for other causes, i.e. link changes */
435 switch (hw->mac.type) {
436 case e1000_82575:
437 array_wr32(E1000_MSIXBM(0), vector++,
438 E1000_EIMS_OTHER);
439
440 tmp = rd32(E1000_CTRL_EXT);
441 /* enable MSI-X PBA support*/
442 tmp |= E1000_CTRL_EXT_PBA_CLR;
443
444 /* Auto-Mask interrupts upon ICR read. */
445 tmp |= E1000_CTRL_EXT_EIAME;
446 tmp |= E1000_CTRL_EXT_IRCA;
447
448 wr32(E1000_CTRL_EXT, tmp);
449 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
450 adapter->eims_other = E1000_EIMS_OTHER;
451
452 break;
453
454 case e1000_82576:
455 tmp = (vector++ | E1000_IVAR_VALID) << 8;
456 wr32(E1000_IVAR_MISC, tmp);
457
458 adapter->eims_enable_mask = (1 << (vector)) - 1;
459 adapter->eims_other = 1 << (vector - 1);
460 break;
461 default:
462 /* do nothing, since nothing else supports MSI-X */
463 break;
464 } /* switch (hw->mac.type) */
465 wrfl();
466 }
467
468 /**
469 * igb_request_msix - Initialize MSI-X interrupts
470 *
471 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
472 * kernel.
473 **/
474 static int igb_request_msix(struct igb_adapter *adapter)
475 {
476 struct net_device *netdev = adapter->netdev;
477 int i, err = 0, vector = 0;
478
479 vector = 0;
480
481 for (i = 0; i < adapter->num_tx_queues; i++) {
482 struct igb_ring *ring = &(adapter->tx_ring[i]);
483 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
484 err = request_irq(adapter->msix_entries[vector].vector,
485 &igb_msix_tx, 0, ring->name,
486 &(adapter->tx_ring[i]));
487 if (err)
488 goto out;
489 ring->itr_register = E1000_EITR(0) + (vector << 2);
490 ring->itr_val = 976; /* ~4000 ints/sec */
491 vector++;
492 }
493 for (i = 0; i < adapter->num_rx_queues; i++) {
494 struct igb_ring *ring = &(adapter->rx_ring[i]);
495 if (strlen(netdev->name) < (IFNAMSIZ - 5))
496 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
497 else
498 memcpy(ring->name, netdev->name, IFNAMSIZ);
499 err = request_irq(adapter->msix_entries[vector].vector,
500 &igb_msix_rx, 0, ring->name,
501 &(adapter->rx_ring[i]));
502 if (err)
503 goto out;
504 ring->itr_register = E1000_EITR(0) + (vector << 2);
505 ring->itr_val = adapter->itr;
506 /* overwrite the poll routine for MSIX, we've already done
507 * netif_napi_add */
508 ring->napi.poll = &igb_clean_rx_ring_msix;
509 vector++;
510 }
511
512 err = request_irq(adapter->msix_entries[vector].vector,
513 &igb_msix_other, 0, netdev->name, netdev);
514 if (err)
515 goto out;
516
517 igb_configure_msix(adapter);
518 return 0;
519 out:
520 return err;
521 }
522
523 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
524 {
525 if (adapter->msix_entries) {
526 pci_disable_msix(adapter->pdev);
527 kfree(adapter->msix_entries);
528 adapter->msix_entries = NULL;
529 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
530 pci_disable_msi(adapter->pdev);
531 return;
532 }
533
534
535 /**
536 * igb_set_interrupt_capability - set MSI or MSI-X if supported
537 *
538 * Attempt to configure interrupts using the best available
539 * capabilities of the hardware and kernel.
540 **/
541 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
542 {
543 int err;
544 int numvecs, i;
545
546 /* Number of supported queues. */
547 /* Having more queues than CPUs doesn't make sense. */
548 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
549 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
550
551 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
552 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
553 GFP_KERNEL);
554 if (!adapter->msix_entries)
555 goto msi_only;
556
557 for (i = 0; i < numvecs; i++)
558 adapter->msix_entries[i].entry = i;
559
560 err = pci_enable_msix(adapter->pdev,
561 adapter->msix_entries,
562 numvecs);
563 if (err == 0)
564 goto out;
565
566 igb_reset_interrupt_capability(adapter);
567
568 /* If we can't do MSI-X, try MSI */
569 msi_only:
570 adapter->num_rx_queues = 1;
571 adapter->num_tx_queues = 1;
572 if (!pci_enable_msi(adapter->pdev))
573 adapter->flags |= IGB_FLAG_HAS_MSI;
574 out:
575 /* Notify the stack of the (possibly) reduced Tx Queue count. */
576 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
577 return;
578 }
579
580 /**
581 * igb_request_irq - initialize interrupts
582 *
583 * Attempts to configure interrupts using the best available
584 * capabilities of the hardware and kernel.
585 **/
586 static int igb_request_irq(struct igb_adapter *adapter)
587 {
588 struct net_device *netdev = adapter->netdev;
589 struct e1000_hw *hw = &adapter->hw;
590 int err = 0;
591
592 if (adapter->msix_entries) {
593 err = igb_request_msix(adapter);
594 if (!err)
595 goto request_done;
596 /* fall back to MSI */
597 igb_reset_interrupt_capability(adapter);
598 if (!pci_enable_msi(adapter->pdev))
599 adapter->flags |= IGB_FLAG_HAS_MSI;
600 igb_free_all_tx_resources(adapter);
601 igb_free_all_rx_resources(adapter);
602 adapter->num_rx_queues = 1;
603 igb_alloc_queues(adapter);
604 } else {
605 switch (hw->mac.type) {
606 case e1000_82575:
607 wr32(E1000_MSIXBM(0),
608 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
609 break;
610 case e1000_82576:
611 wr32(E1000_IVAR0, E1000_IVAR_VALID);
612 break;
613 default:
614 break;
615 }
616 }
617
618 if (adapter->flags & IGB_FLAG_HAS_MSI) {
619 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
620 netdev->name, netdev);
621 if (!err)
622 goto request_done;
623 /* fall back to legacy interrupts */
624 igb_reset_interrupt_capability(adapter);
625 adapter->flags &= ~IGB_FLAG_HAS_MSI;
626 }
627
628 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
629 netdev->name, netdev);
630
631 if (err)
632 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
633 err);
634
635 request_done:
636 return err;
637 }
638
639 static void igb_free_irq(struct igb_adapter *adapter)
640 {
641 struct net_device *netdev = adapter->netdev;
642
643 if (adapter->msix_entries) {
644 int vector = 0, i;
645
646 for (i = 0; i < adapter->num_tx_queues; i++)
647 free_irq(adapter->msix_entries[vector++].vector,
648 &(adapter->tx_ring[i]));
649 for (i = 0; i < adapter->num_rx_queues; i++)
650 free_irq(adapter->msix_entries[vector++].vector,
651 &(adapter->rx_ring[i]));
652
653 free_irq(adapter->msix_entries[vector++].vector, netdev);
654 return;
655 }
656
657 free_irq(adapter->pdev->irq, netdev);
658 }
659
660 /**
661 * igb_irq_disable - Mask off interrupt generation on the NIC
662 * @adapter: board private structure
663 **/
664 static void igb_irq_disable(struct igb_adapter *adapter)
665 {
666 struct e1000_hw *hw = &adapter->hw;
667
668 if (adapter->msix_entries) {
669 wr32(E1000_EIAM, 0);
670 wr32(E1000_EIMC, ~0);
671 wr32(E1000_EIAC, 0);
672 }
673
674 wr32(E1000_IAM, 0);
675 wr32(E1000_IMC, ~0);
676 wrfl();
677 synchronize_irq(adapter->pdev->irq);
678 }
679
680 /**
681 * igb_irq_enable - Enable default interrupt generation settings
682 * @adapter: board private structure
683 **/
684 static void igb_irq_enable(struct igb_adapter *adapter)
685 {
686 struct e1000_hw *hw = &adapter->hw;
687
688 if (adapter->msix_entries) {
689 wr32(E1000_EIAC, adapter->eims_enable_mask);
690 wr32(E1000_EIAM, adapter->eims_enable_mask);
691 wr32(E1000_EIMS, adapter->eims_enable_mask);
692 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
693 } else {
694 wr32(E1000_IMS, IMS_ENABLE_MASK);
695 wr32(E1000_IAM, IMS_ENABLE_MASK);
696 }
697 }
698
699 static void igb_update_mng_vlan(struct igb_adapter *adapter)
700 {
701 struct net_device *netdev = adapter->netdev;
702 u16 vid = adapter->hw.mng_cookie.vlan_id;
703 u16 old_vid = adapter->mng_vlan_id;
704 if (adapter->vlgrp) {
705 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
706 if (adapter->hw.mng_cookie.status &
707 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
708 igb_vlan_rx_add_vid(netdev, vid);
709 adapter->mng_vlan_id = vid;
710 } else
711 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
712
713 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
714 (vid != old_vid) &&
715 !vlan_group_get_device(adapter->vlgrp, old_vid))
716 igb_vlan_rx_kill_vid(netdev, old_vid);
717 } else
718 adapter->mng_vlan_id = vid;
719 }
720 }
721
722 /**
723 * igb_release_hw_control - release control of the h/w to f/w
724 * @adapter: address of board private structure
725 *
726 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
727 * For ASF and Pass Through versions of f/w this means that the
728 * driver is no longer loaded.
729 *
730 **/
731 static void igb_release_hw_control(struct igb_adapter *adapter)
732 {
733 struct e1000_hw *hw = &adapter->hw;
734 u32 ctrl_ext;
735
736 /* Let firmware take over control of h/w */
737 ctrl_ext = rd32(E1000_CTRL_EXT);
738 wr32(E1000_CTRL_EXT,
739 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
740 }
741
742
743 /**
744 * igb_get_hw_control - get control of the h/w from f/w
745 * @adapter: address of board private structure
746 *
747 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
748 * For ASF and Pass Through versions of f/w this means that
749 * the driver is loaded.
750 *
751 **/
752 static void igb_get_hw_control(struct igb_adapter *adapter)
753 {
754 struct e1000_hw *hw = &adapter->hw;
755 u32 ctrl_ext;
756
757 /* Let firmware know the driver has taken over */
758 ctrl_ext = rd32(E1000_CTRL_EXT);
759 wr32(E1000_CTRL_EXT,
760 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
761 }
762
763 /**
764 * igb_configure - configure the hardware for RX and TX
765 * @adapter: private board structure
766 **/
767 static void igb_configure(struct igb_adapter *adapter)
768 {
769 struct net_device *netdev = adapter->netdev;
770 int i;
771
772 igb_get_hw_control(adapter);
773 igb_set_multi(netdev);
774
775 igb_restore_vlan(adapter);
776
777 igb_configure_tx(adapter);
778 igb_setup_rctl(adapter);
779 igb_configure_rx(adapter);
780
781 igb_rx_fifo_flush_82575(&adapter->hw);
782
783 /* call IGB_DESC_UNUSED which always leaves
784 * at least 1 descriptor unused to make sure
785 * next_to_use != next_to_clean */
786 for (i = 0; i < adapter->num_rx_queues; i++) {
787 struct igb_ring *ring = &adapter->rx_ring[i];
788 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
789 }
790
791
792 adapter->tx_queue_len = netdev->tx_queue_len;
793 }
794
795
796 /**
797 * igb_up - Open the interface and prepare it to handle traffic
798 * @adapter: board private structure
799 **/
800
801 int igb_up(struct igb_adapter *adapter)
802 {
803 struct e1000_hw *hw = &adapter->hw;
804 int i;
805
806 /* hardware has been reset, we need to reload some things */
807 igb_configure(adapter);
808
809 clear_bit(__IGB_DOWN, &adapter->state);
810
811 for (i = 0; i < adapter->num_rx_queues; i++)
812 napi_enable(&adapter->rx_ring[i].napi);
813 if (adapter->msix_entries)
814 igb_configure_msix(adapter);
815
816 /* Clear any pending interrupts. */
817 rd32(E1000_ICR);
818 igb_irq_enable(adapter);
819
820 /* Fire a link change interrupt to start the watchdog. */
821 wr32(E1000_ICS, E1000_ICS_LSC);
822 return 0;
823 }
824
825 void igb_down(struct igb_adapter *adapter)
826 {
827 struct e1000_hw *hw = &adapter->hw;
828 struct net_device *netdev = adapter->netdev;
829 u32 tctl, rctl;
830 int i;
831
832 /* signal that we're down so the interrupt handler does not
833 * reschedule our watchdog timer */
834 set_bit(__IGB_DOWN, &adapter->state);
835
836 /* disable receives in the hardware */
837 rctl = rd32(E1000_RCTL);
838 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
839 /* flush and sleep below */
840
841 netif_tx_stop_all_queues(netdev);
842
843 /* disable transmits in the hardware */
844 tctl = rd32(E1000_TCTL);
845 tctl &= ~E1000_TCTL_EN;
846 wr32(E1000_TCTL, tctl);
847 /* flush both disables and wait for them to finish */
848 wrfl();
849 msleep(10);
850
851 for (i = 0; i < adapter->num_rx_queues; i++)
852 napi_disable(&adapter->rx_ring[i].napi);
853
854 igb_irq_disable(adapter);
855
856 del_timer_sync(&adapter->watchdog_timer);
857 del_timer_sync(&adapter->phy_info_timer);
858
859 netdev->tx_queue_len = adapter->tx_queue_len;
860 netif_carrier_off(netdev);
861
862 /* record the stats before reset*/
863 igb_update_stats(adapter);
864
865 adapter->link_speed = 0;
866 adapter->link_duplex = 0;
867
868 if (!pci_channel_offline(adapter->pdev))
869 igb_reset(adapter);
870 igb_clean_all_tx_rings(adapter);
871 igb_clean_all_rx_rings(adapter);
872 }
873
874 void igb_reinit_locked(struct igb_adapter *adapter)
875 {
876 WARN_ON(in_interrupt());
877 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
878 msleep(1);
879 igb_down(adapter);
880 igb_up(adapter);
881 clear_bit(__IGB_RESETTING, &adapter->state);
882 }
883
884 void igb_reset(struct igb_adapter *adapter)
885 {
886 struct e1000_hw *hw = &adapter->hw;
887 struct e1000_mac_info *mac = &hw->mac;
888 struct e1000_fc_info *fc = &hw->fc;
889 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
890 u16 hwm;
891
892 /* Repartition Pba for greater than 9k mtu
893 * To take effect CTRL.RST is required.
894 */
895 switch (mac->type) {
896 case e1000_82576:
897 pba = E1000_PBA_64K;
898 break;
899 case e1000_82575:
900 default:
901 pba = E1000_PBA_34K;
902 break;
903 }
904
905 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
906 (mac->type < e1000_82576)) {
907 /* adjust PBA for jumbo frames */
908 wr32(E1000_PBA, pba);
909
910 /* To maintain wire speed transmits, the Tx FIFO should be
911 * large enough to accommodate two full transmit packets,
912 * rounded up to the next 1KB and expressed in KB. Likewise,
913 * the Rx FIFO should be large enough to accommodate at least
914 * one full receive packet and is similarly rounded up and
915 * expressed in KB. */
916 pba = rd32(E1000_PBA);
917 /* upper 16 bits has Tx packet buffer allocation size in KB */
918 tx_space = pba >> 16;
919 /* lower 16 bits has Rx packet buffer allocation size in KB */
920 pba &= 0xffff;
921 /* the tx fifo also stores 16 bytes of information about the tx
922 * but don't include ethernet FCS because hardware appends it */
923 min_tx_space = (adapter->max_frame_size +
924 sizeof(struct e1000_tx_desc) -
925 ETH_FCS_LEN) * 2;
926 min_tx_space = ALIGN(min_tx_space, 1024);
927 min_tx_space >>= 10;
928 /* software strips receive CRC, so leave room for it */
929 min_rx_space = adapter->max_frame_size;
930 min_rx_space = ALIGN(min_rx_space, 1024);
931 min_rx_space >>= 10;
932
933 /* If current Tx allocation is less than the min Tx FIFO size,
934 * and the min Tx FIFO size is less than the current Rx FIFO
935 * allocation, take space away from current Rx allocation */
936 if (tx_space < min_tx_space &&
937 ((min_tx_space - tx_space) < pba)) {
938 pba = pba - (min_tx_space - tx_space);
939
940 /* if short on rx space, rx wins and must trump tx
941 * adjustment */
942 if (pba < min_rx_space)
943 pba = min_rx_space;
944 }
945 wr32(E1000_PBA, pba);
946 }
947
948 /* flow control settings */
949 /* The high water mark must be low enough to fit one full frame
950 * (or the size used for early receive) above it in the Rx FIFO.
951 * Set it to the lower of:
952 * - 90% of the Rx FIFO size, or
953 * - the full Rx FIFO size minus one full frame */
954 hwm = min(((pba << 10) * 9 / 10),
955 ((pba << 10) - 2 * adapter->max_frame_size));
956
957 if (mac->type < e1000_82576) {
958 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
959 fc->low_water = fc->high_water - 8;
960 } else {
961 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
962 fc->low_water = fc->high_water - 16;
963 }
964 fc->pause_time = 0xFFFF;
965 fc->send_xon = 1;
966 fc->type = fc->original_type;
967
968 /* Allow time for pending master requests to run */
969 adapter->hw.mac.ops.reset_hw(&adapter->hw);
970 wr32(E1000_WUC, 0);
971
972 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
973 dev_err(&adapter->pdev->dev, "Hardware Error\n");
974
975 igb_update_mng_vlan(adapter);
976
977 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
978 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
979
980 igb_reset_adaptive(&adapter->hw);
981 igb_get_phy_info(&adapter->hw);
982 }
983
984 static const struct net_device_ops igb_netdev_ops = {
985 .ndo_open = igb_open,
986 .ndo_stop = igb_close,
987 .ndo_start_xmit = igb_xmit_frame_adv,
988 .ndo_get_stats = igb_get_stats,
989 .ndo_set_multicast_list = igb_set_multi,
990 .ndo_set_mac_address = igb_set_mac,
991 .ndo_change_mtu = igb_change_mtu,
992 .ndo_do_ioctl = igb_ioctl,
993 .ndo_tx_timeout = igb_tx_timeout,
994 .ndo_validate_addr = eth_validate_addr,
995 .ndo_vlan_rx_register = igb_vlan_rx_register,
996 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
997 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
998 #ifdef CONFIG_NET_POLL_CONTROLLER
999 .ndo_poll_controller = igb_netpoll,
1000 #endif
1001 };
1002
1003 /**
1004 * igb_probe - Device Initialization Routine
1005 * @pdev: PCI device information struct
1006 * @ent: entry in igb_pci_tbl
1007 *
1008 * Returns 0 on success, negative on failure
1009 *
1010 * igb_probe initializes an adapter identified by a pci_dev structure.
1011 * The OS initialization, configuring of the adapter private structure,
1012 * and a hardware reset occur.
1013 **/
1014 static int __devinit igb_probe(struct pci_dev *pdev,
1015 const struct pci_device_id *ent)
1016 {
1017 struct net_device *netdev;
1018 struct igb_adapter *adapter;
1019 struct e1000_hw *hw;
1020 struct pci_dev *us_dev;
1021 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1022 unsigned long mmio_start, mmio_len;
1023 int err, pci_using_dac, pos;
1024 u16 eeprom_data = 0, state = 0;
1025 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1026 u32 part_num;
1027
1028 err = pci_enable_device_mem(pdev);
1029 if (err)
1030 return err;
1031
1032 pci_using_dac = 0;
1033 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1034 if (!err) {
1035 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1036 if (!err)
1037 pci_using_dac = 1;
1038 } else {
1039 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1040 if (err) {
1041 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1042 if (err) {
1043 dev_err(&pdev->dev, "No usable DMA "
1044 "configuration, aborting\n");
1045 goto err_dma;
1046 }
1047 }
1048 }
1049
1050 /* 82575 requires that the pci-e link partner disable the L0s state */
1051 switch (pdev->device) {
1052 case E1000_DEV_ID_82575EB_COPPER:
1053 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1054 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1055 us_dev = pdev->bus->self;
1056 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1057 if (pos) {
1058 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1059 &state);
1060 state &= ~PCIE_LINK_STATE_L0S;
1061 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1062 state);
1063 dev_info(&pdev->dev,
1064 "Disabling ASPM L0s upstream switch port %s\n",
1065 pci_name(us_dev));
1066 }
1067 default:
1068 break;
1069 }
1070
1071 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1072 IORESOURCE_MEM),
1073 igb_driver_name);
1074 if (err)
1075 goto err_pci_reg;
1076
1077 err = pci_enable_pcie_error_reporting(pdev);
1078 if (err) {
1079 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1080 "0x%x\n", err);
1081 /* non-fatal, continue */
1082 }
1083
1084 pci_set_master(pdev);
1085 pci_save_state(pdev);
1086
1087 err = -ENOMEM;
1088 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1089 if (!netdev)
1090 goto err_alloc_etherdev;
1091
1092 SET_NETDEV_DEV(netdev, &pdev->dev);
1093
1094 pci_set_drvdata(pdev, netdev);
1095 adapter = netdev_priv(netdev);
1096 adapter->netdev = netdev;
1097 adapter->pdev = pdev;
1098 hw = &adapter->hw;
1099 hw->back = adapter;
1100 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1101
1102 mmio_start = pci_resource_start(pdev, 0);
1103 mmio_len = pci_resource_len(pdev, 0);
1104
1105 err = -EIO;
1106 hw->hw_addr = ioremap(mmio_start, mmio_len);
1107 if (!hw->hw_addr)
1108 goto err_ioremap;
1109
1110 netdev->netdev_ops = &igb_netdev_ops;
1111 igb_set_ethtool_ops(netdev);
1112 netdev->watchdog_timeo = 5 * HZ;
1113
1114 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1115
1116 netdev->mem_start = mmio_start;
1117 netdev->mem_end = mmio_start + mmio_len;
1118
1119 /* PCI config space info */
1120 hw->vendor_id = pdev->vendor;
1121 hw->device_id = pdev->device;
1122 hw->revision_id = pdev->revision;
1123 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1124 hw->subsystem_device_id = pdev->subsystem_device;
1125
1126 /* setup the private structure */
1127 hw->back = adapter;
1128 /* Copy the default MAC, PHY and NVM function pointers */
1129 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1130 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1131 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1132 /* Initialize skew-specific constants */
1133 err = ei->get_invariants(hw);
1134 if (err)
1135 goto err_sw_init;
1136
1137 /* setup the private structure */
1138 err = igb_sw_init(adapter);
1139 if (err)
1140 goto err_sw_init;
1141
1142 igb_get_bus_info_pcie(hw);
1143
1144 /* set flags */
1145 switch (hw->mac.type) {
1146 case e1000_82575:
1147 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1148 break;
1149 case e1000_82576:
1150 default:
1151 break;
1152 }
1153
1154 hw->phy.autoneg_wait_to_complete = false;
1155 hw->mac.adaptive_ifs = true;
1156
1157 /* Copper options */
1158 if (hw->phy.media_type == e1000_media_type_copper) {
1159 hw->phy.mdix = AUTO_ALL_MODES;
1160 hw->phy.disable_polarity_correction = false;
1161 hw->phy.ms_type = e1000_ms_hw_default;
1162 }
1163
1164 if (igb_check_reset_block(hw))
1165 dev_info(&pdev->dev,
1166 "PHY reset is blocked due to SOL/IDER session.\n");
1167
1168 netdev->features = NETIF_F_SG |
1169 NETIF_F_IP_CSUM |
1170 NETIF_F_HW_VLAN_TX |
1171 NETIF_F_HW_VLAN_RX |
1172 NETIF_F_HW_VLAN_FILTER;
1173
1174 netdev->features |= NETIF_F_IPV6_CSUM;
1175 netdev->features |= NETIF_F_TSO;
1176 netdev->features |= NETIF_F_TSO6;
1177
1178 #ifdef CONFIG_IGB_LRO
1179 netdev->features |= NETIF_F_GRO;
1180 #endif
1181
1182 netdev->vlan_features |= NETIF_F_TSO;
1183 netdev->vlan_features |= NETIF_F_TSO6;
1184 netdev->vlan_features |= NETIF_F_IP_CSUM;
1185 netdev->vlan_features |= NETIF_F_SG;
1186
1187 if (pci_using_dac)
1188 netdev->features |= NETIF_F_HIGHDMA;
1189
1190 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1191
1192 /* before reading the NVM, reset the controller to put the device in a
1193 * known good starting state */
1194 hw->mac.ops.reset_hw(hw);
1195
1196 /* make sure the NVM is good */
1197 if (igb_validate_nvm_checksum(hw) < 0) {
1198 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1199 err = -EIO;
1200 goto err_eeprom;
1201 }
1202
1203 /* copy the MAC address out of the NVM */
1204 if (hw->mac.ops.read_mac_addr(hw))
1205 dev_err(&pdev->dev, "NVM Read Error\n");
1206
1207 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1208 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1209
1210 if (!is_valid_ether_addr(netdev->perm_addr)) {
1211 dev_err(&pdev->dev, "Invalid MAC Address\n");
1212 err = -EIO;
1213 goto err_eeprom;
1214 }
1215
1216 init_timer(&adapter->watchdog_timer);
1217 adapter->watchdog_timer.function = &igb_watchdog;
1218 adapter->watchdog_timer.data = (unsigned long) adapter;
1219
1220 init_timer(&adapter->phy_info_timer);
1221 adapter->phy_info_timer.function = &igb_update_phy_info;
1222 adapter->phy_info_timer.data = (unsigned long) adapter;
1223
1224 INIT_WORK(&adapter->reset_task, igb_reset_task);
1225 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1226
1227 /* Initialize link properties that are user-changeable */
1228 adapter->fc_autoneg = true;
1229 hw->mac.autoneg = true;
1230 hw->phy.autoneg_advertised = 0x2f;
1231
1232 hw->fc.original_type = e1000_fc_default;
1233 hw->fc.type = e1000_fc_default;
1234
1235 adapter->itr_setting = 3;
1236 adapter->itr = IGB_START_ITR;
1237
1238 igb_validate_mdi_setting(hw);
1239
1240 adapter->rx_csum = 1;
1241
1242 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1243 * enable the ACPI Magic Packet filter
1244 */
1245
1246 if (hw->bus.func == 0 ||
1247 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1248 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1249
1250 if (eeprom_data & eeprom_apme_mask)
1251 adapter->eeprom_wol |= E1000_WUFC_MAG;
1252
1253 /* now that we have the eeprom settings, apply the special cases where
1254 * the eeprom may be wrong or the board simply won't support wake on
1255 * lan on a particular port */
1256 switch (pdev->device) {
1257 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1258 adapter->eeprom_wol = 0;
1259 break;
1260 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1261 case E1000_DEV_ID_82576_FIBER:
1262 case E1000_DEV_ID_82576_SERDES:
1263 /* Wake events only supported on port A for dual fiber
1264 * regardless of eeprom setting */
1265 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1266 adapter->eeprom_wol = 0;
1267 break;
1268 }
1269
1270 /* initialize the wol settings based on the eeprom settings */
1271 adapter->wol = adapter->eeprom_wol;
1272 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1273
1274 /* reset the hardware with the new settings */
1275 igb_reset(adapter);
1276
1277 /* let the f/w know that the h/w is now under the control of the
1278 * driver. */
1279 igb_get_hw_control(adapter);
1280
1281 /* tell the stack to leave us alone until igb_open() is called */
1282 netif_carrier_off(netdev);
1283 netif_tx_stop_all_queues(netdev);
1284
1285 strcpy(netdev->name, "eth%d");
1286 err = register_netdev(netdev);
1287 if (err)
1288 goto err_register;
1289
1290 #ifdef CONFIG_IGB_DCA
1291 if (dca_add_requester(&pdev->dev) == 0) {
1292 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1293 dev_info(&pdev->dev, "DCA enabled\n");
1294 /* Always use CB2 mode, difference is masked
1295 * in the CB driver. */
1296 wr32(E1000_DCA_CTRL, 2);
1297 igb_setup_dca(adapter);
1298 }
1299 #endif
1300
1301 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1302 /* print bus type/speed/width info */
1303 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1304 netdev->name,
1305 ((hw->bus.speed == e1000_bus_speed_2500)
1306 ? "2.5Gb/s" : "unknown"),
1307 ((hw->bus.width == e1000_bus_width_pcie_x4)
1308 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1309 ? "Width x1" : "unknown"),
1310 netdev->dev_addr);
1311
1312 igb_read_part_num(hw, &part_num);
1313 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1314 (part_num >> 8), (part_num & 0xff));
1315
1316 dev_info(&pdev->dev,
1317 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1318 adapter->msix_entries ? "MSI-X" :
1319 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1320 adapter->num_rx_queues, adapter->num_tx_queues);
1321
1322 return 0;
1323
1324 err_register:
1325 igb_release_hw_control(adapter);
1326 err_eeprom:
1327 if (!igb_check_reset_block(hw))
1328 igb_reset_phy(hw);
1329
1330 if (hw->flash_address)
1331 iounmap(hw->flash_address);
1332
1333 igb_free_queues(adapter);
1334 err_sw_init:
1335 iounmap(hw->hw_addr);
1336 err_ioremap:
1337 free_netdev(netdev);
1338 err_alloc_etherdev:
1339 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1340 IORESOURCE_MEM));
1341 err_pci_reg:
1342 err_dma:
1343 pci_disable_device(pdev);
1344 return err;
1345 }
1346
1347 /**
1348 * igb_remove - Device Removal Routine
1349 * @pdev: PCI device information struct
1350 *
1351 * igb_remove is called by the PCI subsystem to alert the driver
1352 * that it should release a PCI device. The could be caused by a
1353 * Hot-Plug event, or because the driver is going to be removed from
1354 * memory.
1355 **/
1356 static void __devexit igb_remove(struct pci_dev *pdev)
1357 {
1358 struct net_device *netdev = pci_get_drvdata(pdev);
1359 struct igb_adapter *adapter = netdev_priv(netdev);
1360 struct e1000_hw *hw = &adapter->hw;
1361 int err;
1362
1363 /* flush_scheduled work may reschedule our watchdog task, so
1364 * explicitly disable watchdog tasks from being rescheduled */
1365 set_bit(__IGB_DOWN, &adapter->state);
1366 del_timer_sync(&adapter->watchdog_timer);
1367 del_timer_sync(&adapter->phy_info_timer);
1368
1369 flush_scheduled_work();
1370
1371 #ifdef CONFIG_IGB_DCA
1372 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1373 dev_info(&pdev->dev, "DCA disabled\n");
1374 dca_remove_requester(&pdev->dev);
1375 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1376 wr32(E1000_DCA_CTRL, 1);
1377 }
1378 #endif
1379
1380 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1381 * would have already happened in close and is redundant. */
1382 igb_release_hw_control(adapter);
1383
1384 unregister_netdev(netdev);
1385
1386 if (!igb_check_reset_block(&adapter->hw))
1387 igb_reset_phy(&adapter->hw);
1388
1389 igb_reset_interrupt_capability(adapter);
1390
1391 igb_free_queues(adapter);
1392
1393 iounmap(hw->hw_addr);
1394 if (hw->flash_address)
1395 iounmap(hw->flash_address);
1396 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1397 IORESOURCE_MEM));
1398
1399 free_netdev(netdev);
1400
1401 err = pci_disable_pcie_error_reporting(pdev);
1402 if (err)
1403 dev_err(&pdev->dev,
1404 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1405
1406 pci_disable_device(pdev);
1407 }
1408
1409 /**
1410 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1411 * @adapter: board private structure to initialize
1412 *
1413 * igb_sw_init initializes the Adapter private data structure.
1414 * Fields are initialized based on PCI device information and
1415 * OS network device settings (MTU size).
1416 **/
1417 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1418 {
1419 struct e1000_hw *hw = &adapter->hw;
1420 struct net_device *netdev = adapter->netdev;
1421 struct pci_dev *pdev = adapter->pdev;
1422
1423 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1424
1425 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1426 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1427 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1428 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1429 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1430 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1431
1432 /* This call may decrease the number of queues depending on
1433 * interrupt mode. */
1434 igb_set_interrupt_capability(adapter);
1435
1436 if (igb_alloc_queues(adapter)) {
1437 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1438 return -ENOMEM;
1439 }
1440
1441 /* Explicitly disable IRQ since the NIC can be in any state. */
1442 igb_irq_disable(adapter);
1443
1444 set_bit(__IGB_DOWN, &adapter->state);
1445 return 0;
1446 }
1447
1448 /**
1449 * igb_open - Called when a network interface is made active
1450 * @netdev: network interface device structure
1451 *
1452 * Returns 0 on success, negative value on failure
1453 *
1454 * The open entry point is called when a network interface is made
1455 * active by the system (IFF_UP). At this point all resources needed
1456 * for transmit and receive operations are allocated, the interrupt
1457 * handler is registered with the OS, the watchdog timer is started,
1458 * and the stack is notified that the interface is ready.
1459 **/
1460 static int igb_open(struct net_device *netdev)
1461 {
1462 struct igb_adapter *adapter = netdev_priv(netdev);
1463 struct e1000_hw *hw = &adapter->hw;
1464 int err;
1465 int i;
1466
1467 /* disallow open during test */
1468 if (test_bit(__IGB_TESTING, &adapter->state))
1469 return -EBUSY;
1470
1471 /* allocate transmit descriptors */
1472 err = igb_setup_all_tx_resources(adapter);
1473 if (err)
1474 goto err_setup_tx;
1475
1476 /* allocate receive descriptors */
1477 err = igb_setup_all_rx_resources(adapter);
1478 if (err)
1479 goto err_setup_rx;
1480
1481 /* e1000_power_up_phy(adapter); */
1482
1483 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1484 if ((adapter->hw.mng_cookie.status &
1485 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1486 igb_update_mng_vlan(adapter);
1487
1488 /* before we allocate an interrupt, we must be ready to handle it.
1489 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1490 * as soon as we call pci_request_irq, so we have to setup our
1491 * clean_rx handler before we do so. */
1492 igb_configure(adapter);
1493
1494 err = igb_request_irq(adapter);
1495 if (err)
1496 goto err_req_irq;
1497
1498 /* From here on the code is the same as igb_up() */
1499 clear_bit(__IGB_DOWN, &adapter->state);
1500
1501 for (i = 0; i < adapter->num_rx_queues; i++)
1502 napi_enable(&adapter->rx_ring[i].napi);
1503
1504 /* Clear any pending interrupts. */
1505 rd32(E1000_ICR);
1506
1507 igb_irq_enable(adapter);
1508
1509 netif_tx_start_all_queues(netdev);
1510
1511 /* Fire a link status change interrupt to start the watchdog. */
1512 wr32(E1000_ICS, E1000_ICS_LSC);
1513
1514 return 0;
1515
1516 err_req_irq:
1517 igb_release_hw_control(adapter);
1518 /* e1000_power_down_phy(adapter); */
1519 igb_free_all_rx_resources(adapter);
1520 err_setup_rx:
1521 igb_free_all_tx_resources(adapter);
1522 err_setup_tx:
1523 igb_reset(adapter);
1524
1525 return err;
1526 }
1527
1528 /**
1529 * igb_close - Disables a network interface
1530 * @netdev: network interface device structure
1531 *
1532 * Returns 0, this is not allowed to fail
1533 *
1534 * The close entry point is called when an interface is de-activated
1535 * by the OS. The hardware is still under the driver's control, but
1536 * needs to be disabled. A global MAC reset is issued to stop the
1537 * hardware, and all transmit and receive resources are freed.
1538 **/
1539 static int igb_close(struct net_device *netdev)
1540 {
1541 struct igb_adapter *adapter = netdev_priv(netdev);
1542
1543 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1544 igb_down(adapter);
1545
1546 igb_free_irq(adapter);
1547
1548 igb_free_all_tx_resources(adapter);
1549 igb_free_all_rx_resources(adapter);
1550
1551 /* kill manageability vlan ID if supported, but not if a vlan with
1552 * the same ID is registered on the host OS (let 8021q kill it) */
1553 if ((adapter->hw.mng_cookie.status &
1554 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1555 !(adapter->vlgrp &&
1556 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1557 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1558
1559 return 0;
1560 }
1561
1562 /**
1563 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1564 * @adapter: board private structure
1565 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1566 *
1567 * Return 0 on success, negative on failure
1568 **/
1569
1570 int igb_setup_tx_resources(struct igb_adapter *adapter,
1571 struct igb_ring *tx_ring)
1572 {
1573 struct pci_dev *pdev = adapter->pdev;
1574 int size;
1575
1576 size = sizeof(struct igb_buffer) * tx_ring->count;
1577 tx_ring->buffer_info = vmalloc(size);
1578 if (!tx_ring->buffer_info)
1579 goto err;
1580 memset(tx_ring->buffer_info, 0, size);
1581
1582 /* round up to nearest 4K */
1583 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1584 tx_ring->size = ALIGN(tx_ring->size, 4096);
1585
1586 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1587 &tx_ring->dma);
1588
1589 if (!tx_ring->desc)
1590 goto err;
1591
1592 tx_ring->adapter = adapter;
1593 tx_ring->next_to_use = 0;
1594 tx_ring->next_to_clean = 0;
1595 return 0;
1596
1597 err:
1598 vfree(tx_ring->buffer_info);
1599 dev_err(&adapter->pdev->dev,
1600 "Unable to allocate memory for the transmit descriptor ring\n");
1601 return -ENOMEM;
1602 }
1603
1604 /**
1605 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1606 * (Descriptors) for all queues
1607 * @adapter: board private structure
1608 *
1609 * Return 0 on success, negative on failure
1610 **/
1611 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1612 {
1613 int i, err = 0;
1614 int r_idx;
1615
1616 for (i = 0; i < adapter->num_tx_queues; i++) {
1617 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1618 if (err) {
1619 dev_err(&adapter->pdev->dev,
1620 "Allocation for Tx Queue %u failed\n", i);
1621 for (i--; i >= 0; i--)
1622 igb_free_tx_resources(&adapter->tx_ring[i]);
1623 break;
1624 }
1625 }
1626
1627 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1628 r_idx = i % adapter->num_tx_queues;
1629 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1630 }
1631 return err;
1632 }
1633
1634 /**
1635 * igb_configure_tx - Configure transmit Unit after Reset
1636 * @adapter: board private structure
1637 *
1638 * Configure the Tx unit of the MAC after a reset.
1639 **/
1640 static void igb_configure_tx(struct igb_adapter *adapter)
1641 {
1642 u64 tdba;
1643 struct e1000_hw *hw = &adapter->hw;
1644 u32 tctl;
1645 u32 txdctl, txctrl;
1646 int i, j;
1647
1648 for (i = 0; i < adapter->num_tx_queues; i++) {
1649 struct igb_ring *ring = &(adapter->tx_ring[i]);
1650 j = ring->reg_idx;
1651 wr32(E1000_TDLEN(j),
1652 ring->count * sizeof(struct e1000_tx_desc));
1653 tdba = ring->dma;
1654 wr32(E1000_TDBAL(j),
1655 tdba & 0x00000000ffffffffULL);
1656 wr32(E1000_TDBAH(j), tdba >> 32);
1657
1658 ring->head = E1000_TDH(j);
1659 ring->tail = E1000_TDT(j);
1660 writel(0, hw->hw_addr + ring->tail);
1661 writel(0, hw->hw_addr + ring->head);
1662 txdctl = rd32(E1000_TXDCTL(j));
1663 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1664 wr32(E1000_TXDCTL(j), txdctl);
1665
1666 /* Turn off Relaxed Ordering on head write-backs. The
1667 * writebacks MUST be delivered in order or it will
1668 * completely screw up our bookeeping.
1669 */
1670 txctrl = rd32(E1000_DCA_TXCTRL(j));
1671 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1672 wr32(E1000_DCA_TXCTRL(j), txctrl);
1673 }
1674
1675
1676
1677 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1678
1679 /* Program the Transmit Control Register */
1680
1681 tctl = rd32(E1000_TCTL);
1682 tctl &= ~E1000_TCTL_CT;
1683 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1684 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1685
1686 igb_config_collision_dist(hw);
1687
1688 /* Setup Transmit Descriptor Settings for eop descriptor */
1689 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1690
1691 /* Enable transmits */
1692 tctl |= E1000_TCTL_EN;
1693
1694 wr32(E1000_TCTL, tctl);
1695 }
1696
1697 /**
1698 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1699 * @adapter: board private structure
1700 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1701 *
1702 * Returns 0 on success, negative on failure
1703 **/
1704
1705 int igb_setup_rx_resources(struct igb_adapter *adapter,
1706 struct igb_ring *rx_ring)
1707 {
1708 struct pci_dev *pdev = adapter->pdev;
1709 int size, desc_len;
1710
1711 size = sizeof(struct igb_buffer) * rx_ring->count;
1712 rx_ring->buffer_info = vmalloc(size);
1713 if (!rx_ring->buffer_info)
1714 goto err;
1715 memset(rx_ring->buffer_info, 0, size);
1716
1717 desc_len = sizeof(union e1000_adv_rx_desc);
1718
1719 /* Round up to nearest 4K */
1720 rx_ring->size = rx_ring->count * desc_len;
1721 rx_ring->size = ALIGN(rx_ring->size, 4096);
1722
1723 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1724 &rx_ring->dma);
1725
1726 if (!rx_ring->desc)
1727 goto err;
1728
1729 rx_ring->next_to_clean = 0;
1730 rx_ring->next_to_use = 0;
1731
1732 rx_ring->adapter = adapter;
1733
1734 return 0;
1735
1736 err:
1737 vfree(rx_ring->buffer_info);
1738 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1739 "the receive descriptor ring\n");
1740 return -ENOMEM;
1741 }
1742
1743 /**
1744 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1745 * (Descriptors) for all queues
1746 * @adapter: board private structure
1747 *
1748 * Return 0 on success, negative on failure
1749 **/
1750 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1751 {
1752 int i, err = 0;
1753
1754 for (i = 0; i < adapter->num_rx_queues; i++) {
1755 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1756 if (err) {
1757 dev_err(&adapter->pdev->dev,
1758 "Allocation for Rx Queue %u failed\n", i);
1759 for (i--; i >= 0; i--)
1760 igb_free_rx_resources(&adapter->rx_ring[i]);
1761 break;
1762 }
1763 }
1764
1765 return err;
1766 }
1767
1768 /**
1769 * igb_setup_rctl - configure the receive control registers
1770 * @adapter: Board private structure
1771 **/
1772 static void igb_setup_rctl(struct igb_adapter *adapter)
1773 {
1774 struct e1000_hw *hw = &adapter->hw;
1775 u32 rctl;
1776 u32 srrctl = 0;
1777 int i, j;
1778
1779 rctl = rd32(E1000_RCTL);
1780
1781 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1782 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1783
1784 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1785 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1786
1787 /*
1788 * enable stripping of CRC. It's unlikely this will break BMC
1789 * redirection as it did with e1000. Newer features require
1790 * that the HW strips the CRC.
1791 */
1792 rctl |= E1000_RCTL_SECRC;
1793
1794 /*
1795 * disable store bad packets and clear size bits.
1796 */
1797 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1798
1799 /* enable LPE when to prevent packets larger than max_frame_size */
1800 rctl |= E1000_RCTL_LPE;
1801
1802 /* Setup buffer sizes */
1803 switch (adapter->rx_buffer_len) {
1804 case IGB_RXBUFFER_256:
1805 rctl |= E1000_RCTL_SZ_256;
1806 break;
1807 case IGB_RXBUFFER_512:
1808 rctl |= E1000_RCTL_SZ_512;
1809 break;
1810 default:
1811 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1812 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1813 break;
1814 }
1815
1816 /* 82575 and greater support packet-split where the protocol
1817 * header is placed in skb->data and the packet data is
1818 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1819 * In the case of a non-split, skb->data is linearly filled,
1820 * followed by the page buffers. Therefore, skb->data is
1821 * sized to hold the largest protocol header.
1822 */
1823 /* allocations using alloc_page take too long for regular MTU
1824 * so only enable packet split for jumbo frames */
1825 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1826 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1827 srrctl |= adapter->rx_ps_hdr_size <<
1828 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1829 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1830 } else {
1831 adapter->rx_ps_hdr_size = 0;
1832 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1833 }
1834
1835 for (i = 0; i < adapter->num_rx_queues; i++) {
1836 j = adapter->rx_ring[i].reg_idx;
1837 wr32(E1000_SRRCTL(j), srrctl);
1838 }
1839
1840 wr32(E1000_RCTL, rctl);
1841 }
1842
1843 /**
1844 * igb_configure_rx - Configure receive Unit after Reset
1845 * @adapter: board private structure
1846 *
1847 * Configure the Rx unit of the MAC after a reset.
1848 **/
1849 static void igb_configure_rx(struct igb_adapter *adapter)
1850 {
1851 u64 rdba;
1852 struct e1000_hw *hw = &adapter->hw;
1853 u32 rctl, rxcsum;
1854 u32 rxdctl;
1855 int i, j;
1856
1857 /* disable receives while setting up the descriptors */
1858 rctl = rd32(E1000_RCTL);
1859 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1860 wrfl();
1861 mdelay(10);
1862
1863 if (adapter->itr_setting > 3)
1864 wr32(E1000_ITR, adapter->itr);
1865
1866 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1867 * the Base and Length of the Rx Descriptor Ring */
1868 for (i = 0; i < adapter->num_rx_queues; i++) {
1869 struct igb_ring *ring = &(adapter->rx_ring[i]);
1870 j = ring->reg_idx;
1871 rdba = ring->dma;
1872 wr32(E1000_RDBAL(j),
1873 rdba & 0x00000000ffffffffULL);
1874 wr32(E1000_RDBAH(j), rdba >> 32);
1875 wr32(E1000_RDLEN(j),
1876 ring->count * sizeof(union e1000_adv_rx_desc));
1877
1878 ring->head = E1000_RDH(j);
1879 ring->tail = E1000_RDT(j);
1880 writel(0, hw->hw_addr + ring->tail);
1881 writel(0, hw->hw_addr + ring->head);
1882
1883 rxdctl = rd32(E1000_RXDCTL(j));
1884 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1885 rxdctl &= 0xFFF00000;
1886 rxdctl |= IGB_RX_PTHRESH;
1887 rxdctl |= IGB_RX_HTHRESH << 8;
1888 rxdctl |= IGB_RX_WTHRESH << 16;
1889 wr32(E1000_RXDCTL(j), rxdctl);
1890 }
1891
1892 if (adapter->num_rx_queues > 1) {
1893 u32 random[10];
1894 u32 mrqc;
1895 u32 j, shift;
1896 union e1000_reta {
1897 u32 dword;
1898 u8 bytes[4];
1899 } reta;
1900
1901 get_random_bytes(&random[0], 40);
1902
1903 if (hw->mac.type >= e1000_82576)
1904 shift = 0;
1905 else
1906 shift = 6;
1907 for (j = 0; j < (32 * 4); j++) {
1908 reta.bytes[j & 3] =
1909 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1910 if ((j & 3) == 3)
1911 writel(reta.dword,
1912 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1913 }
1914 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1915
1916 /* Fill out hash function seeds */
1917 for (j = 0; j < 10; j++)
1918 array_wr32(E1000_RSSRK(0), j, random[j]);
1919
1920 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1921 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1922 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1923 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1924 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1925 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1926 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1927 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1928
1929
1930 wr32(E1000_MRQC, mrqc);
1931
1932 /* Multiqueue and raw packet checksumming are mutually
1933 * exclusive. Note that this not the same as TCP/IP
1934 * checksumming, which works fine. */
1935 rxcsum = rd32(E1000_RXCSUM);
1936 rxcsum |= E1000_RXCSUM_PCSD;
1937 wr32(E1000_RXCSUM, rxcsum);
1938 } else {
1939 /* Enable Receive Checksum Offload for TCP and UDP */
1940 rxcsum = rd32(E1000_RXCSUM);
1941 if (adapter->rx_csum) {
1942 rxcsum |= E1000_RXCSUM_TUOFL;
1943
1944 /* Enable IPv4 payload checksum for UDP fragments
1945 * Must be used in conjunction with packet-split. */
1946 if (adapter->rx_ps_hdr_size)
1947 rxcsum |= E1000_RXCSUM_IPPCSE;
1948 } else {
1949 rxcsum &= ~E1000_RXCSUM_TUOFL;
1950 /* don't need to clear IPPCSE as it defaults to 0 */
1951 }
1952 wr32(E1000_RXCSUM, rxcsum);
1953 }
1954
1955 if (adapter->vlgrp)
1956 wr32(E1000_RLPML,
1957 adapter->max_frame_size + VLAN_TAG_SIZE);
1958 else
1959 wr32(E1000_RLPML, adapter->max_frame_size);
1960
1961 /* Enable Receives */
1962 wr32(E1000_RCTL, rctl);
1963 }
1964
1965 /**
1966 * igb_free_tx_resources - Free Tx Resources per Queue
1967 * @tx_ring: Tx descriptor ring for a specific queue
1968 *
1969 * Free all transmit software resources
1970 **/
1971 void igb_free_tx_resources(struct igb_ring *tx_ring)
1972 {
1973 struct pci_dev *pdev = tx_ring->adapter->pdev;
1974
1975 igb_clean_tx_ring(tx_ring);
1976
1977 vfree(tx_ring->buffer_info);
1978 tx_ring->buffer_info = NULL;
1979
1980 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1981
1982 tx_ring->desc = NULL;
1983 }
1984
1985 /**
1986 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1987 * @adapter: board private structure
1988 *
1989 * Free all transmit software resources
1990 **/
1991 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1992 {
1993 int i;
1994
1995 for (i = 0; i < adapter->num_tx_queues; i++)
1996 igb_free_tx_resources(&adapter->tx_ring[i]);
1997 }
1998
1999 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2000 struct igb_buffer *buffer_info)
2001 {
2002 if (buffer_info->dma) {
2003 pci_unmap_page(adapter->pdev,
2004 buffer_info->dma,
2005 buffer_info->length,
2006 PCI_DMA_TODEVICE);
2007 buffer_info->dma = 0;
2008 }
2009 if (buffer_info->skb) {
2010 dev_kfree_skb_any(buffer_info->skb);
2011 buffer_info->skb = NULL;
2012 }
2013 buffer_info->time_stamp = 0;
2014 /* buffer_info must be completely set up in the transmit path */
2015 }
2016
2017 /**
2018 * igb_clean_tx_ring - Free Tx Buffers
2019 * @tx_ring: ring to be cleaned
2020 **/
2021 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2022 {
2023 struct igb_adapter *adapter = tx_ring->adapter;
2024 struct igb_buffer *buffer_info;
2025 unsigned long size;
2026 unsigned int i;
2027
2028 if (!tx_ring->buffer_info)
2029 return;
2030 /* Free all the Tx ring sk_buffs */
2031
2032 for (i = 0; i < tx_ring->count; i++) {
2033 buffer_info = &tx_ring->buffer_info[i];
2034 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2035 }
2036
2037 size = sizeof(struct igb_buffer) * tx_ring->count;
2038 memset(tx_ring->buffer_info, 0, size);
2039
2040 /* Zero out the descriptor ring */
2041
2042 memset(tx_ring->desc, 0, tx_ring->size);
2043
2044 tx_ring->next_to_use = 0;
2045 tx_ring->next_to_clean = 0;
2046
2047 writel(0, adapter->hw.hw_addr + tx_ring->head);
2048 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2049 }
2050
2051 /**
2052 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2053 * @adapter: board private structure
2054 **/
2055 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2056 {
2057 int i;
2058
2059 for (i = 0; i < adapter->num_tx_queues; i++)
2060 igb_clean_tx_ring(&adapter->tx_ring[i]);
2061 }
2062
2063 /**
2064 * igb_free_rx_resources - Free Rx Resources
2065 * @rx_ring: ring to clean the resources from
2066 *
2067 * Free all receive software resources
2068 **/
2069 void igb_free_rx_resources(struct igb_ring *rx_ring)
2070 {
2071 struct pci_dev *pdev = rx_ring->adapter->pdev;
2072
2073 igb_clean_rx_ring(rx_ring);
2074
2075 vfree(rx_ring->buffer_info);
2076 rx_ring->buffer_info = NULL;
2077
2078 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2079
2080 rx_ring->desc = NULL;
2081 }
2082
2083 /**
2084 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2085 * @adapter: board private structure
2086 *
2087 * Free all receive software resources
2088 **/
2089 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2090 {
2091 int i;
2092
2093 for (i = 0; i < adapter->num_rx_queues; i++)
2094 igb_free_rx_resources(&adapter->rx_ring[i]);
2095 }
2096
2097 /**
2098 * igb_clean_rx_ring - Free Rx Buffers per Queue
2099 * @rx_ring: ring to free buffers from
2100 **/
2101 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2102 {
2103 struct igb_adapter *adapter = rx_ring->adapter;
2104 struct igb_buffer *buffer_info;
2105 struct pci_dev *pdev = adapter->pdev;
2106 unsigned long size;
2107 unsigned int i;
2108
2109 if (!rx_ring->buffer_info)
2110 return;
2111 /* Free all the Rx ring sk_buffs */
2112 for (i = 0; i < rx_ring->count; i++) {
2113 buffer_info = &rx_ring->buffer_info[i];
2114 if (buffer_info->dma) {
2115 if (adapter->rx_ps_hdr_size)
2116 pci_unmap_single(pdev, buffer_info->dma,
2117 adapter->rx_ps_hdr_size,
2118 PCI_DMA_FROMDEVICE);
2119 else
2120 pci_unmap_single(pdev, buffer_info->dma,
2121 adapter->rx_buffer_len,
2122 PCI_DMA_FROMDEVICE);
2123 buffer_info->dma = 0;
2124 }
2125
2126 if (buffer_info->skb) {
2127 dev_kfree_skb(buffer_info->skb);
2128 buffer_info->skb = NULL;
2129 }
2130 if (buffer_info->page) {
2131 if (buffer_info->page_dma)
2132 pci_unmap_page(pdev, buffer_info->page_dma,
2133 PAGE_SIZE / 2,
2134 PCI_DMA_FROMDEVICE);
2135 put_page(buffer_info->page);
2136 buffer_info->page = NULL;
2137 buffer_info->page_dma = 0;
2138 buffer_info->page_offset = 0;
2139 }
2140 }
2141
2142 size = sizeof(struct igb_buffer) * rx_ring->count;
2143 memset(rx_ring->buffer_info, 0, size);
2144
2145 /* Zero out the descriptor ring */
2146 memset(rx_ring->desc, 0, rx_ring->size);
2147
2148 rx_ring->next_to_clean = 0;
2149 rx_ring->next_to_use = 0;
2150
2151 writel(0, adapter->hw.hw_addr + rx_ring->head);
2152 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2153 }
2154
2155 /**
2156 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2157 * @adapter: board private structure
2158 **/
2159 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2160 {
2161 int i;
2162
2163 for (i = 0; i < adapter->num_rx_queues; i++)
2164 igb_clean_rx_ring(&adapter->rx_ring[i]);
2165 }
2166
2167 /**
2168 * igb_set_mac - Change the Ethernet Address of the NIC
2169 * @netdev: network interface device structure
2170 * @p: pointer to an address structure
2171 *
2172 * Returns 0 on success, negative on failure
2173 **/
2174 static int igb_set_mac(struct net_device *netdev, void *p)
2175 {
2176 struct igb_adapter *adapter = netdev_priv(netdev);
2177 struct e1000_hw *hw = &adapter->hw;
2178 struct sockaddr *addr = p;
2179
2180 if (!is_valid_ether_addr(addr->sa_data))
2181 return -EADDRNOTAVAIL;
2182
2183 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2184 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2185
2186 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2187
2188 return 0;
2189 }
2190
2191 /**
2192 * igb_set_multi - Multicast and Promiscuous mode set
2193 * @netdev: network interface device structure
2194 *
2195 * The set_multi entry point is called whenever the multicast address
2196 * list or the network interface flags are updated. This routine is
2197 * responsible for configuring the hardware for proper multicast,
2198 * promiscuous mode, and all-multi behavior.
2199 **/
2200 static void igb_set_multi(struct net_device *netdev)
2201 {
2202 struct igb_adapter *adapter = netdev_priv(netdev);
2203 struct e1000_hw *hw = &adapter->hw;
2204 struct e1000_mac_info *mac = &hw->mac;
2205 struct dev_mc_list *mc_ptr;
2206 u8 *mta_list;
2207 u32 rctl;
2208 int i;
2209
2210 /* Check for Promiscuous and All Multicast modes */
2211
2212 rctl = rd32(E1000_RCTL);
2213
2214 if (netdev->flags & IFF_PROMISC) {
2215 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2216 rctl &= ~E1000_RCTL_VFE;
2217 } else {
2218 if (netdev->flags & IFF_ALLMULTI) {
2219 rctl |= E1000_RCTL_MPE;
2220 rctl &= ~E1000_RCTL_UPE;
2221 } else
2222 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2223 rctl |= E1000_RCTL_VFE;
2224 }
2225 wr32(E1000_RCTL, rctl);
2226
2227 if (!netdev->mc_count) {
2228 /* nothing to program, so clear mc list */
2229 igb_update_mc_addr_list(hw, NULL, 0, 1,
2230 mac->rar_entry_count);
2231 return;
2232 }
2233
2234 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2235 if (!mta_list)
2236 return;
2237
2238 /* The shared function expects a packed array of only addresses. */
2239 mc_ptr = netdev->mc_list;
2240
2241 for (i = 0; i < netdev->mc_count; i++) {
2242 if (!mc_ptr)
2243 break;
2244 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2245 mc_ptr = mc_ptr->next;
2246 }
2247 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2248 kfree(mta_list);
2249 }
2250
2251 /* Need to wait a few seconds after link up to get diagnostic information from
2252 * the phy */
2253 static void igb_update_phy_info(unsigned long data)
2254 {
2255 struct igb_adapter *adapter = (struct igb_adapter *) data;
2256 igb_get_phy_info(&adapter->hw);
2257 }
2258
2259 /**
2260 * igb_has_link - check shared code for link and determine up/down
2261 * @adapter: pointer to driver private info
2262 **/
2263 static bool igb_has_link(struct igb_adapter *adapter)
2264 {
2265 struct e1000_hw *hw = &adapter->hw;
2266 bool link_active = false;
2267 s32 ret_val = 0;
2268
2269 /* get_link_status is set on LSC (link status) interrupt or
2270 * rx sequence error interrupt. get_link_status will stay
2271 * false until the e1000_check_for_link establishes link
2272 * for copper adapters ONLY
2273 */
2274 switch (hw->phy.media_type) {
2275 case e1000_media_type_copper:
2276 if (hw->mac.get_link_status) {
2277 ret_val = hw->mac.ops.check_for_link(hw);
2278 link_active = !hw->mac.get_link_status;
2279 } else {
2280 link_active = true;
2281 }
2282 break;
2283 case e1000_media_type_fiber:
2284 ret_val = hw->mac.ops.check_for_link(hw);
2285 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2286 break;
2287 case e1000_media_type_internal_serdes:
2288 ret_val = hw->mac.ops.check_for_link(hw);
2289 link_active = hw->mac.serdes_has_link;
2290 break;
2291 default:
2292 case e1000_media_type_unknown:
2293 break;
2294 }
2295
2296 return link_active;
2297 }
2298
2299 /**
2300 * igb_watchdog - Timer Call-back
2301 * @data: pointer to adapter cast into an unsigned long
2302 **/
2303 static void igb_watchdog(unsigned long data)
2304 {
2305 struct igb_adapter *adapter = (struct igb_adapter *)data;
2306 /* Do the rest outside of interrupt context */
2307 schedule_work(&adapter->watchdog_task);
2308 }
2309
2310 static void igb_watchdog_task(struct work_struct *work)
2311 {
2312 struct igb_adapter *adapter = container_of(work,
2313 struct igb_adapter, watchdog_task);
2314 struct e1000_hw *hw = &adapter->hw;
2315 struct net_device *netdev = adapter->netdev;
2316 struct igb_ring *tx_ring = adapter->tx_ring;
2317 u32 link;
2318 u32 eics = 0;
2319 int i;
2320
2321 link = igb_has_link(adapter);
2322 if ((netif_carrier_ok(netdev)) && link)
2323 goto link_up;
2324
2325 if (link) {
2326 if (!netif_carrier_ok(netdev)) {
2327 u32 ctrl;
2328 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2329 &adapter->link_speed,
2330 &adapter->link_duplex);
2331
2332 ctrl = rd32(E1000_CTRL);
2333 /* Links status message must follow this format */
2334 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2335 "Flow Control: %s\n",
2336 netdev->name,
2337 adapter->link_speed,
2338 adapter->link_duplex == FULL_DUPLEX ?
2339 "Full Duplex" : "Half Duplex",
2340 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2341 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2342 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2343 E1000_CTRL_TFCE) ? "TX" : "None")));
2344
2345 /* tweak tx_queue_len according to speed/duplex and
2346 * adjust the timeout factor */
2347 netdev->tx_queue_len = adapter->tx_queue_len;
2348 adapter->tx_timeout_factor = 1;
2349 switch (adapter->link_speed) {
2350 case SPEED_10:
2351 netdev->tx_queue_len = 10;
2352 adapter->tx_timeout_factor = 14;
2353 break;
2354 case SPEED_100:
2355 netdev->tx_queue_len = 100;
2356 /* maybe add some timeout factor ? */
2357 break;
2358 }
2359
2360 netif_carrier_on(netdev);
2361 netif_tx_wake_all_queues(netdev);
2362
2363 /* link state has changed, schedule phy info update */
2364 if (!test_bit(__IGB_DOWN, &adapter->state))
2365 mod_timer(&adapter->phy_info_timer,
2366 round_jiffies(jiffies + 2 * HZ));
2367 }
2368 } else {
2369 if (netif_carrier_ok(netdev)) {
2370 adapter->link_speed = 0;
2371 adapter->link_duplex = 0;
2372 /* Links status message must follow this format */
2373 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2374 netdev->name);
2375 netif_carrier_off(netdev);
2376 netif_tx_stop_all_queues(netdev);
2377
2378 /* link state has changed, schedule phy info update */
2379 if (!test_bit(__IGB_DOWN, &adapter->state))
2380 mod_timer(&adapter->phy_info_timer,
2381 round_jiffies(jiffies + 2 * HZ));
2382 }
2383 }
2384
2385 link_up:
2386 igb_update_stats(adapter);
2387
2388 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2389 adapter->tpt_old = adapter->stats.tpt;
2390 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2391 adapter->colc_old = adapter->stats.colc;
2392
2393 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2394 adapter->gorc_old = adapter->stats.gorc;
2395 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2396 adapter->gotc_old = adapter->stats.gotc;
2397
2398 igb_update_adaptive(&adapter->hw);
2399
2400 if (!netif_carrier_ok(netdev)) {
2401 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2402 /* We've lost link, so the controller stops DMA,
2403 * but we've got queued Tx work that's never going
2404 * to get done, so reset controller to flush Tx.
2405 * (Do the reset outside of interrupt context). */
2406 adapter->tx_timeout_count++;
2407 schedule_work(&adapter->reset_task);
2408 }
2409 }
2410
2411 /* Cause software interrupt to ensure rx ring is cleaned */
2412 if (adapter->msix_entries) {
2413 for (i = 0; i < adapter->num_rx_queues; i++)
2414 eics |= adapter->rx_ring[i].eims_value;
2415 wr32(E1000_EICS, eics);
2416 } else {
2417 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2418 }
2419
2420 /* Force detection of hung controller every watchdog period */
2421 tx_ring->detect_tx_hung = true;
2422
2423 /* Reset the timer */
2424 if (!test_bit(__IGB_DOWN, &adapter->state))
2425 mod_timer(&adapter->watchdog_timer,
2426 round_jiffies(jiffies + 2 * HZ));
2427 }
2428
2429 enum latency_range {
2430 lowest_latency = 0,
2431 low_latency = 1,
2432 bulk_latency = 2,
2433 latency_invalid = 255
2434 };
2435
2436
2437 /**
2438 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2439 *
2440 * Stores a new ITR value based on strictly on packet size. This
2441 * algorithm is less sophisticated than that used in igb_update_itr,
2442 * due to the difficulty of synchronizing statistics across multiple
2443 * receive rings. The divisors and thresholds used by this fuction
2444 * were determined based on theoretical maximum wire speed and testing
2445 * data, in order to minimize response time while increasing bulk
2446 * throughput.
2447 * This functionality is controlled by the InterruptThrottleRate module
2448 * parameter (see igb_param.c)
2449 * NOTE: This function is called only when operating in a multiqueue
2450 * receive environment.
2451 * @rx_ring: pointer to ring
2452 **/
2453 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2454 {
2455 int new_val = rx_ring->itr_val;
2456 int avg_wire_size = 0;
2457 struct igb_adapter *adapter = rx_ring->adapter;
2458
2459 if (!rx_ring->total_packets)
2460 goto clear_counts; /* no packets, so don't do anything */
2461
2462 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2463 * ints/sec - ITR timer value of 120 ticks.
2464 */
2465 if (adapter->link_speed != SPEED_1000) {
2466 new_val = 120;
2467 goto set_itr_val;
2468 }
2469 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2470
2471 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2472 avg_wire_size += 24;
2473
2474 /* Don't starve jumbo frames */
2475 avg_wire_size = min(avg_wire_size, 3000);
2476
2477 /* Give a little boost to mid-size frames */
2478 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2479 new_val = avg_wire_size / 3;
2480 else
2481 new_val = avg_wire_size / 2;
2482
2483 set_itr_val:
2484 if (new_val != rx_ring->itr_val) {
2485 rx_ring->itr_val = new_val;
2486 rx_ring->set_itr = 1;
2487 }
2488 clear_counts:
2489 rx_ring->total_bytes = 0;
2490 rx_ring->total_packets = 0;
2491 }
2492
2493 /**
2494 * igb_update_itr - update the dynamic ITR value based on statistics
2495 * Stores a new ITR value based on packets and byte
2496 * counts during the last interrupt. The advantage of per interrupt
2497 * computation is faster updates and more accurate ITR for the current
2498 * traffic pattern. Constants in this function were computed
2499 * based on theoretical maximum wire speed and thresholds were set based
2500 * on testing data as well as attempting to minimize response time
2501 * while increasing bulk throughput.
2502 * this functionality is controlled by the InterruptThrottleRate module
2503 * parameter (see igb_param.c)
2504 * NOTE: These calculations are only valid when operating in a single-
2505 * queue environment.
2506 * @adapter: pointer to adapter
2507 * @itr_setting: current adapter->itr
2508 * @packets: the number of packets during this measurement interval
2509 * @bytes: the number of bytes during this measurement interval
2510 **/
2511 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2512 int packets, int bytes)
2513 {
2514 unsigned int retval = itr_setting;
2515
2516 if (packets == 0)
2517 goto update_itr_done;
2518
2519 switch (itr_setting) {
2520 case lowest_latency:
2521 /* handle TSO and jumbo frames */
2522 if (bytes/packets > 8000)
2523 retval = bulk_latency;
2524 else if ((packets < 5) && (bytes > 512))
2525 retval = low_latency;
2526 break;
2527 case low_latency: /* 50 usec aka 20000 ints/s */
2528 if (bytes > 10000) {
2529 /* this if handles the TSO accounting */
2530 if (bytes/packets > 8000) {
2531 retval = bulk_latency;
2532 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2533 retval = bulk_latency;
2534 } else if ((packets > 35)) {
2535 retval = lowest_latency;
2536 }
2537 } else if (bytes/packets > 2000) {
2538 retval = bulk_latency;
2539 } else if (packets <= 2 && bytes < 512) {
2540 retval = lowest_latency;
2541 }
2542 break;
2543 case bulk_latency: /* 250 usec aka 4000 ints/s */
2544 if (bytes > 25000) {
2545 if (packets > 35)
2546 retval = low_latency;
2547 } else if (bytes < 6000) {
2548 retval = low_latency;
2549 }
2550 break;
2551 }
2552
2553 update_itr_done:
2554 return retval;
2555 }
2556
2557 static void igb_set_itr(struct igb_adapter *adapter)
2558 {
2559 u16 current_itr;
2560 u32 new_itr = adapter->itr;
2561
2562 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2563 if (adapter->link_speed != SPEED_1000) {
2564 current_itr = 0;
2565 new_itr = 4000;
2566 goto set_itr_now;
2567 }
2568
2569 adapter->rx_itr = igb_update_itr(adapter,
2570 adapter->rx_itr,
2571 adapter->rx_ring->total_packets,
2572 adapter->rx_ring->total_bytes);
2573
2574 if (adapter->rx_ring->buddy) {
2575 adapter->tx_itr = igb_update_itr(adapter,
2576 adapter->tx_itr,
2577 adapter->tx_ring->total_packets,
2578 adapter->tx_ring->total_bytes);
2579
2580 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2581 } else {
2582 current_itr = adapter->rx_itr;
2583 }
2584
2585 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2586 if (adapter->itr_setting == 3 &&
2587 current_itr == lowest_latency)
2588 current_itr = low_latency;
2589
2590 switch (current_itr) {
2591 /* counts and packets in update_itr are dependent on these numbers */
2592 case lowest_latency:
2593 new_itr = 70000;
2594 break;
2595 case low_latency:
2596 new_itr = 20000; /* aka hwitr = ~200 */
2597 break;
2598 case bulk_latency:
2599 new_itr = 4000;
2600 break;
2601 default:
2602 break;
2603 }
2604
2605 set_itr_now:
2606 adapter->rx_ring->total_bytes = 0;
2607 adapter->rx_ring->total_packets = 0;
2608 if (adapter->rx_ring->buddy) {
2609 adapter->rx_ring->buddy->total_bytes = 0;
2610 adapter->rx_ring->buddy->total_packets = 0;
2611 }
2612
2613 if (new_itr != adapter->itr) {
2614 /* this attempts to bias the interrupt rate towards Bulk
2615 * by adding intermediate steps when interrupt rate is
2616 * increasing */
2617 new_itr = new_itr > adapter->itr ?
2618 min(adapter->itr + (new_itr >> 2), new_itr) :
2619 new_itr;
2620 /* Don't write the value here; it resets the adapter's
2621 * internal timer, and causes us to delay far longer than
2622 * we should between interrupts. Instead, we write the ITR
2623 * value at the beginning of the next interrupt so the timing
2624 * ends up being correct.
2625 */
2626 adapter->itr = new_itr;
2627 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2628 adapter->rx_ring->set_itr = 1;
2629 }
2630
2631 return;
2632 }
2633
2634
2635 #define IGB_TX_FLAGS_CSUM 0x00000001
2636 #define IGB_TX_FLAGS_VLAN 0x00000002
2637 #define IGB_TX_FLAGS_TSO 0x00000004
2638 #define IGB_TX_FLAGS_IPV4 0x00000008
2639 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2640 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2641
2642 static inline int igb_tso_adv(struct igb_adapter *adapter,
2643 struct igb_ring *tx_ring,
2644 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2645 {
2646 struct e1000_adv_tx_context_desc *context_desc;
2647 unsigned int i;
2648 int err;
2649 struct igb_buffer *buffer_info;
2650 u32 info = 0, tu_cmd = 0;
2651 u32 mss_l4len_idx, l4len;
2652 *hdr_len = 0;
2653
2654 if (skb_header_cloned(skb)) {
2655 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2656 if (err)
2657 return err;
2658 }
2659
2660 l4len = tcp_hdrlen(skb);
2661 *hdr_len += l4len;
2662
2663 if (skb->protocol == htons(ETH_P_IP)) {
2664 struct iphdr *iph = ip_hdr(skb);
2665 iph->tot_len = 0;
2666 iph->check = 0;
2667 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2668 iph->daddr, 0,
2669 IPPROTO_TCP,
2670 0);
2671 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2672 ipv6_hdr(skb)->payload_len = 0;
2673 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2674 &ipv6_hdr(skb)->daddr,
2675 0, IPPROTO_TCP, 0);
2676 }
2677
2678 i = tx_ring->next_to_use;
2679
2680 buffer_info = &tx_ring->buffer_info[i];
2681 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2682 /* VLAN MACLEN IPLEN */
2683 if (tx_flags & IGB_TX_FLAGS_VLAN)
2684 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2685 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2686 *hdr_len += skb_network_offset(skb);
2687 info |= skb_network_header_len(skb);
2688 *hdr_len += skb_network_header_len(skb);
2689 context_desc->vlan_macip_lens = cpu_to_le32(info);
2690
2691 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2692 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2693
2694 if (skb->protocol == htons(ETH_P_IP))
2695 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2696 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2697
2698 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2699
2700 /* MSS L4LEN IDX */
2701 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2702 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2703
2704 /* Context index must be unique per ring. */
2705 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2706 mss_l4len_idx |= tx_ring->queue_index << 4;
2707
2708 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2709 context_desc->seqnum_seed = 0;
2710
2711 buffer_info->time_stamp = jiffies;
2712 buffer_info->next_to_watch = i;
2713 buffer_info->dma = 0;
2714 i++;
2715 if (i == tx_ring->count)
2716 i = 0;
2717
2718 tx_ring->next_to_use = i;
2719
2720 return true;
2721 }
2722
2723 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2724 struct igb_ring *tx_ring,
2725 struct sk_buff *skb, u32 tx_flags)
2726 {
2727 struct e1000_adv_tx_context_desc *context_desc;
2728 unsigned int i;
2729 struct igb_buffer *buffer_info;
2730 u32 info = 0, tu_cmd = 0;
2731
2732 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2733 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2734 i = tx_ring->next_to_use;
2735 buffer_info = &tx_ring->buffer_info[i];
2736 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2737
2738 if (tx_flags & IGB_TX_FLAGS_VLAN)
2739 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2740 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2741 if (skb->ip_summed == CHECKSUM_PARTIAL)
2742 info |= skb_network_header_len(skb);
2743
2744 context_desc->vlan_macip_lens = cpu_to_le32(info);
2745
2746 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2747
2748 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2749 switch (skb->protocol) {
2750 case cpu_to_be16(ETH_P_IP):
2751 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2752 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2753 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2754 break;
2755 case cpu_to_be16(ETH_P_IPV6):
2756 /* XXX what about other V6 headers?? */
2757 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2758 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2759 break;
2760 default:
2761 if (unlikely(net_ratelimit()))
2762 dev_warn(&adapter->pdev->dev,
2763 "partial checksum but proto=%x!\n",
2764 skb->protocol);
2765 break;
2766 }
2767 }
2768
2769 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2770 context_desc->seqnum_seed = 0;
2771 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2772 context_desc->mss_l4len_idx =
2773 cpu_to_le32(tx_ring->queue_index << 4);
2774 else
2775 context_desc->mss_l4len_idx = 0;
2776
2777 buffer_info->time_stamp = jiffies;
2778 buffer_info->next_to_watch = i;
2779 buffer_info->dma = 0;
2780
2781 i++;
2782 if (i == tx_ring->count)
2783 i = 0;
2784 tx_ring->next_to_use = i;
2785
2786 return true;
2787 }
2788
2789
2790 return false;
2791 }
2792
2793 #define IGB_MAX_TXD_PWR 16
2794 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2795
2796 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2797 struct igb_ring *tx_ring, struct sk_buff *skb,
2798 unsigned int first)
2799 {
2800 struct igb_buffer *buffer_info;
2801 unsigned int len = skb_headlen(skb);
2802 unsigned int count = 0, i;
2803 unsigned int f;
2804
2805 i = tx_ring->next_to_use;
2806
2807 buffer_info = &tx_ring->buffer_info[i];
2808 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2809 buffer_info->length = len;
2810 /* set time_stamp *before* dma to help avoid a possible race */
2811 buffer_info->time_stamp = jiffies;
2812 buffer_info->next_to_watch = i;
2813 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2814 PCI_DMA_TODEVICE);
2815 count++;
2816 i++;
2817 if (i == tx_ring->count)
2818 i = 0;
2819
2820 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2821 struct skb_frag_struct *frag;
2822
2823 frag = &skb_shinfo(skb)->frags[f];
2824 len = frag->size;
2825
2826 buffer_info = &tx_ring->buffer_info[i];
2827 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2828 buffer_info->length = len;
2829 buffer_info->time_stamp = jiffies;
2830 buffer_info->next_to_watch = i;
2831 buffer_info->dma = pci_map_page(adapter->pdev,
2832 frag->page,
2833 frag->page_offset,
2834 len,
2835 PCI_DMA_TODEVICE);
2836
2837 count++;
2838 i++;
2839 if (i == tx_ring->count)
2840 i = 0;
2841 }
2842
2843 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2844 tx_ring->buffer_info[i].skb = skb;
2845 tx_ring->buffer_info[first].next_to_watch = i;
2846
2847 return count;
2848 }
2849
2850 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2851 struct igb_ring *tx_ring,
2852 int tx_flags, int count, u32 paylen,
2853 u8 hdr_len)
2854 {
2855 union e1000_adv_tx_desc *tx_desc = NULL;
2856 struct igb_buffer *buffer_info;
2857 u32 olinfo_status = 0, cmd_type_len;
2858 unsigned int i;
2859
2860 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2861 E1000_ADVTXD_DCMD_DEXT);
2862
2863 if (tx_flags & IGB_TX_FLAGS_VLAN)
2864 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2865
2866 if (tx_flags & IGB_TX_FLAGS_TSO) {
2867 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2868
2869 /* insert tcp checksum */
2870 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2871
2872 /* insert ip checksum */
2873 if (tx_flags & IGB_TX_FLAGS_IPV4)
2874 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2875
2876 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2877 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2878 }
2879
2880 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2881 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2882 IGB_TX_FLAGS_VLAN)))
2883 olinfo_status |= tx_ring->queue_index << 4;
2884
2885 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2886
2887 i = tx_ring->next_to_use;
2888 while (count--) {
2889 buffer_info = &tx_ring->buffer_info[i];
2890 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2891 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2892 tx_desc->read.cmd_type_len =
2893 cpu_to_le32(cmd_type_len | buffer_info->length);
2894 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2895 i++;
2896 if (i == tx_ring->count)
2897 i = 0;
2898 }
2899
2900 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2901 /* Force memory writes to complete before letting h/w
2902 * know there are new descriptors to fetch. (Only
2903 * applicable for weak-ordered memory model archs,
2904 * such as IA-64). */
2905 wmb();
2906
2907 tx_ring->next_to_use = i;
2908 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2909 /* we need this if more than one processor can write to our tail
2910 * at a time, it syncronizes IO on IA64/Altix systems */
2911 mmiowb();
2912 }
2913
2914 static int __igb_maybe_stop_tx(struct net_device *netdev,
2915 struct igb_ring *tx_ring, int size)
2916 {
2917 struct igb_adapter *adapter = netdev_priv(netdev);
2918
2919 netif_stop_subqueue(netdev, tx_ring->queue_index);
2920
2921 /* Herbert's original patch had:
2922 * smp_mb__after_netif_stop_queue();
2923 * but since that doesn't exist yet, just open code it. */
2924 smp_mb();
2925
2926 /* We need to check again in a case another CPU has just
2927 * made room available. */
2928 if (IGB_DESC_UNUSED(tx_ring) < size)
2929 return -EBUSY;
2930
2931 /* A reprieve! */
2932 netif_wake_subqueue(netdev, tx_ring->queue_index);
2933 ++adapter->restart_queue;
2934 return 0;
2935 }
2936
2937 static int igb_maybe_stop_tx(struct net_device *netdev,
2938 struct igb_ring *tx_ring, int size)
2939 {
2940 if (IGB_DESC_UNUSED(tx_ring) >= size)
2941 return 0;
2942 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2943 }
2944
2945 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2946
2947 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2948 struct net_device *netdev,
2949 struct igb_ring *tx_ring)
2950 {
2951 struct igb_adapter *adapter = netdev_priv(netdev);
2952 unsigned int first;
2953 unsigned int tx_flags = 0;
2954 u8 hdr_len = 0;
2955 int tso = 0;
2956
2957 if (test_bit(__IGB_DOWN, &adapter->state)) {
2958 dev_kfree_skb_any(skb);
2959 return NETDEV_TX_OK;
2960 }
2961
2962 if (skb->len <= 0) {
2963 dev_kfree_skb_any(skb);
2964 return NETDEV_TX_OK;
2965 }
2966
2967 /* need: 1 descriptor per page,
2968 * + 2 desc gap to keep tail from touching head,
2969 * + 1 desc for skb->data,
2970 * + 1 desc for context descriptor,
2971 * otherwise try next time */
2972 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2973 /* this is a hard error */
2974 return NETDEV_TX_BUSY;
2975 }
2976 skb_orphan(skb);
2977
2978 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2979 tx_flags |= IGB_TX_FLAGS_VLAN;
2980 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2981 }
2982
2983 if (skb->protocol == htons(ETH_P_IP))
2984 tx_flags |= IGB_TX_FLAGS_IPV4;
2985
2986 first = tx_ring->next_to_use;
2987
2988 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2989 &hdr_len) : 0;
2990
2991 if (tso < 0) {
2992 dev_kfree_skb_any(skb);
2993 return NETDEV_TX_OK;
2994 }
2995
2996 if (tso)
2997 tx_flags |= IGB_TX_FLAGS_TSO;
2998 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2999 if (skb->ip_summed == CHECKSUM_PARTIAL)
3000 tx_flags |= IGB_TX_FLAGS_CSUM;
3001
3002 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3003 igb_tx_map_adv(adapter, tx_ring, skb, first),
3004 skb->len, hdr_len);
3005
3006 netdev->trans_start = jiffies;
3007
3008 /* Make sure there is space in the ring for the next send. */
3009 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3010
3011 return NETDEV_TX_OK;
3012 }
3013
3014 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3015 {
3016 struct igb_adapter *adapter = netdev_priv(netdev);
3017 struct igb_ring *tx_ring;
3018
3019 int r_idx = 0;
3020 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3021 tx_ring = adapter->multi_tx_table[r_idx];
3022
3023 /* This goes back to the question of how to logically map a tx queue
3024 * to a flow. Right now, performance is impacted slightly negatively
3025 * if using multiple tx queues. If the stack breaks away from a
3026 * single qdisc implementation, we can look at this again. */
3027 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3028 }
3029
3030 /**
3031 * igb_tx_timeout - Respond to a Tx Hang
3032 * @netdev: network interface device structure
3033 **/
3034 static void igb_tx_timeout(struct net_device *netdev)
3035 {
3036 struct igb_adapter *adapter = netdev_priv(netdev);
3037 struct e1000_hw *hw = &adapter->hw;
3038
3039 /* Do the reset outside of interrupt context */
3040 adapter->tx_timeout_count++;
3041 schedule_work(&adapter->reset_task);
3042 wr32(E1000_EICS,
3043 (adapter->eims_enable_mask & ~adapter->eims_other));
3044 }
3045
3046 static void igb_reset_task(struct work_struct *work)
3047 {
3048 struct igb_adapter *adapter;
3049 adapter = container_of(work, struct igb_adapter, reset_task);
3050
3051 igb_reinit_locked(adapter);
3052 }
3053
3054 /**
3055 * igb_get_stats - Get System Network Statistics
3056 * @netdev: network interface device structure
3057 *
3058 * Returns the address of the device statistics structure.
3059 * The statistics are actually updated from the timer callback.
3060 **/
3061 static struct net_device_stats *
3062 igb_get_stats(struct net_device *netdev)
3063 {
3064 struct igb_adapter *adapter = netdev_priv(netdev);
3065
3066 /* only return the current stats */
3067 return &adapter->net_stats;
3068 }
3069
3070 /**
3071 * igb_change_mtu - Change the Maximum Transfer Unit
3072 * @netdev: network interface device structure
3073 * @new_mtu: new value for maximum frame size
3074 *
3075 * Returns 0 on success, negative on failure
3076 **/
3077 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3078 {
3079 struct igb_adapter *adapter = netdev_priv(netdev);
3080 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3081
3082 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3083 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3084 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3085 return -EINVAL;
3086 }
3087
3088 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3089 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3090 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3091 return -EINVAL;
3092 }
3093
3094 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3095 msleep(1);
3096 /* igb_down has a dependency on max_frame_size */
3097 adapter->max_frame_size = max_frame;
3098 if (netif_running(netdev))
3099 igb_down(adapter);
3100
3101 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3102 * means we reserve 2 more, this pushes us to allocate from the next
3103 * larger slab size.
3104 * i.e. RXBUFFER_2048 --> size-4096 slab
3105 */
3106
3107 if (max_frame <= IGB_RXBUFFER_256)
3108 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3109 else if (max_frame <= IGB_RXBUFFER_512)
3110 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3111 else if (max_frame <= IGB_RXBUFFER_1024)
3112 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3113 else if (max_frame <= IGB_RXBUFFER_2048)
3114 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3115 else
3116 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3117 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3118 #else
3119 adapter->rx_buffer_len = PAGE_SIZE / 2;
3120 #endif
3121 /* adjust allocation if LPE protects us, and we aren't using SBP */
3122 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3123 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3124 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3125
3126 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3127 netdev->mtu, new_mtu);
3128 netdev->mtu = new_mtu;
3129
3130 if (netif_running(netdev))
3131 igb_up(adapter);
3132 else
3133 igb_reset(adapter);
3134
3135 clear_bit(__IGB_RESETTING, &adapter->state);
3136
3137 return 0;
3138 }
3139
3140 /**
3141 * igb_update_stats - Update the board statistics counters
3142 * @adapter: board private structure
3143 **/
3144
3145 void igb_update_stats(struct igb_adapter *adapter)
3146 {
3147 struct e1000_hw *hw = &adapter->hw;
3148 struct pci_dev *pdev = adapter->pdev;
3149 u16 phy_tmp;
3150
3151 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3152
3153 /*
3154 * Prevent stats update while adapter is being reset, or if the pci
3155 * connection is down.
3156 */
3157 if (adapter->link_speed == 0)
3158 return;
3159 if (pci_channel_offline(pdev))
3160 return;
3161
3162 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3163 adapter->stats.gprc += rd32(E1000_GPRC);
3164 adapter->stats.gorc += rd32(E1000_GORCL);
3165 rd32(E1000_GORCH); /* clear GORCL */
3166 adapter->stats.bprc += rd32(E1000_BPRC);
3167 adapter->stats.mprc += rd32(E1000_MPRC);
3168 adapter->stats.roc += rd32(E1000_ROC);
3169
3170 adapter->stats.prc64 += rd32(E1000_PRC64);
3171 adapter->stats.prc127 += rd32(E1000_PRC127);
3172 adapter->stats.prc255 += rd32(E1000_PRC255);
3173 adapter->stats.prc511 += rd32(E1000_PRC511);
3174 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3175 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3176 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3177 adapter->stats.sec += rd32(E1000_SEC);
3178
3179 adapter->stats.mpc += rd32(E1000_MPC);
3180 adapter->stats.scc += rd32(E1000_SCC);
3181 adapter->stats.ecol += rd32(E1000_ECOL);
3182 adapter->stats.mcc += rd32(E1000_MCC);
3183 adapter->stats.latecol += rd32(E1000_LATECOL);
3184 adapter->stats.dc += rd32(E1000_DC);
3185 adapter->stats.rlec += rd32(E1000_RLEC);
3186 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3187 adapter->stats.xontxc += rd32(E1000_XONTXC);
3188 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3189 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3190 adapter->stats.fcruc += rd32(E1000_FCRUC);
3191 adapter->stats.gptc += rd32(E1000_GPTC);
3192 adapter->stats.gotc += rd32(E1000_GOTCL);
3193 rd32(E1000_GOTCH); /* clear GOTCL */
3194 adapter->stats.rnbc += rd32(E1000_RNBC);
3195 adapter->stats.ruc += rd32(E1000_RUC);
3196 adapter->stats.rfc += rd32(E1000_RFC);
3197 adapter->stats.rjc += rd32(E1000_RJC);
3198 adapter->stats.tor += rd32(E1000_TORH);
3199 adapter->stats.tot += rd32(E1000_TOTH);
3200 adapter->stats.tpr += rd32(E1000_TPR);
3201
3202 adapter->stats.ptc64 += rd32(E1000_PTC64);
3203 adapter->stats.ptc127 += rd32(E1000_PTC127);
3204 adapter->stats.ptc255 += rd32(E1000_PTC255);
3205 adapter->stats.ptc511 += rd32(E1000_PTC511);
3206 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3207 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3208
3209 adapter->stats.mptc += rd32(E1000_MPTC);
3210 adapter->stats.bptc += rd32(E1000_BPTC);
3211
3212 /* used for adaptive IFS */
3213
3214 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3215 adapter->stats.tpt += hw->mac.tx_packet_delta;
3216 hw->mac.collision_delta = rd32(E1000_COLC);
3217 adapter->stats.colc += hw->mac.collision_delta;
3218
3219 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3220 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3221 adapter->stats.tncrs += rd32(E1000_TNCRS);
3222 adapter->stats.tsctc += rd32(E1000_TSCTC);
3223 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3224
3225 adapter->stats.iac += rd32(E1000_IAC);
3226 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3227 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3228 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3229 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3230 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3231 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3232 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3233 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3234
3235 /* Fill out the OS statistics structure */
3236 adapter->net_stats.multicast = adapter->stats.mprc;
3237 adapter->net_stats.collisions = adapter->stats.colc;
3238
3239 /* Rx Errors */
3240
3241 /* RLEC on some newer hardware can be incorrect so build
3242 * our own version based on RUC and ROC */
3243 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3244 adapter->stats.crcerrs + adapter->stats.algnerrc +
3245 adapter->stats.ruc + adapter->stats.roc +
3246 adapter->stats.cexterr;
3247 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3248 adapter->stats.roc;
3249 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3250 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3251 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3252
3253 /* Tx Errors */
3254 adapter->net_stats.tx_errors = adapter->stats.ecol +
3255 adapter->stats.latecol;
3256 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3257 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3258 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3259
3260 /* Tx Dropped needs to be maintained elsewhere */
3261
3262 /* Phy Stats */
3263 if (hw->phy.media_type == e1000_media_type_copper) {
3264 if ((adapter->link_speed == SPEED_1000) &&
3265 (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3266 &phy_tmp))) {
3267 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3268 adapter->phy_stats.idle_errors += phy_tmp;
3269 }
3270 }
3271
3272 /* Management Stats */
3273 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3274 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3275 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3276 }
3277
3278
3279 static irqreturn_t igb_msix_other(int irq, void *data)
3280 {
3281 struct net_device *netdev = data;
3282 struct igb_adapter *adapter = netdev_priv(netdev);
3283 struct e1000_hw *hw = &adapter->hw;
3284 u32 icr = rd32(E1000_ICR);
3285
3286 /* reading ICR causes bit 31 of EICR to be cleared */
3287
3288 if(icr & E1000_ICR_DOUTSYNC) {
3289 /* HW is reporting DMA is out of sync */
3290 adapter->stats.doosync++;
3291 }
3292 if (!(icr & E1000_ICR_LSC))
3293 goto no_link_interrupt;
3294 hw->mac.get_link_status = 1;
3295 /* guard against interrupt when we're going down */
3296 if (!test_bit(__IGB_DOWN, &adapter->state))
3297 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3298
3299 no_link_interrupt:
3300 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3301 wr32(E1000_EIMS, adapter->eims_other);
3302
3303 return IRQ_HANDLED;
3304 }
3305
3306 static irqreturn_t igb_msix_tx(int irq, void *data)
3307 {
3308 struct igb_ring *tx_ring = data;
3309 struct igb_adapter *adapter = tx_ring->adapter;
3310 struct e1000_hw *hw = &adapter->hw;
3311
3312 #ifdef CONFIG_IGB_DCA
3313 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3314 igb_update_tx_dca(tx_ring);
3315 #endif
3316 tx_ring->total_bytes = 0;
3317 tx_ring->total_packets = 0;
3318
3319 /* auto mask will automatically reenable the interrupt when we write
3320 * EICS */
3321 if (!igb_clean_tx_irq(tx_ring))
3322 /* Ring was not completely cleaned, so fire another interrupt */
3323 wr32(E1000_EICS, tx_ring->eims_value);
3324 else
3325 wr32(E1000_EIMS, tx_ring->eims_value);
3326
3327 return IRQ_HANDLED;
3328 }
3329
3330 static void igb_write_itr(struct igb_ring *ring)
3331 {
3332 struct e1000_hw *hw = &ring->adapter->hw;
3333 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3334 switch (hw->mac.type) {
3335 case e1000_82576:
3336 wr32(ring->itr_register,
3337 ring->itr_val |
3338 0x80000000);
3339 break;
3340 default:
3341 wr32(ring->itr_register,
3342 ring->itr_val |
3343 (ring->itr_val << 16));
3344 break;
3345 }
3346 ring->set_itr = 0;
3347 }
3348 }
3349
3350 static irqreturn_t igb_msix_rx(int irq, void *data)
3351 {
3352 struct igb_ring *rx_ring = data;
3353
3354 /* Write the ITR value calculated at the end of the
3355 * previous interrupt.
3356 */
3357
3358 igb_write_itr(rx_ring);
3359
3360 if (napi_schedule_prep(&rx_ring->napi))
3361 __napi_schedule(&rx_ring->napi);
3362
3363 #ifdef CONFIG_IGB_DCA
3364 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3365 igb_update_rx_dca(rx_ring);
3366 #endif
3367 return IRQ_HANDLED;
3368 }
3369
3370 #ifdef CONFIG_IGB_DCA
3371 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3372 {
3373 u32 dca_rxctrl;
3374 struct igb_adapter *adapter = rx_ring->adapter;
3375 struct e1000_hw *hw = &adapter->hw;
3376 int cpu = get_cpu();
3377 int q = rx_ring->reg_idx;
3378
3379 if (rx_ring->cpu != cpu) {
3380 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3381 if (hw->mac.type == e1000_82576) {
3382 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3383 dca_rxctrl |= dca_get_tag(cpu) <<
3384 E1000_DCA_RXCTRL_CPUID_SHIFT;
3385 } else {
3386 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3387 dca_rxctrl |= dca_get_tag(cpu);
3388 }
3389 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3390 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3391 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3392 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3393 rx_ring->cpu = cpu;
3394 }
3395 put_cpu();
3396 }
3397
3398 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3399 {
3400 u32 dca_txctrl;
3401 struct igb_adapter *adapter = tx_ring->adapter;
3402 struct e1000_hw *hw = &adapter->hw;
3403 int cpu = get_cpu();
3404 int q = tx_ring->reg_idx;
3405
3406 if (tx_ring->cpu != cpu) {
3407 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3408 if (hw->mac.type == e1000_82576) {
3409 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3410 dca_txctrl |= dca_get_tag(cpu) <<
3411 E1000_DCA_TXCTRL_CPUID_SHIFT;
3412 } else {
3413 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3414 dca_txctrl |= dca_get_tag(cpu);
3415 }
3416 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3417 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3418 tx_ring->cpu = cpu;
3419 }
3420 put_cpu();
3421 }
3422
3423 static void igb_setup_dca(struct igb_adapter *adapter)
3424 {
3425 int i;
3426
3427 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3428 return;
3429
3430 for (i = 0; i < adapter->num_tx_queues; i++) {
3431 adapter->tx_ring[i].cpu = -1;
3432 igb_update_tx_dca(&adapter->tx_ring[i]);
3433 }
3434 for (i = 0; i < adapter->num_rx_queues; i++) {
3435 adapter->rx_ring[i].cpu = -1;
3436 igb_update_rx_dca(&adapter->rx_ring[i]);
3437 }
3438 }
3439
3440 static int __igb_notify_dca(struct device *dev, void *data)
3441 {
3442 struct net_device *netdev = dev_get_drvdata(dev);
3443 struct igb_adapter *adapter = netdev_priv(netdev);
3444 struct e1000_hw *hw = &adapter->hw;
3445 unsigned long event = *(unsigned long *)data;
3446
3447 switch (event) {
3448 case DCA_PROVIDER_ADD:
3449 /* if already enabled, don't do it again */
3450 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3451 break;
3452 /* Always use CB2 mode, difference is masked
3453 * in the CB driver. */
3454 wr32(E1000_DCA_CTRL, 2);
3455 if (dca_add_requester(dev) == 0) {
3456 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3457 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3458 igb_setup_dca(adapter);
3459 break;
3460 }
3461 /* Fall Through since DCA is disabled. */
3462 case DCA_PROVIDER_REMOVE:
3463 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3464 /* without this a class_device is left
3465 * hanging around in the sysfs model */
3466 dca_remove_requester(dev);
3467 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3468 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3469 wr32(E1000_DCA_CTRL, 1);
3470 }
3471 break;
3472 }
3473
3474 return 0;
3475 }
3476
3477 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3478 void *p)
3479 {
3480 int ret_val;
3481
3482 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3483 __igb_notify_dca);
3484
3485 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3486 }
3487 #endif /* CONFIG_IGB_DCA */
3488
3489 /**
3490 * igb_intr_msi - Interrupt Handler
3491 * @irq: interrupt number
3492 * @data: pointer to a network interface device structure
3493 **/
3494 static irqreturn_t igb_intr_msi(int irq, void *data)
3495 {
3496 struct net_device *netdev = data;
3497 struct igb_adapter *adapter = netdev_priv(netdev);
3498 struct e1000_hw *hw = &adapter->hw;
3499 /* read ICR disables interrupts using IAM */
3500 u32 icr = rd32(E1000_ICR);
3501
3502 igb_write_itr(adapter->rx_ring);
3503
3504 if(icr & E1000_ICR_DOUTSYNC) {
3505 /* HW is reporting DMA is out of sync */
3506 adapter->stats.doosync++;
3507 }
3508
3509 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3510 hw->mac.get_link_status = 1;
3511 if (!test_bit(__IGB_DOWN, &adapter->state))
3512 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3513 }
3514
3515 napi_schedule(&adapter->rx_ring[0].napi);
3516
3517 return IRQ_HANDLED;
3518 }
3519
3520 /**
3521 * igb_intr - Legacy Interrupt Handler
3522 * @irq: interrupt number
3523 * @data: pointer to a network interface device structure
3524 **/
3525 static irqreturn_t igb_intr(int irq, void *data)
3526 {
3527 struct net_device *netdev = data;
3528 struct igb_adapter *adapter = netdev_priv(netdev);
3529 struct e1000_hw *hw = &adapter->hw;
3530 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3531 * need for the IMC write */
3532 u32 icr = rd32(E1000_ICR);
3533 if (!icr)
3534 return IRQ_NONE; /* Not our interrupt */
3535
3536 igb_write_itr(adapter->rx_ring);
3537
3538 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3539 * not set, then the adapter didn't send an interrupt */
3540 if (!(icr & E1000_ICR_INT_ASSERTED))
3541 return IRQ_NONE;
3542
3543 if(icr & E1000_ICR_DOUTSYNC) {
3544 /* HW is reporting DMA is out of sync */
3545 adapter->stats.doosync++;
3546 }
3547
3548 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3549 hw->mac.get_link_status = 1;
3550 /* guard against interrupt when we're going down */
3551 if (!test_bit(__IGB_DOWN, &adapter->state))
3552 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3553 }
3554
3555 napi_schedule(&adapter->rx_ring[0].napi);
3556
3557 return IRQ_HANDLED;
3558 }
3559
3560 /**
3561 * igb_poll - NAPI Rx polling callback
3562 * @napi: napi polling structure
3563 * @budget: count of how many packets we should handle
3564 **/
3565 static int igb_poll(struct napi_struct *napi, int budget)
3566 {
3567 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3568 struct igb_adapter *adapter = rx_ring->adapter;
3569 struct net_device *netdev = adapter->netdev;
3570 int tx_clean_complete, work_done = 0;
3571
3572 /* this poll routine only supports one tx and one rx queue */
3573 #ifdef CONFIG_IGB_DCA
3574 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3575 igb_update_tx_dca(&adapter->tx_ring[0]);
3576 #endif
3577 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3578
3579 #ifdef CONFIG_IGB_DCA
3580 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3581 igb_update_rx_dca(&adapter->rx_ring[0]);
3582 #endif
3583 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3584
3585 /* If no Tx and not enough Rx work done, exit the polling mode */
3586 if ((tx_clean_complete && (work_done < budget)) ||
3587 !netif_running(netdev)) {
3588 if (adapter->itr_setting & 3)
3589 igb_set_itr(adapter);
3590 napi_complete(napi);
3591 if (!test_bit(__IGB_DOWN, &adapter->state))
3592 igb_irq_enable(adapter);
3593 return 0;
3594 }
3595
3596 return 1;
3597 }
3598
3599 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3600 {
3601 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3602 struct igb_adapter *adapter = rx_ring->adapter;
3603 struct e1000_hw *hw = &adapter->hw;
3604 struct net_device *netdev = adapter->netdev;
3605 int work_done = 0;
3606
3607 #ifdef CONFIG_IGB_DCA
3608 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3609 igb_update_rx_dca(rx_ring);
3610 #endif
3611 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3612
3613
3614 /* If not enough Rx work done, exit the polling mode */
3615 if ((work_done == 0) || !netif_running(netdev)) {
3616 napi_complete(napi);
3617
3618 if (adapter->itr_setting & 3) {
3619 if (adapter->num_rx_queues == 1)
3620 igb_set_itr(adapter);
3621 else
3622 igb_update_ring_itr(rx_ring);
3623 }
3624
3625 if (!test_bit(__IGB_DOWN, &adapter->state))
3626 wr32(E1000_EIMS, rx_ring->eims_value);
3627
3628 return 0;
3629 }
3630
3631 return 1;
3632 }
3633
3634 /**
3635 * igb_clean_tx_irq - Reclaim resources after transmit completes
3636 * @adapter: board private structure
3637 * returns true if ring is completely cleaned
3638 **/
3639 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3640 {
3641 struct igb_adapter *adapter = tx_ring->adapter;
3642 struct net_device *netdev = adapter->netdev;
3643 struct e1000_hw *hw = &adapter->hw;
3644 struct igb_buffer *buffer_info;
3645 struct sk_buff *skb;
3646 union e1000_adv_tx_desc *tx_desc, *eop_desc;
3647 unsigned int total_bytes = 0, total_packets = 0;
3648 unsigned int i, eop, count = 0;
3649 bool cleaned = false;
3650
3651 i = tx_ring->next_to_clean;
3652 eop = tx_ring->buffer_info[i].next_to_watch;
3653 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3654
3655 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3656 (count < tx_ring->count)) {
3657 for (cleaned = false; !cleaned; count++) {
3658 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3659 buffer_info = &tx_ring->buffer_info[i];
3660 cleaned = (i == eop);
3661 skb = buffer_info->skb;
3662
3663 if (skb) {
3664 unsigned int segs, bytecount;
3665 /* gso_segs is currently only valid for tcp */
3666 segs = skb_shinfo(skb)->gso_segs ?: 1;
3667 /* multiply data chunks by size of headers */
3668 bytecount = ((segs - 1) * skb_headlen(skb)) +
3669 skb->len;
3670 total_packets += segs;
3671 total_bytes += bytecount;
3672 }
3673
3674 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3675 tx_desc->wb.status = 0;
3676
3677 i++;
3678 if (i == tx_ring->count)
3679 i = 0;
3680 }
3681
3682 eop = tx_ring->buffer_info[i].next_to_watch;
3683 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3684 }
3685
3686 tx_ring->next_to_clean = i;
3687
3688 if (unlikely(count &&
3689 netif_carrier_ok(netdev) &&
3690 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3691 /* Make sure that anybody stopping the queue after this
3692 * sees the new next_to_clean.
3693 */
3694 smp_mb();
3695 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3696 !(test_bit(__IGB_DOWN, &adapter->state))) {
3697 netif_wake_subqueue(netdev, tx_ring->queue_index);
3698 ++adapter->restart_queue;
3699 }
3700 }
3701
3702 if (tx_ring->detect_tx_hung) {
3703 /* Detect a transmit hang in hardware, this serializes the
3704 * check with the clearing of time_stamp and movement of i */
3705 tx_ring->detect_tx_hung = false;
3706 if (tx_ring->buffer_info[i].time_stamp &&
3707 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3708 (adapter->tx_timeout_factor * HZ))
3709 && !(rd32(E1000_STATUS) &
3710 E1000_STATUS_TXOFF)) {
3711
3712 /* detected Tx unit hang */
3713 dev_err(&adapter->pdev->dev,
3714 "Detected Tx Unit Hang\n"
3715 " Tx Queue <%d>\n"
3716 " TDH <%x>\n"
3717 " TDT <%x>\n"
3718 " next_to_use <%x>\n"
3719 " next_to_clean <%x>\n"
3720 "buffer_info[next_to_clean]\n"
3721 " time_stamp <%lx>\n"
3722 " next_to_watch <%x>\n"
3723 " jiffies <%lx>\n"
3724 " desc.status <%x>\n",
3725 tx_ring->queue_index,
3726 readl(adapter->hw.hw_addr + tx_ring->head),
3727 readl(adapter->hw.hw_addr + tx_ring->tail),
3728 tx_ring->next_to_use,
3729 tx_ring->next_to_clean,
3730 tx_ring->buffer_info[i].time_stamp,
3731 eop,
3732 jiffies,
3733 eop_desc->wb.status);
3734 netif_stop_subqueue(netdev, tx_ring->queue_index);
3735 }
3736 }
3737 tx_ring->total_bytes += total_bytes;
3738 tx_ring->total_packets += total_packets;
3739 tx_ring->tx_stats.bytes += total_bytes;
3740 tx_ring->tx_stats.packets += total_packets;
3741 adapter->net_stats.tx_bytes += total_bytes;
3742 adapter->net_stats.tx_packets += total_packets;
3743 return (count < tx_ring->count);
3744 }
3745
3746 /**
3747 * igb_receive_skb - helper function to handle rx indications
3748 * @ring: pointer to receive ring receving this packet
3749 * @status: descriptor status field as written by hardware
3750 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3751 * @skb: pointer to sk_buff to be indicated to stack
3752 **/
3753 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3754 union e1000_adv_rx_desc * rx_desc,
3755 struct sk_buff *skb)
3756 {
3757 struct igb_adapter * adapter = ring->adapter;
3758 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3759
3760 skb_record_rx_queue(skb, ring->queue_index);
3761 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3762 if (vlan_extracted)
3763 vlan_gro_receive(&ring->napi, adapter->vlgrp,
3764 le16_to_cpu(rx_desc->wb.upper.vlan),
3765 skb);
3766 else
3767 napi_gro_receive(&ring->napi, skb);
3768 } else {
3769 if (vlan_extracted)
3770 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3771 le16_to_cpu(rx_desc->wb.upper.vlan));
3772 else
3773 netif_receive_skb(skb);
3774 }
3775 }
3776
3777
3778 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3779 u32 status_err, struct sk_buff *skb)
3780 {
3781 skb->ip_summed = CHECKSUM_NONE;
3782
3783 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3784 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3785 return;
3786 /* TCP/UDP checksum error bit is set */
3787 if (status_err &
3788 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3789 /* let the stack verify checksum errors */
3790 adapter->hw_csum_err++;
3791 return;
3792 }
3793 /* It must be a TCP or UDP packet with a valid checksum */
3794 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3795 skb->ip_summed = CHECKSUM_UNNECESSARY;
3796
3797 adapter->hw_csum_good++;
3798 }
3799
3800 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3801 int *work_done, int budget)
3802 {
3803 struct igb_adapter *adapter = rx_ring->adapter;
3804 struct net_device *netdev = adapter->netdev;
3805 struct pci_dev *pdev = adapter->pdev;
3806 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3807 struct igb_buffer *buffer_info , *next_buffer;
3808 struct sk_buff *skb;
3809 unsigned int i;
3810 u32 length, hlen, staterr;
3811 bool cleaned = false;
3812 int cleaned_count = 0;
3813 unsigned int total_bytes = 0, total_packets = 0;
3814
3815 i = rx_ring->next_to_clean;
3816 buffer_info = &rx_ring->buffer_info[i];
3817 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3818 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3819
3820 while (staterr & E1000_RXD_STAT_DD) {
3821 if (*work_done >= budget)
3822 break;
3823 (*work_done)++;
3824
3825 skb = buffer_info->skb;
3826 prefetch(skb->data - NET_IP_ALIGN);
3827 buffer_info->skb = NULL;
3828
3829 i++;
3830 if (i == rx_ring->count)
3831 i = 0;
3832 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3833 prefetch(next_rxd);
3834 next_buffer = &rx_ring->buffer_info[i];
3835
3836 length = le16_to_cpu(rx_desc->wb.upper.length);
3837 cleaned = true;
3838 cleaned_count++;
3839
3840 if (!adapter->rx_ps_hdr_size) {
3841 pci_unmap_single(pdev, buffer_info->dma,
3842 adapter->rx_buffer_len +
3843 NET_IP_ALIGN,
3844 PCI_DMA_FROMDEVICE);
3845 skb_put(skb, length);
3846 goto send_up;
3847 }
3848
3849 /* HW will not DMA in data larger than the given buffer, even
3850 * if it parses the (NFS, of course) header to be larger. In
3851 * that case, it fills the header buffer and spills the rest
3852 * into the page.
3853 */
3854 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3855 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3856 if (hlen > adapter->rx_ps_hdr_size)
3857 hlen = adapter->rx_ps_hdr_size;
3858
3859 if (!skb_shinfo(skb)->nr_frags) {
3860 pci_unmap_single(pdev, buffer_info->dma,
3861 adapter->rx_ps_hdr_size +
3862 NET_IP_ALIGN,
3863 PCI_DMA_FROMDEVICE);
3864 skb_put(skb, hlen);
3865 }
3866
3867 if (length) {
3868 pci_unmap_page(pdev, buffer_info->page_dma,
3869 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3870 buffer_info->page_dma = 0;
3871
3872 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3873 buffer_info->page,
3874 buffer_info->page_offset,
3875 length);
3876
3877 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3878 (page_count(buffer_info->page) != 1))
3879 buffer_info->page = NULL;
3880 else
3881 get_page(buffer_info->page);
3882
3883 skb->len += length;
3884 skb->data_len += length;
3885
3886 skb->truesize += length;
3887 }
3888
3889 if (!(staterr & E1000_RXD_STAT_EOP)) {
3890 buffer_info->skb = next_buffer->skb;
3891 buffer_info->dma = next_buffer->dma;
3892 next_buffer->skb = skb;
3893 next_buffer->dma = 0;
3894 goto next_desc;
3895 }
3896 send_up:
3897 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3898 dev_kfree_skb_irq(skb);
3899 goto next_desc;
3900 }
3901
3902 total_bytes += skb->len;
3903 total_packets++;
3904
3905 igb_rx_checksum_adv(adapter, staterr, skb);
3906
3907 skb->protocol = eth_type_trans(skb, netdev);
3908
3909 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3910
3911 next_desc:
3912 rx_desc->wb.upper.status_error = 0;
3913
3914 /* return some buffers to hardware, one at a time is too slow */
3915 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3916 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3917 cleaned_count = 0;
3918 }
3919
3920 /* use prefetched values */
3921 rx_desc = next_rxd;
3922 buffer_info = next_buffer;
3923 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3924 }
3925
3926 rx_ring->next_to_clean = i;
3927 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3928
3929 if (cleaned_count)
3930 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3931
3932 rx_ring->total_packets += total_packets;
3933 rx_ring->total_bytes += total_bytes;
3934 rx_ring->rx_stats.packets += total_packets;
3935 rx_ring->rx_stats.bytes += total_bytes;
3936 adapter->net_stats.rx_bytes += total_bytes;
3937 adapter->net_stats.rx_packets += total_packets;
3938 return cleaned;
3939 }
3940
3941
3942 /**
3943 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3944 * @adapter: address of board private structure
3945 **/
3946 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3947 int cleaned_count)
3948 {
3949 struct igb_adapter *adapter = rx_ring->adapter;
3950 struct net_device *netdev = adapter->netdev;
3951 struct pci_dev *pdev = adapter->pdev;
3952 union e1000_adv_rx_desc *rx_desc;
3953 struct igb_buffer *buffer_info;
3954 struct sk_buff *skb;
3955 unsigned int i;
3956 int bufsz;
3957
3958 i = rx_ring->next_to_use;
3959 buffer_info = &rx_ring->buffer_info[i];
3960
3961 if (adapter->rx_ps_hdr_size)
3962 bufsz = adapter->rx_ps_hdr_size;
3963 else
3964 bufsz = adapter->rx_buffer_len;
3965 bufsz += NET_IP_ALIGN;
3966
3967 while (cleaned_count--) {
3968 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3969
3970 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3971 if (!buffer_info->page) {
3972 buffer_info->page = alloc_page(GFP_ATOMIC);
3973 if (!buffer_info->page) {
3974 adapter->alloc_rx_buff_failed++;
3975 goto no_buffers;
3976 }
3977 buffer_info->page_offset = 0;
3978 } else {
3979 buffer_info->page_offset ^= PAGE_SIZE / 2;
3980 }
3981 buffer_info->page_dma =
3982 pci_map_page(pdev, buffer_info->page,
3983 buffer_info->page_offset,
3984 PAGE_SIZE / 2,
3985 PCI_DMA_FROMDEVICE);
3986 }
3987
3988 if (!buffer_info->skb) {
3989 skb = netdev_alloc_skb(netdev, bufsz);
3990 if (!skb) {
3991 adapter->alloc_rx_buff_failed++;
3992 goto no_buffers;
3993 }
3994
3995 /* Make buffer alignment 2 beyond a 16 byte boundary
3996 * this will result in a 16 byte aligned IP header after
3997 * the 14 byte MAC header is removed
3998 */
3999 skb_reserve(skb, NET_IP_ALIGN);
4000
4001 buffer_info->skb = skb;
4002 buffer_info->dma = pci_map_single(pdev, skb->data,
4003 bufsz,
4004 PCI_DMA_FROMDEVICE);
4005 }
4006 /* Refresh the desc even if buffer_addrs didn't change because
4007 * each write-back erases this info. */
4008 if (adapter->rx_ps_hdr_size) {
4009 rx_desc->read.pkt_addr =
4010 cpu_to_le64(buffer_info->page_dma);
4011 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4012 } else {
4013 rx_desc->read.pkt_addr =
4014 cpu_to_le64(buffer_info->dma);
4015 rx_desc->read.hdr_addr = 0;
4016 }
4017
4018 i++;
4019 if (i == rx_ring->count)
4020 i = 0;
4021 buffer_info = &rx_ring->buffer_info[i];
4022 }
4023
4024 no_buffers:
4025 if (rx_ring->next_to_use != i) {
4026 rx_ring->next_to_use = i;
4027 if (i == 0)
4028 i = (rx_ring->count - 1);
4029 else
4030 i--;
4031
4032 /* Force memory writes to complete before letting h/w
4033 * know there are new descriptors to fetch. (Only
4034 * applicable for weak-ordered memory model archs,
4035 * such as IA-64). */
4036 wmb();
4037 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4038 }
4039 }
4040
4041 /**
4042 * igb_mii_ioctl -
4043 * @netdev:
4044 * @ifreq:
4045 * @cmd:
4046 **/
4047 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4048 {
4049 struct igb_adapter *adapter = netdev_priv(netdev);
4050 struct mii_ioctl_data *data = if_mii(ifr);
4051
4052 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4053 return -EOPNOTSUPP;
4054
4055 switch (cmd) {
4056 case SIOCGMIIPHY:
4057 data->phy_id = adapter->hw.phy.addr;
4058 break;
4059 case SIOCGMIIREG:
4060 if (!capable(CAP_NET_ADMIN))
4061 return -EPERM;
4062 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4063 &data->val_out))
4064 return -EIO;
4065 break;
4066 case SIOCSMIIREG:
4067 default:
4068 return -EOPNOTSUPP;
4069 }
4070 return 0;
4071 }
4072
4073 /**
4074 * igb_ioctl -
4075 * @netdev:
4076 * @ifreq:
4077 * @cmd:
4078 **/
4079 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4080 {
4081 switch (cmd) {
4082 case SIOCGMIIPHY:
4083 case SIOCGMIIREG:
4084 case SIOCSMIIREG:
4085 return igb_mii_ioctl(netdev, ifr, cmd);
4086 default:
4087 return -EOPNOTSUPP;
4088 }
4089 }
4090
4091 static void igb_vlan_rx_register(struct net_device *netdev,
4092 struct vlan_group *grp)
4093 {
4094 struct igb_adapter *adapter = netdev_priv(netdev);
4095 struct e1000_hw *hw = &adapter->hw;
4096 u32 ctrl, rctl;
4097
4098 igb_irq_disable(adapter);
4099 adapter->vlgrp = grp;
4100
4101 if (grp) {
4102 /* enable VLAN tag insert/strip */
4103 ctrl = rd32(E1000_CTRL);
4104 ctrl |= E1000_CTRL_VME;
4105 wr32(E1000_CTRL, ctrl);
4106
4107 /* enable VLAN receive filtering */
4108 rctl = rd32(E1000_RCTL);
4109 rctl &= ~E1000_RCTL_CFIEN;
4110 wr32(E1000_RCTL, rctl);
4111 igb_update_mng_vlan(adapter);
4112 wr32(E1000_RLPML,
4113 adapter->max_frame_size + VLAN_TAG_SIZE);
4114 } else {
4115 /* disable VLAN tag insert/strip */
4116 ctrl = rd32(E1000_CTRL);
4117 ctrl &= ~E1000_CTRL_VME;
4118 wr32(E1000_CTRL, ctrl);
4119
4120 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4121 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4122 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4123 }
4124 wr32(E1000_RLPML,
4125 adapter->max_frame_size);
4126 }
4127
4128 if (!test_bit(__IGB_DOWN, &adapter->state))
4129 igb_irq_enable(adapter);
4130 }
4131
4132 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4133 {
4134 struct igb_adapter *adapter = netdev_priv(netdev);
4135 struct e1000_hw *hw = &adapter->hw;
4136 u32 vfta, index;
4137
4138 if ((hw->mng_cookie.status &
4139 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4140 (vid == adapter->mng_vlan_id))
4141 return;
4142 /* add VID to filter table */
4143 index = (vid >> 5) & 0x7F;
4144 vfta = array_rd32(E1000_VFTA, index);
4145 vfta |= (1 << (vid & 0x1F));
4146 igb_write_vfta(&adapter->hw, index, vfta);
4147 }
4148
4149 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4150 {
4151 struct igb_adapter *adapter = netdev_priv(netdev);
4152 struct e1000_hw *hw = &adapter->hw;
4153 u32 vfta, index;
4154
4155 igb_irq_disable(adapter);
4156 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4157
4158 if (!test_bit(__IGB_DOWN, &adapter->state))
4159 igb_irq_enable(adapter);
4160
4161 if ((adapter->hw.mng_cookie.status &
4162 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4163 (vid == adapter->mng_vlan_id)) {
4164 /* release control to f/w */
4165 igb_release_hw_control(adapter);
4166 return;
4167 }
4168
4169 /* remove VID from filter table */
4170 index = (vid >> 5) & 0x7F;
4171 vfta = array_rd32(E1000_VFTA, index);
4172 vfta &= ~(1 << (vid & 0x1F));
4173 igb_write_vfta(&adapter->hw, index, vfta);
4174 }
4175
4176 static void igb_restore_vlan(struct igb_adapter *adapter)
4177 {
4178 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4179
4180 if (adapter->vlgrp) {
4181 u16 vid;
4182 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4183 if (!vlan_group_get_device(adapter->vlgrp, vid))
4184 continue;
4185 igb_vlan_rx_add_vid(adapter->netdev, vid);
4186 }
4187 }
4188 }
4189
4190 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4191 {
4192 struct e1000_mac_info *mac = &adapter->hw.mac;
4193
4194 mac->autoneg = 0;
4195
4196 /* Fiber NICs only allow 1000 gbps Full duplex */
4197 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4198 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4199 dev_err(&adapter->pdev->dev,
4200 "Unsupported Speed/Duplex configuration\n");
4201 return -EINVAL;
4202 }
4203
4204 switch (spddplx) {
4205 case SPEED_10 + DUPLEX_HALF:
4206 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4207 break;
4208 case SPEED_10 + DUPLEX_FULL:
4209 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4210 break;
4211 case SPEED_100 + DUPLEX_HALF:
4212 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4213 break;
4214 case SPEED_100 + DUPLEX_FULL:
4215 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4216 break;
4217 case SPEED_1000 + DUPLEX_FULL:
4218 mac->autoneg = 1;
4219 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4220 break;
4221 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4222 default:
4223 dev_err(&adapter->pdev->dev,
4224 "Unsupported Speed/Duplex configuration\n");
4225 return -EINVAL;
4226 }
4227 return 0;
4228 }
4229
4230
4231 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4232 {
4233 struct net_device *netdev = pci_get_drvdata(pdev);
4234 struct igb_adapter *adapter = netdev_priv(netdev);
4235 struct e1000_hw *hw = &adapter->hw;
4236 u32 ctrl, rctl, status;
4237 u32 wufc = adapter->wol;
4238 #ifdef CONFIG_PM
4239 int retval = 0;
4240 #endif
4241
4242 netif_device_detach(netdev);
4243
4244 if (netif_running(netdev))
4245 igb_close(netdev);
4246
4247 igb_reset_interrupt_capability(adapter);
4248
4249 igb_free_queues(adapter);
4250
4251 #ifdef CONFIG_PM
4252 retval = pci_save_state(pdev);
4253 if (retval)
4254 return retval;
4255 #endif
4256
4257 status = rd32(E1000_STATUS);
4258 if (status & E1000_STATUS_LU)
4259 wufc &= ~E1000_WUFC_LNKC;
4260
4261 if (wufc) {
4262 igb_setup_rctl(adapter);
4263 igb_set_multi(netdev);
4264
4265 /* turn on all-multi mode if wake on multicast is enabled */
4266 if (wufc & E1000_WUFC_MC) {
4267 rctl = rd32(E1000_RCTL);
4268 rctl |= E1000_RCTL_MPE;
4269 wr32(E1000_RCTL, rctl);
4270 }
4271
4272 ctrl = rd32(E1000_CTRL);
4273 /* advertise wake from D3Cold */
4274 #define E1000_CTRL_ADVD3WUC 0x00100000
4275 /* phy power management enable */
4276 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4277 ctrl |= E1000_CTRL_ADVD3WUC;
4278 wr32(E1000_CTRL, ctrl);
4279
4280 /* Allow time for pending master requests to run */
4281 igb_disable_pcie_master(&adapter->hw);
4282
4283 wr32(E1000_WUC, E1000_WUC_PME_EN);
4284 wr32(E1000_WUFC, wufc);
4285 } else {
4286 wr32(E1000_WUC, 0);
4287 wr32(E1000_WUFC, 0);
4288 }
4289
4290 /* make sure adapter isn't asleep if manageability/wol is enabled */
4291 if (wufc || adapter->en_mng_pt) {
4292 pci_enable_wake(pdev, PCI_D3hot, 1);
4293 pci_enable_wake(pdev, PCI_D3cold, 1);
4294 } else {
4295 igb_shutdown_fiber_serdes_link_82575(hw);
4296 pci_enable_wake(pdev, PCI_D3hot, 0);
4297 pci_enable_wake(pdev, PCI_D3cold, 0);
4298 }
4299
4300 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4301 * would have already happened in close and is redundant. */
4302 igb_release_hw_control(adapter);
4303
4304 pci_disable_device(pdev);
4305
4306 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4307
4308 return 0;
4309 }
4310
4311 #ifdef CONFIG_PM
4312 static int igb_resume(struct pci_dev *pdev)
4313 {
4314 struct net_device *netdev = pci_get_drvdata(pdev);
4315 struct igb_adapter *adapter = netdev_priv(netdev);
4316 struct e1000_hw *hw = &adapter->hw;
4317 u32 err;
4318
4319 pci_set_power_state(pdev, PCI_D0);
4320 pci_restore_state(pdev);
4321
4322 err = pci_enable_device_mem(pdev);
4323 if (err) {
4324 dev_err(&pdev->dev,
4325 "igb: Cannot enable PCI device from suspend\n");
4326 return err;
4327 }
4328 pci_set_master(pdev);
4329
4330 pci_enable_wake(pdev, PCI_D3hot, 0);
4331 pci_enable_wake(pdev, PCI_D3cold, 0);
4332
4333 igb_set_interrupt_capability(adapter);
4334
4335 if (igb_alloc_queues(adapter)) {
4336 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4337 return -ENOMEM;
4338 }
4339
4340 /* e1000_power_up_phy(adapter); */
4341
4342 igb_reset(adapter);
4343
4344 /* let the f/w know that the h/w is now under the control of the
4345 * driver. */
4346 igb_get_hw_control(adapter);
4347
4348 wr32(E1000_WUS, ~0);
4349
4350 if (netif_running(netdev)) {
4351 err = igb_open(netdev);
4352 if (err)
4353 return err;
4354 }
4355
4356 netif_device_attach(netdev);
4357
4358 return 0;
4359 }
4360 #endif
4361
4362 static void igb_shutdown(struct pci_dev *pdev)
4363 {
4364 igb_suspend(pdev, PMSG_SUSPEND);
4365 }
4366
4367 #ifdef CONFIG_NET_POLL_CONTROLLER
4368 /*
4369 * Polling 'interrupt' - used by things like netconsole to send skbs
4370 * without having to re-enable interrupts. It's not called while
4371 * the interrupt routine is executing.
4372 */
4373 static void igb_netpoll(struct net_device *netdev)
4374 {
4375 struct igb_adapter *adapter = netdev_priv(netdev);
4376 struct e1000_hw *hw = &adapter->hw;
4377 int i;
4378
4379 if (!adapter->msix_entries) {
4380 igb_irq_disable(adapter);
4381 napi_schedule(&adapter->rx_ring[0].napi);
4382 return;
4383 }
4384
4385 for (i = 0; i < adapter->num_tx_queues; i++) {
4386 struct igb_ring *tx_ring = &adapter->tx_ring[i];
4387 wr32(E1000_EIMC, tx_ring->eims_value);
4388 igb_clean_tx_irq(tx_ring);
4389 wr32(E1000_EIMS, tx_ring->eims_value);
4390 }
4391
4392 for (i = 0; i < adapter->num_rx_queues; i++) {
4393 struct igb_ring *rx_ring = &adapter->rx_ring[i];
4394 wr32(E1000_EIMC, rx_ring->eims_value);
4395 napi_schedule(&rx_ring->napi);
4396 }
4397 }
4398 #endif /* CONFIG_NET_POLL_CONTROLLER */
4399
4400 /**
4401 * igb_io_error_detected - called when PCI error is detected
4402 * @pdev: Pointer to PCI device
4403 * @state: The current pci connection state
4404 *
4405 * This function is called after a PCI bus error affecting
4406 * this device has been detected.
4407 */
4408 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4409 pci_channel_state_t state)
4410 {
4411 struct net_device *netdev = pci_get_drvdata(pdev);
4412 struct igb_adapter *adapter = netdev_priv(netdev);
4413
4414 netif_device_detach(netdev);
4415
4416 if (netif_running(netdev))
4417 igb_down(adapter);
4418 pci_disable_device(pdev);
4419
4420 /* Request a slot slot reset. */
4421 return PCI_ERS_RESULT_NEED_RESET;
4422 }
4423
4424 /**
4425 * igb_io_slot_reset - called after the pci bus has been reset.
4426 * @pdev: Pointer to PCI device
4427 *
4428 * Restart the card from scratch, as if from a cold-boot. Implementation
4429 * resembles the first-half of the igb_resume routine.
4430 */
4431 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4432 {
4433 struct net_device *netdev = pci_get_drvdata(pdev);
4434 struct igb_adapter *adapter = netdev_priv(netdev);
4435 struct e1000_hw *hw = &adapter->hw;
4436 pci_ers_result_t result;
4437 int err;
4438
4439 if (pci_enable_device_mem(pdev)) {
4440 dev_err(&pdev->dev,
4441 "Cannot re-enable PCI device after reset.\n");
4442 result = PCI_ERS_RESULT_DISCONNECT;
4443 } else {
4444 pci_set_master(pdev);
4445 pci_restore_state(pdev);
4446
4447 pci_enable_wake(pdev, PCI_D3hot, 0);
4448 pci_enable_wake(pdev, PCI_D3cold, 0);
4449
4450 igb_reset(adapter);
4451 wr32(E1000_WUS, ~0);
4452 result = PCI_ERS_RESULT_RECOVERED;
4453 }
4454
4455 err = pci_cleanup_aer_uncorrect_error_status(pdev);
4456 if (err) {
4457 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4458 "failed 0x%0x\n", err);
4459 /* non-fatal, continue */
4460 }
4461
4462 return result;
4463 }
4464
4465 /**
4466 * igb_io_resume - called when traffic can start flowing again.
4467 * @pdev: Pointer to PCI device
4468 *
4469 * This callback is called when the error recovery driver tells us that
4470 * its OK to resume normal operation. Implementation resembles the
4471 * second-half of the igb_resume routine.
4472 */
4473 static void igb_io_resume(struct pci_dev *pdev)
4474 {
4475 struct net_device *netdev = pci_get_drvdata(pdev);
4476 struct igb_adapter *adapter = netdev_priv(netdev);
4477
4478 if (netif_running(netdev)) {
4479 if (igb_up(adapter)) {
4480 dev_err(&pdev->dev, "igb_up failed after reset\n");
4481 return;
4482 }
4483 }
4484
4485 netif_device_attach(netdev);
4486
4487 /* let the f/w know that the h/w is now under the control of the
4488 * driver. */
4489 igb_get_hw_control(adapter);
4490 }
4491
4492 /* igb_main.c */
This page took 0.11953 seconds and 6 git commands to generate.