Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
72 /* required last entry */
73 {0, }
74 };
75
76 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
77
78 void igb_reset(struct igb_adapter *);
79 static int igb_setup_all_tx_resources(struct igb_adapter *);
80 static int igb_setup_all_rx_resources(struct igb_adapter *);
81 static void igb_free_all_tx_resources(struct igb_adapter *);
82 static void igb_free_all_rx_resources(struct igb_adapter *);
83 void igb_update_stats(struct igb_adapter *);
84 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
85 static void __devexit igb_remove(struct pci_dev *pdev);
86 static int igb_sw_init(struct igb_adapter *);
87 static int igb_open(struct net_device *);
88 static int igb_close(struct net_device *);
89 static void igb_configure_tx(struct igb_adapter *);
90 static void igb_configure_rx(struct igb_adapter *);
91 static void igb_setup_rctl(struct igb_adapter *);
92 static void igb_clean_all_tx_rings(struct igb_adapter *);
93 static void igb_clean_all_rx_rings(struct igb_adapter *);
94 static void igb_clean_tx_ring(struct igb_ring *);
95 static void igb_clean_rx_ring(struct igb_ring *);
96 static void igb_set_multi(struct net_device *);
97 static void igb_update_phy_info(unsigned long);
98 static void igb_watchdog(unsigned long);
99 static void igb_watchdog_task(struct work_struct *);
100 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
101 struct igb_ring *);
102 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static irqreturn_t igb_intr(int irq, void *);
107 static irqreturn_t igb_intr_msi(int irq, void *);
108 static irqreturn_t igb_msix_other(int irq, void *);
109 static irqreturn_t igb_msix_rx(int irq, void *);
110 static irqreturn_t igb_msix_tx(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_rx_dca(struct igb_ring *);
113 static void igb_update_tx_dca(struct igb_ring *);
114 static void igb_setup_dca(struct igb_adapter *);
115 #endif /* CONFIG_IGB_DCA */
116 static bool igb_clean_tx_irq(struct igb_ring *);
117 static int igb_poll(struct napi_struct *, int);
118 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
119 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
120 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121 static void igb_tx_timeout(struct net_device *);
122 static void igb_reset_task(struct work_struct *);
123 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124 static void igb_vlan_rx_add_vid(struct net_device *, u16);
125 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126 static void igb_restore_vlan(struct igb_adapter *);
127 static void igb_ping_all_vfs(struct igb_adapter *);
128 static void igb_msg_task(struct igb_adapter *);
129 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
130 static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
131 static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
132 static void igb_vmm_control(struct igb_adapter *);
133 static inline void igb_set_vmolr(struct e1000_hw *, int);
134 static inline int igb_set_vf_rlpml(struct igb_adapter *, int, int);
135 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
136 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
137
138 #ifdef CONFIG_PM
139 static int igb_suspend(struct pci_dev *, pm_message_t);
140 static int igb_resume(struct pci_dev *);
141 #endif
142 static void igb_shutdown(struct pci_dev *);
143 #ifdef CONFIG_IGB_DCA
144 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
145 static struct notifier_block dca_notifier = {
146 .notifier_call = igb_notify_dca,
147 .next = NULL,
148 .priority = 0
149 };
150 #endif
151 #ifdef CONFIG_NET_POLL_CONTROLLER
152 /* for netdump / net console */
153 static void igb_netpoll(struct net_device *);
154 #endif
155 #ifdef CONFIG_PCI_IOV
156 static unsigned int max_vfs = 0;
157 module_param(max_vfs, uint, 0);
158 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
159 "per physical function");
160 #endif /* CONFIG_PCI_IOV */
161
162 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
163 pci_channel_state_t);
164 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
165 static void igb_io_resume(struct pci_dev *);
166
167 static struct pci_error_handlers igb_err_handler = {
168 .error_detected = igb_io_error_detected,
169 .slot_reset = igb_io_slot_reset,
170 .resume = igb_io_resume,
171 };
172
173
174 static struct pci_driver igb_driver = {
175 .name = igb_driver_name,
176 .id_table = igb_pci_tbl,
177 .probe = igb_probe,
178 .remove = __devexit_p(igb_remove),
179 #ifdef CONFIG_PM
180 /* Power Managment Hooks */
181 .suspend = igb_suspend,
182 .resume = igb_resume,
183 #endif
184 .shutdown = igb_shutdown,
185 .err_handler = &igb_err_handler
186 };
187
188 static int global_quad_port_a; /* global quad port a indication */
189
190 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
191 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
192 MODULE_LICENSE("GPL");
193 MODULE_VERSION(DRV_VERSION);
194
195 /**
196 * Scale the NIC clock cycle by a large factor so that
197 * relatively small clock corrections can be added or
198 * substracted at each clock tick. The drawbacks of a
199 * large factor are a) that the clock register overflows
200 * more quickly (not such a big deal) and b) that the
201 * increment per tick has to fit into 24 bits.
202 *
203 * Note that
204 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
205 * IGB_TSYNC_SCALE
206 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
207 *
208 * The base scale factor is intentionally a power of two
209 * so that the division in %struct timecounter can be done with
210 * a shift.
211 */
212 #define IGB_TSYNC_SHIFT (19)
213 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
214
215 /**
216 * The duration of one clock cycle of the NIC.
217 *
218 * @todo This hard-coded value is part of the specification and might change
219 * in future hardware revisions. Add revision check.
220 */
221 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
222
223 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
224 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
225 #endif
226
227 /**
228 * igb_read_clock - read raw cycle counter (to be used by time counter)
229 */
230 static cycle_t igb_read_clock(const struct cyclecounter *tc)
231 {
232 struct igb_adapter *adapter =
233 container_of(tc, struct igb_adapter, cycles);
234 struct e1000_hw *hw = &adapter->hw;
235 u64 stamp;
236
237 stamp = rd32(E1000_SYSTIML);
238 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
239
240 return stamp;
241 }
242
243 #ifdef DEBUG
244 /**
245 * igb_get_hw_dev_name - return device name string
246 * used by hardware layer to print debugging information
247 **/
248 char *igb_get_hw_dev_name(struct e1000_hw *hw)
249 {
250 struct igb_adapter *adapter = hw->back;
251 return adapter->netdev->name;
252 }
253
254 /**
255 * igb_get_time_str - format current NIC and system time as string
256 */
257 static char *igb_get_time_str(struct igb_adapter *adapter,
258 char buffer[160])
259 {
260 cycle_t hw = adapter->cycles.read(&adapter->cycles);
261 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
262 struct timespec sys;
263 struct timespec delta;
264 getnstimeofday(&sys);
265
266 delta = timespec_sub(nic, sys);
267
268 sprintf(buffer,
269 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
270 hw,
271 (long)nic.tv_sec, nic.tv_nsec,
272 (long)sys.tv_sec, sys.tv_nsec,
273 (long)delta.tv_sec, delta.tv_nsec);
274
275 return buffer;
276 }
277 #endif
278
279 /**
280 * igb_desc_unused - calculate if we have unused descriptors
281 **/
282 static int igb_desc_unused(struct igb_ring *ring)
283 {
284 if (ring->next_to_clean > ring->next_to_use)
285 return ring->next_to_clean - ring->next_to_use - 1;
286
287 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
288 }
289
290 /**
291 * igb_init_module - Driver Registration Routine
292 *
293 * igb_init_module is the first routine called when the driver is
294 * loaded. All it does is register with the PCI subsystem.
295 **/
296 static int __init igb_init_module(void)
297 {
298 int ret;
299 printk(KERN_INFO "%s - version %s\n",
300 igb_driver_string, igb_driver_version);
301
302 printk(KERN_INFO "%s\n", igb_copyright);
303
304 global_quad_port_a = 0;
305
306 #ifdef CONFIG_IGB_DCA
307 dca_register_notify(&dca_notifier);
308 #endif
309
310 ret = pci_register_driver(&igb_driver);
311 return ret;
312 }
313
314 module_init(igb_init_module);
315
316 /**
317 * igb_exit_module - Driver Exit Cleanup Routine
318 *
319 * igb_exit_module is called just before the driver is removed
320 * from memory.
321 **/
322 static void __exit igb_exit_module(void)
323 {
324 #ifdef CONFIG_IGB_DCA
325 dca_unregister_notify(&dca_notifier);
326 #endif
327 pci_unregister_driver(&igb_driver);
328 }
329
330 module_exit(igb_exit_module);
331
332 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
333 /**
334 * igb_cache_ring_register - Descriptor ring to register mapping
335 * @adapter: board private structure to initialize
336 *
337 * Once we know the feature-set enabled for the device, we'll cache
338 * the register offset the descriptor ring is assigned to.
339 **/
340 static void igb_cache_ring_register(struct igb_adapter *adapter)
341 {
342 int i;
343 unsigned int rbase_offset = adapter->vfs_allocated_count;
344
345 switch (adapter->hw.mac.type) {
346 case e1000_82576:
347 /* The queues are allocated for virtualization such that VF 0
348 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
349 * In order to avoid collision we start at the first free queue
350 * and continue consuming queues in the same sequence
351 */
352 for (i = 0; i < adapter->num_rx_queues; i++)
353 adapter->rx_ring[i].reg_idx = rbase_offset +
354 Q_IDX_82576(i);
355 for (i = 0; i < adapter->num_tx_queues; i++)
356 adapter->tx_ring[i].reg_idx = rbase_offset +
357 Q_IDX_82576(i);
358 break;
359 case e1000_82575:
360 default:
361 for (i = 0; i < adapter->num_rx_queues; i++)
362 adapter->rx_ring[i].reg_idx = i;
363 for (i = 0; i < adapter->num_tx_queues; i++)
364 adapter->tx_ring[i].reg_idx = i;
365 break;
366 }
367 }
368
369 /**
370 * igb_alloc_queues - Allocate memory for all rings
371 * @adapter: board private structure to initialize
372 *
373 * We allocate one ring per queue at run-time since we don't know the
374 * number of queues at compile-time.
375 **/
376 static int igb_alloc_queues(struct igb_adapter *adapter)
377 {
378 int i;
379
380 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
381 sizeof(struct igb_ring), GFP_KERNEL);
382 if (!adapter->tx_ring)
383 return -ENOMEM;
384
385 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
386 sizeof(struct igb_ring), GFP_KERNEL);
387 if (!adapter->rx_ring) {
388 kfree(adapter->tx_ring);
389 return -ENOMEM;
390 }
391
392 adapter->rx_ring->buddy = adapter->tx_ring;
393
394 for (i = 0; i < adapter->num_tx_queues; i++) {
395 struct igb_ring *ring = &(adapter->tx_ring[i]);
396 ring->count = adapter->tx_ring_count;
397 ring->adapter = adapter;
398 ring->queue_index = i;
399 }
400 for (i = 0; i < adapter->num_rx_queues; i++) {
401 struct igb_ring *ring = &(adapter->rx_ring[i]);
402 ring->count = adapter->rx_ring_count;
403 ring->adapter = adapter;
404 ring->queue_index = i;
405 ring->itr_register = E1000_ITR;
406
407 /* set a default napi handler for each rx_ring */
408 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
409 }
410
411 igb_cache_ring_register(adapter);
412 return 0;
413 }
414
415 static void igb_free_queues(struct igb_adapter *adapter)
416 {
417 int i;
418
419 for (i = 0; i < adapter->num_rx_queues; i++)
420 netif_napi_del(&adapter->rx_ring[i].napi);
421
422 adapter->num_rx_queues = 0;
423 adapter->num_tx_queues = 0;
424
425 kfree(adapter->tx_ring);
426 kfree(adapter->rx_ring);
427 }
428
429 #define IGB_N0_QUEUE -1
430 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
431 int tx_queue, int msix_vector)
432 {
433 u32 msixbm = 0;
434 struct e1000_hw *hw = &adapter->hw;
435 u32 ivar, index;
436
437 switch (hw->mac.type) {
438 case e1000_82575:
439 /* The 82575 assigns vectors using a bitmask, which matches the
440 bitmask for the EICR/EIMS/EIMC registers. To assign one
441 or more queues to a vector, we write the appropriate bits
442 into the MSIXBM register for that vector. */
443 if (rx_queue > IGB_N0_QUEUE) {
444 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
445 adapter->rx_ring[rx_queue].eims_value = msixbm;
446 }
447 if (tx_queue > IGB_N0_QUEUE) {
448 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
449 adapter->tx_ring[tx_queue].eims_value =
450 E1000_EICR_TX_QUEUE0 << tx_queue;
451 }
452 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
453 break;
454 case e1000_82576:
455 /* 82576 uses a table-based method for assigning vectors.
456 Each queue has a single entry in the table to which we write
457 a vector number along with a "valid" bit. Sadly, the layout
458 of the table is somewhat counterintuitive. */
459 if (rx_queue > IGB_N0_QUEUE) {
460 index = (rx_queue >> 1) + adapter->vfs_allocated_count;
461 ivar = array_rd32(E1000_IVAR0, index);
462 if (rx_queue & 0x1) {
463 /* vector goes into third byte of register */
464 ivar = ivar & 0xFF00FFFF;
465 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
466 } else {
467 /* vector goes into low byte of register */
468 ivar = ivar & 0xFFFFFF00;
469 ivar |= msix_vector | E1000_IVAR_VALID;
470 }
471 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
472 array_wr32(E1000_IVAR0, index, ivar);
473 }
474 if (tx_queue > IGB_N0_QUEUE) {
475 index = (tx_queue >> 1) + adapter->vfs_allocated_count;
476 ivar = array_rd32(E1000_IVAR0, index);
477 if (tx_queue & 0x1) {
478 /* vector goes into high byte of register */
479 ivar = ivar & 0x00FFFFFF;
480 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
481 } else {
482 /* vector goes into second byte of register */
483 ivar = ivar & 0xFFFF00FF;
484 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
485 }
486 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
487 array_wr32(E1000_IVAR0, index, ivar);
488 }
489 break;
490 default:
491 BUG();
492 break;
493 }
494 }
495
496 /**
497 * igb_configure_msix - Configure MSI-X hardware
498 *
499 * igb_configure_msix sets up the hardware to properly
500 * generate MSI-X interrupts.
501 **/
502 static void igb_configure_msix(struct igb_adapter *adapter)
503 {
504 u32 tmp;
505 int i, vector = 0;
506 struct e1000_hw *hw = &adapter->hw;
507
508 adapter->eims_enable_mask = 0;
509 if (hw->mac.type == e1000_82576)
510 /* Turn on MSI-X capability first, or our settings
511 * won't stick. And it will take days to debug. */
512 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
513 E1000_GPIE_PBA | E1000_GPIE_EIAME |
514 E1000_GPIE_NSICR);
515
516 for (i = 0; i < adapter->num_tx_queues; i++) {
517 struct igb_ring *tx_ring = &adapter->tx_ring[i];
518 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
519 adapter->eims_enable_mask |= tx_ring->eims_value;
520 if (tx_ring->itr_val)
521 writel(tx_ring->itr_val,
522 hw->hw_addr + tx_ring->itr_register);
523 else
524 writel(1, hw->hw_addr + tx_ring->itr_register);
525 }
526
527 for (i = 0; i < adapter->num_rx_queues; i++) {
528 struct igb_ring *rx_ring = &adapter->rx_ring[i];
529 rx_ring->buddy = NULL;
530 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
531 adapter->eims_enable_mask |= rx_ring->eims_value;
532 if (rx_ring->itr_val)
533 writel(rx_ring->itr_val,
534 hw->hw_addr + rx_ring->itr_register);
535 else
536 writel(1, hw->hw_addr + rx_ring->itr_register);
537 }
538
539
540 /* set vector for other causes, i.e. link changes */
541 switch (hw->mac.type) {
542 case e1000_82575:
543 array_wr32(E1000_MSIXBM(0), vector++,
544 E1000_EIMS_OTHER);
545
546 tmp = rd32(E1000_CTRL_EXT);
547 /* enable MSI-X PBA support*/
548 tmp |= E1000_CTRL_EXT_PBA_CLR;
549
550 /* Auto-Mask interrupts upon ICR read. */
551 tmp |= E1000_CTRL_EXT_EIAME;
552 tmp |= E1000_CTRL_EXT_IRCA;
553
554 wr32(E1000_CTRL_EXT, tmp);
555 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
556 adapter->eims_other = E1000_EIMS_OTHER;
557
558 break;
559
560 case e1000_82576:
561 tmp = (vector++ | E1000_IVAR_VALID) << 8;
562 wr32(E1000_IVAR_MISC, tmp);
563
564 adapter->eims_enable_mask = (1 << (vector)) - 1;
565 adapter->eims_other = 1 << (vector - 1);
566 break;
567 default:
568 /* do nothing, since nothing else supports MSI-X */
569 break;
570 } /* switch (hw->mac.type) */
571 wrfl();
572 }
573
574 /**
575 * igb_request_msix - Initialize MSI-X interrupts
576 *
577 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
578 * kernel.
579 **/
580 static int igb_request_msix(struct igb_adapter *adapter)
581 {
582 struct net_device *netdev = adapter->netdev;
583 int i, err = 0, vector = 0;
584
585 vector = 0;
586
587 for (i = 0; i < adapter->num_tx_queues; i++) {
588 struct igb_ring *ring = &(adapter->tx_ring[i]);
589 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
590 err = request_irq(adapter->msix_entries[vector].vector,
591 &igb_msix_tx, 0, ring->name,
592 &(adapter->tx_ring[i]));
593 if (err)
594 goto out;
595 ring->itr_register = E1000_EITR(0) + (vector << 2);
596 ring->itr_val = 976; /* ~4000 ints/sec */
597 vector++;
598 }
599 for (i = 0; i < adapter->num_rx_queues; i++) {
600 struct igb_ring *ring = &(adapter->rx_ring[i]);
601 if (strlen(netdev->name) < (IFNAMSIZ - 5))
602 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
603 else
604 memcpy(ring->name, netdev->name, IFNAMSIZ);
605 err = request_irq(adapter->msix_entries[vector].vector,
606 &igb_msix_rx, 0, ring->name,
607 &(adapter->rx_ring[i]));
608 if (err)
609 goto out;
610 ring->itr_register = E1000_EITR(0) + (vector << 2);
611 ring->itr_val = adapter->itr;
612 vector++;
613 }
614
615 err = request_irq(adapter->msix_entries[vector].vector,
616 &igb_msix_other, 0, netdev->name, netdev);
617 if (err)
618 goto out;
619
620 igb_configure_msix(adapter);
621 return 0;
622 out:
623 return err;
624 }
625
626 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
627 {
628 if (adapter->msix_entries) {
629 pci_disable_msix(adapter->pdev);
630 kfree(adapter->msix_entries);
631 adapter->msix_entries = NULL;
632 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
633 pci_disable_msi(adapter->pdev);
634 return;
635 }
636
637
638 /**
639 * igb_set_interrupt_capability - set MSI or MSI-X if supported
640 *
641 * Attempt to configure interrupts using the best available
642 * capabilities of the hardware and kernel.
643 **/
644 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
645 {
646 int err;
647 int numvecs, i;
648
649 /* Number of supported queues. */
650 /* Having more queues than CPUs doesn't make sense. */
651 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
652 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
653
654 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
655 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
656 GFP_KERNEL);
657 if (!adapter->msix_entries)
658 goto msi_only;
659
660 for (i = 0; i < numvecs; i++)
661 adapter->msix_entries[i].entry = i;
662
663 err = pci_enable_msix(adapter->pdev,
664 adapter->msix_entries,
665 numvecs);
666 if (err == 0)
667 goto out;
668
669 igb_reset_interrupt_capability(adapter);
670
671 /* If we can't do MSI-X, try MSI */
672 msi_only:
673 #ifdef CONFIG_PCI_IOV
674 /* disable SR-IOV for non MSI-X configurations */
675 if (adapter->vf_data) {
676 struct e1000_hw *hw = &adapter->hw;
677 /* disable iov and allow time for transactions to clear */
678 pci_disable_sriov(adapter->pdev);
679 msleep(500);
680
681 kfree(adapter->vf_data);
682 adapter->vf_data = NULL;
683 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
684 msleep(100);
685 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
686 }
687 #endif
688 adapter->num_rx_queues = 1;
689 adapter->num_tx_queues = 1;
690 if (!pci_enable_msi(adapter->pdev))
691 adapter->flags |= IGB_FLAG_HAS_MSI;
692 out:
693 /* Notify the stack of the (possibly) reduced Tx Queue count. */
694 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
695 return;
696 }
697
698 /**
699 * igb_request_irq - initialize interrupts
700 *
701 * Attempts to configure interrupts using the best available
702 * capabilities of the hardware and kernel.
703 **/
704 static int igb_request_irq(struct igb_adapter *adapter)
705 {
706 struct net_device *netdev = adapter->netdev;
707 struct e1000_hw *hw = &adapter->hw;
708 int err = 0;
709
710 if (adapter->msix_entries) {
711 err = igb_request_msix(adapter);
712 if (!err)
713 goto request_done;
714 /* fall back to MSI */
715 igb_reset_interrupt_capability(adapter);
716 if (!pci_enable_msi(adapter->pdev))
717 adapter->flags |= IGB_FLAG_HAS_MSI;
718 igb_free_all_tx_resources(adapter);
719 igb_free_all_rx_resources(adapter);
720 adapter->num_rx_queues = 1;
721 igb_alloc_queues(adapter);
722 } else {
723 switch (hw->mac.type) {
724 case e1000_82575:
725 wr32(E1000_MSIXBM(0),
726 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
727 break;
728 case e1000_82576:
729 wr32(E1000_IVAR0, E1000_IVAR_VALID);
730 break;
731 default:
732 break;
733 }
734 }
735
736 if (adapter->flags & IGB_FLAG_HAS_MSI) {
737 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
738 netdev->name, netdev);
739 if (!err)
740 goto request_done;
741 /* fall back to legacy interrupts */
742 igb_reset_interrupt_capability(adapter);
743 adapter->flags &= ~IGB_FLAG_HAS_MSI;
744 }
745
746 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
747 netdev->name, netdev);
748
749 if (err)
750 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
751 err);
752
753 request_done:
754 return err;
755 }
756
757 static void igb_free_irq(struct igb_adapter *adapter)
758 {
759 struct net_device *netdev = adapter->netdev;
760
761 if (adapter->msix_entries) {
762 int vector = 0, i;
763
764 for (i = 0; i < adapter->num_tx_queues; i++)
765 free_irq(adapter->msix_entries[vector++].vector,
766 &(adapter->tx_ring[i]));
767 for (i = 0; i < adapter->num_rx_queues; i++)
768 free_irq(adapter->msix_entries[vector++].vector,
769 &(adapter->rx_ring[i]));
770
771 free_irq(adapter->msix_entries[vector++].vector, netdev);
772 return;
773 }
774
775 free_irq(adapter->pdev->irq, netdev);
776 }
777
778 /**
779 * igb_irq_disable - Mask off interrupt generation on the NIC
780 * @adapter: board private structure
781 **/
782 static void igb_irq_disable(struct igb_adapter *adapter)
783 {
784 struct e1000_hw *hw = &adapter->hw;
785
786 if (adapter->msix_entries) {
787 wr32(E1000_EIAM, 0);
788 wr32(E1000_EIMC, ~0);
789 wr32(E1000_EIAC, 0);
790 }
791
792 wr32(E1000_IAM, 0);
793 wr32(E1000_IMC, ~0);
794 wrfl();
795 synchronize_irq(adapter->pdev->irq);
796 }
797
798 /**
799 * igb_irq_enable - Enable default interrupt generation settings
800 * @adapter: board private structure
801 **/
802 static void igb_irq_enable(struct igb_adapter *adapter)
803 {
804 struct e1000_hw *hw = &adapter->hw;
805
806 if (adapter->msix_entries) {
807 wr32(E1000_EIAC, adapter->eims_enable_mask);
808 wr32(E1000_EIAM, adapter->eims_enable_mask);
809 wr32(E1000_EIMS, adapter->eims_enable_mask);
810 if (adapter->vfs_allocated_count)
811 wr32(E1000_MBVFIMR, 0xFF);
812 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
813 E1000_IMS_DOUTSYNC));
814 } else {
815 wr32(E1000_IMS, IMS_ENABLE_MASK);
816 wr32(E1000_IAM, IMS_ENABLE_MASK);
817 }
818 }
819
820 static void igb_update_mng_vlan(struct igb_adapter *adapter)
821 {
822 struct net_device *netdev = adapter->netdev;
823 u16 vid = adapter->hw.mng_cookie.vlan_id;
824 u16 old_vid = adapter->mng_vlan_id;
825 if (adapter->vlgrp) {
826 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
827 if (adapter->hw.mng_cookie.status &
828 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
829 igb_vlan_rx_add_vid(netdev, vid);
830 adapter->mng_vlan_id = vid;
831 } else
832 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
833
834 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
835 (vid != old_vid) &&
836 !vlan_group_get_device(adapter->vlgrp, old_vid))
837 igb_vlan_rx_kill_vid(netdev, old_vid);
838 } else
839 adapter->mng_vlan_id = vid;
840 }
841 }
842
843 /**
844 * igb_release_hw_control - release control of the h/w to f/w
845 * @adapter: address of board private structure
846 *
847 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
848 * For ASF and Pass Through versions of f/w this means that the
849 * driver is no longer loaded.
850 *
851 **/
852 static void igb_release_hw_control(struct igb_adapter *adapter)
853 {
854 struct e1000_hw *hw = &adapter->hw;
855 u32 ctrl_ext;
856
857 /* Let firmware take over control of h/w */
858 ctrl_ext = rd32(E1000_CTRL_EXT);
859 wr32(E1000_CTRL_EXT,
860 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
861 }
862
863
864 /**
865 * igb_get_hw_control - get control of the h/w from f/w
866 * @adapter: address of board private structure
867 *
868 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
869 * For ASF and Pass Through versions of f/w this means that
870 * the driver is loaded.
871 *
872 **/
873 static void igb_get_hw_control(struct igb_adapter *adapter)
874 {
875 struct e1000_hw *hw = &adapter->hw;
876 u32 ctrl_ext;
877
878 /* Let firmware know the driver has taken over */
879 ctrl_ext = rd32(E1000_CTRL_EXT);
880 wr32(E1000_CTRL_EXT,
881 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
882 }
883
884 /**
885 * igb_configure - configure the hardware for RX and TX
886 * @adapter: private board structure
887 **/
888 static void igb_configure(struct igb_adapter *adapter)
889 {
890 struct net_device *netdev = adapter->netdev;
891 int i;
892
893 igb_get_hw_control(adapter);
894 igb_set_multi(netdev);
895
896 igb_restore_vlan(adapter);
897
898 igb_configure_tx(adapter);
899 igb_setup_rctl(adapter);
900 igb_configure_rx(adapter);
901
902 igb_rx_fifo_flush_82575(&adapter->hw);
903
904 /* call igb_desc_unused which always leaves
905 * at least 1 descriptor unused to make sure
906 * next_to_use != next_to_clean */
907 for (i = 0; i < adapter->num_rx_queues; i++) {
908 struct igb_ring *ring = &adapter->rx_ring[i];
909 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
910 }
911
912
913 adapter->tx_queue_len = netdev->tx_queue_len;
914 }
915
916
917 /**
918 * igb_up - Open the interface and prepare it to handle traffic
919 * @adapter: board private structure
920 **/
921
922 int igb_up(struct igb_adapter *adapter)
923 {
924 struct e1000_hw *hw = &adapter->hw;
925 int i;
926
927 /* hardware has been reset, we need to reload some things */
928 igb_configure(adapter);
929
930 clear_bit(__IGB_DOWN, &adapter->state);
931
932 for (i = 0; i < adapter->num_rx_queues; i++)
933 napi_enable(&adapter->rx_ring[i].napi);
934 if (adapter->msix_entries)
935 igb_configure_msix(adapter);
936
937 igb_vmm_control(adapter);
938 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
939 igb_set_vmolr(hw, adapter->vfs_allocated_count);
940
941 /* Clear any pending interrupts. */
942 rd32(E1000_ICR);
943 igb_irq_enable(adapter);
944
945 netif_tx_start_all_queues(adapter->netdev);
946
947 /* Fire a link change interrupt to start the watchdog. */
948 wr32(E1000_ICS, E1000_ICS_LSC);
949 return 0;
950 }
951
952 void igb_down(struct igb_adapter *adapter)
953 {
954 struct e1000_hw *hw = &adapter->hw;
955 struct net_device *netdev = adapter->netdev;
956 u32 tctl, rctl;
957 int i;
958
959 /* signal that we're down so the interrupt handler does not
960 * reschedule our watchdog timer */
961 set_bit(__IGB_DOWN, &adapter->state);
962
963 /* disable receives in the hardware */
964 rctl = rd32(E1000_RCTL);
965 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
966 /* flush and sleep below */
967
968 netif_tx_stop_all_queues(netdev);
969
970 /* disable transmits in the hardware */
971 tctl = rd32(E1000_TCTL);
972 tctl &= ~E1000_TCTL_EN;
973 wr32(E1000_TCTL, tctl);
974 /* flush both disables and wait for them to finish */
975 wrfl();
976 msleep(10);
977
978 for (i = 0; i < adapter->num_rx_queues; i++)
979 napi_disable(&adapter->rx_ring[i].napi);
980
981 igb_irq_disable(adapter);
982
983 del_timer_sync(&adapter->watchdog_timer);
984 del_timer_sync(&adapter->phy_info_timer);
985
986 netdev->tx_queue_len = adapter->tx_queue_len;
987 netif_carrier_off(netdev);
988
989 /* record the stats before reset*/
990 igb_update_stats(adapter);
991
992 adapter->link_speed = 0;
993 adapter->link_duplex = 0;
994
995 if (!pci_channel_offline(adapter->pdev))
996 igb_reset(adapter);
997 igb_clean_all_tx_rings(adapter);
998 igb_clean_all_rx_rings(adapter);
999 #ifdef CONFIG_IGB_DCA
1000
1001 /* since we reset the hardware DCA settings were cleared */
1002 igb_setup_dca(adapter);
1003 #endif
1004 }
1005
1006 void igb_reinit_locked(struct igb_adapter *adapter)
1007 {
1008 WARN_ON(in_interrupt());
1009 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1010 msleep(1);
1011 igb_down(adapter);
1012 igb_up(adapter);
1013 clear_bit(__IGB_RESETTING, &adapter->state);
1014 }
1015
1016 void igb_reset(struct igb_adapter *adapter)
1017 {
1018 struct e1000_hw *hw = &adapter->hw;
1019 struct e1000_mac_info *mac = &hw->mac;
1020 struct e1000_fc_info *fc = &hw->fc;
1021 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1022 u16 hwm;
1023
1024 /* Repartition Pba for greater than 9k mtu
1025 * To take effect CTRL.RST is required.
1026 */
1027 switch (mac->type) {
1028 case e1000_82576:
1029 pba = E1000_PBA_64K;
1030 break;
1031 case e1000_82575:
1032 default:
1033 pba = E1000_PBA_34K;
1034 break;
1035 }
1036
1037 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1038 (mac->type < e1000_82576)) {
1039 /* adjust PBA for jumbo frames */
1040 wr32(E1000_PBA, pba);
1041
1042 /* To maintain wire speed transmits, the Tx FIFO should be
1043 * large enough to accommodate two full transmit packets,
1044 * rounded up to the next 1KB and expressed in KB. Likewise,
1045 * the Rx FIFO should be large enough to accommodate at least
1046 * one full receive packet and is similarly rounded up and
1047 * expressed in KB. */
1048 pba = rd32(E1000_PBA);
1049 /* upper 16 bits has Tx packet buffer allocation size in KB */
1050 tx_space = pba >> 16;
1051 /* lower 16 bits has Rx packet buffer allocation size in KB */
1052 pba &= 0xffff;
1053 /* the tx fifo also stores 16 bytes of information about the tx
1054 * but don't include ethernet FCS because hardware appends it */
1055 min_tx_space = (adapter->max_frame_size +
1056 sizeof(union e1000_adv_tx_desc) -
1057 ETH_FCS_LEN) * 2;
1058 min_tx_space = ALIGN(min_tx_space, 1024);
1059 min_tx_space >>= 10;
1060 /* software strips receive CRC, so leave room for it */
1061 min_rx_space = adapter->max_frame_size;
1062 min_rx_space = ALIGN(min_rx_space, 1024);
1063 min_rx_space >>= 10;
1064
1065 /* If current Tx allocation is less than the min Tx FIFO size,
1066 * and the min Tx FIFO size is less than the current Rx FIFO
1067 * allocation, take space away from current Rx allocation */
1068 if (tx_space < min_tx_space &&
1069 ((min_tx_space - tx_space) < pba)) {
1070 pba = pba - (min_tx_space - tx_space);
1071
1072 /* if short on rx space, rx wins and must trump tx
1073 * adjustment */
1074 if (pba < min_rx_space)
1075 pba = min_rx_space;
1076 }
1077 wr32(E1000_PBA, pba);
1078 }
1079
1080 /* flow control settings */
1081 /* The high water mark must be low enough to fit one full frame
1082 * (or the size used for early receive) above it in the Rx FIFO.
1083 * Set it to the lower of:
1084 * - 90% of the Rx FIFO size, or
1085 * - the full Rx FIFO size minus one full frame */
1086 hwm = min(((pba << 10) * 9 / 10),
1087 ((pba << 10) - 2 * adapter->max_frame_size));
1088
1089 if (mac->type < e1000_82576) {
1090 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1091 fc->low_water = fc->high_water - 8;
1092 } else {
1093 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1094 fc->low_water = fc->high_water - 16;
1095 }
1096 fc->pause_time = 0xFFFF;
1097 fc->send_xon = 1;
1098 fc->type = fc->original_type;
1099
1100 /* disable receive for all VFs and wait one second */
1101 if (adapter->vfs_allocated_count) {
1102 int i;
1103 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1104 adapter->vf_data[i].clear_to_send = false;
1105
1106 /* ping all the active vfs to let them know we are going down */
1107 igb_ping_all_vfs(adapter);
1108
1109 /* disable transmits and receives */
1110 wr32(E1000_VFRE, 0);
1111 wr32(E1000_VFTE, 0);
1112 }
1113
1114 /* Allow time for pending master requests to run */
1115 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1116 wr32(E1000_WUC, 0);
1117
1118 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1119 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1120
1121 igb_update_mng_vlan(adapter);
1122
1123 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1124 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1125
1126 igb_reset_adaptive(&adapter->hw);
1127 igb_get_phy_info(&adapter->hw);
1128 }
1129
1130 static const struct net_device_ops igb_netdev_ops = {
1131 .ndo_open = igb_open,
1132 .ndo_stop = igb_close,
1133 .ndo_start_xmit = igb_xmit_frame_adv,
1134 .ndo_get_stats = igb_get_stats,
1135 .ndo_set_multicast_list = igb_set_multi,
1136 .ndo_set_mac_address = igb_set_mac,
1137 .ndo_change_mtu = igb_change_mtu,
1138 .ndo_do_ioctl = igb_ioctl,
1139 .ndo_tx_timeout = igb_tx_timeout,
1140 .ndo_validate_addr = eth_validate_addr,
1141 .ndo_vlan_rx_register = igb_vlan_rx_register,
1142 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1143 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1144 #ifdef CONFIG_NET_POLL_CONTROLLER
1145 .ndo_poll_controller = igb_netpoll,
1146 #endif
1147 };
1148
1149 /**
1150 * igb_probe - Device Initialization Routine
1151 * @pdev: PCI device information struct
1152 * @ent: entry in igb_pci_tbl
1153 *
1154 * Returns 0 on success, negative on failure
1155 *
1156 * igb_probe initializes an adapter identified by a pci_dev structure.
1157 * The OS initialization, configuring of the adapter private structure,
1158 * and a hardware reset occur.
1159 **/
1160 static int __devinit igb_probe(struct pci_dev *pdev,
1161 const struct pci_device_id *ent)
1162 {
1163 struct net_device *netdev;
1164 struct igb_adapter *adapter;
1165 struct e1000_hw *hw;
1166 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1167 unsigned long mmio_start, mmio_len;
1168 int err, pci_using_dac;
1169 u16 eeprom_data = 0;
1170 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1171 u32 part_num;
1172
1173 err = pci_enable_device_mem(pdev);
1174 if (err)
1175 return err;
1176
1177 pci_using_dac = 0;
1178 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1179 if (!err) {
1180 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1181 if (!err)
1182 pci_using_dac = 1;
1183 } else {
1184 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1185 if (err) {
1186 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1187 if (err) {
1188 dev_err(&pdev->dev, "No usable DMA "
1189 "configuration, aborting\n");
1190 goto err_dma;
1191 }
1192 }
1193 }
1194
1195 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1196 IORESOURCE_MEM),
1197 igb_driver_name);
1198 if (err)
1199 goto err_pci_reg;
1200
1201 err = pci_enable_pcie_error_reporting(pdev);
1202 if (err) {
1203 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1204 "0x%x\n", err);
1205 /* non-fatal, continue */
1206 }
1207
1208 pci_set_master(pdev);
1209 pci_save_state(pdev);
1210
1211 err = -ENOMEM;
1212 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1213 IGB_ABS_MAX_TX_QUEUES);
1214 if (!netdev)
1215 goto err_alloc_etherdev;
1216
1217 SET_NETDEV_DEV(netdev, &pdev->dev);
1218
1219 pci_set_drvdata(pdev, netdev);
1220 adapter = netdev_priv(netdev);
1221 adapter->netdev = netdev;
1222 adapter->pdev = pdev;
1223 hw = &adapter->hw;
1224 hw->back = adapter;
1225 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1226
1227 mmio_start = pci_resource_start(pdev, 0);
1228 mmio_len = pci_resource_len(pdev, 0);
1229
1230 err = -EIO;
1231 hw->hw_addr = ioremap(mmio_start, mmio_len);
1232 if (!hw->hw_addr)
1233 goto err_ioremap;
1234
1235 netdev->netdev_ops = &igb_netdev_ops;
1236 igb_set_ethtool_ops(netdev);
1237 netdev->watchdog_timeo = 5 * HZ;
1238
1239 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1240
1241 netdev->mem_start = mmio_start;
1242 netdev->mem_end = mmio_start + mmio_len;
1243
1244 /* PCI config space info */
1245 hw->vendor_id = pdev->vendor;
1246 hw->device_id = pdev->device;
1247 hw->revision_id = pdev->revision;
1248 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1249 hw->subsystem_device_id = pdev->subsystem_device;
1250
1251 /* setup the private structure */
1252 hw->back = adapter;
1253 /* Copy the default MAC, PHY and NVM function pointers */
1254 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1255 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1256 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1257 /* Initialize skew-specific constants */
1258 err = ei->get_invariants(hw);
1259 if (err)
1260 goto err_sw_init;
1261
1262 #ifdef CONFIG_PCI_IOV
1263 /* since iov functionality isn't critical to base device function we
1264 * can accept failure. If it fails we don't allow iov to be enabled */
1265 if (hw->mac.type == e1000_82576) {
1266 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1267 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1268 int i;
1269 unsigned char mac_addr[ETH_ALEN];
1270
1271 if (num_vfs) {
1272 adapter->vf_data = kcalloc(num_vfs,
1273 sizeof(struct vf_data_storage),
1274 GFP_KERNEL);
1275 if (!adapter->vf_data) {
1276 dev_err(&pdev->dev,
1277 "Could not allocate VF private data - "
1278 "IOV enable failed\n");
1279 } else {
1280 err = pci_enable_sriov(pdev, num_vfs);
1281 if (!err) {
1282 adapter->vfs_allocated_count = num_vfs;
1283 dev_info(&pdev->dev,
1284 "%d vfs allocated\n",
1285 num_vfs);
1286 for (i = 0;
1287 i < adapter->vfs_allocated_count;
1288 i++) {
1289 random_ether_addr(mac_addr);
1290 igb_set_vf_mac(adapter, i,
1291 mac_addr);
1292 }
1293 } else {
1294 kfree(adapter->vf_data);
1295 adapter->vf_data = NULL;
1296 }
1297 }
1298 }
1299 }
1300
1301 #endif
1302 /* setup the private structure */
1303 err = igb_sw_init(adapter);
1304 if (err)
1305 goto err_sw_init;
1306
1307 igb_get_bus_info_pcie(hw);
1308
1309 /* set flags */
1310 switch (hw->mac.type) {
1311 case e1000_82575:
1312 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1313 break;
1314 case e1000_82576:
1315 default:
1316 break;
1317 }
1318
1319 hw->phy.autoneg_wait_to_complete = false;
1320 hw->mac.adaptive_ifs = true;
1321
1322 /* Copper options */
1323 if (hw->phy.media_type == e1000_media_type_copper) {
1324 hw->phy.mdix = AUTO_ALL_MODES;
1325 hw->phy.disable_polarity_correction = false;
1326 hw->phy.ms_type = e1000_ms_hw_default;
1327 }
1328
1329 if (igb_check_reset_block(hw))
1330 dev_info(&pdev->dev,
1331 "PHY reset is blocked due to SOL/IDER session.\n");
1332
1333 netdev->features = NETIF_F_SG |
1334 NETIF_F_IP_CSUM |
1335 NETIF_F_HW_VLAN_TX |
1336 NETIF_F_HW_VLAN_RX |
1337 NETIF_F_HW_VLAN_FILTER;
1338
1339 netdev->features |= NETIF_F_IPV6_CSUM;
1340 netdev->features |= NETIF_F_TSO;
1341 netdev->features |= NETIF_F_TSO6;
1342
1343 netdev->features |= NETIF_F_GRO;
1344
1345 netdev->vlan_features |= NETIF_F_TSO;
1346 netdev->vlan_features |= NETIF_F_TSO6;
1347 netdev->vlan_features |= NETIF_F_IP_CSUM;
1348 netdev->vlan_features |= NETIF_F_SG;
1349
1350 if (pci_using_dac)
1351 netdev->features |= NETIF_F_HIGHDMA;
1352
1353 if (adapter->hw.mac.type == e1000_82576)
1354 netdev->features |= NETIF_F_SCTP_CSUM;
1355
1356 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1357
1358 /* before reading the NVM, reset the controller to put the device in a
1359 * known good starting state */
1360 hw->mac.ops.reset_hw(hw);
1361
1362 /* make sure the NVM is good */
1363 if (igb_validate_nvm_checksum(hw) < 0) {
1364 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1365 err = -EIO;
1366 goto err_eeprom;
1367 }
1368
1369 /* copy the MAC address out of the NVM */
1370 if (hw->mac.ops.read_mac_addr(hw))
1371 dev_err(&pdev->dev, "NVM Read Error\n");
1372
1373 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1374 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1375
1376 if (!is_valid_ether_addr(netdev->perm_addr)) {
1377 dev_err(&pdev->dev, "Invalid MAC Address\n");
1378 err = -EIO;
1379 goto err_eeprom;
1380 }
1381
1382 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1383 (unsigned long) adapter);
1384 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1385 (unsigned long) adapter);
1386
1387 INIT_WORK(&adapter->reset_task, igb_reset_task);
1388 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1389
1390 /* Initialize link properties that are user-changeable */
1391 adapter->fc_autoneg = true;
1392 hw->mac.autoneg = true;
1393 hw->phy.autoneg_advertised = 0x2f;
1394
1395 hw->fc.original_type = e1000_fc_default;
1396 hw->fc.type = e1000_fc_default;
1397
1398 adapter->itr_setting = IGB_DEFAULT_ITR;
1399 adapter->itr = IGB_START_ITR;
1400
1401 igb_validate_mdi_setting(hw);
1402
1403 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1404 * enable the ACPI Magic Packet filter
1405 */
1406
1407 if (hw->bus.func == 0)
1408 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1409 else if (hw->bus.func == 1)
1410 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1411
1412 if (eeprom_data & eeprom_apme_mask)
1413 adapter->eeprom_wol |= E1000_WUFC_MAG;
1414
1415 /* now that we have the eeprom settings, apply the special cases where
1416 * the eeprom may be wrong or the board simply won't support wake on
1417 * lan on a particular port */
1418 switch (pdev->device) {
1419 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1420 adapter->eeprom_wol = 0;
1421 break;
1422 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1423 case E1000_DEV_ID_82576_FIBER:
1424 case E1000_DEV_ID_82576_SERDES:
1425 /* Wake events only supported on port A for dual fiber
1426 * regardless of eeprom setting */
1427 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1428 adapter->eeprom_wol = 0;
1429 break;
1430 case E1000_DEV_ID_82576_QUAD_COPPER:
1431 /* if quad port adapter, disable WoL on all but port A */
1432 if (global_quad_port_a != 0)
1433 adapter->eeprom_wol = 0;
1434 else
1435 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1436 /* Reset for multiple quad port adapters */
1437 if (++global_quad_port_a == 4)
1438 global_quad_port_a = 0;
1439 break;
1440 }
1441
1442 /* initialize the wol settings based on the eeprom settings */
1443 adapter->wol = adapter->eeprom_wol;
1444 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1445
1446 /* reset the hardware with the new settings */
1447 igb_reset(adapter);
1448
1449 /* let the f/w know that the h/w is now under the control of the
1450 * driver. */
1451 igb_get_hw_control(adapter);
1452
1453 strcpy(netdev->name, "eth%d");
1454 err = register_netdev(netdev);
1455 if (err)
1456 goto err_register;
1457
1458 /* carrier off reporting is important to ethtool even BEFORE open */
1459 netif_carrier_off(netdev);
1460
1461 #ifdef CONFIG_IGB_DCA
1462 if (dca_add_requester(&pdev->dev) == 0) {
1463 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1464 dev_info(&pdev->dev, "DCA enabled\n");
1465 igb_setup_dca(adapter);
1466 }
1467 #endif
1468
1469 /*
1470 * Initialize hardware timer: we keep it running just in case
1471 * that some program needs it later on.
1472 */
1473 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1474 adapter->cycles.read = igb_read_clock;
1475 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1476 adapter->cycles.mult = 1;
1477 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1478 wr32(E1000_TIMINCA,
1479 (1<<24) |
1480 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1481 #if 0
1482 /*
1483 * Avoid rollover while we initialize by resetting the time counter.
1484 */
1485 wr32(E1000_SYSTIML, 0x00000000);
1486 wr32(E1000_SYSTIMH, 0x00000000);
1487 #else
1488 /*
1489 * Set registers so that rollover occurs soon to test this.
1490 */
1491 wr32(E1000_SYSTIML, 0x00000000);
1492 wr32(E1000_SYSTIMH, 0xFF800000);
1493 #endif
1494 wrfl();
1495 timecounter_init(&adapter->clock,
1496 &adapter->cycles,
1497 ktime_to_ns(ktime_get_real()));
1498
1499 /*
1500 * Synchronize our NIC clock against system wall clock. NIC
1501 * time stamp reading requires ~3us per sample, each sample
1502 * was pretty stable even under load => only require 10
1503 * samples for each offset comparison.
1504 */
1505 memset(&adapter->compare, 0, sizeof(adapter->compare));
1506 adapter->compare.source = &adapter->clock;
1507 adapter->compare.target = ktime_get_real;
1508 adapter->compare.num_samples = 10;
1509 timecompare_update(&adapter->compare, 0);
1510
1511 #ifdef DEBUG
1512 {
1513 char buffer[160];
1514 printk(KERN_DEBUG
1515 "igb: %s: hw %p initialized timer\n",
1516 igb_get_time_str(adapter, buffer),
1517 &adapter->hw);
1518 }
1519 #endif
1520
1521 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1522 /* print bus type/speed/width info */
1523 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1524 netdev->name,
1525 ((hw->bus.speed == e1000_bus_speed_2500)
1526 ? "2.5Gb/s" : "unknown"),
1527 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1528 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1529 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1530 "unknown"),
1531 netdev->dev_addr);
1532
1533 igb_read_part_num(hw, &part_num);
1534 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1535 (part_num >> 8), (part_num & 0xff));
1536
1537 dev_info(&pdev->dev,
1538 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1539 adapter->msix_entries ? "MSI-X" :
1540 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1541 adapter->num_rx_queues, adapter->num_tx_queues);
1542
1543 return 0;
1544
1545 err_register:
1546 igb_release_hw_control(adapter);
1547 err_eeprom:
1548 if (!igb_check_reset_block(hw))
1549 igb_reset_phy(hw);
1550
1551 if (hw->flash_address)
1552 iounmap(hw->flash_address);
1553
1554 igb_free_queues(adapter);
1555 err_sw_init:
1556 iounmap(hw->hw_addr);
1557 err_ioremap:
1558 free_netdev(netdev);
1559 err_alloc_etherdev:
1560 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1561 IORESOURCE_MEM));
1562 err_pci_reg:
1563 err_dma:
1564 pci_disable_device(pdev);
1565 return err;
1566 }
1567
1568 /**
1569 * igb_remove - Device Removal Routine
1570 * @pdev: PCI device information struct
1571 *
1572 * igb_remove is called by the PCI subsystem to alert the driver
1573 * that it should release a PCI device. The could be caused by a
1574 * Hot-Plug event, or because the driver is going to be removed from
1575 * memory.
1576 **/
1577 static void __devexit igb_remove(struct pci_dev *pdev)
1578 {
1579 struct net_device *netdev = pci_get_drvdata(pdev);
1580 struct igb_adapter *adapter = netdev_priv(netdev);
1581 struct e1000_hw *hw = &adapter->hw;
1582 int err;
1583
1584 /* flush_scheduled work may reschedule our watchdog task, so
1585 * explicitly disable watchdog tasks from being rescheduled */
1586 set_bit(__IGB_DOWN, &adapter->state);
1587 del_timer_sync(&adapter->watchdog_timer);
1588 del_timer_sync(&adapter->phy_info_timer);
1589
1590 flush_scheduled_work();
1591
1592 #ifdef CONFIG_IGB_DCA
1593 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1594 dev_info(&pdev->dev, "DCA disabled\n");
1595 dca_remove_requester(&pdev->dev);
1596 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1597 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1598 }
1599 #endif
1600
1601 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1602 * would have already happened in close and is redundant. */
1603 igb_release_hw_control(adapter);
1604
1605 unregister_netdev(netdev);
1606
1607 if (!igb_check_reset_block(&adapter->hw))
1608 igb_reset_phy(&adapter->hw);
1609
1610 igb_reset_interrupt_capability(adapter);
1611
1612 igb_free_queues(adapter);
1613
1614 #ifdef CONFIG_PCI_IOV
1615 /* reclaim resources allocated to VFs */
1616 if (adapter->vf_data) {
1617 /* disable iov and allow time for transactions to clear */
1618 pci_disable_sriov(pdev);
1619 msleep(500);
1620
1621 kfree(adapter->vf_data);
1622 adapter->vf_data = NULL;
1623 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1624 msleep(100);
1625 dev_info(&pdev->dev, "IOV Disabled\n");
1626 }
1627 #endif
1628 iounmap(hw->hw_addr);
1629 if (hw->flash_address)
1630 iounmap(hw->flash_address);
1631 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1632 IORESOURCE_MEM));
1633
1634 free_netdev(netdev);
1635
1636 err = pci_disable_pcie_error_reporting(pdev);
1637 if (err)
1638 dev_err(&pdev->dev,
1639 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1640
1641 pci_disable_device(pdev);
1642 }
1643
1644 /**
1645 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1646 * @adapter: board private structure to initialize
1647 *
1648 * igb_sw_init initializes the Adapter private data structure.
1649 * Fields are initialized based on PCI device information and
1650 * OS network device settings (MTU size).
1651 **/
1652 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1653 {
1654 struct e1000_hw *hw = &adapter->hw;
1655 struct net_device *netdev = adapter->netdev;
1656 struct pci_dev *pdev = adapter->pdev;
1657
1658 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1659
1660 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1661 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1662 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1663 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1664 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1665 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1666
1667 /* This call may decrease the number of queues depending on
1668 * interrupt mode. */
1669 igb_set_interrupt_capability(adapter);
1670
1671 if (igb_alloc_queues(adapter)) {
1672 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1673 return -ENOMEM;
1674 }
1675
1676 /* Explicitly disable IRQ since the NIC can be in any state. */
1677 igb_irq_disable(adapter);
1678
1679 set_bit(__IGB_DOWN, &adapter->state);
1680 return 0;
1681 }
1682
1683 /**
1684 * igb_open - Called when a network interface is made active
1685 * @netdev: network interface device structure
1686 *
1687 * Returns 0 on success, negative value on failure
1688 *
1689 * The open entry point is called when a network interface is made
1690 * active by the system (IFF_UP). At this point all resources needed
1691 * for transmit and receive operations are allocated, the interrupt
1692 * handler is registered with the OS, the watchdog timer is started,
1693 * and the stack is notified that the interface is ready.
1694 **/
1695 static int igb_open(struct net_device *netdev)
1696 {
1697 struct igb_adapter *adapter = netdev_priv(netdev);
1698 struct e1000_hw *hw = &adapter->hw;
1699 int err;
1700 int i;
1701
1702 /* disallow open during test */
1703 if (test_bit(__IGB_TESTING, &adapter->state))
1704 return -EBUSY;
1705
1706 netif_carrier_off(netdev);
1707
1708 /* allocate transmit descriptors */
1709 err = igb_setup_all_tx_resources(adapter);
1710 if (err)
1711 goto err_setup_tx;
1712
1713 /* allocate receive descriptors */
1714 err = igb_setup_all_rx_resources(adapter);
1715 if (err)
1716 goto err_setup_rx;
1717
1718 /* e1000_power_up_phy(adapter); */
1719
1720 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1721 if ((adapter->hw.mng_cookie.status &
1722 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1723 igb_update_mng_vlan(adapter);
1724
1725 /* before we allocate an interrupt, we must be ready to handle it.
1726 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1727 * as soon as we call pci_request_irq, so we have to setup our
1728 * clean_rx handler before we do so. */
1729 igb_configure(adapter);
1730
1731 igb_vmm_control(adapter);
1732 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1733 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1734
1735 err = igb_request_irq(adapter);
1736 if (err)
1737 goto err_req_irq;
1738
1739 /* From here on the code is the same as igb_up() */
1740 clear_bit(__IGB_DOWN, &adapter->state);
1741
1742 for (i = 0; i < adapter->num_rx_queues; i++)
1743 napi_enable(&adapter->rx_ring[i].napi);
1744
1745 /* Clear any pending interrupts. */
1746 rd32(E1000_ICR);
1747
1748 igb_irq_enable(adapter);
1749
1750 netif_tx_start_all_queues(netdev);
1751
1752 /* Fire a link status change interrupt to start the watchdog. */
1753 wr32(E1000_ICS, E1000_ICS_LSC);
1754
1755 return 0;
1756
1757 err_req_irq:
1758 igb_release_hw_control(adapter);
1759 /* e1000_power_down_phy(adapter); */
1760 igb_free_all_rx_resources(adapter);
1761 err_setup_rx:
1762 igb_free_all_tx_resources(adapter);
1763 err_setup_tx:
1764 igb_reset(adapter);
1765
1766 return err;
1767 }
1768
1769 /**
1770 * igb_close - Disables a network interface
1771 * @netdev: network interface device structure
1772 *
1773 * Returns 0, this is not allowed to fail
1774 *
1775 * The close entry point is called when an interface is de-activated
1776 * by the OS. The hardware is still under the driver's control, but
1777 * needs to be disabled. A global MAC reset is issued to stop the
1778 * hardware, and all transmit and receive resources are freed.
1779 **/
1780 static int igb_close(struct net_device *netdev)
1781 {
1782 struct igb_adapter *adapter = netdev_priv(netdev);
1783
1784 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1785 igb_down(adapter);
1786
1787 igb_free_irq(adapter);
1788
1789 igb_free_all_tx_resources(adapter);
1790 igb_free_all_rx_resources(adapter);
1791
1792 /* kill manageability vlan ID if supported, but not if a vlan with
1793 * the same ID is registered on the host OS (let 8021q kill it) */
1794 if ((adapter->hw.mng_cookie.status &
1795 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1796 !(adapter->vlgrp &&
1797 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1798 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1799
1800 return 0;
1801 }
1802
1803 /**
1804 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1805 * @adapter: board private structure
1806 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1807 *
1808 * Return 0 on success, negative on failure
1809 **/
1810 int igb_setup_tx_resources(struct igb_adapter *adapter,
1811 struct igb_ring *tx_ring)
1812 {
1813 struct pci_dev *pdev = adapter->pdev;
1814 int size;
1815
1816 size = sizeof(struct igb_buffer) * tx_ring->count;
1817 tx_ring->buffer_info = vmalloc(size);
1818 if (!tx_ring->buffer_info)
1819 goto err;
1820 memset(tx_ring->buffer_info, 0, size);
1821
1822 /* round up to nearest 4K */
1823 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1824 tx_ring->size = ALIGN(tx_ring->size, 4096);
1825
1826 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1827 &tx_ring->dma);
1828
1829 if (!tx_ring->desc)
1830 goto err;
1831
1832 tx_ring->adapter = adapter;
1833 tx_ring->next_to_use = 0;
1834 tx_ring->next_to_clean = 0;
1835 return 0;
1836
1837 err:
1838 vfree(tx_ring->buffer_info);
1839 dev_err(&adapter->pdev->dev,
1840 "Unable to allocate memory for the transmit descriptor ring\n");
1841 return -ENOMEM;
1842 }
1843
1844 /**
1845 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1846 * (Descriptors) for all queues
1847 * @adapter: board private structure
1848 *
1849 * Return 0 on success, negative on failure
1850 **/
1851 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1852 {
1853 int i, err = 0;
1854 int r_idx;
1855
1856 for (i = 0; i < adapter->num_tx_queues; i++) {
1857 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1858 if (err) {
1859 dev_err(&adapter->pdev->dev,
1860 "Allocation for Tx Queue %u failed\n", i);
1861 for (i--; i >= 0; i--)
1862 igb_free_tx_resources(&adapter->tx_ring[i]);
1863 break;
1864 }
1865 }
1866
1867 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1868 r_idx = i % adapter->num_tx_queues;
1869 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1870 }
1871 return err;
1872 }
1873
1874 /**
1875 * igb_configure_tx - Configure transmit Unit after Reset
1876 * @adapter: board private structure
1877 *
1878 * Configure the Tx unit of the MAC after a reset.
1879 **/
1880 static void igb_configure_tx(struct igb_adapter *adapter)
1881 {
1882 u64 tdba;
1883 struct e1000_hw *hw = &adapter->hw;
1884 u32 tctl;
1885 u32 txdctl, txctrl;
1886 int i, j;
1887
1888 for (i = 0; i < adapter->num_tx_queues; i++) {
1889 struct igb_ring *ring = &adapter->tx_ring[i];
1890 j = ring->reg_idx;
1891 wr32(E1000_TDLEN(j),
1892 ring->count * sizeof(union e1000_adv_tx_desc));
1893 tdba = ring->dma;
1894 wr32(E1000_TDBAL(j),
1895 tdba & 0x00000000ffffffffULL);
1896 wr32(E1000_TDBAH(j), tdba >> 32);
1897
1898 ring->head = E1000_TDH(j);
1899 ring->tail = E1000_TDT(j);
1900 writel(0, hw->hw_addr + ring->tail);
1901 writel(0, hw->hw_addr + ring->head);
1902 txdctl = rd32(E1000_TXDCTL(j));
1903 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1904 wr32(E1000_TXDCTL(j), txdctl);
1905
1906 /* Turn off Relaxed Ordering on head write-backs. The
1907 * writebacks MUST be delivered in order or it will
1908 * completely screw up our bookeeping.
1909 */
1910 txctrl = rd32(E1000_DCA_TXCTRL(j));
1911 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1912 wr32(E1000_DCA_TXCTRL(j), txctrl);
1913 }
1914
1915 /* disable queue 0 to prevent tail bump w/o re-configuration */
1916 if (adapter->vfs_allocated_count)
1917 wr32(E1000_TXDCTL(0), 0);
1918
1919 /* Program the Transmit Control Register */
1920 tctl = rd32(E1000_TCTL);
1921 tctl &= ~E1000_TCTL_CT;
1922 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1923 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1924
1925 igb_config_collision_dist(hw);
1926
1927 /* Setup Transmit Descriptor Settings for eop descriptor */
1928 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1929
1930 /* Enable transmits */
1931 tctl |= E1000_TCTL_EN;
1932
1933 wr32(E1000_TCTL, tctl);
1934 }
1935
1936 /**
1937 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1938 * @adapter: board private structure
1939 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1940 *
1941 * Returns 0 on success, negative on failure
1942 **/
1943 int igb_setup_rx_resources(struct igb_adapter *adapter,
1944 struct igb_ring *rx_ring)
1945 {
1946 struct pci_dev *pdev = adapter->pdev;
1947 int size, desc_len;
1948
1949 size = sizeof(struct igb_buffer) * rx_ring->count;
1950 rx_ring->buffer_info = vmalloc(size);
1951 if (!rx_ring->buffer_info)
1952 goto err;
1953 memset(rx_ring->buffer_info, 0, size);
1954
1955 desc_len = sizeof(union e1000_adv_rx_desc);
1956
1957 /* Round up to nearest 4K */
1958 rx_ring->size = rx_ring->count * desc_len;
1959 rx_ring->size = ALIGN(rx_ring->size, 4096);
1960
1961 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1962 &rx_ring->dma);
1963
1964 if (!rx_ring->desc)
1965 goto err;
1966
1967 rx_ring->next_to_clean = 0;
1968 rx_ring->next_to_use = 0;
1969
1970 rx_ring->adapter = adapter;
1971
1972 return 0;
1973
1974 err:
1975 vfree(rx_ring->buffer_info);
1976 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1977 "the receive descriptor ring\n");
1978 return -ENOMEM;
1979 }
1980
1981 /**
1982 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1983 * (Descriptors) for all queues
1984 * @adapter: board private structure
1985 *
1986 * Return 0 on success, negative on failure
1987 **/
1988 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1989 {
1990 int i, err = 0;
1991
1992 for (i = 0; i < adapter->num_rx_queues; i++) {
1993 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1994 if (err) {
1995 dev_err(&adapter->pdev->dev,
1996 "Allocation for Rx Queue %u failed\n", i);
1997 for (i--; i >= 0; i--)
1998 igb_free_rx_resources(&adapter->rx_ring[i]);
1999 break;
2000 }
2001 }
2002
2003 return err;
2004 }
2005
2006 /**
2007 * igb_setup_rctl - configure the receive control registers
2008 * @adapter: Board private structure
2009 **/
2010 static void igb_setup_rctl(struct igb_adapter *adapter)
2011 {
2012 struct e1000_hw *hw = &adapter->hw;
2013 u32 rctl;
2014 u32 srrctl = 0;
2015 int i;
2016
2017 rctl = rd32(E1000_RCTL);
2018
2019 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2020 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2021
2022 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2023 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2024
2025 /*
2026 * enable stripping of CRC. It's unlikely this will break BMC
2027 * redirection as it did with e1000. Newer features require
2028 * that the HW strips the CRC.
2029 */
2030 rctl |= E1000_RCTL_SECRC;
2031
2032 /*
2033 * disable store bad packets and clear size bits.
2034 */
2035 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2036
2037 /* enable LPE when to prevent packets larger than max_frame_size */
2038 rctl |= E1000_RCTL_LPE;
2039
2040 /* Setup buffer sizes */
2041 switch (adapter->rx_buffer_len) {
2042 case IGB_RXBUFFER_256:
2043 rctl |= E1000_RCTL_SZ_256;
2044 break;
2045 case IGB_RXBUFFER_512:
2046 rctl |= E1000_RCTL_SZ_512;
2047 break;
2048 default:
2049 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2050 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2051 break;
2052 }
2053
2054 /* 82575 and greater support packet-split where the protocol
2055 * header is placed in skb->data and the packet data is
2056 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2057 * In the case of a non-split, skb->data is linearly filled,
2058 * followed by the page buffers. Therefore, skb->data is
2059 * sized to hold the largest protocol header.
2060 */
2061 /* allocations using alloc_page take too long for regular MTU
2062 * so only enable packet split for jumbo frames */
2063 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2064 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2065 srrctl |= adapter->rx_ps_hdr_size <<
2066 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2067 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2068 } else {
2069 adapter->rx_ps_hdr_size = 0;
2070 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2071 }
2072
2073 /* Attention!!! For SR-IOV PF driver operations you must enable
2074 * queue drop for all VF and PF queues to prevent head of line blocking
2075 * if an un-trusted VF does not provide descriptors to hardware.
2076 */
2077 if (adapter->vfs_allocated_count) {
2078 u32 vmolr;
2079
2080 /* set all queue drop enable bits */
2081 wr32(E1000_QDE, ALL_QUEUES);
2082 srrctl |= E1000_SRRCTL_DROP_EN;
2083
2084 /* disable queue 0 to prevent tail write w/o re-config */
2085 wr32(E1000_RXDCTL(0), 0);
2086
2087 vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2088 if (rctl & E1000_RCTL_LPE)
2089 vmolr |= E1000_VMOLR_LPE;
2090 if (adapter->num_rx_queues > 1)
2091 vmolr |= E1000_VMOLR_RSSE;
2092 wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2093 }
2094
2095 for (i = 0; i < adapter->num_rx_queues; i++) {
2096 int j = adapter->rx_ring[i].reg_idx;
2097 wr32(E1000_SRRCTL(j), srrctl);
2098 }
2099
2100 wr32(E1000_RCTL, rctl);
2101 }
2102
2103 /**
2104 * igb_rlpml_set - set maximum receive packet size
2105 * @adapter: board private structure
2106 *
2107 * Configure maximum receivable packet size.
2108 **/
2109 static void igb_rlpml_set(struct igb_adapter *adapter)
2110 {
2111 u32 max_frame_size = adapter->max_frame_size;
2112 struct e1000_hw *hw = &adapter->hw;
2113 u16 pf_id = adapter->vfs_allocated_count;
2114
2115 if (adapter->vlgrp)
2116 max_frame_size += VLAN_TAG_SIZE;
2117
2118 /* if vfs are enabled we set RLPML to the largest possible request
2119 * size and set the VMOLR RLPML to the size we need */
2120 if (pf_id) {
2121 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2122 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2123 }
2124
2125 wr32(E1000_RLPML, max_frame_size);
2126 }
2127
2128 /**
2129 * igb_configure_vt_default_pool - Configure VT default pool
2130 * @adapter: board private structure
2131 *
2132 * Configure the default pool
2133 **/
2134 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2135 {
2136 struct e1000_hw *hw = &adapter->hw;
2137 u16 pf_id = adapter->vfs_allocated_count;
2138 u32 vtctl;
2139
2140 /* not in sr-iov mode - do nothing */
2141 if (!pf_id)
2142 return;
2143
2144 vtctl = rd32(E1000_VT_CTL);
2145 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2146 E1000_VT_CTL_DISABLE_DEF_POOL);
2147 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2148 wr32(E1000_VT_CTL, vtctl);
2149 }
2150
2151 /**
2152 * igb_configure_rx - Configure receive Unit after Reset
2153 * @adapter: board private structure
2154 *
2155 * Configure the Rx unit of the MAC after a reset.
2156 **/
2157 static void igb_configure_rx(struct igb_adapter *adapter)
2158 {
2159 u64 rdba;
2160 struct e1000_hw *hw = &adapter->hw;
2161 u32 rctl, rxcsum;
2162 u32 rxdctl;
2163 int i;
2164
2165 /* disable receives while setting up the descriptors */
2166 rctl = rd32(E1000_RCTL);
2167 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2168 wrfl();
2169 mdelay(10);
2170
2171 if (adapter->itr_setting > 3)
2172 wr32(E1000_ITR, adapter->itr);
2173
2174 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2175 * the Base and Length of the Rx Descriptor Ring */
2176 for (i = 0; i < adapter->num_rx_queues; i++) {
2177 struct igb_ring *ring = &adapter->rx_ring[i];
2178 int j = ring->reg_idx;
2179 rdba = ring->dma;
2180 wr32(E1000_RDBAL(j),
2181 rdba & 0x00000000ffffffffULL);
2182 wr32(E1000_RDBAH(j), rdba >> 32);
2183 wr32(E1000_RDLEN(j),
2184 ring->count * sizeof(union e1000_adv_rx_desc));
2185
2186 ring->head = E1000_RDH(j);
2187 ring->tail = E1000_RDT(j);
2188 writel(0, hw->hw_addr + ring->tail);
2189 writel(0, hw->hw_addr + ring->head);
2190
2191 rxdctl = rd32(E1000_RXDCTL(j));
2192 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2193 rxdctl &= 0xFFF00000;
2194 rxdctl |= IGB_RX_PTHRESH;
2195 rxdctl |= IGB_RX_HTHRESH << 8;
2196 rxdctl |= IGB_RX_WTHRESH << 16;
2197 wr32(E1000_RXDCTL(j), rxdctl);
2198 }
2199
2200 if (adapter->num_rx_queues > 1) {
2201 u32 random[10];
2202 u32 mrqc;
2203 u32 j, shift;
2204 union e1000_reta {
2205 u32 dword;
2206 u8 bytes[4];
2207 } reta;
2208
2209 get_random_bytes(&random[0], 40);
2210
2211 if (hw->mac.type >= e1000_82576)
2212 shift = 0;
2213 else
2214 shift = 6;
2215 for (j = 0; j < (32 * 4); j++) {
2216 reta.bytes[j & 3] =
2217 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2218 if ((j & 3) == 3)
2219 writel(reta.dword,
2220 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2221 }
2222 if (adapter->vfs_allocated_count)
2223 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2224 else
2225 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2226
2227 /* Fill out hash function seeds */
2228 for (j = 0; j < 10; j++)
2229 array_wr32(E1000_RSSRK(0), j, random[j]);
2230
2231 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2232 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2233 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2234 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2235 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2236 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2237 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2238 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2239
2240 wr32(E1000_MRQC, mrqc);
2241 } else if (adapter->vfs_allocated_count) {
2242 /* Enable multi-queue for sr-iov */
2243 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2244 }
2245
2246 /* Enable Receive Checksum Offload for TCP and UDP */
2247 rxcsum = rd32(E1000_RXCSUM);
2248 /* Disable raw packet checksumming */
2249 rxcsum |= E1000_RXCSUM_PCSD;
2250
2251 if (adapter->hw.mac.type == e1000_82576)
2252 /* Enable Receive Checksum Offload for SCTP */
2253 rxcsum |= E1000_RXCSUM_CRCOFL;
2254
2255 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2256 wr32(E1000_RXCSUM, rxcsum);
2257
2258 /* Set the default pool for the PF's first queue */
2259 igb_configure_vt_default_pool(adapter);
2260
2261 igb_rlpml_set(adapter);
2262
2263 /* Enable Receives */
2264 wr32(E1000_RCTL, rctl);
2265 }
2266
2267 /**
2268 * igb_free_tx_resources - Free Tx Resources per Queue
2269 * @tx_ring: Tx descriptor ring for a specific queue
2270 *
2271 * Free all transmit software resources
2272 **/
2273 void igb_free_tx_resources(struct igb_ring *tx_ring)
2274 {
2275 struct pci_dev *pdev = tx_ring->adapter->pdev;
2276
2277 igb_clean_tx_ring(tx_ring);
2278
2279 vfree(tx_ring->buffer_info);
2280 tx_ring->buffer_info = NULL;
2281
2282 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2283
2284 tx_ring->desc = NULL;
2285 }
2286
2287 /**
2288 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2289 * @adapter: board private structure
2290 *
2291 * Free all transmit software resources
2292 **/
2293 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2294 {
2295 int i;
2296
2297 for (i = 0; i < adapter->num_tx_queues; i++)
2298 igb_free_tx_resources(&adapter->tx_ring[i]);
2299 }
2300
2301 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2302 struct igb_buffer *buffer_info)
2303 {
2304 buffer_info->dma = 0;
2305 if (buffer_info->skb) {
2306 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2307 DMA_TO_DEVICE);
2308 dev_kfree_skb_any(buffer_info->skb);
2309 buffer_info->skb = NULL;
2310 }
2311 buffer_info->time_stamp = 0;
2312 /* buffer_info must be completely set up in the transmit path */
2313 }
2314
2315 /**
2316 * igb_clean_tx_ring - Free Tx Buffers
2317 * @tx_ring: ring to be cleaned
2318 **/
2319 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2320 {
2321 struct igb_adapter *adapter = tx_ring->adapter;
2322 struct igb_buffer *buffer_info;
2323 unsigned long size;
2324 unsigned int i;
2325
2326 if (!tx_ring->buffer_info)
2327 return;
2328 /* Free all the Tx ring sk_buffs */
2329
2330 for (i = 0; i < tx_ring->count; i++) {
2331 buffer_info = &tx_ring->buffer_info[i];
2332 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2333 }
2334
2335 size = sizeof(struct igb_buffer) * tx_ring->count;
2336 memset(tx_ring->buffer_info, 0, size);
2337
2338 /* Zero out the descriptor ring */
2339
2340 memset(tx_ring->desc, 0, tx_ring->size);
2341
2342 tx_ring->next_to_use = 0;
2343 tx_ring->next_to_clean = 0;
2344
2345 writel(0, adapter->hw.hw_addr + tx_ring->head);
2346 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2347 }
2348
2349 /**
2350 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2351 * @adapter: board private structure
2352 **/
2353 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2354 {
2355 int i;
2356
2357 for (i = 0; i < adapter->num_tx_queues; i++)
2358 igb_clean_tx_ring(&adapter->tx_ring[i]);
2359 }
2360
2361 /**
2362 * igb_free_rx_resources - Free Rx Resources
2363 * @rx_ring: ring to clean the resources from
2364 *
2365 * Free all receive software resources
2366 **/
2367 void igb_free_rx_resources(struct igb_ring *rx_ring)
2368 {
2369 struct pci_dev *pdev = rx_ring->adapter->pdev;
2370
2371 igb_clean_rx_ring(rx_ring);
2372
2373 vfree(rx_ring->buffer_info);
2374 rx_ring->buffer_info = NULL;
2375
2376 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2377
2378 rx_ring->desc = NULL;
2379 }
2380
2381 /**
2382 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2383 * @adapter: board private structure
2384 *
2385 * Free all receive software resources
2386 **/
2387 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2388 {
2389 int i;
2390
2391 for (i = 0; i < adapter->num_rx_queues; i++)
2392 igb_free_rx_resources(&adapter->rx_ring[i]);
2393 }
2394
2395 /**
2396 * igb_clean_rx_ring - Free Rx Buffers per Queue
2397 * @rx_ring: ring to free buffers from
2398 **/
2399 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2400 {
2401 struct igb_adapter *adapter = rx_ring->adapter;
2402 struct igb_buffer *buffer_info;
2403 struct pci_dev *pdev = adapter->pdev;
2404 unsigned long size;
2405 unsigned int i;
2406
2407 if (!rx_ring->buffer_info)
2408 return;
2409 /* Free all the Rx ring sk_buffs */
2410 for (i = 0; i < rx_ring->count; i++) {
2411 buffer_info = &rx_ring->buffer_info[i];
2412 if (buffer_info->dma) {
2413 if (adapter->rx_ps_hdr_size)
2414 pci_unmap_single(pdev, buffer_info->dma,
2415 adapter->rx_ps_hdr_size,
2416 PCI_DMA_FROMDEVICE);
2417 else
2418 pci_unmap_single(pdev, buffer_info->dma,
2419 adapter->rx_buffer_len,
2420 PCI_DMA_FROMDEVICE);
2421 buffer_info->dma = 0;
2422 }
2423
2424 if (buffer_info->skb) {
2425 dev_kfree_skb(buffer_info->skb);
2426 buffer_info->skb = NULL;
2427 }
2428 if (buffer_info->page) {
2429 if (buffer_info->page_dma)
2430 pci_unmap_page(pdev, buffer_info->page_dma,
2431 PAGE_SIZE / 2,
2432 PCI_DMA_FROMDEVICE);
2433 put_page(buffer_info->page);
2434 buffer_info->page = NULL;
2435 buffer_info->page_dma = 0;
2436 buffer_info->page_offset = 0;
2437 }
2438 }
2439
2440 size = sizeof(struct igb_buffer) * rx_ring->count;
2441 memset(rx_ring->buffer_info, 0, size);
2442
2443 /* Zero out the descriptor ring */
2444 memset(rx_ring->desc, 0, rx_ring->size);
2445
2446 rx_ring->next_to_clean = 0;
2447 rx_ring->next_to_use = 0;
2448
2449 writel(0, adapter->hw.hw_addr + rx_ring->head);
2450 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2451 }
2452
2453 /**
2454 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2455 * @adapter: board private structure
2456 **/
2457 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2458 {
2459 int i;
2460
2461 for (i = 0; i < adapter->num_rx_queues; i++)
2462 igb_clean_rx_ring(&adapter->rx_ring[i]);
2463 }
2464
2465 /**
2466 * igb_set_mac - Change the Ethernet Address of the NIC
2467 * @netdev: network interface device structure
2468 * @p: pointer to an address structure
2469 *
2470 * Returns 0 on success, negative on failure
2471 **/
2472 static int igb_set_mac(struct net_device *netdev, void *p)
2473 {
2474 struct igb_adapter *adapter = netdev_priv(netdev);
2475 struct e1000_hw *hw = &adapter->hw;
2476 struct sockaddr *addr = p;
2477
2478 if (!is_valid_ether_addr(addr->sa_data))
2479 return -EADDRNOTAVAIL;
2480
2481 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2482 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2483
2484 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2485
2486 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2487
2488 return 0;
2489 }
2490
2491 /**
2492 * igb_set_multi - Multicast and Promiscuous mode set
2493 * @netdev: network interface device structure
2494 *
2495 * The set_multi entry point is called whenever the multicast address
2496 * list or the network interface flags are updated. This routine is
2497 * responsible for configuring the hardware for proper multicast,
2498 * promiscuous mode, and all-multi behavior.
2499 **/
2500 static void igb_set_multi(struct net_device *netdev)
2501 {
2502 struct igb_adapter *adapter = netdev_priv(netdev);
2503 struct e1000_hw *hw = &adapter->hw;
2504 struct e1000_mac_info *mac = &hw->mac;
2505 struct dev_mc_list *mc_ptr;
2506 u8 *mta_list = NULL;
2507 u32 rctl;
2508 int i;
2509
2510 /* Check for Promiscuous and All Multicast modes */
2511
2512 rctl = rd32(E1000_RCTL);
2513
2514 if (netdev->flags & IFF_PROMISC) {
2515 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2516 rctl &= ~E1000_RCTL_VFE;
2517 } else {
2518 if (netdev->flags & IFF_ALLMULTI) {
2519 rctl |= E1000_RCTL_MPE;
2520 rctl &= ~E1000_RCTL_UPE;
2521 } else
2522 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2523 rctl |= E1000_RCTL_VFE;
2524 }
2525 wr32(E1000_RCTL, rctl);
2526
2527 if (netdev->mc_count) {
2528 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2529 if (!mta_list) {
2530 dev_err(&adapter->pdev->dev,
2531 "failed to allocate multicast filter list\n");
2532 return;
2533 }
2534 }
2535
2536 /* The shared function expects a packed array of only addresses. */
2537 mc_ptr = netdev->mc_list;
2538
2539 for (i = 0; i < netdev->mc_count; i++) {
2540 if (!mc_ptr)
2541 break;
2542 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2543 mc_ptr = mc_ptr->next;
2544 }
2545 igb_update_mc_addr_list(hw, mta_list, i,
2546 adapter->vfs_allocated_count + 1,
2547 mac->rar_entry_count);
2548
2549 igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
2550 igb_restore_vf_multicasts(adapter);
2551
2552 kfree(mta_list);
2553 }
2554
2555 /* Need to wait a few seconds after link up to get diagnostic information from
2556 * the phy */
2557 static void igb_update_phy_info(unsigned long data)
2558 {
2559 struct igb_adapter *adapter = (struct igb_adapter *) data;
2560 igb_get_phy_info(&adapter->hw);
2561 }
2562
2563 /**
2564 * igb_has_link - check shared code for link and determine up/down
2565 * @adapter: pointer to driver private info
2566 **/
2567 static bool igb_has_link(struct igb_adapter *adapter)
2568 {
2569 struct e1000_hw *hw = &adapter->hw;
2570 bool link_active = false;
2571 s32 ret_val = 0;
2572
2573 /* get_link_status is set on LSC (link status) interrupt or
2574 * rx sequence error interrupt. get_link_status will stay
2575 * false until the e1000_check_for_link establishes link
2576 * for copper adapters ONLY
2577 */
2578 switch (hw->phy.media_type) {
2579 case e1000_media_type_copper:
2580 if (hw->mac.get_link_status) {
2581 ret_val = hw->mac.ops.check_for_link(hw);
2582 link_active = !hw->mac.get_link_status;
2583 } else {
2584 link_active = true;
2585 }
2586 break;
2587 case e1000_media_type_fiber:
2588 ret_val = hw->mac.ops.check_for_link(hw);
2589 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2590 break;
2591 case e1000_media_type_internal_serdes:
2592 ret_val = hw->mac.ops.check_for_link(hw);
2593 link_active = hw->mac.serdes_has_link;
2594 break;
2595 default:
2596 case e1000_media_type_unknown:
2597 break;
2598 }
2599
2600 return link_active;
2601 }
2602
2603 /**
2604 * igb_watchdog - Timer Call-back
2605 * @data: pointer to adapter cast into an unsigned long
2606 **/
2607 static void igb_watchdog(unsigned long data)
2608 {
2609 struct igb_adapter *adapter = (struct igb_adapter *)data;
2610 /* Do the rest outside of interrupt context */
2611 schedule_work(&adapter->watchdog_task);
2612 }
2613
2614 static void igb_watchdog_task(struct work_struct *work)
2615 {
2616 struct igb_adapter *adapter = container_of(work,
2617 struct igb_adapter, watchdog_task);
2618 struct e1000_hw *hw = &adapter->hw;
2619 struct net_device *netdev = adapter->netdev;
2620 struct igb_ring *tx_ring = adapter->tx_ring;
2621 u32 link;
2622 u32 eics = 0;
2623 int i;
2624
2625 link = igb_has_link(adapter);
2626 if ((netif_carrier_ok(netdev)) && link)
2627 goto link_up;
2628
2629 if (link) {
2630 if (!netif_carrier_ok(netdev)) {
2631 u32 ctrl;
2632 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2633 &adapter->link_speed,
2634 &adapter->link_duplex);
2635
2636 ctrl = rd32(E1000_CTRL);
2637 /* Links status message must follow this format */
2638 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2639 "Flow Control: %s\n",
2640 netdev->name,
2641 adapter->link_speed,
2642 adapter->link_duplex == FULL_DUPLEX ?
2643 "Full Duplex" : "Half Duplex",
2644 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2645 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2646 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2647 E1000_CTRL_TFCE) ? "TX" : "None")));
2648
2649 /* tweak tx_queue_len according to speed/duplex and
2650 * adjust the timeout factor */
2651 netdev->tx_queue_len = adapter->tx_queue_len;
2652 adapter->tx_timeout_factor = 1;
2653 switch (adapter->link_speed) {
2654 case SPEED_10:
2655 netdev->tx_queue_len = 10;
2656 adapter->tx_timeout_factor = 14;
2657 break;
2658 case SPEED_100:
2659 netdev->tx_queue_len = 100;
2660 /* maybe add some timeout factor ? */
2661 break;
2662 }
2663
2664 netif_carrier_on(netdev);
2665
2666 igb_ping_all_vfs(adapter);
2667
2668 /* link state has changed, schedule phy info update */
2669 if (!test_bit(__IGB_DOWN, &adapter->state))
2670 mod_timer(&adapter->phy_info_timer,
2671 round_jiffies(jiffies + 2 * HZ));
2672 }
2673 } else {
2674 if (netif_carrier_ok(netdev)) {
2675 adapter->link_speed = 0;
2676 adapter->link_duplex = 0;
2677 /* Links status message must follow this format */
2678 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2679 netdev->name);
2680 netif_carrier_off(netdev);
2681
2682 igb_ping_all_vfs(adapter);
2683
2684 /* link state has changed, schedule phy info update */
2685 if (!test_bit(__IGB_DOWN, &adapter->state))
2686 mod_timer(&adapter->phy_info_timer,
2687 round_jiffies(jiffies + 2 * HZ));
2688 }
2689 }
2690
2691 link_up:
2692 igb_update_stats(adapter);
2693
2694 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2695 adapter->tpt_old = adapter->stats.tpt;
2696 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2697 adapter->colc_old = adapter->stats.colc;
2698
2699 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2700 adapter->gorc_old = adapter->stats.gorc;
2701 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2702 adapter->gotc_old = adapter->stats.gotc;
2703
2704 igb_update_adaptive(&adapter->hw);
2705
2706 if (!netif_carrier_ok(netdev)) {
2707 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2708 /* We've lost link, so the controller stops DMA,
2709 * but we've got queued Tx work that's never going
2710 * to get done, so reset controller to flush Tx.
2711 * (Do the reset outside of interrupt context). */
2712 adapter->tx_timeout_count++;
2713 schedule_work(&adapter->reset_task);
2714 /* return immediately since reset is imminent */
2715 return;
2716 }
2717 }
2718
2719 /* Cause software interrupt to ensure rx ring is cleaned */
2720 if (adapter->msix_entries) {
2721 for (i = 0; i < adapter->num_rx_queues; i++)
2722 eics |= adapter->rx_ring[i].eims_value;
2723 wr32(E1000_EICS, eics);
2724 } else {
2725 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2726 }
2727
2728 /* Force detection of hung controller every watchdog period */
2729 tx_ring->detect_tx_hung = true;
2730
2731 /* Reset the timer */
2732 if (!test_bit(__IGB_DOWN, &adapter->state))
2733 mod_timer(&adapter->watchdog_timer,
2734 round_jiffies(jiffies + 2 * HZ));
2735 }
2736
2737 enum latency_range {
2738 lowest_latency = 0,
2739 low_latency = 1,
2740 bulk_latency = 2,
2741 latency_invalid = 255
2742 };
2743
2744
2745 /**
2746 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2747 *
2748 * Stores a new ITR value based on strictly on packet size. This
2749 * algorithm is less sophisticated than that used in igb_update_itr,
2750 * due to the difficulty of synchronizing statistics across multiple
2751 * receive rings. The divisors and thresholds used by this fuction
2752 * were determined based on theoretical maximum wire speed and testing
2753 * data, in order to minimize response time while increasing bulk
2754 * throughput.
2755 * This functionality is controlled by the InterruptThrottleRate module
2756 * parameter (see igb_param.c)
2757 * NOTE: This function is called only when operating in a multiqueue
2758 * receive environment.
2759 * @rx_ring: pointer to ring
2760 **/
2761 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2762 {
2763 int new_val = rx_ring->itr_val;
2764 int avg_wire_size = 0;
2765 struct igb_adapter *adapter = rx_ring->adapter;
2766
2767 if (!rx_ring->total_packets)
2768 goto clear_counts; /* no packets, so don't do anything */
2769
2770 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2771 * ints/sec - ITR timer value of 120 ticks.
2772 */
2773 if (adapter->link_speed != SPEED_1000) {
2774 new_val = 120;
2775 goto set_itr_val;
2776 }
2777 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2778
2779 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2780 avg_wire_size += 24;
2781
2782 /* Don't starve jumbo frames */
2783 avg_wire_size = min(avg_wire_size, 3000);
2784
2785 /* Give a little boost to mid-size frames */
2786 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2787 new_val = avg_wire_size / 3;
2788 else
2789 new_val = avg_wire_size / 2;
2790
2791 set_itr_val:
2792 if (new_val != rx_ring->itr_val) {
2793 rx_ring->itr_val = new_val;
2794 rx_ring->set_itr = 1;
2795 }
2796 clear_counts:
2797 rx_ring->total_bytes = 0;
2798 rx_ring->total_packets = 0;
2799 }
2800
2801 /**
2802 * igb_update_itr - update the dynamic ITR value based on statistics
2803 * Stores a new ITR value based on packets and byte
2804 * counts during the last interrupt. The advantage of per interrupt
2805 * computation is faster updates and more accurate ITR for the current
2806 * traffic pattern. Constants in this function were computed
2807 * based on theoretical maximum wire speed and thresholds were set based
2808 * on testing data as well as attempting to minimize response time
2809 * while increasing bulk throughput.
2810 * this functionality is controlled by the InterruptThrottleRate module
2811 * parameter (see igb_param.c)
2812 * NOTE: These calculations are only valid when operating in a single-
2813 * queue environment.
2814 * @adapter: pointer to adapter
2815 * @itr_setting: current adapter->itr
2816 * @packets: the number of packets during this measurement interval
2817 * @bytes: the number of bytes during this measurement interval
2818 **/
2819 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2820 int packets, int bytes)
2821 {
2822 unsigned int retval = itr_setting;
2823
2824 if (packets == 0)
2825 goto update_itr_done;
2826
2827 switch (itr_setting) {
2828 case lowest_latency:
2829 /* handle TSO and jumbo frames */
2830 if (bytes/packets > 8000)
2831 retval = bulk_latency;
2832 else if ((packets < 5) && (bytes > 512))
2833 retval = low_latency;
2834 break;
2835 case low_latency: /* 50 usec aka 20000 ints/s */
2836 if (bytes > 10000) {
2837 /* this if handles the TSO accounting */
2838 if (bytes/packets > 8000) {
2839 retval = bulk_latency;
2840 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2841 retval = bulk_latency;
2842 } else if ((packets > 35)) {
2843 retval = lowest_latency;
2844 }
2845 } else if (bytes/packets > 2000) {
2846 retval = bulk_latency;
2847 } else if (packets <= 2 && bytes < 512) {
2848 retval = lowest_latency;
2849 }
2850 break;
2851 case bulk_latency: /* 250 usec aka 4000 ints/s */
2852 if (bytes > 25000) {
2853 if (packets > 35)
2854 retval = low_latency;
2855 } else if (bytes < 1500) {
2856 retval = low_latency;
2857 }
2858 break;
2859 }
2860
2861 update_itr_done:
2862 return retval;
2863 }
2864
2865 static void igb_set_itr(struct igb_adapter *adapter)
2866 {
2867 u16 current_itr;
2868 u32 new_itr = adapter->itr;
2869
2870 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2871 if (adapter->link_speed != SPEED_1000) {
2872 current_itr = 0;
2873 new_itr = 4000;
2874 goto set_itr_now;
2875 }
2876
2877 adapter->rx_itr = igb_update_itr(adapter,
2878 adapter->rx_itr,
2879 adapter->rx_ring->total_packets,
2880 adapter->rx_ring->total_bytes);
2881
2882 if (adapter->rx_ring->buddy) {
2883 adapter->tx_itr = igb_update_itr(adapter,
2884 adapter->tx_itr,
2885 adapter->tx_ring->total_packets,
2886 adapter->tx_ring->total_bytes);
2887 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2888 } else {
2889 current_itr = adapter->rx_itr;
2890 }
2891
2892 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2893 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2894 current_itr = low_latency;
2895
2896 switch (current_itr) {
2897 /* counts and packets in update_itr are dependent on these numbers */
2898 case lowest_latency:
2899 new_itr = 56; /* aka 70,000 ints/sec */
2900 break;
2901 case low_latency:
2902 new_itr = 196; /* aka 20,000 ints/sec */
2903 break;
2904 case bulk_latency:
2905 new_itr = 980; /* aka 4,000 ints/sec */
2906 break;
2907 default:
2908 break;
2909 }
2910
2911 set_itr_now:
2912 adapter->rx_ring->total_bytes = 0;
2913 adapter->rx_ring->total_packets = 0;
2914 if (adapter->rx_ring->buddy) {
2915 adapter->rx_ring->buddy->total_bytes = 0;
2916 adapter->rx_ring->buddy->total_packets = 0;
2917 }
2918
2919 if (new_itr != adapter->itr) {
2920 /* this attempts to bias the interrupt rate towards Bulk
2921 * by adding intermediate steps when interrupt rate is
2922 * increasing */
2923 new_itr = new_itr > adapter->itr ?
2924 max((new_itr * adapter->itr) /
2925 (new_itr + (adapter->itr >> 2)), new_itr) :
2926 new_itr;
2927 /* Don't write the value here; it resets the adapter's
2928 * internal timer, and causes us to delay far longer than
2929 * we should between interrupts. Instead, we write the ITR
2930 * value at the beginning of the next interrupt so the timing
2931 * ends up being correct.
2932 */
2933 adapter->itr = new_itr;
2934 adapter->rx_ring->itr_val = new_itr;
2935 adapter->rx_ring->set_itr = 1;
2936 }
2937
2938 return;
2939 }
2940
2941
2942 #define IGB_TX_FLAGS_CSUM 0x00000001
2943 #define IGB_TX_FLAGS_VLAN 0x00000002
2944 #define IGB_TX_FLAGS_TSO 0x00000004
2945 #define IGB_TX_FLAGS_IPV4 0x00000008
2946 #define IGB_TX_FLAGS_TSTAMP 0x00000010
2947 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2948 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2949
2950 static inline int igb_tso_adv(struct igb_adapter *adapter,
2951 struct igb_ring *tx_ring,
2952 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2953 {
2954 struct e1000_adv_tx_context_desc *context_desc;
2955 unsigned int i;
2956 int err;
2957 struct igb_buffer *buffer_info;
2958 u32 info = 0, tu_cmd = 0;
2959 u32 mss_l4len_idx, l4len;
2960 *hdr_len = 0;
2961
2962 if (skb_header_cloned(skb)) {
2963 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2964 if (err)
2965 return err;
2966 }
2967
2968 l4len = tcp_hdrlen(skb);
2969 *hdr_len += l4len;
2970
2971 if (skb->protocol == htons(ETH_P_IP)) {
2972 struct iphdr *iph = ip_hdr(skb);
2973 iph->tot_len = 0;
2974 iph->check = 0;
2975 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2976 iph->daddr, 0,
2977 IPPROTO_TCP,
2978 0);
2979 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2980 ipv6_hdr(skb)->payload_len = 0;
2981 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2982 &ipv6_hdr(skb)->daddr,
2983 0, IPPROTO_TCP, 0);
2984 }
2985
2986 i = tx_ring->next_to_use;
2987
2988 buffer_info = &tx_ring->buffer_info[i];
2989 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2990 /* VLAN MACLEN IPLEN */
2991 if (tx_flags & IGB_TX_FLAGS_VLAN)
2992 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2993 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2994 *hdr_len += skb_network_offset(skb);
2995 info |= skb_network_header_len(skb);
2996 *hdr_len += skb_network_header_len(skb);
2997 context_desc->vlan_macip_lens = cpu_to_le32(info);
2998
2999 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3000 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3001
3002 if (skb->protocol == htons(ETH_P_IP))
3003 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3004 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3005
3006 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3007
3008 /* MSS L4LEN IDX */
3009 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3010 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3011
3012 /* For 82575, context index must be unique per ring. */
3013 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3014 mss_l4len_idx |= tx_ring->queue_index << 4;
3015
3016 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3017 context_desc->seqnum_seed = 0;
3018
3019 buffer_info->time_stamp = jiffies;
3020 buffer_info->next_to_watch = i;
3021 buffer_info->dma = 0;
3022 i++;
3023 if (i == tx_ring->count)
3024 i = 0;
3025
3026 tx_ring->next_to_use = i;
3027
3028 return true;
3029 }
3030
3031 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3032 struct igb_ring *tx_ring,
3033 struct sk_buff *skb, u32 tx_flags)
3034 {
3035 struct e1000_adv_tx_context_desc *context_desc;
3036 unsigned int i;
3037 struct igb_buffer *buffer_info;
3038 u32 info = 0, tu_cmd = 0;
3039
3040 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3041 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3042 i = tx_ring->next_to_use;
3043 buffer_info = &tx_ring->buffer_info[i];
3044 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3045
3046 if (tx_flags & IGB_TX_FLAGS_VLAN)
3047 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3048 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3049 if (skb->ip_summed == CHECKSUM_PARTIAL)
3050 info |= skb_network_header_len(skb);
3051
3052 context_desc->vlan_macip_lens = cpu_to_le32(info);
3053
3054 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3055
3056 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3057 __be16 protocol;
3058
3059 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3060 const struct vlan_ethhdr *vhdr =
3061 (const struct vlan_ethhdr*)skb->data;
3062
3063 protocol = vhdr->h_vlan_encapsulated_proto;
3064 } else {
3065 protocol = skb->protocol;
3066 }
3067
3068 switch (protocol) {
3069 case cpu_to_be16(ETH_P_IP):
3070 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3071 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3072 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3073 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3074 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3075 break;
3076 case cpu_to_be16(ETH_P_IPV6):
3077 /* XXX what about other V6 headers?? */
3078 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3079 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3080 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3081 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3082 break;
3083 default:
3084 if (unlikely(net_ratelimit()))
3085 dev_warn(&adapter->pdev->dev,
3086 "partial checksum but proto=%x!\n",
3087 skb->protocol);
3088 break;
3089 }
3090 }
3091
3092 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3093 context_desc->seqnum_seed = 0;
3094 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3095 context_desc->mss_l4len_idx =
3096 cpu_to_le32(tx_ring->queue_index << 4);
3097 else
3098 context_desc->mss_l4len_idx = 0;
3099
3100 buffer_info->time_stamp = jiffies;
3101 buffer_info->next_to_watch = i;
3102 buffer_info->dma = 0;
3103
3104 i++;
3105 if (i == tx_ring->count)
3106 i = 0;
3107 tx_ring->next_to_use = i;
3108
3109 return true;
3110 }
3111 return false;
3112 }
3113
3114 #define IGB_MAX_TXD_PWR 16
3115 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3116
3117 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3118 struct igb_ring *tx_ring, struct sk_buff *skb,
3119 unsigned int first)
3120 {
3121 struct igb_buffer *buffer_info;
3122 unsigned int len = skb_headlen(skb);
3123 unsigned int count = 0, i;
3124 unsigned int f;
3125 dma_addr_t *map;
3126
3127 i = tx_ring->next_to_use;
3128
3129 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3130 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3131 return 0;
3132 }
3133
3134 map = skb_shinfo(skb)->dma_maps;
3135
3136 buffer_info = &tx_ring->buffer_info[i];
3137 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3138 buffer_info->length = len;
3139 /* set time_stamp *before* dma to help avoid a possible race */
3140 buffer_info->time_stamp = jiffies;
3141 buffer_info->next_to_watch = i;
3142 buffer_info->dma = skb_shinfo(skb)->dma_head;
3143
3144 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3145 struct skb_frag_struct *frag;
3146
3147 i++;
3148 if (i == tx_ring->count)
3149 i = 0;
3150
3151 frag = &skb_shinfo(skb)->frags[f];
3152 len = frag->size;
3153
3154 buffer_info = &tx_ring->buffer_info[i];
3155 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3156 buffer_info->length = len;
3157 buffer_info->time_stamp = jiffies;
3158 buffer_info->next_to_watch = i;
3159 buffer_info->dma = map[count];
3160 count++;
3161 }
3162
3163 tx_ring->buffer_info[i].skb = skb;
3164 tx_ring->buffer_info[first].next_to_watch = i;
3165
3166 return count + 1;
3167 }
3168
3169 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3170 struct igb_ring *tx_ring,
3171 int tx_flags, int count, u32 paylen,
3172 u8 hdr_len)
3173 {
3174 union e1000_adv_tx_desc *tx_desc = NULL;
3175 struct igb_buffer *buffer_info;
3176 u32 olinfo_status = 0, cmd_type_len;
3177 unsigned int i;
3178
3179 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3180 E1000_ADVTXD_DCMD_DEXT);
3181
3182 if (tx_flags & IGB_TX_FLAGS_VLAN)
3183 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3184
3185 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3186 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3187
3188 if (tx_flags & IGB_TX_FLAGS_TSO) {
3189 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3190
3191 /* insert tcp checksum */
3192 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3193
3194 /* insert ip checksum */
3195 if (tx_flags & IGB_TX_FLAGS_IPV4)
3196 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3197
3198 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3199 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3200 }
3201
3202 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3203 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3204 IGB_TX_FLAGS_VLAN)))
3205 olinfo_status |= tx_ring->queue_index << 4;
3206
3207 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3208
3209 i = tx_ring->next_to_use;
3210 while (count--) {
3211 buffer_info = &tx_ring->buffer_info[i];
3212 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3213 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3214 tx_desc->read.cmd_type_len =
3215 cpu_to_le32(cmd_type_len | buffer_info->length);
3216 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3217 i++;
3218 if (i == tx_ring->count)
3219 i = 0;
3220 }
3221
3222 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3223 /* Force memory writes to complete before letting h/w
3224 * know there are new descriptors to fetch. (Only
3225 * applicable for weak-ordered memory model archs,
3226 * such as IA-64). */
3227 wmb();
3228
3229 tx_ring->next_to_use = i;
3230 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3231 /* we need this if more than one processor can write to our tail
3232 * at a time, it syncronizes IO on IA64/Altix systems */
3233 mmiowb();
3234 }
3235
3236 static int __igb_maybe_stop_tx(struct net_device *netdev,
3237 struct igb_ring *tx_ring, int size)
3238 {
3239 struct igb_adapter *adapter = netdev_priv(netdev);
3240
3241 netif_stop_subqueue(netdev, tx_ring->queue_index);
3242
3243 /* Herbert's original patch had:
3244 * smp_mb__after_netif_stop_queue();
3245 * but since that doesn't exist yet, just open code it. */
3246 smp_mb();
3247
3248 /* We need to check again in a case another CPU has just
3249 * made room available. */
3250 if (igb_desc_unused(tx_ring) < size)
3251 return -EBUSY;
3252
3253 /* A reprieve! */
3254 netif_wake_subqueue(netdev, tx_ring->queue_index);
3255 ++adapter->restart_queue;
3256 return 0;
3257 }
3258
3259 static int igb_maybe_stop_tx(struct net_device *netdev,
3260 struct igb_ring *tx_ring, int size)
3261 {
3262 if (igb_desc_unused(tx_ring) >= size)
3263 return 0;
3264 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3265 }
3266
3267 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3268 struct net_device *netdev,
3269 struct igb_ring *tx_ring)
3270 {
3271 struct igb_adapter *adapter = netdev_priv(netdev);
3272 unsigned int first;
3273 unsigned int tx_flags = 0;
3274 u8 hdr_len = 0;
3275 int count = 0;
3276 int tso = 0;
3277 union skb_shared_tx *shtx;
3278
3279 if (test_bit(__IGB_DOWN, &adapter->state)) {
3280 dev_kfree_skb_any(skb);
3281 return NETDEV_TX_OK;
3282 }
3283
3284 if (skb->len <= 0) {
3285 dev_kfree_skb_any(skb);
3286 return NETDEV_TX_OK;
3287 }
3288
3289 /* need: 1 descriptor per page,
3290 * + 2 desc gap to keep tail from touching head,
3291 * + 1 desc for skb->data,
3292 * + 1 desc for context descriptor,
3293 * otherwise try next time */
3294 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3295 /* this is a hard error */
3296 return NETDEV_TX_BUSY;
3297 }
3298
3299 /*
3300 * TODO: check that there currently is no other packet with
3301 * time stamping in the queue
3302 *
3303 * When doing time stamping, keep the connection to the socket
3304 * a while longer: it is still needed by skb_hwtstamp_tx(),
3305 * called either in igb_tx_hwtstamp() or by our caller when
3306 * doing software time stamping.
3307 */
3308 shtx = skb_tx(skb);
3309 if (unlikely(shtx->hardware)) {
3310 shtx->in_progress = 1;
3311 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3312 }
3313
3314 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3315 tx_flags |= IGB_TX_FLAGS_VLAN;
3316 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3317 }
3318
3319 if (skb->protocol == htons(ETH_P_IP))
3320 tx_flags |= IGB_TX_FLAGS_IPV4;
3321
3322 first = tx_ring->next_to_use;
3323 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3324 &hdr_len) : 0;
3325
3326 if (tso < 0) {
3327 dev_kfree_skb_any(skb);
3328 return NETDEV_TX_OK;
3329 }
3330
3331 if (tso)
3332 tx_flags |= IGB_TX_FLAGS_TSO;
3333 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3334 (skb->ip_summed == CHECKSUM_PARTIAL))
3335 tx_flags |= IGB_TX_FLAGS_CSUM;
3336
3337 /*
3338 * count reflects descriptors mapped, if 0 then mapping error
3339 * has occured and we need to rewind the descriptor queue
3340 */
3341 count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3342
3343 if (count) {
3344 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3345 skb->len, hdr_len);
3346 /* Make sure there is space in the ring for the next send. */
3347 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3348 } else {
3349 dev_kfree_skb_any(skb);
3350 tx_ring->buffer_info[first].time_stamp = 0;
3351 tx_ring->next_to_use = first;
3352 }
3353
3354 return NETDEV_TX_OK;
3355 }
3356
3357 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3358 {
3359 struct igb_adapter *adapter = netdev_priv(netdev);
3360 struct igb_ring *tx_ring;
3361
3362 int r_idx = 0;
3363 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3364 tx_ring = adapter->multi_tx_table[r_idx];
3365
3366 /* This goes back to the question of how to logically map a tx queue
3367 * to a flow. Right now, performance is impacted slightly negatively
3368 * if using multiple tx queues. If the stack breaks away from a
3369 * single qdisc implementation, we can look at this again. */
3370 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3371 }
3372
3373 /**
3374 * igb_tx_timeout - Respond to a Tx Hang
3375 * @netdev: network interface device structure
3376 **/
3377 static void igb_tx_timeout(struct net_device *netdev)
3378 {
3379 struct igb_adapter *adapter = netdev_priv(netdev);
3380 struct e1000_hw *hw = &adapter->hw;
3381
3382 /* Do the reset outside of interrupt context */
3383 adapter->tx_timeout_count++;
3384 schedule_work(&adapter->reset_task);
3385 wr32(E1000_EICS,
3386 (adapter->eims_enable_mask & ~adapter->eims_other));
3387 }
3388
3389 static void igb_reset_task(struct work_struct *work)
3390 {
3391 struct igb_adapter *adapter;
3392 adapter = container_of(work, struct igb_adapter, reset_task);
3393
3394 igb_reinit_locked(adapter);
3395 }
3396
3397 /**
3398 * igb_get_stats - Get System Network Statistics
3399 * @netdev: network interface device structure
3400 *
3401 * Returns the address of the device statistics structure.
3402 * The statistics are actually updated from the timer callback.
3403 **/
3404 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3405 {
3406 struct igb_adapter *adapter = netdev_priv(netdev);
3407
3408 /* only return the current stats */
3409 return &adapter->net_stats;
3410 }
3411
3412 /**
3413 * igb_change_mtu - Change the Maximum Transfer Unit
3414 * @netdev: network interface device structure
3415 * @new_mtu: new value for maximum frame size
3416 *
3417 * Returns 0 on success, negative on failure
3418 **/
3419 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3420 {
3421 struct igb_adapter *adapter = netdev_priv(netdev);
3422 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3423
3424 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3425 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3426 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3427 return -EINVAL;
3428 }
3429
3430 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3431 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3432 return -EINVAL;
3433 }
3434
3435 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3436 msleep(1);
3437
3438 /* igb_down has a dependency on max_frame_size */
3439 adapter->max_frame_size = max_frame;
3440 if (netif_running(netdev))
3441 igb_down(adapter);
3442
3443 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3444 * means we reserve 2 more, this pushes us to allocate from the next
3445 * larger slab size.
3446 * i.e. RXBUFFER_2048 --> size-4096 slab
3447 */
3448
3449 if (max_frame <= IGB_RXBUFFER_256)
3450 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3451 else if (max_frame <= IGB_RXBUFFER_512)
3452 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3453 else if (max_frame <= IGB_RXBUFFER_1024)
3454 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3455 else if (max_frame <= IGB_RXBUFFER_2048)
3456 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3457 else
3458 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3459 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3460 #else
3461 adapter->rx_buffer_len = PAGE_SIZE / 2;
3462 #endif
3463
3464 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3465 if (adapter->vfs_allocated_count &&
3466 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3467 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3468
3469 /* adjust allocation if LPE protects us, and we aren't using SBP */
3470 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3471 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3472 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3473
3474 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3475 netdev->mtu, new_mtu);
3476 netdev->mtu = new_mtu;
3477
3478 if (netif_running(netdev))
3479 igb_up(adapter);
3480 else
3481 igb_reset(adapter);
3482
3483 clear_bit(__IGB_RESETTING, &adapter->state);
3484
3485 return 0;
3486 }
3487
3488 /**
3489 * igb_update_stats - Update the board statistics counters
3490 * @adapter: board private structure
3491 **/
3492
3493 void igb_update_stats(struct igb_adapter *adapter)
3494 {
3495 struct e1000_hw *hw = &adapter->hw;
3496 struct pci_dev *pdev = adapter->pdev;
3497 u16 phy_tmp;
3498
3499 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3500
3501 /*
3502 * Prevent stats update while adapter is being reset, or if the pci
3503 * connection is down.
3504 */
3505 if (adapter->link_speed == 0)
3506 return;
3507 if (pci_channel_offline(pdev))
3508 return;
3509
3510 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3511 adapter->stats.gprc += rd32(E1000_GPRC);
3512 adapter->stats.gorc += rd32(E1000_GORCL);
3513 rd32(E1000_GORCH); /* clear GORCL */
3514 adapter->stats.bprc += rd32(E1000_BPRC);
3515 adapter->stats.mprc += rd32(E1000_MPRC);
3516 adapter->stats.roc += rd32(E1000_ROC);
3517
3518 adapter->stats.prc64 += rd32(E1000_PRC64);
3519 adapter->stats.prc127 += rd32(E1000_PRC127);
3520 adapter->stats.prc255 += rd32(E1000_PRC255);
3521 adapter->stats.prc511 += rd32(E1000_PRC511);
3522 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3523 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3524 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3525 adapter->stats.sec += rd32(E1000_SEC);
3526
3527 adapter->stats.mpc += rd32(E1000_MPC);
3528 adapter->stats.scc += rd32(E1000_SCC);
3529 adapter->stats.ecol += rd32(E1000_ECOL);
3530 adapter->stats.mcc += rd32(E1000_MCC);
3531 adapter->stats.latecol += rd32(E1000_LATECOL);
3532 adapter->stats.dc += rd32(E1000_DC);
3533 adapter->stats.rlec += rd32(E1000_RLEC);
3534 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3535 adapter->stats.xontxc += rd32(E1000_XONTXC);
3536 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3537 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3538 adapter->stats.fcruc += rd32(E1000_FCRUC);
3539 adapter->stats.gptc += rd32(E1000_GPTC);
3540 adapter->stats.gotc += rd32(E1000_GOTCL);
3541 rd32(E1000_GOTCH); /* clear GOTCL */
3542 adapter->stats.rnbc += rd32(E1000_RNBC);
3543 adapter->stats.ruc += rd32(E1000_RUC);
3544 adapter->stats.rfc += rd32(E1000_RFC);
3545 adapter->stats.rjc += rd32(E1000_RJC);
3546 adapter->stats.tor += rd32(E1000_TORH);
3547 adapter->stats.tot += rd32(E1000_TOTH);
3548 adapter->stats.tpr += rd32(E1000_TPR);
3549
3550 adapter->stats.ptc64 += rd32(E1000_PTC64);
3551 adapter->stats.ptc127 += rd32(E1000_PTC127);
3552 adapter->stats.ptc255 += rd32(E1000_PTC255);
3553 adapter->stats.ptc511 += rd32(E1000_PTC511);
3554 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3555 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3556
3557 adapter->stats.mptc += rd32(E1000_MPTC);
3558 adapter->stats.bptc += rd32(E1000_BPTC);
3559
3560 /* used for adaptive IFS */
3561
3562 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3563 adapter->stats.tpt += hw->mac.tx_packet_delta;
3564 hw->mac.collision_delta = rd32(E1000_COLC);
3565 adapter->stats.colc += hw->mac.collision_delta;
3566
3567 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3568 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3569 adapter->stats.tncrs += rd32(E1000_TNCRS);
3570 adapter->stats.tsctc += rd32(E1000_TSCTC);
3571 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3572
3573 adapter->stats.iac += rd32(E1000_IAC);
3574 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3575 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3576 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3577 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3578 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3579 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3580 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3581 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3582
3583 /* Fill out the OS statistics structure */
3584 adapter->net_stats.multicast = adapter->stats.mprc;
3585 adapter->net_stats.collisions = adapter->stats.colc;
3586
3587 /* Rx Errors */
3588
3589 if (hw->mac.type != e1000_82575) {
3590 u32 rqdpc_tmp;
3591 u64 rqdpc_total = 0;
3592 int i;
3593 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3594 * Queue Drop Packet Count) stats only gets incremented, if
3595 * the DROP_EN but it set (in the SRRCTL register for that
3596 * queue). If DROP_EN bit is NOT set, then the some what
3597 * equivalent count is stored in RNBC (not per queue basis).
3598 * Also note the drop count is due to lack of available
3599 * descriptors.
3600 */
3601 for (i = 0; i < adapter->num_rx_queues; i++) {
3602 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3603 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3604 rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3605 }
3606 adapter->net_stats.rx_fifo_errors = rqdpc_total;
3607 }
3608
3609 /* Note RNBC (Receive No Buffers Count) is an not an exact
3610 * drop count as the hardware FIFO might save the day. Thats
3611 * one of the reason for saving it in rx_fifo_errors, as its
3612 * potentially not a true drop.
3613 */
3614 adapter->net_stats.rx_fifo_errors += adapter->stats.rnbc;
3615
3616 /* RLEC on some newer hardware can be incorrect so build
3617 * our own version based on RUC and ROC */
3618 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3619 adapter->stats.crcerrs + adapter->stats.algnerrc +
3620 adapter->stats.ruc + adapter->stats.roc +
3621 adapter->stats.cexterr;
3622 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3623 adapter->stats.roc;
3624 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3625 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3626 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3627
3628 /* Tx Errors */
3629 adapter->net_stats.tx_errors = adapter->stats.ecol +
3630 adapter->stats.latecol;
3631 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3632 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3633 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3634
3635 /* Tx Dropped needs to be maintained elsewhere */
3636
3637 /* Phy Stats */
3638 if (hw->phy.media_type == e1000_media_type_copper) {
3639 if ((adapter->link_speed == SPEED_1000) &&
3640 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3641 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3642 adapter->phy_stats.idle_errors += phy_tmp;
3643 }
3644 }
3645
3646 /* Management Stats */
3647 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3648 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3649 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3650 }
3651
3652 static irqreturn_t igb_msix_other(int irq, void *data)
3653 {
3654 struct net_device *netdev = data;
3655 struct igb_adapter *adapter = netdev_priv(netdev);
3656 struct e1000_hw *hw = &adapter->hw;
3657 u32 icr = rd32(E1000_ICR);
3658
3659 /* reading ICR causes bit 31 of EICR to be cleared */
3660
3661 if(icr & E1000_ICR_DOUTSYNC) {
3662 /* HW is reporting DMA is out of sync */
3663 adapter->stats.doosync++;
3664 }
3665
3666 /* Check for a mailbox event */
3667 if (icr & E1000_ICR_VMMB)
3668 igb_msg_task(adapter);
3669
3670 if (icr & E1000_ICR_LSC) {
3671 hw->mac.get_link_status = 1;
3672 /* guard against interrupt when we're going down */
3673 if (!test_bit(__IGB_DOWN, &adapter->state))
3674 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3675 }
3676
3677 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3678 wr32(E1000_EIMS, adapter->eims_other);
3679
3680 return IRQ_HANDLED;
3681 }
3682
3683 static irqreturn_t igb_msix_tx(int irq, void *data)
3684 {
3685 struct igb_ring *tx_ring = data;
3686 struct igb_adapter *adapter = tx_ring->adapter;
3687 struct e1000_hw *hw = &adapter->hw;
3688
3689 #ifdef CONFIG_IGB_DCA
3690 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3691 igb_update_tx_dca(tx_ring);
3692 #endif
3693
3694 tx_ring->total_bytes = 0;
3695 tx_ring->total_packets = 0;
3696
3697 /* auto mask will automatically reenable the interrupt when we write
3698 * EICS */
3699 if (!igb_clean_tx_irq(tx_ring))
3700 /* Ring was not completely cleaned, so fire another interrupt */
3701 wr32(E1000_EICS, tx_ring->eims_value);
3702 else
3703 wr32(E1000_EIMS, tx_ring->eims_value);
3704
3705 return IRQ_HANDLED;
3706 }
3707
3708 static void igb_write_itr(struct igb_ring *ring)
3709 {
3710 struct e1000_hw *hw = &ring->adapter->hw;
3711 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3712 switch (hw->mac.type) {
3713 case e1000_82576:
3714 wr32(ring->itr_register, ring->itr_val |
3715 0x80000000);
3716 break;
3717 default:
3718 wr32(ring->itr_register, ring->itr_val |
3719 (ring->itr_val << 16));
3720 break;
3721 }
3722 ring->set_itr = 0;
3723 }
3724 }
3725
3726 static irqreturn_t igb_msix_rx(int irq, void *data)
3727 {
3728 struct igb_ring *rx_ring = data;
3729
3730 /* Write the ITR value calculated at the end of the
3731 * previous interrupt.
3732 */
3733
3734 igb_write_itr(rx_ring);
3735
3736 if (napi_schedule_prep(&rx_ring->napi))
3737 __napi_schedule(&rx_ring->napi);
3738
3739 #ifdef CONFIG_IGB_DCA
3740 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3741 igb_update_rx_dca(rx_ring);
3742 #endif
3743 return IRQ_HANDLED;
3744 }
3745
3746 #ifdef CONFIG_IGB_DCA
3747 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3748 {
3749 u32 dca_rxctrl;
3750 struct igb_adapter *adapter = rx_ring->adapter;
3751 struct e1000_hw *hw = &adapter->hw;
3752 int cpu = get_cpu();
3753 int q = rx_ring->reg_idx;
3754
3755 if (rx_ring->cpu != cpu) {
3756 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3757 if (hw->mac.type == e1000_82576) {
3758 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3759 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3760 E1000_DCA_RXCTRL_CPUID_SHIFT;
3761 } else {
3762 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3763 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3764 }
3765 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3766 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3767 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3768 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3769 rx_ring->cpu = cpu;
3770 }
3771 put_cpu();
3772 }
3773
3774 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3775 {
3776 u32 dca_txctrl;
3777 struct igb_adapter *adapter = tx_ring->adapter;
3778 struct e1000_hw *hw = &adapter->hw;
3779 int cpu = get_cpu();
3780 int q = tx_ring->reg_idx;
3781
3782 if (tx_ring->cpu != cpu) {
3783 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3784 if (hw->mac.type == e1000_82576) {
3785 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3786 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3787 E1000_DCA_TXCTRL_CPUID_SHIFT;
3788 } else {
3789 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3790 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3791 }
3792 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3793 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3794 tx_ring->cpu = cpu;
3795 }
3796 put_cpu();
3797 }
3798
3799 static void igb_setup_dca(struct igb_adapter *adapter)
3800 {
3801 struct e1000_hw *hw = &adapter->hw;
3802 int i;
3803
3804 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3805 return;
3806
3807 /* Always use CB2 mode, difference is masked in the CB driver. */
3808 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3809
3810 for (i = 0; i < adapter->num_tx_queues; i++) {
3811 adapter->tx_ring[i].cpu = -1;
3812 igb_update_tx_dca(&adapter->tx_ring[i]);
3813 }
3814 for (i = 0; i < adapter->num_rx_queues; i++) {
3815 adapter->rx_ring[i].cpu = -1;
3816 igb_update_rx_dca(&adapter->rx_ring[i]);
3817 }
3818 }
3819
3820 static int __igb_notify_dca(struct device *dev, void *data)
3821 {
3822 struct net_device *netdev = dev_get_drvdata(dev);
3823 struct igb_adapter *adapter = netdev_priv(netdev);
3824 struct e1000_hw *hw = &adapter->hw;
3825 unsigned long event = *(unsigned long *)data;
3826
3827 switch (event) {
3828 case DCA_PROVIDER_ADD:
3829 /* if already enabled, don't do it again */
3830 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3831 break;
3832 /* Always use CB2 mode, difference is masked
3833 * in the CB driver. */
3834 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3835 if (dca_add_requester(dev) == 0) {
3836 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3837 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3838 igb_setup_dca(adapter);
3839 break;
3840 }
3841 /* Fall Through since DCA is disabled. */
3842 case DCA_PROVIDER_REMOVE:
3843 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3844 /* without this a class_device is left
3845 * hanging around in the sysfs model */
3846 dca_remove_requester(dev);
3847 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3848 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3849 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3850 }
3851 break;
3852 }
3853
3854 return 0;
3855 }
3856
3857 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3858 void *p)
3859 {
3860 int ret_val;
3861
3862 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3863 __igb_notify_dca);
3864
3865 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3866 }
3867 #endif /* CONFIG_IGB_DCA */
3868
3869 static void igb_ping_all_vfs(struct igb_adapter *adapter)
3870 {
3871 struct e1000_hw *hw = &adapter->hw;
3872 u32 ping;
3873 int i;
3874
3875 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3876 ping = E1000_PF_CONTROL_MSG;
3877 if (adapter->vf_data[i].clear_to_send)
3878 ping |= E1000_VT_MSGTYPE_CTS;
3879 igb_write_mbx(hw, &ping, 1, i);
3880 }
3881 }
3882
3883 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3884 u32 *msgbuf, u32 vf)
3885 {
3886 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3887 u16 *hash_list = (u16 *)&msgbuf[1];
3888 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3889 int i;
3890
3891 /* only up to 30 hash values supported */
3892 if (n > 30)
3893 n = 30;
3894
3895 /* salt away the number of multi cast addresses assigned
3896 * to this VF for later use to restore when the PF multi cast
3897 * list changes
3898 */
3899 vf_data->num_vf_mc_hashes = n;
3900
3901 /* VFs are limited to using the MTA hash table for their multicast
3902 * addresses */
3903 for (i = 0; i < n; i++)
3904 vf_data->vf_mc_hashes[i] = hash_list[i];;
3905
3906 /* Flush and reset the mta with the new values */
3907 igb_set_multi(adapter->netdev);
3908
3909 return 0;
3910 }
3911
3912 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3913 {
3914 struct e1000_hw *hw = &adapter->hw;
3915 struct vf_data_storage *vf_data;
3916 int i, j;
3917
3918 for (i = 0; i < adapter->vfs_allocated_count; i++) {
3919 vf_data = &adapter->vf_data[i];
3920 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
3921 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3922 }
3923 }
3924
3925 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3926 {
3927 struct e1000_hw *hw = &adapter->hw;
3928 u32 pool_mask, reg, vid;
3929 int i;
3930
3931 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3932
3933 /* Find the vlan filter for this id */
3934 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3935 reg = rd32(E1000_VLVF(i));
3936
3937 /* remove the vf from the pool */
3938 reg &= ~pool_mask;
3939
3940 /* if pool is empty then remove entry from vfta */
3941 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3942 (reg & E1000_VLVF_VLANID_ENABLE)) {
3943 reg = 0;
3944 vid = reg & E1000_VLVF_VLANID_MASK;
3945 igb_vfta_set(hw, vid, false);
3946 }
3947
3948 wr32(E1000_VLVF(i), reg);
3949 }
3950 }
3951
3952 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3953 {
3954 struct e1000_hw *hw = &adapter->hw;
3955 u32 reg, i;
3956
3957 /* It is an error to call this function when VFs are not enabled */
3958 if (!adapter->vfs_allocated_count)
3959 return -1;
3960
3961 /* Find the vlan filter for this id */
3962 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3963 reg = rd32(E1000_VLVF(i));
3964 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3965 vid == (reg & E1000_VLVF_VLANID_MASK))
3966 break;
3967 }
3968
3969 if (add) {
3970 if (i == E1000_VLVF_ARRAY_SIZE) {
3971 /* Did not find a matching VLAN ID entry that was
3972 * enabled. Search for a free filter entry, i.e.
3973 * one without the enable bit set
3974 */
3975 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3976 reg = rd32(E1000_VLVF(i));
3977 if (!(reg & E1000_VLVF_VLANID_ENABLE))
3978 break;
3979 }
3980 }
3981 if (i < E1000_VLVF_ARRAY_SIZE) {
3982 /* Found an enabled/available entry */
3983 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3984
3985 /* if !enabled we need to set this up in vfta */
3986 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
3987 /* add VID to filter table, if bit already set
3988 * PF must have added it outside of table */
3989 if (igb_vfta_set(hw, vid, true))
3990 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
3991 adapter->vfs_allocated_count);
3992 reg |= E1000_VLVF_VLANID_ENABLE;
3993 }
3994 reg &= ~E1000_VLVF_VLANID_MASK;
3995 reg |= vid;
3996
3997 wr32(E1000_VLVF(i), reg);
3998 return 0;
3999 }
4000 } else {
4001 if (i < E1000_VLVF_ARRAY_SIZE) {
4002 /* remove vf from the pool */
4003 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4004 /* if pool is empty then remove entry from vfta */
4005 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4006 reg = 0;
4007 igb_vfta_set(hw, vid, false);
4008 }
4009 wr32(E1000_VLVF(i), reg);
4010 return 0;
4011 }
4012 }
4013 return -1;
4014 }
4015
4016 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4017 {
4018 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4019 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4020
4021 return igb_vlvf_set(adapter, vid, add, vf);
4022 }
4023
4024 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4025 {
4026 struct e1000_hw *hw = &adapter->hw;
4027
4028 /* disable mailbox functionality for vf */
4029 adapter->vf_data[vf].clear_to_send = false;
4030
4031 /* reset offloads to defaults */
4032 igb_set_vmolr(hw, vf);
4033
4034 /* reset vlans for device */
4035 igb_clear_vf_vfta(adapter, vf);
4036
4037 /* reset multicast table array for vf */
4038 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4039
4040 /* Flush and reset the mta with the new values */
4041 igb_set_multi(adapter->netdev);
4042 }
4043
4044 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4045 {
4046 struct e1000_hw *hw = &adapter->hw;
4047 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4048 u32 reg, msgbuf[3];
4049 u8 *addr = (u8 *)(&msgbuf[1]);
4050
4051 /* process all the same items cleared in a function level reset */
4052 igb_vf_reset_event(adapter, vf);
4053
4054 /* set vf mac address */
4055 igb_rar_set(hw, vf_mac, vf + 1);
4056 igb_set_rah_pool(hw, vf, vf + 1);
4057
4058 /* enable transmit and receive for vf */
4059 reg = rd32(E1000_VFTE);
4060 wr32(E1000_VFTE, reg | (1 << vf));
4061 reg = rd32(E1000_VFRE);
4062 wr32(E1000_VFRE, reg | (1 << vf));
4063
4064 /* enable mailbox functionality for vf */
4065 adapter->vf_data[vf].clear_to_send = true;
4066
4067 /* reply to reset with ack and vf mac address */
4068 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4069 memcpy(addr, vf_mac, 6);
4070 igb_write_mbx(hw, msgbuf, 3, vf);
4071 }
4072
4073 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4074 {
4075 unsigned char *addr = (char *)&msg[1];
4076 int err = -1;
4077
4078 if (is_valid_ether_addr(addr))
4079 err = igb_set_vf_mac(adapter, vf, addr);
4080
4081 return err;
4082
4083 }
4084
4085 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4086 {
4087 struct e1000_hw *hw = &adapter->hw;
4088 u32 msg = E1000_VT_MSGTYPE_NACK;
4089
4090 /* if device isn't clear to send it shouldn't be reading either */
4091 if (!adapter->vf_data[vf].clear_to_send)
4092 igb_write_mbx(hw, &msg, 1, vf);
4093 }
4094
4095
4096 static void igb_msg_task(struct igb_adapter *adapter)
4097 {
4098 struct e1000_hw *hw = &adapter->hw;
4099 u32 vf;
4100
4101 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4102 /* process any reset requests */
4103 if (!igb_check_for_rst(hw, vf)) {
4104 adapter->vf_data[vf].clear_to_send = false;
4105 igb_vf_reset_event(adapter, vf);
4106 }
4107
4108 /* process any messages pending */
4109 if (!igb_check_for_msg(hw, vf))
4110 igb_rcv_msg_from_vf(adapter, vf);
4111
4112 /* process any acks */
4113 if (!igb_check_for_ack(hw, vf))
4114 igb_rcv_ack_from_vf(adapter, vf);
4115
4116 }
4117 }
4118
4119 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4120 {
4121 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4122 u32 msgbuf[mbx_size];
4123 struct e1000_hw *hw = &adapter->hw;
4124 s32 retval;
4125
4126 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4127
4128 if (retval)
4129 dev_err(&adapter->pdev->dev,
4130 "Error receiving message from VF\n");
4131
4132 /* this is a message we already processed, do nothing */
4133 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4134 return retval;
4135
4136 /*
4137 * until the vf completes a reset it should not be
4138 * allowed to start any configuration.
4139 */
4140
4141 if (msgbuf[0] == E1000_VF_RESET) {
4142 igb_vf_reset_msg(adapter, vf);
4143
4144 return retval;
4145 }
4146
4147 if (!adapter->vf_data[vf].clear_to_send) {
4148 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4149 igb_write_mbx(hw, msgbuf, 1, vf);
4150 return retval;
4151 }
4152
4153 switch ((msgbuf[0] & 0xFFFF)) {
4154 case E1000_VF_SET_MAC_ADDR:
4155 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4156 break;
4157 case E1000_VF_SET_MULTICAST:
4158 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4159 break;
4160 case E1000_VF_SET_LPE:
4161 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4162 break;
4163 case E1000_VF_SET_VLAN:
4164 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4165 break;
4166 default:
4167 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4168 retval = -1;
4169 break;
4170 }
4171
4172 /* notify the VF of the results of what it sent us */
4173 if (retval)
4174 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4175 else
4176 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4177
4178 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4179
4180 igb_write_mbx(hw, msgbuf, 1, vf);
4181
4182 return retval;
4183 }
4184
4185 /**
4186 * igb_intr_msi - Interrupt Handler
4187 * @irq: interrupt number
4188 * @data: pointer to a network interface device structure
4189 **/
4190 static irqreturn_t igb_intr_msi(int irq, void *data)
4191 {
4192 struct net_device *netdev = data;
4193 struct igb_adapter *adapter = netdev_priv(netdev);
4194 struct e1000_hw *hw = &adapter->hw;
4195 /* read ICR disables interrupts using IAM */
4196 u32 icr = rd32(E1000_ICR);
4197
4198 igb_write_itr(adapter->rx_ring);
4199
4200 if(icr & E1000_ICR_DOUTSYNC) {
4201 /* HW is reporting DMA is out of sync */
4202 adapter->stats.doosync++;
4203 }
4204
4205 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4206 hw->mac.get_link_status = 1;
4207 if (!test_bit(__IGB_DOWN, &adapter->state))
4208 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4209 }
4210
4211 napi_schedule(&adapter->rx_ring[0].napi);
4212
4213 return IRQ_HANDLED;
4214 }
4215
4216 /**
4217 * igb_intr - Legacy Interrupt Handler
4218 * @irq: interrupt number
4219 * @data: pointer to a network interface device structure
4220 **/
4221 static irqreturn_t igb_intr(int irq, void *data)
4222 {
4223 struct net_device *netdev = data;
4224 struct igb_adapter *adapter = netdev_priv(netdev);
4225 struct e1000_hw *hw = &adapter->hw;
4226 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4227 * need for the IMC write */
4228 u32 icr = rd32(E1000_ICR);
4229 if (!icr)
4230 return IRQ_NONE; /* Not our interrupt */
4231
4232 igb_write_itr(adapter->rx_ring);
4233
4234 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4235 * not set, then the adapter didn't send an interrupt */
4236 if (!(icr & E1000_ICR_INT_ASSERTED))
4237 return IRQ_NONE;
4238
4239 if(icr & E1000_ICR_DOUTSYNC) {
4240 /* HW is reporting DMA is out of sync */
4241 adapter->stats.doosync++;
4242 }
4243
4244 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4245 hw->mac.get_link_status = 1;
4246 /* guard against interrupt when we're going down */
4247 if (!test_bit(__IGB_DOWN, &adapter->state))
4248 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4249 }
4250
4251 napi_schedule(&adapter->rx_ring[0].napi);
4252
4253 return IRQ_HANDLED;
4254 }
4255
4256 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4257 {
4258 struct igb_adapter *adapter = rx_ring->adapter;
4259 struct e1000_hw *hw = &adapter->hw;
4260
4261 if (adapter->itr_setting & 3) {
4262 if (adapter->num_rx_queues == 1)
4263 igb_set_itr(adapter);
4264 else
4265 igb_update_ring_itr(rx_ring);
4266 }
4267
4268 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4269 if (adapter->msix_entries)
4270 wr32(E1000_EIMS, rx_ring->eims_value);
4271 else
4272 igb_irq_enable(adapter);
4273 }
4274 }
4275
4276 /**
4277 * igb_poll - NAPI Rx polling callback
4278 * @napi: napi polling structure
4279 * @budget: count of how many packets we should handle
4280 **/
4281 static int igb_poll(struct napi_struct *napi, int budget)
4282 {
4283 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4284 int work_done = 0;
4285
4286 #ifdef CONFIG_IGB_DCA
4287 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4288 igb_update_rx_dca(rx_ring);
4289 #endif
4290 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4291
4292 if (rx_ring->buddy) {
4293 #ifdef CONFIG_IGB_DCA
4294 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4295 igb_update_tx_dca(rx_ring->buddy);
4296 #endif
4297 if (!igb_clean_tx_irq(rx_ring->buddy))
4298 work_done = budget;
4299 }
4300
4301 /* If not enough Rx work done, exit the polling mode */
4302 if (work_done < budget) {
4303 napi_complete(napi);
4304 igb_rx_irq_enable(rx_ring);
4305 }
4306
4307 return work_done;
4308 }
4309
4310 /**
4311 * igb_hwtstamp - utility function which checks for TX time stamp
4312 * @adapter: board private structure
4313 * @skb: packet that was just sent
4314 *
4315 * If we were asked to do hardware stamping and such a time stamp is
4316 * available, then it must have been for this skb here because we only
4317 * allow only one such packet into the queue.
4318 */
4319 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4320 {
4321 union skb_shared_tx *shtx = skb_tx(skb);
4322 struct e1000_hw *hw = &adapter->hw;
4323
4324 if (unlikely(shtx->hardware)) {
4325 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4326 if (valid) {
4327 u64 regval = rd32(E1000_TXSTMPL);
4328 u64 ns;
4329 struct skb_shared_hwtstamps shhwtstamps;
4330
4331 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4332 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4333 ns = timecounter_cyc2time(&adapter->clock,
4334 regval);
4335 timecompare_update(&adapter->compare, ns);
4336 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4337 shhwtstamps.syststamp =
4338 timecompare_transform(&adapter->compare, ns);
4339 skb_tstamp_tx(skb, &shhwtstamps);
4340 }
4341 }
4342 }
4343
4344 /**
4345 * igb_clean_tx_irq - Reclaim resources after transmit completes
4346 * @adapter: board private structure
4347 * returns true if ring is completely cleaned
4348 **/
4349 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4350 {
4351 struct igb_adapter *adapter = tx_ring->adapter;
4352 struct net_device *netdev = adapter->netdev;
4353 struct e1000_hw *hw = &adapter->hw;
4354 struct igb_buffer *buffer_info;
4355 struct sk_buff *skb;
4356 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4357 unsigned int total_bytes = 0, total_packets = 0;
4358 unsigned int i, eop, count = 0;
4359 bool cleaned = false;
4360
4361 i = tx_ring->next_to_clean;
4362 eop = tx_ring->buffer_info[i].next_to_watch;
4363 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4364
4365 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4366 (count < tx_ring->count)) {
4367 for (cleaned = false; !cleaned; count++) {
4368 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4369 buffer_info = &tx_ring->buffer_info[i];
4370 cleaned = (i == eop);
4371 skb = buffer_info->skb;
4372
4373 if (skb) {
4374 unsigned int segs, bytecount;
4375 /* gso_segs is currently only valid for tcp */
4376 segs = skb_shinfo(skb)->gso_segs ?: 1;
4377 /* multiply data chunks by size of headers */
4378 bytecount = ((segs - 1) * skb_headlen(skb)) +
4379 skb->len;
4380 total_packets += segs;
4381 total_bytes += bytecount;
4382
4383 igb_tx_hwtstamp(adapter, skb);
4384 }
4385
4386 igb_unmap_and_free_tx_resource(adapter, buffer_info);
4387 tx_desc->wb.status = 0;
4388
4389 i++;
4390 if (i == tx_ring->count)
4391 i = 0;
4392 }
4393 eop = tx_ring->buffer_info[i].next_to_watch;
4394 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4395 }
4396
4397 tx_ring->next_to_clean = i;
4398
4399 if (unlikely(count &&
4400 netif_carrier_ok(netdev) &&
4401 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4402 /* Make sure that anybody stopping the queue after this
4403 * sees the new next_to_clean.
4404 */
4405 smp_mb();
4406 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4407 !(test_bit(__IGB_DOWN, &adapter->state))) {
4408 netif_wake_subqueue(netdev, tx_ring->queue_index);
4409 ++adapter->restart_queue;
4410 }
4411 }
4412
4413 if (tx_ring->detect_tx_hung) {
4414 /* Detect a transmit hang in hardware, this serializes the
4415 * check with the clearing of time_stamp and movement of i */
4416 tx_ring->detect_tx_hung = false;
4417 if (tx_ring->buffer_info[i].time_stamp &&
4418 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4419 (adapter->tx_timeout_factor * HZ))
4420 && !(rd32(E1000_STATUS) &
4421 E1000_STATUS_TXOFF)) {
4422
4423 /* detected Tx unit hang */
4424 dev_err(&adapter->pdev->dev,
4425 "Detected Tx Unit Hang\n"
4426 " Tx Queue <%d>\n"
4427 " TDH <%x>\n"
4428 " TDT <%x>\n"
4429 " next_to_use <%x>\n"
4430 " next_to_clean <%x>\n"
4431 "buffer_info[next_to_clean]\n"
4432 " time_stamp <%lx>\n"
4433 " next_to_watch <%x>\n"
4434 " jiffies <%lx>\n"
4435 " desc.status <%x>\n",
4436 tx_ring->queue_index,
4437 readl(adapter->hw.hw_addr + tx_ring->head),
4438 readl(adapter->hw.hw_addr + tx_ring->tail),
4439 tx_ring->next_to_use,
4440 tx_ring->next_to_clean,
4441 tx_ring->buffer_info[i].time_stamp,
4442 eop,
4443 jiffies,
4444 eop_desc->wb.status);
4445 netif_stop_subqueue(netdev, tx_ring->queue_index);
4446 }
4447 }
4448 tx_ring->total_bytes += total_bytes;
4449 tx_ring->total_packets += total_packets;
4450 tx_ring->tx_stats.bytes += total_bytes;
4451 tx_ring->tx_stats.packets += total_packets;
4452 adapter->net_stats.tx_bytes += total_bytes;
4453 adapter->net_stats.tx_packets += total_packets;
4454 return (count < tx_ring->count);
4455 }
4456
4457 /**
4458 * igb_receive_skb - helper function to handle rx indications
4459 * @ring: pointer to receive ring receving this packet
4460 * @status: descriptor status field as written by hardware
4461 * @rx_desc: receive descriptor containing vlan and type information.
4462 * @skb: pointer to sk_buff to be indicated to stack
4463 **/
4464 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4465 union e1000_adv_rx_desc * rx_desc,
4466 struct sk_buff *skb)
4467 {
4468 struct igb_adapter * adapter = ring->adapter;
4469 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4470
4471 skb_record_rx_queue(skb, ring->queue_index);
4472 if (vlan_extracted)
4473 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4474 le16_to_cpu(rx_desc->wb.upper.vlan),
4475 skb);
4476 else
4477 napi_gro_receive(&ring->napi, skb);
4478 }
4479
4480 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4481 u32 status_err, struct sk_buff *skb)
4482 {
4483 skb->ip_summed = CHECKSUM_NONE;
4484
4485 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4486 if ((status_err & E1000_RXD_STAT_IXSM) ||
4487 (adapter->flags & IGB_FLAG_RX_CSUM_DISABLED))
4488 return;
4489 /* TCP/UDP checksum error bit is set */
4490 if (status_err &
4491 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4492 /*
4493 * work around errata with sctp packets where the TCPE aka
4494 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4495 * packets, (aka let the stack check the crc32c)
4496 */
4497 if (!((adapter->hw.mac.type == e1000_82576) &&
4498 (skb->len == 60)))
4499 adapter->hw_csum_err++;
4500 /* let the stack verify checksum errors */
4501 return;
4502 }
4503 /* It must be a TCP or UDP packet with a valid checksum */
4504 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4505 skb->ip_summed = CHECKSUM_UNNECESSARY;
4506
4507 dev_dbg(&adapter->pdev->dev, "cksum success: bits %08X\n", status_err);
4508 adapter->hw_csum_good++;
4509 }
4510
4511 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4512 int *work_done, int budget)
4513 {
4514 struct igb_adapter *adapter = rx_ring->adapter;
4515 struct net_device *netdev = adapter->netdev;
4516 struct e1000_hw *hw = &adapter->hw;
4517 struct pci_dev *pdev = adapter->pdev;
4518 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4519 struct igb_buffer *buffer_info , *next_buffer;
4520 struct sk_buff *skb;
4521 bool cleaned = false;
4522 int cleaned_count = 0;
4523 unsigned int total_bytes = 0, total_packets = 0;
4524 unsigned int i;
4525 u32 length, hlen, staterr;
4526
4527 i = rx_ring->next_to_clean;
4528 buffer_info = &rx_ring->buffer_info[i];
4529 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4530 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4531
4532 while (staterr & E1000_RXD_STAT_DD) {
4533 if (*work_done >= budget)
4534 break;
4535 (*work_done)++;
4536
4537 skb = buffer_info->skb;
4538 prefetch(skb->data - NET_IP_ALIGN);
4539 buffer_info->skb = NULL;
4540
4541 i++;
4542 if (i == rx_ring->count)
4543 i = 0;
4544 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4545 prefetch(next_rxd);
4546 next_buffer = &rx_ring->buffer_info[i];
4547
4548 length = le16_to_cpu(rx_desc->wb.upper.length);
4549 cleaned = true;
4550 cleaned_count++;
4551
4552 if (!adapter->rx_ps_hdr_size) {
4553 pci_unmap_single(pdev, buffer_info->dma,
4554 adapter->rx_buffer_len +
4555 NET_IP_ALIGN,
4556 PCI_DMA_FROMDEVICE);
4557 skb_put(skb, length);
4558 goto send_up;
4559 }
4560
4561 /* HW will not DMA in data larger than the given buffer, even
4562 * if it parses the (NFS, of course) header to be larger. In
4563 * that case, it fills the header buffer and spills the rest
4564 * into the page.
4565 */
4566 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4567 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4568 if (hlen > adapter->rx_ps_hdr_size)
4569 hlen = adapter->rx_ps_hdr_size;
4570
4571 if (!skb_shinfo(skb)->nr_frags) {
4572 pci_unmap_single(pdev, buffer_info->dma,
4573 adapter->rx_ps_hdr_size + NET_IP_ALIGN,
4574 PCI_DMA_FROMDEVICE);
4575 skb_put(skb, hlen);
4576 }
4577
4578 if (length) {
4579 pci_unmap_page(pdev, buffer_info->page_dma,
4580 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4581 buffer_info->page_dma = 0;
4582
4583 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4584 buffer_info->page,
4585 buffer_info->page_offset,
4586 length);
4587
4588 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4589 (page_count(buffer_info->page) != 1))
4590 buffer_info->page = NULL;
4591 else
4592 get_page(buffer_info->page);
4593
4594 skb->len += length;
4595 skb->data_len += length;
4596
4597 skb->truesize += length;
4598 }
4599
4600 if (!(staterr & E1000_RXD_STAT_EOP)) {
4601 buffer_info->skb = next_buffer->skb;
4602 buffer_info->dma = next_buffer->dma;
4603 next_buffer->skb = skb;
4604 next_buffer->dma = 0;
4605 goto next_desc;
4606 }
4607 send_up:
4608 /*
4609 * If this bit is set, then the RX registers contain
4610 * the time stamp. No other packet will be time
4611 * stamped until we read these registers, so read the
4612 * registers to make them available again. Because
4613 * only one packet can be time stamped at a time, we
4614 * know that the register values must belong to this
4615 * one here and therefore we don't need to compare
4616 * any of the additional attributes stored for it.
4617 *
4618 * If nothing went wrong, then it should have a
4619 * skb_shared_tx that we can turn into a
4620 * skb_shared_hwtstamps.
4621 *
4622 * TODO: can time stamping be triggered (thus locking
4623 * the registers) without the packet reaching this point
4624 * here? In that case RX time stamping would get stuck.
4625 *
4626 * TODO: in "time stamp all packets" mode this bit is
4627 * not set. Need a global flag for this mode and then
4628 * always read the registers. Cannot be done without
4629 * a race condition.
4630 */
4631 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4632 u64 regval;
4633 u64 ns;
4634 struct skb_shared_hwtstamps *shhwtstamps =
4635 skb_hwtstamps(skb);
4636
4637 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4638 "igb: no RX time stamp available for time stamped packet");
4639 regval = rd32(E1000_RXSTMPL);
4640 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4641 ns = timecounter_cyc2time(&adapter->clock, regval);
4642 timecompare_update(&adapter->compare, ns);
4643 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4644 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4645 shhwtstamps->syststamp =
4646 timecompare_transform(&adapter->compare, ns);
4647 }
4648
4649 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4650 dev_kfree_skb_irq(skb);
4651 goto next_desc;
4652 }
4653
4654 total_bytes += skb->len;
4655 total_packets++;
4656
4657 igb_rx_checksum_adv(adapter, staterr, skb);
4658
4659 skb->protocol = eth_type_trans(skb, netdev);
4660
4661 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4662
4663 next_desc:
4664 rx_desc->wb.upper.status_error = 0;
4665
4666 /* return some buffers to hardware, one at a time is too slow */
4667 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4668 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4669 cleaned_count = 0;
4670 }
4671
4672 /* use prefetched values */
4673 rx_desc = next_rxd;
4674 buffer_info = next_buffer;
4675 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4676 }
4677
4678 rx_ring->next_to_clean = i;
4679 cleaned_count = igb_desc_unused(rx_ring);
4680
4681 if (cleaned_count)
4682 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4683
4684 rx_ring->total_packets += total_packets;
4685 rx_ring->total_bytes += total_bytes;
4686 rx_ring->rx_stats.packets += total_packets;
4687 rx_ring->rx_stats.bytes += total_bytes;
4688 adapter->net_stats.rx_bytes += total_bytes;
4689 adapter->net_stats.rx_packets += total_packets;
4690 return cleaned;
4691 }
4692
4693 /**
4694 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4695 * @adapter: address of board private structure
4696 **/
4697 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4698 int cleaned_count)
4699 {
4700 struct igb_adapter *adapter = rx_ring->adapter;
4701 struct net_device *netdev = adapter->netdev;
4702 struct pci_dev *pdev = adapter->pdev;
4703 union e1000_adv_rx_desc *rx_desc;
4704 struct igb_buffer *buffer_info;
4705 struct sk_buff *skb;
4706 unsigned int i;
4707 int bufsz;
4708
4709 i = rx_ring->next_to_use;
4710 buffer_info = &rx_ring->buffer_info[i];
4711
4712 if (adapter->rx_ps_hdr_size)
4713 bufsz = adapter->rx_ps_hdr_size;
4714 else
4715 bufsz = adapter->rx_buffer_len;
4716 bufsz += NET_IP_ALIGN;
4717
4718 while (cleaned_count--) {
4719 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4720
4721 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4722 if (!buffer_info->page) {
4723 buffer_info->page = alloc_page(GFP_ATOMIC);
4724 if (!buffer_info->page) {
4725 adapter->alloc_rx_buff_failed++;
4726 goto no_buffers;
4727 }
4728 buffer_info->page_offset = 0;
4729 } else {
4730 buffer_info->page_offset ^= PAGE_SIZE / 2;
4731 }
4732 buffer_info->page_dma =
4733 pci_map_page(pdev, buffer_info->page,
4734 buffer_info->page_offset,
4735 PAGE_SIZE / 2,
4736 PCI_DMA_FROMDEVICE);
4737 }
4738
4739 if (!buffer_info->skb) {
4740 skb = netdev_alloc_skb(netdev, bufsz);
4741 if (!skb) {
4742 adapter->alloc_rx_buff_failed++;
4743 goto no_buffers;
4744 }
4745
4746 /* Make buffer alignment 2 beyond a 16 byte boundary
4747 * this will result in a 16 byte aligned IP header after
4748 * the 14 byte MAC header is removed
4749 */
4750 skb_reserve(skb, NET_IP_ALIGN);
4751
4752 buffer_info->skb = skb;
4753 buffer_info->dma = pci_map_single(pdev, skb->data,
4754 bufsz,
4755 PCI_DMA_FROMDEVICE);
4756 }
4757 /* Refresh the desc even if buffer_addrs didn't change because
4758 * each write-back erases this info. */
4759 if (adapter->rx_ps_hdr_size) {
4760 rx_desc->read.pkt_addr =
4761 cpu_to_le64(buffer_info->page_dma);
4762 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4763 } else {
4764 rx_desc->read.pkt_addr =
4765 cpu_to_le64(buffer_info->dma);
4766 rx_desc->read.hdr_addr = 0;
4767 }
4768
4769 i++;
4770 if (i == rx_ring->count)
4771 i = 0;
4772 buffer_info = &rx_ring->buffer_info[i];
4773 }
4774
4775 no_buffers:
4776 if (rx_ring->next_to_use != i) {
4777 rx_ring->next_to_use = i;
4778 if (i == 0)
4779 i = (rx_ring->count - 1);
4780 else
4781 i--;
4782
4783 /* Force memory writes to complete before letting h/w
4784 * know there are new descriptors to fetch. (Only
4785 * applicable for weak-ordered memory model archs,
4786 * such as IA-64). */
4787 wmb();
4788 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4789 }
4790 }
4791
4792 /**
4793 * igb_mii_ioctl -
4794 * @netdev:
4795 * @ifreq:
4796 * @cmd:
4797 **/
4798 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4799 {
4800 struct igb_adapter *adapter = netdev_priv(netdev);
4801 struct mii_ioctl_data *data = if_mii(ifr);
4802
4803 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4804 return -EOPNOTSUPP;
4805
4806 switch (cmd) {
4807 case SIOCGMIIPHY:
4808 data->phy_id = adapter->hw.phy.addr;
4809 break;
4810 case SIOCGMIIREG:
4811 if (!capable(CAP_NET_ADMIN))
4812 return -EPERM;
4813 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4814 &data->val_out))
4815 return -EIO;
4816 break;
4817 case SIOCSMIIREG:
4818 default:
4819 return -EOPNOTSUPP;
4820 }
4821 return 0;
4822 }
4823
4824 /**
4825 * igb_hwtstamp_ioctl - control hardware time stamping
4826 * @netdev:
4827 * @ifreq:
4828 * @cmd:
4829 *
4830 * Outgoing time stamping can be enabled and disabled. Play nice and
4831 * disable it when requested, although it shouldn't case any overhead
4832 * when no packet needs it. At most one packet in the queue may be
4833 * marked for time stamping, otherwise it would be impossible to tell
4834 * for sure to which packet the hardware time stamp belongs.
4835 *
4836 * Incoming time stamping has to be configured via the hardware
4837 * filters. Not all combinations are supported, in particular event
4838 * type has to be specified. Matching the kind of event packet is
4839 * not supported, with the exception of "all V2 events regardless of
4840 * level 2 or 4".
4841 *
4842 **/
4843 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4844 struct ifreq *ifr, int cmd)
4845 {
4846 struct igb_adapter *adapter = netdev_priv(netdev);
4847 struct e1000_hw *hw = &adapter->hw;
4848 struct hwtstamp_config config;
4849 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4850 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4851 u32 tsync_rx_ctl_type = 0;
4852 u32 tsync_rx_cfg = 0;
4853 int is_l4 = 0;
4854 int is_l2 = 0;
4855 short port = 319; /* PTP */
4856 u32 regval;
4857
4858 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4859 return -EFAULT;
4860
4861 /* reserved for future extensions */
4862 if (config.flags)
4863 return -EINVAL;
4864
4865 switch (config.tx_type) {
4866 case HWTSTAMP_TX_OFF:
4867 tsync_tx_ctl_bit = 0;
4868 break;
4869 case HWTSTAMP_TX_ON:
4870 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4871 break;
4872 default:
4873 return -ERANGE;
4874 }
4875
4876 switch (config.rx_filter) {
4877 case HWTSTAMP_FILTER_NONE:
4878 tsync_rx_ctl_bit = 0;
4879 break;
4880 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4881 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4882 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4883 case HWTSTAMP_FILTER_ALL:
4884 /*
4885 * register TSYNCRXCFG must be set, therefore it is not
4886 * possible to time stamp both Sync and Delay_Req messages
4887 * => fall back to time stamping all packets
4888 */
4889 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4890 config.rx_filter = HWTSTAMP_FILTER_ALL;
4891 break;
4892 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4893 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4894 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4895 is_l4 = 1;
4896 break;
4897 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4898 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4899 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4900 is_l4 = 1;
4901 break;
4902 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4903 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4904 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4905 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4906 is_l2 = 1;
4907 is_l4 = 1;
4908 config.rx_filter = HWTSTAMP_FILTER_SOME;
4909 break;
4910 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4911 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4912 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4913 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4914 is_l2 = 1;
4915 is_l4 = 1;
4916 config.rx_filter = HWTSTAMP_FILTER_SOME;
4917 break;
4918 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4919 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4920 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4921 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4922 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4923 is_l2 = 1;
4924 break;
4925 default:
4926 return -ERANGE;
4927 }
4928
4929 /* enable/disable TX */
4930 regval = rd32(E1000_TSYNCTXCTL);
4931 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4932 wr32(E1000_TSYNCTXCTL, regval);
4933
4934 /* enable/disable RX, define which PTP packets are time stamped */
4935 regval = rd32(E1000_TSYNCRXCTL);
4936 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4937 regval = (regval & ~0xE) | tsync_rx_ctl_type;
4938 wr32(E1000_TSYNCRXCTL, regval);
4939 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4940
4941 /*
4942 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4943 * (Ethertype to filter on)
4944 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4945 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4946 */
4947 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4948
4949 /* L4 Queue Filter[0]: only filter by source and destination port */
4950 wr32(E1000_SPQF0, htons(port));
4951 wr32(E1000_IMIREXT(0), is_l4 ?
4952 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4953 wr32(E1000_IMIR(0), is_l4 ?
4954 (htons(port)
4955 | (0<<16) /* immediate interrupt disabled */
4956 | 0 /* (1<<17) bit cleared: do not bypass
4957 destination port check */)
4958 : 0);
4959 wr32(E1000_FTQF0, is_l4 ?
4960 (0x11 /* UDP */
4961 | (1<<15) /* VF not compared */
4962 | (1<<27) /* Enable Timestamping */
4963 | (7<<28) /* only source port filter enabled,
4964 source/target address and protocol
4965 masked */)
4966 : ((1<<15) | (15<<28) /* all mask bits set = filter not
4967 enabled */));
4968
4969 wrfl();
4970
4971 adapter->hwtstamp_config = config;
4972
4973 /* clear TX/RX time stamp registers, just to be sure */
4974 regval = rd32(E1000_TXSTMPH);
4975 regval = rd32(E1000_RXSTMPH);
4976
4977 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4978 -EFAULT : 0;
4979 }
4980
4981 /**
4982 * igb_ioctl -
4983 * @netdev:
4984 * @ifreq:
4985 * @cmd:
4986 **/
4987 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4988 {
4989 switch (cmd) {
4990 case SIOCGMIIPHY:
4991 case SIOCGMIIREG:
4992 case SIOCSMIIREG:
4993 return igb_mii_ioctl(netdev, ifr, cmd);
4994 case SIOCSHWTSTAMP:
4995 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
4996 default:
4997 return -EOPNOTSUPP;
4998 }
4999 }
5000
5001 static void igb_vlan_rx_register(struct net_device *netdev,
5002 struct vlan_group *grp)
5003 {
5004 struct igb_adapter *adapter = netdev_priv(netdev);
5005 struct e1000_hw *hw = &adapter->hw;
5006 u32 ctrl, rctl;
5007
5008 igb_irq_disable(adapter);
5009 adapter->vlgrp = grp;
5010
5011 if (grp) {
5012 /* enable VLAN tag insert/strip */
5013 ctrl = rd32(E1000_CTRL);
5014 ctrl |= E1000_CTRL_VME;
5015 wr32(E1000_CTRL, ctrl);
5016
5017 /* enable VLAN receive filtering */
5018 rctl = rd32(E1000_RCTL);
5019 rctl &= ~E1000_RCTL_CFIEN;
5020 wr32(E1000_RCTL, rctl);
5021 igb_update_mng_vlan(adapter);
5022 } else {
5023 /* disable VLAN tag insert/strip */
5024 ctrl = rd32(E1000_CTRL);
5025 ctrl &= ~E1000_CTRL_VME;
5026 wr32(E1000_CTRL, ctrl);
5027
5028 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
5029 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
5030 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
5031 }
5032 }
5033
5034 igb_rlpml_set(adapter);
5035
5036 if (!test_bit(__IGB_DOWN, &adapter->state))
5037 igb_irq_enable(adapter);
5038 }
5039
5040 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5041 {
5042 struct igb_adapter *adapter = netdev_priv(netdev);
5043 struct e1000_hw *hw = &adapter->hw;
5044 int pf_id = adapter->vfs_allocated_count;
5045
5046 if ((hw->mng_cookie.status &
5047 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5048 (vid == adapter->mng_vlan_id))
5049 return;
5050
5051 /* add vid to vlvf if sr-iov is enabled,
5052 * if that fails add directly to filter table */
5053 if (igb_vlvf_set(adapter, vid, true, pf_id))
5054 igb_vfta_set(hw, vid, true);
5055
5056 }
5057
5058 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5059 {
5060 struct igb_adapter *adapter = netdev_priv(netdev);
5061 struct e1000_hw *hw = &adapter->hw;
5062 int pf_id = adapter->vfs_allocated_count;
5063
5064 igb_irq_disable(adapter);
5065 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5066
5067 if (!test_bit(__IGB_DOWN, &adapter->state))
5068 igb_irq_enable(adapter);
5069
5070 if ((adapter->hw.mng_cookie.status &
5071 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5072 (vid == adapter->mng_vlan_id)) {
5073 /* release control to f/w */
5074 igb_release_hw_control(adapter);
5075 return;
5076 }
5077
5078 /* remove vid from vlvf if sr-iov is enabled,
5079 * if not in vlvf remove from vfta */
5080 if (igb_vlvf_set(adapter, vid, false, pf_id))
5081 igb_vfta_set(hw, vid, false);
5082 }
5083
5084 static void igb_restore_vlan(struct igb_adapter *adapter)
5085 {
5086 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5087
5088 if (adapter->vlgrp) {
5089 u16 vid;
5090 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5091 if (!vlan_group_get_device(adapter->vlgrp, vid))
5092 continue;
5093 igb_vlan_rx_add_vid(adapter->netdev, vid);
5094 }
5095 }
5096 }
5097
5098 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5099 {
5100 struct e1000_mac_info *mac = &adapter->hw.mac;
5101
5102 mac->autoneg = 0;
5103
5104 /* Fiber NICs only allow 1000 gbps Full duplex */
5105 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
5106 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5107 dev_err(&adapter->pdev->dev,
5108 "Unsupported Speed/Duplex configuration\n");
5109 return -EINVAL;
5110 }
5111
5112 switch (spddplx) {
5113 case SPEED_10 + DUPLEX_HALF:
5114 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5115 break;
5116 case SPEED_10 + DUPLEX_FULL:
5117 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5118 break;
5119 case SPEED_100 + DUPLEX_HALF:
5120 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5121 break;
5122 case SPEED_100 + DUPLEX_FULL:
5123 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5124 break;
5125 case SPEED_1000 + DUPLEX_FULL:
5126 mac->autoneg = 1;
5127 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5128 break;
5129 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5130 default:
5131 dev_err(&adapter->pdev->dev,
5132 "Unsupported Speed/Duplex configuration\n");
5133 return -EINVAL;
5134 }
5135 return 0;
5136 }
5137
5138 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5139 {
5140 struct net_device *netdev = pci_get_drvdata(pdev);
5141 struct igb_adapter *adapter = netdev_priv(netdev);
5142 struct e1000_hw *hw = &adapter->hw;
5143 u32 ctrl, rctl, status;
5144 u32 wufc = adapter->wol;
5145 #ifdef CONFIG_PM
5146 int retval = 0;
5147 #endif
5148
5149 netif_device_detach(netdev);
5150
5151 if (netif_running(netdev))
5152 igb_close(netdev);
5153
5154 igb_reset_interrupt_capability(adapter);
5155
5156 igb_free_queues(adapter);
5157
5158 #ifdef CONFIG_PM
5159 retval = pci_save_state(pdev);
5160 if (retval)
5161 return retval;
5162 #endif
5163
5164 status = rd32(E1000_STATUS);
5165 if (status & E1000_STATUS_LU)
5166 wufc &= ~E1000_WUFC_LNKC;
5167
5168 if (wufc) {
5169 igb_setup_rctl(adapter);
5170 igb_set_multi(netdev);
5171
5172 /* turn on all-multi mode if wake on multicast is enabled */
5173 if (wufc & E1000_WUFC_MC) {
5174 rctl = rd32(E1000_RCTL);
5175 rctl |= E1000_RCTL_MPE;
5176 wr32(E1000_RCTL, rctl);
5177 }
5178
5179 ctrl = rd32(E1000_CTRL);
5180 /* advertise wake from D3Cold */
5181 #define E1000_CTRL_ADVD3WUC 0x00100000
5182 /* phy power management enable */
5183 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5184 ctrl |= E1000_CTRL_ADVD3WUC;
5185 wr32(E1000_CTRL, ctrl);
5186
5187 /* Allow time for pending master requests to run */
5188 igb_disable_pcie_master(&adapter->hw);
5189
5190 wr32(E1000_WUC, E1000_WUC_PME_EN);
5191 wr32(E1000_WUFC, wufc);
5192 } else {
5193 wr32(E1000_WUC, 0);
5194 wr32(E1000_WUFC, 0);
5195 }
5196
5197 *enable_wake = wufc || adapter->en_mng_pt;
5198 if (!*enable_wake)
5199 igb_shutdown_fiber_serdes_link_82575(hw);
5200
5201 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5202 * would have already happened in close and is redundant. */
5203 igb_release_hw_control(adapter);
5204
5205 pci_disable_device(pdev);
5206
5207 return 0;
5208 }
5209
5210 #ifdef CONFIG_PM
5211 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5212 {
5213 int retval;
5214 bool wake;
5215
5216 retval = __igb_shutdown(pdev, &wake);
5217 if (retval)
5218 return retval;
5219
5220 if (wake) {
5221 pci_prepare_to_sleep(pdev);
5222 } else {
5223 pci_wake_from_d3(pdev, false);
5224 pci_set_power_state(pdev, PCI_D3hot);
5225 }
5226
5227 return 0;
5228 }
5229
5230 static int igb_resume(struct pci_dev *pdev)
5231 {
5232 struct net_device *netdev = pci_get_drvdata(pdev);
5233 struct igb_adapter *adapter = netdev_priv(netdev);
5234 struct e1000_hw *hw = &adapter->hw;
5235 u32 err;
5236
5237 pci_set_power_state(pdev, PCI_D0);
5238 pci_restore_state(pdev);
5239
5240 err = pci_enable_device_mem(pdev);
5241 if (err) {
5242 dev_err(&pdev->dev,
5243 "igb: Cannot enable PCI device from suspend\n");
5244 return err;
5245 }
5246 pci_set_master(pdev);
5247
5248 pci_enable_wake(pdev, PCI_D3hot, 0);
5249 pci_enable_wake(pdev, PCI_D3cold, 0);
5250
5251 igb_set_interrupt_capability(adapter);
5252
5253 if (igb_alloc_queues(adapter)) {
5254 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5255 return -ENOMEM;
5256 }
5257
5258 /* e1000_power_up_phy(adapter); */
5259
5260 igb_reset(adapter);
5261
5262 /* let the f/w know that the h/w is now under the control of the
5263 * driver. */
5264 igb_get_hw_control(adapter);
5265
5266 wr32(E1000_WUS, ~0);
5267
5268 if (netif_running(netdev)) {
5269 err = igb_open(netdev);
5270 if (err)
5271 return err;
5272 }
5273
5274 netif_device_attach(netdev);
5275
5276 return 0;
5277 }
5278 #endif
5279
5280 static void igb_shutdown(struct pci_dev *pdev)
5281 {
5282 bool wake;
5283
5284 __igb_shutdown(pdev, &wake);
5285
5286 if (system_state == SYSTEM_POWER_OFF) {
5287 pci_wake_from_d3(pdev, wake);
5288 pci_set_power_state(pdev, PCI_D3hot);
5289 }
5290 }
5291
5292 #ifdef CONFIG_NET_POLL_CONTROLLER
5293 /*
5294 * Polling 'interrupt' - used by things like netconsole to send skbs
5295 * without having to re-enable interrupts. It's not called while
5296 * the interrupt routine is executing.
5297 */
5298 static void igb_netpoll(struct net_device *netdev)
5299 {
5300 struct igb_adapter *adapter = netdev_priv(netdev);
5301 struct e1000_hw *hw = &adapter->hw;
5302 int i;
5303
5304 if (!adapter->msix_entries) {
5305 igb_irq_disable(adapter);
5306 napi_schedule(&adapter->rx_ring[0].napi);
5307 return;
5308 }
5309
5310 for (i = 0; i < adapter->num_tx_queues; i++) {
5311 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5312 wr32(E1000_EIMC, tx_ring->eims_value);
5313 igb_clean_tx_irq(tx_ring);
5314 wr32(E1000_EIMS, tx_ring->eims_value);
5315 }
5316
5317 for (i = 0; i < adapter->num_rx_queues; i++) {
5318 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5319 wr32(E1000_EIMC, rx_ring->eims_value);
5320 napi_schedule(&rx_ring->napi);
5321 }
5322 }
5323 #endif /* CONFIG_NET_POLL_CONTROLLER */
5324
5325 /**
5326 * igb_io_error_detected - called when PCI error is detected
5327 * @pdev: Pointer to PCI device
5328 * @state: The current pci connection state
5329 *
5330 * This function is called after a PCI bus error affecting
5331 * this device has been detected.
5332 */
5333 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5334 pci_channel_state_t state)
5335 {
5336 struct net_device *netdev = pci_get_drvdata(pdev);
5337 struct igb_adapter *adapter = netdev_priv(netdev);
5338
5339 netif_device_detach(netdev);
5340
5341 if (netif_running(netdev))
5342 igb_down(adapter);
5343 pci_disable_device(pdev);
5344
5345 /* Request a slot slot reset. */
5346 return PCI_ERS_RESULT_NEED_RESET;
5347 }
5348
5349 /**
5350 * igb_io_slot_reset - called after the pci bus has been reset.
5351 * @pdev: Pointer to PCI device
5352 *
5353 * Restart the card from scratch, as if from a cold-boot. Implementation
5354 * resembles the first-half of the igb_resume routine.
5355 */
5356 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5357 {
5358 struct net_device *netdev = pci_get_drvdata(pdev);
5359 struct igb_adapter *adapter = netdev_priv(netdev);
5360 struct e1000_hw *hw = &adapter->hw;
5361 pci_ers_result_t result;
5362 int err;
5363
5364 if (pci_enable_device_mem(pdev)) {
5365 dev_err(&pdev->dev,
5366 "Cannot re-enable PCI device after reset.\n");
5367 result = PCI_ERS_RESULT_DISCONNECT;
5368 } else {
5369 pci_set_master(pdev);
5370 pci_restore_state(pdev);
5371
5372 pci_enable_wake(pdev, PCI_D3hot, 0);
5373 pci_enable_wake(pdev, PCI_D3cold, 0);
5374
5375 igb_reset(adapter);
5376 wr32(E1000_WUS, ~0);
5377 result = PCI_ERS_RESULT_RECOVERED;
5378 }
5379
5380 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5381 if (err) {
5382 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5383 "failed 0x%0x\n", err);
5384 /* non-fatal, continue */
5385 }
5386
5387 return result;
5388 }
5389
5390 /**
5391 * igb_io_resume - called when traffic can start flowing again.
5392 * @pdev: Pointer to PCI device
5393 *
5394 * This callback is called when the error recovery driver tells us that
5395 * its OK to resume normal operation. Implementation resembles the
5396 * second-half of the igb_resume routine.
5397 */
5398 static void igb_io_resume(struct pci_dev *pdev)
5399 {
5400 struct net_device *netdev = pci_get_drvdata(pdev);
5401 struct igb_adapter *adapter = netdev_priv(netdev);
5402
5403 if (netif_running(netdev)) {
5404 if (igb_up(adapter)) {
5405 dev_err(&pdev->dev, "igb_up failed after reset\n");
5406 return;
5407 }
5408 }
5409
5410 netif_device_attach(netdev);
5411
5412 /* let the f/w know that the h/w is now under the control of the
5413 * driver. */
5414 igb_get_hw_control(adapter);
5415 }
5416
5417 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
5418 {
5419 u32 reg_data;
5420
5421 reg_data = rd32(E1000_VMOLR(vfn));
5422 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
5423 E1000_VMOLR_ROPE | /* Accept packets matched in UTA */
5424 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
5425 E1000_VMOLR_AUPE | /* Accept untagged packets */
5426 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
5427 wr32(E1000_VMOLR(vfn), reg_data);
5428 }
5429
5430 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
5431 int vfn)
5432 {
5433 struct e1000_hw *hw = &adapter->hw;
5434 u32 vmolr;
5435
5436 vmolr = rd32(E1000_VMOLR(vfn));
5437 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5438 vmolr |= size | E1000_VMOLR_LPE;
5439 wr32(E1000_VMOLR(vfn), vmolr);
5440
5441 return 0;
5442 }
5443
5444 static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
5445 {
5446 u32 reg_data;
5447
5448 reg_data = rd32(E1000_RAH(entry));
5449 reg_data &= ~E1000_RAH_POOL_MASK;
5450 reg_data |= E1000_RAH_POOL_1 << pool;;
5451 wr32(E1000_RAH(entry), reg_data);
5452 }
5453
5454 static void igb_set_mc_list_pools(struct igb_adapter *adapter,
5455 int entry_count, u16 total_rar_filters)
5456 {
5457 struct e1000_hw *hw = &adapter->hw;
5458 int i = adapter->vfs_allocated_count + 1;
5459
5460 if ((i + entry_count) < total_rar_filters)
5461 total_rar_filters = i + entry_count;
5462
5463 for (; i < total_rar_filters; i++)
5464 igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
5465 }
5466
5467 static int igb_set_vf_mac(struct igb_adapter *adapter,
5468 int vf, unsigned char *mac_addr)
5469 {
5470 struct e1000_hw *hw = &adapter->hw;
5471 int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5472
5473 igb_rar_set(hw, mac_addr, rar_entry);
5474
5475 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5476
5477 igb_set_rah_pool(hw, vf, rar_entry);
5478
5479 return 0;
5480 }
5481
5482 static void igb_vmm_control(struct igb_adapter *adapter)
5483 {
5484 struct e1000_hw *hw = &adapter->hw;
5485 u32 reg_data;
5486
5487 if (!adapter->vfs_allocated_count)
5488 return;
5489
5490 /* VF's need PF reset indication before they
5491 * can send/receive mail */
5492 reg_data = rd32(E1000_CTRL_EXT);
5493 reg_data |= E1000_CTRL_EXT_PFRSTD;
5494 wr32(E1000_CTRL_EXT, reg_data);
5495
5496 igb_vmdq_set_loopback_pf(hw, true);
5497 igb_vmdq_set_replication_pf(hw, true);
5498 }
5499
5500 /* igb_main.c */
This page took 0.234552 seconds and 6 git commands to generate.