drivers/net: request_irq - Remove unnecessary leading & from second arg
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
74 /* required last entry */
75 {0, }
76 };
77
78 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79
80 void igb_reset(struct igb_adapter *);
81 static int igb_setup_all_tx_resources(struct igb_adapter *);
82 static int igb_setup_all_rx_resources(struct igb_adapter *);
83 static void igb_free_all_tx_resources(struct igb_adapter *);
84 static void igb_free_all_rx_resources(struct igb_adapter *);
85 static void igb_setup_mrqc(struct igb_adapter *);
86 void igb_update_stats(struct igb_adapter *);
87 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
88 static void __devexit igb_remove(struct pci_dev *pdev);
89 static int igb_sw_init(struct igb_adapter *);
90 static int igb_open(struct net_device *);
91 static int igb_close(struct net_device *);
92 static void igb_configure_tx(struct igb_adapter *);
93 static void igb_configure_rx(struct igb_adapter *);
94 static void igb_clean_all_tx_rings(struct igb_adapter *);
95 static void igb_clean_all_rx_rings(struct igb_adapter *);
96 static void igb_clean_tx_ring(struct igb_ring *);
97 static void igb_clean_rx_ring(struct igb_ring *);
98 static void igb_set_rx_mode(struct net_device *);
99 static void igb_update_phy_info(unsigned long);
100 static void igb_watchdog(unsigned long);
101 static void igb_watchdog_task(struct work_struct *);
102 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static void igb_set_uta(struct igb_adapter *adapter);
107 static irqreturn_t igb_intr(int irq, void *);
108 static irqreturn_t igb_intr_msi(int irq, void *);
109 static irqreturn_t igb_msix_other(int irq, void *);
110 static irqreturn_t igb_msix_ring(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_dca(struct igb_q_vector *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_q_vector *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
126 static void igb_ping_all_vfs(struct igb_adapter *);
127 static void igb_msg_task(struct igb_adapter *);
128 static void igb_vmm_control(struct igb_adapter *);
129 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
130 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
131
132 #ifdef CONFIG_PM
133 static int igb_suspend(struct pci_dev *, pm_message_t);
134 static int igb_resume(struct pci_dev *);
135 #endif
136 static void igb_shutdown(struct pci_dev *);
137 #ifdef CONFIG_IGB_DCA
138 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
139 static struct notifier_block dca_notifier = {
140 .notifier_call = igb_notify_dca,
141 .next = NULL,
142 .priority = 0
143 };
144 #endif
145 #ifdef CONFIG_NET_POLL_CONTROLLER
146 /* for netdump / net console */
147 static void igb_netpoll(struct net_device *);
148 #endif
149 #ifdef CONFIG_PCI_IOV
150 static unsigned int max_vfs = 0;
151 module_param(max_vfs, uint, 0);
152 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
153 "per physical function");
154 #endif /* CONFIG_PCI_IOV */
155
156 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
157 pci_channel_state_t);
158 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
159 static void igb_io_resume(struct pci_dev *);
160
161 static struct pci_error_handlers igb_err_handler = {
162 .error_detected = igb_io_error_detected,
163 .slot_reset = igb_io_slot_reset,
164 .resume = igb_io_resume,
165 };
166
167
168 static struct pci_driver igb_driver = {
169 .name = igb_driver_name,
170 .id_table = igb_pci_tbl,
171 .probe = igb_probe,
172 .remove = __devexit_p(igb_remove),
173 #ifdef CONFIG_PM
174 /* Power Managment Hooks */
175 .suspend = igb_suspend,
176 .resume = igb_resume,
177 #endif
178 .shutdown = igb_shutdown,
179 .err_handler = &igb_err_handler
180 };
181
182 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
183 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
186
187 /**
188 * igb_read_clock - read raw cycle counter (to be used by time counter)
189 */
190 static cycle_t igb_read_clock(const struct cyclecounter *tc)
191 {
192 struct igb_adapter *adapter =
193 container_of(tc, struct igb_adapter, cycles);
194 struct e1000_hw *hw = &adapter->hw;
195 u64 stamp = 0;
196 int shift = 0;
197
198 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
199 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
200 return stamp;
201 }
202
203 #ifdef DEBUG
204 /**
205 * igb_get_hw_dev_name - return device name string
206 * used by hardware layer to print debugging information
207 **/
208 char *igb_get_hw_dev_name(struct e1000_hw *hw)
209 {
210 struct igb_adapter *adapter = hw->back;
211 return adapter->netdev->name;
212 }
213
214 /**
215 * igb_get_time_str - format current NIC and system time as string
216 */
217 static char *igb_get_time_str(struct igb_adapter *adapter,
218 char buffer[160])
219 {
220 cycle_t hw = adapter->cycles.read(&adapter->cycles);
221 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
222 struct timespec sys;
223 struct timespec delta;
224 getnstimeofday(&sys);
225
226 delta = timespec_sub(nic, sys);
227
228 sprintf(buffer,
229 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
230 hw,
231 (long)nic.tv_sec, nic.tv_nsec,
232 (long)sys.tv_sec, sys.tv_nsec,
233 (long)delta.tv_sec, delta.tv_nsec);
234
235 return buffer;
236 }
237 #endif
238
239 /**
240 * igb_init_module - Driver Registration Routine
241 *
242 * igb_init_module is the first routine called when the driver is
243 * loaded. All it does is register with the PCI subsystem.
244 **/
245 static int __init igb_init_module(void)
246 {
247 int ret;
248 printk(KERN_INFO "%s - version %s\n",
249 igb_driver_string, igb_driver_version);
250
251 printk(KERN_INFO "%s\n", igb_copyright);
252
253 #ifdef CONFIG_IGB_DCA
254 dca_register_notify(&dca_notifier);
255 #endif
256 ret = pci_register_driver(&igb_driver);
257 return ret;
258 }
259
260 module_init(igb_init_module);
261
262 /**
263 * igb_exit_module - Driver Exit Cleanup Routine
264 *
265 * igb_exit_module is called just before the driver is removed
266 * from memory.
267 **/
268 static void __exit igb_exit_module(void)
269 {
270 #ifdef CONFIG_IGB_DCA
271 dca_unregister_notify(&dca_notifier);
272 #endif
273 pci_unregister_driver(&igb_driver);
274 }
275
276 module_exit(igb_exit_module);
277
278 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
279 /**
280 * igb_cache_ring_register - Descriptor ring to register mapping
281 * @adapter: board private structure to initialize
282 *
283 * Once we know the feature-set enabled for the device, we'll cache
284 * the register offset the descriptor ring is assigned to.
285 **/
286 static void igb_cache_ring_register(struct igb_adapter *adapter)
287 {
288 int i = 0, j = 0;
289 u32 rbase_offset = adapter->vfs_allocated_count;
290
291 switch (adapter->hw.mac.type) {
292 case e1000_82576:
293 /* The queues are allocated for virtualization such that VF 0
294 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
295 * In order to avoid collision we start at the first free queue
296 * and continue consuming queues in the same sequence
297 */
298 if (adapter->vfs_allocated_count) {
299 for (; i < adapter->rss_queues; i++)
300 adapter->rx_ring[i].reg_idx = rbase_offset +
301 Q_IDX_82576(i);
302 for (; j < adapter->rss_queues; j++)
303 adapter->tx_ring[j].reg_idx = rbase_offset +
304 Q_IDX_82576(j);
305 }
306 case e1000_82575:
307 default:
308 for (; i < adapter->num_rx_queues; i++)
309 adapter->rx_ring[i].reg_idx = rbase_offset + i;
310 for (; j < adapter->num_tx_queues; j++)
311 adapter->tx_ring[j].reg_idx = rbase_offset + j;
312 break;
313 }
314 }
315
316 static void igb_free_queues(struct igb_adapter *adapter)
317 {
318 kfree(adapter->tx_ring);
319 kfree(adapter->rx_ring);
320
321 adapter->tx_ring = NULL;
322 adapter->rx_ring = NULL;
323
324 adapter->num_rx_queues = 0;
325 adapter->num_tx_queues = 0;
326 }
327
328 /**
329 * igb_alloc_queues - Allocate memory for all rings
330 * @adapter: board private structure to initialize
331 *
332 * We allocate one ring per queue at run-time since we don't know the
333 * number of queues at compile-time.
334 **/
335 static int igb_alloc_queues(struct igb_adapter *adapter)
336 {
337 int i;
338
339 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
340 sizeof(struct igb_ring), GFP_KERNEL);
341 if (!adapter->tx_ring)
342 goto err;
343
344 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
345 sizeof(struct igb_ring), GFP_KERNEL);
346 if (!adapter->rx_ring)
347 goto err;
348
349 for (i = 0; i < adapter->num_tx_queues; i++) {
350 struct igb_ring *ring = &(adapter->tx_ring[i]);
351 ring->count = adapter->tx_ring_count;
352 ring->queue_index = i;
353 ring->pdev = adapter->pdev;
354 ring->netdev = adapter->netdev;
355 /* For 82575, context index must be unique per ring. */
356 if (adapter->hw.mac.type == e1000_82575)
357 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
358 }
359
360 for (i = 0; i < adapter->num_rx_queues; i++) {
361 struct igb_ring *ring = &(adapter->rx_ring[i]);
362 ring->count = adapter->rx_ring_count;
363 ring->queue_index = i;
364 ring->pdev = adapter->pdev;
365 ring->netdev = adapter->netdev;
366 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
367 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
368 /* set flag indicating ring supports SCTP checksum offload */
369 if (adapter->hw.mac.type >= e1000_82576)
370 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
371 }
372
373 igb_cache_ring_register(adapter);
374
375 return 0;
376
377 err:
378 igb_free_queues(adapter);
379
380 return -ENOMEM;
381 }
382
383 #define IGB_N0_QUEUE -1
384 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
385 {
386 u32 msixbm = 0;
387 struct igb_adapter *adapter = q_vector->adapter;
388 struct e1000_hw *hw = &adapter->hw;
389 u32 ivar, index;
390 int rx_queue = IGB_N0_QUEUE;
391 int tx_queue = IGB_N0_QUEUE;
392
393 if (q_vector->rx_ring)
394 rx_queue = q_vector->rx_ring->reg_idx;
395 if (q_vector->tx_ring)
396 tx_queue = q_vector->tx_ring->reg_idx;
397
398 switch (hw->mac.type) {
399 case e1000_82575:
400 /* The 82575 assigns vectors using a bitmask, which matches the
401 bitmask for the EICR/EIMS/EIMC registers. To assign one
402 or more queues to a vector, we write the appropriate bits
403 into the MSIXBM register for that vector. */
404 if (rx_queue > IGB_N0_QUEUE)
405 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
406 if (tx_queue > IGB_N0_QUEUE)
407 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
408 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
409 q_vector->eims_value = msixbm;
410 break;
411 case e1000_82576:
412 /* 82576 uses a table-based method for assigning vectors.
413 Each queue has a single entry in the table to which we write
414 a vector number along with a "valid" bit. Sadly, the layout
415 of the table is somewhat counterintuitive. */
416 if (rx_queue > IGB_N0_QUEUE) {
417 index = (rx_queue & 0x7);
418 ivar = array_rd32(E1000_IVAR0, index);
419 if (rx_queue < 8) {
420 /* vector goes into low byte of register */
421 ivar = ivar & 0xFFFFFF00;
422 ivar |= msix_vector | E1000_IVAR_VALID;
423 } else {
424 /* vector goes into third byte of register */
425 ivar = ivar & 0xFF00FFFF;
426 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
427 }
428 array_wr32(E1000_IVAR0, index, ivar);
429 }
430 if (tx_queue > IGB_N0_QUEUE) {
431 index = (tx_queue & 0x7);
432 ivar = array_rd32(E1000_IVAR0, index);
433 if (tx_queue < 8) {
434 /* vector goes into second byte of register */
435 ivar = ivar & 0xFFFF00FF;
436 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
437 } else {
438 /* vector goes into high byte of register */
439 ivar = ivar & 0x00FFFFFF;
440 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
441 }
442 array_wr32(E1000_IVAR0, index, ivar);
443 }
444 q_vector->eims_value = 1 << msix_vector;
445 break;
446 default:
447 BUG();
448 break;
449 }
450 }
451
452 /**
453 * igb_configure_msix - Configure MSI-X hardware
454 *
455 * igb_configure_msix sets up the hardware to properly
456 * generate MSI-X interrupts.
457 **/
458 static void igb_configure_msix(struct igb_adapter *adapter)
459 {
460 u32 tmp;
461 int i, vector = 0;
462 struct e1000_hw *hw = &adapter->hw;
463
464 adapter->eims_enable_mask = 0;
465
466 /* set vector for other causes, i.e. link changes */
467 switch (hw->mac.type) {
468 case e1000_82575:
469 tmp = rd32(E1000_CTRL_EXT);
470 /* enable MSI-X PBA support*/
471 tmp |= E1000_CTRL_EXT_PBA_CLR;
472
473 /* Auto-Mask interrupts upon ICR read. */
474 tmp |= E1000_CTRL_EXT_EIAME;
475 tmp |= E1000_CTRL_EXT_IRCA;
476
477 wr32(E1000_CTRL_EXT, tmp);
478
479 /* enable msix_other interrupt */
480 array_wr32(E1000_MSIXBM(0), vector++,
481 E1000_EIMS_OTHER);
482 adapter->eims_other = E1000_EIMS_OTHER;
483
484 break;
485
486 case e1000_82576:
487 /* Turn on MSI-X capability first, or our settings
488 * won't stick. And it will take days to debug. */
489 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
490 E1000_GPIE_PBA | E1000_GPIE_EIAME |
491 E1000_GPIE_NSICR);
492
493 /* enable msix_other interrupt */
494 adapter->eims_other = 1 << vector;
495 tmp = (vector++ | E1000_IVAR_VALID) << 8;
496
497 wr32(E1000_IVAR_MISC, tmp);
498 break;
499 default:
500 /* do nothing, since nothing else supports MSI-X */
501 break;
502 } /* switch (hw->mac.type) */
503
504 adapter->eims_enable_mask |= adapter->eims_other;
505
506 for (i = 0; i < adapter->num_q_vectors; i++) {
507 struct igb_q_vector *q_vector = adapter->q_vector[i];
508 igb_assign_vector(q_vector, vector++);
509 adapter->eims_enable_mask |= q_vector->eims_value;
510 }
511
512 wrfl();
513 }
514
515 /**
516 * igb_request_msix - Initialize MSI-X interrupts
517 *
518 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
519 * kernel.
520 **/
521 static int igb_request_msix(struct igb_adapter *adapter)
522 {
523 struct net_device *netdev = adapter->netdev;
524 struct e1000_hw *hw = &adapter->hw;
525 int i, err = 0, vector = 0;
526
527 err = request_irq(adapter->msix_entries[vector].vector,
528 igb_msix_other, 0, netdev->name, adapter);
529 if (err)
530 goto out;
531 vector++;
532
533 for (i = 0; i < adapter->num_q_vectors; i++) {
534 struct igb_q_vector *q_vector = adapter->q_vector[i];
535
536 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
537
538 if (q_vector->rx_ring && q_vector->tx_ring)
539 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
540 q_vector->rx_ring->queue_index);
541 else if (q_vector->tx_ring)
542 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
543 q_vector->tx_ring->queue_index);
544 else if (q_vector->rx_ring)
545 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
546 q_vector->rx_ring->queue_index);
547 else
548 sprintf(q_vector->name, "%s-unused", netdev->name);
549
550 err = request_irq(adapter->msix_entries[vector].vector,
551 igb_msix_ring, 0, q_vector->name,
552 q_vector);
553 if (err)
554 goto out;
555 vector++;
556 }
557
558 igb_configure_msix(adapter);
559 return 0;
560 out:
561 return err;
562 }
563
564 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
565 {
566 if (adapter->msix_entries) {
567 pci_disable_msix(adapter->pdev);
568 kfree(adapter->msix_entries);
569 adapter->msix_entries = NULL;
570 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
571 pci_disable_msi(adapter->pdev);
572 }
573 }
574
575 /**
576 * igb_free_q_vectors - Free memory allocated for interrupt vectors
577 * @adapter: board private structure to initialize
578 *
579 * This function frees the memory allocated to the q_vectors. In addition if
580 * NAPI is enabled it will delete any references to the NAPI struct prior
581 * to freeing the q_vector.
582 **/
583 static void igb_free_q_vectors(struct igb_adapter *adapter)
584 {
585 int v_idx;
586
587 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
588 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
589 adapter->q_vector[v_idx] = NULL;
590 netif_napi_del(&q_vector->napi);
591 kfree(q_vector);
592 }
593 adapter->num_q_vectors = 0;
594 }
595
596 /**
597 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
598 *
599 * This function resets the device so that it has 0 rx queues, tx queues, and
600 * MSI-X interrupts allocated.
601 */
602 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
603 {
604 igb_free_queues(adapter);
605 igb_free_q_vectors(adapter);
606 igb_reset_interrupt_capability(adapter);
607 }
608
609 /**
610 * igb_set_interrupt_capability - set MSI or MSI-X if supported
611 *
612 * Attempt to configure interrupts using the best available
613 * capabilities of the hardware and kernel.
614 **/
615 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
616 {
617 int err;
618 int numvecs, i;
619
620 /* Number of supported queues. */
621 adapter->num_rx_queues = adapter->rss_queues;
622 adapter->num_tx_queues = adapter->rss_queues;
623
624 /* start with one vector for every rx queue */
625 numvecs = adapter->num_rx_queues;
626
627 /* if tx handler is seperate add 1 for every tx queue */
628 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
629 numvecs += adapter->num_tx_queues;
630
631 /* store the number of vectors reserved for queues */
632 adapter->num_q_vectors = numvecs;
633
634 /* add 1 vector for link status interrupts */
635 numvecs++;
636 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
637 GFP_KERNEL);
638 if (!adapter->msix_entries)
639 goto msi_only;
640
641 for (i = 0; i < numvecs; i++)
642 adapter->msix_entries[i].entry = i;
643
644 err = pci_enable_msix(adapter->pdev,
645 adapter->msix_entries,
646 numvecs);
647 if (err == 0)
648 goto out;
649
650 igb_reset_interrupt_capability(adapter);
651
652 /* If we can't do MSI-X, try MSI */
653 msi_only:
654 #ifdef CONFIG_PCI_IOV
655 /* disable SR-IOV for non MSI-X configurations */
656 if (adapter->vf_data) {
657 struct e1000_hw *hw = &adapter->hw;
658 /* disable iov and allow time for transactions to clear */
659 pci_disable_sriov(adapter->pdev);
660 msleep(500);
661
662 kfree(adapter->vf_data);
663 adapter->vf_data = NULL;
664 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
665 msleep(100);
666 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
667 }
668 #endif
669 adapter->vfs_allocated_count = 0;
670 adapter->rss_queues = 1;
671 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
672 adapter->num_rx_queues = 1;
673 adapter->num_tx_queues = 1;
674 adapter->num_q_vectors = 1;
675 if (!pci_enable_msi(adapter->pdev))
676 adapter->flags |= IGB_FLAG_HAS_MSI;
677 out:
678 /* Notify the stack of the (possibly) reduced Tx Queue count. */
679 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
680 return;
681 }
682
683 /**
684 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
685 * @adapter: board private structure to initialize
686 *
687 * We allocate one q_vector per queue interrupt. If allocation fails we
688 * return -ENOMEM.
689 **/
690 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
691 {
692 struct igb_q_vector *q_vector;
693 struct e1000_hw *hw = &adapter->hw;
694 int v_idx;
695
696 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
697 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
698 if (!q_vector)
699 goto err_out;
700 q_vector->adapter = adapter;
701 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
702 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
703 q_vector->itr_val = IGB_START_ITR;
704 q_vector->set_itr = 1;
705 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
706 adapter->q_vector[v_idx] = q_vector;
707 }
708 return 0;
709
710 err_out:
711 while (v_idx) {
712 v_idx--;
713 q_vector = adapter->q_vector[v_idx];
714 netif_napi_del(&q_vector->napi);
715 kfree(q_vector);
716 adapter->q_vector[v_idx] = NULL;
717 }
718 return -ENOMEM;
719 }
720
721 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
722 int ring_idx, int v_idx)
723 {
724 struct igb_q_vector *q_vector;
725
726 q_vector = adapter->q_vector[v_idx];
727 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
728 q_vector->rx_ring->q_vector = q_vector;
729 q_vector->itr_val = adapter->rx_itr_setting;
730 if (q_vector->itr_val && q_vector->itr_val <= 3)
731 q_vector->itr_val = IGB_START_ITR;
732 }
733
734 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
735 int ring_idx, int v_idx)
736 {
737 struct igb_q_vector *q_vector;
738
739 q_vector = adapter->q_vector[v_idx];
740 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
741 q_vector->tx_ring->q_vector = q_vector;
742 q_vector->itr_val = adapter->tx_itr_setting;
743 if (q_vector->itr_val && q_vector->itr_val <= 3)
744 q_vector->itr_val = IGB_START_ITR;
745 }
746
747 /**
748 * igb_map_ring_to_vector - maps allocated queues to vectors
749 *
750 * This function maps the recently allocated queues to vectors.
751 **/
752 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
753 {
754 int i;
755 int v_idx = 0;
756
757 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
758 (adapter->num_q_vectors < adapter->num_tx_queues))
759 return -ENOMEM;
760
761 if (adapter->num_q_vectors >=
762 (adapter->num_rx_queues + adapter->num_tx_queues)) {
763 for (i = 0; i < adapter->num_rx_queues; i++)
764 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
765 for (i = 0; i < adapter->num_tx_queues; i++)
766 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
767 } else {
768 for (i = 0; i < adapter->num_rx_queues; i++) {
769 if (i < adapter->num_tx_queues)
770 igb_map_tx_ring_to_vector(adapter, i, v_idx);
771 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
772 }
773 for (; i < adapter->num_tx_queues; i++)
774 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
775 }
776 return 0;
777 }
778
779 /**
780 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
781 *
782 * This function initializes the interrupts and allocates all of the queues.
783 **/
784 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
785 {
786 struct pci_dev *pdev = adapter->pdev;
787 int err;
788
789 igb_set_interrupt_capability(adapter);
790
791 err = igb_alloc_q_vectors(adapter);
792 if (err) {
793 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
794 goto err_alloc_q_vectors;
795 }
796
797 err = igb_alloc_queues(adapter);
798 if (err) {
799 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
800 goto err_alloc_queues;
801 }
802
803 err = igb_map_ring_to_vector(adapter);
804 if (err) {
805 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
806 goto err_map_queues;
807 }
808
809
810 return 0;
811 err_map_queues:
812 igb_free_queues(adapter);
813 err_alloc_queues:
814 igb_free_q_vectors(adapter);
815 err_alloc_q_vectors:
816 igb_reset_interrupt_capability(adapter);
817 return err;
818 }
819
820 /**
821 * igb_request_irq - initialize interrupts
822 *
823 * Attempts to configure interrupts using the best available
824 * capabilities of the hardware and kernel.
825 **/
826 static int igb_request_irq(struct igb_adapter *adapter)
827 {
828 struct net_device *netdev = adapter->netdev;
829 struct pci_dev *pdev = adapter->pdev;
830 struct e1000_hw *hw = &adapter->hw;
831 int err = 0;
832
833 if (adapter->msix_entries) {
834 err = igb_request_msix(adapter);
835 if (!err)
836 goto request_done;
837 /* fall back to MSI */
838 igb_clear_interrupt_scheme(adapter);
839 if (!pci_enable_msi(adapter->pdev))
840 adapter->flags |= IGB_FLAG_HAS_MSI;
841 igb_free_all_tx_resources(adapter);
842 igb_free_all_rx_resources(adapter);
843 adapter->num_tx_queues = 1;
844 adapter->num_rx_queues = 1;
845 adapter->num_q_vectors = 1;
846 err = igb_alloc_q_vectors(adapter);
847 if (err) {
848 dev_err(&pdev->dev,
849 "Unable to allocate memory for vectors\n");
850 goto request_done;
851 }
852 err = igb_alloc_queues(adapter);
853 if (err) {
854 dev_err(&pdev->dev,
855 "Unable to allocate memory for queues\n");
856 igb_free_q_vectors(adapter);
857 goto request_done;
858 }
859 igb_setup_all_tx_resources(adapter);
860 igb_setup_all_rx_resources(adapter);
861 } else {
862 switch (hw->mac.type) {
863 case e1000_82575:
864 wr32(E1000_MSIXBM(0),
865 (E1000_EICR_RX_QUEUE0 |
866 E1000_EICR_TX_QUEUE0 |
867 E1000_EIMS_OTHER));
868 break;
869 case e1000_82576:
870 wr32(E1000_IVAR0, E1000_IVAR_VALID);
871 break;
872 default:
873 break;
874 }
875 }
876
877 if (adapter->flags & IGB_FLAG_HAS_MSI) {
878 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
879 netdev->name, adapter);
880 if (!err)
881 goto request_done;
882
883 /* fall back to legacy interrupts */
884 igb_reset_interrupt_capability(adapter);
885 adapter->flags &= ~IGB_FLAG_HAS_MSI;
886 }
887
888 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
889 netdev->name, adapter);
890
891 if (err)
892 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
893 err);
894
895 request_done:
896 return err;
897 }
898
899 static void igb_free_irq(struct igb_adapter *adapter)
900 {
901 if (adapter->msix_entries) {
902 int vector = 0, i;
903
904 free_irq(adapter->msix_entries[vector++].vector, adapter);
905
906 for (i = 0; i < adapter->num_q_vectors; i++) {
907 struct igb_q_vector *q_vector = adapter->q_vector[i];
908 free_irq(adapter->msix_entries[vector++].vector,
909 q_vector);
910 }
911 } else {
912 free_irq(adapter->pdev->irq, adapter);
913 }
914 }
915
916 /**
917 * igb_irq_disable - Mask off interrupt generation on the NIC
918 * @adapter: board private structure
919 **/
920 static void igb_irq_disable(struct igb_adapter *adapter)
921 {
922 struct e1000_hw *hw = &adapter->hw;
923
924 /*
925 * we need to be careful when disabling interrupts. The VFs are also
926 * mapped into these registers and so clearing the bits can cause
927 * issues on the VF drivers so we only need to clear what we set
928 */
929 if (adapter->msix_entries) {
930 u32 regval = rd32(E1000_EIAM);
931 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
932 wr32(E1000_EIMC, adapter->eims_enable_mask);
933 regval = rd32(E1000_EIAC);
934 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
935 }
936
937 wr32(E1000_IAM, 0);
938 wr32(E1000_IMC, ~0);
939 wrfl();
940 synchronize_irq(adapter->pdev->irq);
941 }
942
943 /**
944 * igb_irq_enable - Enable default interrupt generation settings
945 * @adapter: board private structure
946 **/
947 static void igb_irq_enable(struct igb_adapter *adapter)
948 {
949 struct e1000_hw *hw = &adapter->hw;
950
951 if (adapter->msix_entries) {
952 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
953 u32 regval = rd32(E1000_EIAC);
954 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
955 regval = rd32(E1000_EIAM);
956 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
957 wr32(E1000_EIMS, adapter->eims_enable_mask);
958 if (adapter->vfs_allocated_count) {
959 wr32(E1000_MBVFIMR, 0xFF);
960 ims |= E1000_IMS_VMMB;
961 }
962 wr32(E1000_IMS, ims);
963 } else {
964 wr32(E1000_IMS, IMS_ENABLE_MASK);
965 wr32(E1000_IAM, IMS_ENABLE_MASK);
966 }
967 }
968
969 static void igb_update_mng_vlan(struct igb_adapter *adapter)
970 {
971 struct e1000_hw *hw = &adapter->hw;
972 u16 vid = adapter->hw.mng_cookie.vlan_id;
973 u16 old_vid = adapter->mng_vlan_id;
974
975 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
976 /* add VID to filter table */
977 igb_vfta_set(hw, vid, true);
978 adapter->mng_vlan_id = vid;
979 } else {
980 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
981 }
982
983 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
984 (vid != old_vid) &&
985 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
986 /* remove VID from filter table */
987 igb_vfta_set(hw, old_vid, false);
988 }
989 }
990
991 /**
992 * igb_release_hw_control - release control of the h/w to f/w
993 * @adapter: address of board private structure
994 *
995 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
996 * For ASF and Pass Through versions of f/w this means that the
997 * driver is no longer loaded.
998 *
999 **/
1000 static void igb_release_hw_control(struct igb_adapter *adapter)
1001 {
1002 struct e1000_hw *hw = &adapter->hw;
1003 u32 ctrl_ext;
1004
1005 /* Let firmware take over control of h/w */
1006 ctrl_ext = rd32(E1000_CTRL_EXT);
1007 wr32(E1000_CTRL_EXT,
1008 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1009 }
1010
1011 /**
1012 * igb_get_hw_control - get control of the h/w from f/w
1013 * @adapter: address of board private structure
1014 *
1015 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1016 * For ASF and Pass Through versions of f/w this means that
1017 * the driver is loaded.
1018 *
1019 **/
1020 static void igb_get_hw_control(struct igb_adapter *adapter)
1021 {
1022 struct e1000_hw *hw = &adapter->hw;
1023 u32 ctrl_ext;
1024
1025 /* Let firmware know the driver has taken over */
1026 ctrl_ext = rd32(E1000_CTRL_EXT);
1027 wr32(E1000_CTRL_EXT,
1028 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1029 }
1030
1031 /**
1032 * igb_configure - configure the hardware for RX and TX
1033 * @adapter: private board structure
1034 **/
1035 static void igb_configure(struct igb_adapter *adapter)
1036 {
1037 struct net_device *netdev = adapter->netdev;
1038 int i;
1039
1040 igb_get_hw_control(adapter);
1041 igb_set_rx_mode(netdev);
1042
1043 igb_restore_vlan(adapter);
1044
1045 igb_setup_tctl(adapter);
1046 igb_setup_mrqc(adapter);
1047 igb_setup_rctl(adapter);
1048
1049 igb_configure_tx(adapter);
1050 igb_configure_rx(adapter);
1051
1052 igb_rx_fifo_flush_82575(&adapter->hw);
1053
1054 /* call igb_desc_unused which always leaves
1055 * at least 1 descriptor unused to make sure
1056 * next_to_use != next_to_clean */
1057 for (i = 0; i < adapter->num_rx_queues; i++) {
1058 struct igb_ring *ring = &adapter->rx_ring[i];
1059 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1060 }
1061
1062
1063 adapter->tx_queue_len = netdev->tx_queue_len;
1064 }
1065
1066
1067 /**
1068 * igb_up - Open the interface and prepare it to handle traffic
1069 * @adapter: board private structure
1070 **/
1071 int igb_up(struct igb_adapter *adapter)
1072 {
1073 struct e1000_hw *hw = &adapter->hw;
1074 int i;
1075
1076 /* hardware has been reset, we need to reload some things */
1077 igb_configure(adapter);
1078
1079 clear_bit(__IGB_DOWN, &adapter->state);
1080
1081 for (i = 0; i < adapter->num_q_vectors; i++) {
1082 struct igb_q_vector *q_vector = adapter->q_vector[i];
1083 napi_enable(&q_vector->napi);
1084 }
1085 if (adapter->msix_entries)
1086 igb_configure_msix(adapter);
1087
1088 /* Clear any pending interrupts. */
1089 rd32(E1000_ICR);
1090 igb_irq_enable(adapter);
1091
1092 /* notify VFs that reset has been completed */
1093 if (adapter->vfs_allocated_count) {
1094 u32 reg_data = rd32(E1000_CTRL_EXT);
1095 reg_data |= E1000_CTRL_EXT_PFRSTD;
1096 wr32(E1000_CTRL_EXT, reg_data);
1097 }
1098
1099 netif_tx_start_all_queues(adapter->netdev);
1100
1101 /* start the watchdog. */
1102 hw->mac.get_link_status = 1;
1103 schedule_work(&adapter->watchdog_task);
1104
1105 return 0;
1106 }
1107
1108 void igb_down(struct igb_adapter *adapter)
1109 {
1110 struct net_device *netdev = adapter->netdev;
1111 struct e1000_hw *hw = &adapter->hw;
1112 u32 tctl, rctl;
1113 int i;
1114
1115 /* signal that we're down so the interrupt handler does not
1116 * reschedule our watchdog timer */
1117 set_bit(__IGB_DOWN, &adapter->state);
1118
1119 /* disable receives in the hardware */
1120 rctl = rd32(E1000_RCTL);
1121 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1122 /* flush and sleep below */
1123
1124 netif_tx_stop_all_queues(netdev);
1125
1126 /* disable transmits in the hardware */
1127 tctl = rd32(E1000_TCTL);
1128 tctl &= ~E1000_TCTL_EN;
1129 wr32(E1000_TCTL, tctl);
1130 /* flush both disables and wait for them to finish */
1131 wrfl();
1132 msleep(10);
1133
1134 for (i = 0; i < adapter->num_q_vectors; i++) {
1135 struct igb_q_vector *q_vector = adapter->q_vector[i];
1136 napi_disable(&q_vector->napi);
1137 }
1138
1139 igb_irq_disable(adapter);
1140
1141 del_timer_sync(&adapter->watchdog_timer);
1142 del_timer_sync(&adapter->phy_info_timer);
1143
1144 netdev->tx_queue_len = adapter->tx_queue_len;
1145 netif_carrier_off(netdev);
1146
1147 /* record the stats before reset*/
1148 igb_update_stats(adapter);
1149
1150 adapter->link_speed = 0;
1151 adapter->link_duplex = 0;
1152
1153 if (!pci_channel_offline(adapter->pdev))
1154 igb_reset(adapter);
1155 igb_clean_all_tx_rings(adapter);
1156 igb_clean_all_rx_rings(adapter);
1157 #ifdef CONFIG_IGB_DCA
1158
1159 /* since we reset the hardware DCA settings were cleared */
1160 igb_setup_dca(adapter);
1161 #endif
1162 }
1163
1164 void igb_reinit_locked(struct igb_adapter *adapter)
1165 {
1166 WARN_ON(in_interrupt());
1167 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1168 msleep(1);
1169 igb_down(adapter);
1170 igb_up(adapter);
1171 clear_bit(__IGB_RESETTING, &adapter->state);
1172 }
1173
1174 void igb_reset(struct igb_adapter *adapter)
1175 {
1176 struct pci_dev *pdev = adapter->pdev;
1177 struct e1000_hw *hw = &adapter->hw;
1178 struct e1000_mac_info *mac = &hw->mac;
1179 struct e1000_fc_info *fc = &hw->fc;
1180 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1181 u16 hwm;
1182
1183 /* Repartition Pba for greater than 9k mtu
1184 * To take effect CTRL.RST is required.
1185 */
1186 switch (mac->type) {
1187 case e1000_82576:
1188 pba = rd32(E1000_RXPBS);
1189 pba &= E1000_RXPBS_SIZE_MASK_82576;
1190 break;
1191 case e1000_82575:
1192 default:
1193 pba = E1000_PBA_34K;
1194 break;
1195 }
1196
1197 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1198 (mac->type < e1000_82576)) {
1199 /* adjust PBA for jumbo frames */
1200 wr32(E1000_PBA, pba);
1201
1202 /* To maintain wire speed transmits, the Tx FIFO should be
1203 * large enough to accommodate two full transmit packets,
1204 * rounded up to the next 1KB and expressed in KB. Likewise,
1205 * the Rx FIFO should be large enough to accommodate at least
1206 * one full receive packet and is similarly rounded up and
1207 * expressed in KB. */
1208 pba = rd32(E1000_PBA);
1209 /* upper 16 bits has Tx packet buffer allocation size in KB */
1210 tx_space = pba >> 16;
1211 /* lower 16 bits has Rx packet buffer allocation size in KB */
1212 pba &= 0xffff;
1213 /* the tx fifo also stores 16 bytes of information about the tx
1214 * but don't include ethernet FCS because hardware appends it */
1215 min_tx_space = (adapter->max_frame_size +
1216 sizeof(union e1000_adv_tx_desc) -
1217 ETH_FCS_LEN) * 2;
1218 min_tx_space = ALIGN(min_tx_space, 1024);
1219 min_tx_space >>= 10;
1220 /* software strips receive CRC, so leave room for it */
1221 min_rx_space = adapter->max_frame_size;
1222 min_rx_space = ALIGN(min_rx_space, 1024);
1223 min_rx_space >>= 10;
1224
1225 /* If current Tx allocation is less than the min Tx FIFO size,
1226 * and the min Tx FIFO size is less than the current Rx FIFO
1227 * allocation, take space away from current Rx allocation */
1228 if (tx_space < min_tx_space &&
1229 ((min_tx_space - tx_space) < pba)) {
1230 pba = pba - (min_tx_space - tx_space);
1231
1232 /* if short on rx space, rx wins and must trump tx
1233 * adjustment */
1234 if (pba < min_rx_space)
1235 pba = min_rx_space;
1236 }
1237 wr32(E1000_PBA, pba);
1238 }
1239
1240 /* flow control settings */
1241 /* The high water mark must be low enough to fit one full frame
1242 * (or the size used for early receive) above it in the Rx FIFO.
1243 * Set it to the lower of:
1244 * - 90% of the Rx FIFO size, or
1245 * - the full Rx FIFO size minus one full frame */
1246 hwm = min(((pba << 10) * 9 / 10),
1247 ((pba << 10) - 2 * adapter->max_frame_size));
1248
1249 if (mac->type < e1000_82576) {
1250 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1251 fc->low_water = fc->high_water - 8;
1252 } else {
1253 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1254 fc->low_water = fc->high_water - 16;
1255 }
1256 fc->pause_time = 0xFFFF;
1257 fc->send_xon = 1;
1258 fc->current_mode = fc->requested_mode;
1259
1260 /* disable receive for all VFs and wait one second */
1261 if (adapter->vfs_allocated_count) {
1262 int i;
1263 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1264 adapter->vf_data[i].flags = 0;
1265
1266 /* ping all the active vfs to let them know we are going down */
1267 igb_ping_all_vfs(adapter);
1268
1269 /* disable transmits and receives */
1270 wr32(E1000_VFRE, 0);
1271 wr32(E1000_VFTE, 0);
1272 }
1273
1274 /* Allow time for pending master requests to run */
1275 hw->mac.ops.reset_hw(hw);
1276 wr32(E1000_WUC, 0);
1277
1278 if (hw->mac.ops.init_hw(hw))
1279 dev_err(&pdev->dev, "Hardware Error\n");
1280
1281 igb_update_mng_vlan(adapter);
1282
1283 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1284 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1285
1286 igb_reset_adaptive(hw);
1287 igb_get_phy_info(hw);
1288 }
1289
1290 static const struct net_device_ops igb_netdev_ops = {
1291 .ndo_open = igb_open,
1292 .ndo_stop = igb_close,
1293 .ndo_start_xmit = igb_xmit_frame_adv,
1294 .ndo_get_stats = igb_get_stats,
1295 .ndo_set_rx_mode = igb_set_rx_mode,
1296 .ndo_set_multicast_list = igb_set_rx_mode,
1297 .ndo_set_mac_address = igb_set_mac,
1298 .ndo_change_mtu = igb_change_mtu,
1299 .ndo_do_ioctl = igb_ioctl,
1300 .ndo_tx_timeout = igb_tx_timeout,
1301 .ndo_validate_addr = eth_validate_addr,
1302 .ndo_vlan_rx_register = igb_vlan_rx_register,
1303 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1304 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1305 #ifdef CONFIG_NET_POLL_CONTROLLER
1306 .ndo_poll_controller = igb_netpoll,
1307 #endif
1308 };
1309
1310 /**
1311 * igb_probe - Device Initialization Routine
1312 * @pdev: PCI device information struct
1313 * @ent: entry in igb_pci_tbl
1314 *
1315 * Returns 0 on success, negative on failure
1316 *
1317 * igb_probe initializes an adapter identified by a pci_dev structure.
1318 * The OS initialization, configuring of the adapter private structure,
1319 * and a hardware reset occur.
1320 **/
1321 static int __devinit igb_probe(struct pci_dev *pdev,
1322 const struct pci_device_id *ent)
1323 {
1324 struct net_device *netdev;
1325 struct igb_adapter *adapter;
1326 struct e1000_hw *hw;
1327 u16 eeprom_data = 0;
1328 static int global_quad_port_a; /* global quad port a indication */
1329 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1330 unsigned long mmio_start, mmio_len;
1331 int err, pci_using_dac;
1332 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1333 u32 part_num;
1334
1335 err = pci_enable_device_mem(pdev);
1336 if (err)
1337 return err;
1338
1339 pci_using_dac = 0;
1340 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1341 if (!err) {
1342 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1343 if (!err)
1344 pci_using_dac = 1;
1345 } else {
1346 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1347 if (err) {
1348 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1349 if (err) {
1350 dev_err(&pdev->dev, "No usable DMA "
1351 "configuration, aborting\n");
1352 goto err_dma;
1353 }
1354 }
1355 }
1356
1357 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1358 IORESOURCE_MEM),
1359 igb_driver_name);
1360 if (err)
1361 goto err_pci_reg;
1362
1363 pci_enable_pcie_error_reporting(pdev);
1364
1365 pci_set_master(pdev);
1366 pci_save_state(pdev);
1367
1368 err = -ENOMEM;
1369 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1370 IGB_ABS_MAX_TX_QUEUES);
1371 if (!netdev)
1372 goto err_alloc_etherdev;
1373
1374 SET_NETDEV_DEV(netdev, &pdev->dev);
1375
1376 pci_set_drvdata(pdev, netdev);
1377 adapter = netdev_priv(netdev);
1378 adapter->netdev = netdev;
1379 adapter->pdev = pdev;
1380 hw = &adapter->hw;
1381 hw->back = adapter;
1382 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1383
1384 mmio_start = pci_resource_start(pdev, 0);
1385 mmio_len = pci_resource_len(pdev, 0);
1386
1387 err = -EIO;
1388 hw->hw_addr = ioremap(mmio_start, mmio_len);
1389 if (!hw->hw_addr)
1390 goto err_ioremap;
1391
1392 netdev->netdev_ops = &igb_netdev_ops;
1393 igb_set_ethtool_ops(netdev);
1394 netdev->watchdog_timeo = 5 * HZ;
1395
1396 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1397
1398 netdev->mem_start = mmio_start;
1399 netdev->mem_end = mmio_start + mmio_len;
1400
1401 /* PCI config space info */
1402 hw->vendor_id = pdev->vendor;
1403 hw->device_id = pdev->device;
1404 hw->revision_id = pdev->revision;
1405 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1406 hw->subsystem_device_id = pdev->subsystem_device;
1407
1408 /* Copy the default MAC, PHY and NVM function pointers */
1409 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1410 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1411 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1412 /* Initialize skew-specific constants */
1413 err = ei->get_invariants(hw);
1414 if (err)
1415 goto err_sw_init;
1416
1417 /* setup the private structure */
1418 err = igb_sw_init(adapter);
1419 if (err)
1420 goto err_sw_init;
1421
1422 igb_get_bus_info_pcie(hw);
1423
1424 hw->phy.autoneg_wait_to_complete = false;
1425 hw->mac.adaptive_ifs = true;
1426
1427 /* Copper options */
1428 if (hw->phy.media_type == e1000_media_type_copper) {
1429 hw->phy.mdix = AUTO_ALL_MODES;
1430 hw->phy.disable_polarity_correction = false;
1431 hw->phy.ms_type = e1000_ms_hw_default;
1432 }
1433
1434 if (igb_check_reset_block(hw))
1435 dev_info(&pdev->dev,
1436 "PHY reset is blocked due to SOL/IDER session.\n");
1437
1438 netdev->features = NETIF_F_SG |
1439 NETIF_F_IP_CSUM |
1440 NETIF_F_HW_VLAN_TX |
1441 NETIF_F_HW_VLAN_RX |
1442 NETIF_F_HW_VLAN_FILTER;
1443
1444 netdev->features |= NETIF_F_IPV6_CSUM;
1445 netdev->features |= NETIF_F_TSO;
1446 netdev->features |= NETIF_F_TSO6;
1447 netdev->features |= NETIF_F_GRO;
1448
1449 netdev->vlan_features |= NETIF_F_TSO;
1450 netdev->vlan_features |= NETIF_F_TSO6;
1451 netdev->vlan_features |= NETIF_F_IP_CSUM;
1452 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1453 netdev->vlan_features |= NETIF_F_SG;
1454
1455 if (pci_using_dac)
1456 netdev->features |= NETIF_F_HIGHDMA;
1457
1458 if (hw->mac.type >= e1000_82576)
1459 netdev->features |= NETIF_F_SCTP_CSUM;
1460
1461 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1462
1463 /* before reading the NVM, reset the controller to put the device in a
1464 * known good starting state */
1465 hw->mac.ops.reset_hw(hw);
1466
1467 /* make sure the NVM is good */
1468 if (igb_validate_nvm_checksum(hw) < 0) {
1469 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1470 err = -EIO;
1471 goto err_eeprom;
1472 }
1473
1474 /* copy the MAC address out of the NVM */
1475 if (hw->mac.ops.read_mac_addr(hw))
1476 dev_err(&pdev->dev, "NVM Read Error\n");
1477
1478 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1479 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1480
1481 if (!is_valid_ether_addr(netdev->perm_addr)) {
1482 dev_err(&pdev->dev, "Invalid MAC Address\n");
1483 err = -EIO;
1484 goto err_eeprom;
1485 }
1486
1487 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1488 (unsigned long) adapter);
1489 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1490 (unsigned long) adapter);
1491
1492 INIT_WORK(&adapter->reset_task, igb_reset_task);
1493 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1494
1495 /* Initialize link properties that are user-changeable */
1496 adapter->fc_autoneg = true;
1497 hw->mac.autoneg = true;
1498 hw->phy.autoneg_advertised = 0x2f;
1499
1500 hw->fc.requested_mode = e1000_fc_default;
1501 hw->fc.current_mode = e1000_fc_default;
1502
1503 igb_validate_mdi_setting(hw);
1504
1505 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1506 * enable the ACPI Magic Packet filter
1507 */
1508
1509 if (hw->bus.func == 0)
1510 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1511 else if (hw->bus.func == 1)
1512 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1513
1514 if (eeprom_data & eeprom_apme_mask)
1515 adapter->eeprom_wol |= E1000_WUFC_MAG;
1516
1517 /* now that we have the eeprom settings, apply the special cases where
1518 * the eeprom may be wrong or the board simply won't support wake on
1519 * lan on a particular port */
1520 switch (pdev->device) {
1521 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1522 adapter->eeprom_wol = 0;
1523 break;
1524 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1525 case E1000_DEV_ID_82576_FIBER:
1526 case E1000_DEV_ID_82576_SERDES:
1527 /* Wake events only supported on port A for dual fiber
1528 * regardless of eeprom setting */
1529 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1530 adapter->eeprom_wol = 0;
1531 break;
1532 case E1000_DEV_ID_82576_QUAD_COPPER:
1533 /* if quad port adapter, disable WoL on all but port A */
1534 if (global_quad_port_a != 0)
1535 adapter->eeprom_wol = 0;
1536 else
1537 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1538 /* Reset for multiple quad port adapters */
1539 if (++global_quad_port_a == 4)
1540 global_quad_port_a = 0;
1541 break;
1542 }
1543
1544 /* initialize the wol settings based on the eeprom settings */
1545 adapter->wol = adapter->eeprom_wol;
1546 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1547
1548 /* reset the hardware with the new settings */
1549 igb_reset(adapter);
1550
1551 /* let the f/w know that the h/w is now under the control of the
1552 * driver. */
1553 igb_get_hw_control(adapter);
1554
1555 strcpy(netdev->name, "eth%d");
1556 err = register_netdev(netdev);
1557 if (err)
1558 goto err_register;
1559
1560 /* carrier off reporting is important to ethtool even BEFORE open */
1561 netif_carrier_off(netdev);
1562
1563 #ifdef CONFIG_IGB_DCA
1564 if (dca_add_requester(&pdev->dev) == 0) {
1565 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1566 dev_info(&pdev->dev, "DCA enabled\n");
1567 igb_setup_dca(adapter);
1568 }
1569
1570 #endif
1571 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1572 /* print bus type/speed/width info */
1573 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1574 netdev->name,
1575 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1576 "unknown"),
1577 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1578 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1579 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1580 "unknown"),
1581 netdev->dev_addr);
1582
1583 igb_read_part_num(hw, &part_num);
1584 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1585 (part_num >> 8), (part_num & 0xff));
1586
1587 dev_info(&pdev->dev,
1588 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1589 adapter->msix_entries ? "MSI-X" :
1590 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1591 adapter->num_rx_queues, adapter->num_tx_queues);
1592
1593 return 0;
1594
1595 err_register:
1596 igb_release_hw_control(adapter);
1597 err_eeprom:
1598 if (!igb_check_reset_block(hw))
1599 igb_reset_phy(hw);
1600
1601 if (hw->flash_address)
1602 iounmap(hw->flash_address);
1603 err_sw_init:
1604 igb_clear_interrupt_scheme(adapter);
1605 iounmap(hw->hw_addr);
1606 err_ioremap:
1607 free_netdev(netdev);
1608 err_alloc_etherdev:
1609 pci_release_selected_regions(pdev,
1610 pci_select_bars(pdev, IORESOURCE_MEM));
1611 err_pci_reg:
1612 err_dma:
1613 pci_disable_device(pdev);
1614 return err;
1615 }
1616
1617 /**
1618 * igb_remove - Device Removal Routine
1619 * @pdev: PCI device information struct
1620 *
1621 * igb_remove is called by the PCI subsystem to alert the driver
1622 * that it should release a PCI device. The could be caused by a
1623 * Hot-Plug event, or because the driver is going to be removed from
1624 * memory.
1625 **/
1626 static void __devexit igb_remove(struct pci_dev *pdev)
1627 {
1628 struct net_device *netdev = pci_get_drvdata(pdev);
1629 struct igb_adapter *adapter = netdev_priv(netdev);
1630 struct e1000_hw *hw = &adapter->hw;
1631
1632 /* flush_scheduled work may reschedule our watchdog task, so
1633 * explicitly disable watchdog tasks from being rescheduled */
1634 set_bit(__IGB_DOWN, &adapter->state);
1635 del_timer_sync(&adapter->watchdog_timer);
1636 del_timer_sync(&adapter->phy_info_timer);
1637
1638 flush_scheduled_work();
1639
1640 #ifdef CONFIG_IGB_DCA
1641 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1642 dev_info(&pdev->dev, "DCA disabled\n");
1643 dca_remove_requester(&pdev->dev);
1644 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1645 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1646 }
1647 #endif
1648
1649 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1650 * would have already happened in close and is redundant. */
1651 igb_release_hw_control(adapter);
1652
1653 unregister_netdev(netdev);
1654
1655 if (!igb_check_reset_block(hw))
1656 igb_reset_phy(hw);
1657
1658 igb_clear_interrupt_scheme(adapter);
1659
1660 #ifdef CONFIG_PCI_IOV
1661 /* reclaim resources allocated to VFs */
1662 if (adapter->vf_data) {
1663 /* disable iov and allow time for transactions to clear */
1664 pci_disable_sriov(pdev);
1665 msleep(500);
1666
1667 kfree(adapter->vf_data);
1668 adapter->vf_data = NULL;
1669 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1670 msleep(100);
1671 dev_info(&pdev->dev, "IOV Disabled\n");
1672 }
1673 #endif
1674
1675 iounmap(hw->hw_addr);
1676 if (hw->flash_address)
1677 iounmap(hw->flash_address);
1678 pci_release_selected_regions(pdev,
1679 pci_select_bars(pdev, IORESOURCE_MEM));
1680
1681 free_netdev(netdev);
1682
1683 pci_disable_pcie_error_reporting(pdev);
1684
1685 pci_disable_device(pdev);
1686 }
1687
1688 /**
1689 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1690 * @adapter: board private structure to initialize
1691 *
1692 * This function initializes the vf specific data storage and then attempts to
1693 * allocate the VFs. The reason for ordering it this way is because it is much
1694 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1695 * the memory for the VFs.
1696 **/
1697 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1698 {
1699 #ifdef CONFIG_PCI_IOV
1700 struct pci_dev *pdev = adapter->pdev;
1701
1702 if (adapter->vfs_allocated_count > 7)
1703 adapter->vfs_allocated_count = 7;
1704
1705 if (adapter->vfs_allocated_count) {
1706 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1707 sizeof(struct vf_data_storage),
1708 GFP_KERNEL);
1709 /* if allocation failed then we do not support SR-IOV */
1710 if (!adapter->vf_data) {
1711 adapter->vfs_allocated_count = 0;
1712 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1713 "Data Storage\n");
1714 }
1715 }
1716
1717 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1718 kfree(adapter->vf_data);
1719 adapter->vf_data = NULL;
1720 #endif /* CONFIG_PCI_IOV */
1721 adapter->vfs_allocated_count = 0;
1722 #ifdef CONFIG_PCI_IOV
1723 } else {
1724 unsigned char mac_addr[ETH_ALEN];
1725 int i;
1726 dev_info(&pdev->dev, "%d vfs allocated\n",
1727 adapter->vfs_allocated_count);
1728 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1729 random_ether_addr(mac_addr);
1730 igb_set_vf_mac(adapter, i, mac_addr);
1731 }
1732 }
1733 #endif /* CONFIG_PCI_IOV */
1734 }
1735
1736
1737 /**
1738 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1739 * @adapter: board private structure to initialize
1740 *
1741 * igb_init_hw_timer initializes the function pointer and values for the hw
1742 * timer found in hardware.
1743 **/
1744 static void igb_init_hw_timer(struct igb_adapter *adapter)
1745 {
1746 struct e1000_hw *hw = &adapter->hw;
1747
1748 switch (hw->mac.type) {
1749 case e1000_82576:
1750 /*
1751 * Initialize hardware timer: we keep it running just in case
1752 * that some program needs it later on.
1753 */
1754 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1755 adapter->cycles.read = igb_read_clock;
1756 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1757 adapter->cycles.mult = 1;
1758 /**
1759 * Scale the NIC clock cycle by a large factor so that
1760 * relatively small clock corrections can be added or
1761 * substracted at each clock tick. The drawbacks of a large
1762 * factor are a) that the clock register overflows more quickly
1763 * (not such a big deal) and b) that the increment per tick has
1764 * to fit into 24 bits. As a result we need to use a shift of
1765 * 19 so we can fit a value of 16 into the TIMINCA register.
1766 */
1767 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1768 wr32(E1000_TIMINCA,
1769 (1 << E1000_TIMINCA_16NS_SHIFT) |
1770 (16 << IGB_82576_TSYNC_SHIFT));
1771
1772 /* Set registers so that rollover occurs soon to test this. */
1773 wr32(E1000_SYSTIML, 0x00000000);
1774 wr32(E1000_SYSTIMH, 0xFF800000);
1775 wrfl();
1776
1777 timecounter_init(&adapter->clock,
1778 &adapter->cycles,
1779 ktime_to_ns(ktime_get_real()));
1780 /*
1781 * Synchronize our NIC clock against system wall clock. NIC
1782 * time stamp reading requires ~3us per sample, each sample
1783 * was pretty stable even under load => only require 10
1784 * samples for each offset comparison.
1785 */
1786 memset(&adapter->compare, 0, sizeof(adapter->compare));
1787 adapter->compare.source = &adapter->clock;
1788 adapter->compare.target = ktime_get_real;
1789 adapter->compare.num_samples = 10;
1790 timecompare_update(&adapter->compare, 0);
1791 break;
1792 case e1000_82575:
1793 /* 82575 does not support timesync */
1794 default:
1795 break;
1796 }
1797
1798 }
1799
1800 /**
1801 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1802 * @adapter: board private structure to initialize
1803 *
1804 * igb_sw_init initializes the Adapter private data structure.
1805 * Fields are initialized based on PCI device information and
1806 * OS network device settings (MTU size).
1807 **/
1808 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1809 {
1810 struct e1000_hw *hw = &adapter->hw;
1811 struct net_device *netdev = adapter->netdev;
1812 struct pci_dev *pdev = adapter->pdev;
1813
1814 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1815
1816 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1817 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1818 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1819 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1820
1821 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1822 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1823
1824 #ifdef CONFIG_PCI_IOV
1825 if (hw->mac.type == e1000_82576)
1826 adapter->vfs_allocated_count = max_vfs;
1827
1828 #endif /* CONFIG_PCI_IOV */
1829 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1830
1831 /*
1832 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1833 * then we should combine the queues into a queue pair in order to
1834 * conserve interrupts due to limited supply
1835 */
1836 if ((adapter->rss_queues > 4) ||
1837 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1838 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1839
1840 /* This call may decrease the number of queues */
1841 if (igb_init_interrupt_scheme(adapter)) {
1842 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1843 return -ENOMEM;
1844 }
1845
1846 igb_init_hw_timer(adapter);
1847 igb_probe_vfs(adapter);
1848
1849 /* Explicitly disable IRQ since the NIC can be in any state. */
1850 igb_irq_disable(adapter);
1851
1852 set_bit(__IGB_DOWN, &adapter->state);
1853 return 0;
1854 }
1855
1856 /**
1857 * igb_open - Called when a network interface is made active
1858 * @netdev: network interface device structure
1859 *
1860 * Returns 0 on success, negative value on failure
1861 *
1862 * The open entry point is called when a network interface is made
1863 * active by the system (IFF_UP). At this point all resources needed
1864 * for transmit and receive operations are allocated, the interrupt
1865 * handler is registered with the OS, the watchdog timer is started,
1866 * and the stack is notified that the interface is ready.
1867 **/
1868 static int igb_open(struct net_device *netdev)
1869 {
1870 struct igb_adapter *adapter = netdev_priv(netdev);
1871 struct e1000_hw *hw = &adapter->hw;
1872 int err;
1873 int i;
1874
1875 /* disallow open during test */
1876 if (test_bit(__IGB_TESTING, &adapter->state))
1877 return -EBUSY;
1878
1879 netif_carrier_off(netdev);
1880
1881 /* allocate transmit descriptors */
1882 err = igb_setup_all_tx_resources(adapter);
1883 if (err)
1884 goto err_setup_tx;
1885
1886 /* allocate receive descriptors */
1887 err = igb_setup_all_rx_resources(adapter);
1888 if (err)
1889 goto err_setup_rx;
1890
1891 /* e1000_power_up_phy(adapter); */
1892
1893 /* before we allocate an interrupt, we must be ready to handle it.
1894 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1895 * as soon as we call pci_request_irq, so we have to setup our
1896 * clean_rx handler before we do so. */
1897 igb_configure(adapter);
1898
1899 err = igb_request_irq(adapter);
1900 if (err)
1901 goto err_req_irq;
1902
1903 /* From here on the code is the same as igb_up() */
1904 clear_bit(__IGB_DOWN, &adapter->state);
1905
1906 for (i = 0; i < adapter->num_q_vectors; i++) {
1907 struct igb_q_vector *q_vector = adapter->q_vector[i];
1908 napi_enable(&q_vector->napi);
1909 }
1910
1911 /* Clear any pending interrupts. */
1912 rd32(E1000_ICR);
1913
1914 igb_irq_enable(adapter);
1915
1916 /* notify VFs that reset has been completed */
1917 if (adapter->vfs_allocated_count) {
1918 u32 reg_data = rd32(E1000_CTRL_EXT);
1919 reg_data |= E1000_CTRL_EXT_PFRSTD;
1920 wr32(E1000_CTRL_EXT, reg_data);
1921 }
1922
1923 netif_tx_start_all_queues(netdev);
1924
1925 /* start the watchdog. */
1926 hw->mac.get_link_status = 1;
1927 schedule_work(&adapter->watchdog_task);
1928
1929 return 0;
1930
1931 err_req_irq:
1932 igb_release_hw_control(adapter);
1933 /* e1000_power_down_phy(adapter); */
1934 igb_free_all_rx_resources(adapter);
1935 err_setup_rx:
1936 igb_free_all_tx_resources(adapter);
1937 err_setup_tx:
1938 igb_reset(adapter);
1939
1940 return err;
1941 }
1942
1943 /**
1944 * igb_close - Disables a network interface
1945 * @netdev: network interface device structure
1946 *
1947 * Returns 0, this is not allowed to fail
1948 *
1949 * The close entry point is called when an interface is de-activated
1950 * by the OS. The hardware is still under the driver's control, but
1951 * needs to be disabled. A global MAC reset is issued to stop the
1952 * hardware, and all transmit and receive resources are freed.
1953 **/
1954 static int igb_close(struct net_device *netdev)
1955 {
1956 struct igb_adapter *adapter = netdev_priv(netdev);
1957
1958 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1959 igb_down(adapter);
1960
1961 igb_free_irq(adapter);
1962
1963 igb_free_all_tx_resources(adapter);
1964 igb_free_all_rx_resources(adapter);
1965
1966 return 0;
1967 }
1968
1969 /**
1970 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1971 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1972 *
1973 * Return 0 on success, negative on failure
1974 **/
1975 int igb_setup_tx_resources(struct igb_ring *tx_ring)
1976 {
1977 struct pci_dev *pdev = tx_ring->pdev;
1978 int size;
1979
1980 size = sizeof(struct igb_buffer) * tx_ring->count;
1981 tx_ring->buffer_info = vmalloc(size);
1982 if (!tx_ring->buffer_info)
1983 goto err;
1984 memset(tx_ring->buffer_info, 0, size);
1985
1986 /* round up to nearest 4K */
1987 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1988 tx_ring->size = ALIGN(tx_ring->size, 4096);
1989
1990 tx_ring->desc = pci_alloc_consistent(pdev,
1991 tx_ring->size,
1992 &tx_ring->dma);
1993
1994 if (!tx_ring->desc)
1995 goto err;
1996
1997 tx_ring->next_to_use = 0;
1998 tx_ring->next_to_clean = 0;
1999 return 0;
2000
2001 err:
2002 vfree(tx_ring->buffer_info);
2003 dev_err(&pdev->dev,
2004 "Unable to allocate memory for the transmit descriptor ring\n");
2005 return -ENOMEM;
2006 }
2007
2008 /**
2009 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2010 * (Descriptors) for all queues
2011 * @adapter: board private structure
2012 *
2013 * Return 0 on success, negative on failure
2014 **/
2015 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2016 {
2017 struct pci_dev *pdev = adapter->pdev;
2018 int i, err = 0;
2019
2020 for (i = 0; i < adapter->num_tx_queues; i++) {
2021 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2022 if (err) {
2023 dev_err(&pdev->dev,
2024 "Allocation for Tx Queue %u failed\n", i);
2025 for (i--; i >= 0; i--)
2026 igb_free_tx_resources(&adapter->tx_ring[i]);
2027 break;
2028 }
2029 }
2030
2031 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2032 int r_idx = i % adapter->num_tx_queues;
2033 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2034 }
2035 return err;
2036 }
2037
2038 /**
2039 * igb_setup_tctl - configure the transmit control registers
2040 * @adapter: Board private structure
2041 **/
2042 void igb_setup_tctl(struct igb_adapter *adapter)
2043 {
2044 struct e1000_hw *hw = &adapter->hw;
2045 u32 tctl;
2046
2047 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2048 wr32(E1000_TXDCTL(0), 0);
2049
2050 /* Program the Transmit Control Register */
2051 tctl = rd32(E1000_TCTL);
2052 tctl &= ~E1000_TCTL_CT;
2053 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2054 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2055
2056 igb_config_collision_dist(hw);
2057
2058 /* Enable transmits */
2059 tctl |= E1000_TCTL_EN;
2060
2061 wr32(E1000_TCTL, tctl);
2062 }
2063
2064 /**
2065 * igb_configure_tx_ring - Configure transmit ring after Reset
2066 * @adapter: board private structure
2067 * @ring: tx ring to configure
2068 *
2069 * Configure a transmit ring after a reset.
2070 **/
2071 void igb_configure_tx_ring(struct igb_adapter *adapter,
2072 struct igb_ring *ring)
2073 {
2074 struct e1000_hw *hw = &adapter->hw;
2075 u32 txdctl;
2076 u64 tdba = ring->dma;
2077 int reg_idx = ring->reg_idx;
2078
2079 /* disable the queue */
2080 txdctl = rd32(E1000_TXDCTL(reg_idx));
2081 wr32(E1000_TXDCTL(reg_idx),
2082 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2083 wrfl();
2084 mdelay(10);
2085
2086 wr32(E1000_TDLEN(reg_idx),
2087 ring->count * sizeof(union e1000_adv_tx_desc));
2088 wr32(E1000_TDBAL(reg_idx),
2089 tdba & 0x00000000ffffffffULL);
2090 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2091
2092 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2093 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2094 writel(0, ring->head);
2095 writel(0, ring->tail);
2096
2097 txdctl |= IGB_TX_PTHRESH;
2098 txdctl |= IGB_TX_HTHRESH << 8;
2099 txdctl |= IGB_TX_WTHRESH << 16;
2100
2101 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2102 wr32(E1000_TXDCTL(reg_idx), txdctl);
2103 }
2104
2105 /**
2106 * igb_configure_tx - Configure transmit Unit after Reset
2107 * @adapter: board private structure
2108 *
2109 * Configure the Tx unit of the MAC after a reset.
2110 **/
2111 static void igb_configure_tx(struct igb_adapter *adapter)
2112 {
2113 int i;
2114
2115 for (i = 0; i < adapter->num_tx_queues; i++)
2116 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2117 }
2118
2119 /**
2120 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2121 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2122 *
2123 * Returns 0 on success, negative on failure
2124 **/
2125 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2126 {
2127 struct pci_dev *pdev = rx_ring->pdev;
2128 int size, desc_len;
2129
2130 size = sizeof(struct igb_buffer) * rx_ring->count;
2131 rx_ring->buffer_info = vmalloc(size);
2132 if (!rx_ring->buffer_info)
2133 goto err;
2134 memset(rx_ring->buffer_info, 0, size);
2135
2136 desc_len = sizeof(union e1000_adv_rx_desc);
2137
2138 /* Round up to nearest 4K */
2139 rx_ring->size = rx_ring->count * desc_len;
2140 rx_ring->size = ALIGN(rx_ring->size, 4096);
2141
2142 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2143 &rx_ring->dma);
2144
2145 if (!rx_ring->desc)
2146 goto err;
2147
2148 rx_ring->next_to_clean = 0;
2149 rx_ring->next_to_use = 0;
2150
2151 return 0;
2152
2153 err:
2154 vfree(rx_ring->buffer_info);
2155 rx_ring->buffer_info = NULL;
2156 dev_err(&pdev->dev, "Unable to allocate memory for "
2157 "the receive descriptor ring\n");
2158 return -ENOMEM;
2159 }
2160
2161 /**
2162 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2163 * (Descriptors) for all queues
2164 * @adapter: board private structure
2165 *
2166 * Return 0 on success, negative on failure
2167 **/
2168 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2169 {
2170 struct pci_dev *pdev = adapter->pdev;
2171 int i, err = 0;
2172
2173 for (i = 0; i < adapter->num_rx_queues; i++) {
2174 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2175 if (err) {
2176 dev_err(&pdev->dev,
2177 "Allocation for Rx Queue %u failed\n", i);
2178 for (i--; i >= 0; i--)
2179 igb_free_rx_resources(&adapter->rx_ring[i]);
2180 break;
2181 }
2182 }
2183
2184 return err;
2185 }
2186
2187 /**
2188 * igb_setup_mrqc - configure the multiple receive queue control registers
2189 * @adapter: Board private structure
2190 **/
2191 static void igb_setup_mrqc(struct igb_adapter *adapter)
2192 {
2193 struct e1000_hw *hw = &adapter->hw;
2194 u32 mrqc, rxcsum;
2195 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2196 union e1000_reta {
2197 u32 dword;
2198 u8 bytes[4];
2199 } reta;
2200 static const u8 rsshash[40] = {
2201 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2202 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2203 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2204 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2205
2206 /* Fill out hash function seeds */
2207 for (j = 0; j < 10; j++) {
2208 u32 rsskey = rsshash[(j * 4)];
2209 rsskey |= rsshash[(j * 4) + 1] << 8;
2210 rsskey |= rsshash[(j * 4) + 2] << 16;
2211 rsskey |= rsshash[(j * 4) + 3] << 24;
2212 array_wr32(E1000_RSSRK(0), j, rsskey);
2213 }
2214
2215 num_rx_queues = adapter->rss_queues;
2216
2217 if (adapter->vfs_allocated_count) {
2218 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2219 switch (hw->mac.type) {
2220 case e1000_82576:
2221 shift = 3;
2222 num_rx_queues = 2;
2223 break;
2224 case e1000_82575:
2225 shift = 2;
2226 shift2 = 6;
2227 default:
2228 break;
2229 }
2230 } else {
2231 if (hw->mac.type == e1000_82575)
2232 shift = 6;
2233 }
2234
2235 for (j = 0; j < (32 * 4); j++) {
2236 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2237 if (shift2)
2238 reta.bytes[j & 3] |= num_rx_queues << shift2;
2239 if ((j & 3) == 3)
2240 wr32(E1000_RETA(j >> 2), reta.dword);
2241 }
2242
2243 /*
2244 * Disable raw packet checksumming so that RSS hash is placed in
2245 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2246 * offloads as they are enabled by default
2247 */
2248 rxcsum = rd32(E1000_RXCSUM);
2249 rxcsum |= E1000_RXCSUM_PCSD;
2250
2251 if (adapter->hw.mac.type >= e1000_82576)
2252 /* Enable Receive Checksum Offload for SCTP */
2253 rxcsum |= E1000_RXCSUM_CRCOFL;
2254
2255 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2256 wr32(E1000_RXCSUM, rxcsum);
2257
2258 /* If VMDq is enabled then we set the appropriate mode for that, else
2259 * we default to RSS so that an RSS hash is calculated per packet even
2260 * if we are only using one queue */
2261 if (adapter->vfs_allocated_count) {
2262 if (hw->mac.type > e1000_82575) {
2263 /* Set the default pool for the PF's first queue */
2264 u32 vtctl = rd32(E1000_VT_CTL);
2265 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2266 E1000_VT_CTL_DISABLE_DEF_POOL);
2267 vtctl |= adapter->vfs_allocated_count <<
2268 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2269 wr32(E1000_VT_CTL, vtctl);
2270 }
2271 if (adapter->rss_queues > 1)
2272 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2273 else
2274 mrqc = E1000_MRQC_ENABLE_VMDQ;
2275 } else {
2276 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2277 }
2278 igb_vmm_control(adapter);
2279
2280 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2281 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2282 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2283 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2284 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2285 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2286 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2287 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2288
2289 wr32(E1000_MRQC, mrqc);
2290 }
2291
2292 /**
2293 * igb_setup_rctl - configure the receive control registers
2294 * @adapter: Board private structure
2295 **/
2296 void igb_setup_rctl(struct igb_adapter *adapter)
2297 {
2298 struct e1000_hw *hw = &adapter->hw;
2299 u32 rctl;
2300
2301 rctl = rd32(E1000_RCTL);
2302
2303 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2304 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2305
2306 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2307 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2308
2309 /*
2310 * enable stripping of CRC. It's unlikely this will break BMC
2311 * redirection as it did with e1000. Newer features require
2312 * that the HW strips the CRC.
2313 */
2314 rctl |= E1000_RCTL_SECRC;
2315
2316 /* disable store bad packets and clear size bits. */
2317 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2318
2319 /* enable LPE to prevent packets larger than max_frame_size */
2320 rctl |= E1000_RCTL_LPE;
2321
2322 /* disable queue 0 to prevent tail write w/o re-config */
2323 wr32(E1000_RXDCTL(0), 0);
2324
2325 /* Attention!!! For SR-IOV PF driver operations you must enable
2326 * queue drop for all VF and PF queues to prevent head of line blocking
2327 * if an un-trusted VF does not provide descriptors to hardware.
2328 */
2329 if (adapter->vfs_allocated_count) {
2330 /* set all queue drop enable bits */
2331 wr32(E1000_QDE, ALL_QUEUES);
2332 }
2333
2334 wr32(E1000_RCTL, rctl);
2335 }
2336
2337 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2338 int vfn)
2339 {
2340 struct e1000_hw *hw = &adapter->hw;
2341 u32 vmolr;
2342
2343 /* if it isn't the PF check to see if VFs are enabled and
2344 * increase the size to support vlan tags */
2345 if (vfn < adapter->vfs_allocated_count &&
2346 adapter->vf_data[vfn].vlans_enabled)
2347 size += VLAN_TAG_SIZE;
2348
2349 vmolr = rd32(E1000_VMOLR(vfn));
2350 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2351 vmolr |= size | E1000_VMOLR_LPE;
2352 wr32(E1000_VMOLR(vfn), vmolr);
2353
2354 return 0;
2355 }
2356
2357 /**
2358 * igb_rlpml_set - set maximum receive packet size
2359 * @adapter: board private structure
2360 *
2361 * Configure maximum receivable packet size.
2362 **/
2363 static void igb_rlpml_set(struct igb_adapter *adapter)
2364 {
2365 u32 max_frame_size = adapter->max_frame_size;
2366 struct e1000_hw *hw = &adapter->hw;
2367 u16 pf_id = adapter->vfs_allocated_count;
2368
2369 if (adapter->vlgrp)
2370 max_frame_size += VLAN_TAG_SIZE;
2371
2372 /* if vfs are enabled we set RLPML to the largest possible request
2373 * size and set the VMOLR RLPML to the size we need */
2374 if (pf_id) {
2375 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2376 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2377 }
2378
2379 wr32(E1000_RLPML, max_frame_size);
2380 }
2381
2382 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2383 {
2384 struct e1000_hw *hw = &adapter->hw;
2385 u32 vmolr;
2386
2387 /*
2388 * This register exists only on 82576 and newer so if we are older then
2389 * we should exit and do nothing
2390 */
2391 if (hw->mac.type < e1000_82576)
2392 return;
2393
2394 vmolr = rd32(E1000_VMOLR(vfn));
2395 vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */
2396 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2397
2398 /* clear all bits that might not be set */
2399 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2400
2401 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2402 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2403 /*
2404 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2405 * multicast packets
2406 */
2407 if (vfn <= adapter->vfs_allocated_count)
2408 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2409
2410 wr32(E1000_VMOLR(vfn), vmolr);
2411 }
2412
2413 /**
2414 * igb_configure_rx_ring - Configure a receive ring after Reset
2415 * @adapter: board private structure
2416 * @ring: receive ring to be configured
2417 *
2418 * Configure the Rx unit of the MAC after a reset.
2419 **/
2420 void igb_configure_rx_ring(struct igb_adapter *adapter,
2421 struct igb_ring *ring)
2422 {
2423 struct e1000_hw *hw = &adapter->hw;
2424 u64 rdba = ring->dma;
2425 int reg_idx = ring->reg_idx;
2426 u32 srrctl, rxdctl;
2427
2428 /* disable the queue */
2429 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2430 wr32(E1000_RXDCTL(reg_idx),
2431 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2432
2433 /* Set DMA base address registers */
2434 wr32(E1000_RDBAL(reg_idx),
2435 rdba & 0x00000000ffffffffULL);
2436 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2437 wr32(E1000_RDLEN(reg_idx),
2438 ring->count * sizeof(union e1000_adv_rx_desc));
2439
2440 /* initialize head and tail */
2441 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2442 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2443 writel(0, ring->head);
2444 writel(0, ring->tail);
2445
2446 /* set descriptor configuration */
2447 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2448 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2449 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2450 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2451 srrctl |= IGB_RXBUFFER_16384 >>
2452 E1000_SRRCTL_BSIZEPKT_SHIFT;
2453 #else
2454 srrctl |= (PAGE_SIZE / 2) >>
2455 E1000_SRRCTL_BSIZEPKT_SHIFT;
2456 #endif
2457 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2458 } else {
2459 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2460 E1000_SRRCTL_BSIZEPKT_SHIFT;
2461 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2462 }
2463
2464 wr32(E1000_SRRCTL(reg_idx), srrctl);
2465
2466 /* set filtering for VMDQ pools */
2467 igb_set_vmolr(adapter, reg_idx & 0x7);
2468
2469 /* enable receive descriptor fetching */
2470 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2471 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2472 rxdctl &= 0xFFF00000;
2473 rxdctl |= IGB_RX_PTHRESH;
2474 rxdctl |= IGB_RX_HTHRESH << 8;
2475 rxdctl |= IGB_RX_WTHRESH << 16;
2476 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2477 }
2478
2479 /**
2480 * igb_configure_rx - Configure receive Unit after Reset
2481 * @adapter: board private structure
2482 *
2483 * Configure the Rx unit of the MAC after a reset.
2484 **/
2485 static void igb_configure_rx(struct igb_adapter *adapter)
2486 {
2487 int i;
2488
2489 /* set UTA to appropriate mode */
2490 igb_set_uta(adapter);
2491
2492 /* set the correct pool for the PF default MAC address in entry 0 */
2493 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2494 adapter->vfs_allocated_count);
2495
2496 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2497 * the Base and Length of the Rx Descriptor Ring */
2498 for (i = 0; i < adapter->num_rx_queues; i++)
2499 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2500 }
2501
2502 /**
2503 * igb_free_tx_resources - Free Tx Resources per Queue
2504 * @tx_ring: Tx descriptor ring for a specific queue
2505 *
2506 * Free all transmit software resources
2507 **/
2508 void igb_free_tx_resources(struct igb_ring *tx_ring)
2509 {
2510 igb_clean_tx_ring(tx_ring);
2511
2512 vfree(tx_ring->buffer_info);
2513 tx_ring->buffer_info = NULL;
2514
2515 /* if not set, then don't free */
2516 if (!tx_ring->desc)
2517 return;
2518
2519 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2520 tx_ring->desc, tx_ring->dma);
2521
2522 tx_ring->desc = NULL;
2523 }
2524
2525 /**
2526 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2527 * @adapter: board private structure
2528 *
2529 * Free all transmit software resources
2530 **/
2531 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2532 {
2533 int i;
2534
2535 for (i = 0; i < adapter->num_tx_queues; i++)
2536 igb_free_tx_resources(&adapter->tx_ring[i]);
2537 }
2538
2539 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2540 struct igb_buffer *buffer_info)
2541 {
2542 buffer_info->dma = 0;
2543 if (buffer_info->skb) {
2544 skb_dma_unmap(&tx_ring->pdev->dev,
2545 buffer_info->skb,
2546 DMA_TO_DEVICE);
2547 dev_kfree_skb_any(buffer_info->skb);
2548 buffer_info->skb = NULL;
2549 }
2550 buffer_info->time_stamp = 0;
2551 /* buffer_info must be completely set up in the transmit path */
2552 }
2553
2554 /**
2555 * igb_clean_tx_ring - Free Tx Buffers
2556 * @tx_ring: ring to be cleaned
2557 **/
2558 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2559 {
2560 struct igb_buffer *buffer_info;
2561 unsigned long size;
2562 unsigned int i;
2563
2564 if (!tx_ring->buffer_info)
2565 return;
2566 /* Free all the Tx ring sk_buffs */
2567
2568 for (i = 0; i < tx_ring->count; i++) {
2569 buffer_info = &tx_ring->buffer_info[i];
2570 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2571 }
2572
2573 size = sizeof(struct igb_buffer) * tx_ring->count;
2574 memset(tx_ring->buffer_info, 0, size);
2575
2576 /* Zero out the descriptor ring */
2577 memset(tx_ring->desc, 0, tx_ring->size);
2578
2579 tx_ring->next_to_use = 0;
2580 tx_ring->next_to_clean = 0;
2581 }
2582
2583 /**
2584 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2585 * @adapter: board private structure
2586 **/
2587 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2588 {
2589 int i;
2590
2591 for (i = 0; i < adapter->num_tx_queues; i++)
2592 igb_clean_tx_ring(&adapter->tx_ring[i]);
2593 }
2594
2595 /**
2596 * igb_free_rx_resources - Free Rx Resources
2597 * @rx_ring: ring to clean the resources from
2598 *
2599 * Free all receive software resources
2600 **/
2601 void igb_free_rx_resources(struct igb_ring *rx_ring)
2602 {
2603 igb_clean_rx_ring(rx_ring);
2604
2605 vfree(rx_ring->buffer_info);
2606 rx_ring->buffer_info = NULL;
2607
2608 /* if not set, then don't free */
2609 if (!rx_ring->desc)
2610 return;
2611
2612 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2613 rx_ring->desc, rx_ring->dma);
2614
2615 rx_ring->desc = NULL;
2616 }
2617
2618 /**
2619 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2620 * @adapter: board private structure
2621 *
2622 * Free all receive software resources
2623 **/
2624 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2625 {
2626 int i;
2627
2628 for (i = 0; i < adapter->num_rx_queues; i++)
2629 igb_free_rx_resources(&adapter->rx_ring[i]);
2630 }
2631
2632 /**
2633 * igb_clean_rx_ring - Free Rx Buffers per Queue
2634 * @rx_ring: ring to free buffers from
2635 **/
2636 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2637 {
2638 struct igb_buffer *buffer_info;
2639 unsigned long size;
2640 unsigned int i;
2641
2642 if (!rx_ring->buffer_info)
2643 return;
2644
2645 /* Free all the Rx ring sk_buffs */
2646 for (i = 0; i < rx_ring->count; i++) {
2647 buffer_info = &rx_ring->buffer_info[i];
2648 if (buffer_info->dma) {
2649 pci_unmap_single(rx_ring->pdev,
2650 buffer_info->dma,
2651 rx_ring->rx_buffer_len,
2652 PCI_DMA_FROMDEVICE);
2653 buffer_info->dma = 0;
2654 }
2655
2656 if (buffer_info->skb) {
2657 dev_kfree_skb(buffer_info->skb);
2658 buffer_info->skb = NULL;
2659 }
2660 if (buffer_info->page_dma) {
2661 pci_unmap_page(rx_ring->pdev,
2662 buffer_info->page_dma,
2663 PAGE_SIZE / 2,
2664 PCI_DMA_FROMDEVICE);
2665 buffer_info->page_dma = 0;
2666 }
2667 if (buffer_info->page) {
2668 put_page(buffer_info->page);
2669 buffer_info->page = NULL;
2670 buffer_info->page_offset = 0;
2671 }
2672 }
2673
2674 size = sizeof(struct igb_buffer) * rx_ring->count;
2675 memset(rx_ring->buffer_info, 0, size);
2676
2677 /* Zero out the descriptor ring */
2678 memset(rx_ring->desc, 0, rx_ring->size);
2679
2680 rx_ring->next_to_clean = 0;
2681 rx_ring->next_to_use = 0;
2682 }
2683
2684 /**
2685 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2686 * @adapter: board private structure
2687 **/
2688 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2689 {
2690 int i;
2691
2692 for (i = 0; i < adapter->num_rx_queues; i++)
2693 igb_clean_rx_ring(&adapter->rx_ring[i]);
2694 }
2695
2696 /**
2697 * igb_set_mac - Change the Ethernet Address of the NIC
2698 * @netdev: network interface device structure
2699 * @p: pointer to an address structure
2700 *
2701 * Returns 0 on success, negative on failure
2702 **/
2703 static int igb_set_mac(struct net_device *netdev, void *p)
2704 {
2705 struct igb_adapter *adapter = netdev_priv(netdev);
2706 struct e1000_hw *hw = &adapter->hw;
2707 struct sockaddr *addr = p;
2708
2709 if (!is_valid_ether_addr(addr->sa_data))
2710 return -EADDRNOTAVAIL;
2711
2712 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2713 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2714
2715 /* set the correct pool for the new PF MAC address in entry 0 */
2716 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2717 adapter->vfs_allocated_count);
2718
2719 return 0;
2720 }
2721
2722 /**
2723 * igb_write_mc_addr_list - write multicast addresses to MTA
2724 * @netdev: network interface device structure
2725 *
2726 * Writes multicast address list to the MTA hash table.
2727 * Returns: -ENOMEM on failure
2728 * 0 on no addresses written
2729 * X on writing X addresses to MTA
2730 **/
2731 static int igb_write_mc_addr_list(struct net_device *netdev)
2732 {
2733 struct igb_adapter *adapter = netdev_priv(netdev);
2734 struct e1000_hw *hw = &adapter->hw;
2735 struct dev_mc_list *mc_ptr = netdev->mc_list;
2736 u8 *mta_list;
2737 u32 vmolr = 0;
2738 int i;
2739
2740 if (!netdev->mc_count) {
2741 /* nothing to program, so clear mc list */
2742 igb_update_mc_addr_list(hw, NULL, 0);
2743 igb_restore_vf_multicasts(adapter);
2744 return 0;
2745 }
2746
2747 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2748 if (!mta_list)
2749 return -ENOMEM;
2750
2751 /* set vmolr receive overflow multicast bit */
2752 vmolr |= E1000_VMOLR_ROMPE;
2753
2754 /* The shared function expects a packed array of only addresses. */
2755 mc_ptr = netdev->mc_list;
2756
2757 for (i = 0; i < netdev->mc_count; i++) {
2758 if (!mc_ptr)
2759 break;
2760 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2761 mc_ptr = mc_ptr->next;
2762 }
2763 igb_update_mc_addr_list(hw, mta_list, i);
2764 kfree(mta_list);
2765
2766 return netdev->mc_count;
2767 }
2768
2769 /**
2770 * igb_write_uc_addr_list - write unicast addresses to RAR table
2771 * @netdev: network interface device structure
2772 *
2773 * Writes unicast address list to the RAR table.
2774 * Returns: -ENOMEM on failure/insufficient address space
2775 * 0 on no addresses written
2776 * X on writing X addresses to the RAR table
2777 **/
2778 static int igb_write_uc_addr_list(struct net_device *netdev)
2779 {
2780 struct igb_adapter *adapter = netdev_priv(netdev);
2781 struct e1000_hw *hw = &adapter->hw;
2782 unsigned int vfn = adapter->vfs_allocated_count;
2783 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2784 int count = 0;
2785
2786 /* return ENOMEM indicating insufficient memory for addresses */
2787 if (netdev->uc.count > rar_entries)
2788 return -ENOMEM;
2789
2790 if (netdev->uc.count && rar_entries) {
2791 struct netdev_hw_addr *ha;
2792 list_for_each_entry(ha, &netdev->uc.list, list) {
2793 if (!rar_entries)
2794 break;
2795 igb_rar_set_qsel(adapter, ha->addr,
2796 rar_entries--,
2797 vfn);
2798 count++;
2799 }
2800 }
2801 /* write the addresses in reverse order to avoid write combining */
2802 for (; rar_entries > 0 ; rar_entries--) {
2803 wr32(E1000_RAH(rar_entries), 0);
2804 wr32(E1000_RAL(rar_entries), 0);
2805 }
2806 wrfl();
2807
2808 return count;
2809 }
2810
2811 /**
2812 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2813 * @netdev: network interface device structure
2814 *
2815 * The set_rx_mode entry point is called whenever the unicast or multicast
2816 * address lists or the network interface flags are updated. This routine is
2817 * responsible for configuring the hardware for proper unicast, multicast,
2818 * promiscuous mode, and all-multi behavior.
2819 **/
2820 static void igb_set_rx_mode(struct net_device *netdev)
2821 {
2822 struct igb_adapter *adapter = netdev_priv(netdev);
2823 struct e1000_hw *hw = &adapter->hw;
2824 unsigned int vfn = adapter->vfs_allocated_count;
2825 u32 rctl, vmolr = 0;
2826 int count;
2827
2828 /* Check for Promiscuous and All Multicast modes */
2829 rctl = rd32(E1000_RCTL);
2830
2831 /* clear the effected bits */
2832 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2833
2834 if (netdev->flags & IFF_PROMISC) {
2835 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2836 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2837 } else {
2838 if (netdev->flags & IFF_ALLMULTI) {
2839 rctl |= E1000_RCTL_MPE;
2840 vmolr |= E1000_VMOLR_MPME;
2841 } else {
2842 /*
2843 * Write addresses to the MTA, if the attempt fails
2844 * then we should just turn on promiscous mode so
2845 * that we can at least receive multicast traffic
2846 */
2847 count = igb_write_mc_addr_list(netdev);
2848 if (count < 0) {
2849 rctl |= E1000_RCTL_MPE;
2850 vmolr |= E1000_VMOLR_MPME;
2851 } else if (count) {
2852 vmolr |= E1000_VMOLR_ROMPE;
2853 }
2854 }
2855 /*
2856 * Write addresses to available RAR registers, if there is not
2857 * sufficient space to store all the addresses then enable
2858 * unicast promiscous mode
2859 */
2860 count = igb_write_uc_addr_list(netdev);
2861 if (count < 0) {
2862 rctl |= E1000_RCTL_UPE;
2863 vmolr |= E1000_VMOLR_ROPE;
2864 }
2865 rctl |= E1000_RCTL_VFE;
2866 }
2867 wr32(E1000_RCTL, rctl);
2868
2869 /*
2870 * In order to support SR-IOV and eventually VMDq it is necessary to set
2871 * the VMOLR to enable the appropriate modes. Without this workaround
2872 * we will have issues with VLAN tag stripping not being done for frames
2873 * that are only arriving because we are the default pool
2874 */
2875 if (hw->mac.type < e1000_82576)
2876 return;
2877
2878 vmolr |= rd32(E1000_VMOLR(vfn)) &
2879 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2880 wr32(E1000_VMOLR(vfn), vmolr);
2881 igb_restore_vf_multicasts(adapter);
2882 }
2883
2884 /* Need to wait a few seconds after link up to get diagnostic information from
2885 * the phy */
2886 static void igb_update_phy_info(unsigned long data)
2887 {
2888 struct igb_adapter *adapter = (struct igb_adapter *) data;
2889 igb_get_phy_info(&adapter->hw);
2890 }
2891
2892 /**
2893 * igb_has_link - check shared code for link and determine up/down
2894 * @adapter: pointer to driver private info
2895 **/
2896 static bool igb_has_link(struct igb_adapter *adapter)
2897 {
2898 struct e1000_hw *hw = &adapter->hw;
2899 bool link_active = false;
2900 s32 ret_val = 0;
2901
2902 /* get_link_status is set on LSC (link status) interrupt or
2903 * rx sequence error interrupt. get_link_status will stay
2904 * false until the e1000_check_for_link establishes link
2905 * for copper adapters ONLY
2906 */
2907 switch (hw->phy.media_type) {
2908 case e1000_media_type_copper:
2909 if (hw->mac.get_link_status) {
2910 ret_val = hw->mac.ops.check_for_link(hw);
2911 link_active = !hw->mac.get_link_status;
2912 } else {
2913 link_active = true;
2914 }
2915 break;
2916 case e1000_media_type_internal_serdes:
2917 ret_val = hw->mac.ops.check_for_link(hw);
2918 link_active = hw->mac.serdes_has_link;
2919 break;
2920 default:
2921 case e1000_media_type_unknown:
2922 break;
2923 }
2924
2925 return link_active;
2926 }
2927
2928 /**
2929 * igb_watchdog - Timer Call-back
2930 * @data: pointer to adapter cast into an unsigned long
2931 **/
2932 static void igb_watchdog(unsigned long data)
2933 {
2934 struct igb_adapter *adapter = (struct igb_adapter *)data;
2935 /* Do the rest outside of interrupt context */
2936 schedule_work(&adapter->watchdog_task);
2937 }
2938
2939 static void igb_watchdog_task(struct work_struct *work)
2940 {
2941 struct igb_adapter *adapter = container_of(work,
2942 struct igb_adapter,
2943 watchdog_task);
2944 struct e1000_hw *hw = &adapter->hw;
2945 struct net_device *netdev = adapter->netdev;
2946 u32 link;
2947 int i;
2948
2949 link = igb_has_link(adapter);
2950 if (link) {
2951 if (!netif_carrier_ok(netdev)) {
2952 u32 ctrl;
2953 hw->mac.ops.get_speed_and_duplex(hw,
2954 &adapter->link_speed,
2955 &adapter->link_duplex);
2956
2957 ctrl = rd32(E1000_CTRL);
2958 /* Links status message must follow this format */
2959 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2960 "Flow Control: %s\n",
2961 netdev->name,
2962 adapter->link_speed,
2963 adapter->link_duplex == FULL_DUPLEX ?
2964 "Full Duplex" : "Half Duplex",
2965 ((ctrl & E1000_CTRL_TFCE) &&
2966 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
2967 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2968 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
2969
2970 /* tweak tx_queue_len according to speed/duplex and
2971 * adjust the timeout factor */
2972 netdev->tx_queue_len = adapter->tx_queue_len;
2973 adapter->tx_timeout_factor = 1;
2974 switch (adapter->link_speed) {
2975 case SPEED_10:
2976 netdev->tx_queue_len = 10;
2977 adapter->tx_timeout_factor = 14;
2978 break;
2979 case SPEED_100:
2980 netdev->tx_queue_len = 100;
2981 /* maybe add some timeout factor ? */
2982 break;
2983 }
2984
2985 netif_carrier_on(netdev);
2986
2987 igb_ping_all_vfs(adapter);
2988
2989 /* link state has changed, schedule phy info update */
2990 if (!test_bit(__IGB_DOWN, &adapter->state))
2991 mod_timer(&adapter->phy_info_timer,
2992 round_jiffies(jiffies + 2 * HZ));
2993 }
2994 } else {
2995 if (netif_carrier_ok(netdev)) {
2996 adapter->link_speed = 0;
2997 adapter->link_duplex = 0;
2998 /* Links status message must follow this format */
2999 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3000 netdev->name);
3001 netif_carrier_off(netdev);
3002
3003 igb_ping_all_vfs(adapter);
3004
3005 /* link state has changed, schedule phy info update */
3006 if (!test_bit(__IGB_DOWN, &adapter->state))
3007 mod_timer(&adapter->phy_info_timer,
3008 round_jiffies(jiffies + 2 * HZ));
3009 }
3010 }
3011
3012 igb_update_stats(adapter);
3013 igb_update_adaptive(hw);
3014
3015 for (i = 0; i < adapter->num_tx_queues; i++) {
3016 struct igb_ring *tx_ring = &adapter->tx_ring[i];
3017 if (!netif_carrier_ok(netdev)) {
3018 /* We've lost link, so the controller stops DMA,
3019 * but we've got queued Tx work that's never going
3020 * to get done, so reset controller to flush Tx.
3021 * (Do the reset outside of interrupt context). */
3022 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3023 adapter->tx_timeout_count++;
3024 schedule_work(&adapter->reset_task);
3025 /* return immediately since reset is imminent */
3026 return;
3027 }
3028 }
3029
3030 /* Force detection of hung controller every watchdog period */
3031 tx_ring->detect_tx_hung = true;
3032 }
3033
3034 /* Cause software interrupt to ensure rx ring is cleaned */
3035 if (adapter->msix_entries) {
3036 u32 eics = 0;
3037 for (i = 0; i < adapter->num_q_vectors; i++) {
3038 struct igb_q_vector *q_vector = adapter->q_vector[i];
3039 eics |= q_vector->eims_value;
3040 }
3041 wr32(E1000_EICS, eics);
3042 } else {
3043 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3044 }
3045
3046 /* Reset the timer */
3047 if (!test_bit(__IGB_DOWN, &adapter->state))
3048 mod_timer(&adapter->watchdog_timer,
3049 round_jiffies(jiffies + 2 * HZ));
3050 }
3051
3052 enum latency_range {
3053 lowest_latency = 0,
3054 low_latency = 1,
3055 bulk_latency = 2,
3056 latency_invalid = 255
3057 };
3058
3059 /**
3060 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3061 *
3062 * Stores a new ITR value based on strictly on packet size. This
3063 * algorithm is less sophisticated than that used in igb_update_itr,
3064 * due to the difficulty of synchronizing statistics across multiple
3065 * receive rings. The divisors and thresholds used by this fuction
3066 * were determined based on theoretical maximum wire speed and testing
3067 * data, in order to minimize response time while increasing bulk
3068 * throughput.
3069 * This functionality is controlled by the InterruptThrottleRate module
3070 * parameter (see igb_param.c)
3071 * NOTE: This function is called only when operating in a multiqueue
3072 * receive environment.
3073 * @q_vector: pointer to q_vector
3074 **/
3075 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3076 {
3077 int new_val = q_vector->itr_val;
3078 int avg_wire_size = 0;
3079 struct igb_adapter *adapter = q_vector->adapter;
3080
3081 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3082 * ints/sec - ITR timer value of 120 ticks.
3083 */
3084 if (adapter->link_speed != SPEED_1000) {
3085 new_val = 976;
3086 goto set_itr_val;
3087 }
3088
3089 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3090 struct igb_ring *ring = q_vector->rx_ring;
3091 avg_wire_size = ring->total_bytes / ring->total_packets;
3092 }
3093
3094 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3095 struct igb_ring *ring = q_vector->tx_ring;
3096 avg_wire_size = max_t(u32, avg_wire_size,
3097 (ring->total_bytes /
3098 ring->total_packets));
3099 }
3100
3101 /* if avg_wire_size isn't set no work was done */
3102 if (!avg_wire_size)
3103 goto clear_counts;
3104
3105 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3106 avg_wire_size += 24;
3107
3108 /* Don't starve jumbo frames */
3109 avg_wire_size = min(avg_wire_size, 3000);
3110
3111 /* Give a little boost to mid-size frames */
3112 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3113 new_val = avg_wire_size / 3;
3114 else
3115 new_val = avg_wire_size / 2;
3116
3117 set_itr_val:
3118 if (new_val != q_vector->itr_val) {
3119 q_vector->itr_val = new_val;
3120 q_vector->set_itr = 1;
3121 }
3122 clear_counts:
3123 if (q_vector->rx_ring) {
3124 q_vector->rx_ring->total_bytes = 0;
3125 q_vector->rx_ring->total_packets = 0;
3126 }
3127 if (q_vector->tx_ring) {
3128 q_vector->tx_ring->total_bytes = 0;
3129 q_vector->tx_ring->total_packets = 0;
3130 }
3131 }
3132
3133 /**
3134 * igb_update_itr - update the dynamic ITR value based on statistics
3135 * Stores a new ITR value based on packets and byte
3136 * counts during the last interrupt. The advantage of per interrupt
3137 * computation is faster updates and more accurate ITR for the current
3138 * traffic pattern. Constants in this function were computed
3139 * based on theoretical maximum wire speed and thresholds were set based
3140 * on testing data as well as attempting to minimize response time
3141 * while increasing bulk throughput.
3142 * this functionality is controlled by the InterruptThrottleRate module
3143 * parameter (see igb_param.c)
3144 * NOTE: These calculations are only valid when operating in a single-
3145 * queue environment.
3146 * @adapter: pointer to adapter
3147 * @itr_setting: current q_vector->itr_val
3148 * @packets: the number of packets during this measurement interval
3149 * @bytes: the number of bytes during this measurement interval
3150 **/
3151 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3152 int packets, int bytes)
3153 {
3154 unsigned int retval = itr_setting;
3155
3156 if (packets == 0)
3157 goto update_itr_done;
3158
3159 switch (itr_setting) {
3160 case lowest_latency:
3161 /* handle TSO and jumbo frames */
3162 if (bytes/packets > 8000)
3163 retval = bulk_latency;
3164 else if ((packets < 5) && (bytes > 512))
3165 retval = low_latency;
3166 break;
3167 case low_latency: /* 50 usec aka 20000 ints/s */
3168 if (bytes > 10000) {
3169 /* this if handles the TSO accounting */
3170 if (bytes/packets > 8000) {
3171 retval = bulk_latency;
3172 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3173 retval = bulk_latency;
3174 } else if ((packets > 35)) {
3175 retval = lowest_latency;
3176 }
3177 } else if (bytes/packets > 2000) {
3178 retval = bulk_latency;
3179 } else if (packets <= 2 && bytes < 512) {
3180 retval = lowest_latency;
3181 }
3182 break;
3183 case bulk_latency: /* 250 usec aka 4000 ints/s */
3184 if (bytes > 25000) {
3185 if (packets > 35)
3186 retval = low_latency;
3187 } else if (bytes < 1500) {
3188 retval = low_latency;
3189 }
3190 break;
3191 }
3192
3193 update_itr_done:
3194 return retval;
3195 }
3196
3197 static void igb_set_itr(struct igb_adapter *adapter)
3198 {
3199 struct igb_q_vector *q_vector = adapter->q_vector[0];
3200 u16 current_itr;
3201 u32 new_itr = q_vector->itr_val;
3202
3203 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3204 if (adapter->link_speed != SPEED_1000) {
3205 current_itr = 0;
3206 new_itr = 4000;
3207 goto set_itr_now;
3208 }
3209
3210 adapter->rx_itr = igb_update_itr(adapter,
3211 adapter->rx_itr,
3212 adapter->rx_ring->total_packets,
3213 adapter->rx_ring->total_bytes);
3214
3215 adapter->tx_itr = igb_update_itr(adapter,
3216 adapter->tx_itr,
3217 adapter->tx_ring->total_packets,
3218 adapter->tx_ring->total_bytes);
3219 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3220
3221 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3222 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3223 current_itr = low_latency;
3224
3225 switch (current_itr) {
3226 /* counts and packets in update_itr are dependent on these numbers */
3227 case lowest_latency:
3228 new_itr = 56; /* aka 70,000 ints/sec */
3229 break;
3230 case low_latency:
3231 new_itr = 196; /* aka 20,000 ints/sec */
3232 break;
3233 case bulk_latency:
3234 new_itr = 980; /* aka 4,000 ints/sec */
3235 break;
3236 default:
3237 break;
3238 }
3239
3240 set_itr_now:
3241 adapter->rx_ring->total_bytes = 0;
3242 adapter->rx_ring->total_packets = 0;
3243 adapter->tx_ring->total_bytes = 0;
3244 adapter->tx_ring->total_packets = 0;
3245
3246 if (new_itr != q_vector->itr_val) {
3247 /* this attempts to bias the interrupt rate towards Bulk
3248 * by adding intermediate steps when interrupt rate is
3249 * increasing */
3250 new_itr = new_itr > q_vector->itr_val ?
3251 max((new_itr * q_vector->itr_val) /
3252 (new_itr + (q_vector->itr_val >> 2)),
3253 new_itr) :
3254 new_itr;
3255 /* Don't write the value here; it resets the adapter's
3256 * internal timer, and causes us to delay far longer than
3257 * we should between interrupts. Instead, we write the ITR
3258 * value at the beginning of the next interrupt so the timing
3259 * ends up being correct.
3260 */
3261 q_vector->itr_val = new_itr;
3262 q_vector->set_itr = 1;
3263 }
3264
3265 return;
3266 }
3267
3268 #define IGB_TX_FLAGS_CSUM 0x00000001
3269 #define IGB_TX_FLAGS_VLAN 0x00000002
3270 #define IGB_TX_FLAGS_TSO 0x00000004
3271 #define IGB_TX_FLAGS_IPV4 0x00000008
3272 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3273 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3274 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3275
3276 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3277 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3278 {
3279 struct e1000_adv_tx_context_desc *context_desc;
3280 unsigned int i;
3281 int err;
3282 struct igb_buffer *buffer_info;
3283 u32 info = 0, tu_cmd = 0;
3284 u32 mss_l4len_idx, l4len;
3285 *hdr_len = 0;
3286
3287 if (skb_header_cloned(skb)) {
3288 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3289 if (err)
3290 return err;
3291 }
3292
3293 l4len = tcp_hdrlen(skb);
3294 *hdr_len += l4len;
3295
3296 if (skb->protocol == htons(ETH_P_IP)) {
3297 struct iphdr *iph = ip_hdr(skb);
3298 iph->tot_len = 0;
3299 iph->check = 0;
3300 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3301 iph->daddr, 0,
3302 IPPROTO_TCP,
3303 0);
3304 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3305 ipv6_hdr(skb)->payload_len = 0;
3306 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3307 &ipv6_hdr(skb)->daddr,
3308 0, IPPROTO_TCP, 0);
3309 }
3310
3311 i = tx_ring->next_to_use;
3312
3313 buffer_info = &tx_ring->buffer_info[i];
3314 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3315 /* VLAN MACLEN IPLEN */
3316 if (tx_flags & IGB_TX_FLAGS_VLAN)
3317 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3318 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3319 *hdr_len += skb_network_offset(skb);
3320 info |= skb_network_header_len(skb);
3321 *hdr_len += skb_network_header_len(skb);
3322 context_desc->vlan_macip_lens = cpu_to_le32(info);
3323
3324 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3325 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3326
3327 if (skb->protocol == htons(ETH_P_IP))
3328 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3329 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3330
3331 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3332
3333 /* MSS L4LEN IDX */
3334 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3335 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3336
3337 /* For 82575, context index must be unique per ring. */
3338 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3339 mss_l4len_idx |= tx_ring->reg_idx << 4;
3340
3341 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3342 context_desc->seqnum_seed = 0;
3343
3344 buffer_info->time_stamp = jiffies;
3345 buffer_info->next_to_watch = i;
3346 buffer_info->dma = 0;
3347 i++;
3348 if (i == tx_ring->count)
3349 i = 0;
3350
3351 tx_ring->next_to_use = i;
3352
3353 return true;
3354 }
3355
3356 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3357 struct sk_buff *skb, u32 tx_flags)
3358 {
3359 struct e1000_adv_tx_context_desc *context_desc;
3360 struct pci_dev *pdev = tx_ring->pdev;
3361 struct igb_buffer *buffer_info;
3362 u32 info = 0, tu_cmd = 0;
3363 unsigned int i;
3364
3365 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3366 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3367 i = tx_ring->next_to_use;
3368 buffer_info = &tx_ring->buffer_info[i];
3369 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3370
3371 if (tx_flags & IGB_TX_FLAGS_VLAN)
3372 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3373
3374 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3375 if (skb->ip_summed == CHECKSUM_PARTIAL)
3376 info |= skb_network_header_len(skb);
3377
3378 context_desc->vlan_macip_lens = cpu_to_le32(info);
3379
3380 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3381
3382 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3383 __be16 protocol;
3384
3385 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3386 const struct vlan_ethhdr *vhdr =
3387 (const struct vlan_ethhdr*)skb->data;
3388
3389 protocol = vhdr->h_vlan_encapsulated_proto;
3390 } else {
3391 protocol = skb->protocol;
3392 }
3393
3394 switch (protocol) {
3395 case cpu_to_be16(ETH_P_IP):
3396 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3397 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3398 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3399 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3400 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3401 break;
3402 case cpu_to_be16(ETH_P_IPV6):
3403 /* XXX what about other V6 headers?? */
3404 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3405 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3406 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3407 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3408 break;
3409 default:
3410 if (unlikely(net_ratelimit()))
3411 dev_warn(&pdev->dev,
3412 "partial checksum but proto=%x!\n",
3413 skb->protocol);
3414 break;
3415 }
3416 }
3417
3418 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3419 context_desc->seqnum_seed = 0;
3420 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3421 context_desc->mss_l4len_idx =
3422 cpu_to_le32(tx_ring->reg_idx << 4);
3423
3424 buffer_info->time_stamp = jiffies;
3425 buffer_info->next_to_watch = i;
3426 buffer_info->dma = 0;
3427
3428 i++;
3429 if (i == tx_ring->count)
3430 i = 0;
3431 tx_ring->next_to_use = i;
3432
3433 return true;
3434 }
3435 return false;
3436 }
3437
3438 #define IGB_MAX_TXD_PWR 16
3439 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3440
3441 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3442 unsigned int first)
3443 {
3444 struct igb_buffer *buffer_info;
3445 struct pci_dev *pdev = tx_ring->pdev;
3446 unsigned int len = skb_headlen(skb);
3447 unsigned int count = 0, i;
3448 unsigned int f;
3449 dma_addr_t *map;
3450
3451 i = tx_ring->next_to_use;
3452
3453 if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
3454 dev_err(&pdev->dev, "TX DMA map failed\n");
3455 return 0;
3456 }
3457
3458 map = skb_shinfo(skb)->dma_maps;
3459
3460 buffer_info = &tx_ring->buffer_info[i];
3461 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3462 buffer_info->length = len;
3463 /* set time_stamp *before* dma to help avoid a possible race */
3464 buffer_info->time_stamp = jiffies;
3465 buffer_info->next_to_watch = i;
3466 buffer_info->dma = skb_shinfo(skb)->dma_head;
3467
3468 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3469 struct skb_frag_struct *frag;
3470
3471 i++;
3472 if (i == tx_ring->count)
3473 i = 0;
3474
3475 frag = &skb_shinfo(skb)->frags[f];
3476 len = frag->size;
3477
3478 buffer_info = &tx_ring->buffer_info[i];
3479 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3480 buffer_info->length = len;
3481 buffer_info->time_stamp = jiffies;
3482 buffer_info->next_to_watch = i;
3483 buffer_info->dma = map[count];
3484 count++;
3485 }
3486
3487 tx_ring->buffer_info[i].skb = skb;
3488 tx_ring->buffer_info[first].next_to_watch = i;
3489
3490 return ++count;
3491 }
3492
3493 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3494 int tx_flags, int count, u32 paylen,
3495 u8 hdr_len)
3496 {
3497 union e1000_adv_tx_desc *tx_desc;
3498 struct igb_buffer *buffer_info;
3499 u32 olinfo_status = 0, cmd_type_len;
3500 unsigned int i = tx_ring->next_to_use;
3501
3502 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3503 E1000_ADVTXD_DCMD_DEXT);
3504
3505 if (tx_flags & IGB_TX_FLAGS_VLAN)
3506 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3507
3508 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3509 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3510
3511 if (tx_flags & IGB_TX_FLAGS_TSO) {
3512 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3513
3514 /* insert tcp checksum */
3515 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3516
3517 /* insert ip checksum */
3518 if (tx_flags & IGB_TX_FLAGS_IPV4)
3519 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3520
3521 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3522 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3523 }
3524
3525 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3526 (tx_flags & (IGB_TX_FLAGS_CSUM |
3527 IGB_TX_FLAGS_TSO |
3528 IGB_TX_FLAGS_VLAN)))
3529 olinfo_status |= tx_ring->reg_idx << 4;
3530
3531 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3532
3533 do {
3534 buffer_info = &tx_ring->buffer_info[i];
3535 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3536 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3537 tx_desc->read.cmd_type_len =
3538 cpu_to_le32(cmd_type_len | buffer_info->length);
3539 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3540 count--;
3541 i++;
3542 if (i == tx_ring->count)
3543 i = 0;
3544 } while (count > 0);
3545
3546 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3547 /* Force memory writes to complete before letting h/w
3548 * know there are new descriptors to fetch. (Only
3549 * applicable for weak-ordered memory model archs,
3550 * such as IA-64). */
3551 wmb();
3552
3553 tx_ring->next_to_use = i;
3554 writel(i, tx_ring->tail);
3555 /* we need this if more than one processor can write to our tail
3556 * at a time, it syncronizes IO on IA64/Altix systems */
3557 mmiowb();
3558 }
3559
3560 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3561 {
3562 struct net_device *netdev = tx_ring->netdev;
3563
3564 netif_stop_subqueue(netdev, tx_ring->queue_index);
3565
3566 /* Herbert's original patch had:
3567 * smp_mb__after_netif_stop_queue();
3568 * but since that doesn't exist yet, just open code it. */
3569 smp_mb();
3570
3571 /* We need to check again in a case another CPU has just
3572 * made room available. */
3573 if (igb_desc_unused(tx_ring) < size)
3574 return -EBUSY;
3575
3576 /* A reprieve! */
3577 netif_wake_subqueue(netdev, tx_ring->queue_index);
3578 tx_ring->tx_stats.restart_queue++;
3579 return 0;
3580 }
3581
3582 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3583 {
3584 if (igb_desc_unused(tx_ring) >= size)
3585 return 0;
3586 return __igb_maybe_stop_tx(tx_ring, size);
3587 }
3588
3589 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3590 struct igb_ring *tx_ring)
3591 {
3592 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3593 unsigned int first;
3594 unsigned int tx_flags = 0;
3595 u8 hdr_len = 0;
3596 int tso = 0, count;
3597 union skb_shared_tx *shtx = skb_tx(skb);
3598
3599 /* need: 1 descriptor per page,
3600 * + 2 desc gap to keep tail from touching head,
3601 * + 1 desc for skb->data,
3602 * + 1 desc for context descriptor,
3603 * otherwise try next time */
3604 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3605 /* this is a hard error */
3606 return NETDEV_TX_BUSY;
3607 }
3608
3609 if (unlikely(shtx->hardware)) {
3610 shtx->in_progress = 1;
3611 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3612 }
3613
3614 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3615 tx_flags |= IGB_TX_FLAGS_VLAN;
3616 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3617 }
3618
3619 if (skb->protocol == htons(ETH_P_IP))
3620 tx_flags |= IGB_TX_FLAGS_IPV4;
3621
3622 first = tx_ring->next_to_use;
3623 if (skb_is_gso(skb)) {
3624 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3625
3626 if (tso < 0) {
3627 dev_kfree_skb_any(skb);
3628 return NETDEV_TX_OK;
3629 }
3630 }
3631
3632 if (tso)
3633 tx_flags |= IGB_TX_FLAGS_TSO;
3634 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3635 (skb->ip_summed == CHECKSUM_PARTIAL))
3636 tx_flags |= IGB_TX_FLAGS_CSUM;
3637
3638 /*
3639 * count reflects descriptors mapped, if 0 or less then mapping error
3640 * has occured and we need to rewind the descriptor queue
3641 */
3642 count = igb_tx_map_adv(tx_ring, skb, first);
3643 if (count <= 0) {
3644 dev_kfree_skb_any(skb);
3645 tx_ring->buffer_info[first].time_stamp = 0;
3646 tx_ring->next_to_use = first;
3647 return NETDEV_TX_OK;
3648 }
3649
3650 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3651
3652 /* Make sure there is space in the ring for the next send. */
3653 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3654
3655 return NETDEV_TX_OK;
3656 }
3657
3658 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3659 struct net_device *netdev)
3660 {
3661 struct igb_adapter *adapter = netdev_priv(netdev);
3662 struct igb_ring *tx_ring;
3663 int r_idx = 0;
3664
3665 if (test_bit(__IGB_DOWN, &adapter->state)) {
3666 dev_kfree_skb_any(skb);
3667 return NETDEV_TX_OK;
3668 }
3669
3670 if (skb->len <= 0) {
3671 dev_kfree_skb_any(skb);
3672 return NETDEV_TX_OK;
3673 }
3674
3675 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3676 tx_ring = adapter->multi_tx_table[r_idx];
3677
3678 /* This goes back to the question of how to logically map a tx queue
3679 * to a flow. Right now, performance is impacted slightly negatively
3680 * if using multiple tx queues. If the stack breaks away from a
3681 * single qdisc implementation, we can look at this again. */
3682 return igb_xmit_frame_ring_adv(skb, tx_ring);
3683 }
3684
3685 /**
3686 * igb_tx_timeout - Respond to a Tx Hang
3687 * @netdev: network interface device structure
3688 **/
3689 static void igb_tx_timeout(struct net_device *netdev)
3690 {
3691 struct igb_adapter *adapter = netdev_priv(netdev);
3692 struct e1000_hw *hw = &adapter->hw;
3693
3694 /* Do the reset outside of interrupt context */
3695 adapter->tx_timeout_count++;
3696
3697 schedule_work(&adapter->reset_task);
3698 wr32(E1000_EICS,
3699 (adapter->eims_enable_mask & ~adapter->eims_other));
3700 }
3701
3702 static void igb_reset_task(struct work_struct *work)
3703 {
3704 struct igb_adapter *adapter;
3705 adapter = container_of(work, struct igb_adapter, reset_task);
3706
3707 igb_reinit_locked(adapter);
3708 }
3709
3710 /**
3711 * igb_get_stats - Get System Network Statistics
3712 * @netdev: network interface device structure
3713 *
3714 * Returns the address of the device statistics structure.
3715 * The statistics are actually updated from the timer callback.
3716 **/
3717 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3718 {
3719 /* only return the current stats */
3720 return &netdev->stats;
3721 }
3722
3723 /**
3724 * igb_change_mtu - Change the Maximum Transfer Unit
3725 * @netdev: network interface device structure
3726 * @new_mtu: new value for maximum frame size
3727 *
3728 * Returns 0 on success, negative on failure
3729 **/
3730 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3731 {
3732 struct igb_adapter *adapter = netdev_priv(netdev);
3733 struct pci_dev *pdev = adapter->pdev;
3734 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3735 u32 rx_buffer_len, i;
3736
3737 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3738 dev_err(&pdev->dev, "Invalid MTU setting\n");
3739 return -EINVAL;
3740 }
3741
3742 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3743 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3744 return -EINVAL;
3745 }
3746
3747 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3748 msleep(1);
3749
3750 /* igb_down has a dependency on max_frame_size */
3751 adapter->max_frame_size = max_frame;
3752
3753 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3754 * means we reserve 2 more, this pushes us to allocate from the next
3755 * larger slab size.
3756 * i.e. RXBUFFER_2048 --> size-4096 slab
3757 */
3758
3759 if (max_frame <= IGB_RXBUFFER_1024)
3760 rx_buffer_len = IGB_RXBUFFER_1024;
3761 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3762 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3763 else
3764 rx_buffer_len = IGB_RXBUFFER_128;
3765
3766 if (netif_running(netdev))
3767 igb_down(adapter);
3768
3769 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3770 netdev->mtu, new_mtu);
3771 netdev->mtu = new_mtu;
3772
3773 for (i = 0; i < adapter->num_rx_queues; i++)
3774 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3775
3776 if (netif_running(netdev))
3777 igb_up(adapter);
3778 else
3779 igb_reset(adapter);
3780
3781 clear_bit(__IGB_RESETTING, &adapter->state);
3782
3783 return 0;
3784 }
3785
3786 /**
3787 * igb_update_stats - Update the board statistics counters
3788 * @adapter: board private structure
3789 **/
3790
3791 void igb_update_stats(struct igb_adapter *adapter)
3792 {
3793 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
3794 struct e1000_hw *hw = &adapter->hw;
3795 struct pci_dev *pdev = adapter->pdev;
3796 u32 rnbc;
3797 u16 phy_tmp;
3798 int i;
3799 u64 bytes, packets;
3800
3801 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3802
3803 /*
3804 * Prevent stats update while adapter is being reset, or if the pci
3805 * connection is down.
3806 */
3807 if (adapter->link_speed == 0)
3808 return;
3809 if (pci_channel_offline(pdev))
3810 return;
3811
3812 bytes = 0;
3813 packets = 0;
3814 for (i = 0; i < adapter->num_rx_queues; i++) {
3815 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3816 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3817 net_stats->rx_fifo_errors += rqdpc_tmp;
3818 bytes += adapter->rx_ring[i].rx_stats.bytes;
3819 packets += adapter->rx_ring[i].rx_stats.packets;
3820 }
3821
3822 net_stats->rx_bytes = bytes;
3823 net_stats->rx_packets = packets;
3824
3825 bytes = 0;
3826 packets = 0;
3827 for (i = 0; i < adapter->num_tx_queues; i++) {
3828 bytes += adapter->tx_ring[i].tx_stats.bytes;
3829 packets += adapter->tx_ring[i].tx_stats.packets;
3830 }
3831 net_stats->tx_bytes = bytes;
3832 net_stats->tx_packets = packets;
3833
3834 /* read stats registers */
3835 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3836 adapter->stats.gprc += rd32(E1000_GPRC);
3837 adapter->stats.gorc += rd32(E1000_GORCL);
3838 rd32(E1000_GORCH); /* clear GORCL */
3839 adapter->stats.bprc += rd32(E1000_BPRC);
3840 adapter->stats.mprc += rd32(E1000_MPRC);
3841 adapter->stats.roc += rd32(E1000_ROC);
3842
3843 adapter->stats.prc64 += rd32(E1000_PRC64);
3844 adapter->stats.prc127 += rd32(E1000_PRC127);
3845 adapter->stats.prc255 += rd32(E1000_PRC255);
3846 adapter->stats.prc511 += rd32(E1000_PRC511);
3847 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3848 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3849 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3850 adapter->stats.sec += rd32(E1000_SEC);
3851
3852 adapter->stats.mpc += rd32(E1000_MPC);
3853 adapter->stats.scc += rd32(E1000_SCC);
3854 adapter->stats.ecol += rd32(E1000_ECOL);
3855 adapter->stats.mcc += rd32(E1000_MCC);
3856 adapter->stats.latecol += rd32(E1000_LATECOL);
3857 adapter->stats.dc += rd32(E1000_DC);
3858 adapter->stats.rlec += rd32(E1000_RLEC);
3859 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3860 adapter->stats.xontxc += rd32(E1000_XONTXC);
3861 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3862 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3863 adapter->stats.fcruc += rd32(E1000_FCRUC);
3864 adapter->stats.gptc += rd32(E1000_GPTC);
3865 adapter->stats.gotc += rd32(E1000_GOTCL);
3866 rd32(E1000_GOTCH); /* clear GOTCL */
3867 rnbc = rd32(E1000_RNBC);
3868 adapter->stats.rnbc += rnbc;
3869 net_stats->rx_fifo_errors += rnbc;
3870 adapter->stats.ruc += rd32(E1000_RUC);
3871 adapter->stats.rfc += rd32(E1000_RFC);
3872 adapter->stats.rjc += rd32(E1000_RJC);
3873 adapter->stats.tor += rd32(E1000_TORH);
3874 adapter->stats.tot += rd32(E1000_TOTH);
3875 adapter->stats.tpr += rd32(E1000_TPR);
3876
3877 adapter->stats.ptc64 += rd32(E1000_PTC64);
3878 adapter->stats.ptc127 += rd32(E1000_PTC127);
3879 adapter->stats.ptc255 += rd32(E1000_PTC255);
3880 adapter->stats.ptc511 += rd32(E1000_PTC511);
3881 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3882 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3883
3884 adapter->stats.mptc += rd32(E1000_MPTC);
3885 adapter->stats.bptc += rd32(E1000_BPTC);
3886
3887 /* used for adaptive IFS */
3888 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3889 adapter->stats.tpt += hw->mac.tx_packet_delta;
3890 hw->mac.collision_delta = rd32(E1000_COLC);
3891 adapter->stats.colc += hw->mac.collision_delta;
3892
3893 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3894 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3895 adapter->stats.tncrs += rd32(E1000_TNCRS);
3896 adapter->stats.tsctc += rd32(E1000_TSCTC);
3897 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3898
3899 adapter->stats.iac += rd32(E1000_IAC);
3900 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3901 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3902 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3903 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3904 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3905 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3906 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3907 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3908
3909 /* Fill out the OS statistics structure */
3910 net_stats->multicast = adapter->stats.mprc;
3911 net_stats->collisions = adapter->stats.colc;
3912
3913 /* Rx Errors */
3914
3915 /* RLEC on some newer hardware can be incorrect so build
3916 * our own version based on RUC and ROC */
3917 net_stats->rx_errors = adapter->stats.rxerrc +
3918 adapter->stats.crcerrs + adapter->stats.algnerrc +
3919 adapter->stats.ruc + adapter->stats.roc +
3920 adapter->stats.cexterr;
3921 net_stats->rx_length_errors = adapter->stats.ruc +
3922 adapter->stats.roc;
3923 net_stats->rx_crc_errors = adapter->stats.crcerrs;
3924 net_stats->rx_frame_errors = adapter->stats.algnerrc;
3925 net_stats->rx_missed_errors = adapter->stats.mpc;
3926
3927 /* Tx Errors */
3928 net_stats->tx_errors = adapter->stats.ecol +
3929 adapter->stats.latecol;
3930 net_stats->tx_aborted_errors = adapter->stats.ecol;
3931 net_stats->tx_window_errors = adapter->stats.latecol;
3932 net_stats->tx_carrier_errors = adapter->stats.tncrs;
3933
3934 /* Tx Dropped needs to be maintained elsewhere */
3935
3936 /* Phy Stats */
3937 if (hw->phy.media_type == e1000_media_type_copper) {
3938 if ((adapter->link_speed == SPEED_1000) &&
3939 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3940 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3941 adapter->phy_stats.idle_errors += phy_tmp;
3942 }
3943 }
3944
3945 /* Management Stats */
3946 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3947 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3948 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3949 }
3950
3951 static irqreturn_t igb_msix_other(int irq, void *data)
3952 {
3953 struct igb_adapter *adapter = data;
3954 struct e1000_hw *hw = &adapter->hw;
3955 u32 icr = rd32(E1000_ICR);
3956 /* reading ICR causes bit 31 of EICR to be cleared */
3957
3958 if (icr & E1000_ICR_DOUTSYNC) {
3959 /* HW is reporting DMA is out of sync */
3960 adapter->stats.doosync++;
3961 }
3962
3963 /* Check for a mailbox event */
3964 if (icr & E1000_ICR_VMMB)
3965 igb_msg_task(adapter);
3966
3967 if (icr & E1000_ICR_LSC) {
3968 hw->mac.get_link_status = 1;
3969 /* guard against interrupt when we're going down */
3970 if (!test_bit(__IGB_DOWN, &adapter->state))
3971 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3972 }
3973
3974 if (adapter->vfs_allocated_count)
3975 wr32(E1000_IMS, E1000_IMS_LSC |
3976 E1000_IMS_VMMB |
3977 E1000_IMS_DOUTSYNC);
3978 else
3979 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3980 wr32(E1000_EIMS, adapter->eims_other);
3981
3982 return IRQ_HANDLED;
3983 }
3984
3985 static void igb_write_itr(struct igb_q_vector *q_vector)
3986 {
3987 u32 itr_val = q_vector->itr_val & 0x7FFC;
3988
3989 if (!q_vector->set_itr)
3990 return;
3991
3992 if (!itr_val)
3993 itr_val = 0x4;
3994
3995 if (q_vector->itr_shift)
3996 itr_val |= itr_val << q_vector->itr_shift;
3997 else
3998 itr_val |= 0x8000000;
3999
4000 writel(itr_val, q_vector->itr_register);
4001 q_vector->set_itr = 0;
4002 }
4003
4004 static irqreturn_t igb_msix_ring(int irq, void *data)
4005 {
4006 struct igb_q_vector *q_vector = data;
4007
4008 /* Write the ITR value calculated from the previous interrupt. */
4009 igb_write_itr(q_vector);
4010
4011 napi_schedule(&q_vector->napi);
4012
4013 return IRQ_HANDLED;
4014 }
4015
4016 #ifdef CONFIG_IGB_DCA
4017 static void igb_update_dca(struct igb_q_vector *q_vector)
4018 {
4019 struct igb_adapter *adapter = q_vector->adapter;
4020 struct e1000_hw *hw = &adapter->hw;
4021 int cpu = get_cpu();
4022
4023 if (q_vector->cpu == cpu)
4024 goto out_no_update;
4025
4026 if (q_vector->tx_ring) {
4027 int q = q_vector->tx_ring->reg_idx;
4028 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4029 if (hw->mac.type == e1000_82575) {
4030 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4031 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4032 } else {
4033 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4034 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4035 E1000_DCA_TXCTRL_CPUID_SHIFT;
4036 }
4037 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4038 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4039 }
4040 if (q_vector->rx_ring) {
4041 int q = q_vector->rx_ring->reg_idx;
4042 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4043 if (hw->mac.type == e1000_82575) {
4044 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4045 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4046 } else {
4047 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4048 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4049 E1000_DCA_RXCTRL_CPUID_SHIFT;
4050 }
4051 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4052 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4053 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4054 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4055 }
4056 q_vector->cpu = cpu;
4057 out_no_update:
4058 put_cpu();
4059 }
4060
4061 static void igb_setup_dca(struct igb_adapter *adapter)
4062 {
4063 struct e1000_hw *hw = &adapter->hw;
4064 int i;
4065
4066 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4067 return;
4068
4069 /* Always use CB2 mode, difference is masked in the CB driver. */
4070 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4071
4072 for (i = 0; i < adapter->num_q_vectors; i++) {
4073 struct igb_q_vector *q_vector = adapter->q_vector[i];
4074 q_vector->cpu = -1;
4075 igb_update_dca(q_vector);
4076 }
4077 }
4078
4079 static int __igb_notify_dca(struct device *dev, void *data)
4080 {
4081 struct net_device *netdev = dev_get_drvdata(dev);
4082 struct igb_adapter *adapter = netdev_priv(netdev);
4083 struct pci_dev *pdev = adapter->pdev;
4084 struct e1000_hw *hw = &adapter->hw;
4085 unsigned long event = *(unsigned long *)data;
4086
4087 switch (event) {
4088 case DCA_PROVIDER_ADD:
4089 /* if already enabled, don't do it again */
4090 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4091 break;
4092 if (dca_add_requester(dev) == 0) {
4093 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4094 dev_info(&pdev->dev, "DCA enabled\n");
4095 igb_setup_dca(adapter);
4096 break;
4097 }
4098 /* Fall Through since DCA is disabled. */
4099 case DCA_PROVIDER_REMOVE:
4100 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4101 /* without this a class_device is left
4102 * hanging around in the sysfs model */
4103 dca_remove_requester(dev);
4104 dev_info(&pdev->dev, "DCA disabled\n");
4105 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4106 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4107 }
4108 break;
4109 }
4110
4111 return 0;
4112 }
4113
4114 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4115 void *p)
4116 {
4117 int ret_val;
4118
4119 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4120 __igb_notify_dca);
4121
4122 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4123 }
4124 #endif /* CONFIG_IGB_DCA */
4125
4126 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4127 {
4128 struct e1000_hw *hw = &adapter->hw;
4129 u32 ping;
4130 int i;
4131
4132 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4133 ping = E1000_PF_CONTROL_MSG;
4134 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4135 ping |= E1000_VT_MSGTYPE_CTS;
4136 igb_write_mbx(hw, &ping, 1, i);
4137 }
4138 }
4139
4140 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4141 {
4142 struct e1000_hw *hw = &adapter->hw;
4143 u32 vmolr = rd32(E1000_VMOLR(vf));
4144 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4145
4146 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4147 IGB_VF_FLAG_MULTI_PROMISC);
4148 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4149
4150 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4151 vmolr |= E1000_VMOLR_MPME;
4152 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4153 } else {
4154 /*
4155 * if we have hashes and we are clearing a multicast promisc
4156 * flag we need to write the hashes to the MTA as this step
4157 * was previously skipped
4158 */
4159 if (vf_data->num_vf_mc_hashes > 30) {
4160 vmolr |= E1000_VMOLR_MPME;
4161 } else if (vf_data->num_vf_mc_hashes) {
4162 int j;
4163 vmolr |= E1000_VMOLR_ROMPE;
4164 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4165 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4166 }
4167 }
4168
4169 wr32(E1000_VMOLR(vf), vmolr);
4170
4171 /* there are flags left unprocessed, likely not supported */
4172 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4173 return -EINVAL;
4174
4175 return 0;
4176
4177 }
4178
4179 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4180 u32 *msgbuf, u32 vf)
4181 {
4182 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4183 u16 *hash_list = (u16 *)&msgbuf[1];
4184 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4185 int i;
4186
4187 /* salt away the number of multicast addresses assigned
4188 * to this VF for later use to restore when the PF multi cast
4189 * list changes
4190 */
4191 vf_data->num_vf_mc_hashes = n;
4192
4193 /* only up to 30 hash values supported */
4194 if (n > 30)
4195 n = 30;
4196
4197 /* store the hashes for later use */
4198 for (i = 0; i < n; i++)
4199 vf_data->vf_mc_hashes[i] = hash_list[i];
4200
4201 /* Flush and reset the mta with the new values */
4202 igb_set_rx_mode(adapter->netdev);
4203
4204 return 0;
4205 }
4206
4207 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4208 {
4209 struct e1000_hw *hw = &adapter->hw;
4210 struct vf_data_storage *vf_data;
4211 int i, j;
4212
4213 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4214 u32 vmolr = rd32(E1000_VMOLR(i));
4215 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4216
4217 vf_data = &adapter->vf_data[i];
4218
4219 if ((vf_data->num_vf_mc_hashes > 30) ||
4220 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4221 vmolr |= E1000_VMOLR_MPME;
4222 } else if (vf_data->num_vf_mc_hashes) {
4223 vmolr |= E1000_VMOLR_ROMPE;
4224 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4225 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4226 }
4227 wr32(E1000_VMOLR(i), vmolr);
4228 }
4229 }
4230
4231 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4232 {
4233 struct e1000_hw *hw = &adapter->hw;
4234 u32 pool_mask, reg, vid;
4235 int i;
4236
4237 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4238
4239 /* Find the vlan filter for this id */
4240 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4241 reg = rd32(E1000_VLVF(i));
4242
4243 /* remove the vf from the pool */
4244 reg &= ~pool_mask;
4245
4246 /* if pool is empty then remove entry from vfta */
4247 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4248 (reg & E1000_VLVF_VLANID_ENABLE)) {
4249 reg = 0;
4250 vid = reg & E1000_VLVF_VLANID_MASK;
4251 igb_vfta_set(hw, vid, false);
4252 }
4253
4254 wr32(E1000_VLVF(i), reg);
4255 }
4256
4257 adapter->vf_data[vf].vlans_enabled = 0;
4258 }
4259
4260 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4261 {
4262 struct e1000_hw *hw = &adapter->hw;
4263 u32 reg, i;
4264
4265 /* The vlvf table only exists on 82576 hardware and newer */
4266 if (hw->mac.type < e1000_82576)
4267 return -1;
4268
4269 /* we only need to do this if VMDq is enabled */
4270 if (!adapter->vfs_allocated_count)
4271 return -1;
4272
4273 /* Find the vlan filter for this id */
4274 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4275 reg = rd32(E1000_VLVF(i));
4276 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4277 vid == (reg & E1000_VLVF_VLANID_MASK))
4278 break;
4279 }
4280
4281 if (add) {
4282 if (i == E1000_VLVF_ARRAY_SIZE) {
4283 /* Did not find a matching VLAN ID entry that was
4284 * enabled. Search for a free filter entry, i.e.
4285 * one without the enable bit set
4286 */
4287 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4288 reg = rd32(E1000_VLVF(i));
4289 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4290 break;
4291 }
4292 }
4293 if (i < E1000_VLVF_ARRAY_SIZE) {
4294 /* Found an enabled/available entry */
4295 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4296
4297 /* if !enabled we need to set this up in vfta */
4298 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4299 /* add VID to filter table */
4300 igb_vfta_set(hw, vid, true);
4301 reg |= E1000_VLVF_VLANID_ENABLE;
4302 }
4303 reg &= ~E1000_VLVF_VLANID_MASK;
4304 reg |= vid;
4305 wr32(E1000_VLVF(i), reg);
4306
4307 /* do not modify RLPML for PF devices */
4308 if (vf >= adapter->vfs_allocated_count)
4309 return 0;
4310
4311 if (!adapter->vf_data[vf].vlans_enabled) {
4312 u32 size;
4313 reg = rd32(E1000_VMOLR(vf));
4314 size = reg & E1000_VMOLR_RLPML_MASK;
4315 size += 4;
4316 reg &= ~E1000_VMOLR_RLPML_MASK;
4317 reg |= size;
4318 wr32(E1000_VMOLR(vf), reg);
4319 }
4320
4321 adapter->vf_data[vf].vlans_enabled++;
4322 return 0;
4323 }
4324 } else {
4325 if (i < E1000_VLVF_ARRAY_SIZE) {
4326 /* remove vf from the pool */
4327 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4328 /* if pool is empty then remove entry from vfta */
4329 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4330 reg = 0;
4331 igb_vfta_set(hw, vid, false);
4332 }
4333 wr32(E1000_VLVF(i), reg);
4334
4335 /* do not modify RLPML for PF devices */
4336 if (vf >= adapter->vfs_allocated_count)
4337 return 0;
4338
4339 adapter->vf_data[vf].vlans_enabled--;
4340 if (!adapter->vf_data[vf].vlans_enabled) {
4341 u32 size;
4342 reg = rd32(E1000_VMOLR(vf));
4343 size = reg & E1000_VMOLR_RLPML_MASK;
4344 size -= 4;
4345 reg &= ~E1000_VMOLR_RLPML_MASK;
4346 reg |= size;
4347 wr32(E1000_VMOLR(vf), reg);
4348 }
4349 return 0;
4350 }
4351 }
4352 return -1;
4353 }
4354
4355 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4356 {
4357 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4358 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4359
4360 return igb_vlvf_set(adapter, vid, add, vf);
4361 }
4362
4363 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4364 {
4365 /* clear all flags */
4366 adapter->vf_data[vf].flags = 0;
4367 adapter->vf_data[vf].last_nack = jiffies;
4368
4369 /* reset offloads to defaults */
4370 igb_set_vmolr(adapter, vf);
4371
4372 /* reset vlans for device */
4373 igb_clear_vf_vfta(adapter, vf);
4374
4375 /* reset multicast table array for vf */
4376 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4377
4378 /* Flush and reset the mta with the new values */
4379 igb_set_rx_mode(adapter->netdev);
4380 }
4381
4382 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4383 {
4384 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4385
4386 /* generate a new mac address as we were hotplug removed/added */
4387 random_ether_addr(vf_mac);
4388
4389 /* process remaining reset events */
4390 igb_vf_reset(adapter, vf);
4391 }
4392
4393 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4394 {
4395 struct e1000_hw *hw = &adapter->hw;
4396 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4397 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4398 u32 reg, msgbuf[3];
4399 u8 *addr = (u8 *)(&msgbuf[1]);
4400
4401 /* process all the same items cleared in a function level reset */
4402 igb_vf_reset(adapter, vf);
4403
4404 /* set vf mac address */
4405 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4406
4407 /* enable transmit and receive for vf */
4408 reg = rd32(E1000_VFTE);
4409 wr32(E1000_VFTE, reg | (1 << vf));
4410 reg = rd32(E1000_VFRE);
4411 wr32(E1000_VFRE, reg | (1 << vf));
4412
4413 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4414
4415 /* reply to reset with ack and vf mac address */
4416 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4417 memcpy(addr, vf_mac, 6);
4418 igb_write_mbx(hw, msgbuf, 3, vf);
4419 }
4420
4421 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4422 {
4423 unsigned char *addr = (char *)&msg[1];
4424 int err = -1;
4425
4426 if (is_valid_ether_addr(addr))
4427 err = igb_set_vf_mac(adapter, vf, addr);
4428
4429 return err;
4430 }
4431
4432 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4433 {
4434 struct e1000_hw *hw = &adapter->hw;
4435 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4436 u32 msg = E1000_VT_MSGTYPE_NACK;
4437
4438 /* if device isn't clear to send it shouldn't be reading either */
4439 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4440 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4441 igb_write_mbx(hw, &msg, 1, vf);
4442 vf_data->last_nack = jiffies;
4443 }
4444 }
4445
4446 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4447 {
4448 struct pci_dev *pdev = adapter->pdev;
4449 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4450 struct e1000_hw *hw = &adapter->hw;
4451 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4452 s32 retval;
4453
4454 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4455
4456 if (retval)
4457 dev_err(&pdev->dev, "Error receiving message from VF\n");
4458
4459 /* this is a message we already processed, do nothing */
4460 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4461 return;
4462
4463 /*
4464 * until the vf completes a reset it should not be
4465 * allowed to start any configuration.
4466 */
4467
4468 if (msgbuf[0] == E1000_VF_RESET) {
4469 igb_vf_reset_msg(adapter, vf);
4470 return;
4471 }
4472
4473 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4474 msgbuf[0] = E1000_VT_MSGTYPE_NACK;
4475 if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4476 igb_write_mbx(hw, msgbuf, 1, vf);
4477 vf_data->last_nack = jiffies;
4478 }
4479 return;
4480 }
4481
4482 switch ((msgbuf[0] & 0xFFFF)) {
4483 case E1000_VF_SET_MAC_ADDR:
4484 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4485 break;
4486 case E1000_VF_SET_PROMISC:
4487 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4488 break;
4489 case E1000_VF_SET_MULTICAST:
4490 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4491 break;
4492 case E1000_VF_SET_LPE:
4493 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4494 break;
4495 case E1000_VF_SET_VLAN:
4496 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4497 break;
4498 default:
4499 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4500 retval = -1;
4501 break;
4502 }
4503
4504 /* notify the VF of the results of what it sent us */
4505 if (retval)
4506 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4507 else
4508 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4509
4510 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4511
4512 igb_write_mbx(hw, msgbuf, 1, vf);
4513 }
4514
4515 static void igb_msg_task(struct igb_adapter *adapter)
4516 {
4517 struct e1000_hw *hw = &adapter->hw;
4518 u32 vf;
4519
4520 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4521 /* process any reset requests */
4522 if (!igb_check_for_rst(hw, vf))
4523 igb_vf_reset_event(adapter, vf);
4524
4525 /* process any messages pending */
4526 if (!igb_check_for_msg(hw, vf))
4527 igb_rcv_msg_from_vf(adapter, vf);
4528
4529 /* process any acks */
4530 if (!igb_check_for_ack(hw, vf))
4531 igb_rcv_ack_from_vf(adapter, vf);
4532 }
4533 }
4534
4535 /**
4536 * igb_set_uta - Set unicast filter table address
4537 * @adapter: board private structure
4538 *
4539 * The unicast table address is a register array of 32-bit registers.
4540 * The table is meant to be used in a way similar to how the MTA is used
4541 * however due to certain limitations in the hardware it is necessary to
4542 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4543 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4544 **/
4545 static void igb_set_uta(struct igb_adapter *adapter)
4546 {
4547 struct e1000_hw *hw = &adapter->hw;
4548 int i;
4549
4550 /* The UTA table only exists on 82576 hardware and newer */
4551 if (hw->mac.type < e1000_82576)
4552 return;
4553
4554 /* we only need to do this if VMDq is enabled */
4555 if (!adapter->vfs_allocated_count)
4556 return;
4557
4558 for (i = 0; i < hw->mac.uta_reg_count; i++)
4559 array_wr32(E1000_UTA, i, ~0);
4560 }
4561
4562 /**
4563 * igb_intr_msi - Interrupt Handler
4564 * @irq: interrupt number
4565 * @data: pointer to a network interface device structure
4566 **/
4567 static irqreturn_t igb_intr_msi(int irq, void *data)
4568 {
4569 struct igb_adapter *adapter = data;
4570 struct igb_q_vector *q_vector = adapter->q_vector[0];
4571 struct e1000_hw *hw = &adapter->hw;
4572 /* read ICR disables interrupts using IAM */
4573 u32 icr = rd32(E1000_ICR);
4574
4575 igb_write_itr(q_vector);
4576
4577 if (icr & E1000_ICR_DOUTSYNC) {
4578 /* HW is reporting DMA is out of sync */
4579 adapter->stats.doosync++;
4580 }
4581
4582 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4583 hw->mac.get_link_status = 1;
4584 if (!test_bit(__IGB_DOWN, &adapter->state))
4585 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4586 }
4587
4588 napi_schedule(&q_vector->napi);
4589
4590 return IRQ_HANDLED;
4591 }
4592
4593 /**
4594 * igb_intr - Legacy Interrupt Handler
4595 * @irq: interrupt number
4596 * @data: pointer to a network interface device structure
4597 **/
4598 static irqreturn_t igb_intr(int irq, void *data)
4599 {
4600 struct igb_adapter *adapter = data;
4601 struct igb_q_vector *q_vector = adapter->q_vector[0];
4602 struct e1000_hw *hw = &adapter->hw;
4603 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4604 * need for the IMC write */
4605 u32 icr = rd32(E1000_ICR);
4606 if (!icr)
4607 return IRQ_NONE; /* Not our interrupt */
4608
4609 igb_write_itr(q_vector);
4610
4611 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4612 * not set, then the adapter didn't send an interrupt */
4613 if (!(icr & E1000_ICR_INT_ASSERTED))
4614 return IRQ_NONE;
4615
4616 if (icr & E1000_ICR_DOUTSYNC) {
4617 /* HW is reporting DMA is out of sync */
4618 adapter->stats.doosync++;
4619 }
4620
4621 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4622 hw->mac.get_link_status = 1;
4623 /* guard against interrupt when we're going down */
4624 if (!test_bit(__IGB_DOWN, &adapter->state))
4625 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4626 }
4627
4628 napi_schedule(&q_vector->napi);
4629
4630 return IRQ_HANDLED;
4631 }
4632
4633 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4634 {
4635 struct igb_adapter *adapter = q_vector->adapter;
4636 struct e1000_hw *hw = &adapter->hw;
4637
4638 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4639 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4640 if (!adapter->msix_entries)
4641 igb_set_itr(adapter);
4642 else
4643 igb_update_ring_itr(q_vector);
4644 }
4645
4646 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4647 if (adapter->msix_entries)
4648 wr32(E1000_EIMS, q_vector->eims_value);
4649 else
4650 igb_irq_enable(adapter);
4651 }
4652 }
4653
4654 /**
4655 * igb_poll - NAPI Rx polling callback
4656 * @napi: napi polling structure
4657 * @budget: count of how many packets we should handle
4658 **/
4659 static int igb_poll(struct napi_struct *napi, int budget)
4660 {
4661 struct igb_q_vector *q_vector = container_of(napi,
4662 struct igb_q_vector,
4663 napi);
4664 int tx_clean_complete = 1, work_done = 0;
4665
4666 #ifdef CONFIG_IGB_DCA
4667 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4668 igb_update_dca(q_vector);
4669 #endif
4670 if (q_vector->tx_ring)
4671 tx_clean_complete = igb_clean_tx_irq(q_vector);
4672
4673 if (q_vector->rx_ring)
4674 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4675
4676 if (!tx_clean_complete)
4677 work_done = budget;
4678
4679 /* If not enough Rx work done, exit the polling mode */
4680 if (work_done < budget) {
4681 napi_complete(napi);
4682 igb_ring_irq_enable(q_vector);
4683 }
4684
4685 return work_done;
4686 }
4687
4688 /**
4689 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4690 * @adapter: board private structure
4691 * @shhwtstamps: timestamp structure to update
4692 * @regval: unsigned 64bit system time value.
4693 *
4694 * We need to convert the system time value stored in the RX/TXSTMP registers
4695 * into a hwtstamp which can be used by the upper level timestamping functions
4696 */
4697 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4698 struct skb_shared_hwtstamps *shhwtstamps,
4699 u64 regval)
4700 {
4701 u64 ns;
4702
4703 ns = timecounter_cyc2time(&adapter->clock, regval);
4704 timecompare_update(&adapter->compare, ns);
4705 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4706 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4707 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4708 }
4709
4710 /**
4711 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4712 * @q_vector: pointer to q_vector containing needed info
4713 * @skb: packet that was just sent
4714 *
4715 * If we were asked to do hardware stamping and such a time stamp is
4716 * available, then it must have been for this skb here because we only
4717 * allow only one such packet into the queue.
4718 */
4719 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4720 {
4721 struct igb_adapter *adapter = q_vector->adapter;
4722 union skb_shared_tx *shtx = skb_tx(skb);
4723 struct e1000_hw *hw = &adapter->hw;
4724 struct skb_shared_hwtstamps shhwtstamps;
4725 u64 regval;
4726
4727 /* if skb does not support hw timestamp or TX stamp not valid exit */
4728 if (likely(!shtx->hardware) ||
4729 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4730 return;
4731
4732 regval = rd32(E1000_TXSTMPL);
4733 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4734
4735 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4736 skb_tstamp_tx(skb, &shhwtstamps);
4737 }
4738
4739 /**
4740 * igb_clean_tx_irq - Reclaim resources after transmit completes
4741 * @q_vector: pointer to q_vector containing needed info
4742 * returns true if ring is completely cleaned
4743 **/
4744 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4745 {
4746 struct igb_adapter *adapter = q_vector->adapter;
4747 struct igb_ring *tx_ring = q_vector->tx_ring;
4748 struct net_device *netdev = tx_ring->netdev;
4749 struct e1000_hw *hw = &adapter->hw;
4750 struct igb_buffer *buffer_info;
4751 struct sk_buff *skb;
4752 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4753 unsigned int total_bytes = 0, total_packets = 0;
4754 unsigned int i, eop, count = 0;
4755 bool cleaned = false;
4756
4757 i = tx_ring->next_to_clean;
4758 eop = tx_ring->buffer_info[i].next_to_watch;
4759 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4760
4761 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4762 (count < tx_ring->count)) {
4763 for (cleaned = false; !cleaned; count++) {
4764 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4765 buffer_info = &tx_ring->buffer_info[i];
4766 cleaned = (i == eop);
4767 skb = buffer_info->skb;
4768
4769 if (skb) {
4770 unsigned int segs, bytecount;
4771 /* gso_segs is currently only valid for tcp */
4772 segs = skb_shinfo(skb)->gso_segs ?: 1;
4773 /* multiply data chunks by size of headers */
4774 bytecount = ((segs - 1) * skb_headlen(skb)) +
4775 skb->len;
4776 total_packets += segs;
4777 total_bytes += bytecount;
4778
4779 igb_tx_hwtstamp(q_vector, skb);
4780 }
4781
4782 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4783 tx_desc->wb.status = 0;
4784
4785 i++;
4786 if (i == tx_ring->count)
4787 i = 0;
4788 }
4789 eop = tx_ring->buffer_info[i].next_to_watch;
4790 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4791 }
4792
4793 tx_ring->next_to_clean = i;
4794
4795 if (unlikely(count &&
4796 netif_carrier_ok(netdev) &&
4797 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4798 /* Make sure that anybody stopping the queue after this
4799 * sees the new next_to_clean.
4800 */
4801 smp_mb();
4802 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4803 !(test_bit(__IGB_DOWN, &adapter->state))) {
4804 netif_wake_subqueue(netdev, tx_ring->queue_index);
4805 tx_ring->tx_stats.restart_queue++;
4806 }
4807 }
4808
4809 if (tx_ring->detect_tx_hung) {
4810 /* Detect a transmit hang in hardware, this serializes the
4811 * check with the clearing of time_stamp and movement of i */
4812 tx_ring->detect_tx_hung = false;
4813 if (tx_ring->buffer_info[i].time_stamp &&
4814 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4815 (adapter->tx_timeout_factor * HZ))
4816 && !(rd32(E1000_STATUS) &
4817 E1000_STATUS_TXOFF)) {
4818
4819 /* detected Tx unit hang */
4820 dev_err(&tx_ring->pdev->dev,
4821 "Detected Tx Unit Hang\n"
4822 " Tx Queue <%d>\n"
4823 " TDH <%x>\n"
4824 " TDT <%x>\n"
4825 " next_to_use <%x>\n"
4826 " next_to_clean <%x>\n"
4827 "buffer_info[next_to_clean]\n"
4828 " time_stamp <%lx>\n"
4829 " next_to_watch <%x>\n"
4830 " jiffies <%lx>\n"
4831 " desc.status <%x>\n",
4832 tx_ring->queue_index,
4833 readl(tx_ring->head),
4834 readl(tx_ring->tail),
4835 tx_ring->next_to_use,
4836 tx_ring->next_to_clean,
4837 tx_ring->buffer_info[eop].time_stamp,
4838 eop,
4839 jiffies,
4840 eop_desc->wb.status);
4841 netif_stop_subqueue(netdev, tx_ring->queue_index);
4842 }
4843 }
4844 tx_ring->total_bytes += total_bytes;
4845 tx_ring->total_packets += total_packets;
4846 tx_ring->tx_stats.bytes += total_bytes;
4847 tx_ring->tx_stats.packets += total_packets;
4848 return (count < tx_ring->count);
4849 }
4850
4851 /**
4852 * igb_receive_skb - helper function to handle rx indications
4853 * @q_vector: structure containing interrupt and ring information
4854 * @skb: packet to send up
4855 * @vlan_tag: vlan tag for packet
4856 **/
4857 static void igb_receive_skb(struct igb_q_vector *q_vector,
4858 struct sk_buff *skb,
4859 u16 vlan_tag)
4860 {
4861 struct igb_adapter *adapter = q_vector->adapter;
4862
4863 if (vlan_tag)
4864 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
4865 vlan_tag, skb);
4866 else
4867 napi_gro_receive(&q_vector->napi, skb);
4868 }
4869
4870 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
4871 u32 status_err, struct sk_buff *skb)
4872 {
4873 skb->ip_summed = CHECKSUM_NONE;
4874
4875 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4876 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
4877 (status_err & E1000_RXD_STAT_IXSM))
4878 return;
4879
4880 /* TCP/UDP checksum error bit is set */
4881 if (status_err &
4882 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4883 /*
4884 * work around errata with sctp packets where the TCPE aka
4885 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4886 * packets, (aka let the stack check the crc32c)
4887 */
4888 if ((skb->len == 60) &&
4889 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
4890 ring->rx_stats.csum_err++;
4891
4892 /* let the stack verify checksum errors */
4893 return;
4894 }
4895 /* It must be a TCP or UDP packet with a valid checksum */
4896 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4897 skb->ip_summed = CHECKSUM_UNNECESSARY;
4898
4899 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
4900 }
4901
4902 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
4903 struct sk_buff *skb)
4904 {
4905 struct igb_adapter *adapter = q_vector->adapter;
4906 struct e1000_hw *hw = &adapter->hw;
4907 u64 regval;
4908
4909 /*
4910 * If this bit is set, then the RX registers contain the time stamp. No
4911 * other packet will be time stamped until we read these registers, so
4912 * read the registers to make them available again. Because only one
4913 * packet can be time stamped at a time, we know that the register
4914 * values must belong to this one here and therefore we don't need to
4915 * compare any of the additional attributes stored for it.
4916 *
4917 * If nothing went wrong, then it should have a skb_shared_tx that we
4918 * can turn into a skb_shared_hwtstamps.
4919 */
4920 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
4921 return;
4922 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
4923 return;
4924
4925 regval = rd32(E1000_RXSTMPL);
4926 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4927
4928 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
4929 }
4930 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
4931 union e1000_adv_rx_desc *rx_desc)
4932 {
4933 /* HW will not DMA in data larger than the given buffer, even if it
4934 * parses the (NFS, of course) header to be larger. In that case, it
4935 * fills the header buffer and spills the rest into the page.
4936 */
4937 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4938 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4939 if (hlen > rx_ring->rx_buffer_len)
4940 hlen = rx_ring->rx_buffer_len;
4941 return hlen;
4942 }
4943
4944 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
4945 int *work_done, int budget)
4946 {
4947 struct igb_ring *rx_ring = q_vector->rx_ring;
4948 struct net_device *netdev = rx_ring->netdev;
4949 struct pci_dev *pdev = rx_ring->pdev;
4950 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4951 struct igb_buffer *buffer_info , *next_buffer;
4952 struct sk_buff *skb;
4953 bool cleaned = false;
4954 int cleaned_count = 0;
4955 int current_node = numa_node_id();
4956 unsigned int total_bytes = 0, total_packets = 0;
4957 unsigned int i;
4958 u32 staterr;
4959 u16 length;
4960 u16 vlan_tag;
4961
4962 i = rx_ring->next_to_clean;
4963 buffer_info = &rx_ring->buffer_info[i];
4964 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4965 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4966
4967 while (staterr & E1000_RXD_STAT_DD) {
4968 if (*work_done >= budget)
4969 break;
4970 (*work_done)++;
4971
4972 skb = buffer_info->skb;
4973 prefetch(skb->data - NET_IP_ALIGN);
4974 buffer_info->skb = NULL;
4975
4976 i++;
4977 if (i == rx_ring->count)
4978 i = 0;
4979
4980 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4981 prefetch(next_rxd);
4982 next_buffer = &rx_ring->buffer_info[i];
4983
4984 length = le16_to_cpu(rx_desc->wb.upper.length);
4985 cleaned = true;
4986 cleaned_count++;
4987
4988 if (buffer_info->dma) {
4989 pci_unmap_single(pdev, buffer_info->dma,
4990 rx_ring->rx_buffer_len,
4991 PCI_DMA_FROMDEVICE);
4992 buffer_info->dma = 0;
4993 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
4994 skb_put(skb, length);
4995 goto send_up;
4996 }
4997 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
4998 }
4999
5000 if (length) {
5001 pci_unmap_page(pdev, buffer_info->page_dma,
5002 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
5003 buffer_info->page_dma = 0;
5004
5005 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
5006 buffer_info->page,
5007 buffer_info->page_offset,
5008 length);
5009
5010 if ((page_count(buffer_info->page) != 1) ||
5011 (page_to_nid(buffer_info->page) != current_node))
5012 buffer_info->page = NULL;
5013 else
5014 get_page(buffer_info->page);
5015
5016 skb->len += length;
5017 skb->data_len += length;
5018 skb->truesize += length;
5019 }
5020
5021 if (!(staterr & E1000_RXD_STAT_EOP)) {
5022 buffer_info->skb = next_buffer->skb;
5023 buffer_info->dma = next_buffer->dma;
5024 next_buffer->skb = skb;
5025 next_buffer->dma = 0;
5026 goto next_desc;
5027 }
5028 send_up:
5029 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5030 dev_kfree_skb_irq(skb);
5031 goto next_desc;
5032 }
5033
5034 igb_rx_hwtstamp(q_vector, staterr, skb);
5035 total_bytes += skb->len;
5036 total_packets++;
5037
5038 igb_rx_checksum_adv(rx_ring, staterr, skb);
5039
5040 skb->protocol = eth_type_trans(skb, netdev);
5041 skb_record_rx_queue(skb, rx_ring->queue_index);
5042
5043 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5044 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5045
5046 igb_receive_skb(q_vector, skb, vlan_tag);
5047
5048 next_desc:
5049 rx_desc->wb.upper.status_error = 0;
5050
5051 /* return some buffers to hardware, one at a time is too slow */
5052 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5053 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5054 cleaned_count = 0;
5055 }
5056
5057 /* use prefetched values */
5058 rx_desc = next_rxd;
5059 buffer_info = next_buffer;
5060 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5061 }
5062
5063 rx_ring->next_to_clean = i;
5064 cleaned_count = igb_desc_unused(rx_ring);
5065
5066 if (cleaned_count)
5067 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5068
5069 rx_ring->total_packets += total_packets;
5070 rx_ring->total_bytes += total_bytes;
5071 rx_ring->rx_stats.packets += total_packets;
5072 rx_ring->rx_stats.bytes += total_bytes;
5073 return cleaned;
5074 }
5075
5076 /**
5077 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5078 * @adapter: address of board private structure
5079 **/
5080 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5081 {
5082 struct net_device *netdev = rx_ring->netdev;
5083 union e1000_adv_rx_desc *rx_desc;
5084 struct igb_buffer *buffer_info;
5085 struct sk_buff *skb;
5086 unsigned int i;
5087 int bufsz;
5088
5089 i = rx_ring->next_to_use;
5090 buffer_info = &rx_ring->buffer_info[i];
5091
5092 bufsz = rx_ring->rx_buffer_len;
5093
5094 while (cleaned_count--) {
5095 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5096
5097 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5098 if (!buffer_info->page) {
5099 buffer_info->page = netdev_alloc_page(netdev);
5100 if (!buffer_info->page) {
5101 rx_ring->rx_stats.alloc_failed++;
5102 goto no_buffers;
5103 }
5104 buffer_info->page_offset = 0;
5105 } else {
5106 buffer_info->page_offset ^= PAGE_SIZE / 2;
5107 }
5108 buffer_info->page_dma =
5109 pci_map_page(rx_ring->pdev, buffer_info->page,
5110 buffer_info->page_offset,
5111 PAGE_SIZE / 2,
5112 PCI_DMA_FROMDEVICE);
5113 if (pci_dma_mapping_error(rx_ring->pdev,
5114 buffer_info->page_dma)) {
5115 buffer_info->page_dma = 0;
5116 rx_ring->rx_stats.alloc_failed++;
5117 goto no_buffers;
5118 }
5119 }
5120
5121 skb = buffer_info->skb;
5122 if (!skb) {
5123 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5124 if (!skb) {
5125 rx_ring->rx_stats.alloc_failed++;
5126 goto no_buffers;
5127 }
5128
5129 buffer_info->skb = skb;
5130 }
5131 if (!buffer_info->dma) {
5132 buffer_info->dma = pci_map_single(rx_ring->pdev,
5133 skb->data,
5134 bufsz,
5135 PCI_DMA_FROMDEVICE);
5136 if (pci_dma_mapping_error(rx_ring->pdev,
5137 buffer_info->dma)) {
5138 buffer_info->dma = 0;
5139 rx_ring->rx_stats.alloc_failed++;
5140 goto no_buffers;
5141 }
5142 }
5143 /* Refresh the desc even if buffer_addrs didn't change because
5144 * each write-back erases this info. */
5145 if (bufsz < IGB_RXBUFFER_1024) {
5146 rx_desc->read.pkt_addr =
5147 cpu_to_le64(buffer_info->page_dma);
5148 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5149 } else {
5150 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5151 rx_desc->read.hdr_addr = 0;
5152 }
5153
5154 i++;
5155 if (i == rx_ring->count)
5156 i = 0;
5157 buffer_info = &rx_ring->buffer_info[i];
5158 }
5159
5160 no_buffers:
5161 if (rx_ring->next_to_use != i) {
5162 rx_ring->next_to_use = i;
5163 if (i == 0)
5164 i = (rx_ring->count - 1);
5165 else
5166 i--;
5167
5168 /* Force memory writes to complete before letting h/w
5169 * know there are new descriptors to fetch. (Only
5170 * applicable for weak-ordered memory model archs,
5171 * such as IA-64). */
5172 wmb();
5173 writel(i, rx_ring->tail);
5174 }
5175 }
5176
5177 /**
5178 * igb_mii_ioctl -
5179 * @netdev:
5180 * @ifreq:
5181 * @cmd:
5182 **/
5183 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5184 {
5185 struct igb_adapter *adapter = netdev_priv(netdev);
5186 struct mii_ioctl_data *data = if_mii(ifr);
5187
5188 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5189 return -EOPNOTSUPP;
5190
5191 switch (cmd) {
5192 case SIOCGMIIPHY:
5193 data->phy_id = adapter->hw.phy.addr;
5194 break;
5195 case SIOCGMIIREG:
5196 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5197 &data->val_out))
5198 return -EIO;
5199 break;
5200 case SIOCSMIIREG:
5201 default:
5202 return -EOPNOTSUPP;
5203 }
5204 return 0;
5205 }
5206
5207 /**
5208 * igb_hwtstamp_ioctl - control hardware time stamping
5209 * @netdev:
5210 * @ifreq:
5211 * @cmd:
5212 *
5213 * Outgoing time stamping can be enabled and disabled. Play nice and
5214 * disable it when requested, although it shouldn't case any overhead
5215 * when no packet needs it. At most one packet in the queue may be
5216 * marked for time stamping, otherwise it would be impossible to tell
5217 * for sure to which packet the hardware time stamp belongs.
5218 *
5219 * Incoming time stamping has to be configured via the hardware
5220 * filters. Not all combinations are supported, in particular event
5221 * type has to be specified. Matching the kind of event packet is
5222 * not supported, with the exception of "all V2 events regardless of
5223 * level 2 or 4".
5224 *
5225 **/
5226 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5227 struct ifreq *ifr, int cmd)
5228 {
5229 struct igb_adapter *adapter = netdev_priv(netdev);
5230 struct e1000_hw *hw = &adapter->hw;
5231 struct hwtstamp_config config;
5232 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5233 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5234 u32 tsync_rx_cfg = 0;
5235 bool is_l4 = false;
5236 bool is_l2 = false;
5237 u32 regval;
5238
5239 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5240 return -EFAULT;
5241
5242 /* reserved for future extensions */
5243 if (config.flags)
5244 return -EINVAL;
5245
5246 switch (config.tx_type) {
5247 case HWTSTAMP_TX_OFF:
5248 tsync_tx_ctl = 0;
5249 case HWTSTAMP_TX_ON:
5250 break;
5251 default:
5252 return -ERANGE;
5253 }
5254
5255 switch (config.rx_filter) {
5256 case HWTSTAMP_FILTER_NONE:
5257 tsync_rx_ctl = 0;
5258 break;
5259 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5260 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5261 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5262 case HWTSTAMP_FILTER_ALL:
5263 /*
5264 * register TSYNCRXCFG must be set, therefore it is not
5265 * possible to time stamp both Sync and Delay_Req messages
5266 * => fall back to time stamping all packets
5267 */
5268 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5269 config.rx_filter = HWTSTAMP_FILTER_ALL;
5270 break;
5271 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5272 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5273 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5274 is_l4 = true;
5275 break;
5276 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5277 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5278 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5279 is_l4 = true;
5280 break;
5281 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5282 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5283 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5284 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5285 is_l2 = true;
5286 is_l4 = true;
5287 config.rx_filter = HWTSTAMP_FILTER_SOME;
5288 break;
5289 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5290 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5291 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5292 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5293 is_l2 = true;
5294 is_l4 = true;
5295 config.rx_filter = HWTSTAMP_FILTER_SOME;
5296 break;
5297 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5298 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5299 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5300 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5301 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5302 is_l2 = true;
5303 break;
5304 default:
5305 return -ERANGE;
5306 }
5307
5308 if (hw->mac.type == e1000_82575) {
5309 if (tsync_rx_ctl | tsync_tx_ctl)
5310 return -EINVAL;
5311 return 0;
5312 }
5313
5314 /* enable/disable TX */
5315 regval = rd32(E1000_TSYNCTXCTL);
5316 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5317 regval |= tsync_tx_ctl;
5318 wr32(E1000_TSYNCTXCTL, regval);
5319
5320 /* enable/disable RX */
5321 regval = rd32(E1000_TSYNCRXCTL);
5322 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5323 regval |= tsync_rx_ctl;
5324 wr32(E1000_TSYNCRXCTL, regval);
5325
5326 /* define which PTP packets are time stamped */
5327 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5328
5329 /* define ethertype filter for timestamped packets */
5330 if (is_l2)
5331 wr32(E1000_ETQF(3),
5332 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5333 E1000_ETQF_1588 | /* enable timestamping */
5334 ETH_P_1588)); /* 1588 eth protocol type */
5335 else
5336 wr32(E1000_ETQF(3), 0);
5337
5338 #define PTP_PORT 319
5339 /* L4 Queue Filter[3]: filter by destination port and protocol */
5340 if (is_l4) {
5341 u32 ftqf = (IPPROTO_UDP /* UDP */
5342 | E1000_FTQF_VF_BP /* VF not compared */
5343 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5344 | E1000_FTQF_MASK); /* mask all inputs */
5345 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5346
5347 wr32(E1000_IMIR(3), htons(PTP_PORT));
5348 wr32(E1000_IMIREXT(3),
5349 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5350 if (hw->mac.type == e1000_82576) {
5351 /* enable source port check */
5352 wr32(E1000_SPQF(3), htons(PTP_PORT));
5353 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5354 }
5355 wr32(E1000_FTQF(3), ftqf);
5356 } else {
5357 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5358 }
5359 wrfl();
5360
5361 adapter->hwtstamp_config = config;
5362
5363 /* clear TX/RX time stamp registers, just to be sure */
5364 regval = rd32(E1000_TXSTMPH);
5365 regval = rd32(E1000_RXSTMPH);
5366
5367 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5368 -EFAULT : 0;
5369 }
5370
5371 /**
5372 * igb_ioctl -
5373 * @netdev:
5374 * @ifreq:
5375 * @cmd:
5376 **/
5377 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5378 {
5379 switch (cmd) {
5380 case SIOCGMIIPHY:
5381 case SIOCGMIIREG:
5382 case SIOCSMIIREG:
5383 return igb_mii_ioctl(netdev, ifr, cmd);
5384 case SIOCSHWTSTAMP:
5385 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5386 default:
5387 return -EOPNOTSUPP;
5388 }
5389 }
5390
5391 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5392 {
5393 struct igb_adapter *adapter = hw->back;
5394 u16 cap_offset;
5395
5396 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5397 if (!cap_offset)
5398 return -E1000_ERR_CONFIG;
5399
5400 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5401
5402 return 0;
5403 }
5404
5405 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5406 {
5407 struct igb_adapter *adapter = hw->back;
5408 u16 cap_offset;
5409
5410 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5411 if (!cap_offset)
5412 return -E1000_ERR_CONFIG;
5413
5414 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5415
5416 return 0;
5417 }
5418
5419 static void igb_vlan_rx_register(struct net_device *netdev,
5420 struct vlan_group *grp)
5421 {
5422 struct igb_adapter *adapter = netdev_priv(netdev);
5423 struct e1000_hw *hw = &adapter->hw;
5424 u32 ctrl, rctl;
5425
5426 igb_irq_disable(adapter);
5427 adapter->vlgrp = grp;
5428
5429 if (grp) {
5430 /* enable VLAN tag insert/strip */
5431 ctrl = rd32(E1000_CTRL);
5432 ctrl |= E1000_CTRL_VME;
5433 wr32(E1000_CTRL, ctrl);
5434
5435 /* Disable CFI check */
5436 rctl = rd32(E1000_RCTL);
5437 rctl &= ~E1000_RCTL_CFIEN;
5438 wr32(E1000_RCTL, rctl);
5439 } else {
5440 /* disable VLAN tag insert/strip */
5441 ctrl = rd32(E1000_CTRL);
5442 ctrl &= ~E1000_CTRL_VME;
5443 wr32(E1000_CTRL, ctrl);
5444 }
5445
5446 igb_rlpml_set(adapter);
5447
5448 if (!test_bit(__IGB_DOWN, &adapter->state))
5449 igb_irq_enable(adapter);
5450 }
5451
5452 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5453 {
5454 struct igb_adapter *adapter = netdev_priv(netdev);
5455 struct e1000_hw *hw = &adapter->hw;
5456 int pf_id = adapter->vfs_allocated_count;
5457
5458 /* attempt to add filter to vlvf array */
5459 igb_vlvf_set(adapter, vid, true, pf_id);
5460
5461 /* add the filter since PF can receive vlans w/o entry in vlvf */
5462 igb_vfta_set(hw, vid, true);
5463 }
5464
5465 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5466 {
5467 struct igb_adapter *adapter = netdev_priv(netdev);
5468 struct e1000_hw *hw = &adapter->hw;
5469 int pf_id = adapter->vfs_allocated_count;
5470 s32 err;
5471
5472 igb_irq_disable(adapter);
5473 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5474
5475 if (!test_bit(__IGB_DOWN, &adapter->state))
5476 igb_irq_enable(adapter);
5477
5478 /* remove vlan from VLVF table array */
5479 err = igb_vlvf_set(adapter, vid, false, pf_id);
5480
5481 /* if vid was not present in VLVF just remove it from table */
5482 if (err)
5483 igb_vfta_set(hw, vid, false);
5484 }
5485
5486 static void igb_restore_vlan(struct igb_adapter *adapter)
5487 {
5488 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5489
5490 if (adapter->vlgrp) {
5491 u16 vid;
5492 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5493 if (!vlan_group_get_device(adapter->vlgrp, vid))
5494 continue;
5495 igb_vlan_rx_add_vid(adapter->netdev, vid);
5496 }
5497 }
5498 }
5499
5500 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5501 {
5502 struct pci_dev *pdev = adapter->pdev;
5503 struct e1000_mac_info *mac = &adapter->hw.mac;
5504
5505 mac->autoneg = 0;
5506
5507 switch (spddplx) {
5508 case SPEED_10 + DUPLEX_HALF:
5509 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5510 break;
5511 case SPEED_10 + DUPLEX_FULL:
5512 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5513 break;
5514 case SPEED_100 + DUPLEX_HALF:
5515 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5516 break;
5517 case SPEED_100 + DUPLEX_FULL:
5518 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5519 break;
5520 case SPEED_1000 + DUPLEX_FULL:
5521 mac->autoneg = 1;
5522 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5523 break;
5524 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5525 default:
5526 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5527 return -EINVAL;
5528 }
5529 return 0;
5530 }
5531
5532 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5533 {
5534 struct net_device *netdev = pci_get_drvdata(pdev);
5535 struct igb_adapter *adapter = netdev_priv(netdev);
5536 struct e1000_hw *hw = &adapter->hw;
5537 u32 ctrl, rctl, status;
5538 u32 wufc = adapter->wol;
5539 #ifdef CONFIG_PM
5540 int retval = 0;
5541 #endif
5542
5543 netif_device_detach(netdev);
5544
5545 if (netif_running(netdev))
5546 igb_close(netdev);
5547
5548 igb_clear_interrupt_scheme(adapter);
5549
5550 #ifdef CONFIG_PM
5551 retval = pci_save_state(pdev);
5552 if (retval)
5553 return retval;
5554 #endif
5555
5556 status = rd32(E1000_STATUS);
5557 if (status & E1000_STATUS_LU)
5558 wufc &= ~E1000_WUFC_LNKC;
5559
5560 if (wufc) {
5561 igb_setup_rctl(adapter);
5562 igb_set_rx_mode(netdev);
5563
5564 /* turn on all-multi mode if wake on multicast is enabled */
5565 if (wufc & E1000_WUFC_MC) {
5566 rctl = rd32(E1000_RCTL);
5567 rctl |= E1000_RCTL_MPE;
5568 wr32(E1000_RCTL, rctl);
5569 }
5570
5571 ctrl = rd32(E1000_CTRL);
5572 /* advertise wake from D3Cold */
5573 #define E1000_CTRL_ADVD3WUC 0x00100000
5574 /* phy power management enable */
5575 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5576 ctrl |= E1000_CTRL_ADVD3WUC;
5577 wr32(E1000_CTRL, ctrl);
5578
5579 /* Allow time for pending master requests to run */
5580 igb_disable_pcie_master(hw);
5581
5582 wr32(E1000_WUC, E1000_WUC_PME_EN);
5583 wr32(E1000_WUFC, wufc);
5584 } else {
5585 wr32(E1000_WUC, 0);
5586 wr32(E1000_WUFC, 0);
5587 }
5588
5589 *enable_wake = wufc || adapter->en_mng_pt;
5590 if (!*enable_wake)
5591 igb_shutdown_serdes_link_82575(hw);
5592
5593 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5594 * would have already happened in close and is redundant. */
5595 igb_release_hw_control(adapter);
5596
5597 pci_disable_device(pdev);
5598
5599 return 0;
5600 }
5601
5602 #ifdef CONFIG_PM
5603 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5604 {
5605 int retval;
5606 bool wake;
5607
5608 retval = __igb_shutdown(pdev, &wake);
5609 if (retval)
5610 return retval;
5611
5612 if (wake) {
5613 pci_prepare_to_sleep(pdev);
5614 } else {
5615 pci_wake_from_d3(pdev, false);
5616 pci_set_power_state(pdev, PCI_D3hot);
5617 }
5618
5619 return 0;
5620 }
5621
5622 static int igb_resume(struct pci_dev *pdev)
5623 {
5624 struct net_device *netdev = pci_get_drvdata(pdev);
5625 struct igb_adapter *adapter = netdev_priv(netdev);
5626 struct e1000_hw *hw = &adapter->hw;
5627 u32 err;
5628
5629 pci_set_power_state(pdev, PCI_D0);
5630 pci_restore_state(pdev);
5631
5632 err = pci_enable_device_mem(pdev);
5633 if (err) {
5634 dev_err(&pdev->dev,
5635 "igb: Cannot enable PCI device from suspend\n");
5636 return err;
5637 }
5638 pci_set_master(pdev);
5639
5640 pci_enable_wake(pdev, PCI_D3hot, 0);
5641 pci_enable_wake(pdev, PCI_D3cold, 0);
5642
5643 if (igb_init_interrupt_scheme(adapter)) {
5644 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5645 return -ENOMEM;
5646 }
5647
5648 /* e1000_power_up_phy(adapter); */
5649
5650 igb_reset(adapter);
5651
5652 /* let the f/w know that the h/w is now under the control of the
5653 * driver. */
5654 igb_get_hw_control(adapter);
5655
5656 wr32(E1000_WUS, ~0);
5657
5658 if (netif_running(netdev)) {
5659 err = igb_open(netdev);
5660 if (err)
5661 return err;
5662 }
5663
5664 netif_device_attach(netdev);
5665
5666 return 0;
5667 }
5668 #endif
5669
5670 static void igb_shutdown(struct pci_dev *pdev)
5671 {
5672 bool wake;
5673
5674 __igb_shutdown(pdev, &wake);
5675
5676 if (system_state == SYSTEM_POWER_OFF) {
5677 pci_wake_from_d3(pdev, wake);
5678 pci_set_power_state(pdev, PCI_D3hot);
5679 }
5680 }
5681
5682 #ifdef CONFIG_NET_POLL_CONTROLLER
5683 /*
5684 * Polling 'interrupt' - used by things like netconsole to send skbs
5685 * without having to re-enable interrupts. It's not called while
5686 * the interrupt routine is executing.
5687 */
5688 static void igb_netpoll(struct net_device *netdev)
5689 {
5690 struct igb_adapter *adapter = netdev_priv(netdev);
5691 struct e1000_hw *hw = &adapter->hw;
5692 int i;
5693
5694 if (!adapter->msix_entries) {
5695 struct igb_q_vector *q_vector = adapter->q_vector[0];
5696 igb_irq_disable(adapter);
5697 napi_schedule(&q_vector->napi);
5698 return;
5699 }
5700
5701 for (i = 0; i < adapter->num_q_vectors; i++) {
5702 struct igb_q_vector *q_vector = adapter->q_vector[i];
5703 wr32(E1000_EIMC, q_vector->eims_value);
5704 napi_schedule(&q_vector->napi);
5705 }
5706 }
5707 #endif /* CONFIG_NET_POLL_CONTROLLER */
5708
5709 /**
5710 * igb_io_error_detected - called when PCI error is detected
5711 * @pdev: Pointer to PCI device
5712 * @state: The current pci connection state
5713 *
5714 * This function is called after a PCI bus error affecting
5715 * this device has been detected.
5716 */
5717 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5718 pci_channel_state_t state)
5719 {
5720 struct net_device *netdev = pci_get_drvdata(pdev);
5721 struct igb_adapter *adapter = netdev_priv(netdev);
5722
5723 netif_device_detach(netdev);
5724
5725 if (state == pci_channel_io_perm_failure)
5726 return PCI_ERS_RESULT_DISCONNECT;
5727
5728 if (netif_running(netdev))
5729 igb_down(adapter);
5730 pci_disable_device(pdev);
5731
5732 /* Request a slot slot reset. */
5733 return PCI_ERS_RESULT_NEED_RESET;
5734 }
5735
5736 /**
5737 * igb_io_slot_reset - called after the pci bus has been reset.
5738 * @pdev: Pointer to PCI device
5739 *
5740 * Restart the card from scratch, as if from a cold-boot. Implementation
5741 * resembles the first-half of the igb_resume routine.
5742 */
5743 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5744 {
5745 struct net_device *netdev = pci_get_drvdata(pdev);
5746 struct igb_adapter *adapter = netdev_priv(netdev);
5747 struct e1000_hw *hw = &adapter->hw;
5748 pci_ers_result_t result;
5749 int err;
5750
5751 if (pci_enable_device_mem(pdev)) {
5752 dev_err(&pdev->dev,
5753 "Cannot re-enable PCI device after reset.\n");
5754 result = PCI_ERS_RESULT_DISCONNECT;
5755 } else {
5756 pci_set_master(pdev);
5757 pci_restore_state(pdev);
5758
5759 pci_enable_wake(pdev, PCI_D3hot, 0);
5760 pci_enable_wake(pdev, PCI_D3cold, 0);
5761
5762 igb_reset(adapter);
5763 wr32(E1000_WUS, ~0);
5764 result = PCI_ERS_RESULT_RECOVERED;
5765 }
5766
5767 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5768 if (err) {
5769 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5770 "failed 0x%0x\n", err);
5771 /* non-fatal, continue */
5772 }
5773
5774 return result;
5775 }
5776
5777 /**
5778 * igb_io_resume - called when traffic can start flowing again.
5779 * @pdev: Pointer to PCI device
5780 *
5781 * This callback is called when the error recovery driver tells us that
5782 * its OK to resume normal operation. Implementation resembles the
5783 * second-half of the igb_resume routine.
5784 */
5785 static void igb_io_resume(struct pci_dev *pdev)
5786 {
5787 struct net_device *netdev = pci_get_drvdata(pdev);
5788 struct igb_adapter *adapter = netdev_priv(netdev);
5789
5790 if (netif_running(netdev)) {
5791 if (igb_up(adapter)) {
5792 dev_err(&pdev->dev, "igb_up failed after reset\n");
5793 return;
5794 }
5795 }
5796
5797 netif_device_attach(netdev);
5798
5799 /* let the f/w know that the h/w is now under the control of the
5800 * driver. */
5801 igb_get_hw_control(adapter);
5802 }
5803
5804 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5805 u8 qsel)
5806 {
5807 u32 rar_low, rar_high;
5808 struct e1000_hw *hw = &adapter->hw;
5809
5810 /* HW expects these in little endian so we reverse the byte order
5811 * from network order (big endian) to little endian
5812 */
5813 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5814 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5815 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5816
5817 /* Indicate to hardware the Address is Valid. */
5818 rar_high |= E1000_RAH_AV;
5819
5820 if (hw->mac.type == e1000_82575)
5821 rar_high |= E1000_RAH_POOL_1 * qsel;
5822 else
5823 rar_high |= E1000_RAH_POOL_1 << qsel;
5824
5825 wr32(E1000_RAL(index), rar_low);
5826 wrfl();
5827 wr32(E1000_RAH(index), rar_high);
5828 wrfl();
5829 }
5830
5831 static int igb_set_vf_mac(struct igb_adapter *adapter,
5832 int vf, unsigned char *mac_addr)
5833 {
5834 struct e1000_hw *hw = &adapter->hw;
5835 /* VF MAC addresses start at end of receive addresses and moves
5836 * torwards the first, as a result a collision should not be possible */
5837 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5838
5839 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5840
5841 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5842
5843 return 0;
5844 }
5845
5846 static void igb_vmm_control(struct igb_adapter *adapter)
5847 {
5848 struct e1000_hw *hw = &adapter->hw;
5849 u32 reg;
5850
5851 /* replication is not supported for 82575 */
5852 if (hw->mac.type == e1000_82575)
5853 return;
5854
5855 /* enable replication vlan tag stripping */
5856 reg = rd32(E1000_RPLOLR);
5857 reg |= E1000_RPLOLR_STRVLAN;
5858 wr32(E1000_RPLOLR, reg);
5859
5860 /* notify HW that the MAC is adding vlan tags */
5861 reg = rd32(E1000_DTXCTL);
5862 reg |= E1000_DTXCTL_VLAN_ADDED;
5863 wr32(E1000_DTXCTL, reg);
5864
5865 if (adapter->vfs_allocated_count) {
5866 igb_vmdq_set_loopback_pf(hw, true);
5867 igb_vmdq_set_replication_pf(hw, true);
5868 } else {
5869 igb_vmdq_set_loopback_pf(hw, false);
5870 igb_vmdq_set_replication_pf(hw, false);
5871 }
5872 }
5873
5874 /* igb_main.c */
This page took 0.157925 seconds and 6 git commands to generate.