Merge branch 'fix/asoc' into for-linus
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
72 /* required last entry */
73 {0, }
74 };
75
76 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
77
78 void igb_reset(struct igb_adapter *);
79 static int igb_setup_all_tx_resources(struct igb_adapter *);
80 static int igb_setup_all_rx_resources(struct igb_adapter *);
81 static void igb_free_all_tx_resources(struct igb_adapter *);
82 static void igb_free_all_rx_resources(struct igb_adapter *);
83 void igb_update_stats(struct igb_adapter *);
84 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
85 static void __devexit igb_remove(struct pci_dev *pdev);
86 static int igb_sw_init(struct igb_adapter *);
87 static int igb_open(struct net_device *);
88 static int igb_close(struct net_device *);
89 static void igb_configure_tx(struct igb_adapter *);
90 static void igb_configure_rx(struct igb_adapter *);
91 static void igb_setup_rctl(struct igb_adapter *);
92 static void igb_clean_all_tx_rings(struct igb_adapter *);
93 static void igb_clean_all_rx_rings(struct igb_adapter *);
94 static void igb_clean_tx_ring(struct igb_ring *);
95 static void igb_clean_rx_ring(struct igb_ring *);
96 static void igb_set_multi(struct net_device *);
97 static void igb_update_phy_info(unsigned long);
98 static void igb_watchdog(unsigned long);
99 static void igb_watchdog_task(struct work_struct *);
100 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
101 struct igb_ring *);
102 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static irqreturn_t igb_intr(int irq, void *);
107 static irqreturn_t igb_intr_msi(int irq, void *);
108 static irqreturn_t igb_msix_other(int irq, void *);
109 static irqreturn_t igb_msix_rx(int irq, void *);
110 static irqreturn_t igb_msix_tx(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_rx_dca(struct igb_ring *);
113 static void igb_update_tx_dca(struct igb_ring *);
114 static void igb_setup_dca(struct igb_adapter *);
115 #endif /* CONFIG_IGB_DCA */
116 static bool igb_clean_tx_irq(struct igb_ring *);
117 static int igb_poll(struct napi_struct *, int);
118 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
119 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
120 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121 static void igb_tx_timeout(struct net_device *);
122 static void igb_reset_task(struct work_struct *);
123 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124 static void igb_vlan_rx_add_vid(struct net_device *, u16);
125 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126 static void igb_restore_vlan(struct igb_adapter *);
127 static void igb_ping_all_vfs(struct igb_adapter *);
128 static void igb_msg_task(struct igb_adapter *);
129 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
130 static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
131 static void igb_vmm_control(struct igb_adapter *);
132 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
133 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
134
135 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
136 {
137 u32 reg_data;
138
139 reg_data = rd32(E1000_VMOLR(vfn));
140 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
141 E1000_VMOLR_ROPE | /* Accept packets matched in UTA */
142 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
143 E1000_VMOLR_AUPE | /* Accept untagged packets */
144 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
145 wr32(E1000_VMOLR(vfn), reg_data);
146 }
147
148 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
149 int vfn)
150 {
151 struct e1000_hw *hw = &adapter->hw;
152 u32 vmolr;
153
154 vmolr = rd32(E1000_VMOLR(vfn));
155 vmolr &= ~E1000_VMOLR_RLPML_MASK;
156 vmolr |= size | E1000_VMOLR_LPE;
157 wr32(E1000_VMOLR(vfn), vmolr);
158
159 return 0;
160 }
161
162 static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
163 {
164 u32 reg_data;
165
166 reg_data = rd32(E1000_RAH(entry));
167 reg_data &= ~E1000_RAH_POOL_MASK;
168 reg_data |= E1000_RAH_POOL_1 << pool;;
169 wr32(E1000_RAH(entry), reg_data);
170 }
171
172 #ifdef CONFIG_PM
173 static int igb_suspend(struct pci_dev *, pm_message_t);
174 static int igb_resume(struct pci_dev *);
175 #endif
176 static void igb_shutdown(struct pci_dev *);
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
179 static struct notifier_block dca_notifier = {
180 .notifier_call = igb_notify_dca,
181 .next = NULL,
182 .priority = 0
183 };
184 #endif
185 #ifdef CONFIG_NET_POLL_CONTROLLER
186 /* for netdump / net console */
187 static void igb_netpoll(struct net_device *);
188 #endif
189 #ifdef CONFIG_PCI_IOV
190 static unsigned int max_vfs = 0;
191 module_param(max_vfs, uint, 0);
192 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
193 "per physical function");
194 #endif /* CONFIG_PCI_IOV */
195
196 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
197 pci_channel_state_t);
198 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
199 static void igb_io_resume(struct pci_dev *);
200
201 static struct pci_error_handlers igb_err_handler = {
202 .error_detected = igb_io_error_detected,
203 .slot_reset = igb_io_slot_reset,
204 .resume = igb_io_resume,
205 };
206
207
208 static struct pci_driver igb_driver = {
209 .name = igb_driver_name,
210 .id_table = igb_pci_tbl,
211 .probe = igb_probe,
212 .remove = __devexit_p(igb_remove),
213 #ifdef CONFIG_PM
214 /* Power Managment Hooks */
215 .suspend = igb_suspend,
216 .resume = igb_resume,
217 #endif
218 .shutdown = igb_shutdown,
219 .err_handler = &igb_err_handler
220 };
221
222 static int global_quad_port_a; /* global quad port a indication */
223
224 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
225 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
226 MODULE_LICENSE("GPL");
227 MODULE_VERSION(DRV_VERSION);
228
229 /**
230 * Scale the NIC clock cycle by a large factor so that
231 * relatively small clock corrections can be added or
232 * substracted at each clock tick. The drawbacks of a
233 * large factor are a) that the clock register overflows
234 * more quickly (not such a big deal) and b) that the
235 * increment per tick has to fit into 24 bits.
236 *
237 * Note that
238 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
239 * IGB_TSYNC_SCALE
240 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
241 *
242 * The base scale factor is intentionally a power of two
243 * so that the division in %struct timecounter can be done with
244 * a shift.
245 */
246 #define IGB_TSYNC_SHIFT (19)
247 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
248
249 /**
250 * The duration of one clock cycle of the NIC.
251 *
252 * @todo This hard-coded value is part of the specification and might change
253 * in future hardware revisions. Add revision check.
254 */
255 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
256
257 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
258 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
259 #endif
260
261 /**
262 * igb_read_clock - read raw cycle counter (to be used by time counter)
263 */
264 static cycle_t igb_read_clock(const struct cyclecounter *tc)
265 {
266 struct igb_adapter *adapter =
267 container_of(tc, struct igb_adapter, cycles);
268 struct e1000_hw *hw = &adapter->hw;
269 u64 stamp;
270
271 stamp = rd32(E1000_SYSTIML);
272 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
273
274 return stamp;
275 }
276
277 #ifdef DEBUG
278 /**
279 * igb_get_hw_dev_name - return device name string
280 * used by hardware layer to print debugging information
281 **/
282 char *igb_get_hw_dev_name(struct e1000_hw *hw)
283 {
284 struct igb_adapter *adapter = hw->back;
285 return adapter->netdev->name;
286 }
287
288 /**
289 * igb_get_time_str - format current NIC and system time as string
290 */
291 static char *igb_get_time_str(struct igb_adapter *adapter,
292 char buffer[160])
293 {
294 cycle_t hw = adapter->cycles.read(&adapter->cycles);
295 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
296 struct timespec sys;
297 struct timespec delta;
298 getnstimeofday(&sys);
299
300 delta = timespec_sub(nic, sys);
301
302 sprintf(buffer,
303 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
304 hw,
305 (long)nic.tv_sec, nic.tv_nsec,
306 (long)sys.tv_sec, sys.tv_nsec,
307 (long)delta.tv_sec, delta.tv_nsec);
308
309 return buffer;
310 }
311 #endif
312
313 /**
314 * igb_desc_unused - calculate if we have unused descriptors
315 **/
316 static int igb_desc_unused(struct igb_ring *ring)
317 {
318 if (ring->next_to_clean > ring->next_to_use)
319 return ring->next_to_clean - ring->next_to_use - 1;
320
321 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
322 }
323
324 /**
325 * igb_init_module - Driver Registration Routine
326 *
327 * igb_init_module is the first routine called when the driver is
328 * loaded. All it does is register with the PCI subsystem.
329 **/
330 static int __init igb_init_module(void)
331 {
332 int ret;
333 printk(KERN_INFO "%s - version %s\n",
334 igb_driver_string, igb_driver_version);
335
336 printk(KERN_INFO "%s\n", igb_copyright);
337
338 global_quad_port_a = 0;
339
340 #ifdef CONFIG_IGB_DCA
341 dca_register_notify(&dca_notifier);
342 #endif
343
344 ret = pci_register_driver(&igb_driver);
345 return ret;
346 }
347
348 module_init(igb_init_module);
349
350 /**
351 * igb_exit_module - Driver Exit Cleanup Routine
352 *
353 * igb_exit_module is called just before the driver is removed
354 * from memory.
355 **/
356 static void __exit igb_exit_module(void)
357 {
358 #ifdef CONFIG_IGB_DCA
359 dca_unregister_notify(&dca_notifier);
360 #endif
361 pci_unregister_driver(&igb_driver);
362 }
363
364 module_exit(igb_exit_module);
365
366 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
367 /**
368 * igb_cache_ring_register - Descriptor ring to register mapping
369 * @adapter: board private structure to initialize
370 *
371 * Once we know the feature-set enabled for the device, we'll cache
372 * the register offset the descriptor ring is assigned to.
373 **/
374 static void igb_cache_ring_register(struct igb_adapter *adapter)
375 {
376 int i;
377 unsigned int rbase_offset = adapter->vfs_allocated_count;
378
379 switch (adapter->hw.mac.type) {
380 case e1000_82576:
381 /* The queues are allocated for virtualization such that VF 0
382 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
383 * In order to avoid collision we start at the first free queue
384 * and continue consuming queues in the same sequence
385 */
386 for (i = 0; i < adapter->num_rx_queues; i++)
387 adapter->rx_ring[i].reg_idx = rbase_offset +
388 Q_IDX_82576(i);
389 for (i = 0; i < adapter->num_tx_queues; i++)
390 adapter->tx_ring[i].reg_idx = rbase_offset +
391 Q_IDX_82576(i);
392 break;
393 case e1000_82575:
394 default:
395 for (i = 0; i < adapter->num_rx_queues; i++)
396 adapter->rx_ring[i].reg_idx = i;
397 for (i = 0; i < adapter->num_tx_queues; i++)
398 adapter->tx_ring[i].reg_idx = i;
399 break;
400 }
401 }
402
403 /**
404 * igb_alloc_queues - Allocate memory for all rings
405 * @adapter: board private structure to initialize
406 *
407 * We allocate one ring per queue at run-time since we don't know the
408 * number of queues at compile-time.
409 **/
410 static int igb_alloc_queues(struct igb_adapter *adapter)
411 {
412 int i;
413
414 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
415 sizeof(struct igb_ring), GFP_KERNEL);
416 if (!adapter->tx_ring)
417 return -ENOMEM;
418
419 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
420 sizeof(struct igb_ring), GFP_KERNEL);
421 if (!adapter->rx_ring) {
422 kfree(adapter->tx_ring);
423 return -ENOMEM;
424 }
425
426 adapter->rx_ring->buddy = adapter->tx_ring;
427
428 for (i = 0; i < adapter->num_tx_queues; i++) {
429 struct igb_ring *ring = &(adapter->tx_ring[i]);
430 ring->count = adapter->tx_ring_count;
431 ring->adapter = adapter;
432 ring->queue_index = i;
433 }
434 for (i = 0; i < adapter->num_rx_queues; i++) {
435 struct igb_ring *ring = &(adapter->rx_ring[i]);
436 ring->count = adapter->rx_ring_count;
437 ring->adapter = adapter;
438 ring->queue_index = i;
439 ring->itr_register = E1000_ITR;
440
441 /* set a default napi handler for each rx_ring */
442 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
443 }
444
445 igb_cache_ring_register(adapter);
446 return 0;
447 }
448
449 static void igb_free_queues(struct igb_adapter *adapter)
450 {
451 int i;
452
453 for (i = 0; i < adapter->num_rx_queues; i++)
454 netif_napi_del(&adapter->rx_ring[i].napi);
455
456 adapter->num_rx_queues = 0;
457 adapter->num_tx_queues = 0;
458
459 kfree(adapter->tx_ring);
460 kfree(adapter->rx_ring);
461 }
462
463 #define IGB_N0_QUEUE -1
464 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
465 int tx_queue, int msix_vector)
466 {
467 u32 msixbm = 0;
468 struct e1000_hw *hw = &adapter->hw;
469 u32 ivar, index;
470
471 switch (hw->mac.type) {
472 case e1000_82575:
473 /* The 82575 assigns vectors using a bitmask, which matches the
474 bitmask for the EICR/EIMS/EIMC registers. To assign one
475 or more queues to a vector, we write the appropriate bits
476 into the MSIXBM register for that vector. */
477 if (rx_queue > IGB_N0_QUEUE) {
478 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
479 adapter->rx_ring[rx_queue].eims_value = msixbm;
480 }
481 if (tx_queue > IGB_N0_QUEUE) {
482 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
483 adapter->tx_ring[tx_queue].eims_value =
484 E1000_EICR_TX_QUEUE0 << tx_queue;
485 }
486 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
487 break;
488 case e1000_82576:
489 /* 82576 uses a table-based method for assigning vectors.
490 Each queue has a single entry in the table to which we write
491 a vector number along with a "valid" bit. Sadly, the layout
492 of the table is somewhat counterintuitive. */
493 if (rx_queue > IGB_N0_QUEUE) {
494 index = (rx_queue >> 1) + adapter->vfs_allocated_count;
495 ivar = array_rd32(E1000_IVAR0, index);
496 if (rx_queue & 0x1) {
497 /* vector goes into third byte of register */
498 ivar = ivar & 0xFF00FFFF;
499 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
500 } else {
501 /* vector goes into low byte of register */
502 ivar = ivar & 0xFFFFFF00;
503 ivar |= msix_vector | E1000_IVAR_VALID;
504 }
505 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
506 array_wr32(E1000_IVAR0, index, ivar);
507 }
508 if (tx_queue > IGB_N0_QUEUE) {
509 index = (tx_queue >> 1) + adapter->vfs_allocated_count;
510 ivar = array_rd32(E1000_IVAR0, index);
511 if (tx_queue & 0x1) {
512 /* vector goes into high byte of register */
513 ivar = ivar & 0x00FFFFFF;
514 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
515 } else {
516 /* vector goes into second byte of register */
517 ivar = ivar & 0xFFFF00FF;
518 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
519 }
520 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
521 array_wr32(E1000_IVAR0, index, ivar);
522 }
523 break;
524 default:
525 BUG();
526 break;
527 }
528 }
529
530 /**
531 * igb_configure_msix - Configure MSI-X hardware
532 *
533 * igb_configure_msix sets up the hardware to properly
534 * generate MSI-X interrupts.
535 **/
536 static void igb_configure_msix(struct igb_adapter *adapter)
537 {
538 u32 tmp;
539 int i, vector = 0;
540 struct e1000_hw *hw = &adapter->hw;
541
542 adapter->eims_enable_mask = 0;
543 if (hw->mac.type == e1000_82576)
544 /* Turn on MSI-X capability first, or our settings
545 * won't stick. And it will take days to debug. */
546 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
547 E1000_GPIE_PBA | E1000_GPIE_EIAME |
548 E1000_GPIE_NSICR);
549
550 for (i = 0; i < adapter->num_tx_queues; i++) {
551 struct igb_ring *tx_ring = &adapter->tx_ring[i];
552 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
553 adapter->eims_enable_mask |= tx_ring->eims_value;
554 if (tx_ring->itr_val)
555 writel(tx_ring->itr_val,
556 hw->hw_addr + tx_ring->itr_register);
557 else
558 writel(1, hw->hw_addr + tx_ring->itr_register);
559 }
560
561 for (i = 0; i < adapter->num_rx_queues; i++) {
562 struct igb_ring *rx_ring = &adapter->rx_ring[i];
563 rx_ring->buddy = NULL;
564 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
565 adapter->eims_enable_mask |= rx_ring->eims_value;
566 if (rx_ring->itr_val)
567 writel(rx_ring->itr_val,
568 hw->hw_addr + rx_ring->itr_register);
569 else
570 writel(1, hw->hw_addr + rx_ring->itr_register);
571 }
572
573
574 /* set vector for other causes, i.e. link changes */
575 switch (hw->mac.type) {
576 case e1000_82575:
577 array_wr32(E1000_MSIXBM(0), vector++,
578 E1000_EIMS_OTHER);
579
580 tmp = rd32(E1000_CTRL_EXT);
581 /* enable MSI-X PBA support*/
582 tmp |= E1000_CTRL_EXT_PBA_CLR;
583
584 /* Auto-Mask interrupts upon ICR read. */
585 tmp |= E1000_CTRL_EXT_EIAME;
586 tmp |= E1000_CTRL_EXT_IRCA;
587
588 wr32(E1000_CTRL_EXT, tmp);
589 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
590 adapter->eims_other = E1000_EIMS_OTHER;
591
592 break;
593
594 case e1000_82576:
595 tmp = (vector++ | E1000_IVAR_VALID) << 8;
596 wr32(E1000_IVAR_MISC, tmp);
597
598 adapter->eims_enable_mask = (1 << (vector)) - 1;
599 adapter->eims_other = 1 << (vector - 1);
600 break;
601 default:
602 /* do nothing, since nothing else supports MSI-X */
603 break;
604 } /* switch (hw->mac.type) */
605 wrfl();
606 }
607
608 /**
609 * igb_request_msix - Initialize MSI-X interrupts
610 *
611 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
612 * kernel.
613 **/
614 static int igb_request_msix(struct igb_adapter *adapter)
615 {
616 struct net_device *netdev = adapter->netdev;
617 int i, err = 0, vector = 0;
618
619 vector = 0;
620
621 for (i = 0; i < adapter->num_tx_queues; i++) {
622 struct igb_ring *ring = &(adapter->tx_ring[i]);
623 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
624 err = request_irq(adapter->msix_entries[vector].vector,
625 &igb_msix_tx, 0, ring->name,
626 &(adapter->tx_ring[i]));
627 if (err)
628 goto out;
629 ring->itr_register = E1000_EITR(0) + (vector << 2);
630 ring->itr_val = 976; /* ~4000 ints/sec */
631 vector++;
632 }
633 for (i = 0; i < adapter->num_rx_queues; i++) {
634 struct igb_ring *ring = &(adapter->rx_ring[i]);
635 if (strlen(netdev->name) < (IFNAMSIZ - 5))
636 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
637 else
638 memcpy(ring->name, netdev->name, IFNAMSIZ);
639 err = request_irq(adapter->msix_entries[vector].vector,
640 &igb_msix_rx, 0, ring->name,
641 &(adapter->rx_ring[i]));
642 if (err)
643 goto out;
644 ring->itr_register = E1000_EITR(0) + (vector << 2);
645 ring->itr_val = adapter->itr;
646 vector++;
647 }
648
649 err = request_irq(adapter->msix_entries[vector].vector,
650 &igb_msix_other, 0, netdev->name, netdev);
651 if (err)
652 goto out;
653
654 igb_configure_msix(adapter);
655 return 0;
656 out:
657 return err;
658 }
659
660 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
661 {
662 if (adapter->msix_entries) {
663 pci_disable_msix(adapter->pdev);
664 kfree(adapter->msix_entries);
665 adapter->msix_entries = NULL;
666 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
667 pci_disable_msi(adapter->pdev);
668 return;
669 }
670
671
672 /**
673 * igb_set_interrupt_capability - set MSI or MSI-X if supported
674 *
675 * Attempt to configure interrupts using the best available
676 * capabilities of the hardware and kernel.
677 **/
678 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
679 {
680 int err;
681 int numvecs, i;
682
683 /* Number of supported queues. */
684 /* Having more queues than CPUs doesn't make sense. */
685 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
686 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
687
688 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
689 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
690 GFP_KERNEL);
691 if (!adapter->msix_entries)
692 goto msi_only;
693
694 for (i = 0; i < numvecs; i++)
695 adapter->msix_entries[i].entry = i;
696
697 err = pci_enable_msix(adapter->pdev,
698 adapter->msix_entries,
699 numvecs);
700 if (err == 0)
701 goto out;
702
703 igb_reset_interrupt_capability(adapter);
704
705 /* If we can't do MSI-X, try MSI */
706 msi_only:
707 #ifdef CONFIG_PCI_IOV
708 /* disable SR-IOV for non MSI-X configurations */
709 if (adapter->vf_data) {
710 struct e1000_hw *hw = &adapter->hw;
711 /* disable iov and allow time for transactions to clear */
712 pci_disable_sriov(adapter->pdev);
713 msleep(500);
714
715 kfree(adapter->vf_data);
716 adapter->vf_data = NULL;
717 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
718 msleep(100);
719 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
720 }
721 #endif
722 adapter->num_rx_queues = 1;
723 adapter->num_tx_queues = 1;
724 if (!pci_enable_msi(adapter->pdev))
725 adapter->flags |= IGB_FLAG_HAS_MSI;
726 out:
727 /* Notify the stack of the (possibly) reduced Tx Queue count. */
728 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
729 return;
730 }
731
732 /**
733 * igb_request_irq - initialize interrupts
734 *
735 * Attempts to configure interrupts using the best available
736 * capabilities of the hardware and kernel.
737 **/
738 static int igb_request_irq(struct igb_adapter *adapter)
739 {
740 struct net_device *netdev = adapter->netdev;
741 struct e1000_hw *hw = &adapter->hw;
742 int err = 0;
743
744 if (adapter->msix_entries) {
745 err = igb_request_msix(adapter);
746 if (!err)
747 goto request_done;
748 /* fall back to MSI */
749 igb_reset_interrupt_capability(adapter);
750 if (!pci_enable_msi(adapter->pdev))
751 adapter->flags |= IGB_FLAG_HAS_MSI;
752 igb_free_all_tx_resources(adapter);
753 igb_free_all_rx_resources(adapter);
754 adapter->num_rx_queues = 1;
755 igb_alloc_queues(adapter);
756 } else {
757 switch (hw->mac.type) {
758 case e1000_82575:
759 wr32(E1000_MSIXBM(0),
760 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
761 break;
762 case e1000_82576:
763 wr32(E1000_IVAR0, E1000_IVAR_VALID);
764 break;
765 default:
766 break;
767 }
768 }
769
770 if (adapter->flags & IGB_FLAG_HAS_MSI) {
771 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
772 netdev->name, netdev);
773 if (!err)
774 goto request_done;
775 /* fall back to legacy interrupts */
776 igb_reset_interrupt_capability(adapter);
777 adapter->flags &= ~IGB_FLAG_HAS_MSI;
778 }
779
780 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
781 netdev->name, netdev);
782
783 if (err)
784 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
785 err);
786
787 request_done:
788 return err;
789 }
790
791 static void igb_free_irq(struct igb_adapter *adapter)
792 {
793 struct net_device *netdev = adapter->netdev;
794
795 if (adapter->msix_entries) {
796 int vector = 0, i;
797
798 for (i = 0; i < adapter->num_tx_queues; i++)
799 free_irq(adapter->msix_entries[vector++].vector,
800 &(adapter->tx_ring[i]));
801 for (i = 0; i < adapter->num_rx_queues; i++)
802 free_irq(adapter->msix_entries[vector++].vector,
803 &(adapter->rx_ring[i]));
804
805 free_irq(adapter->msix_entries[vector++].vector, netdev);
806 return;
807 }
808
809 free_irq(adapter->pdev->irq, netdev);
810 }
811
812 /**
813 * igb_irq_disable - Mask off interrupt generation on the NIC
814 * @adapter: board private structure
815 **/
816 static void igb_irq_disable(struct igb_adapter *adapter)
817 {
818 struct e1000_hw *hw = &adapter->hw;
819
820 if (adapter->msix_entries) {
821 wr32(E1000_EIAM, 0);
822 wr32(E1000_EIMC, ~0);
823 wr32(E1000_EIAC, 0);
824 }
825
826 wr32(E1000_IAM, 0);
827 wr32(E1000_IMC, ~0);
828 wrfl();
829 synchronize_irq(adapter->pdev->irq);
830 }
831
832 /**
833 * igb_irq_enable - Enable default interrupt generation settings
834 * @adapter: board private structure
835 **/
836 static void igb_irq_enable(struct igb_adapter *adapter)
837 {
838 struct e1000_hw *hw = &adapter->hw;
839
840 if (adapter->msix_entries) {
841 wr32(E1000_EIAC, adapter->eims_enable_mask);
842 wr32(E1000_EIAM, adapter->eims_enable_mask);
843 wr32(E1000_EIMS, adapter->eims_enable_mask);
844 if (adapter->vfs_allocated_count)
845 wr32(E1000_MBVFIMR, 0xFF);
846 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
847 E1000_IMS_DOUTSYNC));
848 } else {
849 wr32(E1000_IMS, IMS_ENABLE_MASK);
850 wr32(E1000_IAM, IMS_ENABLE_MASK);
851 }
852 }
853
854 static void igb_update_mng_vlan(struct igb_adapter *adapter)
855 {
856 struct net_device *netdev = adapter->netdev;
857 u16 vid = adapter->hw.mng_cookie.vlan_id;
858 u16 old_vid = adapter->mng_vlan_id;
859 if (adapter->vlgrp) {
860 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
861 if (adapter->hw.mng_cookie.status &
862 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
863 igb_vlan_rx_add_vid(netdev, vid);
864 adapter->mng_vlan_id = vid;
865 } else
866 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
867
868 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
869 (vid != old_vid) &&
870 !vlan_group_get_device(adapter->vlgrp, old_vid))
871 igb_vlan_rx_kill_vid(netdev, old_vid);
872 } else
873 adapter->mng_vlan_id = vid;
874 }
875 }
876
877 /**
878 * igb_release_hw_control - release control of the h/w to f/w
879 * @adapter: address of board private structure
880 *
881 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
882 * For ASF and Pass Through versions of f/w this means that the
883 * driver is no longer loaded.
884 *
885 **/
886 static void igb_release_hw_control(struct igb_adapter *adapter)
887 {
888 struct e1000_hw *hw = &adapter->hw;
889 u32 ctrl_ext;
890
891 /* Let firmware take over control of h/w */
892 ctrl_ext = rd32(E1000_CTRL_EXT);
893 wr32(E1000_CTRL_EXT,
894 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
895 }
896
897
898 /**
899 * igb_get_hw_control - get control of the h/w from f/w
900 * @adapter: address of board private structure
901 *
902 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
903 * For ASF and Pass Through versions of f/w this means that
904 * the driver is loaded.
905 *
906 **/
907 static void igb_get_hw_control(struct igb_adapter *adapter)
908 {
909 struct e1000_hw *hw = &adapter->hw;
910 u32 ctrl_ext;
911
912 /* Let firmware know the driver has taken over */
913 ctrl_ext = rd32(E1000_CTRL_EXT);
914 wr32(E1000_CTRL_EXT,
915 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
916 }
917
918 /**
919 * igb_configure - configure the hardware for RX and TX
920 * @adapter: private board structure
921 **/
922 static void igb_configure(struct igb_adapter *adapter)
923 {
924 struct net_device *netdev = adapter->netdev;
925 int i;
926
927 igb_get_hw_control(adapter);
928 igb_set_multi(netdev);
929
930 igb_restore_vlan(adapter);
931
932 igb_configure_tx(adapter);
933 igb_setup_rctl(adapter);
934 igb_configure_rx(adapter);
935
936 igb_rx_fifo_flush_82575(&adapter->hw);
937
938 /* call igb_desc_unused which always leaves
939 * at least 1 descriptor unused to make sure
940 * next_to_use != next_to_clean */
941 for (i = 0; i < adapter->num_rx_queues; i++) {
942 struct igb_ring *ring = &adapter->rx_ring[i];
943 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
944 }
945
946
947 adapter->tx_queue_len = netdev->tx_queue_len;
948 }
949
950
951 /**
952 * igb_up - Open the interface and prepare it to handle traffic
953 * @adapter: board private structure
954 **/
955
956 int igb_up(struct igb_adapter *adapter)
957 {
958 struct e1000_hw *hw = &adapter->hw;
959 int i;
960
961 /* hardware has been reset, we need to reload some things */
962 igb_configure(adapter);
963
964 clear_bit(__IGB_DOWN, &adapter->state);
965
966 for (i = 0; i < adapter->num_rx_queues; i++)
967 napi_enable(&adapter->rx_ring[i].napi);
968 if (adapter->msix_entries)
969 igb_configure_msix(adapter);
970
971 igb_vmm_control(adapter);
972 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
973 igb_set_vmolr(hw, adapter->vfs_allocated_count);
974
975 /* Clear any pending interrupts. */
976 rd32(E1000_ICR);
977 igb_irq_enable(adapter);
978
979 netif_tx_start_all_queues(adapter->netdev);
980
981 /* Fire a link change interrupt to start the watchdog. */
982 wr32(E1000_ICS, E1000_ICS_LSC);
983 return 0;
984 }
985
986 void igb_down(struct igb_adapter *adapter)
987 {
988 struct e1000_hw *hw = &adapter->hw;
989 struct net_device *netdev = adapter->netdev;
990 u32 tctl, rctl;
991 int i;
992
993 /* signal that we're down so the interrupt handler does not
994 * reschedule our watchdog timer */
995 set_bit(__IGB_DOWN, &adapter->state);
996
997 /* disable receives in the hardware */
998 rctl = rd32(E1000_RCTL);
999 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1000 /* flush and sleep below */
1001
1002 netif_tx_stop_all_queues(netdev);
1003
1004 /* disable transmits in the hardware */
1005 tctl = rd32(E1000_TCTL);
1006 tctl &= ~E1000_TCTL_EN;
1007 wr32(E1000_TCTL, tctl);
1008 /* flush both disables and wait for them to finish */
1009 wrfl();
1010 msleep(10);
1011
1012 for (i = 0; i < adapter->num_rx_queues; i++)
1013 napi_disable(&adapter->rx_ring[i].napi);
1014
1015 igb_irq_disable(adapter);
1016
1017 del_timer_sync(&adapter->watchdog_timer);
1018 del_timer_sync(&adapter->phy_info_timer);
1019
1020 netdev->tx_queue_len = adapter->tx_queue_len;
1021 netif_carrier_off(netdev);
1022
1023 /* record the stats before reset*/
1024 igb_update_stats(adapter);
1025
1026 adapter->link_speed = 0;
1027 adapter->link_duplex = 0;
1028
1029 if (!pci_channel_offline(adapter->pdev))
1030 igb_reset(adapter);
1031 igb_clean_all_tx_rings(adapter);
1032 igb_clean_all_rx_rings(adapter);
1033 #ifdef CONFIG_IGB_DCA
1034
1035 /* since we reset the hardware DCA settings were cleared */
1036 igb_setup_dca(adapter);
1037 #endif
1038 }
1039
1040 void igb_reinit_locked(struct igb_adapter *adapter)
1041 {
1042 WARN_ON(in_interrupt());
1043 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1044 msleep(1);
1045 igb_down(adapter);
1046 igb_up(adapter);
1047 clear_bit(__IGB_RESETTING, &adapter->state);
1048 }
1049
1050 void igb_reset(struct igb_adapter *adapter)
1051 {
1052 struct e1000_hw *hw = &adapter->hw;
1053 struct e1000_mac_info *mac = &hw->mac;
1054 struct e1000_fc_info *fc = &hw->fc;
1055 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1056 u16 hwm;
1057
1058 /* Repartition Pba for greater than 9k mtu
1059 * To take effect CTRL.RST is required.
1060 */
1061 switch (mac->type) {
1062 case e1000_82576:
1063 pba = E1000_PBA_64K;
1064 break;
1065 case e1000_82575:
1066 default:
1067 pba = E1000_PBA_34K;
1068 break;
1069 }
1070
1071 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1072 (mac->type < e1000_82576)) {
1073 /* adjust PBA for jumbo frames */
1074 wr32(E1000_PBA, pba);
1075
1076 /* To maintain wire speed transmits, the Tx FIFO should be
1077 * large enough to accommodate two full transmit packets,
1078 * rounded up to the next 1KB and expressed in KB. Likewise,
1079 * the Rx FIFO should be large enough to accommodate at least
1080 * one full receive packet and is similarly rounded up and
1081 * expressed in KB. */
1082 pba = rd32(E1000_PBA);
1083 /* upper 16 bits has Tx packet buffer allocation size in KB */
1084 tx_space = pba >> 16;
1085 /* lower 16 bits has Rx packet buffer allocation size in KB */
1086 pba &= 0xffff;
1087 /* the tx fifo also stores 16 bytes of information about the tx
1088 * but don't include ethernet FCS because hardware appends it */
1089 min_tx_space = (adapter->max_frame_size +
1090 sizeof(union e1000_adv_tx_desc) -
1091 ETH_FCS_LEN) * 2;
1092 min_tx_space = ALIGN(min_tx_space, 1024);
1093 min_tx_space >>= 10;
1094 /* software strips receive CRC, so leave room for it */
1095 min_rx_space = adapter->max_frame_size;
1096 min_rx_space = ALIGN(min_rx_space, 1024);
1097 min_rx_space >>= 10;
1098
1099 /* If current Tx allocation is less than the min Tx FIFO size,
1100 * and the min Tx FIFO size is less than the current Rx FIFO
1101 * allocation, take space away from current Rx allocation */
1102 if (tx_space < min_tx_space &&
1103 ((min_tx_space - tx_space) < pba)) {
1104 pba = pba - (min_tx_space - tx_space);
1105
1106 /* if short on rx space, rx wins and must trump tx
1107 * adjustment */
1108 if (pba < min_rx_space)
1109 pba = min_rx_space;
1110 }
1111 wr32(E1000_PBA, pba);
1112 }
1113
1114 /* flow control settings */
1115 /* The high water mark must be low enough to fit one full frame
1116 * (or the size used for early receive) above it in the Rx FIFO.
1117 * Set it to the lower of:
1118 * - 90% of the Rx FIFO size, or
1119 * - the full Rx FIFO size minus one full frame */
1120 hwm = min(((pba << 10) * 9 / 10),
1121 ((pba << 10) - 2 * adapter->max_frame_size));
1122
1123 if (mac->type < e1000_82576) {
1124 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1125 fc->low_water = fc->high_water - 8;
1126 } else {
1127 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1128 fc->low_water = fc->high_water - 16;
1129 }
1130 fc->pause_time = 0xFFFF;
1131 fc->send_xon = 1;
1132 fc->type = fc->original_type;
1133
1134 /* disable receive for all VFs and wait one second */
1135 if (adapter->vfs_allocated_count) {
1136 int i;
1137 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1138 adapter->vf_data[i].clear_to_send = false;
1139
1140 /* ping all the active vfs to let them know we are going down */
1141 igb_ping_all_vfs(adapter);
1142
1143 /* disable transmits and receives */
1144 wr32(E1000_VFRE, 0);
1145 wr32(E1000_VFTE, 0);
1146 }
1147
1148 /* Allow time for pending master requests to run */
1149 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1150 wr32(E1000_WUC, 0);
1151
1152 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1153 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1154
1155 igb_update_mng_vlan(adapter);
1156
1157 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1158 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1159
1160 igb_reset_adaptive(&adapter->hw);
1161 igb_get_phy_info(&adapter->hw);
1162 }
1163
1164 static const struct net_device_ops igb_netdev_ops = {
1165 .ndo_open = igb_open,
1166 .ndo_stop = igb_close,
1167 .ndo_start_xmit = igb_xmit_frame_adv,
1168 .ndo_get_stats = igb_get_stats,
1169 .ndo_set_multicast_list = igb_set_multi,
1170 .ndo_set_mac_address = igb_set_mac,
1171 .ndo_change_mtu = igb_change_mtu,
1172 .ndo_do_ioctl = igb_ioctl,
1173 .ndo_tx_timeout = igb_tx_timeout,
1174 .ndo_validate_addr = eth_validate_addr,
1175 .ndo_vlan_rx_register = igb_vlan_rx_register,
1176 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1177 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1178 #ifdef CONFIG_NET_POLL_CONTROLLER
1179 .ndo_poll_controller = igb_netpoll,
1180 #endif
1181 };
1182
1183 /**
1184 * igb_probe - Device Initialization Routine
1185 * @pdev: PCI device information struct
1186 * @ent: entry in igb_pci_tbl
1187 *
1188 * Returns 0 on success, negative on failure
1189 *
1190 * igb_probe initializes an adapter identified by a pci_dev structure.
1191 * The OS initialization, configuring of the adapter private structure,
1192 * and a hardware reset occur.
1193 **/
1194 static int __devinit igb_probe(struct pci_dev *pdev,
1195 const struct pci_device_id *ent)
1196 {
1197 struct net_device *netdev;
1198 struct igb_adapter *adapter;
1199 struct e1000_hw *hw;
1200 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1201 unsigned long mmio_start, mmio_len;
1202 int err, pci_using_dac;
1203 u16 eeprom_data = 0;
1204 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1205 u32 part_num;
1206
1207 err = pci_enable_device_mem(pdev);
1208 if (err)
1209 return err;
1210
1211 pci_using_dac = 0;
1212 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1213 if (!err) {
1214 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1215 if (!err)
1216 pci_using_dac = 1;
1217 } else {
1218 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1219 if (err) {
1220 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1221 if (err) {
1222 dev_err(&pdev->dev, "No usable DMA "
1223 "configuration, aborting\n");
1224 goto err_dma;
1225 }
1226 }
1227 }
1228
1229 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1230 IORESOURCE_MEM),
1231 igb_driver_name);
1232 if (err)
1233 goto err_pci_reg;
1234
1235 err = pci_enable_pcie_error_reporting(pdev);
1236 if (err) {
1237 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1238 "0x%x\n", err);
1239 /* non-fatal, continue */
1240 }
1241
1242 pci_set_master(pdev);
1243 pci_save_state(pdev);
1244
1245 err = -ENOMEM;
1246 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1247 IGB_ABS_MAX_TX_QUEUES);
1248 if (!netdev)
1249 goto err_alloc_etherdev;
1250
1251 SET_NETDEV_DEV(netdev, &pdev->dev);
1252
1253 pci_set_drvdata(pdev, netdev);
1254 adapter = netdev_priv(netdev);
1255 adapter->netdev = netdev;
1256 adapter->pdev = pdev;
1257 hw = &adapter->hw;
1258 hw->back = adapter;
1259 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1260
1261 mmio_start = pci_resource_start(pdev, 0);
1262 mmio_len = pci_resource_len(pdev, 0);
1263
1264 err = -EIO;
1265 hw->hw_addr = ioremap(mmio_start, mmio_len);
1266 if (!hw->hw_addr)
1267 goto err_ioremap;
1268
1269 netdev->netdev_ops = &igb_netdev_ops;
1270 igb_set_ethtool_ops(netdev);
1271 netdev->watchdog_timeo = 5 * HZ;
1272
1273 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1274
1275 netdev->mem_start = mmio_start;
1276 netdev->mem_end = mmio_start + mmio_len;
1277
1278 /* PCI config space info */
1279 hw->vendor_id = pdev->vendor;
1280 hw->device_id = pdev->device;
1281 hw->revision_id = pdev->revision;
1282 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1283 hw->subsystem_device_id = pdev->subsystem_device;
1284
1285 /* setup the private structure */
1286 hw->back = adapter;
1287 /* Copy the default MAC, PHY and NVM function pointers */
1288 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1289 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1290 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1291 /* Initialize skew-specific constants */
1292 err = ei->get_invariants(hw);
1293 if (err)
1294 goto err_sw_init;
1295
1296 #ifdef CONFIG_PCI_IOV
1297 /* since iov functionality isn't critical to base device function we
1298 * can accept failure. If it fails we don't allow iov to be enabled */
1299 if (hw->mac.type == e1000_82576) {
1300 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1301 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1302 int i;
1303 unsigned char mac_addr[ETH_ALEN];
1304
1305 if (num_vfs) {
1306 adapter->vf_data = kcalloc(num_vfs,
1307 sizeof(struct vf_data_storage),
1308 GFP_KERNEL);
1309 if (!adapter->vf_data) {
1310 dev_err(&pdev->dev,
1311 "Could not allocate VF private data - "
1312 "IOV enable failed\n");
1313 } else {
1314 err = pci_enable_sriov(pdev, num_vfs);
1315 if (!err) {
1316 adapter->vfs_allocated_count = num_vfs;
1317 dev_info(&pdev->dev,
1318 "%d vfs allocated\n",
1319 num_vfs);
1320 for (i = 0;
1321 i < adapter->vfs_allocated_count;
1322 i++) {
1323 random_ether_addr(mac_addr);
1324 igb_set_vf_mac(adapter, i,
1325 mac_addr);
1326 }
1327 } else {
1328 kfree(adapter->vf_data);
1329 adapter->vf_data = NULL;
1330 }
1331 }
1332 }
1333 }
1334
1335 #endif
1336 /* setup the private structure */
1337 err = igb_sw_init(adapter);
1338 if (err)
1339 goto err_sw_init;
1340
1341 igb_get_bus_info_pcie(hw);
1342
1343 /* set flags */
1344 switch (hw->mac.type) {
1345 case e1000_82575:
1346 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1347 break;
1348 case e1000_82576:
1349 default:
1350 break;
1351 }
1352
1353 hw->phy.autoneg_wait_to_complete = false;
1354 hw->mac.adaptive_ifs = true;
1355
1356 /* Copper options */
1357 if (hw->phy.media_type == e1000_media_type_copper) {
1358 hw->phy.mdix = AUTO_ALL_MODES;
1359 hw->phy.disable_polarity_correction = false;
1360 hw->phy.ms_type = e1000_ms_hw_default;
1361 }
1362
1363 if (igb_check_reset_block(hw))
1364 dev_info(&pdev->dev,
1365 "PHY reset is blocked due to SOL/IDER session.\n");
1366
1367 netdev->features = NETIF_F_SG |
1368 NETIF_F_IP_CSUM |
1369 NETIF_F_HW_VLAN_TX |
1370 NETIF_F_HW_VLAN_RX |
1371 NETIF_F_HW_VLAN_FILTER;
1372
1373 netdev->features |= NETIF_F_IPV6_CSUM;
1374 netdev->features |= NETIF_F_TSO;
1375 netdev->features |= NETIF_F_TSO6;
1376
1377 netdev->features |= NETIF_F_GRO;
1378
1379 netdev->vlan_features |= NETIF_F_TSO;
1380 netdev->vlan_features |= NETIF_F_TSO6;
1381 netdev->vlan_features |= NETIF_F_IP_CSUM;
1382 netdev->vlan_features |= NETIF_F_SG;
1383
1384 if (pci_using_dac)
1385 netdev->features |= NETIF_F_HIGHDMA;
1386
1387 if (adapter->hw.mac.type == e1000_82576)
1388 netdev->features |= NETIF_F_SCTP_CSUM;
1389
1390 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1391
1392 /* before reading the NVM, reset the controller to put the device in a
1393 * known good starting state */
1394 hw->mac.ops.reset_hw(hw);
1395
1396 /* make sure the NVM is good */
1397 if (igb_validate_nvm_checksum(hw) < 0) {
1398 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1399 err = -EIO;
1400 goto err_eeprom;
1401 }
1402
1403 /* copy the MAC address out of the NVM */
1404 if (hw->mac.ops.read_mac_addr(hw))
1405 dev_err(&pdev->dev, "NVM Read Error\n");
1406
1407 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1408 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1409
1410 if (!is_valid_ether_addr(netdev->perm_addr)) {
1411 dev_err(&pdev->dev, "Invalid MAC Address\n");
1412 err = -EIO;
1413 goto err_eeprom;
1414 }
1415
1416 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1417 (unsigned long) adapter);
1418 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1419 (unsigned long) adapter);
1420
1421 INIT_WORK(&adapter->reset_task, igb_reset_task);
1422 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1423
1424 /* Initialize link properties that are user-changeable */
1425 adapter->fc_autoneg = true;
1426 hw->mac.autoneg = true;
1427 hw->phy.autoneg_advertised = 0x2f;
1428
1429 hw->fc.original_type = e1000_fc_default;
1430 hw->fc.type = e1000_fc_default;
1431
1432 adapter->itr_setting = IGB_DEFAULT_ITR;
1433 adapter->itr = IGB_START_ITR;
1434
1435 igb_validate_mdi_setting(hw);
1436
1437 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1438 * enable the ACPI Magic Packet filter
1439 */
1440
1441 if (hw->bus.func == 0)
1442 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1443 else if (hw->bus.func == 1)
1444 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1445
1446 if (eeprom_data & eeprom_apme_mask)
1447 adapter->eeprom_wol |= E1000_WUFC_MAG;
1448
1449 /* now that we have the eeprom settings, apply the special cases where
1450 * the eeprom may be wrong or the board simply won't support wake on
1451 * lan on a particular port */
1452 switch (pdev->device) {
1453 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1454 adapter->eeprom_wol = 0;
1455 break;
1456 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1457 case E1000_DEV_ID_82576_FIBER:
1458 case E1000_DEV_ID_82576_SERDES:
1459 /* Wake events only supported on port A for dual fiber
1460 * regardless of eeprom setting */
1461 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1462 adapter->eeprom_wol = 0;
1463 break;
1464 case E1000_DEV_ID_82576_QUAD_COPPER:
1465 /* if quad port adapter, disable WoL on all but port A */
1466 if (global_quad_port_a != 0)
1467 adapter->eeprom_wol = 0;
1468 else
1469 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1470 /* Reset for multiple quad port adapters */
1471 if (++global_quad_port_a == 4)
1472 global_quad_port_a = 0;
1473 break;
1474 }
1475
1476 /* initialize the wol settings based on the eeprom settings */
1477 adapter->wol = adapter->eeprom_wol;
1478 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1479
1480 /* reset the hardware with the new settings */
1481 igb_reset(adapter);
1482
1483 /* let the f/w know that the h/w is now under the control of the
1484 * driver. */
1485 igb_get_hw_control(adapter);
1486
1487 strcpy(netdev->name, "eth%d");
1488 err = register_netdev(netdev);
1489 if (err)
1490 goto err_register;
1491
1492 /* carrier off reporting is important to ethtool even BEFORE open */
1493 netif_carrier_off(netdev);
1494
1495 #ifdef CONFIG_IGB_DCA
1496 if (dca_add_requester(&pdev->dev) == 0) {
1497 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1498 dev_info(&pdev->dev, "DCA enabled\n");
1499 igb_setup_dca(adapter);
1500 }
1501 #endif
1502
1503 /*
1504 * Initialize hardware timer: we keep it running just in case
1505 * that some program needs it later on.
1506 */
1507 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1508 adapter->cycles.read = igb_read_clock;
1509 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1510 adapter->cycles.mult = 1;
1511 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1512 wr32(E1000_TIMINCA,
1513 (1<<24) |
1514 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1515 #if 0
1516 /*
1517 * Avoid rollover while we initialize by resetting the time counter.
1518 */
1519 wr32(E1000_SYSTIML, 0x00000000);
1520 wr32(E1000_SYSTIMH, 0x00000000);
1521 #else
1522 /*
1523 * Set registers so that rollover occurs soon to test this.
1524 */
1525 wr32(E1000_SYSTIML, 0x00000000);
1526 wr32(E1000_SYSTIMH, 0xFF800000);
1527 #endif
1528 wrfl();
1529 timecounter_init(&adapter->clock,
1530 &adapter->cycles,
1531 ktime_to_ns(ktime_get_real()));
1532
1533 /*
1534 * Synchronize our NIC clock against system wall clock. NIC
1535 * time stamp reading requires ~3us per sample, each sample
1536 * was pretty stable even under load => only require 10
1537 * samples for each offset comparison.
1538 */
1539 memset(&adapter->compare, 0, sizeof(adapter->compare));
1540 adapter->compare.source = &adapter->clock;
1541 adapter->compare.target = ktime_get_real;
1542 adapter->compare.num_samples = 10;
1543 timecompare_update(&adapter->compare, 0);
1544
1545 #ifdef DEBUG
1546 {
1547 char buffer[160];
1548 printk(KERN_DEBUG
1549 "igb: %s: hw %p initialized timer\n",
1550 igb_get_time_str(adapter, buffer),
1551 &adapter->hw);
1552 }
1553 #endif
1554
1555 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1556 /* print bus type/speed/width info */
1557 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1558 netdev->name,
1559 ((hw->bus.speed == e1000_bus_speed_2500)
1560 ? "2.5Gb/s" : "unknown"),
1561 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1562 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1563 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1564 "unknown"),
1565 netdev->dev_addr);
1566
1567 igb_read_part_num(hw, &part_num);
1568 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1569 (part_num >> 8), (part_num & 0xff));
1570
1571 dev_info(&pdev->dev,
1572 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1573 adapter->msix_entries ? "MSI-X" :
1574 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1575 adapter->num_rx_queues, adapter->num_tx_queues);
1576
1577 return 0;
1578
1579 err_register:
1580 igb_release_hw_control(adapter);
1581 err_eeprom:
1582 if (!igb_check_reset_block(hw))
1583 igb_reset_phy(hw);
1584
1585 if (hw->flash_address)
1586 iounmap(hw->flash_address);
1587
1588 igb_free_queues(adapter);
1589 err_sw_init:
1590 iounmap(hw->hw_addr);
1591 err_ioremap:
1592 free_netdev(netdev);
1593 err_alloc_etherdev:
1594 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1595 IORESOURCE_MEM));
1596 err_pci_reg:
1597 err_dma:
1598 pci_disable_device(pdev);
1599 return err;
1600 }
1601
1602 /**
1603 * igb_remove - Device Removal Routine
1604 * @pdev: PCI device information struct
1605 *
1606 * igb_remove is called by the PCI subsystem to alert the driver
1607 * that it should release a PCI device. The could be caused by a
1608 * Hot-Plug event, or because the driver is going to be removed from
1609 * memory.
1610 **/
1611 static void __devexit igb_remove(struct pci_dev *pdev)
1612 {
1613 struct net_device *netdev = pci_get_drvdata(pdev);
1614 struct igb_adapter *adapter = netdev_priv(netdev);
1615 struct e1000_hw *hw = &adapter->hw;
1616 int err;
1617
1618 /* flush_scheduled work may reschedule our watchdog task, so
1619 * explicitly disable watchdog tasks from being rescheduled */
1620 set_bit(__IGB_DOWN, &adapter->state);
1621 del_timer_sync(&adapter->watchdog_timer);
1622 del_timer_sync(&adapter->phy_info_timer);
1623
1624 flush_scheduled_work();
1625
1626 #ifdef CONFIG_IGB_DCA
1627 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1628 dev_info(&pdev->dev, "DCA disabled\n");
1629 dca_remove_requester(&pdev->dev);
1630 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1631 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1632 }
1633 #endif
1634
1635 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1636 * would have already happened in close and is redundant. */
1637 igb_release_hw_control(adapter);
1638
1639 unregister_netdev(netdev);
1640
1641 if (!igb_check_reset_block(&adapter->hw))
1642 igb_reset_phy(&adapter->hw);
1643
1644 igb_reset_interrupt_capability(adapter);
1645
1646 igb_free_queues(adapter);
1647
1648 #ifdef CONFIG_PCI_IOV
1649 /* reclaim resources allocated to VFs */
1650 if (adapter->vf_data) {
1651 /* disable iov and allow time for transactions to clear */
1652 pci_disable_sriov(pdev);
1653 msleep(500);
1654
1655 kfree(adapter->vf_data);
1656 adapter->vf_data = NULL;
1657 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1658 msleep(100);
1659 dev_info(&pdev->dev, "IOV Disabled\n");
1660 }
1661 #endif
1662 iounmap(hw->hw_addr);
1663 if (hw->flash_address)
1664 iounmap(hw->flash_address);
1665 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1666 IORESOURCE_MEM));
1667
1668 free_netdev(netdev);
1669
1670 err = pci_disable_pcie_error_reporting(pdev);
1671 if (err)
1672 dev_err(&pdev->dev,
1673 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1674
1675 pci_disable_device(pdev);
1676 }
1677
1678 /**
1679 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1680 * @adapter: board private structure to initialize
1681 *
1682 * igb_sw_init initializes the Adapter private data structure.
1683 * Fields are initialized based on PCI device information and
1684 * OS network device settings (MTU size).
1685 **/
1686 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1687 {
1688 struct e1000_hw *hw = &adapter->hw;
1689 struct net_device *netdev = adapter->netdev;
1690 struct pci_dev *pdev = adapter->pdev;
1691
1692 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1693
1694 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1695 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1696 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1697 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1698 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1699 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1700
1701 /* This call may decrease the number of queues depending on
1702 * interrupt mode. */
1703 igb_set_interrupt_capability(adapter);
1704
1705 if (igb_alloc_queues(adapter)) {
1706 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1707 return -ENOMEM;
1708 }
1709
1710 /* Explicitly disable IRQ since the NIC can be in any state. */
1711 igb_irq_disable(adapter);
1712
1713 set_bit(__IGB_DOWN, &adapter->state);
1714 return 0;
1715 }
1716
1717 /**
1718 * igb_open - Called when a network interface is made active
1719 * @netdev: network interface device structure
1720 *
1721 * Returns 0 on success, negative value on failure
1722 *
1723 * The open entry point is called when a network interface is made
1724 * active by the system (IFF_UP). At this point all resources needed
1725 * for transmit and receive operations are allocated, the interrupt
1726 * handler is registered with the OS, the watchdog timer is started,
1727 * and the stack is notified that the interface is ready.
1728 **/
1729 static int igb_open(struct net_device *netdev)
1730 {
1731 struct igb_adapter *adapter = netdev_priv(netdev);
1732 struct e1000_hw *hw = &adapter->hw;
1733 int err;
1734 int i;
1735
1736 /* disallow open during test */
1737 if (test_bit(__IGB_TESTING, &adapter->state))
1738 return -EBUSY;
1739
1740 netif_carrier_off(netdev);
1741
1742 /* allocate transmit descriptors */
1743 err = igb_setup_all_tx_resources(adapter);
1744 if (err)
1745 goto err_setup_tx;
1746
1747 /* allocate receive descriptors */
1748 err = igb_setup_all_rx_resources(adapter);
1749 if (err)
1750 goto err_setup_rx;
1751
1752 /* e1000_power_up_phy(adapter); */
1753
1754 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1755 if ((adapter->hw.mng_cookie.status &
1756 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1757 igb_update_mng_vlan(adapter);
1758
1759 /* before we allocate an interrupt, we must be ready to handle it.
1760 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1761 * as soon as we call pci_request_irq, so we have to setup our
1762 * clean_rx handler before we do so. */
1763 igb_configure(adapter);
1764
1765 igb_vmm_control(adapter);
1766 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1767 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1768
1769 err = igb_request_irq(adapter);
1770 if (err)
1771 goto err_req_irq;
1772
1773 /* From here on the code is the same as igb_up() */
1774 clear_bit(__IGB_DOWN, &adapter->state);
1775
1776 for (i = 0; i < adapter->num_rx_queues; i++)
1777 napi_enable(&adapter->rx_ring[i].napi);
1778
1779 /* Clear any pending interrupts. */
1780 rd32(E1000_ICR);
1781
1782 igb_irq_enable(adapter);
1783
1784 netif_tx_start_all_queues(netdev);
1785
1786 /* Fire a link status change interrupt to start the watchdog. */
1787 wr32(E1000_ICS, E1000_ICS_LSC);
1788
1789 return 0;
1790
1791 err_req_irq:
1792 igb_release_hw_control(adapter);
1793 /* e1000_power_down_phy(adapter); */
1794 igb_free_all_rx_resources(adapter);
1795 err_setup_rx:
1796 igb_free_all_tx_resources(adapter);
1797 err_setup_tx:
1798 igb_reset(adapter);
1799
1800 return err;
1801 }
1802
1803 /**
1804 * igb_close - Disables a network interface
1805 * @netdev: network interface device structure
1806 *
1807 * Returns 0, this is not allowed to fail
1808 *
1809 * The close entry point is called when an interface is de-activated
1810 * by the OS. The hardware is still under the driver's control, but
1811 * needs to be disabled. A global MAC reset is issued to stop the
1812 * hardware, and all transmit and receive resources are freed.
1813 **/
1814 static int igb_close(struct net_device *netdev)
1815 {
1816 struct igb_adapter *adapter = netdev_priv(netdev);
1817
1818 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1819 igb_down(adapter);
1820
1821 igb_free_irq(adapter);
1822
1823 igb_free_all_tx_resources(adapter);
1824 igb_free_all_rx_resources(adapter);
1825
1826 /* kill manageability vlan ID if supported, but not if a vlan with
1827 * the same ID is registered on the host OS (let 8021q kill it) */
1828 if ((adapter->hw.mng_cookie.status &
1829 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1830 !(adapter->vlgrp &&
1831 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1832 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1833
1834 return 0;
1835 }
1836
1837 /**
1838 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1839 * @adapter: board private structure
1840 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1841 *
1842 * Return 0 on success, negative on failure
1843 **/
1844 int igb_setup_tx_resources(struct igb_adapter *adapter,
1845 struct igb_ring *tx_ring)
1846 {
1847 struct pci_dev *pdev = adapter->pdev;
1848 int size;
1849
1850 size = sizeof(struct igb_buffer) * tx_ring->count;
1851 tx_ring->buffer_info = vmalloc(size);
1852 if (!tx_ring->buffer_info)
1853 goto err;
1854 memset(tx_ring->buffer_info, 0, size);
1855
1856 /* round up to nearest 4K */
1857 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1858 tx_ring->size = ALIGN(tx_ring->size, 4096);
1859
1860 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1861 &tx_ring->dma);
1862
1863 if (!tx_ring->desc)
1864 goto err;
1865
1866 tx_ring->adapter = adapter;
1867 tx_ring->next_to_use = 0;
1868 tx_ring->next_to_clean = 0;
1869 return 0;
1870
1871 err:
1872 vfree(tx_ring->buffer_info);
1873 dev_err(&adapter->pdev->dev,
1874 "Unable to allocate memory for the transmit descriptor ring\n");
1875 return -ENOMEM;
1876 }
1877
1878 /**
1879 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1880 * (Descriptors) for all queues
1881 * @adapter: board private structure
1882 *
1883 * Return 0 on success, negative on failure
1884 **/
1885 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1886 {
1887 int i, err = 0;
1888 int r_idx;
1889
1890 for (i = 0; i < adapter->num_tx_queues; i++) {
1891 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1892 if (err) {
1893 dev_err(&adapter->pdev->dev,
1894 "Allocation for Tx Queue %u failed\n", i);
1895 for (i--; i >= 0; i--)
1896 igb_free_tx_resources(&adapter->tx_ring[i]);
1897 break;
1898 }
1899 }
1900
1901 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1902 r_idx = i % adapter->num_tx_queues;
1903 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1904 }
1905 return err;
1906 }
1907
1908 /**
1909 * igb_configure_tx - Configure transmit Unit after Reset
1910 * @adapter: board private structure
1911 *
1912 * Configure the Tx unit of the MAC after a reset.
1913 **/
1914 static void igb_configure_tx(struct igb_adapter *adapter)
1915 {
1916 u64 tdba;
1917 struct e1000_hw *hw = &adapter->hw;
1918 u32 tctl;
1919 u32 txdctl, txctrl;
1920 int i, j;
1921
1922 for (i = 0; i < adapter->num_tx_queues; i++) {
1923 struct igb_ring *ring = &adapter->tx_ring[i];
1924 j = ring->reg_idx;
1925 wr32(E1000_TDLEN(j),
1926 ring->count * sizeof(union e1000_adv_tx_desc));
1927 tdba = ring->dma;
1928 wr32(E1000_TDBAL(j),
1929 tdba & 0x00000000ffffffffULL);
1930 wr32(E1000_TDBAH(j), tdba >> 32);
1931
1932 ring->head = E1000_TDH(j);
1933 ring->tail = E1000_TDT(j);
1934 writel(0, hw->hw_addr + ring->tail);
1935 writel(0, hw->hw_addr + ring->head);
1936 txdctl = rd32(E1000_TXDCTL(j));
1937 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1938 wr32(E1000_TXDCTL(j), txdctl);
1939
1940 /* Turn off Relaxed Ordering on head write-backs. The
1941 * writebacks MUST be delivered in order or it will
1942 * completely screw up our bookeeping.
1943 */
1944 txctrl = rd32(E1000_DCA_TXCTRL(j));
1945 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1946 wr32(E1000_DCA_TXCTRL(j), txctrl);
1947 }
1948
1949 /* disable queue 0 to prevent tail bump w/o re-configuration */
1950 if (adapter->vfs_allocated_count)
1951 wr32(E1000_TXDCTL(0), 0);
1952
1953 /* Program the Transmit Control Register */
1954 tctl = rd32(E1000_TCTL);
1955 tctl &= ~E1000_TCTL_CT;
1956 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1957 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1958
1959 igb_config_collision_dist(hw);
1960
1961 /* Setup Transmit Descriptor Settings for eop descriptor */
1962 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1963
1964 /* Enable transmits */
1965 tctl |= E1000_TCTL_EN;
1966
1967 wr32(E1000_TCTL, tctl);
1968 }
1969
1970 /**
1971 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1972 * @adapter: board private structure
1973 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1974 *
1975 * Returns 0 on success, negative on failure
1976 **/
1977 int igb_setup_rx_resources(struct igb_adapter *adapter,
1978 struct igb_ring *rx_ring)
1979 {
1980 struct pci_dev *pdev = adapter->pdev;
1981 int size, desc_len;
1982
1983 size = sizeof(struct igb_buffer) * rx_ring->count;
1984 rx_ring->buffer_info = vmalloc(size);
1985 if (!rx_ring->buffer_info)
1986 goto err;
1987 memset(rx_ring->buffer_info, 0, size);
1988
1989 desc_len = sizeof(union e1000_adv_rx_desc);
1990
1991 /* Round up to nearest 4K */
1992 rx_ring->size = rx_ring->count * desc_len;
1993 rx_ring->size = ALIGN(rx_ring->size, 4096);
1994
1995 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1996 &rx_ring->dma);
1997
1998 if (!rx_ring->desc)
1999 goto err;
2000
2001 rx_ring->next_to_clean = 0;
2002 rx_ring->next_to_use = 0;
2003
2004 rx_ring->adapter = adapter;
2005
2006 return 0;
2007
2008 err:
2009 vfree(rx_ring->buffer_info);
2010 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
2011 "the receive descriptor ring\n");
2012 return -ENOMEM;
2013 }
2014
2015 /**
2016 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2017 * (Descriptors) for all queues
2018 * @adapter: board private structure
2019 *
2020 * Return 0 on success, negative on failure
2021 **/
2022 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2023 {
2024 int i, err = 0;
2025
2026 for (i = 0; i < adapter->num_rx_queues; i++) {
2027 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2028 if (err) {
2029 dev_err(&adapter->pdev->dev,
2030 "Allocation for Rx Queue %u failed\n", i);
2031 for (i--; i >= 0; i--)
2032 igb_free_rx_resources(&adapter->rx_ring[i]);
2033 break;
2034 }
2035 }
2036
2037 return err;
2038 }
2039
2040 /**
2041 * igb_setup_rctl - configure the receive control registers
2042 * @adapter: Board private structure
2043 **/
2044 static void igb_setup_rctl(struct igb_adapter *adapter)
2045 {
2046 struct e1000_hw *hw = &adapter->hw;
2047 u32 rctl;
2048 u32 srrctl = 0;
2049 int i;
2050
2051 rctl = rd32(E1000_RCTL);
2052
2053 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2054 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2055
2056 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2057 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2058
2059 /*
2060 * enable stripping of CRC. It's unlikely this will break BMC
2061 * redirection as it did with e1000. Newer features require
2062 * that the HW strips the CRC.
2063 */
2064 rctl |= E1000_RCTL_SECRC;
2065
2066 /*
2067 * disable store bad packets and clear size bits.
2068 */
2069 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2070
2071 /* enable LPE when to prevent packets larger than max_frame_size */
2072 rctl |= E1000_RCTL_LPE;
2073
2074 /* Setup buffer sizes */
2075 switch (adapter->rx_buffer_len) {
2076 case IGB_RXBUFFER_256:
2077 rctl |= E1000_RCTL_SZ_256;
2078 break;
2079 case IGB_RXBUFFER_512:
2080 rctl |= E1000_RCTL_SZ_512;
2081 break;
2082 default:
2083 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2084 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2085 break;
2086 }
2087
2088 /* 82575 and greater support packet-split where the protocol
2089 * header is placed in skb->data and the packet data is
2090 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2091 * In the case of a non-split, skb->data is linearly filled,
2092 * followed by the page buffers. Therefore, skb->data is
2093 * sized to hold the largest protocol header.
2094 */
2095 /* allocations using alloc_page take too long for regular MTU
2096 * so only enable packet split for jumbo frames */
2097 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2098 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2099 srrctl |= adapter->rx_ps_hdr_size <<
2100 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2101 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2102 } else {
2103 adapter->rx_ps_hdr_size = 0;
2104 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2105 }
2106
2107 /* Attention!!! For SR-IOV PF driver operations you must enable
2108 * queue drop for all VF and PF queues to prevent head of line blocking
2109 * if an un-trusted VF does not provide descriptors to hardware.
2110 */
2111 if (adapter->vfs_allocated_count) {
2112 u32 vmolr;
2113
2114 /* set all queue drop enable bits */
2115 wr32(E1000_QDE, ALL_QUEUES);
2116 srrctl |= E1000_SRRCTL_DROP_EN;
2117
2118 /* disable queue 0 to prevent tail write w/o re-config */
2119 wr32(E1000_RXDCTL(0), 0);
2120
2121 vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2122 if (rctl & E1000_RCTL_LPE)
2123 vmolr |= E1000_VMOLR_LPE;
2124 if (adapter->num_rx_queues > 1)
2125 vmolr |= E1000_VMOLR_RSSE;
2126 wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2127 }
2128
2129 for (i = 0; i < adapter->num_rx_queues; i++) {
2130 int j = adapter->rx_ring[i].reg_idx;
2131 wr32(E1000_SRRCTL(j), srrctl);
2132 }
2133
2134 wr32(E1000_RCTL, rctl);
2135 }
2136
2137 /**
2138 * igb_rlpml_set - set maximum receive packet size
2139 * @adapter: board private structure
2140 *
2141 * Configure maximum receivable packet size.
2142 **/
2143 static void igb_rlpml_set(struct igb_adapter *adapter)
2144 {
2145 u32 max_frame_size = adapter->max_frame_size;
2146 struct e1000_hw *hw = &adapter->hw;
2147 u16 pf_id = adapter->vfs_allocated_count;
2148
2149 if (adapter->vlgrp)
2150 max_frame_size += VLAN_TAG_SIZE;
2151
2152 /* if vfs are enabled we set RLPML to the largest possible request
2153 * size and set the VMOLR RLPML to the size we need */
2154 if (pf_id) {
2155 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2156 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2157 }
2158
2159 wr32(E1000_RLPML, max_frame_size);
2160 }
2161
2162 /**
2163 * igb_configure_vt_default_pool - Configure VT default pool
2164 * @adapter: board private structure
2165 *
2166 * Configure the default pool
2167 **/
2168 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2169 {
2170 struct e1000_hw *hw = &adapter->hw;
2171 u16 pf_id = adapter->vfs_allocated_count;
2172 u32 vtctl;
2173
2174 /* not in sr-iov mode - do nothing */
2175 if (!pf_id)
2176 return;
2177
2178 vtctl = rd32(E1000_VT_CTL);
2179 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2180 E1000_VT_CTL_DISABLE_DEF_POOL);
2181 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2182 wr32(E1000_VT_CTL, vtctl);
2183 }
2184
2185 /**
2186 * igb_configure_rx - Configure receive Unit after Reset
2187 * @adapter: board private structure
2188 *
2189 * Configure the Rx unit of the MAC after a reset.
2190 **/
2191 static void igb_configure_rx(struct igb_adapter *adapter)
2192 {
2193 u64 rdba;
2194 struct e1000_hw *hw = &adapter->hw;
2195 u32 rctl, rxcsum;
2196 u32 rxdctl;
2197 int i;
2198
2199 /* disable receives while setting up the descriptors */
2200 rctl = rd32(E1000_RCTL);
2201 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2202 wrfl();
2203 mdelay(10);
2204
2205 if (adapter->itr_setting > 3)
2206 wr32(E1000_ITR, adapter->itr);
2207
2208 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2209 * the Base and Length of the Rx Descriptor Ring */
2210 for (i = 0; i < adapter->num_rx_queues; i++) {
2211 struct igb_ring *ring = &adapter->rx_ring[i];
2212 int j = ring->reg_idx;
2213 rdba = ring->dma;
2214 wr32(E1000_RDBAL(j),
2215 rdba & 0x00000000ffffffffULL);
2216 wr32(E1000_RDBAH(j), rdba >> 32);
2217 wr32(E1000_RDLEN(j),
2218 ring->count * sizeof(union e1000_adv_rx_desc));
2219
2220 ring->head = E1000_RDH(j);
2221 ring->tail = E1000_RDT(j);
2222 writel(0, hw->hw_addr + ring->tail);
2223 writel(0, hw->hw_addr + ring->head);
2224
2225 rxdctl = rd32(E1000_RXDCTL(j));
2226 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2227 rxdctl &= 0xFFF00000;
2228 rxdctl |= IGB_RX_PTHRESH;
2229 rxdctl |= IGB_RX_HTHRESH << 8;
2230 rxdctl |= IGB_RX_WTHRESH << 16;
2231 wr32(E1000_RXDCTL(j), rxdctl);
2232 }
2233
2234 if (adapter->num_rx_queues > 1) {
2235 u32 random[10];
2236 u32 mrqc;
2237 u32 j, shift;
2238 union e1000_reta {
2239 u32 dword;
2240 u8 bytes[4];
2241 } reta;
2242
2243 get_random_bytes(&random[0], 40);
2244
2245 if (hw->mac.type >= e1000_82576)
2246 shift = 0;
2247 else
2248 shift = 6;
2249 for (j = 0; j < (32 * 4); j++) {
2250 reta.bytes[j & 3] =
2251 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2252 if ((j & 3) == 3)
2253 writel(reta.dword,
2254 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2255 }
2256 if (adapter->vfs_allocated_count)
2257 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2258 else
2259 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2260
2261 /* Fill out hash function seeds */
2262 for (j = 0; j < 10; j++)
2263 array_wr32(E1000_RSSRK(0), j, random[j]);
2264
2265 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2266 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2267 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2268 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2269 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2270 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2271 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2272 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2273
2274 wr32(E1000_MRQC, mrqc);
2275 } else if (adapter->vfs_allocated_count) {
2276 /* Enable multi-queue for sr-iov */
2277 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2278 }
2279
2280 /* Enable Receive Checksum Offload for TCP and UDP */
2281 rxcsum = rd32(E1000_RXCSUM);
2282 /* Disable raw packet checksumming */
2283 rxcsum |= E1000_RXCSUM_PCSD;
2284
2285 if (adapter->hw.mac.type == e1000_82576)
2286 /* Enable Receive Checksum Offload for SCTP */
2287 rxcsum |= E1000_RXCSUM_CRCOFL;
2288
2289 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2290 wr32(E1000_RXCSUM, rxcsum);
2291
2292 /* Set the default pool for the PF's first queue */
2293 igb_configure_vt_default_pool(adapter);
2294
2295 igb_rlpml_set(adapter);
2296
2297 /* Enable Receives */
2298 wr32(E1000_RCTL, rctl);
2299 }
2300
2301 /**
2302 * igb_free_tx_resources - Free Tx Resources per Queue
2303 * @tx_ring: Tx descriptor ring for a specific queue
2304 *
2305 * Free all transmit software resources
2306 **/
2307 void igb_free_tx_resources(struct igb_ring *tx_ring)
2308 {
2309 struct pci_dev *pdev = tx_ring->adapter->pdev;
2310
2311 igb_clean_tx_ring(tx_ring);
2312
2313 vfree(tx_ring->buffer_info);
2314 tx_ring->buffer_info = NULL;
2315
2316 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2317
2318 tx_ring->desc = NULL;
2319 }
2320
2321 /**
2322 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2323 * @adapter: board private structure
2324 *
2325 * Free all transmit software resources
2326 **/
2327 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2328 {
2329 int i;
2330
2331 for (i = 0; i < adapter->num_tx_queues; i++)
2332 igb_free_tx_resources(&adapter->tx_ring[i]);
2333 }
2334
2335 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2336 struct igb_buffer *buffer_info)
2337 {
2338 buffer_info->dma = 0;
2339 if (buffer_info->skb) {
2340 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2341 DMA_TO_DEVICE);
2342 dev_kfree_skb_any(buffer_info->skb);
2343 buffer_info->skb = NULL;
2344 }
2345 buffer_info->time_stamp = 0;
2346 /* buffer_info must be completely set up in the transmit path */
2347 }
2348
2349 /**
2350 * igb_clean_tx_ring - Free Tx Buffers
2351 * @tx_ring: ring to be cleaned
2352 **/
2353 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2354 {
2355 struct igb_adapter *adapter = tx_ring->adapter;
2356 struct igb_buffer *buffer_info;
2357 unsigned long size;
2358 unsigned int i;
2359
2360 if (!tx_ring->buffer_info)
2361 return;
2362 /* Free all the Tx ring sk_buffs */
2363
2364 for (i = 0; i < tx_ring->count; i++) {
2365 buffer_info = &tx_ring->buffer_info[i];
2366 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2367 }
2368
2369 size = sizeof(struct igb_buffer) * tx_ring->count;
2370 memset(tx_ring->buffer_info, 0, size);
2371
2372 /* Zero out the descriptor ring */
2373
2374 memset(tx_ring->desc, 0, tx_ring->size);
2375
2376 tx_ring->next_to_use = 0;
2377 tx_ring->next_to_clean = 0;
2378
2379 writel(0, adapter->hw.hw_addr + tx_ring->head);
2380 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2381 }
2382
2383 /**
2384 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2385 * @adapter: board private structure
2386 **/
2387 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2388 {
2389 int i;
2390
2391 for (i = 0; i < adapter->num_tx_queues; i++)
2392 igb_clean_tx_ring(&adapter->tx_ring[i]);
2393 }
2394
2395 /**
2396 * igb_free_rx_resources - Free Rx Resources
2397 * @rx_ring: ring to clean the resources from
2398 *
2399 * Free all receive software resources
2400 **/
2401 void igb_free_rx_resources(struct igb_ring *rx_ring)
2402 {
2403 struct pci_dev *pdev = rx_ring->adapter->pdev;
2404
2405 igb_clean_rx_ring(rx_ring);
2406
2407 vfree(rx_ring->buffer_info);
2408 rx_ring->buffer_info = NULL;
2409
2410 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2411
2412 rx_ring->desc = NULL;
2413 }
2414
2415 /**
2416 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2417 * @adapter: board private structure
2418 *
2419 * Free all receive software resources
2420 **/
2421 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2422 {
2423 int i;
2424
2425 for (i = 0; i < adapter->num_rx_queues; i++)
2426 igb_free_rx_resources(&adapter->rx_ring[i]);
2427 }
2428
2429 /**
2430 * igb_clean_rx_ring - Free Rx Buffers per Queue
2431 * @rx_ring: ring to free buffers from
2432 **/
2433 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2434 {
2435 struct igb_adapter *adapter = rx_ring->adapter;
2436 struct igb_buffer *buffer_info;
2437 struct pci_dev *pdev = adapter->pdev;
2438 unsigned long size;
2439 unsigned int i;
2440
2441 if (!rx_ring->buffer_info)
2442 return;
2443 /* Free all the Rx ring sk_buffs */
2444 for (i = 0; i < rx_ring->count; i++) {
2445 buffer_info = &rx_ring->buffer_info[i];
2446 if (buffer_info->dma) {
2447 if (adapter->rx_ps_hdr_size)
2448 pci_unmap_single(pdev, buffer_info->dma,
2449 adapter->rx_ps_hdr_size,
2450 PCI_DMA_FROMDEVICE);
2451 else
2452 pci_unmap_single(pdev, buffer_info->dma,
2453 adapter->rx_buffer_len,
2454 PCI_DMA_FROMDEVICE);
2455 buffer_info->dma = 0;
2456 }
2457
2458 if (buffer_info->skb) {
2459 dev_kfree_skb(buffer_info->skb);
2460 buffer_info->skb = NULL;
2461 }
2462 if (buffer_info->page) {
2463 if (buffer_info->page_dma)
2464 pci_unmap_page(pdev, buffer_info->page_dma,
2465 PAGE_SIZE / 2,
2466 PCI_DMA_FROMDEVICE);
2467 put_page(buffer_info->page);
2468 buffer_info->page = NULL;
2469 buffer_info->page_dma = 0;
2470 buffer_info->page_offset = 0;
2471 }
2472 }
2473
2474 size = sizeof(struct igb_buffer) * rx_ring->count;
2475 memset(rx_ring->buffer_info, 0, size);
2476
2477 /* Zero out the descriptor ring */
2478 memset(rx_ring->desc, 0, rx_ring->size);
2479
2480 rx_ring->next_to_clean = 0;
2481 rx_ring->next_to_use = 0;
2482
2483 writel(0, adapter->hw.hw_addr + rx_ring->head);
2484 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2485 }
2486
2487 /**
2488 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2489 * @adapter: board private structure
2490 **/
2491 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2492 {
2493 int i;
2494
2495 for (i = 0; i < adapter->num_rx_queues; i++)
2496 igb_clean_rx_ring(&adapter->rx_ring[i]);
2497 }
2498
2499 /**
2500 * igb_set_mac - Change the Ethernet Address of the NIC
2501 * @netdev: network interface device structure
2502 * @p: pointer to an address structure
2503 *
2504 * Returns 0 on success, negative on failure
2505 **/
2506 static int igb_set_mac(struct net_device *netdev, void *p)
2507 {
2508 struct igb_adapter *adapter = netdev_priv(netdev);
2509 struct e1000_hw *hw = &adapter->hw;
2510 struct sockaddr *addr = p;
2511
2512 if (!is_valid_ether_addr(addr->sa_data))
2513 return -EADDRNOTAVAIL;
2514
2515 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2516 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2517
2518 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2519
2520 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2521
2522 return 0;
2523 }
2524
2525 /**
2526 * igb_set_multi - Multicast and Promiscuous mode set
2527 * @netdev: network interface device structure
2528 *
2529 * The set_multi entry point is called whenever the multicast address
2530 * list or the network interface flags are updated. This routine is
2531 * responsible for configuring the hardware for proper multicast,
2532 * promiscuous mode, and all-multi behavior.
2533 **/
2534 static void igb_set_multi(struct net_device *netdev)
2535 {
2536 struct igb_adapter *adapter = netdev_priv(netdev);
2537 struct e1000_hw *hw = &adapter->hw;
2538 struct e1000_mac_info *mac = &hw->mac;
2539 struct dev_mc_list *mc_ptr;
2540 u8 *mta_list = NULL;
2541 u32 rctl;
2542 int i;
2543
2544 /* Check for Promiscuous and All Multicast modes */
2545
2546 rctl = rd32(E1000_RCTL);
2547
2548 if (netdev->flags & IFF_PROMISC) {
2549 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2550 rctl &= ~E1000_RCTL_VFE;
2551 } else {
2552 if (netdev->flags & IFF_ALLMULTI) {
2553 rctl |= E1000_RCTL_MPE;
2554 rctl &= ~E1000_RCTL_UPE;
2555 } else
2556 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2557 rctl |= E1000_RCTL_VFE;
2558 }
2559 wr32(E1000_RCTL, rctl);
2560
2561 if (netdev->mc_count) {
2562 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2563 if (!mta_list) {
2564 dev_err(&adapter->pdev->dev,
2565 "failed to allocate multicast filter list\n");
2566 return;
2567 }
2568 }
2569
2570 /* The shared function expects a packed array of only addresses. */
2571 mc_ptr = netdev->mc_list;
2572
2573 for (i = 0; i < netdev->mc_count; i++) {
2574 if (!mc_ptr)
2575 break;
2576 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2577 mc_ptr = mc_ptr->next;
2578 }
2579 igb_update_mc_addr_list(hw, mta_list, i,
2580 adapter->vfs_allocated_count + 1,
2581 mac->rar_entry_count);
2582
2583 igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
2584 igb_restore_vf_multicasts(adapter);
2585
2586 kfree(mta_list);
2587 }
2588
2589 /* Need to wait a few seconds after link up to get diagnostic information from
2590 * the phy */
2591 static void igb_update_phy_info(unsigned long data)
2592 {
2593 struct igb_adapter *adapter = (struct igb_adapter *) data;
2594 igb_get_phy_info(&adapter->hw);
2595 }
2596
2597 /**
2598 * igb_has_link - check shared code for link and determine up/down
2599 * @adapter: pointer to driver private info
2600 **/
2601 static bool igb_has_link(struct igb_adapter *adapter)
2602 {
2603 struct e1000_hw *hw = &adapter->hw;
2604 bool link_active = false;
2605 s32 ret_val = 0;
2606
2607 /* get_link_status is set on LSC (link status) interrupt or
2608 * rx sequence error interrupt. get_link_status will stay
2609 * false until the e1000_check_for_link establishes link
2610 * for copper adapters ONLY
2611 */
2612 switch (hw->phy.media_type) {
2613 case e1000_media_type_copper:
2614 if (hw->mac.get_link_status) {
2615 ret_val = hw->mac.ops.check_for_link(hw);
2616 link_active = !hw->mac.get_link_status;
2617 } else {
2618 link_active = true;
2619 }
2620 break;
2621 case e1000_media_type_fiber:
2622 ret_val = hw->mac.ops.check_for_link(hw);
2623 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2624 break;
2625 case e1000_media_type_internal_serdes:
2626 ret_val = hw->mac.ops.check_for_link(hw);
2627 link_active = hw->mac.serdes_has_link;
2628 break;
2629 default:
2630 case e1000_media_type_unknown:
2631 break;
2632 }
2633
2634 return link_active;
2635 }
2636
2637 /**
2638 * igb_watchdog - Timer Call-back
2639 * @data: pointer to adapter cast into an unsigned long
2640 **/
2641 static void igb_watchdog(unsigned long data)
2642 {
2643 struct igb_adapter *adapter = (struct igb_adapter *)data;
2644 /* Do the rest outside of interrupt context */
2645 schedule_work(&adapter->watchdog_task);
2646 }
2647
2648 static void igb_watchdog_task(struct work_struct *work)
2649 {
2650 struct igb_adapter *adapter = container_of(work,
2651 struct igb_adapter, watchdog_task);
2652 struct e1000_hw *hw = &adapter->hw;
2653 struct net_device *netdev = adapter->netdev;
2654 struct igb_ring *tx_ring = adapter->tx_ring;
2655 u32 link;
2656 u32 eics = 0;
2657 int i;
2658
2659 link = igb_has_link(adapter);
2660 if ((netif_carrier_ok(netdev)) && link)
2661 goto link_up;
2662
2663 if (link) {
2664 if (!netif_carrier_ok(netdev)) {
2665 u32 ctrl;
2666 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2667 &adapter->link_speed,
2668 &adapter->link_duplex);
2669
2670 ctrl = rd32(E1000_CTRL);
2671 /* Links status message must follow this format */
2672 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2673 "Flow Control: %s\n",
2674 netdev->name,
2675 adapter->link_speed,
2676 adapter->link_duplex == FULL_DUPLEX ?
2677 "Full Duplex" : "Half Duplex",
2678 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2679 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2680 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2681 E1000_CTRL_TFCE) ? "TX" : "None")));
2682
2683 /* tweak tx_queue_len according to speed/duplex and
2684 * adjust the timeout factor */
2685 netdev->tx_queue_len = adapter->tx_queue_len;
2686 adapter->tx_timeout_factor = 1;
2687 switch (adapter->link_speed) {
2688 case SPEED_10:
2689 netdev->tx_queue_len = 10;
2690 adapter->tx_timeout_factor = 14;
2691 break;
2692 case SPEED_100:
2693 netdev->tx_queue_len = 100;
2694 /* maybe add some timeout factor ? */
2695 break;
2696 }
2697
2698 netif_carrier_on(netdev);
2699
2700 igb_ping_all_vfs(adapter);
2701
2702 /* link state has changed, schedule phy info update */
2703 if (!test_bit(__IGB_DOWN, &adapter->state))
2704 mod_timer(&adapter->phy_info_timer,
2705 round_jiffies(jiffies + 2 * HZ));
2706 }
2707 } else {
2708 if (netif_carrier_ok(netdev)) {
2709 adapter->link_speed = 0;
2710 adapter->link_duplex = 0;
2711 /* Links status message must follow this format */
2712 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2713 netdev->name);
2714 netif_carrier_off(netdev);
2715
2716 igb_ping_all_vfs(adapter);
2717
2718 /* link state has changed, schedule phy info update */
2719 if (!test_bit(__IGB_DOWN, &adapter->state))
2720 mod_timer(&adapter->phy_info_timer,
2721 round_jiffies(jiffies + 2 * HZ));
2722 }
2723 }
2724
2725 link_up:
2726 igb_update_stats(adapter);
2727
2728 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2729 adapter->tpt_old = adapter->stats.tpt;
2730 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2731 adapter->colc_old = adapter->stats.colc;
2732
2733 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2734 adapter->gorc_old = adapter->stats.gorc;
2735 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2736 adapter->gotc_old = adapter->stats.gotc;
2737
2738 igb_update_adaptive(&adapter->hw);
2739
2740 if (!netif_carrier_ok(netdev)) {
2741 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2742 /* We've lost link, so the controller stops DMA,
2743 * but we've got queued Tx work that's never going
2744 * to get done, so reset controller to flush Tx.
2745 * (Do the reset outside of interrupt context). */
2746 adapter->tx_timeout_count++;
2747 schedule_work(&adapter->reset_task);
2748 /* return immediately since reset is imminent */
2749 return;
2750 }
2751 }
2752
2753 /* Cause software interrupt to ensure rx ring is cleaned */
2754 if (adapter->msix_entries) {
2755 for (i = 0; i < adapter->num_rx_queues; i++)
2756 eics |= adapter->rx_ring[i].eims_value;
2757 wr32(E1000_EICS, eics);
2758 } else {
2759 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2760 }
2761
2762 /* Force detection of hung controller every watchdog period */
2763 tx_ring->detect_tx_hung = true;
2764
2765 /* Reset the timer */
2766 if (!test_bit(__IGB_DOWN, &adapter->state))
2767 mod_timer(&adapter->watchdog_timer,
2768 round_jiffies(jiffies + 2 * HZ));
2769 }
2770
2771 enum latency_range {
2772 lowest_latency = 0,
2773 low_latency = 1,
2774 bulk_latency = 2,
2775 latency_invalid = 255
2776 };
2777
2778
2779 /**
2780 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2781 *
2782 * Stores a new ITR value based on strictly on packet size. This
2783 * algorithm is less sophisticated than that used in igb_update_itr,
2784 * due to the difficulty of synchronizing statistics across multiple
2785 * receive rings. The divisors and thresholds used by this fuction
2786 * were determined based on theoretical maximum wire speed and testing
2787 * data, in order to minimize response time while increasing bulk
2788 * throughput.
2789 * This functionality is controlled by the InterruptThrottleRate module
2790 * parameter (see igb_param.c)
2791 * NOTE: This function is called only when operating in a multiqueue
2792 * receive environment.
2793 * @rx_ring: pointer to ring
2794 **/
2795 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2796 {
2797 int new_val = rx_ring->itr_val;
2798 int avg_wire_size = 0;
2799 struct igb_adapter *adapter = rx_ring->adapter;
2800
2801 if (!rx_ring->total_packets)
2802 goto clear_counts; /* no packets, so don't do anything */
2803
2804 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2805 * ints/sec - ITR timer value of 120 ticks.
2806 */
2807 if (adapter->link_speed != SPEED_1000) {
2808 new_val = 120;
2809 goto set_itr_val;
2810 }
2811 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2812
2813 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2814 avg_wire_size += 24;
2815
2816 /* Don't starve jumbo frames */
2817 avg_wire_size = min(avg_wire_size, 3000);
2818
2819 /* Give a little boost to mid-size frames */
2820 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2821 new_val = avg_wire_size / 3;
2822 else
2823 new_val = avg_wire_size / 2;
2824
2825 set_itr_val:
2826 if (new_val != rx_ring->itr_val) {
2827 rx_ring->itr_val = new_val;
2828 rx_ring->set_itr = 1;
2829 }
2830 clear_counts:
2831 rx_ring->total_bytes = 0;
2832 rx_ring->total_packets = 0;
2833 }
2834
2835 /**
2836 * igb_update_itr - update the dynamic ITR value based on statistics
2837 * Stores a new ITR value based on packets and byte
2838 * counts during the last interrupt. The advantage of per interrupt
2839 * computation is faster updates and more accurate ITR for the current
2840 * traffic pattern. Constants in this function were computed
2841 * based on theoretical maximum wire speed and thresholds were set based
2842 * on testing data as well as attempting to minimize response time
2843 * while increasing bulk throughput.
2844 * this functionality is controlled by the InterruptThrottleRate module
2845 * parameter (see igb_param.c)
2846 * NOTE: These calculations are only valid when operating in a single-
2847 * queue environment.
2848 * @adapter: pointer to adapter
2849 * @itr_setting: current adapter->itr
2850 * @packets: the number of packets during this measurement interval
2851 * @bytes: the number of bytes during this measurement interval
2852 **/
2853 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2854 int packets, int bytes)
2855 {
2856 unsigned int retval = itr_setting;
2857
2858 if (packets == 0)
2859 goto update_itr_done;
2860
2861 switch (itr_setting) {
2862 case lowest_latency:
2863 /* handle TSO and jumbo frames */
2864 if (bytes/packets > 8000)
2865 retval = bulk_latency;
2866 else if ((packets < 5) && (bytes > 512))
2867 retval = low_latency;
2868 break;
2869 case low_latency: /* 50 usec aka 20000 ints/s */
2870 if (bytes > 10000) {
2871 /* this if handles the TSO accounting */
2872 if (bytes/packets > 8000) {
2873 retval = bulk_latency;
2874 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2875 retval = bulk_latency;
2876 } else if ((packets > 35)) {
2877 retval = lowest_latency;
2878 }
2879 } else if (bytes/packets > 2000) {
2880 retval = bulk_latency;
2881 } else if (packets <= 2 && bytes < 512) {
2882 retval = lowest_latency;
2883 }
2884 break;
2885 case bulk_latency: /* 250 usec aka 4000 ints/s */
2886 if (bytes > 25000) {
2887 if (packets > 35)
2888 retval = low_latency;
2889 } else if (bytes < 1500) {
2890 retval = low_latency;
2891 }
2892 break;
2893 }
2894
2895 update_itr_done:
2896 return retval;
2897 }
2898
2899 static void igb_set_itr(struct igb_adapter *adapter)
2900 {
2901 u16 current_itr;
2902 u32 new_itr = adapter->itr;
2903
2904 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2905 if (adapter->link_speed != SPEED_1000) {
2906 current_itr = 0;
2907 new_itr = 4000;
2908 goto set_itr_now;
2909 }
2910
2911 adapter->rx_itr = igb_update_itr(adapter,
2912 adapter->rx_itr,
2913 adapter->rx_ring->total_packets,
2914 adapter->rx_ring->total_bytes);
2915
2916 if (adapter->rx_ring->buddy) {
2917 adapter->tx_itr = igb_update_itr(adapter,
2918 adapter->tx_itr,
2919 adapter->tx_ring->total_packets,
2920 adapter->tx_ring->total_bytes);
2921 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2922 } else {
2923 current_itr = adapter->rx_itr;
2924 }
2925
2926 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2927 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2928 current_itr = low_latency;
2929
2930 switch (current_itr) {
2931 /* counts and packets in update_itr are dependent on these numbers */
2932 case lowest_latency:
2933 new_itr = 56; /* aka 70,000 ints/sec */
2934 break;
2935 case low_latency:
2936 new_itr = 196; /* aka 20,000 ints/sec */
2937 break;
2938 case bulk_latency:
2939 new_itr = 980; /* aka 4,000 ints/sec */
2940 break;
2941 default:
2942 break;
2943 }
2944
2945 set_itr_now:
2946 adapter->rx_ring->total_bytes = 0;
2947 adapter->rx_ring->total_packets = 0;
2948 if (adapter->rx_ring->buddy) {
2949 adapter->rx_ring->buddy->total_bytes = 0;
2950 adapter->rx_ring->buddy->total_packets = 0;
2951 }
2952
2953 if (new_itr != adapter->itr) {
2954 /* this attempts to bias the interrupt rate towards Bulk
2955 * by adding intermediate steps when interrupt rate is
2956 * increasing */
2957 new_itr = new_itr > adapter->itr ?
2958 max((new_itr * adapter->itr) /
2959 (new_itr + (adapter->itr >> 2)), new_itr) :
2960 new_itr;
2961 /* Don't write the value here; it resets the adapter's
2962 * internal timer, and causes us to delay far longer than
2963 * we should between interrupts. Instead, we write the ITR
2964 * value at the beginning of the next interrupt so the timing
2965 * ends up being correct.
2966 */
2967 adapter->itr = new_itr;
2968 adapter->rx_ring->itr_val = new_itr;
2969 adapter->rx_ring->set_itr = 1;
2970 }
2971
2972 return;
2973 }
2974
2975
2976 #define IGB_TX_FLAGS_CSUM 0x00000001
2977 #define IGB_TX_FLAGS_VLAN 0x00000002
2978 #define IGB_TX_FLAGS_TSO 0x00000004
2979 #define IGB_TX_FLAGS_IPV4 0x00000008
2980 #define IGB_TX_FLAGS_TSTAMP 0x00000010
2981 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2982 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2983
2984 static inline int igb_tso_adv(struct igb_adapter *adapter,
2985 struct igb_ring *tx_ring,
2986 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2987 {
2988 struct e1000_adv_tx_context_desc *context_desc;
2989 unsigned int i;
2990 int err;
2991 struct igb_buffer *buffer_info;
2992 u32 info = 0, tu_cmd = 0;
2993 u32 mss_l4len_idx, l4len;
2994 *hdr_len = 0;
2995
2996 if (skb_header_cloned(skb)) {
2997 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2998 if (err)
2999 return err;
3000 }
3001
3002 l4len = tcp_hdrlen(skb);
3003 *hdr_len += l4len;
3004
3005 if (skb->protocol == htons(ETH_P_IP)) {
3006 struct iphdr *iph = ip_hdr(skb);
3007 iph->tot_len = 0;
3008 iph->check = 0;
3009 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3010 iph->daddr, 0,
3011 IPPROTO_TCP,
3012 0);
3013 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3014 ipv6_hdr(skb)->payload_len = 0;
3015 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3016 &ipv6_hdr(skb)->daddr,
3017 0, IPPROTO_TCP, 0);
3018 }
3019
3020 i = tx_ring->next_to_use;
3021
3022 buffer_info = &tx_ring->buffer_info[i];
3023 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3024 /* VLAN MACLEN IPLEN */
3025 if (tx_flags & IGB_TX_FLAGS_VLAN)
3026 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3027 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3028 *hdr_len += skb_network_offset(skb);
3029 info |= skb_network_header_len(skb);
3030 *hdr_len += skb_network_header_len(skb);
3031 context_desc->vlan_macip_lens = cpu_to_le32(info);
3032
3033 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3034 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3035
3036 if (skb->protocol == htons(ETH_P_IP))
3037 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3038 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3039
3040 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3041
3042 /* MSS L4LEN IDX */
3043 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3044 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3045
3046 /* For 82575, context index must be unique per ring. */
3047 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3048 mss_l4len_idx |= tx_ring->queue_index << 4;
3049
3050 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3051 context_desc->seqnum_seed = 0;
3052
3053 buffer_info->time_stamp = jiffies;
3054 buffer_info->next_to_watch = i;
3055 buffer_info->dma = 0;
3056 i++;
3057 if (i == tx_ring->count)
3058 i = 0;
3059
3060 tx_ring->next_to_use = i;
3061
3062 return true;
3063 }
3064
3065 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3066 struct igb_ring *tx_ring,
3067 struct sk_buff *skb, u32 tx_flags)
3068 {
3069 struct e1000_adv_tx_context_desc *context_desc;
3070 unsigned int i;
3071 struct igb_buffer *buffer_info;
3072 u32 info = 0, tu_cmd = 0;
3073
3074 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3075 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3076 i = tx_ring->next_to_use;
3077 buffer_info = &tx_ring->buffer_info[i];
3078 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3079
3080 if (tx_flags & IGB_TX_FLAGS_VLAN)
3081 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3082 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3083 if (skb->ip_summed == CHECKSUM_PARTIAL)
3084 info |= skb_network_header_len(skb);
3085
3086 context_desc->vlan_macip_lens = cpu_to_le32(info);
3087
3088 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3089
3090 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3091 __be16 protocol;
3092
3093 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3094 const struct vlan_ethhdr *vhdr =
3095 (const struct vlan_ethhdr*)skb->data;
3096
3097 protocol = vhdr->h_vlan_encapsulated_proto;
3098 } else {
3099 protocol = skb->protocol;
3100 }
3101
3102 switch (protocol) {
3103 case cpu_to_be16(ETH_P_IP):
3104 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3105 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3106 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3107 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3108 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3109 break;
3110 case cpu_to_be16(ETH_P_IPV6):
3111 /* XXX what about other V6 headers?? */
3112 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3113 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3114 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3115 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3116 break;
3117 default:
3118 if (unlikely(net_ratelimit()))
3119 dev_warn(&adapter->pdev->dev,
3120 "partial checksum but proto=%x!\n",
3121 skb->protocol);
3122 break;
3123 }
3124 }
3125
3126 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3127 context_desc->seqnum_seed = 0;
3128 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3129 context_desc->mss_l4len_idx =
3130 cpu_to_le32(tx_ring->queue_index << 4);
3131 else
3132 context_desc->mss_l4len_idx = 0;
3133
3134 buffer_info->time_stamp = jiffies;
3135 buffer_info->next_to_watch = i;
3136 buffer_info->dma = 0;
3137
3138 i++;
3139 if (i == tx_ring->count)
3140 i = 0;
3141 tx_ring->next_to_use = i;
3142
3143 return true;
3144 }
3145 return false;
3146 }
3147
3148 #define IGB_MAX_TXD_PWR 16
3149 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3150
3151 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3152 struct igb_ring *tx_ring, struct sk_buff *skb,
3153 unsigned int first)
3154 {
3155 struct igb_buffer *buffer_info;
3156 unsigned int len = skb_headlen(skb);
3157 unsigned int count = 0, i;
3158 unsigned int f;
3159 dma_addr_t *map;
3160
3161 i = tx_ring->next_to_use;
3162
3163 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3164 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3165 return 0;
3166 }
3167
3168 map = skb_shinfo(skb)->dma_maps;
3169
3170 buffer_info = &tx_ring->buffer_info[i];
3171 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3172 buffer_info->length = len;
3173 /* set time_stamp *before* dma to help avoid a possible race */
3174 buffer_info->time_stamp = jiffies;
3175 buffer_info->next_to_watch = i;
3176 buffer_info->dma = skb_shinfo(skb)->dma_head;
3177
3178 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3179 struct skb_frag_struct *frag;
3180
3181 i++;
3182 if (i == tx_ring->count)
3183 i = 0;
3184
3185 frag = &skb_shinfo(skb)->frags[f];
3186 len = frag->size;
3187
3188 buffer_info = &tx_ring->buffer_info[i];
3189 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3190 buffer_info->length = len;
3191 buffer_info->time_stamp = jiffies;
3192 buffer_info->next_to_watch = i;
3193 buffer_info->dma = map[count];
3194 count++;
3195 }
3196
3197 tx_ring->buffer_info[i].skb = skb;
3198 tx_ring->buffer_info[first].next_to_watch = i;
3199
3200 return count + 1;
3201 }
3202
3203 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3204 struct igb_ring *tx_ring,
3205 int tx_flags, int count, u32 paylen,
3206 u8 hdr_len)
3207 {
3208 union e1000_adv_tx_desc *tx_desc = NULL;
3209 struct igb_buffer *buffer_info;
3210 u32 olinfo_status = 0, cmd_type_len;
3211 unsigned int i;
3212
3213 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3214 E1000_ADVTXD_DCMD_DEXT);
3215
3216 if (tx_flags & IGB_TX_FLAGS_VLAN)
3217 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3218
3219 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3220 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3221
3222 if (tx_flags & IGB_TX_FLAGS_TSO) {
3223 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3224
3225 /* insert tcp checksum */
3226 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3227
3228 /* insert ip checksum */
3229 if (tx_flags & IGB_TX_FLAGS_IPV4)
3230 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3231
3232 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3233 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3234 }
3235
3236 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3237 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3238 IGB_TX_FLAGS_VLAN)))
3239 olinfo_status |= tx_ring->queue_index << 4;
3240
3241 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3242
3243 i = tx_ring->next_to_use;
3244 while (count--) {
3245 buffer_info = &tx_ring->buffer_info[i];
3246 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3247 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3248 tx_desc->read.cmd_type_len =
3249 cpu_to_le32(cmd_type_len | buffer_info->length);
3250 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3251 i++;
3252 if (i == tx_ring->count)
3253 i = 0;
3254 }
3255
3256 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3257 /* Force memory writes to complete before letting h/w
3258 * know there are new descriptors to fetch. (Only
3259 * applicable for weak-ordered memory model archs,
3260 * such as IA-64). */
3261 wmb();
3262
3263 tx_ring->next_to_use = i;
3264 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3265 /* we need this if more than one processor can write to our tail
3266 * at a time, it syncronizes IO on IA64/Altix systems */
3267 mmiowb();
3268 }
3269
3270 static int __igb_maybe_stop_tx(struct net_device *netdev,
3271 struct igb_ring *tx_ring, int size)
3272 {
3273 struct igb_adapter *adapter = netdev_priv(netdev);
3274
3275 netif_stop_subqueue(netdev, tx_ring->queue_index);
3276
3277 /* Herbert's original patch had:
3278 * smp_mb__after_netif_stop_queue();
3279 * but since that doesn't exist yet, just open code it. */
3280 smp_mb();
3281
3282 /* We need to check again in a case another CPU has just
3283 * made room available. */
3284 if (igb_desc_unused(tx_ring) < size)
3285 return -EBUSY;
3286
3287 /* A reprieve! */
3288 netif_wake_subqueue(netdev, tx_ring->queue_index);
3289 ++adapter->restart_queue;
3290 return 0;
3291 }
3292
3293 static int igb_maybe_stop_tx(struct net_device *netdev,
3294 struct igb_ring *tx_ring, int size)
3295 {
3296 if (igb_desc_unused(tx_ring) >= size)
3297 return 0;
3298 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3299 }
3300
3301 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3302 struct net_device *netdev,
3303 struct igb_ring *tx_ring)
3304 {
3305 struct igb_adapter *adapter = netdev_priv(netdev);
3306 unsigned int first;
3307 unsigned int tx_flags = 0;
3308 u8 hdr_len = 0;
3309 int count = 0;
3310 int tso = 0;
3311 union skb_shared_tx *shtx;
3312
3313 if (test_bit(__IGB_DOWN, &adapter->state)) {
3314 dev_kfree_skb_any(skb);
3315 return NETDEV_TX_OK;
3316 }
3317
3318 if (skb->len <= 0) {
3319 dev_kfree_skb_any(skb);
3320 return NETDEV_TX_OK;
3321 }
3322
3323 /* need: 1 descriptor per page,
3324 * + 2 desc gap to keep tail from touching head,
3325 * + 1 desc for skb->data,
3326 * + 1 desc for context descriptor,
3327 * otherwise try next time */
3328 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3329 /* this is a hard error */
3330 return NETDEV_TX_BUSY;
3331 }
3332
3333 /*
3334 * TODO: check that there currently is no other packet with
3335 * time stamping in the queue
3336 *
3337 * When doing time stamping, keep the connection to the socket
3338 * a while longer: it is still needed by skb_hwtstamp_tx(),
3339 * called either in igb_tx_hwtstamp() or by our caller when
3340 * doing software time stamping.
3341 */
3342 shtx = skb_tx(skb);
3343 if (unlikely(shtx->hardware)) {
3344 shtx->in_progress = 1;
3345 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3346 }
3347
3348 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3349 tx_flags |= IGB_TX_FLAGS_VLAN;
3350 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3351 }
3352
3353 if (skb->protocol == htons(ETH_P_IP))
3354 tx_flags |= IGB_TX_FLAGS_IPV4;
3355
3356 first = tx_ring->next_to_use;
3357 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3358 &hdr_len) : 0;
3359
3360 if (tso < 0) {
3361 dev_kfree_skb_any(skb);
3362 return NETDEV_TX_OK;
3363 }
3364
3365 if (tso)
3366 tx_flags |= IGB_TX_FLAGS_TSO;
3367 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3368 (skb->ip_summed == CHECKSUM_PARTIAL))
3369 tx_flags |= IGB_TX_FLAGS_CSUM;
3370
3371 /*
3372 * count reflects descriptors mapped, if 0 then mapping error
3373 * has occured and we need to rewind the descriptor queue
3374 */
3375 count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3376
3377 if (count) {
3378 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3379 skb->len, hdr_len);
3380 /* Make sure there is space in the ring for the next send. */
3381 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3382 } else {
3383 dev_kfree_skb_any(skb);
3384 tx_ring->buffer_info[first].time_stamp = 0;
3385 tx_ring->next_to_use = first;
3386 }
3387
3388 return NETDEV_TX_OK;
3389 }
3390
3391 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3392 {
3393 struct igb_adapter *adapter = netdev_priv(netdev);
3394 struct igb_ring *tx_ring;
3395
3396 int r_idx = 0;
3397 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3398 tx_ring = adapter->multi_tx_table[r_idx];
3399
3400 /* This goes back to the question of how to logically map a tx queue
3401 * to a flow. Right now, performance is impacted slightly negatively
3402 * if using multiple tx queues. If the stack breaks away from a
3403 * single qdisc implementation, we can look at this again. */
3404 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3405 }
3406
3407 /**
3408 * igb_tx_timeout - Respond to a Tx Hang
3409 * @netdev: network interface device structure
3410 **/
3411 static void igb_tx_timeout(struct net_device *netdev)
3412 {
3413 struct igb_adapter *adapter = netdev_priv(netdev);
3414 struct e1000_hw *hw = &adapter->hw;
3415
3416 /* Do the reset outside of interrupt context */
3417 adapter->tx_timeout_count++;
3418 schedule_work(&adapter->reset_task);
3419 wr32(E1000_EICS,
3420 (adapter->eims_enable_mask & ~adapter->eims_other));
3421 }
3422
3423 static void igb_reset_task(struct work_struct *work)
3424 {
3425 struct igb_adapter *adapter;
3426 adapter = container_of(work, struct igb_adapter, reset_task);
3427
3428 igb_reinit_locked(adapter);
3429 }
3430
3431 /**
3432 * igb_get_stats - Get System Network Statistics
3433 * @netdev: network interface device structure
3434 *
3435 * Returns the address of the device statistics structure.
3436 * The statistics are actually updated from the timer callback.
3437 **/
3438 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3439 {
3440 struct igb_adapter *adapter = netdev_priv(netdev);
3441
3442 /* only return the current stats */
3443 return &adapter->net_stats;
3444 }
3445
3446 /**
3447 * igb_change_mtu - Change the Maximum Transfer Unit
3448 * @netdev: network interface device structure
3449 * @new_mtu: new value for maximum frame size
3450 *
3451 * Returns 0 on success, negative on failure
3452 **/
3453 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3454 {
3455 struct igb_adapter *adapter = netdev_priv(netdev);
3456 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3457
3458 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3459 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3460 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3461 return -EINVAL;
3462 }
3463
3464 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3465 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3466 return -EINVAL;
3467 }
3468
3469 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3470 msleep(1);
3471
3472 /* igb_down has a dependency on max_frame_size */
3473 adapter->max_frame_size = max_frame;
3474 if (netif_running(netdev))
3475 igb_down(adapter);
3476
3477 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3478 * means we reserve 2 more, this pushes us to allocate from the next
3479 * larger slab size.
3480 * i.e. RXBUFFER_2048 --> size-4096 slab
3481 */
3482
3483 if (max_frame <= IGB_RXBUFFER_256)
3484 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3485 else if (max_frame <= IGB_RXBUFFER_512)
3486 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3487 else if (max_frame <= IGB_RXBUFFER_1024)
3488 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3489 else if (max_frame <= IGB_RXBUFFER_2048)
3490 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3491 else
3492 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3493 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3494 #else
3495 adapter->rx_buffer_len = PAGE_SIZE / 2;
3496 #endif
3497
3498 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3499 if (adapter->vfs_allocated_count &&
3500 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3501 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3502
3503 /* adjust allocation if LPE protects us, and we aren't using SBP */
3504 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3505 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3506 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3507
3508 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3509 netdev->mtu, new_mtu);
3510 netdev->mtu = new_mtu;
3511
3512 if (netif_running(netdev))
3513 igb_up(adapter);
3514 else
3515 igb_reset(adapter);
3516
3517 clear_bit(__IGB_RESETTING, &adapter->state);
3518
3519 return 0;
3520 }
3521
3522 /**
3523 * igb_update_stats - Update the board statistics counters
3524 * @adapter: board private structure
3525 **/
3526
3527 void igb_update_stats(struct igb_adapter *adapter)
3528 {
3529 struct e1000_hw *hw = &adapter->hw;
3530 struct pci_dev *pdev = adapter->pdev;
3531 u16 phy_tmp;
3532
3533 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3534
3535 /*
3536 * Prevent stats update while adapter is being reset, or if the pci
3537 * connection is down.
3538 */
3539 if (adapter->link_speed == 0)
3540 return;
3541 if (pci_channel_offline(pdev))
3542 return;
3543
3544 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3545 adapter->stats.gprc += rd32(E1000_GPRC);
3546 adapter->stats.gorc += rd32(E1000_GORCL);
3547 rd32(E1000_GORCH); /* clear GORCL */
3548 adapter->stats.bprc += rd32(E1000_BPRC);
3549 adapter->stats.mprc += rd32(E1000_MPRC);
3550 adapter->stats.roc += rd32(E1000_ROC);
3551
3552 adapter->stats.prc64 += rd32(E1000_PRC64);
3553 adapter->stats.prc127 += rd32(E1000_PRC127);
3554 adapter->stats.prc255 += rd32(E1000_PRC255);
3555 adapter->stats.prc511 += rd32(E1000_PRC511);
3556 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3557 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3558 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3559 adapter->stats.sec += rd32(E1000_SEC);
3560
3561 adapter->stats.mpc += rd32(E1000_MPC);
3562 adapter->stats.scc += rd32(E1000_SCC);
3563 adapter->stats.ecol += rd32(E1000_ECOL);
3564 adapter->stats.mcc += rd32(E1000_MCC);
3565 adapter->stats.latecol += rd32(E1000_LATECOL);
3566 adapter->stats.dc += rd32(E1000_DC);
3567 adapter->stats.rlec += rd32(E1000_RLEC);
3568 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3569 adapter->stats.xontxc += rd32(E1000_XONTXC);
3570 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3571 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3572 adapter->stats.fcruc += rd32(E1000_FCRUC);
3573 adapter->stats.gptc += rd32(E1000_GPTC);
3574 adapter->stats.gotc += rd32(E1000_GOTCL);
3575 rd32(E1000_GOTCH); /* clear GOTCL */
3576 adapter->stats.rnbc += rd32(E1000_RNBC);
3577 adapter->stats.ruc += rd32(E1000_RUC);
3578 adapter->stats.rfc += rd32(E1000_RFC);
3579 adapter->stats.rjc += rd32(E1000_RJC);
3580 adapter->stats.tor += rd32(E1000_TORH);
3581 adapter->stats.tot += rd32(E1000_TOTH);
3582 adapter->stats.tpr += rd32(E1000_TPR);
3583
3584 adapter->stats.ptc64 += rd32(E1000_PTC64);
3585 adapter->stats.ptc127 += rd32(E1000_PTC127);
3586 adapter->stats.ptc255 += rd32(E1000_PTC255);
3587 adapter->stats.ptc511 += rd32(E1000_PTC511);
3588 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3589 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3590
3591 adapter->stats.mptc += rd32(E1000_MPTC);
3592 adapter->stats.bptc += rd32(E1000_BPTC);
3593
3594 /* used for adaptive IFS */
3595
3596 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3597 adapter->stats.tpt += hw->mac.tx_packet_delta;
3598 hw->mac.collision_delta = rd32(E1000_COLC);
3599 adapter->stats.colc += hw->mac.collision_delta;
3600
3601 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3602 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3603 adapter->stats.tncrs += rd32(E1000_TNCRS);
3604 adapter->stats.tsctc += rd32(E1000_TSCTC);
3605 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3606
3607 adapter->stats.iac += rd32(E1000_IAC);
3608 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3609 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3610 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3611 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3612 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3613 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3614 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3615 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3616
3617 /* Fill out the OS statistics structure */
3618 adapter->net_stats.multicast = adapter->stats.mprc;
3619 adapter->net_stats.collisions = adapter->stats.colc;
3620
3621 /* Rx Errors */
3622
3623 if (hw->mac.type != e1000_82575) {
3624 u32 rqdpc_tmp;
3625 u64 rqdpc_total = 0;
3626 int i;
3627 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3628 * Queue Drop Packet Count) stats only gets incremented, if
3629 * the DROP_EN but it set (in the SRRCTL register for that
3630 * queue). If DROP_EN bit is NOT set, then the some what
3631 * equivalent count is stored in RNBC (not per queue basis).
3632 * Also note the drop count is due to lack of available
3633 * descriptors.
3634 */
3635 for (i = 0; i < adapter->num_rx_queues; i++) {
3636 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3637 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3638 rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3639 }
3640 adapter->net_stats.rx_fifo_errors = rqdpc_total;
3641 }
3642
3643 /* Note RNBC (Receive No Buffers Count) is an not an exact
3644 * drop count as the hardware FIFO might save the day. Thats
3645 * one of the reason for saving it in rx_fifo_errors, as its
3646 * potentially not a true drop.
3647 */
3648 adapter->net_stats.rx_fifo_errors += adapter->stats.rnbc;
3649
3650 /* RLEC on some newer hardware can be incorrect so build
3651 * our own version based on RUC and ROC */
3652 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3653 adapter->stats.crcerrs + adapter->stats.algnerrc +
3654 adapter->stats.ruc + adapter->stats.roc +
3655 adapter->stats.cexterr;
3656 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3657 adapter->stats.roc;
3658 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3659 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3660 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3661
3662 /* Tx Errors */
3663 adapter->net_stats.tx_errors = adapter->stats.ecol +
3664 adapter->stats.latecol;
3665 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3666 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3667 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3668
3669 /* Tx Dropped needs to be maintained elsewhere */
3670
3671 /* Phy Stats */
3672 if (hw->phy.media_type == e1000_media_type_copper) {
3673 if ((adapter->link_speed == SPEED_1000) &&
3674 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3675 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3676 adapter->phy_stats.idle_errors += phy_tmp;
3677 }
3678 }
3679
3680 /* Management Stats */
3681 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3682 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3683 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3684 }
3685
3686 static irqreturn_t igb_msix_other(int irq, void *data)
3687 {
3688 struct net_device *netdev = data;
3689 struct igb_adapter *adapter = netdev_priv(netdev);
3690 struct e1000_hw *hw = &adapter->hw;
3691 u32 icr = rd32(E1000_ICR);
3692
3693 /* reading ICR causes bit 31 of EICR to be cleared */
3694
3695 if(icr & E1000_ICR_DOUTSYNC) {
3696 /* HW is reporting DMA is out of sync */
3697 adapter->stats.doosync++;
3698 }
3699
3700 /* Check for a mailbox event */
3701 if (icr & E1000_ICR_VMMB)
3702 igb_msg_task(adapter);
3703
3704 if (icr & E1000_ICR_LSC) {
3705 hw->mac.get_link_status = 1;
3706 /* guard against interrupt when we're going down */
3707 if (!test_bit(__IGB_DOWN, &adapter->state))
3708 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3709 }
3710
3711 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3712 wr32(E1000_EIMS, adapter->eims_other);
3713
3714 return IRQ_HANDLED;
3715 }
3716
3717 static irqreturn_t igb_msix_tx(int irq, void *data)
3718 {
3719 struct igb_ring *tx_ring = data;
3720 struct igb_adapter *adapter = tx_ring->adapter;
3721 struct e1000_hw *hw = &adapter->hw;
3722
3723 #ifdef CONFIG_IGB_DCA
3724 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3725 igb_update_tx_dca(tx_ring);
3726 #endif
3727
3728 tx_ring->total_bytes = 0;
3729 tx_ring->total_packets = 0;
3730
3731 /* auto mask will automatically reenable the interrupt when we write
3732 * EICS */
3733 if (!igb_clean_tx_irq(tx_ring))
3734 /* Ring was not completely cleaned, so fire another interrupt */
3735 wr32(E1000_EICS, tx_ring->eims_value);
3736 else
3737 wr32(E1000_EIMS, tx_ring->eims_value);
3738
3739 return IRQ_HANDLED;
3740 }
3741
3742 static void igb_write_itr(struct igb_ring *ring)
3743 {
3744 struct e1000_hw *hw = &ring->adapter->hw;
3745 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3746 switch (hw->mac.type) {
3747 case e1000_82576:
3748 wr32(ring->itr_register, ring->itr_val |
3749 0x80000000);
3750 break;
3751 default:
3752 wr32(ring->itr_register, ring->itr_val |
3753 (ring->itr_val << 16));
3754 break;
3755 }
3756 ring->set_itr = 0;
3757 }
3758 }
3759
3760 static irqreturn_t igb_msix_rx(int irq, void *data)
3761 {
3762 struct igb_ring *rx_ring = data;
3763
3764 /* Write the ITR value calculated at the end of the
3765 * previous interrupt.
3766 */
3767
3768 igb_write_itr(rx_ring);
3769
3770 if (napi_schedule_prep(&rx_ring->napi))
3771 __napi_schedule(&rx_ring->napi);
3772
3773 #ifdef CONFIG_IGB_DCA
3774 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3775 igb_update_rx_dca(rx_ring);
3776 #endif
3777 return IRQ_HANDLED;
3778 }
3779
3780 #ifdef CONFIG_IGB_DCA
3781 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3782 {
3783 u32 dca_rxctrl;
3784 struct igb_adapter *adapter = rx_ring->adapter;
3785 struct e1000_hw *hw = &adapter->hw;
3786 int cpu = get_cpu();
3787 int q = rx_ring->reg_idx;
3788
3789 if (rx_ring->cpu != cpu) {
3790 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3791 if (hw->mac.type == e1000_82576) {
3792 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3793 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3794 E1000_DCA_RXCTRL_CPUID_SHIFT;
3795 } else {
3796 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3797 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3798 }
3799 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3800 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3801 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3802 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3803 rx_ring->cpu = cpu;
3804 }
3805 put_cpu();
3806 }
3807
3808 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3809 {
3810 u32 dca_txctrl;
3811 struct igb_adapter *adapter = tx_ring->adapter;
3812 struct e1000_hw *hw = &adapter->hw;
3813 int cpu = get_cpu();
3814 int q = tx_ring->reg_idx;
3815
3816 if (tx_ring->cpu != cpu) {
3817 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3818 if (hw->mac.type == e1000_82576) {
3819 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3820 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3821 E1000_DCA_TXCTRL_CPUID_SHIFT;
3822 } else {
3823 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3824 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3825 }
3826 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3827 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3828 tx_ring->cpu = cpu;
3829 }
3830 put_cpu();
3831 }
3832
3833 static void igb_setup_dca(struct igb_adapter *adapter)
3834 {
3835 struct e1000_hw *hw = &adapter->hw;
3836 int i;
3837
3838 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3839 return;
3840
3841 /* Always use CB2 mode, difference is masked in the CB driver. */
3842 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3843
3844 for (i = 0; i < adapter->num_tx_queues; i++) {
3845 adapter->tx_ring[i].cpu = -1;
3846 igb_update_tx_dca(&adapter->tx_ring[i]);
3847 }
3848 for (i = 0; i < adapter->num_rx_queues; i++) {
3849 adapter->rx_ring[i].cpu = -1;
3850 igb_update_rx_dca(&adapter->rx_ring[i]);
3851 }
3852 }
3853
3854 static int __igb_notify_dca(struct device *dev, void *data)
3855 {
3856 struct net_device *netdev = dev_get_drvdata(dev);
3857 struct igb_adapter *adapter = netdev_priv(netdev);
3858 struct e1000_hw *hw = &adapter->hw;
3859 unsigned long event = *(unsigned long *)data;
3860
3861 switch (event) {
3862 case DCA_PROVIDER_ADD:
3863 /* if already enabled, don't do it again */
3864 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3865 break;
3866 /* Always use CB2 mode, difference is masked
3867 * in the CB driver. */
3868 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3869 if (dca_add_requester(dev) == 0) {
3870 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3871 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3872 igb_setup_dca(adapter);
3873 break;
3874 }
3875 /* Fall Through since DCA is disabled. */
3876 case DCA_PROVIDER_REMOVE:
3877 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3878 /* without this a class_device is left
3879 * hanging around in the sysfs model */
3880 dca_remove_requester(dev);
3881 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3882 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3883 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3884 }
3885 break;
3886 }
3887
3888 return 0;
3889 }
3890
3891 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3892 void *p)
3893 {
3894 int ret_val;
3895
3896 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3897 __igb_notify_dca);
3898
3899 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3900 }
3901 #endif /* CONFIG_IGB_DCA */
3902
3903 static void igb_ping_all_vfs(struct igb_adapter *adapter)
3904 {
3905 struct e1000_hw *hw = &adapter->hw;
3906 u32 ping;
3907 int i;
3908
3909 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3910 ping = E1000_PF_CONTROL_MSG;
3911 if (adapter->vf_data[i].clear_to_send)
3912 ping |= E1000_VT_MSGTYPE_CTS;
3913 igb_write_mbx(hw, &ping, 1, i);
3914 }
3915 }
3916
3917 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3918 u32 *msgbuf, u32 vf)
3919 {
3920 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3921 u16 *hash_list = (u16 *)&msgbuf[1];
3922 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3923 int i;
3924
3925 /* only up to 30 hash values supported */
3926 if (n > 30)
3927 n = 30;
3928
3929 /* salt away the number of multi cast addresses assigned
3930 * to this VF for later use to restore when the PF multi cast
3931 * list changes
3932 */
3933 vf_data->num_vf_mc_hashes = n;
3934
3935 /* VFs are limited to using the MTA hash table for their multicast
3936 * addresses */
3937 for (i = 0; i < n; i++)
3938 vf_data->vf_mc_hashes[i] = hash_list[i];;
3939
3940 /* Flush and reset the mta with the new values */
3941 igb_set_multi(adapter->netdev);
3942
3943 return 0;
3944 }
3945
3946 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3947 {
3948 struct e1000_hw *hw = &adapter->hw;
3949 struct vf_data_storage *vf_data;
3950 int i, j;
3951
3952 for (i = 0; i < adapter->vfs_allocated_count; i++) {
3953 vf_data = &adapter->vf_data[i];
3954 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
3955 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3956 }
3957 }
3958
3959 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3960 {
3961 struct e1000_hw *hw = &adapter->hw;
3962 u32 pool_mask, reg, vid;
3963 int i;
3964
3965 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3966
3967 /* Find the vlan filter for this id */
3968 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3969 reg = rd32(E1000_VLVF(i));
3970
3971 /* remove the vf from the pool */
3972 reg &= ~pool_mask;
3973
3974 /* if pool is empty then remove entry from vfta */
3975 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3976 (reg & E1000_VLVF_VLANID_ENABLE)) {
3977 reg = 0;
3978 vid = reg & E1000_VLVF_VLANID_MASK;
3979 igb_vfta_set(hw, vid, false);
3980 }
3981
3982 wr32(E1000_VLVF(i), reg);
3983 }
3984 }
3985
3986 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3987 {
3988 struct e1000_hw *hw = &adapter->hw;
3989 u32 reg, i;
3990
3991 /* It is an error to call this function when VFs are not enabled */
3992 if (!adapter->vfs_allocated_count)
3993 return -1;
3994
3995 /* Find the vlan filter for this id */
3996 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3997 reg = rd32(E1000_VLVF(i));
3998 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3999 vid == (reg & E1000_VLVF_VLANID_MASK))
4000 break;
4001 }
4002
4003 if (add) {
4004 if (i == E1000_VLVF_ARRAY_SIZE) {
4005 /* Did not find a matching VLAN ID entry that was
4006 * enabled. Search for a free filter entry, i.e.
4007 * one without the enable bit set
4008 */
4009 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4010 reg = rd32(E1000_VLVF(i));
4011 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4012 break;
4013 }
4014 }
4015 if (i < E1000_VLVF_ARRAY_SIZE) {
4016 /* Found an enabled/available entry */
4017 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4018
4019 /* if !enabled we need to set this up in vfta */
4020 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4021 /* add VID to filter table, if bit already set
4022 * PF must have added it outside of table */
4023 if (igb_vfta_set(hw, vid, true))
4024 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
4025 adapter->vfs_allocated_count);
4026 reg |= E1000_VLVF_VLANID_ENABLE;
4027 }
4028 reg &= ~E1000_VLVF_VLANID_MASK;
4029 reg |= vid;
4030
4031 wr32(E1000_VLVF(i), reg);
4032 return 0;
4033 }
4034 } else {
4035 if (i < E1000_VLVF_ARRAY_SIZE) {
4036 /* remove vf from the pool */
4037 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4038 /* if pool is empty then remove entry from vfta */
4039 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4040 reg = 0;
4041 igb_vfta_set(hw, vid, false);
4042 }
4043 wr32(E1000_VLVF(i), reg);
4044 return 0;
4045 }
4046 }
4047 return -1;
4048 }
4049
4050 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4051 {
4052 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4053 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4054
4055 return igb_vlvf_set(adapter, vid, add, vf);
4056 }
4057
4058 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4059 {
4060 struct e1000_hw *hw = &adapter->hw;
4061
4062 /* disable mailbox functionality for vf */
4063 adapter->vf_data[vf].clear_to_send = false;
4064
4065 /* reset offloads to defaults */
4066 igb_set_vmolr(hw, vf);
4067
4068 /* reset vlans for device */
4069 igb_clear_vf_vfta(adapter, vf);
4070
4071 /* reset multicast table array for vf */
4072 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4073
4074 /* Flush and reset the mta with the new values */
4075 igb_set_multi(adapter->netdev);
4076 }
4077
4078 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4079 {
4080 struct e1000_hw *hw = &adapter->hw;
4081 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4082 u32 reg, msgbuf[3];
4083 u8 *addr = (u8 *)(&msgbuf[1]);
4084
4085 /* process all the same items cleared in a function level reset */
4086 igb_vf_reset_event(adapter, vf);
4087
4088 /* set vf mac address */
4089 igb_rar_set(hw, vf_mac, vf + 1);
4090 igb_set_rah_pool(hw, vf, vf + 1);
4091
4092 /* enable transmit and receive for vf */
4093 reg = rd32(E1000_VFTE);
4094 wr32(E1000_VFTE, reg | (1 << vf));
4095 reg = rd32(E1000_VFRE);
4096 wr32(E1000_VFRE, reg | (1 << vf));
4097
4098 /* enable mailbox functionality for vf */
4099 adapter->vf_data[vf].clear_to_send = true;
4100
4101 /* reply to reset with ack and vf mac address */
4102 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4103 memcpy(addr, vf_mac, 6);
4104 igb_write_mbx(hw, msgbuf, 3, vf);
4105 }
4106
4107 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4108 {
4109 unsigned char *addr = (char *)&msg[1];
4110 int err = -1;
4111
4112 if (is_valid_ether_addr(addr))
4113 err = igb_set_vf_mac(adapter, vf, addr);
4114
4115 return err;
4116
4117 }
4118
4119 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4120 {
4121 struct e1000_hw *hw = &adapter->hw;
4122 u32 msg = E1000_VT_MSGTYPE_NACK;
4123
4124 /* if device isn't clear to send it shouldn't be reading either */
4125 if (!adapter->vf_data[vf].clear_to_send)
4126 igb_write_mbx(hw, &msg, 1, vf);
4127 }
4128
4129
4130 static void igb_msg_task(struct igb_adapter *adapter)
4131 {
4132 struct e1000_hw *hw = &adapter->hw;
4133 u32 vf;
4134
4135 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4136 /* process any reset requests */
4137 if (!igb_check_for_rst(hw, vf)) {
4138 adapter->vf_data[vf].clear_to_send = false;
4139 igb_vf_reset_event(adapter, vf);
4140 }
4141
4142 /* process any messages pending */
4143 if (!igb_check_for_msg(hw, vf))
4144 igb_rcv_msg_from_vf(adapter, vf);
4145
4146 /* process any acks */
4147 if (!igb_check_for_ack(hw, vf))
4148 igb_rcv_ack_from_vf(adapter, vf);
4149
4150 }
4151 }
4152
4153 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4154 {
4155 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4156 u32 msgbuf[mbx_size];
4157 struct e1000_hw *hw = &adapter->hw;
4158 s32 retval;
4159
4160 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4161
4162 if (retval)
4163 dev_err(&adapter->pdev->dev,
4164 "Error receiving message from VF\n");
4165
4166 /* this is a message we already processed, do nothing */
4167 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4168 return retval;
4169
4170 /*
4171 * until the vf completes a reset it should not be
4172 * allowed to start any configuration.
4173 */
4174
4175 if (msgbuf[0] == E1000_VF_RESET) {
4176 igb_vf_reset_msg(adapter, vf);
4177
4178 return retval;
4179 }
4180
4181 if (!adapter->vf_data[vf].clear_to_send) {
4182 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4183 igb_write_mbx(hw, msgbuf, 1, vf);
4184 return retval;
4185 }
4186
4187 switch ((msgbuf[0] & 0xFFFF)) {
4188 case E1000_VF_SET_MAC_ADDR:
4189 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4190 break;
4191 case E1000_VF_SET_MULTICAST:
4192 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4193 break;
4194 case E1000_VF_SET_LPE:
4195 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4196 break;
4197 case E1000_VF_SET_VLAN:
4198 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4199 break;
4200 default:
4201 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4202 retval = -1;
4203 break;
4204 }
4205
4206 /* notify the VF of the results of what it sent us */
4207 if (retval)
4208 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4209 else
4210 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4211
4212 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4213
4214 igb_write_mbx(hw, msgbuf, 1, vf);
4215
4216 return retval;
4217 }
4218
4219 /**
4220 * igb_intr_msi - Interrupt Handler
4221 * @irq: interrupt number
4222 * @data: pointer to a network interface device structure
4223 **/
4224 static irqreturn_t igb_intr_msi(int irq, void *data)
4225 {
4226 struct net_device *netdev = data;
4227 struct igb_adapter *adapter = netdev_priv(netdev);
4228 struct e1000_hw *hw = &adapter->hw;
4229 /* read ICR disables interrupts using IAM */
4230 u32 icr = rd32(E1000_ICR);
4231
4232 igb_write_itr(adapter->rx_ring);
4233
4234 if(icr & E1000_ICR_DOUTSYNC) {
4235 /* HW is reporting DMA is out of sync */
4236 adapter->stats.doosync++;
4237 }
4238
4239 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4240 hw->mac.get_link_status = 1;
4241 if (!test_bit(__IGB_DOWN, &adapter->state))
4242 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4243 }
4244
4245 napi_schedule(&adapter->rx_ring[0].napi);
4246
4247 return IRQ_HANDLED;
4248 }
4249
4250 /**
4251 * igb_intr - Legacy Interrupt Handler
4252 * @irq: interrupt number
4253 * @data: pointer to a network interface device structure
4254 **/
4255 static irqreturn_t igb_intr(int irq, void *data)
4256 {
4257 struct net_device *netdev = data;
4258 struct igb_adapter *adapter = netdev_priv(netdev);
4259 struct e1000_hw *hw = &adapter->hw;
4260 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4261 * need for the IMC write */
4262 u32 icr = rd32(E1000_ICR);
4263 if (!icr)
4264 return IRQ_NONE; /* Not our interrupt */
4265
4266 igb_write_itr(adapter->rx_ring);
4267
4268 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4269 * not set, then the adapter didn't send an interrupt */
4270 if (!(icr & E1000_ICR_INT_ASSERTED))
4271 return IRQ_NONE;
4272
4273 if(icr & E1000_ICR_DOUTSYNC) {
4274 /* HW is reporting DMA is out of sync */
4275 adapter->stats.doosync++;
4276 }
4277
4278 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4279 hw->mac.get_link_status = 1;
4280 /* guard against interrupt when we're going down */
4281 if (!test_bit(__IGB_DOWN, &adapter->state))
4282 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4283 }
4284
4285 napi_schedule(&adapter->rx_ring[0].napi);
4286
4287 return IRQ_HANDLED;
4288 }
4289
4290 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4291 {
4292 struct igb_adapter *adapter = rx_ring->adapter;
4293 struct e1000_hw *hw = &adapter->hw;
4294
4295 if (adapter->itr_setting & 3) {
4296 if (adapter->num_rx_queues == 1)
4297 igb_set_itr(adapter);
4298 else
4299 igb_update_ring_itr(rx_ring);
4300 }
4301
4302 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4303 if (adapter->msix_entries)
4304 wr32(E1000_EIMS, rx_ring->eims_value);
4305 else
4306 igb_irq_enable(adapter);
4307 }
4308 }
4309
4310 /**
4311 * igb_poll - NAPI Rx polling callback
4312 * @napi: napi polling structure
4313 * @budget: count of how many packets we should handle
4314 **/
4315 static int igb_poll(struct napi_struct *napi, int budget)
4316 {
4317 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4318 int work_done = 0;
4319
4320 #ifdef CONFIG_IGB_DCA
4321 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4322 igb_update_rx_dca(rx_ring);
4323 #endif
4324 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4325
4326 if (rx_ring->buddy) {
4327 #ifdef CONFIG_IGB_DCA
4328 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4329 igb_update_tx_dca(rx_ring->buddy);
4330 #endif
4331 if (!igb_clean_tx_irq(rx_ring->buddy))
4332 work_done = budget;
4333 }
4334
4335 /* If not enough Rx work done, exit the polling mode */
4336 if (work_done < budget) {
4337 napi_complete(napi);
4338 igb_rx_irq_enable(rx_ring);
4339 }
4340
4341 return work_done;
4342 }
4343
4344 /**
4345 * igb_hwtstamp - utility function which checks for TX time stamp
4346 * @adapter: board private structure
4347 * @skb: packet that was just sent
4348 *
4349 * If we were asked to do hardware stamping and such a time stamp is
4350 * available, then it must have been for this skb here because we only
4351 * allow only one such packet into the queue.
4352 */
4353 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4354 {
4355 union skb_shared_tx *shtx = skb_tx(skb);
4356 struct e1000_hw *hw = &adapter->hw;
4357
4358 if (unlikely(shtx->hardware)) {
4359 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4360 if (valid) {
4361 u64 regval = rd32(E1000_TXSTMPL);
4362 u64 ns;
4363 struct skb_shared_hwtstamps shhwtstamps;
4364
4365 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4366 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4367 ns = timecounter_cyc2time(&adapter->clock,
4368 regval);
4369 timecompare_update(&adapter->compare, ns);
4370 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4371 shhwtstamps.syststamp =
4372 timecompare_transform(&adapter->compare, ns);
4373 skb_tstamp_tx(skb, &shhwtstamps);
4374 }
4375 }
4376 }
4377
4378 /**
4379 * igb_clean_tx_irq - Reclaim resources after transmit completes
4380 * @adapter: board private structure
4381 * returns true if ring is completely cleaned
4382 **/
4383 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4384 {
4385 struct igb_adapter *adapter = tx_ring->adapter;
4386 struct net_device *netdev = adapter->netdev;
4387 struct e1000_hw *hw = &adapter->hw;
4388 struct igb_buffer *buffer_info;
4389 struct sk_buff *skb;
4390 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4391 unsigned int total_bytes = 0, total_packets = 0;
4392 unsigned int i, eop, count = 0;
4393 bool cleaned = false;
4394
4395 i = tx_ring->next_to_clean;
4396 eop = tx_ring->buffer_info[i].next_to_watch;
4397 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4398
4399 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4400 (count < tx_ring->count)) {
4401 for (cleaned = false; !cleaned; count++) {
4402 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4403 buffer_info = &tx_ring->buffer_info[i];
4404 cleaned = (i == eop);
4405 skb = buffer_info->skb;
4406
4407 if (skb) {
4408 unsigned int segs, bytecount;
4409 /* gso_segs is currently only valid for tcp */
4410 segs = skb_shinfo(skb)->gso_segs ?: 1;
4411 /* multiply data chunks by size of headers */
4412 bytecount = ((segs - 1) * skb_headlen(skb)) +
4413 skb->len;
4414 total_packets += segs;
4415 total_bytes += bytecount;
4416
4417 igb_tx_hwtstamp(adapter, skb);
4418 }
4419
4420 igb_unmap_and_free_tx_resource(adapter, buffer_info);
4421 tx_desc->wb.status = 0;
4422
4423 i++;
4424 if (i == tx_ring->count)
4425 i = 0;
4426 }
4427 eop = tx_ring->buffer_info[i].next_to_watch;
4428 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4429 }
4430
4431 tx_ring->next_to_clean = i;
4432
4433 if (unlikely(count &&
4434 netif_carrier_ok(netdev) &&
4435 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4436 /* Make sure that anybody stopping the queue after this
4437 * sees the new next_to_clean.
4438 */
4439 smp_mb();
4440 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4441 !(test_bit(__IGB_DOWN, &adapter->state))) {
4442 netif_wake_subqueue(netdev, tx_ring->queue_index);
4443 ++adapter->restart_queue;
4444 }
4445 }
4446
4447 if (tx_ring->detect_tx_hung) {
4448 /* Detect a transmit hang in hardware, this serializes the
4449 * check with the clearing of time_stamp and movement of i */
4450 tx_ring->detect_tx_hung = false;
4451 if (tx_ring->buffer_info[i].time_stamp &&
4452 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4453 (adapter->tx_timeout_factor * HZ))
4454 && !(rd32(E1000_STATUS) &
4455 E1000_STATUS_TXOFF)) {
4456
4457 /* detected Tx unit hang */
4458 dev_err(&adapter->pdev->dev,
4459 "Detected Tx Unit Hang\n"
4460 " Tx Queue <%d>\n"
4461 " TDH <%x>\n"
4462 " TDT <%x>\n"
4463 " next_to_use <%x>\n"
4464 " next_to_clean <%x>\n"
4465 "buffer_info[next_to_clean]\n"
4466 " time_stamp <%lx>\n"
4467 " next_to_watch <%x>\n"
4468 " jiffies <%lx>\n"
4469 " desc.status <%x>\n",
4470 tx_ring->queue_index,
4471 readl(adapter->hw.hw_addr + tx_ring->head),
4472 readl(adapter->hw.hw_addr + tx_ring->tail),
4473 tx_ring->next_to_use,
4474 tx_ring->next_to_clean,
4475 tx_ring->buffer_info[i].time_stamp,
4476 eop,
4477 jiffies,
4478 eop_desc->wb.status);
4479 netif_stop_subqueue(netdev, tx_ring->queue_index);
4480 }
4481 }
4482 tx_ring->total_bytes += total_bytes;
4483 tx_ring->total_packets += total_packets;
4484 tx_ring->tx_stats.bytes += total_bytes;
4485 tx_ring->tx_stats.packets += total_packets;
4486 adapter->net_stats.tx_bytes += total_bytes;
4487 adapter->net_stats.tx_packets += total_packets;
4488 return (count < tx_ring->count);
4489 }
4490
4491 /**
4492 * igb_receive_skb - helper function to handle rx indications
4493 * @ring: pointer to receive ring receving this packet
4494 * @status: descriptor status field as written by hardware
4495 * @rx_desc: receive descriptor containing vlan and type information.
4496 * @skb: pointer to sk_buff to be indicated to stack
4497 **/
4498 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4499 union e1000_adv_rx_desc * rx_desc,
4500 struct sk_buff *skb)
4501 {
4502 struct igb_adapter * adapter = ring->adapter;
4503 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4504
4505 skb_record_rx_queue(skb, ring->queue_index);
4506 if (vlan_extracted)
4507 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4508 le16_to_cpu(rx_desc->wb.upper.vlan),
4509 skb);
4510 else
4511 napi_gro_receive(&ring->napi, skb);
4512 }
4513
4514 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4515 u32 status_err, struct sk_buff *skb)
4516 {
4517 skb->ip_summed = CHECKSUM_NONE;
4518
4519 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4520 if ((status_err & E1000_RXD_STAT_IXSM) ||
4521 (adapter->flags & IGB_FLAG_RX_CSUM_DISABLED))
4522 return;
4523 /* TCP/UDP checksum error bit is set */
4524 if (status_err &
4525 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4526 /*
4527 * work around errata with sctp packets where the TCPE aka
4528 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4529 * packets, (aka let the stack check the crc32c)
4530 */
4531 if (!((adapter->hw.mac.type == e1000_82576) &&
4532 (skb->len == 60)))
4533 adapter->hw_csum_err++;
4534 /* let the stack verify checksum errors */
4535 return;
4536 }
4537 /* It must be a TCP or UDP packet with a valid checksum */
4538 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4539 skb->ip_summed = CHECKSUM_UNNECESSARY;
4540
4541 dev_dbg(&adapter->pdev->dev, "cksum success: bits %08X\n", status_err);
4542 adapter->hw_csum_good++;
4543 }
4544
4545 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4546 int *work_done, int budget)
4547 {
4548 struct igb_adapter *adapter = rx_ring->adapter;
4549 struct net_device *netdev = adapter->netdev;
4550 struct e1000_hw *hw = &adapter->hw;
4551 struct pci_dev *pdev = adapter->pdev;
4552 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4553 struct igb_buffer *buffer_info , *next_buffer;
4554 struct sk_buff *skb;
4555 bool cleaned = false;
4556 int cleaned_count = 0;
4557 unsigned int total_bytes = 0, total_packets = 0;
4558 unsigned int i;
4559 u32 length, hlen, staterr;
4560
4561 i = rx_ring->next_to_clean;
4562 buffer_info = &rx_ring->buffer_info[i];
4563 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4564 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4565
4566 while (staterr & E1000_RXD_STAT_DD) {
4567 if (*work_done >= budget)
4568 break;
4569 (*work_done)++;
4570
4571 skb = buffer_info->skb;
4572 prefetch(skb->data - NET_IP_ALIGN);
4573 buffer_info->skb = NULL;
4574
4575 i++;
4576 if (i == rx_ring->count)
4577 i = 0;
4578 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4579 prefetch(next_rxd);
4580 next_buffer = &rx_ring->buffer_info[i];
4581
4582 length = le16_to_cpu(rx_desc->wb.upper.length);
4583 cleaned = true;
4584 cleaned_count++;
4585
4586 /* this is the fast path for the non-packet split case */
4587 if (!adapter->rx_ps_hdr_size) {
4588 pci_unmap_single(pdev, buffer_info->dma,
4589 adapter->rx_buffer_len,
4590 PCI_DMA_FROMDEVICE);
4591 buffer_info->dma = 0;
4592 skb_put(skb, length);
4593 goto send_up;
4594 }
4595
4596 /* HW will not DMA in data larger than the given buffer, even
4597 * if it parses the (NFS, of course) header to be larger. In
4598 * that case, it fills the header buffer and spills the rest
4599 * into the page.
4600 */
4601 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4602 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4603 if (hlen > adapter->rx_ps_hdr_size)
4604 hlen = adapter->rx_ps_hdr_size;
4605
4606 if (!skb_shinfo(skb)->nr_frags) {
4607 pci_unmap_single(pdev, buffer_info->dma,
4608 adapter->rx_ps_hdr_size,
4609 PCI_DMA_FROMDEVICE);
4610 buffer_info->dma = 0;
4611 skb_put(skb, hlen);
4612 }
4613
4614 if (length) {
4615 pci_unmap_page(pdev, buffer_info->page_dma,
4616 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4617 buffer_info->page_dma = 0;
4618
4619 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4620 buffer_info->page,
4621 buffer_info->page_offset,
4622 length);
4623
4624 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4625 (page_count(buffer_info->page) != 1))
4626 buffer_info->page = NULL;
4627 else
4628 get_page(buffer_info->page);
4629
4630 skb->len += length;
4631 skb->data_len += length;
4632
4633 skb->truesize += length;
4634 }
4635
4636 if (!(staterr & E1000_RXD_STAT_EOP)) {
4637 buffer_info->skb = next_buffer->skb;
4638 buffer_info->dma = next_buffer->dma;
4639 next_buffer->skb = skb;
4640 next_buffer->dma = 0;
4641 goto next_desc;
4642 }
4643 send_up:
4644 /*
4645 * If this bit is set, then the RX registers contain
4646 * the time stamp. No other packet will be time
4647 * stamped until we read these registers, so read the
4648 * registers to make them available again. Because
4649 * only one packet can be time stamped at a time, we
4650 * know that the register values must belong to this
4651 * one here and therefore we don't need to compare
4652 * any of the additional attributes stored for it.
4653 *
4654 * If nothing went wrong, then it should have a
4655 * skb_shared_tx that we can turn into a
4656 * skb_shared_hwtstamps.
4657 *
4658 * TODO: can time stamping be triggered (thus locking
4659 * the registers) without the packet reaching this point
4660 * here? In that case RX time stamping would get stuck.
4661 *
4662 * TODO: in "time stamp all packets" mode this bit is
4663 * not set. Need a global flag for this mode and then
4664 * always read the registers. Cannot be done without
4665 * a race condition.
4666 */
4667 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4668 u64 regval;
4669 u64 ns;
4670 struct skb_shared_hwtstamps *shhwtstamps =
4671 skb_hwtstamps(skb);
4672
4673 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4674 "igb: no RX time stamp available for time stamped packet");
4675 regval = rd32(E1000_RXSTMPL);
4676 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4677 ns = timecounter_cyc2time(&adapter->clock, regval);
4678 timecompare_update(&adapter->compare, ns);
4679 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4680 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4681 shhwtstamps->syststamp =
4682 timecompare_transform(&adapter->compare, ns);
4683 }
4684
4685 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4686 dev_kfree_skb_irq(skb);
4687 goto next_desc;
4688 }
4689
4690 total_bytes += skb->len;
4691 total_packets++;
4692
4693 igb_rx_checksum_adv(adapter, staterr, skb);
4694
4695 skb->protocol = eth_type_trans(skb, netdev);
4696
4697 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4698
4699 next_desc:
4700 rx_desc->wb.upper.status_error = 0;
4701
4702 /* return some buffers to hardware, one at a time is too slow */
4703 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4704 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4705 cleaned_count = 0;
4706 }
4707
4708 /* use prefetched values */
4709 rx_desc = next_rxd;
4710 buffer_info = next_buffer;
4711 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4712 }
4713
4714 rx_ring->next_to_clean = i;
4715 cleaned_count = igb_desc_unused(rx_ring);
4716
4717 if (cleaned_count)
4718 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4719
4720 rx_ring->total_packets += total_packets;
4721 rx_ring->total_bytes += total_bytes;
4722 rx_ring->rx_stats.packets += total_packets;
4723 rx_ring->rx_stats.bytes += total_bytes;
4724 adapter->net_stats.rx_bytes += total_bytes;
4725 adapter->net_stats.rx_packets += total_packets;
4726 return cleaned;
4727 }
4728
4729 /**
4730 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4731 * @adapter: address of board private structure
4732 **/
4733 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4734 int cleaned_count)
4735 {
4736 struct igb_adapter *adapter = rx_ring->adapter;
4737 struct net_device *netdev = adapter->netdev;
4738 struct pci_dev *pdev = adapter->pdev;
4739 union e1000_adv_rx_desc *rx_desc;
4740 struct igb_buffer *buffer_info;
4741 struct sk_buff *skb;
4742 unsigned int i;
4743 int bufsz;
4744
4745 i = rx_ring->next_to_use;
4746 buffer_info = &rx_ring->buffer_info[i];
4747
4748 if (adapter->rx_ps_hdr_size)
4749 bufsz = adapter->rx_ps_hdr_size;
4750 else
4751 bufsz = adapter->rx_buffer_len;
4752
4753 while (cleaned_count--) {
4754 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4755
4756 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4757 if (!buffer_info->page) {
4758 buffer_info->page = alloc_page(GFP_ATOMIC);
4759 if (!buffer_info->page) {
4760 adapter->alloc_rx_buff_failed++;
4761 goto no_buffers;
4762 }
4763 buffer_info->page_offset = 0;
4764 } else {
4765 buffer_info->page_offset ^= PAGE_SIZE / 2;
4766 }
4767 buffer_info->page_dma =
4768 pci_map_page(pdev, buffer_info->page,
4769 buffer_info->page_offset,
4770 PAGE_SIZE / 2,
4771 PCI_DMA_FROMDEVICE);
4772 }
4773
4774 if (!buffer_info->skb) {
4775 skb = netdev_alloc_skb(netdev, bufsz + NET_IP_ALIGN);
4776 if (!skb) {
4777 adapter->alloc_rx_buff_failed++;
4778 goto no_buffers;
4779 }
4780
4781 /* Make buffer alignment 2 beyond a 16 byte boundary
4782 * this will result in a 16 byte aligned IP header after
4783 * the 14 byte MAC header is removed
4784 */
4785 skb_reserve(skb, NET_IP_ALIGN);
4786
4787 buffer_info->skb = skb;
4788 buffer_info->dma = pci_map_single(pdev, skb->data,
4789 bufsz,
4790 PCI_DMA_FROMDEVICE);
4791 }
4792 /* Refresh the desc even if buffer_addrs didn't change because
4793 * each write-back erases this info. */
4794 if (adapter->rx_ps_hdr_size) {
4795 rx_desc->read.pkt_addr =
4796 cpu_to_le64(buffer_info->page_dma);
4797 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4798 } else {
4799 rx_desc->read.pkt_addr =
4800 cpu_to_le64(buffer_info->dma);
4801 rx_desc->read.hdr_addr = 0;
4802 }
4803
4804 i++;
4805 if (i == rx_ring->count)
4806 i = 0;
4807 buffer_info = &rx_ring->buffer_info[i];
4808 }
4809
4810 no_buffers:
4811 if (rx_ring->next_to_use != i) {
4812 rx_ring->next_to_use = i;
4813 if (i == 0)
4814 i = (rx_ring->count - 1);
4815 else
4816 i--;
4817
4818 /* Force memory writes to complete before letting h/w
4819 * know there are new descriptors to fetch. (Only
4820 * applicable for weak-ordered memory model archs,
4821 * such as IA-64). */
4822 wmb();
4823 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4824 }
4825 }
4826
4827 /**
4828 * igb_mii_ioctl -
4829 * @netdev:
4830 * @ifreq:
4831 * @cmd:
4832 **/
4833 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4834 {
4835 struct igb_adapter *adapter = netdev_priv(netdev);
4836 struct mii_ioctl_data *data = if_mii(ifr);
4837
4838 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4839 return -EOPNOTSUPP;
4840
4841 switch (cmd) {
4842 case SIOCGMIIPHY:
4843 data->phy_id = adapter->hw.phy.addr;
4844 break;
4845 case SIOCGMIIREG:
4846 if (!capable(CAP_NET_ADMIN))
4847 return -EPERM;
4848 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4849 &data->val_out))
4850 return -EIO;
4851 break;
4852 case SIOCSMIIREG:
4853 default:
4854 return -EOPNOTSUPP;
4855 }
4856 return 0;
4857 }
4858
4859 /**
4860 * igb_hwtstamp_ioctl - control hardware time stamping
4861 * @netdev:
4862 * @ifreq:
4863 * @cmd:
4864 *
4865 * Outgoing time stamping can be enabled and disabled. Play nice and
4866 * disable it when requested, although it shouldn't case any overhead
4867 * when no packet needs it. At most one packet in the queue may be
4868 * marked for time stamping, otherwise it would be impossible to tell
4869 * for sure to which packet the hardware time stamp belongs.
4870 *
4871 * Incoming time stamping has to be configured via the hardware
4872 * filters. Not all combinations are supported, in particular event
4873 * type has to be specified. Matching the kind of event packet is
4874 * not supported, with the exception of "all V2 events regardless of
4875 * level 2 or 4".
4876 *
4877 **/
4878 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4879 struct ifreq *ifr, int cmd)
4880 {
4881 struct igb_adapter *adapter = netdev_priv(netdev);
4882 struct e1000_hw *hw = &adapter->hw;
4883 struct hwtstamp_config config;
4884 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4885 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4886 u32 tsync_rx_ctl_type = 0;
4887 u32 tsync_rx_cfg = 0;
4888 int is_l4 = 0;
4889 int is_l2 = 0;
4890 short port = 319; /* PTP */
4891 u32 regval;
4892
4893 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4894 return -EFAULT;
4895
4896 /* reserved for future extensions */
4897 if (config.flags)
4898 return -EINVAL;
4899
4900 switch (config.tx_type) {
4901 case HWTSTAMP_TX_OFF:
4902 tsync_tx_ctl_bit = 0;
4903 break;
4904 case HWTSTAMP_TX_ON:
4905 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4906 break;
4907 default:
4908 return -ERANGE;
4909 }
4910
4911 switch (config.rx_filter) {
4912 case HWTSTAMP_FILTER_NONE:
4913 tsync_rx_ctl_bit = 0;
4914 break;
4915 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4916 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4917 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4918 case HWTSTAMP_FILTER_ALL:
4919 /*
4920 * register TSYNCRXCFG must be set, therefore it is not
4921 * possible to time stamp both Sync and Delay_Req messages
4922 * => fall back to time stamping all packets
4923 */
4924 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4925 config.rx_filter = HWTSTAMP_FILTER_ALL;
4926 break;
4927 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4928 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4929 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4930 is_l4 = 1;
4931 break;
4932 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4933 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4934 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4935 is_l4 = 1;
4936 break;
4937 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4938 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4939 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4940 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4941 is_l2 = 1;
4942 is_l4 = 1;
4943 config.rx_filter = HWTSTAMP_FILTER_SOME;
4944 break;
4945 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4946 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4947 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4948 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4949 is_l2 = 1;
4950 is_l4 = 1;
4951 config.rx_filter = HWTSTAMP_FILTER_SOME;
4952 break;
4953 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4954 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4955 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4956 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4957 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4958 is_l2 = 1;
4959 break;
4960 default:
4961 return -ERANGE;
4962 }
4963
4964 /* enable/disable TX */
4965 regval = rd32(E1000_TSYNCTXCTL);
4966 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4967 wr32(E1000_TSYNCTXCTL, regval);
4968
4969 /* enable/disable RX, define which PTP packets are time stamped */
4970 regval = rd32(E1000_TSYNCRXCTL);
4971 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4972 regval = (regval & ~0xE) | tsync_rx_ctl_type;
4973 wr32(E1000_TSYNCRXCTL, regval);
4974 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4975
4976 /*
4977 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4978 * (Ethertype to filter on)
4979 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4980 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4981 */
4982 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4983
4984 /* L4 Queue Filter[0]: only filter by source and destination port */
4985 wr32(E1000_SPQF0, htons(port));
4986 wr32(E1000_IMIREXT(0), is_l4 ?
4987 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4988 wr32(E1000_IMIR(0), is_l4 ?
4989 (htons(port)
4990 | (0<<16) /* immediate interrupt disabled */
4991 | 0 /* (1<<17) bit cleared: do not bypass
4992 destination port check */)
4993 : 0);
4994 wr32(E1000_FTQF0, is_l4 ?
4995 (0x11 /* UDP */
4996 | (1<<15) /* VF not compared */
4997 | (1<<27) /* Enable Timestamping */
4998 | (7<<28) /* only source port filter enabled,
4999 source/target address and protocol
5000 masked */)
5001 : ((1<<15) | (15<<28) /* all mask bits set = filter not
5002 enabled */));
5003
5004 wrfl();
5005
5006 adapter->hwtstamp_config = config;
5007
5008 /* clear TX/RX time stamp registers, just to be sure */
5009 regval = rd32(E1000_TXSTMPH);
5010 regval = rd32(E1000_RXSTMPH);
5011
5012 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5013 -EFAULT : 0;
5014 }
5015
5016 /**
5017 * igb_ioctl -
5018 * @netdev:
5019 * @ifreq:
5020 * @cmd:
5021 **/
5022 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5023 {
5024 switch (cmd) {
5025 case SIOCGMIIPHY:
5026 case SIOCGMIIREG:
5027 case SIOCSMIIREG:
5028 return igb_mii_ioctl(netdev, ifr, cmd);
5029 case SIOCSHWTSTAMP:
5030 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5031 default:
5032 return -EOPNOTSUPP;
5033 }
5034 }
5035
5036 static void igb_vlan_rx_register(struct net_device *netdev,
5037 struct vlan_group *grp)
5038 {
5039 struct igb_adapter *adapter = netdev_priv(netdev);
5040 struct e1000_hw *hw = &adapter->hw;
5041 u32 ctrl, rctl;
5042
5043 igb_irq_disable(adapter);
5044 adapter->vlgrp = grp;
5045
5046 if (grp) {
5047 /* enable VLAN tag insert/strip */
5048 ctrl = rd32(E1000_CTRL);
5049 ctrl |= E1000_CTRL_VME;
5050 wr32(E1000_CTRL, ctrl);
5051
5052 /* enable VLAN receive filtering */
5053 rctl = rd32(E1000_RCTL);
5054 rctl &= ~E1000_RCTL_CFIEN;
5055 wr32(E1000_RCTL, rctl);
5056 igb_update_mng_vlan(adapter);
5057 } else {
5058 /* disable VLAN tag insert/strip */
5059 ctrl = rd32(E1000_CTRL);
5060 ctrl &= ~E1000_CTRL_VME;
5061 wr32(E1000_CTRL, ctrl);
5062
5063 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
5064 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
5065 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
5066 }
5067 }
5068
5069 igb_rlpml_set(adapter);
5070
5071 if (!test_bit(__IGB_DOWN, &adapter->state))
5072 igb_irq_enable(adapter);
5073 }
5074
5075 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5076 {
5077 struct igb_adapter *adapter = netdev_priv(netdev);
5078 struct e1000_hw *hw = &adapter->hw;
5079 int pf_id = adapter->vfs_allocated_count;
5080
5081 if ((hw->mng_cookie.status &
5082 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5083 (vid == adapter->mng_vlan_id))
5084 return;
5085
5086 /* add vid to vlvf if sr-iov is enabled,
5087 * if that fails add directly to filter table */
5088 if (igb_vlvf_set(adapter, vid, true, pf_id))
5089 igb_vfta_set(hw, vid, true);
5090
5091 }
5092
5093 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5094 {
5095 struct igb_adapter *adapter = netdev_priv(netdev);
5096 struct e1000_hw *hw = &adapter->hw;
5097 int pf_id = adapter->vfs_allocated_count;
5098
5099 igb_irq_disable(adapter);
5100 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5101
5102 if (!test_bit(__IGB_DOWN, &adapter->state))
5103 igb_irq_enable(adapter);
5104
5105 if ((adapter->hw.mng_cookie.status &
5106 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5107 (vid == adapter->mng_vlan_id)) {
5108 /* release control to f/w */
5109 igb_release_hw_control(adapter);
5110 return;
5111 }
5112
5113 /* remove vid from vlvf if sr-iov is enabled,
5114 * if not in vlvf remove from vfta */
5115 if (igb_vlvf_set(adapter, vid, false, pf_id))
5116 igb_vfta_set(hw, vid, false);
5117 }
5118
5119 static void igb_restore_vlan(struct igb_adapter *adapter)
5120 {
5121 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5122
5123 if (adapter->vlgrp) {
5124 u16 vid;
5125 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5126 if (!vlan_group_get_device(adapter->vlgrp, vid))
5127 continue;
5128 igb_vlan_rx_add_vid(adapter->netdev, vid);
5129 }
5130 }
5131 }
5132
5133 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5134 {
5135 struct e1000_mac_info *mac = &adapter->hw.mac;
5136
5137 mac->autoneg = 0;
5138
5139 /* Fiber NICs only allow 1000 gbps Full duplex */
5140 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
5141 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5142 dev_err(&adapter->pdev->dev,
5143 "Unsupported Speed/Duplex configuration\n");
5144 return -EINVAL;
5145 }
5146
5147 switch (spddplx) {
5148 case SPEED_10 + DUPLEX_HALF:
5149 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5150 break;
5151 case SPEED_10 + DUPLEX_FULL:
5152 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5153 break;
5154 case SPEED_100 + DUPLEX_HALF:
5155 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5156 break;
5157 case SPEED_100 + DUPLEX_FULL:
5158 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5159 break;
5160 case SPEED_1000 + DUPLEX_FULL:
5161 mac->autoneg = 1;
5162 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5163 break;
5164 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5165 default:
5166 dev_err(&adapter->pdev->dev,
5167 "Unsupported Speed/Duplex configuration\n");
5168 return -EINVAL;
5169 }
5170 return 0;
5171 }
5172
5173 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5174 {
5175 struct net_device *netdev = pci_get_drvdata(pdev);
5176 struct igb_adapter *adapter = netdev_priv(netdev);
5177 struct e1000_hw *hw = &adapter->hw;
5178 u32 ctrl, rctl, status;
5179 u32 wufc = adapter->wol;
5180 #ifdef CONFIG_PM
5181 int retval = 0;
5182 #endif
5183
5184 netif_device_detach(netdev);
5185
5186 if (netif_running(netdev))
5187 igb_close(netdev);
5188
5189 igb_reset_interrupt_capability(adapter);
5190
5191 igb_free_queues(adapter);
5192
5193 #ifdef CONFIG_PM
5194 retval = pci_save_state(pdev);
5195 if (retval)
5196 return retval;
5197 #endif
5198
5199 status = rd32(E1000_STATUS);
5200 if (status & E1000_STATUS_LU)
5201 wufc &= ~E1000_WUFC_LNKC;
5202
5203 if (wufc) {
5204 igb_setup_rctl(adapter);
5205 igb_set_multi(netdev);
5206
5207 /* turn on all-multi mode if wake on multicast is enabled */
5208 if (wufc & E1000_WUFC_MC) {
5209 rctl = rd32(E1000_RCTL);
5210 rctl |= E1000_RCTL_MPE;
5211 wr32(E1000_RCTL, rctl);
5212 }
5213
5214 ctrl = rd32(E1000_CTRL);
5215 /* advertise wake from D3Cold */
5216 #define E1000_CTRL_ADVD3WUC 0x00100000
5217 /* phy power management enable */
5218 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5219 ctrl |= E1000_CTRL_ADVD3WUC;
5220 wr32(E1000_CTRL, ctrl);
5221
5222 /* Allow time for pending master requests to run */
5223 igb_disable_pcie_master(&adapter->hw);
5224
5225 wr32(E1000_WUC, E1000_WUC_PME_EN);
5226 wr32(E1000_WUFC, wufc);
5227 } else {
5228 wr32(E1000_WUC, 0);
5229 wr32(E1000_WUFC, 0);
5230 }
5231
5232 *enable_wake = wufc || adapter->en_mng_pt;
5233 if (!*enable_wake)
5234 igb_shutdown_fiber_serdes_link_82575(hw);
5235
5236 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5237 * would have already happened in close and is redundant. */
5238 igb_release_hw_control(adapter);
5239
5240 pci_disable_device(pdev);
5241
5242 return 0;
5243 }
5244
5245 #ifdef CONFIG_PM
5246 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5247 {
5248 int retval;
5249 bool wake;
5250
5251 retval = __igb_shutdown(pdev, &wake);
5252 if (retval)
5253 return retval;
5254
5255 if (wake) {
5256 pci_prepare_to_sleep(pdev);
5257 } else {
5258 pci_wake_from_d3(pdev, false);
5259 pci_set_power_state(pdev, PCI_D3hot);
5260 }
5261
5262 return 0;
5263 }
5264
5265 static int igb_resume(struct pci_dev *pdev)
5266 {
5267 struct net_device *netdev = pci_get_drvdata(pdev);
5268 struct igb_adapter *adapter = netdev_priv(netdev);
5269 struct e1000_hw *hw = &adapter->hw;
5270 u32 err;
5271
5272 pci_set_power_state(pdev, PCI_D0);
5273 pci_restore_state(pdev);
5274
5275 err = pci_enable_device_mem(pdev);
5276 if (err) {
5277 dev_err(&pdev->dev,
5278 "igb: Cannot enable PCI device from suspend\n");
5279 return err;
5280 }
5281 pci_set_master(pdev);
5282
5283 pci_enable_wake(pdev, PCI_D3hot, 0);
5284 pci_enable_wake(pdev, PCI_D3cold, 0);
5285
5286 igb_set_interrupt_capability(adapter);
5287
5288 if (igb_alloc_queues(adapter)) {
5289 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5290 return -ENOMEM;
5291 }
5292
5293 /* e1000_power_up_phy(adapter); */
5294
5295 igb_reset(adapter);
5296
5297 /* let the f/w know that the h/w is now under the control of the
5298 * driver. */
5299 igb_get_hw_control(adapter);
5300
5301 wr32(E1000_WUS, ~0);
5302
5303 if (netif_running(netdev)) {
5304 err = igb_open(netdev);
5305 if (err)
5306 return err;
5307 }
5308
5309 netif_device_attach(netdev);
5310
5311 return 0;
5312 }
5313 #endif
5314
5315 static void igb_shutdown(struct pci_dev *pdev)
5316 {
5317 bool wake;
5318
5319 __igb_shutdown(pdev, &wake);
5320
5321 if (system_state == SYSTEM_POWER_OFF) {
5322 pci_wake_from_d3(pdev, wake);
5323 pci_set_power_state(pdev, PCI_D3hot);
5324 }
5325 }
5326
5327 #ifdef CONFIG_NET_POLL_CONTROLLER
5328 /*
5329 * Polling 'interrupt' - used by things like netconsole to send skbs
5330 * without having to re-enable interrupts. It's not called while
5331 * the interrupt routine is executing.
5332 */
5333 static void igb_netpoll(struct net_device *netdev)
5334 {
5335 struct igb_adapter *adapter = netdev_priv(netdev);
5336 struct e1000_hw *hw = &adapter->hw;
5337 int i;
5338
5339 if (!adapter->msix_entries) {
5340 igb_irq_disable(adapter);
5341 napi_schedule(&adapter->rx_ring[0].napi);
5342 return;
5343 }
5344
5345 for (i = 0; i < adapter->num_tx_queues; i++) {
5346 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5347 wr32(E1000_EIMC, tx_ring->eims_value);
5348 igb_clean_tx_irq(tx_ring);
5349 wr32(E1000_EIMS, tx_ring->eims_value);
5350 }
5351
5352 for (i = 0; i < adapter->num_rx_queues; i++) {
5353 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5354 wr32(E1000_EIMC, rx_ring->eims_value);
5355 napi_schedule(&rx_ring->napi);
5356 }
5357 }
5358 #endif /* CONFIG_NET_POLL_CONTROLLER */
5359
5360 /**
5361 * igb_io_error_detected - called when PCI error is detected
5362 * @pdev: Pointer to PCI device
5363 * @state: The current pci connection state
5364 *
5365 * This function is called after a PCI bus error affecting
5366 * this device has been detected.
5367 */
5368 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5369 pci_channel_state_t state)
5370 {
5371 struct net_device *netdev = pci_get_drvdata(pdev);
5372 struct igb_adapter *adapter = netdev_priv(netdev);
5373
5374 netif_device_detach(netdev);
5375
5376 if (state == pci_channel_io_perm_failure)
5377 return PCI_ERS_RESULT_DISCONNECT;
5378
5379 if (netif_running(netdev))
5380 igb_down(adapter);
5381 pci_disable_device(pdev);
5382
5383 /* Request a slot slot reset. */
5384 return PCI_ERS_RESULT_NEED_RESET;
5385 }
5386
5387 /**
5388 * igb_io_slot_reset - called after the pci bus has been reset.
5389 * @pdev: Pointer to PCI device
5390 *
5391 * Restart the card from scratch, as if from a cold-boot. Implementation
5392 * resembles the first-half of the igb_resume routine.
5393 */
5394 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5395 {
5396 struct net_device *netdev = pci_get_drvdata(pdev);
5397 struct igb_adapter *adapter = netdev_priv(netdev);
5398 struct e1000_hw *hw = &adapter->hw;
5399 pci_ers_result_t result;
5400 int err;
5401
5402 if (pci_enable_device_mem(pdev)) {
5403 dev_err(&pdev->dev,
5404 "Cannot re-enable PCI device after reset.\n");
5405 result = PCI_ERS_RESULT_DISCONNECT;
5406 } else {
5407 pci_set_master(pdev);
5408 pci_restore_state(pdev);
5409
5410 pci_enable_wake(pdev, PCI_D3hot, 0);
5411 pci_enable_wake(pdev, PCI_D3cold, 0);
5412
5413 igb_reset(adapter);
5414 wr32(E1000_WUS, ~0);
5415 result = PCI_ERS_RESULT_RECOVERED;
5416 }
5417
5418 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5419 if (err) {
5420 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5421 "failed 0x%0x\n", err);
5422 /* non-fatal, continue */
5423 }
5424
5425 return result;
5426 }
5427
5428 /**
5429 * igb_io_resume - called when traffic can start flowing again.
5430 * @pdev: Pointer to PCI device
5431 *
5432 * This callback is called when the error recovery driver tells us that
5433 * its OK to resume normal operation. Implementation resembles the
5434 * second-half of the igb_resume routine.
5435 */
5436 static void igb_io_resume(struct pci_dev *pdev)
5437 {
5438 struct net_device *netdev = pci_get_drvdata(pdev);
5439 struct igb_adapter *adapter = netdev_priv(netdev);
5440
5441 if (netif_running(netdev)) {
5442 if (igb_up(adapter)) {
5443 dev_err(&pdev->dev, "igb_up failed after reset\n");
5444 return;
5445 }
5446 }
5447
5448 netif_device_attach(netdev);
5449
5450 /* let the f/w know that the h/w is now under the control of the
5451 * driver. */
5452 igb_get_hw_control(adapter);
5453 }
5454
5455 static void igb_set_mc_list_pools(struct igb_adapter *adapter,
5456 int entry_count, u16 total_rar_filters)
5457 {
5458 struct e1000_hw *hw = &adapter->hw;
5459 int i = adapter->vfs_allocated_count + 1;
5460
5461 if ((i + entry_count) < total_rar_filters)
5462 total_rar_filters = i + entry_count;
5463
5464 for (; i < total_rar_filters; i++)
5465 igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
5466 }
5467
5468 static int igb_set_vf_mac(struct igb_adapter *adapter,
5469 int vf, unsigned char *mac_addr)
5470 {
5471 struct e1000_hw *hw = &adapter->hw;
5472 int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5473
5474 igb_rar_set(hw, mac_addr, rar_entry);
5475
5476 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5477
5478 igb_set_rah_pool(hw, vf, rar_entry);
5479
5480 return 0;
5481 }
5482
5483 static void igb_vmm_control(struct igb_adapter *adapter)
5484 {
5485 struct e1000_hw *hw = &adapter->hw;
5486 u32 reg_data;
5487
5488 if (!adapter->vfs_allocated_count)
5489 return;
5490
5491 /* VF's need PF reset indication before they
5492 * can send/receive mail */
5493 reg_data = rd32(E1000_CTRL_EXT);
5494 reg_data |= E1000_CTRL_EXT_PFRSTD;
5495 wr32(E1000_CTRL_EXT, reg_data);
5496
5497 igb_vmdq_set_loopback_pf(hw, true);
5498 igb_vmdq_set_replication_pf(hw, true);
5499 }
5500
5501 /* igb_main.c */
This page took 0.152513 seconds and 6 git commands to generate.