igb: move vf init into a seperate function
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
74 /* required last entry */
75 {0, }
76 };
77
78 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79
80 void igb_reset(struct igb_adapter *);
81 static int igb_setup_all_tx_resources(struct igb_adapter *);
82 static int igb_setup_all_rx_resources(struct igb_adapter *);
83 static void igb_free_all_tx_resources(struct igb_adapter *);
84 static void igb_free_all_rx_resources(struct igb_adapter *);
85 static void igb_setup_mrqc(struct igb_adapter *);
86 void igb_update_stats(struct igb_adapter *);
87 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
88 static void __devexit igb_remove(struct pci_dev *pdev);
89 static int igb_sw_init(struct igb_adapter *);
90 static int igb_open(struct net_device *);
91 static int igb_close(struct net_device *);
92 static void igb_configure_tx(struct igb_adapter *);
93 static void igb_configure_rx(struct igb_adapter *);
94 static void igb_clean_all_tx_rings(struct igb_adapter *);
95 static void igb_clean_all_rx_rings(struct igb_adapter *);
96 static void igb_clean_tx_ring(struct igb_ring *);
97 static void igb_clean_rx_ring(struct igb_ring *);
98 static void igb_set_rx_mode(struct net_device *);
99 static void igb_update_phy_info(unsigned long);
100 static void igb_watchdog(unsigned long);
101 static void igb_watchdog_task(struct work_struct *);
102 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static void igb_set_uta(struct igb_adapter *adapter);
107 static irqreturn_t igb_intr(int irq, void *);
108 static irqreturn_t igb_intr_msi(int irq, void *);
109 static irqreturn_t igb_msix_other(int irq, void *);
110 static irqreturn_t igb_msix_ring(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_dca(struct igb_q_vector *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_q_vector *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
126 static void igb_ping_all_vfs(struct igb_adapter *);
127 static void igb_msg_task(struct igb_adapter *);
128 static void igb_vmm_control(struct igb_adapter *);
129 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
130 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
131
132 #ifdef CONFIG_PM
133 static int igb_suspend(struct pci_dev *, pm_message_t);
134 static int igb_resume(struct pci_dev *);
135 #endif
136 static void igb_shutdown(struct pci_dev *);
137 #ifdef CONFIG_IGB_DCA
138 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
139 static struct notifier_block dca_notifier = {
140 .notifier_call = igb_notify_dca,
141 .next = NULL,
142 .priority = 0
143 };
144 #endif
145 #ifdef CONFIG_NET_POLL_CONTROLLER
146 /* for netdump / net console */
147 static void igb_netpoll(struct net_device *);
148 #endif
149 #ifdef CONFIG_PCI_IOV
150 static unsigned int max_vfs = 0;
151 module_param(max_vfs, uint, 0);
152 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
153 "per physical function");
154 #endif /* CONFIG_PCI_IOV */
155
156 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
157 pci_channel_state_t);
158 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
159 static void igb_io_resume(struct pci_dev *);
160
161 static struct pci_error_handlers igb_err_handler = {
162 .error_detected = igb_io_error_detected,
163 .slot_reset = igb_io_slot_reset,
164 .resume = igb_io_resume,
165 };
166
167
168 static struct pci_driver igb_driver = {
169 .name = igb_driver_name,
170 .id_table = igb_pci_tbl,
171 .probe = igb_probe,
172 .remove = __devexit_p(igb_remove),
173 #ifdef CONFIG_PM
174 /* Power Managment Hooks */
175 .suspend = igb_suspend,
176 .resume = igb_resume,
177 #endif
178 .shutdown = igb_shutdown,
179 .err_handler = &igb_err_handler
180 };
181
182 static int global_quad_port_a; /* global quad port a indication */
183
184 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
185 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
186 MODULE_LICENSE("GPL");
187 MODULE_VERSION(DRV_VERSION);
188
189 /**
190 * igb_read_clock - read raw cycle counter (to be used by time counter)
191 */
192 static cycle_t igb_read_clock(const struct cyclecounter *tc)
193 {
194 struct igb_adapter *adapter =
195 container_of(tc, struct igb_adapter, cycles);
196 struct e1000_hw *hw = &adapter->hw;
197 u64 stamp = 0;
198 int shift = 0;
199
200 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
201 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
202 return stamp;
203 }
204
205 #ifdef DEBUG
206 /**
207 * igb_get_hw_dev_name - return device name string
208 * used by hardware layer to print debugging information
209 **/
210 char *igb_get_hw_dev_name(struct e1000_hw *hw)
211 {
212 struct igb_adapter *adapter = hw->back;
213 return adapter->netdev->name;
214 }
215
216 /**
217 * igb_get_time_str - format current NIC and system time as string
218 */
219 static char *igb_get_time_str(struct igb_adapter *adapter,
220 char buffer[160])
221 {
222 cycle_t hw = adapter->cycles.read(&adapter->cycles);
223 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
224 struct timespec sys;
225 struct timespec delta;
226 getnstimeofday(&sys);
227
228 delta = timespec_sub(nic, sys);
229
230 sprintf(buffer,
231 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
232 hw,
233 (long)nic.tv_sec, nic.tv_nsec,
234 (long)sys.tv_sec, sys.tv_nsec,
235 (long)delta.tv_sec, delta.tv_nsec);
236
237 return buffer;
238 }
239 #endif
240
241 /**
242 * igb_init_module - Driver Registration Routine
243 *
244 * igb_init_module is the first routine called when the driver is
245 * loaded. All it does is register with the PCI subsystem.
246 **/
247 static int __init igb_init_module(void)
248 {
249 int ret;
250 printk(KERN_INFO "%s - version %s\n",
251 igb_driver_string, igb_driver_version);
252
253 printk(KERN_INFO "%s\n", igb_copyright);
254
255 global_quad_port_a = 0;
256
257 #ifdef CONFIG_IGB_DCA
258 dca_register_notify(&dca_notifier);
259 #endif
260
261 ret = pci_register_driver(&igb_driver);
262 return ret;
263 }
264
265 module_init(igb_init_module);
266
267 /**
268 * igb_exit_module - Driver Exit Cleanup Routine
269 *
270 * igb_exit_module is called just before the driver is removed
271 * from memory.
272 **/
273 static void __exit igb_exit_module(void)
274 {
275 #ifdef CONFIG_IGB_DCA
276 dca_unregister_notify(&dca_notifier);
277 #endif
278 pci_unregister_driver(&igb_driver);
279 }
280
281 module_exit(igb_exit_module);
282
283 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
284 /**
285 * igb_cache_ring_register - Descriptor ring to register mapping
286 * @adapter: board private structure to initialize
287 *
288 * Once we know the feature-set enabled for the device, we'll cache
289 * the register offset the descriptor ring is assigned to.
290 **/
291 static void igb_cache_ring_register(struct igb_adapter *adapter)
292 {
293 int i;
294 u32 rbase_offset = adapter->vfs_allocated_count;
295
296 switch (adapter->hw.mac.type) {
297 case e1000_82576:
298 /* The queues are allocated for virtualization such that VF 0
299 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
300 * In order to avoid collision we start at the first free queue
301 * and continue consuming queues in the same sequence
302 */
303 for (i = 0; i < adapter->num_rx_queues; i++)
304 adapter->rx_ring[i].reg_idx = rbase_offset +
305 Q_IDX_82576(i);
306 for (i = 0; i < adapter->num_tx_queues; i++)
307 adapter->tx_ring[i].reg_idx = rbase_offset +
308 Q_IDX_82576(i);
309 break;
310 case e1000_82575:
311 default:
312 for (i = 0; i < adapter->num_rx_queues; i++)
313 adapter->rx_ring[i].reg_idx = i;
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 adapter->tx_ring[i].reg_idx = i;
316 break;
317 }
318 }
319
320 static void igb_free_queues(struct igb_adapter *adapter)
321 {
322 kfree(adapter->tx_ring);
323 kfree(adapter->rx_ring);
324
325 adapter->tx_ring = NULL;
326 adapter->rx_ring = NULL;
327
328 adapter->num_rx_queues = 0;
329 adapter->num_tx_queues = 0;
330 }
331
332 /**
333 * igb_alloc_queues - Allocate memory for all rings
334 * @adapter: board private structure to initialize
335 *
336 * We allocate one ring per queue at run-time since we don't know the
337 * number of queues at compile-time.
338 **/
339 static int igb_alloc_queues(struct igb_adapter *adapter)
340 {
341 int i;
342
343 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
344 sizeof(struct igb_ring), GFP_KERNEL);
345 if (!adapter->tx_ring)
346 goto err;
347
348 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
349 sizeof(struct igb_ring), GFP_KERNEL);
350 if (!adapter->rx_ring)
351 goto err;
352
353 for (i = 0; i < adapter->num_tx_queues; i++) {
354 struct igb_ring *ring = &(adapter->tx_ring[i]);
355 ring->count = adapter->tx_ring_count;
356 ring->queue_index = i;
357 ring->pdev = adapter->pdev;
358 ring->netdev = adapter->netdev;
359 /* For 82575, context index must be unique per ring. */
360 if (adapter->hw.mac.type == e1000_82575)
361 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
362 }
363
364 for (i = 0; i < adapter->num_rx_queues; i++) {
365 struct igb_ring *ring = &(adapter->rx_ring[i]);
366 ring->count = adapter->rx_ring_count;
367 ring->queue_index = i;
368 ring->pdev = adapter->pdev;
369 ring->netdev = adapter->netdev;
370 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
371 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
372 /* set flag indicating ring supports SCTP checksum offload */
373 if (adapter->hw.mac.type >= e1000_82576)
374 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
375 }
376
377 igb_cache_ring_register(adapter);
378
379 return 0;
380
381 err:
382 igb_free_queues(adapter);
383
384 return -ENOMEM;
385 }
386
387 #define IGB_N0_QUEUE -1
388 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
389 {
390 u32 msixbm = 0;
391 struct igb_adapter *adapter = q_vector->adapter;
392 struct e1000_hw *hw = &adapter->hw;
393 u32 ivar, index;
394 int rx_queue = IGB_N0_QUEUE;
395 int tx_queue = IGB_N0_QUEUE;
396
397 if (q_vector->rx_ring)
398 rx_queue = q_vector->rx_ring->reg_idx;
399 if (q_vector->tx_ring)
400 tx_queue = q_vector->tx_ring->reg_idx;
401
402 switch (hw->mac.type) {
403 case e1000_82575:
404 /* The 82575 assigns vectors using a bitmask, which matches the
405 bitmask for the EICR/EIMS/EIMC registers. To assign one
406 or more queues to a vector, we write the appropriate bits
407 into the MSIXBM register for that vector. */
408 if (rx_queue > IGB_N0_QUEUE)
409 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
410 if (tx_queue > IGB_N0_QUEUE)
411 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
412 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
413 q_vector->eims_value = msixbm;
414 break;
415 case e1000_82576:
416 /* 82576 uses a table-based method for assigning vectors.
417 Each queue has a single entry in the table to which we write
418 a vector number along with a "valid" bit. Sadly, the layout
419 of the table is somewhat counterintuitive. */
420 if (rx_queue > IGB_N0_QUEUE) {
421 index = (rx_queue & 0x7);
422 ivar = array_rd32(E1000_IVAR0, index);
423 if (rx_queue < 8) {
424 /* vector goes into low byte of register */
425 ivar = ivar & 0xFFFFFF00;
426 ivar |= msix_vector | E1000_IVAR_VALID;
427 } else {
428 /* vector goes into third byte of register */
429 ivar = ivar & 0xFF00FFFF;
430 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
431 }
432 array_wr32(E1000_IVAR0, index, ivar);
433 }
434 if (tx_queue > IGB_N0_QUEUE) {
435 index = (tx_queue & 0x7);
436 ivar = array_rd32(E1000_IVAR0, index);
437 if (tx_queue < 8) {
438 /* vector goes into second byte of register */
439 ivar = ivar & 0xFFFF00FF;
440 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
441 } else {
442 /* vector goes into high byte of register */
443 ivar = ivar & 0x00FFFFFF;
444 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
445 }
446 array_wr32(E1000_IVAR0, index, ivar);
447 }
448 q_vector->eims_value = 1 << msix_vector;
449 break;
450 default:
451 BUG();
452 break;
453 }
454 }
455
456 /**
457 * igb_configure_msix - Configure MSI-X hardware
458 *
459 * igb_configure_msix sets up the hardware to properly
460 * generate MSI-X interrupts.
461 **/
462 static void igb_configure_msix(struct igb_adapter *adapter)
463 {
464 u32 tmp;
465 int i, vector = 0;
466 struct e1000_hw *hw = &adapter->hw;
467
468 adapter->eims_enable_mask = 0;
469
470 /* set vector for other causes, i.e. link changes */
471 switch (hw->mac.type) {
472 case e1000_82575:
473 tmp = rd32(E1000_CTRL_EXT);
474 /* enable MSI-X PBA support*/
475 tmp |= E1000_CTRL_EXT_PBA_CLR;
476
477 /* Auto-Mask interrupts upon ICR read. */
478 tmp |= E1000_CTRL_EXT_EIAME;
479 tmp |= E1000_CTRL_EXT_IRCA;
480
481 wr32(E1000_CTRL_EXT, tmp);
482
483 /* enable msix_other interrupt */
484 array_wr32(E1000_MSIXBM(0), vector++,
485 E1000_EIMS_OTHER);
486 adapter->eims_other = E1000_EIMS_OTHER;
487
488 break;
489
490 case e1000_82576:
491 /* Turn on MSI-X capability first, or our settings
492 * won't stick. And it will take days to debug. */
493 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
494 E1000_GPIE_PBA | E1000_GPIE_EIAME |
495 E1000_GPIE_NSICR);
496
497 /* enable msix_other interrupt */
498 adapter->eims_other = 1 << vector;
499 tmp = (vector++ | E1000_IVAR_VALID) << 8;
500
501 wr32(E1000_IVAR_MISC, tmp);
502 break;
503 default:
504 /* do nothing, since nothing else supports MSI-X */
505 break;
506 } /* switch (hw->mac.type) */
507
508 adapter->eims_enable_mask |= adapter->eims_other;
509
510 for (i = 0; i < adapter->num_q_vectors; i++) {
511 struct igb_q_vector *q_vector = adapter->q_vector[i];
512 igb_assign_vector(q_vector, vector++);
513 adapter->eims_enable_mask |= q_vector->eims_value;
514 }
515
516 wrfl();
517 }
518
519 /**
520 * igb_request_msix - Initialize MSI-X interrupts
521 *
522 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
523 * kernel.
524 **/
525 static int igb_request_msix(struct igb_adapter *adapter)
526 {
527 struct net_device *netdev = adapter->netdev;
528 struct e1000_hw *hw = &adapter->hw;
529 int i, err = 0, vector = 0;
530
531 err = request_irq(adapter->msix_entries[vector].vector,
532 &igb_msix_other, 0, netdev->name, adapter);
533 if (err)
534 goto out;
535 vector++;
536
537 for (i = 0; i < adapter->num_q_vectors; i++) {
538 struct igb_q_vector *q_vector = adapter->q_vector[i];
539
540 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
541
542 if (q_vector->rx_ring && q_vector->tx_ring)
543 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
544 q_vector->rx_ring->queue_index);
545 else if (q_vector->tx_ring)
546 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
547 q_vector->tx_ring->queue_index);
548 else if (q_vector->rx_ring)
549 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
550 q_vector->rx_ring->queue_index);
551 else
552 sprintf(q_vector->name, "%s-unused", netdev->name);
553
554 err = request_irq(adapter->msix_entries[vector].vector,
555 &igb_msix_ring, 0, q_vector->name,
556 q_vector);
557 if (err)
558 goto out;
559 vector++;
560 }
561
562 igb_configure_msix(adapter);
563 return 0;
564 out:
565 return err;
566 }
567
568 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
569 {
570 if (adapter->msix_entries) {
571 pci_disable_msix(adapter->pdev);
572 kfree(adapter->msix_entries);
573 adapter->msix_entries = NULL;
574 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
575 pci_disable_msi(adapter->pdev);
576 }
577 }
578
579 /**
580 * igb_free_q_vectors - Free memory allocated for interrupt vectors
581 * @adapter: board private structure to initialize
582 *
583 * This function frees the memory allocated to the q_vectors. In addition if
584 * NAPI is enabled it will delete any references to the NAPI struct prior
585 * to freeing the q_vector.
586 **/
587 static void igb_free_q_vectors(struct igb_adapter *adapter)
588 {
589 int v_idx;
590
591 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
592 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
593 adapter->q_vector[v_idx] = NULL;
594 netif_napi_del(&q_vector->napi);
595 kfree(q_vector);
596 }
597 adapter->num_q_vectors = 0;
598 }
599
600 /**
601 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
602 *
603 * This function resets the device so that it has 0 rx queues, tx queues, and
604 * MSI-X interrupts allocated.
605 */
606 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
607 {
608 igb_free_queues(adapter);
609 igb_free_q_vectors(adapter);
610 igb_reset_interrupt_capability(adapter);
611 }
612
613 /**
614 * igb_set_interrupt_capability - set MSI or MSI-X if supported
615 *
616 * Attempt to configure interrupts using the best available
617 * capabilities of the hardware and kernel.
618 **/
619 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
620 {
621 int err;
622 int numvecs, i;
623
624 /* Number of supported queues. */
625 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
626 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
627
628 /* start with one vector for every rx queue */
629 numvecs = adapter->num_rx_queues;
630
631 /* if tx handler is seperate add 1 for every tx queue */
632 numvecs += adapter->num_tx_queues;
633
634 /* store the number of vectors reserved for queues */
635 adapter->num_q_vectors = numvecs;
636
637 /* add 1 vector for link status interrupts */
638 numvecs++;
639 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
640 GFP_KERNEL);
641 if (!adapter->msix_entries)
642 goto msi_only;
643
644 for (i = 0; i < numvecs; i++)
645 adapter->msix_entries[i].entry = i;
646
647 err = pci_enable_msix(adapter->pdev,
648 adapter->msix_entries,
649 numvecs);
650 if (err == 0)
651 goto out;
652
653 igb_reset_interrupt_capability(adapter);
654
655 /* If we can't do MSI-X, try MSI */
656 msi_only:
657 #ifdef CONFIG_PCI_IOV
658 /* disable SR-IOV for non MSI-X configurations */
659 if (adapter->vf_data) {
660 struct e1000_hw *hw = &adapter->hw;
661 /* disable iov and allow time for transactions to clear */
662 pci_disable_sriov(adapter->pdev);
663 msleep(500);
664
665 kfree(adapter->vf_data);
666 adapter->vf_data = NULL;
667 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
668 msleep(100);
669 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
670 }
671 #endif
672 adapter->vfs_allocated_count = 0;
673 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
674 adapter->num_rx_queues = 1;
675 adapter->num_tx_queues = 1;
676 adapter->num_q_vectors = 1;
677 if (!pci_enable_msi(adapter->pdev))
678 adapter->flags |= IGB_FLAG_HAS_MSI;
679 out:
680 /* Notify the stack of the (possibly) reduced Tx Queue count. */
681 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
682 return;
683 }
684
685 /**
686 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
687 * @adapter: board private structure to initialize
688 *
689 * We allocate one q_vector per queue interrupt. If allocation fails we
690 * return -ENOMEM.
691 **/
692 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
693 {
694 struct igb_q_vector *q_vector;
695 struct e1000_hw *hw = &adapter->hw;
696 int v_idx;
697
698 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
699 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
700 if (!q_vector)
701 goto err_out;
702 q_vector->adapter = adapter;
703 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
704 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
705 q_vector->itr_val = IGB_START_ITR;
706 q_vector->set_itr = 1;
707 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
708 adapter->q_vector[v_idx] = q_vector;
709 }
710 return 0;
711
712 err_out:
713 while (v_idx) {
714 v_idx--;
715 q_vector = adapter->q_vector[v_idx];
716 netif_napi_del(&q_vector->napi);
717 kfree(q_vector);
718 adapter->q_vector[v_idx] = NULL;
719 }
720 return -ENOMEM;
721 }
722
723 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
724 int ring_idx, int v_idx)
725 {
726 struct igb_q_vector *q_vector;
727
728 q_vector = adapter->q_vector[v_idx];
729 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
730 q_vector->rx_ring->q_vector = q_vector;
731 q_vector->itr_val = adapter->rx_itr_setting;
732 if (q_vector->itr_val && q_vector->itr_val <= 3)
733 q_vector->itr_val = IGB_START_ITR;
734 }
735
736 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
737 int ring_idx, int v_idx)
738 {
739 struct igb_q_vector *q_vector;
740
741 q_vector = adapter->q_vector[v_idx];
742 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
743 q_vector->tx_ring->q_vector = q_vector;
744 q_vector->itr_val = adapter->tx_itr_setting;
745 if (q_vector->itr_val && q_vector->itr_val <= 3)
746 q_vector->itr_val = IGB_START_ITR;
747 }
748
749 /**
750 * igb_map_ring_to_vector - maps allocated queues to vectors
751 *
752 * This function maps the recently allocated queues to vectors.
753 **/
754 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
755 {
756 int i;
757 int v_idx = 0;
758
759 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
760 (adapter->num_q_vectors < adapter->num_tx_queues))
761 return -ENOMEM;
762
763 if (adapter->num_q_vectors >=
764 (adapter->num_rx_queues + adapter->num_tx_queues)) {
765 for (i = 0; i < adapter->num_rx_queues; i++)
766 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
767 for (i = 0; i < adapter->num_tx_queues; i++)
768 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
769 } else {
770 for (i = 0; i < adapter->num_rx_queues; i++) {
771 if (i < adapter->num_tx_queues)
772 igb_map_tx_ring_to_vector(adapter, i, v_idx);
773 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
774 }
775 for (; i < adapter->num_tx_queues; i++)
776 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
777 }
778 return 0;
779 }
780
781 /**
782 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
783 *
784 * This function initializes the interrupts and allocates all of the queues.
785 **/
786 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
787 {
788 struct pci_dev *pdev = adapter->pdev;
789 int err;
790
791 igb_set_interrupt_capability(adapter);
792
793 err = igb_alloc_q_vectors(adapter);
794 if (err) {
795 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
796 goto err_alloc_q_vectors;
797 }
798
799 err = igb_alloc_queues(adapter);
800 if (err) {
801 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
802 goto err_alloc_queues;
803 }
804
805 err = igb_map_ring_to_vector(adapter);
806 if (err) {
807 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
808 goto err_map_queues;
809 }
810
811
812 return 0;
813 err_map_queues:
814 igb_free_queues(adapter);
815 err_alloc_queues:
816 igb_free_q_vectors(adapter);
817 err_alloc_q_vectors:
818 igb_reset_interrupt_capability(adapter);
819 return err;
820 }
821
822 /**
823 * igb_request_irq - initialize interrupts
824 *
825 * Attempts to configure interrupts using the best available
826 * capabilities of the hardware and kernel.
827 **/
828 static int igb_request_irq(struct igb_adapter *adapter)
829 {
830 struct net_device *netdev = adapter->netdev;
831 struct pci_dev *pdev = adapter->pdev;
832 struct e1000_hw *hw = &adapter->hw;
833 int err = 0;
834
835 if (adapter->msix_entries) {
836 err = igb_request_msix(adapter);
837 if (!err)
838 goto request_done;
839 /* fall back to MSI */
840 igb_clear_interrupt_scheme(adapter);
841 if (!pci_enable_msi(adapter->pdev))
842 adapter->flags |= IGB_FLAG_HAS_MSI;
843 igb_free_all_tx_resources(adapter);
844 igb_free_all_rx_resources(adapter);
845 adapter->num_tx_queues = 1;
846 adapter->num_rx_queues = 1;
847 adapter->num_q_vectors = 1;
848 err = igb_alloc_q_vectors(adapter);
849 if (err) {
850 dev_err(&pdev->dev,
851 "Unable to allocate memory for vectors\n");
852 goto request_done;
853 }
854 err = igb_alloc_queues(adapter);
855 if (err) {
856 dev_err(&pdev->dev,
857 "Unable to allocate memory for queues\n");
858 igb_free_q_vectors(adapter);
859 goto request_done;
860 }
861 igb_setup_all_tx_resources(adapter);
862 igb_setup_all_rx_resources(adapter);
863 } else {
864 switch (hw->mac.type) {
865 case e1000_82575:
866 wr32(E1000_MSIXBM(0),
867 (E1000_EICR_RX_QUEUE0 |
868 E1000_EICR_TX_QUEUE0 |
869 E1000_EIMS_OTHER));
870 break;
871 case e1000_82576:
872 wr32(E1000_IVAR0, E1000_IVAR_VALID);
873 break;
874 default:
875 break;
876 }
877 }
878
879 if (adapter->flags & IGB_FLAG_HAS_MSI) {
880 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
881 netdev->name, adapter);
882 if (!err)
883 goto request_done;
884
885 /* fall back to legacy interrupts */
886 igb_reset_interrupt_capability(adapter);
887 adapter->flags &= ~IGB_FLAG_HAS_MSI;
888 }
889
890 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
891 netdev->name, adapter);
892
893 if (err)
894 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
895 err);
896
897 request_done:
898 return err;
899 }
900
901 static void igb_free_irq(struct igb_adapter *adapter)
902 {
903 if (adapter->msix_entries) {
904 int vector = 0, i;
905
906 free_irq(adapter->msix_entries[vector++].vector, adapter);
907
908 for (i = 0; i < adapter->num_q_vectors; i++) {
909 struct igb_q_vector *q_vector = adapter->q_vector[i];
910 free_irq(adapter->msix_entries[vector++].vector,
911 q_vector);
912 }
913 } else {
914 free_irq(adapter->pdev->irq, adapter);
915 }
916 }
917
918 /**
919 * igb_irq_disable - Mask off interrupt generation on the NIC
920 * @adapter: board private structure
921 **/
922 static void igb_irq_disable(struct igb_adapter *adapter)
923 {
924 struct e1000_hw *hw = &adapter->hw;
925
926 if (adapter->msix_entries) {
927 u32 regval = rd32(E1000_EIAM);
928 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
929 wr32(E1000_EIMC, adapter->eims_enable_mask);
930 regval = rd32(E1000_EIAC);
931 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
932 }
933
934 wr32(E1000_IAM, 0);
935 wr32(E1000_IMC, ~0);
936 wrfl();
937 synchronize_irq(adapter->pdev->irq);
938 }
939
940 /**
941 * igb_irq_enable - Enable default interrupt generation settings
942 * @adapter: board private structure
943 **/
944 static void igb_irq_enable(struct igb_adapter *adapter)
945 {
946 struct e1000_hw *hw = &adapter->hw;
947
948 if (adapter->msix_entries) {
949 u32 regval = rd32(E1000_EIAC);
950 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
951 regval = rd32(E1000_EIAM);
952 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
953 wr32(E1000_EIMS, adapter->eims_enable_mask);
954 if (adapter->vfs_allocated_count)
955 wr32(E1000_MBVFIMR, 0xFF);
956 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
957 E1000_IMS_DOUTSYNC));
958 } else {
959 wr32(E1000_IMS, IMS_ENABLE_MASK);
960 wr32(E1000_IAM, IMS_ENABLE_MASK);
961 }
962 }
963
964 static void igb_update_mng_vlan(struct igb_adapter *adapter)
965 {
966 struct e1000_hw *hw = &adapter->hw;
967 u16 vid = adapter->hw.mng_cookie.vlan_id;
968 u16 old_vid = adapter->mng_vlan_id;
969
970 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
971 /* add VID to filter table */
972 igb_vfta_set(hw, vid, true);
973 adapter->mng_vlan_id = vid;
974 } else {
975 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
976 }
977
978 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
979 (vid != old_vid) &&
980 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
981 /* remove VID from filter table */
982 igb_vfta_set(hw, old_vid, false);
983 }
984 }
985
986 /**
987 * igb_release_hw_control - release control of the h/w to f/w
988 * @adapter: address of board private structure
989 *
990 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
991 * For ASF and Pass Through versions of f/w this means that the
992 * driver is no longer loaded.
993 *
994 **/
995 static void igb_release_hw_control(struct igb_adapter *adapter)
996 {
997 struct e1000_hw *hw = &adapter->hw;
998 u32 ctrl_ext;
999
1000 /* Let firmware take over control of h/w */
1001 ctrl_ext = rd32(E1000_CTRL_EXT);
1002 wr32(E1000_CTRL_EXT,
1003 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1004 }
1005
1006
1007 /**
1008 * igb_get_hw_control - get control of the h/w from f/w
1009 * @adapter: address of board private structure
1010 *
1011 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1012 * For ASF and Pass Through versions of f/w this means that
1013 * the driver is loaded.
1014 *
1015 **/
1016 static void igb_get_hw_control(struct igb_adapter *adapter)
1017 {
1018 struct e1000_hw *hw = &adapter->hw;
1019 u32 ctrl_ext;
1020
1021 /* Let firmware know the driver has taken over */
1022 ctrl_ext = rd32(E1000_CTRL_EXT);
1023 wr32(E1000_CTRL_EXT,
1024 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1025 }
1026
1027 /**
1028 * igb_configure - configure the hardware for RX and TX
1029 * @adapter: private board structure
1030 **/
1031 static void igb_configure(struct igb_adapter *adapter)
1032 {
1033 struct net_device *netdev = adapter->netdev;
1034 int i;
1035
1036 igb_get_hw_control(adapter);
1037 igb_set_rx_mode(netdev);
1038
1039 igb_restore_vlan(adapter);
1040
1041 igb_setup_tctl(adapter);
1042 igb_setup_mrqc(adapter);
1043 igb_setup_rctl(adapter);
1044
1045 igb_configure_tx(adapter);
1046 igb_configure_rx(adapter);
1047
1048 igb_rx_fifo_flush_82575(&adapter->hw);
1049
1050 /* call igb_desc_unused which always leaves
1051 * at least 1 descriptor unused to make sure
1052 * next_to_use != next_to_clean */
1053 for (i = 0; i < adapter->num_rx_queues; i++) {
1054 struct igb_ring *ring = &adapter->rx_ring[i];
1055 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1056 }
1057
1058
1059 adapter->tx_queue_len = netdev->tx_queue_len;
1060 }
1061
1062
1063 /**
1064 * igb_up - Open the interface and prepare it to handle traffic
1065 * @adapter: board private structure
1066 **/
1067
1068 int igb_up(struct igb_adapter *adapter)
1069 {
1070 struct e1000_hw *hw = &adapter->hw;
1071 int i;
1072
1073 /* hardware has been reset, we need to reload some things */
1074 igb_configure(adapter);
1075
1076 clear_bit(__IGB_DOWN, &adapter->state);
1077
1078 for (i = 0; i < adapter->num_q_vectors; i++) {
1079 struct igb_q_vector *q_vector = adapter->q_vector[i];
1080 napi_enable(&q_vector->napi);
1081 }
1082 if (adapter->msix_entries)
1083 igb_configure_msix(adapter);
1084
1085 /* Clear any pending interrupts. */
1086 rd32(E1000_ICR);
1087 igb_irq_enable(adapter);
1088
1089 /* notify VFs that reset has been completed */
1090 if (adapter->vfs_allocated_count) {
1091 u32 reg_data = rd32(E1000_CTRL_EXT);
1092 reg_data |= E1000_CTRL_EXT_PFRSTD;
1093 wr32(E1000_CTRL_EXT, reg_data);
1094 }
1095
1096 netif_tx_start_all_queues(adapter->netdev);
1097
1098 /* Fire a link change interrupt to start the watchdog. */
1099 wr32(E1000_ICS, E1000_ICS_LSC);
1100 return 0;
1101 }
1102
1103 void igb_down(struct igb_adapter *adapter)
1104 {
1105 struct e1000_hw *hw = &adapter->hw;
1106 struct net_device *netdev = adapter->netdev;
1107 u32 tctl, rctl;
1108 int i;
1109
1110 /* signal that we're down so the interrupt handler does not
1111 * reschedule our watchdog timer */
1112 set_bit(__IGB_DOWN, &adapter->state);
1113
1114 /* disable receives in the hardware */
1115 rctl = rd32(E1000_RCTL);
1116 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1117 /* flush and sleep below */
1118
1119 netif_tx_stop_all_queues(netdev);
1120
1121 /* disable transmits in the hardware */
1122 tctl = rd32(E1000_TCTL);
1123 tctl &= ~E1000_TCTL_EN;
1124 wr32(E1000_TCTL, tctl);
1125 /* flush both disables and wait for them to finish */
1126 wrfl();
1127 msleep(10);
1128
1129 for (i = 0; i < adapter->num_q_vectors; i++) {
1130 struct igb_q_vector *q_vector = adapter->q_vector[i];
1131 napi_disable(&q_vector->napi);
1132 }
1133
1134 igb_irq_disable(adapter);
1135
1136 del_timer_sync(&adapter->watchdog_timer);
1137 del_timer_sync(&adapter->phy_info_timer);
1138
1139 netdev->tx_queue_len = adapter->tx_queue_len;
1140 netif_carrier_off(netdev);
1141
1142 /* record the stats before reset*/
1143 igb_update_stats(adapter);
1144
1145 adapter->link_speed = 0;
1146 adapter->link_duplex = 0;
1147
1148 if (!pci_channel_offline(adapter->pdev))
1149 igb_reset(adapter);
1150 igb_clean_all_tx_rings(adapter);
1151 igb_clean_all_rx_rings(adapter);
1152 #ifdef CONFIG_IGB_DCA
1153
1154 /* since we reset the hardware DCA settings were cleared */
1155 igb_setup_dca(adapter);
1156 #endif
1157 }
1158
1159 void igb_reinit_locked(struct igb_adapter *adapter)
1160 {
1161 WARN_ON(in_interrupt());
1162 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1163 msleep(1);
1164 igb_down(adapter);
1165 igb_up(adapter);
1166 clear_bit(__IGB_RESETTING, &adapter->state);
1167 }
1168
1169 void igb_reset(struct igb_adapter *adapter)
1170 {
1171 struct e1000_hw *hw = &adapter->hw;
1172 struct e1000_mac_info *mac = &hw->mac;
1173 struct e1000_fc_info *fc = &hw->fc;
1174 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1175 u16 hwm;
1176
1177 /* Repartition Pba for greater than 9k mtu
1178 * To take effect CTRL.RST is required.
1179 */
1180 switch (mac->type) {
1181 case e1000_82576:
1182 pba = rd32(E1000_RXPBS);
1183 pba &= E1000_RXPBS_SIZE_MASK_82576;
1184 break;
1185 case e1000_82575:
1186 default:
1187 pba = E1000_PBA_34K;
1188 break;
1189 }
1190
1191 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1192 (mac->type < e1000_82576)) {
1193 /* adjust PBA for jumbo frames */
1194 wr32(E1000_PBA, pba);
1195
1196 /* To maintain wire speed transmits, the Tx FIFO should be
1197 * large enough to accommodate two full transmit packets,
1198 * rounded up to the next 1KB and expressed in KB. Likewise,
1199 * the Rx FIFO should be large enough to accommodate at least
1200 * one full receive packet and is similarly rounded up and
1201 * expressed in KB. */
1202 pba = rd32(E1000_PBA);
1203 /* upper 16 bits has Tx packet buffer allocation size in KB */
1204 tx_space = pba >> 16;
1205 /* lower 16 bits has Rx packet buffer allocation size in KB */
1206 pba &= 0xffff;
1207 /* the tx fifo also stores 16 bytes of information about the tx
1208 * but don't include ethernet FCS because hardware appends it */
1209 min_tx_space = (adapter->max_frame_size +
1210 sizeof(union e1000_adv_tx_desc) -
1211 ETH_FCS_LEN) * 2;
1212 min_tx_space = ALIGN(min_tx_space, 1024);
1213 min_tx_space >>= 10;
1214 /* software strips receive CRC, so leave room for it */
1215 min_rx_space = adapter->max_frame_size;
1216 min_rx_space = ALIGN(min_rx_space, 1024);
1217 min_rx_space >>= 10;
1218
1219 /* If current Tx allocation is less than the min Tx FIFO size,
1220 * and the min Tx FIFO size is less than the current Rx FIFO
1221 * allocation, take space away from current Rx allocation */
1222 if (tx_space < min_tx_space &&
1223 ((min_tx_space - tx_space) < pba)) {
1224 pba = pba - (min_tx_space - tx_space);
1225
1226 /* if short on rx space, rx wins and must trump tx
1227 * adjustment */
1228 if (pba < min_rx_space)
1229 pba = min_rx_space;
1230 }
1231 wr32(E1000_PBA, pba);
1232 }
1233
1234 /* flow control settings */
1235 /* The high water mark must be low enough to fit one full frame
1236 * (or the size used for early receive) above it in the Rx FIFO.
1237 * Set it to the lower of:
1238 * - 90% of the Rx FIFO size, or
1239 * - the full Rx FIFO size minus one full frame */
1240 hwm = min(((pba << 10) * 9 / 10),
1241 ((pba << 10) - 2 * adapter->max_frame_size));
1242
1243 if (mac->type < e1000_82576) {
1244 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1245 fc->low_water = fc->high_water - 8;
1246 } else {
1247 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1248 fc->low_water = fc->high_water - 16;
1249 }
1250 fc->pause_time = 0xFFFF;
1251 fc->send_xon = 1;
1252 fc->current_mode = fc->requested_mode;
1253
1254 /* disable receive for all VFs and wait one second */
1255 if (adapter->vfs_allocated_count) {
1256 int i;
1257 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1258 adapter->vf_data[i].flags = 0;
1259
1260 /* ping all the active vfs to let them know we are going down */
1261 igb_ping_all_vfs(adapter);
1262
1263 /* disable transmits and receives */
1264 wr32(E1000_VFRE, 0);
1265 wr32(E1000_VFTE, 0);
1266 }
1267
1268 /* Allow time for pending master requests to run */
1269 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1270 wr32(E1000_WUC, 0);
1271
1272 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1273 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1274
1275 igb_update_mng_vlan(adapter);
1276
1277 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1278 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1279
1280 igb_reset_adaptive(&adapter->hw);
1281 igb_get_phy_info(&adapter->hw);
1282 }
1283
1284 static const struct net_device_ops igb_netdev_ops = {
1285 .ndo_open = igb_open,
1286 .ndo_stop = igb_close,
1287 .ndo_start_xmit = igb_xmit_frame_adv,
1288 .ndo_get_stats = igb_get_stats,
1289 .ndo_set_rx_mode = igb_set_rx_mode,
1290 .ndo_set_multicast_list = igb_set_rx_mode,
1291 .ndo_set_mac_address = igb_set_mac,
1292 .ndo_change_mtu = igb_change_mtu,
1293 .ndo_do_ioctl = igb_ioctl,
1294 .ndo_tx_timeout = igb_tx_timeout,
1295 .ndo_validate_addr = eth_validate_addr,
1296 .ndo_vlan_rx_register = igb_vlan_rx_register,
1297 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1298 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1299 #ifdef CONFIG_NET_POLL_CONTROLLER
1300 .ndo_poll_controller = igb_netpoll,
1301 #endif
1302 };
1303
1304 /**
1305 * igb_probe - Device Initialization Routine
1306 * @pdev: PCI device information struct
1307 * @ent: entry in igb_pci_tbl
1308 *
1309 * Returns 0 on success, negative on failure
1310 *
1311 * igb_probe initializes an adapter identified by a pci_dev structure.
1312 * The OS initialization, configuring of the adapter private structure,
1313 * and a hardware reset occur.
1314 **/
1315 static int __devinit igb_probe(struct pci_dev *pdev,
1316 const struct pci_device_id *ent)
1317 {
1318 struct net_device *netdev;
1319 struct igb_adapter *adapter;
1320 struct e1000_hw *hw;
1321 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1322 unsigned long mmio_start, mmio_len;
1323 int err, pci_using_dac;
1324 u16 eeprom_data = 0;
1325 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1326 u32 part_num;
1327
1328 err = pci_enable_device_mem(pdev);
1329 if (err)
1330 return err;
1331
1332 pci_using_dac = 0;
1333 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1334 if (!err) {
1335 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1336 if (!err)
1337 pci_using_dac = 1;
1338 } else {
1339 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1340 if (err) {
1341 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1342 if (err) {
1343 dev_err(&pdev->dev, "No usable DMA "
1344 "configuration, aborting\n");
1345 goto err_dma;
1346 }
1347 }
1348 }
1349
1350 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1351 IORESOURCE_MEM),
1352 igb_driver_name);
1353 if (err)
1354 goto err_pci_reg;
1355
1356 pci_enable_pcie_error_reporting(pdev);
1357
1358 pci_set_master(pdev);
1359 pci_save_state(pdev);
1360
1361 err = -ENOMEM;
1362 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1363 IGB_ABS_MAX_TX_QUEUES);
1364 if (!netdev)
1365 goto err_alloc_etherdev;
1366
1367 SET_NETDEV_DEV(netdev, &pdev->dev);
1368
1369 pci_set_drvdata(pdev, netdev);
1370 adapter = netdev_priv(netdev);
1371 adapter->netdev = netdev;
1372 adapter->pdev = pdev;
1373 hw = &adapter->hw;
1374 hw->back = adapter;
1375 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1376
1377 mmio_start = pci_resource_start(pdev, 0);
1378 mmio_len = pci_resource_len(pdev, 0);
1379
1380 err = -EIO;
1381 hw->hw_addr = ioremap(mmio_start, mmio_len);
1382 if (!hw->hw_addr)
1383 goto err_ioremap;
1384
1385 netdev->netdev_ops = &igb_netdev_ops;
1386 igb_set_ethtool_ops(netdev);
1387 netdev->watchdog_timeo = 5 * HZ;
1388
1389 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1390
1391 netdev->mem_start = mmio_start;
1392 netdev->mem_end = mmio_start + mmio_len;
1393
1394 /* PCI config space info */
1395 hw->vendor_id = pdev->vendor;
1396 hw->device_id = pdev->device;
1397 hw->revision_id = pdev->revision;
1398 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1399 hw->subsystem_device_id = pdev->subsystem_device;
1400
1401 /* setup the private structure */
1402 hw->back = adapter;
1403 /* Copy the default MAC, PHY and NVM function pointers */
1404 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1405 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1406 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1407 /* Initialize skew-specific constants */
1408 err = ei->get_invariants(hw);
1409 if (err)
1410 goto err_sw_init;
1411
1412 /* setup the private structure */
1413 err = igb_sw_init(adapter);
1414 if (err)
1415 goto err_sw_init;
1416
1417 igb_get_bus_info_pcie(hw);
1418
1419 hw->phy.autoneg_wait_to_complete = false;
1420 hw->mac.adaptive_ifs = true;
1421
1422 /* Copper options */
1423 if (hw->phy.media_type == e1000_media_type_copper) {
1424 hw->phy.mdix = AUTO_ALL_MODES;
1425 hw->phy.disable_polarity_correction = false;
1426 hw->phy.ms_type = e1000_ms_hw_default;
1427 }
1428
1429 if (igb_check_reset_block(hw))
1430 dev_info(&pdev->dev,
1431 "PHY reset is blocked due to SOL/IDER session.\n");
1432
1433 netdev->features = NETIF_F_SG |
1434 NETIF_F_IP_CSUM |
1435 NETIF_F_HW_VLAN_TX |
1436 NETIF_F_HW_VLAN_RX |
1437 NETIF_F_HW_VLAN_FILTER;
1438
1439 netdev->features |= NETIF_F_IPV6_CSUM;
1440 netdev->features |= NETIF_F_TSO;
1441 netdev->features |= NETIF_F_TSO6;
1442
1443 netdev->features |= NETIF_F_GRO;
1444
1445 netdev->vlan_features |= NETIF_F_TSO;
1446 netdev->vlan_features |= NETIF_F_TSO6;
1447 netdev->vlan_features |= NETIF_F_IP_CSUM;
1448 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1449 netdev->vlan_features |= NETIF_F_SG;
1450
1451 if (pci_using_dac)
1452 netdev->features |= NETIF_F_HIGHDMA;
1453
1454 if (adapter->hw.mac.type == e1000_82576)
1455 netdev->features |= NETIF_F_SCTP_CSUM;
1456
1457 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1458
1459 /* before reading the NVM, reset the controller to put the device in a
1460 * known good starting state */
1461 hw->mac.ops.reset_hw(hw);
1462
1463 /* make sure the NVM is good */
1464 if (igb_validate_nvm_checksum(hw) < 0) {
1465 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1466 err = -EIO;
1467 goto err_eeprom;
1468 }
1469
1470 /* copy the MAC address out of the NVM */
1471 if (hw->mac.ops.read_mac_addr(hw))
1472 dev_err(&pdev->dev, "NVM Read Error\n");
1473
1474 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1475 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1476
1477 if (!is_valid_ether_addr(netdev->perm_addr)) {
1478 dev_err(&pdev->dev, "Invalid MAC Address\n");
1479 err = -EIO;
1480 goto err_eeprom;
1481 }
1482
1483 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1484 (unsigned long) adapter);
1485 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1486 (unsigned long) adapter);
1487
1488 INIT_WORK(&adapter->reset_task, igb_reset_task);
1489 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1490
1491 /* Initialize link properties that are user-changeable */
1492 adapter->fc_autoneg = true;
1493 hw->mac.autoneg = true;
1494 hw->phy.autoneg_advertised = 0x2f;
1495
1496 hw->fc.requested_mode = e1000_fc_default;
1497 hw->fc.current_mode = e1000_fc_default;
1498
1499 igb_validate_mdi_setting(hw);
1500
1501 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1502 * enable the ACPI Magic Packet filter
1503 */
1504
1505 if (hw->bus.func == 0)
1506 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1507 else if (hw->bus.func == 1)
1508 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1509
1510 if (eeprom_data & eeprom_apme_mask)
1511 adapter->eeprom_wol |= E1000_WUFC_MAG;
1512
1513 /* now that we have the eeprom settings, apply the special cases where
1514 * the eeprom may be wrong or the board simply won't support wake on
1515 * lan on a particular port */
1516 switch (pdev->device) {
1517 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1518 adapter->eeprom_wol = 0;
1519 break;
1520 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1521 case E1000_DEV_ID_82576_FIBER:
1522 case E1000_DEV_ID_82576_SERDES:
1523 /* Wake events only supported on port A for dual fiber
1524 * regardless of eeprom setting */
1525 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1526 adapter->eeprom_wol = 0;
1527 break;
1528 case E1000_DEV_ID_82576_QUAD_COPPER:
1529 /* if quad port adapter, disable WoL on all but port A */
1530 if (global_quad_port_a != 0)
1531 adapter->eeprom_wol = 0;
1532 else
1533 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1534 /* Reset for multiple quad port adapters */
1535 if (++global_quad_port_a == 4)
1536 global_quad_port_a = 0;
1537 break;
1538 }
1539
1540 /* initialize the wol settings based on the eeprom settings */
1541 adapter->wol = adapter->eeprom_wol;
1542 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1543
1544 /* reset the hardware with the new settings */
1545 igb_reset(adapter);
1546
1547 /* let the f/w know that the h/w is now under the control of the
1548 * driver. */
1549 igb_get_hw_control(adapter);
1550
1551 strcpy(netdev->name, "eth%d");
1552 err = register_netdev(netdev);
1553 if (err)
1554 goto err_register;
1555
1556 /* carrier off reporting is important to ethtool even BEFORE open */
1557 netif_carrier_off(netdev);
1558
1559 #ifdef CONFIG_IGB_DCA
1560 if (dca_add_requester(&pdev->dev) == 0) {
1561 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1562 dev_info(&pdev->dev, "DCA enabled\n");
1563 igb_setup_dca(adapter);
1564 }
1565
1566 #endif
1567
1568 switch (hw->mac.type) {
1569 case e1000_82576:
1570 /*
1571 * Initialize hardware timer: we keep it running just in case
1572 * that some program needs it later on.
1573 */
1574 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1575 adapter->cycles.read = igb_read_clock;
1576 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1577 adapter->cycles.mult = 1;
1578 /**
1579 * Scale the NIC clock cycle by a large factor so that
1580 * relatively small clock corrections can be added or
1581 * substracted at each clock tick. The drawbacks of a large
1582 * factor are a) that the clock register overflows more quickly
1583 * (not such a big deal) and b) that the increment per tick has
1584 * to fit into 24 bits. As a result we need to use a shift of
1585 * 19 so we can fit a value of 16 into the TIMINCA register.
1586 */
1587 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1588 wr32(E1000_TIMINCA,
1589 (1 << E1000_TIMINCA_16NS_SHIFT) |
1590 (16 << IGB_82576_TSYNC_SHIFT));
1591
1592 /* Set registers so that rollover occurs soon to test this. */
1593 wr32(E1000_SYSTIML, 0x00000000);
1594 wr32(E1000_SYSTIMH, 0xFF800000);
1595 wrfl();
1596
1597 timecounter_init(&adapter->clock,
1598 &adapter->cycles,
1599 ktime_to_ns(ktime_get_real()));
1600 /*
1601 * Synchronize our NIC clock against system wall clock. NIC
1602 * time stamp reading requires ~3us per sample, each sample
1603 * was pretty stable even under load => only require 10
1604 * samples for each offset comparison.
1605 */
1606 memset(&adapter->compare, 0, sizeof(adapter->compare));
1607 adapter->compare.source = &adapter->clock;
1608 adapter->compare.target = ktime_get_real;
1609 adapter->compare.num_samples = 10;
1610 timecompare_update(&adapter->compare, 0);
1611 break;
1612 case e1000_82575:
1613 /* 82575 does not support timesync */
1614 default:
1615 break;
1616 }
1617
1618 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1619 /* print bus type/speed/width info */
1620 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1621 netdev->name,
1622 ((hw->bus.speed == e1000_bus_speed_2500)
1623 ? "2.5Gb/s" : "unknown"),
1624 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1625 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1626 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1627 "unknown"),
1628 netdev->dev_addr);
1629
1630 igb_read_part_num(hw, &part_num);
1631 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1632 (part_num >> 8), (part_num & 0xff));
1633
1634 dev_info(&pdev->dev,
1635 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1636 adapter->msix_entries ? "MSI-X" :
1637 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1638 adapter->num_rx_queues, adapter->num_tx_queues);
1639
1640 return 0;
1641
1642 err_register:
1643 igb_release_hw_control(adapter);
1644 err_eeprom:
1645 if (!igb_check_reset_block(hw))
1646 igb_reset_phy(hw);
1647
1648 if (hw->flash_address)
1649 iounmap(hw->flash_address);
1650 err_sw_init:
1651 igb_clear_interrupt_scheme(adapter);
1652 iounmap(hw->hw_addr);
1653 err_ioremap:
1654 free_netdev(netdev);
1655 err_alloc_etherdev:
1656 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1657 IORESOURCE_MEM));
1658 err_pci_reg:
1659 err_dma:
1660 pci_disable_device(pdev);
1661 return err;
1662 }
1663
1664 /**
1665 * igb_remove - Device Removal Routine
1666 * @pdev: PCI device information struct
1667 *
1668 * igb_remove is called by the PCI subsystem to alert the driver
1669 * that it should release a PCI device. The could be caused by a
1670 * Hot-Plug event, or because the driver is going to be removed from
1671 * memory.
1672 **/
1673 static void __devexit igb_remove(struct pci_dev *pdev)
1674 {
1675 struct net_device *netdev = pci_get_drvdata(pdev);
1676 struct igb_adapter *adapter = netdev_priv(netdev);
1677 struct e1000_hw *hw = &adapter->hw;
1678
1679 /* flush_scheduled work may reschedule our watchdog task, so
1680 * explicitly disable watchdog tasks from being rescheduled */
1681 set_bit(__IGB_DOWN, &adapter->state);
1682 del_timer_sync(&adapter->watchdog_timer);
1683 del_timer_sync(&adapter->phy_info_timer);
1684
1685 flush_scheduled_work();
1686
1687 #ifdef CONFIG_IGB_DCA
1688 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1689 dev_info(&pdev->dev, "DCA disabled\n");
1690 dca_remove_requester(&pdev->dev);
1691 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1692 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1693 }
1694 #endif
1695
1696 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1697 * would have already happened in close and is redundant. */
1698 igb_release_hw_control(adapter);
1699
1700 unregister_netdev(netdev);
1701
1702 if (!igb_check_reset_block(&adapter->hw))
1703 igb_reset_phy(&adapter->hw);
1704
1705 igb_clear_interrupt_scheme(adapter);
1706
1707 #ifdef CONFIG_PCI_IOV
1708 /* reclaim resources allocated to VFs */
1709 if (adapter->vf_data) {
1710 /* disable iov and allow time for transactions to clear */
1711 pci_disable_sriov(pdev);
1712 msleep(500);
1713
1714 kfree(adapter->vf_data);
1715 adapter->vf_data = NULL;
1716 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1717 msleep(100);
1718 dev_info(&pdev->dev, "IOV Disabled\n");
1719 }
1720 #endif
1721 iounmap(hw->hw_addr);
1722 if (hw->flash_address)
1723 iounmap(hw->flash_address);
1724 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1725 IORESOURCE_MEM));
1726
1727 free_netdev(netdev);
1728
1729 pci_disable_pcie_error_reporting(pdev);
1730
1731 pci_disable_device(pdev);
1732 }
1733
1734 /**
1735 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1736 * @adapter: board private structure to initialize
1737 *
1738 * This function initializes the vf specific data storage and then attempts to
1739 * allocate the VFs. The reason for ordering it this way is because it is much
1740 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1741 * the memory for the VFs.
1742 **/
1743 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1744 {
1745 #ifdef CONFIG_PCI_IOV
1746 struct pci_dev *pdev = adapter->pdev;
1747
1748 if (adapter->vfs_allocated_count > 7)
1749 adapter->vfs_allocated_count = 7;
1750
1751 if (adapter->vfs_allocated_count) {
1752 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1753 sizeof(struct vf_data_storage),
1754 GFP_KERNEL);
1755 /* if allocation failed then we do not support SR-IOV */
1756 if (!adapter->vf_data) {
1757 adapter->vfs_allocated_count = 0;
1758 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1759 "Data Storage\n");
1760 }
1761 }
1762
1763 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1764 kfree(adapter->vf_data);
1765 adapter->vf_data = NULL;
1766 #endif /* CONFIG_PCI_IOV */
1767 adapter->vfs_allocated_count = 0;
1768 #ifdef CONFIG_PCI_IOV
1769 } else {
1770 unsigned char mac_addr[ETH_ALEN];
1771 int i;
1772 dev_info(&pdev->dev, "%d vfs allocated\n",
1773 adapter->vfs_allocated_count);
1774 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1775 random_ether_addr(mac_addr);
1776 igb_set_vf_mac(adapter, i, mac_addr);
1777 }
1778 }
1779 #endif /* CONFIG_PCI_IOV */
1780 }
1781
1782 /**
1783 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1784 * @adapter: board private structure to initialize
1785 *
1786 * igb_sw_init initializes the Adapter private data structure.
1787 * Fields are initialized based on PCI device information and
1788 * OS network device settings (MTU size).
1789 **/
1790 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1791 {
1792 struct e1000_hw *hw = &adapter->hw;
1793 struct net_device *netdev = adapter->netdev;
1794 struct pci_dev *pdev = adapter->pdev;
1795
1796 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1797
1798 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1799 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1800 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1801 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1802
1803 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1804 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1805
1806 #ifdef CONFIG_PCI_IOV
1807 if (hw->mac.type == e1000_82576)
1808 adapter->vfs_allocated_count = max_vfs;
1809
1810 #endif /* CONFIG_PCI_IOV */
1811 /* This call may decrease the number of queues */
1812 if (igb_init_interrupt_scheme(adapter)) {
1813 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1814 return -ENOMEM;
1815 }
1816
1817 igb_probe_vfs(adapter);
1818
1819 /* Explicitly disable IRQ since the NIC can be in any state. */
1820 igb_irq_disable(adapter);
1821
1822 set_bit(__IGB_DOWN, &adapter->state);
1823 return 0;
1824 }
1825
1826 /**
1827 * igb_open - Called when a network interface is made active
1828 * @netdev: network interface device structure
1829 *
1830 * Returns 0 on success, negative value on failure
1831 *
1832 * The open entry point is called when a network interface is made
1833 * active by the system (IFF_UP). At this point all resources needed
1834 * for transmit and receive operations are allocated, the interrupt
1835 * handler is registered with the OS, the watchdog timer is started,
1836 * and the stack is notified that the interface is ready.
1837 **/
1838 static int igb_open(struct net_device *netdev)
1839 {
1840 struct igb_adapter *adapter = netdev_priv(netdev);
1841 struct e1000_hw *hw = &adapter->hw;
1842 int err;
1843 int i;
1844
1845 /* disallow open during test */
1846 if (test_bit(__IGB_TESTING, &adapter->state))
1847 return -EBUSY;
1848
1849 netif_carrier_off(netdev);
1850
1851 /* allocate transmit descriptors */
1852 err = igb_setup_all_tx_resources(adapter);
1853 if (err)
1854 goto err_setup_tx;
1855
1856 /* allocate receive descriptors */
1857 err = igb_setup_all_rx_resources(adapter);
1858 if (err)
1859 goto err_setup_rx;
1860
1861 /* e1000_power_up_phy(adapter); */
1862
1863 /* before we allocate an interrupt, we must be ready to handle it.
1864 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1865 * as soon as we call pci_request_irq, so we have to setup our
1866 * clean_rx handler before we do so. */
1867 igb_configure(adapter);
1868
1869 err = igb_request_irq(adapter);
1870 if (err)
1871 goto err_req_irq;
1872
1873 /* From here on the code is the same as igb_up() */
1874 clear_bit(__IGB_DOWN, &adapter->state);
1875
1876 for (i = 0; i < adapter->num_q_vectors; i++) {
1877 struct igb_q_vector *q_vector = adapter->q_vector[i];
1878 napi_enable(&q_vector->napi);
1879 }
1880
1881 /* Clear any pending interrupts. */
1882 rd32(E1000_ICR);
1883
1884 igb_irq_enable(adapter);
1885
1886 /* notify VFs that reset has been completed */
1887 if (adapter->vfs_allocated_count) {
1888 u32 reg_data = rd32(E1000_CTRL_EXT);
1889 reg_data |= E1000_CTRL_EXT_PFRSTD;
1890 wr32(E1000_CTRL_EXT, reg_data);
1891 }
1892
1893 netif_tx_start_all_queues(netdev);
1894
1895 /* Fire a link status change interrupt to start the watchdog. */
1896 wr32(E1000_ICS, E1000_ICS_LSC);
1897
1898 return 0;
1899
1900 err_req_irq:
1901 igb_release_hw_control(adapter);
1902 /* e1000_power_down_phy(adapter); */
1903 igb_free_all_rx_resources(adapter);
1904 err_setup_rx:
1905 igb_free_all_tx_resources(adapter);
1906 err_setup_tx:
1907 igb_reset(adapter);
1908
1909 return err;
1910 }
1911
1912 /**
1913 * igb_close - Disables a network interface
1914 * @netdev: network interface device structure
1915 *
1916 * Returns 0, this is not allowed to fail
1917 *
1918 * The close entry point is called when an interface is de-activated
1919 * by the OS. The hardware is still under the driver's control, but
1920 * needs to be disabled. A global MAC reset is issued to stop the
1921 * hardware, and all transmit and receive resources are freed.
1922 **/
1923 static int igb_close(struct net_device *netdev)
1924 {
1925 struct igb_adapter *adapter = netdev_priv(netdev);
1926
1927 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1928 igb_down(adapter);
1929
1930 igb_free_irq(adapter);
1931
1932 igb_free_all_tx_resources(adapter);
1933 igb_free_all_rx_resources(adapter);
1934
1935 return 0;
1936 }
1937
1938 /**
1939 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1940 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1941 *
1942 * Return 0 on success, negative on failure
1943 **/
1944 int igb_setup_tx_resources(struct igb_ring *tx_ring)
1945 {
1946 struct pci_dev *pdev = tx_ring->pdev;
1947 int size;
1948
1949 size = sizeof(struct igb_buffer) * tx_ring->count;
1950 tx_ring->buffer_info = vmalloc(size);
1951 if (!tx_ring->buffer_info)
1952 goto err;
1953 memset(tx_ring->buffer_info, 0, size);
1954
1955 /* round up to nearest 4K */
1956 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1957 tx_ring->size = ALIGN(tx_ring->size, 4096);
1958
1959 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1960 &tx_ring->dma);
1961
1962 if (!tx_ring->desc)
1963 goto err;
1964
1965 tx_ring->next_to_use = 0;
1966 tx_ring->next_to_clean = 0;
1967 return 0;
1968
1969 err:
1970 vfree(tx_ring->buffer_info);
1971 dev_err(&pdev->dev,
1972 "Unable to allocate memory for the transmit descriptor ring\n");
1973 return -ENOMEM;
1974 }
1975
1976 /**
1977 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1978 * (Descriptors) for all queues
1979 * @adapter: board private structure
1980 *
1981 * Return 0 on success, negative on failure
1982 **/
1983 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1984 {
1985 int i, err = 0;
1986 int r_idx;
1987
1988 for (i = 0; i < adapter->num_tx_queues; i++) {
1989 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
1990 if (err) {
1991 dev_err(&adapter->pdev->dev,
1992 "Allocation for Tx Queue %u failed\n", i);
1993 for (i--; i >= 0; i--)
1994 igb_free_tx_resources(&adapter->tx_ring[i]);
1995 break;
1996 }
1997 }
1998
1999 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
2000 r_idx = i % adapter->num_tx_queues;
2001 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2002 }
2003 return err;
2004 }
2005
2006 /**
2007 * igb_setup_tctl - configure the transmit control registers
2008 * @adapter: Board private structure
2009 **/
2010 void igb_setup_tctl(struct igb_adapter *adapter)
2011 {
2012 struct e1000_hw *hw = &adapter->hw;
2013 u32 tctl;
2014
2015 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2016 wr32(E1000_TXDCTL(0), 0);
2017
2018 /* Program the Transmit Control Register */
2019 tctl = rd32(E1000_TCTL);
2020 tctl &= ~E1000_TCTL_CT;
2021 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2022 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2023
2024 igb_config_collision_dist(hw);
2025
2026 /* Enable transmits */
2027 tctl |= E1000_TCTL_EN;
2028
2029 wr32(E1000_TCTL, tctl);
2030 }
2031
2032 /**
2033 * igb_configure_tx_ring - Configure transmit ring after Reset
2034 * @adapter: board private structure
2035 * @ring: tx ring to configure
2036 *
2037 * Configure a transmit ring after a reset.
2038 **/
2039 void igb_configure_tx_ring(struct igb_adapter *adapter,
2040 struct igb_ring *ring)
2041 {
2042 struct e1000_hw *hw = &adapter->hw;
2043 u32 txdctl;
2044 u64 tdba = ring->dma;
2045 int reg_idx = ring->reg_idx;
2046
2047 /* disable the queue */
2048 txdctl = rd32(E1000_TXDCTL(reg_idx));
2049 wr32(E1000_TXDCTL(reg_idx),
2050 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2051 wrfl();
2052 mdelay(10);
2053
2054 wr32(E1000_TDLEN(reg_idx),
2055 ring->count * sizeof(union e1000_adv_tx_desc));
2056 wr32(E1000_TDBAL(reg_idx),
2057 tdba & 0x00000000ffffffffULL);
2058 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2059
2060 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2061 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2062 writel(0, ring->head);
2063 writel(0, ring->tail);
2064
2065 txdctl |= IGB_TX_PTHRESH;
2066 txdctl |= IGB_TX_HTHRESH << 8;
2067 txdctl |= IGB_TX_WTHRESH << 16;
2068
2069 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2070 wr32(E1000_TXDCTL(reg_idx), txdctl);
2071 }
2072
2073 /**
2074 * igb_configure_tx - Configure transmit Unit after Reset
2075 * @adapter: board private structure
2076 *
2077 * Configure the Tx unit of the MAC after a reset.
2078 **/
2079 static void igb_configure_tx(struct igb_adapter *adapter)
2080 {
2081 int i;
2082
2083 for (i = 0; i < adapter->num_tx_queues; i++)
2084 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2085 }
2086
2087 /**
2088 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2089 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2090 *
2091 * Returns 0 on success, negative on failure
2092 **/
2093 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2094 {
2095 struct pci_dev *pdev = rx_ring->pdev;
2096 int size, desc_len;
2097
2098 size = sizeof(struct igb_buffer) * rx_ring->count;
2099 rx_ring->buffer_info = vmalloc(size);
2100 if (!rx_ring->buffer_info)
2101 goto err;
2102 memset(rx_ring->buffer_info, 0, size);
2103
2104 desc_len = sizeof(union e1000_adv_rx_desc);
2105
2106 /* Round up to nearest 4K */
2107 rx_ring->size = rx_ring->count * desc_len;
2108 rx_ring->size = ALIGN(rx_ring->size, 4096);
2109
2110 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2111 &rx_ring->dma);
2112
2113 if (!rx_ring->desc)
2114 goto err;
2115
2116 rx_ring->next_to_clean = 0;
2117 rx_ring->next_to_use = 0;
2118
2119 return 0;
2120
2121 err:
2122 vfree(rx_ring->buffer_info);
2123 dev_err(&pdev->dev, "Unable to allocate memory for "
2124 "the receive descriptor ring\n");
2125 return -ENOMEM;
2126 }
2127
2128 /**
2129 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2130 * (Descriptors) for all queues
2131 * @adapter: board private structure
2132 *
2133 * Return 0 on success, negative on failure
2134 **/
2135 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2136 {
2137 int i, err = 0;
2138
2139 for (i = 0; i < adapter->num_rx_queues; i++) {
2140 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2141 if (err) {
2142 dev_err(&adapter->pdev->dev,
2143 "Allocation for Rx Queue %u failed\n", i);
2144 for (i--; i >= 0; i--)
2145 igb_free_rx_resources(&adapter->rx_ring[i]);
2146 break;
2147 }
2148 }
2149
2150 return err;
2151 }
2152
2153 /**
2154 * igb_setup_mrqc - configure the multiple receive queue control registers
2155 * @adapter: Board private structure
2156 **/
2157 static void igb_setup_mrqc(struct igb_adapter *adapter)
2158 {
2159 struct e1000_hw *hw = &adapter->hw;
2160 u32 mrqc, rxcsum;
2161 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2162 union e1000_reta {
2163 u32 dword;
2164 u8 bytes[4];
2165 } reta;
2166 static const u8 rsshash[40] = {
2167 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2168 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2169 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2170 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2171
2172 /* Fill out hash function seeds */
2173 for (j = 0; j < 10; j++) {
2174 u32 rsskey = rsshash[(j * 4)];
2175 rsskey |= rsshash[(j * 4) + 1] << 8;
2176 rsskey |= rsshash[(j * 4) + 2] << 16;
2177 rsskey |= rsshash[(j * 4) + 3] << 24;
2178 array_wr32(E1000_RSSRK(0), j, rsskey);
2179 }
2180
2181 num_rx_queues = adapter->num_rx_queues;
2182
2183 if (adapter->vfs_allocated_count) {
2184 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2185 switch (hw->mac.type) {
2186 case e1000_82576:
2187 shift = 3;
2188 num_rx_queues = 2;
2189 break;
2190 case e1000_82575:
2191 shift = 2;
2192 shift2 = 6;
2193 default:
2194 break;
2195 }
2196 } else {
2197 if (hw->mac.type == e1000_82575)
2198 shift = 6;
2199 }
2200
2201 for (j = 0; j < (32 * 4); j++) {
2202 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2203 if (shift2)
2204 reta.bytes[j & 3] |= num_rx_queues << shift2;
2205 if ((j & 3) == 3)
2206 wr32(E1000_RETA(j >> 2), reta.dword);
2207 }
2208
2209 /*
2210 * Disable raw packet checksumming so that RSS hash is placed in
2211 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2212 * offloads as they are enabled by default
2213 */
2214 rxcsum = rd32(E1000_RXCSUM);
2215 rxcsum |= E1000_RXCSUM_PCSD;
2216
2217 if (adapter->hw.mac.type >= e1000_82576)
2218 /* Enable Receive Checksum Offload for SCTP */
2219 rxcsum |= E1000_RXCSUM_CRCOFL;
2220
2221 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2222 wr32(E1000_RXCSUM, rxcsum);
2223
2224 /* If VMDq is enabled then we set the appropriate mode for that, else
2225 * we default to RSS so that an RSS hash is calculated per packet even
2226 * if we are only using one queue */
2227 if (adapter->vfs_allocated_count) {
2228 if (hw->mac.type > e1000_82575) {
2229 /* Set the default pool for the PF's first queue */
2230 u32 vtctl = rd32(E1000_VT_CTL);
2231 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2232 E1000_VT_CTL_DISABLE_DEF_POOL);
2233 vtctl |= adapter->vfs_allocated_count <<
2234 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2235 wr32(E1000_VT_CTL, vtctl);
2236 }
2237 if (adapter->num_rx_queues > 1)
2238 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2239 else
2240 mrqc = E1000_MRQC_ENABLE_VMDQ;
2241 } else {
2242 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2243 }
2244 igb_vmm_control(adapter);
2245
2246 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2247 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2248 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2249 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2250 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2251 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2252 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2253 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2254
2255 wr32(E1000_MRQC, mrqc);
2256 }
2257
2258 /**
2259 * igb_setup_rctl - configure the receive control registers
2260 * @adapter: Board private structure
2261 **/
2262 void igb_setup_rctl(struct igb_adapter *adapter)
2263 {
2264 struct e1000_hw *hw = &adapter->hw;
2265 u32 rctl;
2266
2267 rctl = rd32(E1000_RCTL);
2268
2269 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2270 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2271
2272 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2273 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2274
2275 /*
2276 * enable stripping of CRC. It's unlikely this will break BMC
2277 * redirection as it did with e1000. Newer features require
2278 * that the HW strips the CRC.
2279 */
2280 rctl |= E1000_RCTL_SECRC;
2281
2282 /*
2283 * disable store bad packets and clear size bits.
2284 */
2285 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2286
2287 /* enable LPE to prevent packets larger than max_frame_size */
2288 rctl |= E1000_RCTL_LPE;
2289
2290 /* disable queue 0 to prevent tail write w/o re-config */
2291 wr32(E1000_RXDCTL(0), 0);
2292
2293 /* Attention!!! For SR-IOV PF driver operations you must enable
2294 * queue drop for all VF and PF queues to prevent head of line blocking
2295 * if an un-trusted VF does not provide descriptors to hardware.
2296 */
2297 if (adapter->vfs_allocated_count) {
2298 /* set all queue drop enable bits */
2299 wr32(E1000_QDE, ALL_QUEUES);
2300 }
2301
2302 wr32(E1000_RCTL, rctl);
2303 }
2304
2305 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2306 int vfn)
2307 {
2308 struct e1000_hw *hw = &adapter->hw;
2309 u32 vmolr;
2310
2311 /* if it isn't the PF check to see if VFs are enabled and
2312 * increase the size to support vlan tags */
2313 if (vfn < adapter->vfs_allocated_count &&
2314 adapter->vf_data[vfn].vlans_enabled)
2315 size += VLAN_TAG_SIZE;
2316
2317 vmolr = rd32(E1000_VMOLR(vfn));
2318 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2319 vmolr |= size | E1000_VMOLR_LPE;
2320 wr32(E1000_VMOLR(vfn), vmolr);
2321
2322 return 0;
2323 }
2324
2325 /**
2326 * igb_rlpml_set - set maximum receive packet size
2327 * @adapter: board private structure
2328 *
2329 * Configure maximum receivable packet size.
2330 **/
2331 static void igb_rlpml_set(struct igb_adapter *adapter)
2332 {
2333 u32 max_frame_size = adapter->max_frame_size;
2334 struct e1000_hw *hw = &adapter->hw;
2335 u16 pf_id = adapter->vfs_allocated_count;
2336
2337 if (adapter->vlgrp)
2338 max_frame_size += VLAN_TAG_SIZE;
2339
2340 /* if vfs are enabled we set RLPML to the largest possible request
2341 * size and set the VMOLR RLPML to the size we need */
2342 if (pf_id) {
2343 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2344 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2345 }
2346
2347 wr32(E1000_RLPML, max_frame_size);
2348 }
2349
2350 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2351 {
2352 struct e1000_hw *hw = &adapter->hw;
2353 u32 vmolr;
2354
2355 /*
2356 * This register exists only on 82576 and newer so if we are older then
2357 * we should exit and do nothing
2358 */
2359 if (hw->mac.type < e1000_82576)
2360 return;
2361
2362 vmolr = rd32(E1000_VMOLR(vfn));
2363 vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */
2364 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2365
2366 /* clear all bits that might not be set */
2367 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2368
2369 if (adapter->num_rx_queues > 1 && vfn == adapter->vfs_allocated_count)
2370 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2371 /*
2372 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2373 * multicast packets
2374 */
2375 if (vfn <= adapter->vfs_allocated_count)
2376 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2377
2378 wr32(E1000_VMOLR(vfn), vmolr);
2379 }
2380
2381 /**
2382 * igb_configure_rx_ring - Configure a receive ring after Reset
2383 * @adapter: board private structure
2384 * @ring: receive ring to be configured
2385 *
2386 * Configure the Rx unit of the MAC after a reset.
2387 **/
2388 void igb_configure_rx_ring(struct igb_adapter *adapter,
2389 struct igb_ring *ring)
2390 {
2391 struct e1000_hw *hw = &adapter->hw;
2392 u64 rdba = ring->dma;
2393 int reg_idx = ring->reg_idx;
2394 u32 srrctl, rxdctl;
2395
2396 /* disable the queue */
2397 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2398 wr32(E1000_RXDCTL(reg_idx),
2399 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2400
2401 /* Set DMA base address registers */
2402 wr32(E1000_RDBAL(reg_idx),
2403 rdba & 0x00000000ffffffffULL);
2404 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2405 wr32(E1000_RDLEN(reg_idx),
2406 ring->count * sizeof(union e1000_adv_rx_desc));
2407
2408 /* initialize head and tail */
2409 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2410 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2411 writel(0, ring->head);
2412 writel(0, ring->tail);
2413
2414 /* set descriptor configuration */
2415 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2416 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2417 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2418 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2419 srrctl |= IGB_RXBUFFER_16384 >>
2420 E1000_SRRCTL_BSIZEPKT_SHIFT;
2421 #else
2422 srrctl |= (PAGE_SIZE / 2) >>
2423 E1000_SRRCTL_BSIZEPKT_SHIFT;
2424 #endif
2425 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2426 } else {
2427 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2428 E1000_SRRCTL_BSIZEPKT_SHIFT;
2429 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2430 }
2431
2432 wr32(E1000_SRRCTL(reg_idx), srrctl);
2433
2434 /* set filtering for VMDQ pools */
2435 igb_set_vmolr(adapter, reg_idx & 0x7);
2436
2437 /* enable receive descriptor fetching */
2438 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2439 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2440 rxdctl &= 0xFFF00000;
2441 rxdctl |= IGB_RX_PTHRESH;
2442 rxdctl |= IGB_RX_HTHRESH << 8;
2443 rxdctl |= IGB_RX_WTHRESH << 16;
2444 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2445 }
2446
2447 /**
2448 * igb_configure_rx - Configure receive Unit after Reset
2449 * @adapter: board private structure
2450 *
2451 * Configure the Rx unit of the MAC after a reset.
2452 **/
2453 static void igb_configure_rx(struct igb_adapter *adapter)
2454 {
2455 int i;
2456
2457 /* set UTA to appropriate mode */
2458 igb_set_uta(adapter);
2459
2460 /* set the correct pool for the PF default MAC address in entry 0 */
2461 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2462 adapter->vfs_allocated_count);
2463
2464 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2465 * the Base and Length of the Rx Descriptor Ring */
2466 for (i = 0; i < adapter->num_rx_queues; i++)
2467 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2468 }
2469
2470 /**
2471 * igb_free_tx_resources - Free Tx Resources per Queue
2472 * @tx_ring: Tx descriptor ring for a specific queue
2473 *
2474 * Free all transmit software resources
2475 **/
2476 void igb_free_tx_resources(struct igb_ring *tx_ring)
2477 {
2478 igb_clean_tx_ring(tx_ring);
2479
2480 vfree(tx_ring->buffer_info);
2481 tx_ring->buffer_info = NULL;
2482
2483 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2484 tx_ring->desc, tx_ring->dma);
2485
2486 tx_ring->desc = NULL;
2487 }
2488
2489 /**
2490 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2491 * @adapter: board private structure
2492 *
2493 * Free all transmit software resources
2494 **/
2495 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2496 {
2497 int i;
2498
2499 for (i = 0; i < adapter->num_tx_queues; i++)
2500 igb_free_tx_resources(&adapter->tx_ring[i]);
2501 }
2502
2503 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2504 struct igb_buffer *buffer_info)
2505 {
2506 buffer_info->dma = 0;
2507 if (buffer_info->skb) {
2508 skb_dma_unmap(&tx_ring->pdev->dev,
2509 buffer_info->skb,
2510 DMA_TO_DEVICE);
2511 dev_kfree_skb_any(buffer_info->skb);
2512 buffer_info->skb = NULL;
2513 }
2514 buffer_info->time_stamp = 0;
2515 /* buffer_info must be completely set up in the transmit path */
2516 }
2517
2518 /**
2519 * igb_clean_tx_ring - Free Tx Buffers
2520 * @tx_ring: ring to be cleaned
2521 **/
2522 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2523 {
2524 struct igb_buffer *buffer_info;
2525 unsigned long size;
2526 unsigned int i;
2527
2528 if (!tx_ring->buffer_info)
2529 return;
2530 /* Free all the Tx ring sk_buffs */
2531
2532 for (i = 0; i < tx_ring->count; i++) {
2533 buffer_info = &tx_ring->buffer_info[i];
2534 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2535 }
2536
2537 size = sizeof(struct igb_buffer) * tx_ring->count;
2538 memset(tx_ring->buffer_info, 0, size);
2539
2540 /* Zero out the descriptor ring */
2541
2542 memset(tx_ring->desc, 0, tx_ring->size);
2543
2544 tx_ring->next_to_use = 0;
2545 tx_ring->next_to_clean = 0;
2546
2547 writel(0, tx_ring->head);
2548 writel(0, tx_ring->tail);
2549 }
2550
2551 /**
2552 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2553 * @adapter: board private structure
2554 **/
2555 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2556 {
2557 int i;
2558
2559 for (i = 0; i < adapter->num_tx_queues; i++)
2560 igb_clean_tx_ring(&adapter->tx_ring[i]);
2561 }
2562
2563 /**
2564 * igb_free_rx_resources - Free Rx Resources
2565 * @rx_ring: ring to clean the resources from
2566 *
2567 * Free all receive software resources
2568 **/
2569 void igb_free_rx_resources(struct igb_ring *rx_ring)
2570 {
2571 igb_clean_rx_ring(rx_ring);
2572
2573 vfree(rx_ring->buffer_info);
2574 rx_ring->buffer_info = NULL;
2575
2576 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2577 rx_ring->desc, rx_ring->dma);
2578
2579 rx_ring->desc = NULL;
2580 }
2581
2582 /**
2583 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2584 * @adapter: board private structure
2585 *
2586 * Free all receive software resources
2587 **/
2588 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2589 {
2590 int i;
2591
2592 for (i = 0; i < adapter->num_rx_queues; i++)
2593 igb_free_rx_resources(&adapter->rx_ring[i]);
2594 }
2595
2596 /**
2597 * igb_clean_rx_ring - Free Rx Buffers per Queue
2598 * @rx_ring: ring to free buffers from
2599 **/
2600 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2601 {
2602 struct igb_buffer *buffer_info;
2603 unsigned long size;
2604 unsigned int i;
2605
2606 if (!rx_ring->buffer_info)
2607 return;
2608 /* Free all the Rx ring sk_buffs */
2609 for (i = 0; i < rx_ring->count; i++) {
2610 buffer_info = &rx_ring->buffer_info[i];
2611 if (buffer_info->dma) {
2612 pci_unmap_single(rx_ring->pdev,
2613 buffer_info->dma,
2614 rx_ring->rx_buffer_len,
2615 PCI_DMA_FROMDEVICE);
2616 buffer_info->dma = 0;
2617 }
2618
2619 if (buffer_info->skb) {
2620 dev_kfree_skb(buffer_info->skb);
2621 buffer_info->skb = NULL;
2622 }
2623 if (buffer_info->page_dma) {
2624 pci_unmap_page(rx_ring->pdev,
2625 buffer_info->page_dma,
2626 PAGE_SIZE / 2,
2627 PCI_DMA_FROMDEVICE);
2628 buffer_info->page_dma = 0;
2629 }
2630 if (buffer_info->page) {
2631 put_page(buffer_info->page);
2632 buffer_info->page = NULL;
2633 buffer_info->page_offset = 0;
2634 }
2635 }
2636
2637 size = sizeof(struct igb_buffer) * rx_ring->count;
2638 memset(rx_ring->buffer_info, 0, size);
2639
2640 /* Zero out the descriptor ring */
2641 memset(rx_ring->desc, 0, rx_ring->size);
2642
2643 rx_ring->next_to_clean = 0;
2644 rx_ring->next_to_use = 0;
2645
2646 writel(0, rx_ring->head);
2647 writel(0, rx_ring->tail);
2648 }
2649
2650 /**
2651 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2652 * @adapter: board private structure
2653 **/
2654 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2655 {
2656 int i;
2657
2658 for (i = 0; i < adapter->num_rx_queues; i++)
2659 igb_clean_rx_ring(&adapter->rx_ring[i]);
2660 }
2661
2662 /**
2663 * igb_set_mac - Change the Ethernet Address of the NIC
2664 * @netdev: network interface device structure
2665 * @p: pointer to an address structure
2666 *
2667 * Returns 0 on success, negative on failure
2668 **/
2669 static int igb_set_mac(struct net_device *netdev, void *p)
2670 {
2671 struct igb_adapter *adapter = netdev_priv(netdev);
2672 struct e1000_hw *hw = &adapter->hw;
2673 struct sockaddr *addr = p;
2674
2675 if (!is_valid_ether_addr(addr->sa_data))
2676 return -EADDRNOTAVAIL;
2677
2678 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2679 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2680
2681 /* set the correct pool for the new PF MAC address in entry 0 */
2682 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2683 adapter->vfs_allocated_count);
2684
2685 return 0;
2686 }
2687
2688 /**
2689 * igb_write_mc_addr_list - write multicast addresses to MTA
2690 * @netdev: network interface device structure
2691 *
2692 * Writes multicast address list to the MTA hash table.
2693 * Returns: -ENOMEM on failure
2694 * 0 on no addresses written
2695 * X on writing X addresses to MTA
2696 **/
2697 static int igb_write_mc_addr_list(struct net_device *netdev)
2698 {
2699 struct igb_adapter *adapter = netdev_priv(netdev);
2700 struct e1000_hw *hw = &adapter->hw;
2701 struct dev_mc_list *mc_ptr = netdev->mc_list;
2702 u8 *mta_list;
2703 u32 vmolr = 0;
2704 int i;
2705
2706 if (!netdev->mc_count) {
2707 /* nothing to program, so clear mc list */
2708 igb_update_mc_addr_list(hw, NULL, 0);
2709 igb_restore_vf_multicasts(adapter);
2710 return 0;
2711 }
2712
2713 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2714 if (!mta_list)
2715 return -ENOMEM;
2716
2717 /* set vmolr receive overflow multicast bit */
2718 vmolr |= E1000_VMOLR_ROMPE;
2719
2720 /* The shared function expects a packed array of only addresses. */
2721 mc_ptr = netdev->mc_list;
2722
2723 for (i = 0; i < netdev->mc_count; i++) {
2724 if (!mc_ptr)
2725 break;
2726 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2727 mc_ptr = mc_ptr->next;
2728 }
2729 igb_update_mc_addr_list(hw, mta_list, i);
2730 kfree(mta_list);
2731
2732 return netdev->mc_count;
2733 }
2734
2735 /**
2736 * igb_write_uc_addr_list - write unicast addresses to RAR table
2737 * @netdev: network interface device structure
2738 *
2739 * Writes unicast address list to the RAR table.
2740 * Returns: -ENOMEM on failure/insufficient address space
2741 * 0 on no addresses written
2742 * X on writing X addresses to the RAR table
2743 **/
2744 static int igb_write_uc_addr_list(struct net_device *netdev)
2745 {
2746 struct igb_adapter *adapter = netdev_priv(netdev);
2747 struct e1000_hw *hw = &adapter->hw;
2748 unsigned int vfn = adapter->vfs_allocated_count;
2749 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2750 int count = 0;
2751
2752 /* return ENOMEM indicating insufficient memory for addresses */
2753 if (netdev->uc.count > rar_entries)
2754 return -ENOMEM;
2755
2756 if (netdev->uc.count && rar_entries) {
2757 struct netdev_hw_addr *ha;
2758 list_for_each_entry(ha, &netdev->uc.list, list) {
2759 if (!rar_entries)
2760 break;
2761 igb_rar_set_qsel(adapter, ha->addr,
2762 rar_entries--,
2763 vfn);
2764 count++;
2765 }
2766 }
2767 /* write the addresses in reverse order to avoid write combining */
2768 for (; rar_entries > 0 ; rar_entries--) {
2769 wr32(E1000_RAH(rar_entries), 0);
2770 wr32(E1000_RAL(rar_entries), 0);
2771 }
2772 wrfl();
2773
2774 return count;
2775 }
2776
2777 /**
2778 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2779 * @netdev: network interface device structure
2780 *
2781 * The set_rx_mode entry point is called whenever the unicast or multicast
2782 * address lists or the network interface flags are updated. This routine is
2783 * responsible for configuring the hardware for proper unicast, multicast,
2784 * promiscuous mode, and all-multi behavior.
2785 **/
2786 static void igb_set_rx_mode(struct net_device *netdev)
2787 {
2788 struct igb_adapter *adapter = netdev_priv(netdev);
2789 struct e1000_hw *hw = &adapter->hw;
2790 unsigned int vfn = adapter->vfs_allocated_count;
2791 u32 rctl, vmolr = 0;
2792 int count;
2793
2794 /* Check for Promiscuous and All Multicast modes */
2795 rctl = rd32(E1000_RCTL);
2796
2797 /* clear the effected bits */
2798 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2799
2800 if (netdev->flags & IFF_PROMISC) {
2801 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2802 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2803 } else {
2804 if (netdev->flags & IFF_ALLMULTI) {
2805 rctl |= E1000_RCTL_MPE;
2806 vmolr |= E1000_VMOLR_MPME;
2807 } else {
2808 /*
2809 * Write addresses to the MTA, if the attempt fails
2810 * then we should just turn on promiscous mode so
2811 * that we can at least receive multicast traffic
2812 */
2813 count = igb_write_mc_addr_list(netdev);
2814 if (count < 0) {
2815 rctl |= E1000_RCTL_MPE;
2816 vmolr |= E1000_VMOLR_MPME;
2817 } else if (count) {
2818 vmolr |= E1000_VMOLR_ROMPE;
2819 }
2820 }
2821 /*
2822 * Write addresses to available RAR registers, if there is not
2823 * sufficient space to store all the addresses then enable
2824 * unicast promiscous mode
2825 */
2826 count = igb_write_uc_addr_list(netdev);
2827 if (count < 0) {
2828 rctl |= E1000_RCTL_UPE;
2829 vmolr |= E1000_VMOLR_ROPE;
2830 }
2831 rctl |= E1000_RCTL_VFE;
2832 }
2833 wr32(E1000_RCTL, rctl);
2834
2835 /*
2836 * In order to support SR-IOV and eventually VMDq it is necessary to set
2837 * the VMOLR to enable the appropriate modes. Without this workaround
2838 * we will have issues with VLAN tag stripping not being done for frames
2839 * that are only arriving because we are the default pool
2840 */
2841 if (hw->mac.type < e1000_82576)
2842 return;
2843
2844 vmolr |= rd32(E1000_VMOLR(vfn)) &
2845 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2846 wr32(E1000_VMOLR(vfn), vmolr);
2847 igb_restore_vf_multicasts(adapter);
2848 }
2849
2850 /* Need to wait a few seconds after link up to get diagnostic information from
2851 * the phy */
2852 static void igb_update_phy_info(unsigned long data)
2853 {
2854 struct igb_adapter *adapter = (struct igb_adapter *) data;
2855 igb_get_phy_info(&adapter->hw);
2856 }
2857
2858 /**
2859 * igb_has_link - check shared code for link and determine up/down
2860 * @adapter: pointer to driver private info
2861 **/
2862 static bool igb_has_link(struct igb_adapter *adapter)
2863 {
2864 struct e1000_hw *hw = &adapter->hw;
2865 bool link_active = false;
2866 s32 ret_val = 0;
2867
2868 /* get_link_status is set on LSC (link status) interrupt or
2869 * rx sequence error interrupt. get_link_status will stay
2870 * false until the e1000_check_for_link establishes link
2871 * for copper adapters ONLY
2872 */
2873 switch (hw->phy.media_type) {
2874 case e1000_media_type_copper:
2875 if (hw->mac.get_link_status) {
2876 ret_val = hw->mac.ops.check_for_link(hw);
2877 link_active = !hw->mac.get_link_status;
2878 } else {
2879 link_active = true;
2880 }
2881 break;
2882 case e1000_media_type_internal_serdes:
2883 ret_val = hw->mac.ops.check_for_link(hw);
2884 link_active = hw->mac.serdes_has_link;
2885 break;
2886 default:
2887 case e1000_media_type_unknown:
2888 break;
2889 }
2890
2891 return link_active;
2892 }
2893
2894 /**
2895 * igb_watchdog - Timer Call-back
2896 * @data: pointer to adapter cast into an unsigned long
2897 **/
2898 static void igb_watchdog(unsigned long data)
2899 {
2900 struct igb_adapter *adapter = (struct igb_adapter *)data;
2901 /* Do the rest outside of interrupt context */
2902 schedule_work(&adapter->watchdog_task);
2903 }
2904
2905 static void igb_watchdog_task(struct work_struct *work)
2906 {
2907 struct igb_adapter *adapter = container_of(work,
2908 struct igb_adapter, watchdog_task);
2909 struct e1000_hw *hw = &adapter->hw;
2910 struct net_device *netdev = adapter->netdev;
2911 struct igb_ring *tx_ring = adapter->tx_ring;
2912 u32 link;
2913 int i;
2914
2915 link = igb_has_link(adapter);
2916 if ((netif_carrier_ok(netdev)) && link)
2917 goto link_up;
2918
2919 if (link) {
2920 if (!netif_carrier_ok(netdev)) {
2921 u32 ctrl;
2922 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2923 &adapter->link_speed,
2924 &adapter->link_duplex);
2925
2926 ctrl = rd32(E1000_CTRL);
2927 /* Links status message must follow this format */
2928 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2929 "Flow Control: %s\n",
2930 netdev->name,
2931 adapter->link_speed,
2932 adapter->link_duplex == FULL_DUPLEX ?
2933 "Full Duplex" : "Half Duplex",
2934 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2935 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2936 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2937 E1000_CTRL_TFCE) ? "TX" : "None")));
2938
2939 /* tweak tx_queue_len according to speed/duplex and
2940 * adjust the timeout factor */
2941 netdev->tx_queue_len = adapter->tx_queue_len;
2942 adapter->tx_timeout_factor = 1;
2943 switch (adapter->link_speed) {
2944 case SPEED_10:
2945 netdev->tx_queue_len = 10;
2946 adapter->tx_timeout_factor = 14;
2947 break;
2948 case SPEED_100:
2949 netdev->tx_queue_len = 100;
2950 /* maybe add some timeout factor ? */
2951 break;
2952 }
2953
2954 netif_carrier_on(netdev);
2955
2956 igb_ping_all_vfs(adapter);
2957
2958 /* link state has changed, schedule phy info update */
2959 if (!test_bit(__IGB_DOWN, &adapter->state))
2960 mod_timer(&adapter->phy_info_timer,
2961 round_jiffies(jiffies + 2 * HZ));
2962 }
2963 } else {
2964 if (netif_carrier_ok(netdev)) {
2965 adapter->link_speed = 0;
2966 adapter->link_duplex = 0;
2967 /* Links status message must follow this format */
2968 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2969 netdev->name);
2970 netif_carrier_off(netdev);
2971
2972 igb_ping_all_vfs(adapter);
2973
2974 /* link state has changed, schedule phy info update */
2975 if (!test_bit(__IGB_DOWN, &adapter->state))
2976 mod_timer(&adapter->phy_info_timer,
2977 round_jiffies(jiffies + 2 * HZ));
2978 }
2979 }
2980
2981 link_up:
2982 igb_update_stats(adapter);
2983
2984 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2985 adapter->tpt_old = adapter->stats.tpt;
2986 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2987 adapter->colc_old = adapter->stats.colc;
2988
2989 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2990 adapter->gorc_old = adapter->stats.gorc;
2991 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2992 adapter->gotc_old = adapter->stats.gotc;
2993
2994 igb_update_adaptive(&adapter->hw);
2995
2996 if (!netif_carrier_ok(netdev)) {
2997 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2998 /* We've lost link, so the controller stops DMA,
2999 * but we've got queued Tx work that's never going
3000 * to get done, so reset controller to flush Tx.
3001 * (Do the reset outside of interrupt context). */
3002 adapter->tx_timeout_count++;
3003 schedule_work(&adapter->reset_task);
3004 /* return immediately since reset is imminent */
3005 return;
3006 }
3007 }
3008
3009 /* Cause software interrupt to ensure rx ring is cleaned */
3010 if (adapter->msix_entries) {
3011 u32 eics = 0;
3012 for (i = 0; i < adapter->num_q_vectors; i++) {
3013 struct igb_q_vector *q_vector = adapter->q_vector[i];
3014 eics |= q_vector->eims_value;
3015 }
3016 wr32(E1000_EICS, eics);
3017 } else {
3018 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3019 }
3020
3021 /* Force detection of hung controller every watchdog period */
3022 tx_ring->detect_tx_hung = true;
3023
3024 /* Reset the timer */
3025 if (!test_bit(__IGB_DOWN, &adapter->state))
3026 mod_timer(&adapter->watchdog_timer,
3027 round_jiffies(jiffies + 2 * HZ));
3028 }
3029
3030 enum latency_range {
3031 lowest_latency = 0,
3032 low_latency = 1,
3033 bulk_latency = 2,
3034 latency_invalid = 255
3035 };
3036
3037 /**
3038 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3039 *
3040 * Stores a new ITR value based on strictly on packet size. This
3041 * algorithm is less sophisticated than that used in igb_update_itr,
3042 * due to the difficulty of synchronizing statistics across multiple
3043 * receive rings. The divisors and thresholds used by this fuction
3044 * were determined based on theoretical maximum wire speed and testing
3045 * data, in order to minimize response time while increasing bulk
3046 * throughput.
3047 * This functionality is controlled by the InterruptThrottleRate module
3048 * parameter (see igb_param.c)
3049 * NOTE: This function is called only when operating in a multiqueue
3050 * receive environment.
3051 * @q_vector: pointer to q_vector
3052 **/
3053 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3054 {
3055 int new_val = q_vector->itr_val;
3056 int avg_wire_size = 0;
3057 struct igb_adapter *adapter = q_vector->adapter;
3058
3059 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3060 * ints/sec - ITR timer value of 120 ticks.
3061 */
3062 if (adapter->link_speed != SPEED_1000) {
3063 new_val = 976;
3064 goto set_itr_val;
3065 }
3066
3067 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3068 struct igb_ring *ring = q_vector->rx_ring;
3069 avg_wire_size = ring->total_bytes / ring->total_packets;
3070 }
3071
3072 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3073 struct igb_ring *ring = q_vector->tx_ring;
3074 avg_wire_size = max_t(u32, avg_wire_size,
3075 (ring->total_bytes /
3076 ring->total_packets));
3077 }
3078
3079 /* if avg_wire_size isn't set no work was done */
3080 if (!avg_wire_size)
3081 goto clear_counts;
3082
3083 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3084 avg_wire_size += 24;
3085
3086 /* Don't starve jumbo frames */
3087 avg_wire_size = min(avg_wire_size, 3000);
3088
3089 /* Give a little boost to mid-size frames */
3090 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3091 new_val = avg_wire_size / 3;
3092 else
3093 new_val = avg_wire_size / 2;
3094
3095 set_itr_val:
3096 if (new_val != q_vector->itr_val) {
3097 q_vector->itr_val = new_val;
3098 q_vector->set_itr = 1;
3099 }
3100 clear_counts:
3101 if (q_vector->rx_ring) {
3102 q_vector->rx_ring->total_bytes = 0;
3103 q_vector->rx_ring->total_packets = 0;
3104 }
3105 if (q_vector->tx_ring) {
3106 q_vector->tx_ring->total_bytes = 0;
3107 q_vector->tx_ring->total_packets = 0;
3108 }
3109 }
3110
3111 /**
3112 * igb_update_itr - update the dynamic ITR value based on statistics
3113 * Stores a new ITR value based on packets and byte
3114 * counts during the last interrupt. The advantage of per interrupt
3115 * computation is faster updates and more accurate ITR for the current
3116 * traffic pattern. Constants in this function were computed
3117 * based on theoretical maximum wire speed and thresholds were set based
3118 * on testing data as well as attempting to minimize response time
3119 * while increasing bulk throughput.
3120 * this functionality is controlled by the InterruptThrottleRate module
3121 * parameter (see igb_param.c)
3122 * NOTE: These calculations are only valid when operating in a single-
3123 * queue environment.
3124 * @adapter: pointer to adapter
3125 * @itr_setting: current q_vector->itr_val
3126 * @packets: the number of packets during this measurement interval
3127 * @bytes: the number of bytes during this measurement interval
3128 **/
3129 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3130 int packets, int bytes)
3131 {
3132 unsigned int retval = itr_setting;
3133
3134 if (packets == 0)
3135 goto update_itr_done;
3136
3137 switch (itr_setting) {
3138 case lowest_latency:
3139 /* handle TSO and jumbo frames */
3140 if (bytes/packets > 8000)
3141 retval = bulk_latency;
3142 else if ((packets < 5) && (bytes > 512))
3143 retval = low_latency;
3144 break;
3145 case low_latency: /* 50 usec aka 20000 ints/s */
3146 if (bytes > 10000) {
3147 /* this if handles the TSO accounting */
3148 if (bytes/packets > 8000) {
3149 retval = bulk_latency;
3150 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3151 retval = bulk_latency;
3152 } else if ((packets > 35)) {
3153 retval = lowest_latency;
3154 }
3155 } else if (bytes/packets > 2000) {
3156 retval = bulk_latency;
3157 } else if (packets <= 2 && bytes < 512) {
3158 retval = lowest_latency;
3159 }
3160 break;
3161 case bulk_latency: /* 250 usec aka 4000 ints/s */
3162 if (bytes > 25000) {
3163 if (packets > 35)
3164 retval = low_latency;
3165 } else if (bytes < 1500) {
3166 retval = low_latency;
3167 }
3168 break;
3169 }
3170
3171 update_itr_done:
3172 return retval;
3173 }
3174
3175 static void igb_set_itr(struct igb_adapter *adapter)
3176 {
3177 struct igb_q_vector *q_vector = adapter->q_vector[0];
3178 u16 current_itr;
3179 u32 new_itr = q_vector->itr_val;
3180
3181 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3182 if (adapter->link_speed != SPEED_1000) {
3183 current_itr = 0;
3184 new_itr = 4000;
3185 goto set_itr_now;
3186 }
3187
3188 adapter->rx_itr = igb_update_itr(adapter,
3189 adapter->rx_itr,
3190 adapter->rx_ring->total_packets,
3191 adapter->rx_ring->total_bytes);
3192
3193 adapter->tx_itr = igb_update_itr(adapter,
3194 adapter->tx_itr,
3195 adapter->tx_ring->total_packets,
3196 adapter->tx_ring->total_bytes);
3197 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3198
3199 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3200 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3201 current_itr = low_latency;
3202
3203 switch (current_itr) {
3204 /* counts and packets in update_itr are dependent on these numbers */
3205 case lowest_latency:
3206 new_itr = 56; /* aka 70,000 ints/sec */
3207 break;
3208 case low_latency:
3209 new_itr = 196; /* aka 20,000 ints/sec */
3210 break;
3211 case bulk_latency:
3212 new_itr = 980; /* aka 4,000 ints/sec */
3213 break;
3214 default:
3215 break;
3216 }
3217
3218 set_itr_now:
3219 adapter->rx_ring->total_bytes = 0;
3220 adapter->rx_ring->total_packets = 0;
3221 adapter->tx_ring->total_bytes = 0;
3222 adapter->tx_ring->total_packets = 0;
3223
3224 if (new_itr != q_vector->itr_val) {
3225 /* this attempts to bias the interrupt rate towards Bulk
3226 * by adding intermediate steps when interrupt rate is
3227 * increasing */
3228 new_itr = new_itr > q_vector->itr_val ?
3229 max((new_itr * q_vector->itr_val) /
3230 (new_itr + (q_vector->itr_val >> 2)),
3231 new_itr) :
3232 new_itr;
3233 /* Don't write the value here; it resets the adapter's
3234 * internal timer, and causes us to delay far longer than
3235 * we should between interrupts. Instead, we write the ITR
3236 * value at the beginning of the next interrupt so the timing
3237 * ends up being correct.
3238 */
3239 q_vector->itr_val = new_itr;
3240 q_vector->set_itr = 1;
3241 }
3242
3243 return;
3244 }
3245
3246 #define IGB_TX_FLAGS_CSUM 0x00000001
3247 #define IGB_TX_FLAGS_VLAN 0x00000002
3248 #define IGB_TX_FLAGS_TSO 0x00000004
3249 #define IGB_TX_FLAGS_IPV4 0x00000008
3250 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3251 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3252 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3253
3254 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3255 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3256 {
3257 struct e1000_adv_tx_context_desc *context_desc;
3258 unsigned int i;
3259 int err;
3260 struct igb_buffer *buffer_info;
3261 u32 info = 0, tu_cmd = 0;
3262 u32 mss_l4len_idx, l4len;
3263 *hdr_len = 0;
3264
3265 if (skb_header_cloned(skb)) {
3266 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3267 if (err)
3268 return err;
3269 }
3270
3271 l4len = tcp_hdrlen(skb);
3272 *hdr_len += l4len;
3273
3274 if (skb->protocol == htons(ETH_P_IP)) {
3275 struct iphdr *iph = ip_hdr(skb);
3276 iph->tot_len = 0;
3277 iph->check = 0;
3278 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3279 iph->daddr, 0,
3280 IPPROTO_TCP,
3281 0);
3282 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3283 ipv6_hdr(skb)->payload_len = 0;
3284 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3285 &ipv6_hdr(skb)->daddr,
3286 0, IPPROTO_TCP, 0);
3287 }
3288
3289 i = tx_ring->next_to_use;
3290
3291 buffer_info = &tx_ring->buffer_info[i];
3292 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3293 /* VLAN MACLEN IPLEN */
3294 if (tx_flags & IGB_TX_FLAGS_VLAN)
3295 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3296 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3297 *hdr_len += skb_network_offset(skb);
3298 info |= skb_network_header_len(skb);
3299 *hdr_len += skb_network_header_len(skb);
3300 context_desc->vlan_macip_lens = cpu_to_le32(info);
3301
3302 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3303 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3304
3305 if (skb->protocol == htons(ETH_P_IP))
3306 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3307 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3308
3309 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3310
3311 /* MSS L4LEN IDX */
3312 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3313 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3314
3315 /* For 82575, context index must be unique per ring. */
3316 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3317 mss_l4len_idx |= tx_ring->reg_idx << 4;
3318
3319 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3320 context_desc->seqnum_seed = 0;
3321
3322 buffer_info->time_stamp = jiffies;
3323 buffer_info->next_to_watch = i;
3324 buffer_info->dma = 0;
3325 i++;
3326 if (i == tx_ring->count)
3327 i = 0;
3328
3329 tx_ring->next_to_use = i;
3330
3331 return true;
3332 }
3333
3334 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3335 struct sk_buff *skb, u32 tx_flags)
3336 {
3337 struct e1000_adv_tx_context_desc *context_desc;
3338 struct pci_dev *pdev = tx_ring->pdev;
3339 struct igb_buffer *buffer_info;
3340 u32 info = 0, tu_cmd = 0;
3341 unsigned int i;
3342
3343 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3344 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3345 i = tx_ring->next_to_use;
3346 buffer_info = &tx_ring->buffer_info[i];
3347 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3348
3349 if (tx_flags & IGB_TX_FLAGS_VLAN)
3350 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3351 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3352 if (skb->ip_summed == CHECKSUM_PARTIAL)
3353 info |= skb_network_header_len(skb);
3354
3355 context_desc->vlan_macip_lens = cpu_to_le32(info);
3356
3357 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3358
3359 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3360 __be16 protocol;
3361
3362 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3363 const struct vlan_ethhdr *vhdr =
3364 (const struct vlan_ethhdr*)skb->data;
3365
3366 protocol = vhdr->h_vlan_encapsulated_proto;
3367 } else {
3368 protocol = skb->protocol;
3369 }
3370
3371 switch (protocol) {
3372 case cpu_to_be16(ETH_P_IP):
3373 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3374 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3375 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3376 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3377 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3378 break;
3379 case cpu_to_be16(ETH_P_IPV6):
3380 /* XXX what about other V6 headers?? */
3381 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3382 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3383 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3384 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3385 break;
3386 default:
3387 if (unlikely(net_ratelimit()))
3388 dev_warn(&pdev->dev,
3389 "partial checksum but proto=%x!\n",
3390 skb->protocol);
3391 break;
3392 }
3393 }
3394
3395 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3396 context_desc->seqnum_seed = 0;
3397 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3398 context_desc->mss_l4len_idx =
3399 cpu_to_le32(tx_ring->reg_idx << 4);
3400
3401 buffer_info->time_stamp = jiffies;
3402 buffer_info->next_to_watch = i;
3403 buffer_info->dma = 0;
3404
3405 i++;
3406 if (i == tx_ring->count)
3407 i = 0;
3408 tx_ring->next_to_use = i;
3409
3410 return true;
3411 }
3412 return false;
3413 }
3414
3415 #define IGB_MAX_TXD_PWR 16
3416 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3417
3418 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3419 unsigned int first)
3420 {
3421 struct igb_buffer *buffer_info;
3422 struct pci_dev *pdev = tx_ring->pdev;
3423 unsigned int len = skb_headlen(skb);
3424 unsigned int count = 0, i;
3425 unsigned int f;
3426 dma_addr_t *map;
3427
3428 i = tx_ring->next_to_use;
3429
3430 if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
3431 dev_err(&pdev->dev, "TX DMA map failed\n");
3432 return 0;
3433 }
3434
3435 map = skb_shinfo(skb)->dma_maps;
3436
3437 buffer_info = &tx_ring->buffer_info[i];
3438 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3439 buffer_info->length = len;
3440 /* set time_stamp *before* dma to help avoid a possible race */
3441 buffer_info->time_stamp = jiffies;
3442 buffer_info->next_to_watch = i;
3443 buffer_info->dma = skb_shinfo(skb)->dma_head;
3444
3445 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3446 struct skb_frag_struct *frag;
3447
3448 i++;
3449 if (i == tx_ring->count)
3450 i = 0;
3451
3452 frag = &skb_shinfo(skb)->frags[f];
3453 len = frag->size;
3454
3455 buffer_info = &tx_ring->buffer_info[i];
3456 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3457 buffer_info->length = len;
3458 buffer_info->time_stamp = jiffies;
3459 buffer_info->next_to_watch = i;
3460 buffer_info->dma = map[count];
3461 count++;
3462 }
3463
3464 tx_ring->buffer_info[i].skb = skb;
3465 tx_ring->buffer_info[first].next_to_watch = i;
3466
3467 return count + 1;
3468 }
3469
3470 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3471 int tx_flags, int count, u32 paylen,
3472 u8 hdr_len)
3473 {
3474 union e1000_adv_tx_desc *tx_desc = NULL;
3475 struct igb_buffer *buffer_info;
3476 u32 olinfo_status = 0, cmd_type_len;
3477 unsigned int i;
3478
3479 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3480 E1000_ADVTXD_DCMD_DEXT);
3481
3482 if (tx_flags & IGB_TX_FLAGS_VLAN)
3483 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3484
3485 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3486 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3487
3488 if (tx_flags & IGB_TX_FLAGS_TSO) {
3489 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3490
3491 /* insert tcp checksum */
3492 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3493
3494 /* insert ip checksum */
3495 if (tx_flags & IGB_TX_FLAGS_IPV4)
3496 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3497
3498 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3499 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3500 }
3501
3502 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3503 (tx_flags & (IGB_TX_FLAGS_CSUM |
3504 IGB_TX_FLAGS_TSO |
3505 IGB_TX_FLAGS_VLAN)))
3506 olinfo_status |= tx_ring->reg_idx << 4;
3507
3508 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3509
3510 i = tx_ring->next_to_use;
3511 while (count--) {
3512 buffer_info = &tx_ring->buffer_info[i];
3513 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3514 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3515 tx_desc->read.cmd_type_len =
3516 cpu_to_le32(cmd_type_len | buffer_info->length);
3517 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3518 i++;
3519 if (i == tx_ring->count)
3520 i = 0;
3521 }
3522
3523 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3524 /* Force memory writes to complete before letting h/w
3525 * know there are new descriptors to fetch. (Only
3526 * applicable for weak-ordered memory model archs,
3527 * such as IA-64). */
3528 wmb();
3529
3530 tx_ring->next_to_use = i;
3531 writel(i, tx_ring->tail);
3532 /* we need this if more than one processor can write to our tail
3533 * at a time, it syncronizes IO on IA64/Altix systems */
3534 mmiowb();
3535 }
3536
3537 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3538 {
3539 struct net_device *netdev = tx_ring->netdev;
3540
3541 netif_stop_subqueue(netdev, tx_ring->queue_index);
3542
3543 /* Herbert's original patch had:
3544 * smp_mb__after_netif_stop_queue();
3545 * but since that doesn't exist yet, just open code it. */
3546 smp_mb();
3547
3548 /* We need to check again in a case another CPU has just
3549 * made room available. */
3550 if (igb_desc_unused(tx_ring) < size)
3551 return -EBUSY;
3552
3553 /* A reprieve! */
3554 netif_wake_subqueue(netdev, tx_ring->queue_index);
3555 tx_ring->tx_stats.restart_queue++;
3556 return 0;
3557 }
3558
3559 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3560 {
3561 if (igb_desc_unused(tx_ring) >= size)
3562 return 0;
3563 return __igb_maybe_stop_tx(tx_ring, size);
3564 }
3565
3566 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3567 struct igb_ring *tx_ring)
3568 {
3569 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3570 unsigned int first;
3571 unsigned int tx_flags = 0;
3572 u8 hdr_len = 0;
3573 int count = 0;
3574 int tso = 0;
3575 union skb_shared_tx *shtx = skb_tx(skb);
3576
3577 /* need: 1 descriptor per page,
3578 * + 2 desc gap to keep tail from touching head,
3579 * + 1 desc for skb->data,
3580 * + 1 desc for context descriptor,
3581 * otherwise try next time */
3582 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3583 /* this is a hard error */
3584 return NETDEV_TX_BUSY;
3585 }
3586
3587 if (unlikely(shtx->hardware)) {
3588 shtx->in_progress = 1;
3589 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3590 }
3591
3592 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3593 tx_flags |= IGB_TX_FLAGS_VLAN;
3594 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3595 }
3596
3597 if (skb->protocol == htons(ETH_P_IP))
3598 tx_flags |= IGB_TX_FLAGS_IPV4;
3599
3600 first = tx_ring->next_to_use;
3601 if (skb_is_gso(skb)) {
3602 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3603 if (tso < 0) {
3604 dev_kfree_skb_any(skb);
3605 return NETDEV_TX_OK;
3606 }
3607 }
3608
3609 if (tso)
3610 tx_flags |= IGB_TX_FLAGS_TSO;
3611 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3612 (skb->ip_summed == CHECKSUM_PARTIAL))
3613 tx_flags |= IGB_TX_FLAGS_CSUM;
3614
3615 /*
3616 * count reflects descriptors mapped, if 0 then mapping error
3617 * has occured and we need to rewind the descriptor queue
3618 */
3619 count = igb_tx_map_adv(tx_ring, skb, first);
3620
3621 if (!count) {
3622 dev_kfree_skb_any(skb);
3623 tx_ring->buffer_info[first].time_stamp = 0;
3624 tx_ring->next_to_use = first;
3625 return NETDEV_TX_OK;
3626 }
3627
3628 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3629
3630 /* Make sure there is space in the ring for the next send. */
3631 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3632
3633 return NETDEV_TX_OK;
3634 }
3635
3636 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3637 struct net_device *netdev)
3638 {
3639 struct igb_adapter *adapter = netdev_priv(netdev);
3640 struct igb_ring *tx_ring;
3641 int r_idx = 0;
3642
3643 if (test_bit(__IGB_DOWN, &adapter->state)) {
3644 dev_kfree_skb_any(skb);
3645 return NETDEV_TX_OK;
3646 }
3647
3648 if (skb->len <= 0) {
3649 dev_kfree_skb_any(skb);
3650 return NETDEV_TX_OK;
3651 }
3652
3653 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3654 tx_ring = adapter->multi_tx_table[r_idx];
3655
3656 /* This goes back to the question of how to logically map a tx queue
3657 * to a flow. Right now, performance is impacted slightly negatively
3658 * if using multiple tx queues. If the stack breaks away from a
3659 * single qdisc implementation, we can look at this again. */
3660 return igb_xmit_frame_ring_adv(skb, tx_ring);
3661 }
3662
3663 /**
3664 * igb_tx_timeout - Respond to a Tx Hang
3665 * @netdev: network interface device structure
3666 **/
3667 static void igb_tx_timeout(struct net_device *netdev)
3668 {
3669 struct igb_adapter *adapter = netdev_priv(netdev);
3670 struct e1000_hw *hw = &adapter->hw;
3671
3672 /* Do the reset outside of interrupt context */
3673 adapter->tx_timeout_count++;
3674 schedule_work(&adapter->reset_task);
3675 wr32(E1000_EICS,
3676 (adapter->eims_enable_mask & ~adapter->eims_other));
3677 }
3678
3679 static void igb_reset_task(struct work_struct *work)
3680 {
3681 struct igb_adapter *adapter;
3682 adapter = container_of(work, struct igb_adapter, reset_task);
3683
3684 igb_reinit_locked(adapter);
3685 }
3686
3687 /**
3688 * igb_get_stats - Get System Network Statistics
3689 * @netdev: network interface device structure
3690 *
3691 * Returns the address of the device statistics structure.
3692 * The statistics are actually updated from the timer callback.
3693 **/
3694 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3695 {
3696 /* only return the current stats */
3697 return &netdev->stats;
3698 }
3699
3700 /**
3701 * igb_change_mtu - Change the Maximum Transfer Unit
3702 * @netdev: network interface device structure
3703 * @new_mtu: new value for maximum frame size
3704 *
3705 * Returns 0 on success, negative on failure
3706 **/
3707 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3708 {
3709 struct igb_adapter *adapter = netdev_priv(netdev);
3710 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3711 u32 rx_buffer_len, i;
3712
3713 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3714 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3715 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3716 return -EINVAL;
3717 }
3718
3719 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3720 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3721 return -EINVAL;
3722 }
3723
3724 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3725 msleep(1);
3726
3727 /* igb_down has a dependency on max_frame_size */
3728 adapter->max_frame_size = max_frame;
3729 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3730 * means we reserve 2 more, this pushes us to allocate from the next
3731 * larger slab size.
3732 * i.e. RXBUFFER_2048 --> size-4096 slab
3733 */
3734
3735 if (max_frame <= IGB_RXBUFFER_1024)
3736 rx_buffer_len = IGB_RXBUFFER_1024;
3737 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3738 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3739 else
3740 rx_buffer_len = IGB_RXBUFFER_128;
3741
3742 if (netif_running(netdev))
3743 igb_down(adapter);
3744
3745 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3746 netdev->mtu, new_mtu);
3747 netdev->mtu = new_mtu;
3748
3749 for (i = 0; i < adapter->num_rx_queues; i++)
3750 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3751
3752 if (netif_running(netdev))
3753 igb_up(adapter);
3754 else
3755 igb_reset(adapter);
3756
3757 clear_bit(__IGB_RESETTING, &adapter->state);
3758
3759 return 0;
3760 }
3761
3762 /**
3763 * igb_update_stats - Update the board statistics counters
3764 * @adapter: board private structure
3765 **/
3766
3767 void igb_update_stats(struct igb_adapter *adapter)
3768 {
3769 struct net_device *netdev = adapter->netdev;
3770 struct e1000_hw *hw = &adapter->hw;
3771 struct pci_dev *pdev = adapter->pdev;
3772 u16 phy_tmp;
3773
3774 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3775
3776 /*
3777 * Prevent stats update while adapter is being reset, or if the pci
3778 * connection is down.
3779 */
3780 if (adapter->link_speed == 0)
3781 return;
3782 if (pci_channel_offline(pdev))
3783 return;
3784
3785 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3786 adapter->stats.gprc += rd32(E1000_GPRC);
3787 adapter->stats.gorc += rd32(E1000_GORCL);
3788 rd32(E1000_GORCH); /* clear GORCL */
3789 adapter->stats.bprc += rd32(E1000_BPRC);
3790 adapter->stats.mprc += rd32(E1000_MPRC);
3791 adapter->stats.roc += rd32(E1000_ROC);
3792
3793 adapter->stats.prc64 += rd32(E1000_PRC64);
3794 adapter->stats.prc127 += rd32(E1000_PRC127);
3795 adapter->stats.prc255 += rd32(E1000_PRC255);
3796 adapter->stats.prc511 += rd32(E1000_PRC511);
3797 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3798 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3799 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3800 adapter->stats.sec += rd32(E1000_SEC);
3801
3802 adapter->stats.mpc += rd32(E1000_MPC);
3803 adapter->stats.scc += rd32(E1000_SCC);
3804 adapter->stats.ecol += rd32(E1000_ECOL);
3805 adapter->stats.mcc += rd32(E1000_MCC);
3806 adapter->stats.latecol += rd32(E1000_LATECOL);
3807 adapter->stats.dc += rd32(E1000_DC);
3808 adapter->stats.rlec += rd32(E1000_RLEC);
3809 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3810 adapter->stats.xontxc += rd32(E1000_XONTXC);
3811 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3812 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3813 adapter->stats.fcruc += rd32(E1000_FCRUC);
3814 adapter->stats.gptc += rd32(E1000_GPTC);
3815 adapter->stats.gotc += rd32(E1000_GOTCL);
3816 rd32(E1000_GOTCH); /* clear GOTCL */
3817 adapter->stats.rnbc += rd32(E1000_RNBC);
3818 adapter->stats.ruc += rd32(E1000_RUC);
3819 adapter->stats.rfc += rd32(E1000_RFC);
3820 adapter->stats.rjc += rd32(E1000_RJC);
3821 adapter->stats.tor += rd32(E1000_TORH);
3822 adapter->stats.tot += rd32(E1000_TOTH);
3823 adapter->stats.tpr += rd32(E1000_TPR);
3824
3825 adapter->stats.ptc64 += rd32(E1000_PTC64);
3826 adapter->stats.ptc127 += rd32(E1000_PTC127);
3827 adapter->stats.ptc255 += rd32(E1000_PTC255);
3828 adapter->stats.ptc511 += rd32(E1000_PTC511);
3829 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3830 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3831
3832 adapter->stats.mptc += rd32(E1000_MPTC);
3833 adapter->stats.bptc += rd32(E1000_BPTC);
3834
3835 /* used for adaptive IFS */
3836
3837 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3838 adapter->stats.tpt += hw->mac.tx_packet_delta;
3839 hw->mac.collision_delta = rd32(E1000_COLC);
3840 adapter->stats.colc += hw->mac.collision_delta;
3841
3842 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3843 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3844 adapter->stats.tncrs += rd32(E1000_TNCRS);
3845 adapter->stats.tsctc += rd32(E1000_TSCTC);
3846 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3847
3848 adapter->stats.iac += rd32(E1000_IAC);
3849 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3850 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3851 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3852 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3853 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3854 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3855 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3856 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3857
3858 /* Fill out the OS statistics structure */
3859 netdev->stats.multicast = adapter->stats.mprc;
3860 netdev->stats.collisions = adapter->stats.colc;
3861
3862 /* Rx Errors */
3863
3864 if (hw->mac.type != e1000_82575) {
3865 u32 rqdpc_tmp;
3866 u64 rqdpc_total = 0;
3867 int i;
3868 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3869 * Queue Drop Packet Count) stats only gets incremented, if
3870 * the DROP_EN but it set (in the SRRCTL register for that
3871 * queue). If DROP_EN bit is NOT set, then the some what
3872 * equivalent count is stored in RNBC (not per queue basis).
3873 * Also note the drop count is due to lack of available
3874 * descriptors.
3875 */
3876 for (i = 0; i < adapter->num_rx_queues; i++) {
3877 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3878 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3879 rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3880 }
3881 netdev->stats.rx_fifo_errors = rqdpc_total;
3882 }
3883
3884 /* Note RNBC (Receive No Buffers Count) is an not an exact
3885 * drop count as the hardware FIFO might save the day. Thats
3886 * one of the reason for saving it in rx_fifo_errors, as its
3887 * potentially not a true drop.
3888 */
3889 netdev->stats.rx_fifo_errors += adapter->stats.rnbc;
3890
3891 /* RLEC on some newer hardware can be incorrect so build
3892 * our own version based on RUC and ROC */
3893 netdev->stats.rx_errors = adapter->stats.rxerrc +
3894 adapter->stats.crcerrs + adapter->stats.algnerrc +
3895 adapter->stats.ruc + adapter->stats.roc +
3896 adapter->stats.cexterr;
3897 netdev->stats.rx_length_errors = adapter->stats.ruc +
3898 adapter->stats.roc;
3899 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3900 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3901 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3902
3903 /* Tx Errors */
3904 netdev->stats.tx_errors = adapter->stats.ecol +
3905 adapter->stats.latecol;
3906 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3907 netdev->stats.tx_window_errors = adapter->stats.latecol;
3908 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3909
3910 /* Tx Dropped needs to be maintained elsewhere */
3911
3912 /* Phy Stats */
3913 if (hw->phy.media_type == e1000_media_type_copper) {
3914 if ((adapter->link_speed == SPEED_1000) &&
3915 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3916 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3917 adapter->phy_stats.idle_errors += phy_tmp;
3918 }
3919 }
3920
3921 /* Management Stats */
3922 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3923 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3924 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3925 }
3926
3927 static irqreturn_t igb_msix_other(int irq, void *data)
3928 {
3929 struct igb_adapter *adapter = data;
3930 struct e1000_hw *hw = &adapter->hw;
3931 u32 icr = rd32(E1000_ICR);
3932 /* reading ICR causes bit 31 of EICR to be cleared */
3933
3934 if (icr & E1000_ICR_DOUTSYNC) {
3935 /* HW is reporting DMA is out of sync */
3936 adapter->stats.doosync++;
3937 }
3938
3939 /* Check for a mailbox event */
3940 if (icr & E1000_ICR_VMMB)
3941 igb_msg_task(adapter);
3942
3943 if (icr & E1000_ICR_LSC) {
3944 hw->mac.get_link_status = 1;
3945 /* guard against interrupt when we're going down */
3946 if (!test_bit(__IGB_DOWN, &adapter->state))
3947 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3948 }
3949
3950 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3951 wr32(E1000_EIMS, adapter->eims_other);
3952
3953 return IRQ_HANDLED;
3954 }
3955
3956 static void igb_write_itr(struct igb_q_vector *q_vector)
3957 {
3958 u32 itr_val = q_vector->itr_val & 0x7FFC;
3959
3960 if (!q_vector->set_itr)
3961 return;
3962
3963 if (!itr_val)
3964 itr_val = 0x4;
3965
3966 if (q_vector->itr_shift)
3967 itr_val |= itr_val << q_vector->itr_shift;
3968 else
3969 itr_val |= 0x8000000;
3970
3971 writel(itr_val, q_vector->itr_register);
3972 q_vector->set_itr = 0;
3973 }
3974
3975 static irqreturn_t igb_msix_ring(int irq, void *data)
3976 {
3977 struct igb_q_vector *q_vector = data;
3978
3979 /* Write the ITR value calculated from the previous interrupt. */
3980 igb_write_itr(q_vector);
3981
3982 napi_schedule(&q_vector->napi);
3983
3984 return IRQ_HANDLED;
3985 }
3986
3987 #ifdef CONFIG_IGB_DCA
3988 static void igb_update_dca(struct igb_q_vector *q_vector)
3989 {
3990 struct igb_adapter *adapter = q_vector->adapter;
3991 struct e1000_hw *hw = &adapter->hw;
3992 int cpu = get_cpu();
3993
3994 if (q_vector->cpu == cpu)
3995 goto out_no_update;
3996
3997 if (q_vector->tx_ring) {
3998 int q = q_vector->tx_ring->reg_idx;
3999 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4000 if (hw->mac.type == e1000_82575) {
4001 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4002 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4003 } else {
4004 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4005 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4006 E1000_DCA_TXCTRL_CPUID_SHIFT;
4007 }
4008 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4009 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4010 }
4011 if (q_vector->rx_ring) {
4012 int q = q_vector->rx_ring->reg_idx;
4013 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4014 if (hw->mac.type == e1000_82575) {
4015 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4016 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4017 } else {
4018 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4019 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4020 E1000_DCA_RXCTRL_CPUID_SHIFT;
4021 }
4022 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4023 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4024 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4025 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4026 }
4027 q_vector->cpu = cpu;
4028 out_no_update:
4029 put_cpu();
4030 }
4031
4032 static void igb_setup_dca(struct igb_adapter *adapter)
4033 {
4034 struct e1000_hw *hw = &adapter->hw;
4035 int i;
4036
4037 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4038 return;
4039
4040 /* Always use CB2 mode, difference is masked in the CB driver. */
4041 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4042
4043 for (i = 0; i < adapter->num_q_vectors; i++) {
4044 struct igb_q_vector *q_vector = adapter->q_vector[i];
4045 q_vector->cpu = -1;
4046 igb_update_dca(q_vector);
4047 }
4048 }
4049
4050 static int __igb_notify_dca(struct device *dev, void *data)
4051 {
4052 struct net_device *netdev = dev_get_drvdata(dev);
4053 struct igb_adapter *adapter = netdev_priv(netdev);
4054 struct e1000_hw *hw = &adapter->hw;
4055 unsigned long event = *(unsigned long *)data;
4056
4057 switch (event) {
4058 case DCA_PROVIDER_ADD:
4059 /* if already enabled, don't do it again */
4060 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4061 break;
4062 /* Always use CB2 mode, difference is masked
4063 * in the CB driver. */
4064 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4065 if (dca_add_requester(dev) == 0) {
4066 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4067 dev_info(&adapter->pdev->dev, "DCA enabled\n");
4068 igb_setup_dca(adapter);
4069 break;
4070 }
4071 /* Fall Through since DCA is disabled. */
4072 case DCA_PROVIDER_REMOVE:
4073 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4074 /* without this a class_device is left
4075 * hanging around in the sysfs model */
4076 dca_remove_requester(dev);
4077 dev_info(&adapter->pdev->dev, "DCA disabled\n");
4078 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4079 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4080 }
4081 break;
4082 }
4083
4084 return 0;
4085 }
4086
4087 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4088 void *p)
4089 {
4090 int ret_val;
4091
4092 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4093 __igb_notify_dca);
4094
4095 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4096 }
4097 #endif /* CONFIG_IGB_DCA */
4098
4099 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4100 {
4101 struct e1000_hw *hw = &adapter->hw;
4102 u32 ping;
4103 int i;
4104
4105 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4106 ping = E1000_PF_CONTROL_MSG;
4107 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4108 ping |= E1000_VT_MSGTYPE_CTS;
4109 igb_write_mbx(hw, &ping, 1, i);
4110 }
4111 }
4112
4113 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4114 {
4115 struct e1000_hw *hw = &adapter->hw;
4116 u32 vmolr = rd32(E1000_VMOLR(vf));
4117 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4118
4119 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4120 IGB_VF_FLAG_MULTI_PROMISC);
4121 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4122
4123 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4124 vmolr |= E1000_VMOLR_MPME;
4125 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4126 } else {
4127 /*
4128 * if we have hashes and we are clearing a multicast promisc
4129 * flag we need to write the hashes to the MTA as this step
4130 * was previously skipped
4131 */
4132 if (vf_data->num_vf_mc_hashes > 30) {
4133 vmolr |= E1000_VMOLR_MPME;
4134 } else if (vf_data->num_vf_mc_hashes) {
4135 int j;
4136 vmolr |= E1000_VMOLR_ROMPE;
4137 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4138 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4139 }
4140 }
4141
4142 wr32(E1000_VMOLR(vf), vmolr);
4143
4144 /* there are flags left unprocessed, likely not supported */
4145 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4146 return -EINVAL;
4147
4148 return 0;
4149
4150 }
4151
4152 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4153 u32 *msgbuf, u32 vf)
4154 {
4155 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4156 u16 *hash_list = (u16 *)&msgbuf[1];
4157 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4158 int i;
4159
4160 /* salt away the number of multicast addresses assigned
4161 * to this VF for later use to restore when the PF multi cast
4162 * list changes
4163 */
4164 vf_data->num_vf_mc_hashes = n;
4165
4166 /* only up to 30 hash values supported */
4167 if (n > 30)
4168 n = 30;
4169
4170 /* store the hashes for later use */
4171 for (i = 0; i < n; i++)
4172 vf_data->vf_mc_hashes[i] = hash_list[i];
4173
4174 /* Flush and reset the mta with the new values */
4175 igb_set_rx_mode(adapter->netdev);
4176
4177 return 0;
4178 }
4179
4180 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4181 {
4182 struct e1000_hw *hw = &adapter->hw;
4183 struct vf_data_storage *vf_data;
4184 int i, j;
4185
4186 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4187 u32 vmolr = rd32(E1000_VMOLR(i));
4188 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4189
4190 vf_data = &adapter->vf_data[i];
4191
4192 if ((vf_data->num_vf_mc_hashes > 30) ||
4193 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4194 vmolr |= E1000_VMOLR_MPME;
4195 } else if (vf_data->num_vf_mc_hashes) {
4196 vmolr |= E1000_VMOLR_ROMPE;
4197 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4198 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4199 }
4200 wr32(E1000_VMOLR(i), vmolr);
4201 }
4202 }
4203
4204 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4205 {
4206 struct e1000_hw *hw = &adapter->hw;
4207 u32 pool_mask, reg, vid;
4208 int i;
4209
4210 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4211
4212 /* Find the vlan filter for this id */
4213 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4214 reg = rd32(E1000_VLVF(i));
4215
4216 /* remove the vf from the pool */
4217 reg &= ~pool_mask;
4218
4219 /* if pool is empty then remove entry from vfta */
4220 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4221 (reg & E1000_VLVF_VLANID_ENABLE)) {
4222 reg = 0;
4223 vid = reg & E1000_VLVF_VLANID_MASK;
4224 igb_vfta_set(hw, vid, false);
4225 }
4226
4227 wr32(E1000_VLVF(i), reg);
4228 }
4229
4230 adapter->vf_data[vf].vlans_enabled = 0;
4231 }
4232
4233 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4234 {
4235 struct e1000_hw *hw = &adapter->hw;
4236 u32 reg, i;
4237
4238 /* The vlvf table only exists on 82576 hardware and newer */
4239 if (hw->mac.type < e1000_82576)
4240 return -1;
4241
4242 /* we only need to do this if VMDq is enabled */
4243 if (!adapter->vfs_allocated_count)
4244 return -1;
4245
4246 /* Find the vlan filter for this id */
4247 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4248 reg = rd32(E1000_VLVF(i));
4249 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4250 vid == (reg & E1000_VLVF_VLANID_MASK))
4251 break;
4252 }
4253
4254 if (add) {
4255 if (i == E1000_VLVF_ARRAY_SIZE) {
4256 /* Did not find a matching VLAN ID entry that was
4257 * enabled. Search for a free filter entry, i.e.
4258 * one without the enable bit set
4259 */
4260 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4261 reg = rd32(E1000_VLVF(i));
4262 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4263 break;
4264 }
4265 }
4266 if (i < E1000_VLVF_ARRAY_SIZE) {
4267 /* Found an enabled/available entry */
4268 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4269
4270 /* if !enabled we need to set this up in vfta */
4271 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4272 /* add VID to filter table */
4273 igb_vfta_set(hw, vid, true);
4274 reg |= E1000_VLVF_VLANID_ENABLE;
4275 }
4276 reg &= ~E1000_VLVF_VLANID_MASK;
4277 reg |= vid;
4278 wr32(E1000_VLVF(i), reg);
4279
4280 /* do not modify RLPML for PF devices */
4281 if (vf >= adapter->vfs_allocated_count)
4282 return 0;
4283
4284 if (!adapter->vf_data[vf].vlans_enabled) {
4285 u32 size;
4286 reg = rd32(E1000_VMOLR(vf));
4287 size = reg & E1000_VMOLR_RLPML_MASK;
4288 size += 4;
4289 reg &= ~E1000_VMOLR_RLPML_MASK;
4290 reg |= size;
4291 wr32(E1000_VMOLR(vf), reg);
4292 }
4293
4294 adapter->vf_data[vf].vlans_enabled++;
4295 return 0;
4296 }
4297 } else {
4298 if (i < E1000_VLVF_ARRAY_SIZE) {
4299 /* remove vf from the pool */
4300 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4301 /* if pool is empty then remove entry from vfta */
4302 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4303 reg = 0;
4304 igb_vfta_set(hw, vid, false);
4305 }
4306 wr32(E1000_VLVF(i), reg);
4307
4308 /* do not modify RLPML for PF devices */
4309 if (vf >= adapter->vfs_allocated_count)
4310 return 0;
4311
4312 adapter->vf_data[vf].vlans_enabled--;
4313 if (!adapter->vf_data[vf].vlans_enabled) {
4314 u32 size;
4315 reg = rd32(E1000_VMOLR(vf));
4316 size = reg & E1000_VMOLR_RLPML_MASK;
4317 size -= 4;
4318 reg &= ~E1000_VMOLR_RLPML_MASK;
4319 reg |= size;
4320 wr32(E1000_VMOLR(vf), reg);
4321 }
4322 return 0;
4323 }
4324 }
4325 return -1;
4326 }
4327
4328 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4329 {
4330 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4331 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4332
4333 return igb_vlvf_set(adapter, vid, add, vf);
4334 }
4335
4336 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4337 {
4338 /* clear all flags */
4339 adapter->vf_data[vf].flags = 0;
4340 adapter->vf_data[vf].last_nack = jiffies;
4341
4342 /* reset offloads to defaults */
4343 igb_set_vmolr(adapter, vf);
4344
4345 /* reset vlans for device */
4346 igb_clear_vf_vfta(adapter, vf);
4347
4348 /* reset multicast table array for vf */
4349 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4350
4351 /* Flush and reset the mta with the new values */
4352 igb_set_rx_mode(adapter->netdev);
4353 }
4354
4355 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4356 {
4357 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4358
4359 /* generate a new mac address as we were hotplug removed/added */
4360 random_ether_addr(vf_mac);
4361
4362 /* process remaining reset events */
4363 igb_vf_reset(adapter, vf);
4364 }
4365
4366 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4367 {
4368 struct e1000_hw *hw = &adapter->hw;
4369 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4370 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4371 u32 reg, msgbuf[3];
4372 u8 *addr = (u8 *)(&msgbuf[1]);
4373
4374 /* process all the same items cleared in a function level reset */
4375 igb_vf_reset(adapter, vf);
4376
4377 /* set vf mac address */
4378 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4379
4380 /* enable transmit and receive for vf */
4381 reg = rd32(E1000_VFTE);
4382 wr32(E1000_VFTE, reg | (1 << vf));
4383 reg = rd32(E1000_VFRE);
4384 wr32(E1000_VFRE, reg | (1 << vf));
4385
4386 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4387
4388 /* reply to reset with ack and vf mac address */
4389 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4390 memcpy(addr, vf_mac, 6);
4391 igb_write_mbx(hw, msgbuf, 3, vf);
4392 }
4393
4394 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4395 {
4396 unsigned char *addr = (char *)&msg[1];
4397 int err = -1;
4398
4399 if (is_valid_ether_addr(addr))
4400 err = igb_set_vf_mac(adapter, vf, addr);
4401
4402 return err;
4403 }
4404
4405 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4406 {
4407 struct e1000_hw *hw = &adapter->hw;
4408 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4409 u32 msg = E1000_VT_MSGTYPE_NACK;
4410
4411 /* if device isn't clear to send it shouldn't be reading either */
4412 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4413 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4414 igb_write_mbx(hw, &msg, 1, vf);
4415 vf_data->last_nack = jiffies;
4416 }
4417 }
4418
4419 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4420 {
4421 struct pci_dev *pdev = adapter->pdev;
4422 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4423 struct e1000_hw *hw = &adapter->hw;
4424 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4425 s32 retval;
4426
4427 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4428
4429 if (retval)
4430 dev_err(&pdev->dev, "Error receiving message from VF\n");
4431
4432 /* this is a message we already processed, do nothing */
4433 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4434 return;
4435
4436 /*
4437 * until the vf completes a reset it should not be
4438 * allowed to start any configuration.
4439 */
4440
4441 if (msgbuf[0] == E1000_VF_RESET) {
4442 igb_vf_reset_msg(adapter, vf);
4443 return;
4444 }
4445
4446 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4447 msgbuf[0] = E1000_VT_MSGTYPE_NACK;
4448 if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4449 igb_write_mbx(hw, msgbuf, 1, vf);
4450 vf_data->last_nack = jiffies;
4451 }
4452 return;
4453 }
4454
4455 switch ((msgbuf[0] & 0xFFFF)) {
4456 case E1000_VF_SET_MAC_ADDR:
4457 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4458 break;
4459 case E1000_VF_SET_PROMISC:
4460 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4461 break;
4462 case E1000_VF_SET_MULTICAST:
4463 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4464 break;
4465 case E1000_VF_SET_LPE:
4466 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4467 break;
4468 case E1000_VF_SET_VLAN:
4469 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4470 break;
4471 default:
4472 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4473 retval = -1;
4474 break;
4475 }
4476
4477 /* notify the VF of the results of what it sent us */
4478 if (retval)
4479 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4480 else
4481 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4482
4483 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4484
4485 igb_write_mbx(hw, msgbuf, 1, vf);
4486 }
4487
4488 static void igb_msg_task(struct igb_adapter *adapter)
4489 {
4490 struct e1000_hw *hw = &adapter->hw;
4491 u32 vf;
4492
4493 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4494 /* process any reset requests */
4495 if (!igb_check_for_rst(hw, vf))
4496 igb_vf_reset_event(adapter, vf);
4497
4498 /* process any messages pending */
4499 if (!igb_check_for_msg(hw, vf))
4500 igb_rcv_msg_from_vf(adapter, vf);
4501
4502 /* process any acks */
4503 if (!igb_check_for_ack(hw, vf))
4504 igb_rcv_ack_from_vf(adapter, vf);
4505 }
4506 }
4507
4508 /**
4509 * igb_set_uta - Set unicast filter table address
4510 * @adapter: board private structure
4511 *
4512 * The unicast table address is a register array of 32-bit registers.
4513 * The table is meant to be used in a way similar to how the MTA is used
4514 * however due to certain limitations in the hardware it is necessary to
4515 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4516 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4517 **/
4518 static void igb_set_uta(struct igb_adapter *adapter)
4519 {
4520 struct e1000_hw *hw = &adapter->hw;
4521 int i;
4522
4523 /* The UTA table only exists on 82576 hardware and newer */
4524 if (hw->mac.type < e1000_82576)
4525 return;
4526
4527 /* we only need to do this if VMDq is enabled */
4528 if (!adapter->vfs_allocated_count)
4529 return;
4530
4531 for (i = 0; i < hw->mac.uta_reg_count; i++)
4532 array_wr32(E1000_UTA, i, ~0);
4533 }
4534
4535 /**
4536 * igb_intr_msi - Interrupt Handler
4537 * @irq: interrupt number
4538 * @data: pointer to a network interface device structure
4539 **/
4540 static irqreturn_t igb_intr_msi(int irq, void *data)
4541 {
4542 struct igb_adapter *adapter = data;
4543 struct igb_q_vector *q_vector = adapter->q_vector[0];
4544 struct e1000_hw *hw = &adapter->hw;
4545 /* read ICR disables interrupts using IAM */
4546 u32 icr = rd32(E1000_ICR);
4547
4548 igb_write_itr(q_vector);
4549
4550 if (icr & E1000_ICR_DOUTSYNC) {
4551 /* HW is reporting DMA is out of sync */
4552 adapter->stats.doosync++;
4553 }
4554
4555 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4556 hw->mac.get_link_status = 1;
4557 if (!test_bit(__IGB_DOWN, &adapter->state))
4558 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4559 }
4560
4561 napi_schedule(&q_vector->napi);
4562
4563 return IRQ_HANDLED;
4564 }
4565
4566 /**
4567 * igb_intr - Legacy Interrupt Handler
4568 * @irq: interrupt number
4569 * @data: pointer to a network interface device structure
4570 **/
4571 static irqreturn_t igb_intr(int irq, void *data)
4572 {
4573 struct igb_adapter *adapter = data;
4574 struct igb_q_vector *q_vector = adapter->q_vector[0];
4575 struct e1000_hw *hw = &adapter->hw;
4576 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4577 * need for the IMC write */
4578 u32 icr = rd32(E1000_ICR);
4579 if (!icr)
4580 return IRQ_NONE; /* Not our interrupt */
4581
4582 igb_write_itr(q_vector);
4583
4584 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4585 * not set, then the adapter didn't send an interrupt */
4586 if (!(icr & E1000_ICR_INT_ASSERTED))
4587 return IRQ_NONE;
4588
4589 if (icr & E1000_ICR_DOUTSYNC) {
4590 /* HW is reporting DMA is out of sync */
4591 adapter->stats.doosync++;
4592 }
4593
4594 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4595 hw->mac.get_link_status = 1;
4596 /* guard against interrupt when we're going down */
4597 if (!test_bit(__IGB_DOWN, &adapter->state))
4598 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4599 }
4600
4601 napi_schedule(&q_vector->napi);
4602
4603 return IRQ_HANDLED;
4604 }
4605
4606 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4607 {
4608 struct igb_adapter *adapter = q_vector->adapter;
4609 struct e1000_hw *hw = &adapter->hw;
4610
4611 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4612 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4613 if (!adapter->msix_entries)
4614 igb_set_itr(adapter);
4615 else
4616 igb_update_ring_itr(q_vector);
4617 }
4618
4619 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4620 if (adapter->msix_entries)
4621 wr32(E1000_EIMS, q_vector->eims_value);
4622 else
4623 igb_irq_enable(adapter);
4624 }
4625 }
4626
4627 /**
4628 * igb_poll - NAPI Rx polling callback
4629 * @napi: napi polling structure
4630 * @budget: count of how many packets we should handle
4631 **/
4632 static int igb_poll(struct napi_struct *napi, int budget)
4633 {
4634 struct igb_q_vector *q_vector = container_of(napi,
4635 struct igb_q_vector,
4636 napi);
4637 int tx_clean_complete = 1, work_done = 0;
4638
4639 #ifdef CONFIG_IGB_DCA
4640 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4641 igb_update_dca(q_vector);
4642 #endif
4643 if (q_vector->tx_ring)
4644 tx_clean_complete = igb_clean_tx_irq(q_vector);
4645
4646 if (q_vector->rx_ring)
4647 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4648
4649 if (!tx_clean_complete)
4650 work_done = budget;
4651
4652 /* If not enough Rx work done, exit the polling mode */
4653 if (work_done < budget) {
4654 napi_complete(napi);
4655 igb_ring_irq_enable(q_vector);
4656 }
4657
4658 return work_done;
4659 }
4660
4661 /**
4662 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4663 * @adapter: board private structure
4664 * @shhwtstamps: timestamp structure to update
4665 * @regval: unsigned 64bit system time value.
4666 *
4667 * We need to convert the system time value stored in the RX/TXSTMP registers
4668 * into a hwtstamp which can be used by the upper level timestamping functions
4669 */
4670 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4671 struct skb_shared_hwtstamps *shhwtstamps,
4672 u64 regval)
4673 {
4674 u64 ns;
4675
4676 ns = timecounter_cyc2time(&adapter->clock, regval);
4677 timecompare_update(&adapter->compare, ns);
4678 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4679 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4680 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4681 }
4682
4683 /**
4684 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4685 * @q_vector: pointer to q_vector containing needed info
4686 * @skb: packet that was just sent
4687 *
4688 * If we were asked to do hardware stamping and such a time stamp is
4689 * available, then it must have been for this skb here because we only
4690 * allow only one such packet into the queue.
4691 */
4692 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4693 {
4694 struct igb_adapter *adapter = q_vector->adapter;
4695 union skb_shared_tx *shtx = skb_tx(skb);
4696 struct e1000_hw *hw = &adapter->hw;
4697 struct skb_shared_hwtstamps shhwtstamps;
4698 u64 regval;
4699
4700 /* if skb does not support hw timestamp or TX stamp not valid exit */
4701 if (likely(!shtx->hardware) ||
4702 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4703 return;
4704
4705 regval = rd32(E1000_TXSTMPL);
4706 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4707
4708 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4709 skb_tstamp_tx(skb, &shhwtstamps);
4710 }
4711
4712 /**
4713 * igb_clean_tx_irq - Reclaim resources after transmit completes
4714 * @q_vector: pointer to q_vector containing needed info
4715 * returns true if ring is completely cleaned
4716 **/
4717 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4718 {
4719 struct igb_adapter *adapter = q_vector->adapter;
4720 struct igb_ring *tx_ring = q_vector->tx_ring;
4721 struct net_device *netdev = tx_ring->netdev;
4722 struct e1000_hw *hw = &adapter->hw;
4723 struct igb_buffer *buffer_info;
4724 struct sk_buff *skb;
4725 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4726 unsigned int total_bytes = 0, total_packets = 0;
4727 unsigned int i, eop, count = 0;
4728 bool cleaned = false;
4729
4730 i = tx_ring->next_to_clean;
4731 eop = tx_ring->buffer_info[i].next_to_watch;
4732 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4733
4734 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4735 (count < tx_ring->count)) {
4736 for (cleaned = false; !cleaned; count++) {
4737 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4738 buffer_info = &tx_ring->buffer_info[i];
4739 cleaned = (i == eop);
4740 skb = buffer_info->skb;
4741
4742 if (skb) {
4743 unsigned int segs, bytecount;
4744 /* gso_segs is currently only valid for tcp */
4745 segs = skb_shinfo(skb)->gso_segs ?: 1;
4746 /* multiply data chunks by size of headers */
4747 bytecount = ((segs - 1) * skb_headlen(skb)) +
4748 skb->len;
4749 total_packets += segs;
4750 total_bytes += bytecount;
4751
4752 igb_tx_hwtstamp(q_vector, skb);
4753 }
4754
4755 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4756 tx_desc->wb.status = 0;
4757
4758 i++;
4759 if (i == tx_ring->count)
4760 i = 0;
4761 }
4762 eop = tx_ring->buffer_info[i].next_to_watch;
4763 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4764 }
4765
4766 tx_ring->next_to_clean = i;
4767
4768 if (unlikely(count &&
4769 netif_carrier_ok(netdev) &&
4770 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4771 /* Make sure that anybody stopping the queue after this
4772 * sees the new next_to_clean.
4773 */
4774 smp_mb();
4775 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4776 !(test_bit(__IGB_DOWN, &adapter->state))) {
4777 netif_wake_subqueue(netdev, tx_ring->queue_index);
4778 tx_ring->tx_stats.restart_queue++;
4779 }
4780 }
4781
4782 if (tx_ring->detect_tx_hung) {
4783 /* Detect a transmit hang in hardware, this serializes the
4784 * check with the clearing of time_stamp and movement of i */
4785 tx_ring->detect_tx_hung = false;
4786 if (tx_ring->buffer_info[i].time_stamp &&
4787 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4788 (adapter->tx_timeout_factor * HZ))
4789 && !(rd32(E1000_STATUS) &
4790 E1000_STATUS_TXOFF)) {
4791
4792 /* detected Tx unit hang */
4793 dev_err(&tx_ring->pdev->dev,
4794 "Detected Tx Unit Hang\n"
4795 " Tx Queue <%d>\n"
4796 " TDH <%x>\n"
4797 " TDT <%x>\n"
4798 " next_to_use <%x>\n"
4799 " next_to_clean <%x>\n"
4800 "buffer_info[next_to_clean]\n"
4801 " time_stamp <%lx>\n"
4802 " next_to_watch <%x>\n"
4803 " jiffies <%lx>\n"
4804 " desc.status <%x>\n",
4805 tx_ring->queue_index,
4806 readl(tx_ring->head),
4807 readl(tx_ring->tail),
4808 tx_ring->next_to_use,
4809 tx_ring->next_to_clean,
4810 tx_ring->buffer_info[i].time_stamp,
4811 eop,
4812 jiffies,
4813 eop_desc->wb.status);
4814 netif_stop_subqueue(netdev, tx_ring->queue_index);
4815 }
4816 }
4817 tx_ring->total_bytes += total_bytes;
4818 tx_ring->total_packets += total_packets;
4819 tx_ring->tx_stats.bytes += total_bytes;
4820 tx_ring->tx_stats.packets += total_packets;
4821 netdev->stats.tx_bytes += total_bytes;
4822 netdev->stats.tx_packets += total_packets;
4823 return (count < tx_ring->count);
4824 }
4825
4826 /**
4827 * igb_receive_skb - helper function to handle rx indications
4828 * @q_vector: structure containing interrupt and ring information
4829 * @skb: packet to send up
4830 * @vlan_tag: vlan tag for packet
4831 **/
4832 static void igb_receive_skb(struct igb_q_vector *q_vector,
4833 struct sk_buff *skb,
4834 u16 vlan_tag)
4835 {
4836 struct igb_adapter *adapter = q_vector->adapter;
4837
4838 if (vlan_tag)
4839 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
4840 vlan_tag, skb);
4841 else
4842 napi_gro_receive(&q_vector->napi, skb);
4843 }
4844
4845 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
4846 u32 status_err, struct sk_buff *skb)
4847 {
4848 skb->ip_summed = CHECKSUM_NONE;
4849
4850 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4851 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
4852 (status_err & E1000_RXD_STAT_IXSM))
4853 return;
4854
4855 /* TCP/UDP checksum error bit is set */
4856 if (status_err &
4857 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4858 /*
4859 * work around errata with sctp packets where the TCPE aka
4860 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4861 * packets, (aka let the stack check the crc32c)
4862 */
4863 if ((skb->len == 60) &&
4864 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
4865 ring->rx_stats.csum_err++;
4866
4867 /* let the stack verify checksum errors */
4868 return;
4869 }
4870 /* It must be a TCP or UDP packet with a valid checksum */
4871 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4872 skb->ip_summed = CHECKSUM_UNNECESSARY;
4873
4874 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
4875 }
4876
4877 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
4878 struct sk_buff *skb)
4879 {
4880 struct igb_adapter *adapter = q_vector->adapter;
4881 struct e1000_hw *hw = &adapter->hw;
4882 u64 regval;
4883
4884 /*
4885 * If this bit is set, then the RX registers contain the time stamp. No
4886 * other packet will be time stamped until we read these registers, so
4887 * read the registers to make them available again. Because only one
4888 * packet can be time stamped at a time, we know that the register
4889 * values must belong to this one here and therefore we don't need to
4890 * compare any of the additional attributes stored for it.
4891 *
4892 * If nothing went wrong, then it should have a skb_shared_tx that we
4893 * can turn into a skb_shared_hwtstamps.
4894 */
4895 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
4896 return;
4897 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
4898 return;
4899
4900 regval = rd32(E1000_RXSTMPL);
4901 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4902
4903 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
4904 }
4905 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
4906 union e1000_adv_rx_desc *rx_desc)
4907 {
4908 /* HW will not DMA in data larger than the given buffer, even if it
4909 * parses the (NFS, of course) header to be larger. In that case, it
4910 * fills the header buffer and spills the rest into the page.
4911 */
4912 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4913 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4914 if (hlen > rx_ring->rx_buffer_len)
4915 hlen = rx_ring->rx_buffer_len;
4916 return hlen;
4917 }
4918
4919 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
4920 int *work_done, int budget)
4921 {
4922 struct igb_ring *rx_ring = q_vector->rx_ring;
4923 struct net_device *netdev = rx_ring->netdev;
4924 struct pci_dev *pdev = rx_ring->pdev;
4925 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4926 struct igb_buffer *buffer_info , *next_buffer;
4927 struct sk_buff *skb;
4928 bool cleaned = false;
4929 int cleaned_count = 0;
4930 unsigned int total_bytes = 0, total_packets = 0;
4931 unsigned int i;
4932 u32 staterr;
4933 u16 length;
4934 u16 vlan_tag;
4935
4936 i = rx_ring->next_to_clean;
4937 buffer_info = &rx_ring->buffer_info[i];
4938 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4939 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4940
4941 while (staterr & E1000_RXD_STAT_DD) {
4942 if (*work_done >= budget)
4943 break;
4944 (*work_done)++;
4945
4946 skb = buffer_info->skb;
4947 prefetch(skb->data - NET_IP_ALIGN);
4948 buffer_info->skb = NULL;
4949
4950 i++;
4951 if (i == rx_ring->count)
4952 i = 0;
4953 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4954 prefetch(next_rxd);
4955 next_buffer = &rx_ring->buffer_info[i];
4956
4957 length = le16_to_cpu(rx_desc->wb.upper.length);
4958 cleaned = true;
4959 cleaned_count++;
4960
4961 if (buffer_info->dma) {
4962 pci_unmap_single(pdev, buffer_info->dma,
4963 rx_ring->rx_buffer_len,
4964 PCI_DMA_FROMDEVICE);
4965 buffer_info->dma = 0;
4966 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
4967 skb_put(skb, length);
4968 goto send_up;
4969 }
4970 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
4971 }
4972
4973 if (length) {
4974 pci_unmap_page(pdev, buffer_info->page_dma,
4975 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4976 buffer_info->page_dma = 0;
4977
4978 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4979 buffer_info->page,
4980 buffer_info->page_offset,
4981 length);
4982
4983 if (page_count(buffer_info->page) != 1)
4984 buffer_info->page = NULL;
4985 else
4986 get_page(buffer_info->page);
4987
4988 skb->len += length;
4989 skb->data_len += length;
4990
4991 skb->truesize += length;
4992 }
4993
4994 if (!(staterr & E1000_RXD_STAT_EOP)) {
4995 buffer_info->skb = next_buffer->skb;
4996 buffer_info->dma = next_buffer->dma;
4997 next_buffer->skb = skb;
4998 next_buffer->dma = 0;
4999 goto next_desc;
5000 }
5001 send_up:
5002 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5003 dev_kfree_skb_irq(skb);
5004 goto next_desc;
5005 }
5006
5007 igb_rx_hwtstamp(q_vector, staterr, skb);
5008 total_bytes += skb->len;
5009 total_packets++;
5010
5011 igb_rx_checksum_adv(rx_ring, staterr, skb);
5012
5013 skb->protocol = eth_type_trans(skb, netdev);
5014 skb_record_rx_queue(skb, rx_ring->queue_index);
5015
5016 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5017 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5018
5019 igb_receive_skb(q_vector, skb, vlan_tag);
5020
5021 next_desc:
5022 rx_desc->wb.upper.status_error = 0;
5023
5024 /* return some buffers to hardware, one at a time is too slow */
5025 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5026 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5027 cleaned_count = 0;
5028 }
5029
5030 /* use prefetched values */
5031 rx_desc = next_rxd;
5032 buffer_info = next_buffer;
5033 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5034 }
5035
5036 rx_ring->next_to_clean = i;
5037 cleaned_count = igb_desc_unused(rx_ring);
5038
5039 if (cleaned_count)
5040 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5041
5042 rx_ring->total_packets += total_packets;
5043 rx_ring->total_bytes += total_bytes;
5044 rx_ring->rx_stats.packets += total_packets;
5045 rx_ring->rx_stats.bytes += total_bytes;
5046 netdev->stats.rx_bytes += total_bytes;
5047 netdev->stats.rx_packets += total_packets;
5048 return cleaned;
5049 }
5050
5051 /**
5052 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5053 * @adapter: address of board private structure
5054 **/
5055 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5056 {
5057 struct net_device *netdev = rx_ring->netdev;
5058 union e1000_adv_rx_desc *rx_desc;
5059 struct igb_buffer *buffer_info;
5060 struct sk_buff *skb;
5061 unsigned int i;
5062 int bufsz;
5063
5064 i = rx_ring->next_to_use;
5065 buffer_info = &rx_ring->buffer_info[i];
5066
5067 bufsz = rx_ring->rx_buffer_len;
5068
5069 while (cleaned_count--) {
5070 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5071
5072 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5073 if (!buffer_info->page) {
5074 buffer_info->page = alloc_page(GFP_ATOMIC);
5075 if (!buffer_info->page) {
5076 rx_ring->rx_stats.alloc_failed++;
5077 goto no_buffers;
5078 }
5079 buffer_info->page_offset = 0;
5080 } else {
5081 buffer_info->page_offset ^= PAGE_SIZE / 2;
5082 }
5083 buffer_info->page_dma =
5084 pci_map_page(rx_ring->pdev, buffer_info->page,
5085 buffer_info->page_offset,
5086 PAGE_SIZE / 2,
5087 PCI_DMA_FROMDEVICE);
5088 }
5089
5090 if (!buffer_info->skb) {
5091 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5092 if (!skb) {
5093 rx_ring->rx_stats.alloc_failed++;
5094 goto no_buffers;
5095 }
5096
5097 buffer_info->skb = skb;
5098 buffer_info->dma = pci_map_single(rx_ring->pdev,
5099 skb->data,
5100 bufsz,
5101 PCI_DMA_FROMDEVICE);
5102 }
5103 /* Refresh the desc even if buffer_addrs didn't change because
5104 * each write-back erases this info. */
5105 if (bufsz < IGB_RXBUFFER_1024) {
5106 rx_desc->read.pkt_addr =
5107 cpu_to_le64(buffer_info->page_dma);
5108 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5109 } else {
5110 rx_desc->read.pkt_addr =
5111 cpu_to_le64(buffer_info->dma);
5112 rx_desc->read.hdr_addr = 0;
5113 }
5114
5115 i++;
5116 if (i == rx_ring->count)
5117 i = 0;
5118 buffer_info = &rx_ring->buffer_info[i];
5119 }
5120
5121 no_buffers:
5122 if (rx_ring->next_to_use != i) {
5123 rx_ring->next_to_use = i;
5124 if (i == 0)
5125 i = (rx_ring->count - 1);
5126 else
5127 i--;
5128
5129 /* Force memory writes to complete before letting h/w
5130 * know there are new descriptors to fetch. (Only
5131 * applicable for weak-ordered memory model archs,
5132 * such as IA-64). */
5133 wmb();
5134 writel(i, rx_ring->tail);
5135 }
5136 }
5137
5138 /**
5139 * igb_mii_ioctl -
5140 * @netdev:
5141 * @ifreq:
5142 * @cmd:
5143 **/
5144 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5145 {
5146 struct igb_adapter *adapter = netdev_priv(netdev);
5147 struct mii_ioctl_data *data = if_mii(ifr);
5148
5149 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5150 return -EOPNOTSUPP;
5151
5152 switch (cmd) {
5153 case SIOCGMIIPHY:
5154 data->phy_id = adapter->hw.phy.addr;
5155 break;
5156 case SIOCGMIIREG:
5157 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5158 &data->val_out))
5159 return -EIO;
5160 break;
5161 case SIOCSMIIREG:
5162 default:
5163 return -EOPNOTSUPP;
5164 }
5165 return 0;
5166 }
5167
5168 /**
5169 * igb_hwtstamp_ioctl - control hardware time stamping
5170 * @netdev:
5171 * @ifreq:
5172 * @cmd:
5173 *
5174 * Outgoing time stamping can be enabled and disabled. Play nice and
5175 * disable it when requested, although it shouldn't case any overhead
5176 * when no packet needs it. At most one packet in the queue may be
5177 * marked for time stamping, otherwise it would be impossible to tell
5178 * for sure to which packet the hardware time stamp belongs.
5179 *
5180 * Incoming time stamping has to be configured via the hardware
5181 * filters. Not all combinations are supported, in particular event
5182 * type has to be specified. Matching the kind of event packet is
5183 * not supported, with the exception of "all V2 events regardless of
5184 * level 2 or 4".
5185 *
5186 **/
5187 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5188 struct ifreq *ifr, int cmd)
5189 {
5190 struct igb_adapter *adapter = netdev_priv(netdev);
5191 struct e1000_hw *hw = &adapter->hw;
5192 struct hwtstamp_config config;
5193 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5194 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5195 u32 tsync_rx_cfg = 0;
5196 bool is_l4 = false;
5197 bool is_l2 = false;
5198 u32 regval;
5199
5200 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5201 return -EFAULT;
5202
5203 /* reserved for future extensions */
5204 if (config.flags)
5205 return -EINVAL;
5206
5207 switch (config.tx_type) {
5208 case HWTSTAMP_TX_OFF:
5209 tsync_tx_ctl = 0;
5210 case HWTSTAMP_TX_ON:
5211 break;
5212 default:
5213 return -ERANGE;
5214 }
5215
5216 switch (config.rx_filter) {
5217 case HWTSTAMP_FILTER_NONE:
5218 tsync_rx_ctl = 0;
5219 break;
5220 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5221 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5222 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5223 case HWTSTAMP_FILTER_ALL:
5224 /*
5225 * register TSYNCRXCFG must be set, therefore it is not
5226 * possible to time stamp both Sync and Delay_Req messages
5227 * => fall back to time stamping all packets
5228 */
5229 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5230 config.rx_filter = HWTSTAMP_FILTER_ALL;
5231 break;
5232 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5233 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5234 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5235 is_l4 = true;
5236 break;
5237 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5238 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5239 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5240 is_l4 = true;
5241 break;
5242 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5243 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5244 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5245 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5246 is_l2 = true;
5247 is_l4 = true;
5248 config.rx_filter = HWTSTAMP_FILTER_SOME;
5249 break;
5250 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5251 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5252 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5253 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5254 is_l2 = true;
5255 is_l4 = true;
5256 config.rx_filter = HWTSTAMP_FILTER_SOME;
5257 break;
5258 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5259 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5260 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5261 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5262 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5263 is_l2 = true;
5264 break;
5265 default:
5266 return -ERANGE;
5267 }
5268
5269 if (hw->mac.type == e1000_82575) {
5270 if (tsync_rx_ctl | tsync_tx_ctl)
5271 return -EINVAL;
5272 return 0;
5273 }
5274
5275 /* enable/disable TX */
5276 regval = rd32(E1000_TSYNCTXCTL);
5277 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5278 regval |= tsync_tx_ctl;
5279 wr32(E1000_TSYNCTXCTL, regval);
5280
5281 /* enable/disable RX */
5282 regval = rd32(E1000_TSYNCRXCTL);
5283 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5284 regval |= tsync_rx_ctl;
5285 wr32(E1000_TSYNCRXCTL, regval);
5286
5287 /* define which PTP packets are time stamped */
5288 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5289
5290 /* define ethertype filter for timestamped packets */
5291 if (is_l2)
5292 wr32(E1000_ETQF(3),
5293 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5294 E1000_ETQF_1588 | /* enable timestamping */
5295 ETH_P_1588)); /* 1588 eth protocol type */
5296 else
5297 wr32(E1000_ETQF(3), 0);
5298
5299 #define PTP_PORT 319
5300 /* L4 Queue Filter[3]: filter by destination port and protocol */
5301 if (is_l4) {
5302 u32 ftqf = (IPPROTO_UDP /* UDP */
5303 | E1000_FTQF_VF_BP /* VF not compared */
5304 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5305 | E1000_FTQF_MASK); /* mask all inputs */
5306 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5307
5308 wr32(E1000_IMIR(3), htons(PTP_PORT));
5309 wr32(E1000_IMIREXT(3),
5310 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5311 if (hw->mac.type == e1000_82576) {
5312 /* enable source port check */
5313 wr32(E1000_SPQF(3), htons(PTP_PORT));
5314 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5315 }
5316 wr32(E1000_FTQF(3), ftqf);
5317 } else {
5318 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5319 }
5320 wrfl();
5321
5322 adapter->hwtstamp_config = config;
5323
5324 /* clear TX/RX time stamp registers, just to be sure */
5325 regval = rd32(E1000_TXSTMPH);
5326 regval = rd32(E1000_RXSTMPH);
5327
5328 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5329 -EFAULT : 0;
5330 }
5331
5332 /**
5333 * igb_ioctl -
5334 * @netdev:
5335 * @ifreq:
5336 * @cmd:
5337 **/
5338 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5339 {
5340 switch (cmd) {
5341 case SIOCGMIIPHY:
5342 case SIOCGMIIREG:
5343 case SIOCSMIIREG:
5344 return igb_mii_ioctl(netdev, ifr, cmd);
5345 case SIOCSHWTSTAMP:
5346 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5347 default:
5348 return -EOPNOTSUPP;
5349 }
5350 }
5351
5352 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5353 {
5354 struct igb_adapter *adapter = hw->back;
5355 u16 cap_offset;
5356
5357 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5358 if (!cap_offset)
5359 return -E1000_ERR_CONFIG;
5360
5361 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5362
5363 return 0;
5364 }
5365
5366 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5367 {
5368 struct igb_adapter *adapter = hw->back;
5369 u16 cap_offset;
5370
5371 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5372 if (!cap_offset)
5373 return -E1000_ERR_CONFIG;
5374
5375 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5376
5377 return 0;
5378 }
5379
5380 static void igb_vlan_rx_register(struct net_device *netdev,
5381 struct vlan_group *grp)
5382 {
5383 struct igb_adapter *adapter = netdev_priv(netdev);
5384 struct e1000_hw *hw = &adapter->hw;
5385 u32 ctrl, rctl;
5386
5387 igb_irq_disable(adapter);
5388 adapter->vlgrp = grp;
5389
5390 if (grp) {
5391 /* enable VLAN tag insert/strip */
5392 ctrl = rd32(E1000_CTRL);
5393 ctrl |= E1000_CTRL_VME;
5394 wr32(E1000_CTRL, ctrl);
5395
5396 /* Disable CFI check */
5397 rctl = rd32(E1000_RCTL);
5398 rctl &= ~E1000_RCTL_CFIEN;
5399 wr32(E1000_RCTL, rctl);
5400 } else {
5401 /* disable VLAN tag insert/strip */
5402 ctrl = rd32(E1000_CTRL);
5403 ctrl &= ~E1000_CTRL_VME;
5404 wr32(E1000_CTRL, ctrl);
5405 }
5406
5407 igb_rlpml_set(adapter);
5408
5409 if (!test_bit(__IGB_DOWN, &adapter->state))
5410 igb_irq_enable(adapter);
5411 }
5412
5413 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5414 {
5415 struct igb_adapter *adapter = netdev_priv(netdev);
5416 struct e1000_hw *hw = &adapter->hw;
5417 int pf_id = adapter->vfs_allocated_count;
5418
5419 /* attempt to add filter to vlvf array */
5420 igb_vlvf_set(adapter, vid, true, pf_id);
5421
5422 /* add the filter since PF can receive vlans w/o entry in vlvf */
5423 igb_vfta_set(hw, vid, true);
5424 }
5425
5426 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5427 {
5428 struct igb_adapter *adapter = netdev_priv(netdev);
5429 struct e1000_hw *hw = &adapter->hw;
5430 int pf_id = adapter->vfs_allocated_count;
5431 s32 err;
5432
5433 igb_irq_disable(adapter);
5434 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5435
5436 if (!test_bit(__IGB_DOWN, &adapter->state))
5437 igb_irq_enable(adapter);
5438
5439 /* remove vlan from VLVF table array */
5440 err = igb_vlvf_set(adapter, vid, false, pf_id);
5441
5442 /* if vid was not present in VLVF just remove it from table */
5443 if (err)
5444 igb_vfta_set(hw, vid, false);
5445 }
5446
5447 static void igb_restore_vlan(struct igb_adapter *adapter)
5448 {
5449 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5450
5451 if (adapter->vlgrp) {
5452 u16 vid;
5453 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5454 if (!vlan_group_get_device(adapter->vlgrp, vid))
5455 continue;
5456 igb_vlan_rx_add_vid(adapter->netdev, vid);
5457 }
5458 }
5459 }
5460
5461 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5462 {
5463 struct e1000_mac_info *mac = &adapter->hw.mac;
5464
5465 mac->autoneg = 0;
5466
5467 switch (spddplx) {
5468 case SPEED_10 + DUPLEX_HALF:
5469 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5470 break;
5471 case SPEED_10 + DUPLEX_FULL:
5472 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5473 break;
5474 case SPEED_100 + DUPLEX_HALF:
5475 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5476 break;
5477 case SPEED_100 + DUPLEX_FULL:
5478 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5479 break;
5480 case SPEED_1000 + DUPLEX_FULL:
5481 mac->autoneg = 1;
5482 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5483 break;
5484 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5485 default:
5486 dev_err(&adapter->pdev->dev,
5487 "Unsupported Speed/Duplex configuration\n");
5488 return -EINVAL;
5489 }
5490 return 0;
5491 }
5492
5493 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5494 {
5495 struct net_device *netdev = pci_get_drvdata(pdev);
5496 struct igb_adapter *adapter = netdev_priv(netdev);
5497 struct e1000_hw *hw = &adapter->hw;
5498 u32 ctrl, rctl, status;
5499 u32 wufc = adapter->wol;
5500 #ifdef CONFIG_PM
5501 int retval = 0;
5502 #endif
5503
5504 netif_device_detach(netdev);
5505
5506 if (netif_running(netdev))
5507 igb_close(netdev);
5508
5509 igb_clear_interrupt_scheme(adapter);
5510
5511 #ifdef CONFIG_PM
5512 retval = pci_save_state(pdev);
5513 if (retval)
5514 return retval;
5515 #endif
5516
5517 status = rd32(E1000_STATUS);
5518 if (status & E1000_STATUS_LU)
5519 wufc &= ~E1000_WUFC_LNKC;
5520
5521 if (wufc) {
5522 igb_setup_rctl(adapter);
5523 igb_set_rx_mode(netdev);
5524
5525 /* turn on all-multi mode if wake on multicast is enabled */
5526 if (wufc & E1000_WUFC_MC) {
5527 rctl = rd32(E1000_RCTL);
5528 rctl |= E1000_RCTL_MPE;
5529 wr32(E1000_RCTL, rctl);
5530 }
5531
5532 ctrl = rd32(E1000_CTRL);
5533 /* advertise wake from D3Cold */
5534 #define E1000_CTRL_ADVD3WUC 0x00100000
5535 /* phy power management enable */
5536 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5537 ctrl |= E1000_CTRL_ADVD3WUC;
5538 wr32(E1000_CTRL, ctrl);
5539
5540 /* Allow time for pending master requests to run */
5541 igb_disable_pcie_master(&adapter->hw);
5542
5543 wr32(E1000_WUC, E1000_WUC_PME_EN);
5544 wr32(E1000_WUFC, wufc);
5545 } else {
5546 wr32(E1000_WUC, 0);
5547 wr32(E1000_WUFC, 0);
5548 }
5549
5550 *enable_wake = wufc || adapter->en_mng_pt;
5551 if (!*enable_wake)
5552 igb_shutdown_serdes_link_82575(hw);
5553
5554 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5555 * would have already happened in close and is redundant. */
5556 igb_release_hw_control(adapter);
5557
5558 pci_disable_device(pdev);
5559
5560 return 0;
5561 }
5562
5563 #ifdef CONFIG_PM
5564 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5565 {
5566 int retval;
5567 bool wake;
5568
5569 retval = __igb_shutdown(pdev, &wake);
5570 if (retval)
5571 return retval;
5572
5573 if (wake) {
5574 pci_prepare_to_sleep(pdev);
5575 } else {
5576 pci_wake_from_d3(pdev, false);
5577 pci_set_power_state(pdev, PCI_D3hot);
5578 }
5579
5580 return 0;
5581 }
5582
5583 static int igb_resume(struct pci_dev *pdev)
5584 {
5585 struct net_device *netdev = pci_get_drvdata(pdev);
5586 struct igb_adapter *adapter = netdev_priv(netdev);
5587 struct e1000_hw *hw = &adapter->hw;
5588 u32 err;
5589
5590 pci_set_power_state(pdev, PCI_D0);
5591 pci_restore_state(pdev);
5592
5593 err = pci_enable_device_mem(pdev);
5594 if (err) {
5595 dev_err(&pdev->dev,
5596 "igb: Cannot enable PCI device from suspend\n");
5597 return err;
5598 }
5599 pci_set_master(pdev);
5600
5601 pci_enable_wake(pdev, PCI_D3hot, 0);
5602 pci_enable_wake(pdev, PCI_D3cold, 0);
5603
5604 if (igb_init_interrupt_scheme(adapter)) {
5605 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5606 return -ENOMEM;
5607 }
5608
5609 /* e1000_power_up_phy(adapter); */
5610
5611 igb_reset(adapter);
5612
5613 /* let the f/w know that the h/w is now under the control of the
5614 * driver. */
5615 igb_get_hw_control(adapter);
5616
5617 wr32(E1000_WUS, ~0);
5618
5619 if (netif_running(netdev)) {
5620 err = igb_open(netdev);
5621 if (err)
5622 return err;
5623 }
5624
5625 netif_device_attach(netdev);
5626
5627 return 0;
5628 }
5629 #endif
5630
5631 static void igb_shutdown(struct pci_dev *pdev)
5632 {
5633 bool wake;
5634
5635 __igb_shutdown(pdev, &wake);
5636
5637 if (system_state == SYSTEM_POWER_OFF) {
5638 pci_wake_from_d3(pdev, wake);
5639 pci_set_power_state(pdev, PCI_D3hot);
5640 }
5641 }
5642
5643 #ifdef CONFIG_NET_POLL_CONTROLLER
5644 /*
5645 * Polling 'interrupt' - used by things like netconsole to send skbs
5646 * without having to re-enable interrupts. It's not called while
5647 * the interrupt routine is executing.
5648 */
5649 static void igb_netpoll(struct net_device *netdev)
5650 {
5651 struct igb_adapter *adapter = netdev_priv(netdev);
5652 struct e1000_hw *hw = &adapter->hw;
5653 int i;
5654
5655 if (!adapter->msix_entries) {
5656 struct igb_q_vector *q_vector = adapter->q_vector[0];
5657 igb_irq_disable(adapter);
5658 napi_schedule(&q_vector->napi);
5659 return;
5660 }
5661
5662 for (i = 0; i < adapter->num_q_vectors; i++) {
5663 struct igb_q_vector *q_vector = adapter->q_vector[i];
5664 wr32(E1000_EIMC, q_vector->eims_value);
5665 napi_schedule(&q_vector->napi);
5666 }
5667 }
5668 #endif /* CONFIG_NET_POLL_CONTROLLER */
5669
5670 /**
5671 * igb_io_error_detected - called when PCI error is detected
5672 * @pdev: Pointer to PCI device
5673 * @state: The current pci connection state
5674 *
5675 * This function is called after a PCI bus error affecting
5676 * this device has been detected.
5677 */
5678 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5679 pci_channel_state_t state)
5680 {
5681 struct net_device *netdev = pci_get_drvdata(pdev);
5682 struct igb_adapter *adapter = netdev_priv(netdev);
5683
5684 netif_device_detach(netdev);
5685
5686 if (state == pci_channel_io_perm_failure)
5687 return PCI_ERS_RESULT_DISCONNECT;
5688
5689 if (netif_running(netdev))
5690 igb_down(adapter);
5691 pci_disable_device(pdev);
5692
5693 /* Request a slot slot reset. */
5694 return PCI_ERS_RESULT_NEED_RESET;
5695 }
5696
5697 /**
5698 * igb_io_slot_reset - called after the pci bus has been reset.
5699 * @pdev: Pointer to PCI device
5700 *
5701 * Restart the card from scratch, as if from a cold-boot. Implementation
5702 * resembles the first-half of the igb_resume routine.
5703 */
5704 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5705 {
5706 struct net_device *netdev = pci_get_drvdata(pdev);
5707 struct igb_adapter *adapter = netdev_priv(netdev);
5708 struct e1000_hw *hw = &adapter->hw;
5709 pci_ers_result_t result;
5710 int err;
5711
5712 if (pci_enable_device_mem(pdev)) {
5713 dev_err(&pdev->dev,
5714 "Cannot re-enable PCI device after reset.\n");
5715 result = PCI_ERS_RESULT_DISCONNECT;
5716 } else {
5717 pci_set_master(pdev);
5718 pci_restore_state(pdev);
5719
5720 pci_enable_wake(pdev, PCI_D3hot, 0);
5721 pci_enable_wake(pdev, PCI_D3cold, 0);
5722
5723 igb_reset(adapter);
5724 wr32(E1000_WUS, ~0);
5725 result = PCI_ERS_RESULT_RECOVERED;
5726 }
5727
5728 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5729 if (err) {
5730 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5731 "failed 0x%0x\n", err);
5732 /* non-fatal, continue */
5733 }
5734
5735 return result;
5736 }
5737
5738 /**
5739 * igb_io_resume - called when traffic can start flowing again.
5740 * @pdev: Pointer to PCI device
5741 *
5742 * This callback is called when the error recovery driver tells us that
5743 * its OK to resume normal operation. Implementation resembles the
5744 * second-half of the igb_resume routine.
5745 */
5746 static void igb_io_resume(struct pci_dev *pdev)
5747 {
5748 struct net_device *netdev = pci_get_drvdata(pdev);
5749 struct igb_adapter *adapter = netdev_priv(netdev);
5750
5751 if (netif_running(netdev)) {
5752 if (igb_up(adapter)) {
5753 dev_err(&pdev->dev, "igb_up failed after reset\n");
5754 return;
5755 }
5756 }
5757
5758 netif_device_attach(netdev);
5759
5760 /* let the f/w know that the h/w is now under the control of the
5761 * driver. */
5762 igb_get_hw_control(adapter);
5763 }
5764
5765 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5766 u8 qsel)
5767 {
5768 u32 rar_low, rar_high;
5769 struct e1000_hw *hw = &adapter->hw;
5770
5771 /* HW expects these in little endian so we reverse the byte order
5772 * from network order (big endian) to little endian
5773 */
5774 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5775 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5776 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5777
5778 /* Indicate to hardware the Address is Valid. */
5779 rar_high |= E1000_RAH_AV;
5780
5781 if (hw->mac.type == e1000_82575)
5782 rar_high |= E1000_RAH_POOL_1 * qsel;
5783 else
5784 rar_high |= E1000_RAH_POOL_1 << qsel;
5785
5786 wr32(E1000_RAL(index), rar_low);
5787 wrfl();
5788 wr32(E1000_RAH(index), rar_high);
5789 wrfl();
5790 }
5791
5792 static int igb_set_vf_mac(struct igb_adapter *adapter,
5793 int vf, unsigned char *mac_addr)
5794 {
5795 struct e1000_hw *hw = &adapter->hw;
5796 /* VF MAC addresses start at end of receive addresses and moves
5797 * torwards the first, as a result a collision should not be possible */
5798 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5799
5800 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5801
5802 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5803
5804 return 0;
5805 }
5806
5807 static void igb_vmm_control(struct igb_adapter *adapter)
5808 {
5809 struct e1000_hw *hw = &adapter->hw;
5810 u32 reg;
5811
5812 /* replication is not supported for 82575 */
5813 if (hw->mac.type == e1000_82575)
5814 return;
5815
5816 /* enable replication vlan tag stripping */
5817 reg = rd32(E1000_RPLOLR);
5818 reg |= E1000_RPLOLR_STRVLAN;
5819 wr32(E1000_RPLOLR, reg);
5820
5821 /* notify HW that the MAC is adding vlan tags */
5822 reg = rd32(E1000_DTXCTL);
5823 reg |= E1000_DTXCTL_VLAN_ADDED;
5824 wr32(E1000_DTXCTL, reg);
5825
5826 if (adapter->vfs_allocated_count) {
5827 igb_vmdq_set_loopback_pf(hw, true);
5828 igb_vmdq_set_replication_pf(hw, true);
5829 } else {
5830 igb_vmdq_set_loopback_pf(hw, false);
5831 igb_vmdq_set_replication_pf(hw, false);
5832 }
5833 }
5834
5835 /* igb_main.c */
This page took 0.173978 seconds and 6 git commands to generate.