5f7ba1a4990b21e973bf4dcb09e7a66b6c9aadeb
[deliverable/linux.git] / drivers / net / igbvf / netdev.c
1 /*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <linux/mii.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/pm_qos_params.h>
44
45 #include "igbvf.h"
46
47 #define DRV_VERSION "1.0.0-k0"
48 char igbvf_driver_name[] = "igbvf";
49 const char igbvf_driver_version[] = DRV_VERSION;
50 static const char igbvf_driver_string[] =
51 "Intel(R) Virtual Function Network Driver";
52 static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
53
54 static int igbvf_poll(struct napi_struct *napi, int budget);
55 static void igbvf_reset(struct igbvf_adapter *);
56 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
57 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
58
59 static struct igbvf_info igbvf_vf_info = {
60 .mac = e1000_vfadapt,
61 .flags = 0,
62 .pba = 10,
63 .init_ops = e1000_init_function_pointers_vf,
64 };
65
66 static const struct igbvf_info *igbvf_info_tbl[] = {
67 [board_vf] = &igbvf_vf_info,
68 };
69
70 /**
71 * igbvf_desc_unused - calculate if we have unused descriptors
72 **/
73 static int igbvf_desc_unused(struct igbvf_ring *ring)
74 {
75 if (ring->next_to_clean > ring->next_to_use)
76 return ring->next_to_clean - ring->next_to_use - 1;
77
78 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
79 }
80
81 /**
82 * igbvf_receive_skb - helper function to handle Rx indications
83 * @adapter: board private structure
84 * @status: descriptor status field as written by hardware
85 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
86 * @skb: pointer to sk_buff to be indicated to stack
87 **/
88 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
89 struct net_device *netdev,
90 struct sk_buff *skb,
91 u32 status, u16 vlan)
92 {
93 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
94 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
95 le16_to_cpu(vlan) &
96 E1000_RXD_SPC_VLAN_MASK);
97 else
98 netif_receive_skb(skb);
99
100 netdev->last_rx = jiffies;
101 }
102
103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105 {
106 skb->ip_summed = CHECKSUM_NONE;
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126 }
127
128 /**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135 {
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152 bufsz += NET_IP_ALIGN;
153
154 while (cleaned_count--) {
155 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
156
157 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
158 if (!buffer_info->page) {
159 buffer_info->page = alloc_page(GFP_ATOMIC);
160 if (!buffer_info->page) {
161 adapter->alloc_rx_buff_failed++;
162 goto no_buffers;
163 }
164 buffer_info->page_offset = 0;
165 } else {
166 buffer_info->page_offset ^= PAGE_SIZE / 2;
167 }
168 buffer_info->page_dma =
169 pci_map_page(pdev, buffer_info->page,
170 buffer_info->page_offset,
171 PAGE_SIZE / 2,
172 PCI_DMA_FROMDEVICE);
173 }
174
175 if (!buffer_info->skb) {
176 skb = netdev_alloc_skb(netdev, bufsz);
177 if (!skb) {
178 adapter->alloc_rx_buff_failed++;
179 goto no_buffers;
180 }
181
182 /* Make buffer alignment 2 beyond a 16 byte boundary
183 * this will result in a 16 byte aligned IP header after
184 * the 14 byte MAC header is removed
185 */
186 skb_reserve(skb, NET_IP_ALIGN);
187
188 buffer_info->skb = skb;
189 buffer_info->dma = pci_map_single(pdev, skb->data,
190 bufsz,
191 PCI_DMA_FROMDEVICE);
192 }
193 /* Refresh the desc even if buffer_addrs didn't change because
194 * each write-back erases this info. */
195 if (adapter->rx_ps_hdr_size) {
196 rx_desc->read.pkt_addr =
197 cpu_to_le64(buffer_info->page_dma);
198 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
199 } else {
200 rx_desc->read.pkt_addr =
201 cpu_to_le64(buffer_info->dma);
202 rx_desc->read.hdr_addr = 0;
203 }
204
205 i++;
206 if (i == rx_ring->count)
207 i = 0;
208 buffer_info = &rx_ring->buffer_info[i];
209 }
210
211 no_buffers:
212 if (rx_ring->next_to_use != i) {
213 rx_ring->next_to_use = i;
214 if (i == 0)
215 i = (rx_ring->count - 1);
216 else
217 i--;
218
219 /* Force memory writes to complete before letting h/w
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
222 * such as IA-64). */
223 wmb();
224 writel(i, adapter->hw.hw_addr + rx_ring->tail);
225 }
226 }
227
228 /**
229 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
230 * @adapter: board private structure
231 *
232 * the return value indicates whether actual cleaning was done, there
233 * is no guarantee that everything was cleaned
234 **/
235 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
236 int *work_done, int work_to_do)
237 {
238 struct igbvf_ring *rx_ring = adapter->rx_ring;
239 struct net_device *netdev = adapter->netdev;
240 struct pci_dev *pdev = adapter->pdev;
241 union e1000_adv_rx_desc *rx_desc, *next_rxd;
242 struct igbvf_buffer *buffer_info, *next_buffer;
243 struct sk_buff *skb;
244 bool cleaned = false;
245 int cleaned_count = 0;
246 unsigned int total_bytes = 0, total_packets = 0;
247 unsigned int i;
248 u32 length, hlen, staterr;
249
250 i = rx_ring->next_to_clean;
251 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
252 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
253
254 while (staterr & E1000_RXD_STAT_DD) {
255 if (*work_done >= work_to_do)
256 break;
257 (*work_done)++;
258
259 buffer_info = &rx_ring->buffer_info[i];
260
261 /* HW will not DMA in data larger than the given buffer, even
262 * if it parses the (NFS, of course) header to be larger. In
263 * that case, it fills the header buffer and spills the rest
264 * into the page.
265 */
266 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
267 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
268 if (hlen > adapter->rx_ps_hdr_size)
269 hlen = adapter->rx_ps_hdr_size;
270
271 length = le16_to_cpu(rx_desc->wb.upper.length);
272 cleaned = true;
273 cleaned_count++;
274
275 skb = buffer_info->skb;
276 prefetch(skb->data - NET_IP_ALIGN);
277 buffer_info->skb = NULL;
278 if (!adapter->rx_ps_hdr_size) {
279 pci_unmap_single(pdev, buffer_info->dma,
280 adapter->rx_buffer_len,
281 PCI_DMA_FROMDEVICE);
282 buffer_info->dma = 0;
283 skb_put(skb, length);
284 goto send_up;
285 }
286
287 if (!skb_shinfo(skb)->nr_frags) {
288 pci_unmap_single(pdev, buffer_info->dma,
289 adapter->rx_ps_hdr_size + NET_IP_ALIGN,
290 PCI_DMA_FROMDEVICE);
291 skb_put(skb, hlen);
292 }
293
294 if (length) {
295 pci_unmap_page(pdev, buffer_info->page_dma,
296 PAGE_SIZE / 2,
297 PCI_DMA_FROMDEVICE);
298 buffer_info->page_dma = 0;
299
300 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
301 buffer_info->page,
302 buffer_info->page_offset,
303 length);
304
305 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
306 (page_count(buffer_info->page) != 1))
307 buffer_info->page = NULL;
308 else
309 get_page(buffer_info->page);
310
311 skb->len += length;
312 skb->data_len += length;
313 skb->truesize += length;
314 }
315 send_up:
316 i++;
317 if (i == rx_ring->count)
318 i = 0;
319 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
320 prefetch(next_rxd);
321 next_buffer = &rx_ring->buffer_info[i];
322
323 if (!(staterr & E1000_RXD_STAT_EOP)) {
324 buffer_info->skb = next_buffer->skb;
325 buffer_info->dma = next_buffer->dma;
326 next_buffer->skb = skb;
327 next_buffer->dma = 0;
328 goto next_desc;
329 }
330
331 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
332 dev_kfree_skb_irq(skb);
333 goto next_desc;
334 }
335
336 total_bytes += skb->len;
337 total_packets++;
338
339 igbvf_rx_checksum_adv(adapter, staterr, skb);
340
341 skb->protocol = eth_type_trans(skb, netdev);
342
343 igbvf_receive_skb(adapter, netdev, skb, staterr,
344 rx_desc->wb.upper.vlan);
345
346 netdev->last_rx = jiffies;
347
348 next_desc:
349 rx_desc->wb.upper.status_error = 0;
350
351 /* return some buffers to hardware, one at a time is too slow */
352 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
353 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
354 cleaned_count = 0;
355 }
356
357 /* use prefetched values */
358 rx_desc = next_rxd;
359 buffer_info = next_buffer;
360
361 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
362 }
363
364 rx_ring->next_to_clean = i;
365 cleaned_count = igbvf_desc_unused(rx_ring);
366
367 if (cleaned_count)
368 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
369
370 adapter->total_rx_packets += total_packets;
371 adapter->total_rx_bytes += total_bytes;
372 adapter->net_stats.rx_bytes += total_bytes;
373 adapter->net_stats.rx_packets += total_packets;
374 return cleaned;
375 }
376
377 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
378 struct igbvf_buffer *buffer_info)
379 {
380 buffer_info->dma = 0;
381 if (buffer_info->skb) {
382 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
383 DMA_TO_DEVICE);
384 dev_kfree_skb_any(buffer_info->skb);
385 buffer_info->skb = NULL;
386 }
387 buffer_info->time_stamp = 0;
388 }
389
390 static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
391 {
392 struct igbvf_ring *tx_ring = adapter->tx_ring;
393 unsigned int i = tx_ring->next_to_clean;
394 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
395 union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
396
397 /* detected Tx unit hang */
398 dev_err(&adapter->pdev->dev,
399 "Detected Tx Unit Hang:\n"
400 " TDH <%x>\n"
401 " TDT <%x>\n"
402 " next_to_use <%x>\n"
403 " next_to_clean <%x>\n"
404 "buffer_info[next_to_clean]:\n"
405 " time_stamp <%lx>\n"
406 " next_to_watch <%x>\n"
407 " jiffies <%lx>\n"
408 " next_to_watch.status <%x>\n",
409 readl(adapter->hw.hw_addr + tx_ring->head),
410 readl(adapter->hw.hw_addr + tx_ring->tail),
411 tx_ring->next_to_use,
412 tx_ring->next_to_clean,
413 tx_ring->buffer_info[eop].time_stamp,
414 eop,
415 jiffies,
416 eop_desc->wb.status);
417 }
418
419 /**
420 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
421 * @adapter: board private structure
422 *
423 * Return 0 on success, negative on failure
424 **/
425 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
426 struct igbvf_ring *tx_ring)
427 {
428 struct pci_dev *pdev = adapter->pdev;
429 int size;
430
431 size = sizeof(struct igbvf_buffer) * tx_ring->count;
432 tx_ring->buffer_info = vmalloc(size);
433 if (!tx_ring->buffer_info)
434 goto err;
435 memset(tx_ring->buffer_info, 0, size);
436
437 /* round up to nearest 4K */
438 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
439 tx_ring->size = ALIGN(tx_ring->size, 4096);
440
441 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
442 &tx_ring->dma);
443
444 if (!tx_ring->desc)
445 goto err;
446
447 tx_ring->adapter = adapter;
448 tx_ring->next_to_use = 0;
449 tx_ring->next_to_clean = 0;
450
451 return 0;
452 err:
453 vfree(tx_ring->buffer_info);
454 dev_err(&adapter->pdev->dev,
455 "Unable to allocate memory for the transmit descriptor ring\n");
456 return -ENOMEM;
457 }
458
459 /**
460 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
461 * @adapter: board private structure
462 *
463 * Returns 0 on success, negative on failure
464 **/
465 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
466 struct igbvf_ring *rx_ring)
467 {
468 struct pci_dev *pdev = adapter->pdev;
469 int size, desc_len;
470
471 size = sizeof(struct igbvf_buffer) * rx_ring->count;
472 rx_ring->buffer_info = vmalloc(size);
473 if (!rx_ring->buffer_info)
474 goto err;
475 memset(rx_ring->buffer_info, 0, size);
476
477 desc_len = sizeof(union e1000_adv_rx_desc);
478
479 /* Round up to nearest 4K */
480 rx_ring->size = rx_ring->count * desc_len;
481 rx_ring->size = ALIGN(rx_ring->size, 4096);
482
483 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
484 &rx_ring->dma);
485
486 if (!rx_ring->desc)
487 goto err;
488
489 rx_ring->next_to_clean = 0;
490 rx_ring->next_to_use = 0;
491
492 rx_ring->adapter = adapter;
493
494 return 0;
495
496 err:
497 vfree(rx_ring->buffer_info);
498 rx_ring->buffer_info = NULL;
499 dev_err(&adapter->pdev->dev,
500 "Unable to allocate memory for the receive descriptor ring\n");
501 return -ENOMEM;
502 }
503
504 /**
505 * igbvf_clean_tx_ring - Free Tx Buffers
506 * @tx_ring: ring to be cleaned
507 **/
508 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
509 {
510 struct igbvf_adapter *adapter = tx_ring->adapter;
511 struct igbvf_buffer *buffer_info;
512 unsigned long size;
513 unsigned int i;
514
515 if (!tx_ring->buffer_info)
516 return;
517
518 /* Free all the Tx ring sk_buffs */
519 for (i = 0; i < tx_ring->count; i++) {
520 buffer_info = &tx_ring->buffer_info[i];
521 igbvf_put_txbuf(adapter, buffer_info);
522 }
523
524 size = sizeof(struct igbvf_buffer) * tx_ring->count;
525 memset(tx_ring->buffer_info, 0, size);
526
527 /* Zero out the descriptor ring */
528 memset(tx_ring->desc, 0, tx_ring->size);
529
530 tx_ring->next_to_use = 0;
531 tx_ring->next_to_clean = 0;
532
533 writel(0, adapter->hw.hw_addr + tx_ring->head);
534 writel(0, adapter->hw.hw_addr + tx_ring->tail);
535 }
536
537 /**
538 * igbvf_free_tx_resources - Free Tx Resources per Queue
539 * @tx_ring: ring to free resources from
540 *
541 * Free all transmit software resources
542 **/
543 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
544 {
545 struct pci_dev *pdev = tx_ring->adapter->pdev;
546
547 igbvf_clean_tx_ring(tx_ring);
548
549 vfree(tx_ring->buffer_info);
550 tx_ring->buffer_info = NULL;
551
552 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
553
554 tx_ring->desc = NULL;
555 }
556
557 /**
558 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
559 * @adapter: board private structure
560 **/
561 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
562 {
563 struct igbvf_adapter *adapter = rx_ring->adapter;
564 struct igbvf_buffer *buffer_info;
565 struct pci_dev *pdev = adapter->pdev;
566 unsigned long size;
567 unsigned int i;
568
569 if (!rx_ring->buffer_info)
570 return;
571
572 /* Free all the Rx ring sk_buffs */
573 for (i = 0; i < rx_ring->count; i++) {
574 buffer_info = &rx_ring->buffer_info[i];
575 if (buffer_info->dma) {
576 if (adapter->rx_ps_hdr_size){
577 pci_unmap_single(pdev, buffer_info->dma,
578 adapter->rx_ps_hdr_size,
579 PCI_DMA_FROMDEVICE);
580 } else {
581 pci_unmap_single(pdev, buffer_info->dma,
582 adapter->rx_buffer_len,
583 PCI_DMA_FROMDEVICE);
584 }
585 buffer_info->dma = 0;
586 }
587
588 if (buffer_info->skb) {
589 dev_kfree_skb(buffer_info->skb);
590 buffer_info->skb = NULL;
591 }
592
593 if (buffer_info->page) {
594 if (buffer_info->page_dma)
595 pci_unmap_page(pdev, buffer_info->page_dma,
596 PAGE_SIZE / 2,
597 PCI_DMA_FROMDEVICE);
598 put_page(buffer_info->page);
599 buffer_info->page = NULL;
600 buffer_info->page_dma = 0;
601 buffer_info->page_offset = 0;
602 }
603 }
604
605 size = sizeof(struct igbvf_buffer) * rx_ring->count;
606 memset(rx_ring->buffer_info, 0, size);
607
608 /* Zero out the descriptor ring */
609 memset(rx_ring->desc, 0, rx_ring->size);
610
611 rx_ring->next_to_clean = 0;
612 rx_ring->next_to_use = 0;
613
614 writel(0, adapter->hw.hw_addr + rx_ring->head);
615 writel(0, adapter->hw.hw_addr + rx_ring->tail);
616 }
617
618 /**
619 * igbvf_free_rx_resources - Free Rx Resources
620 * @rx_ring: ring to clean the resources from
621 *
622 * Free all receive software resources
623 **/
624
625 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
626 {
627 struct pci_dev *pdev = rx_ring->adapter->pdev;
628
629 igbvf_clean_rx_ring(rx_ring);
630
631 vfree(rx_ring->buffer_info);
632 rx_ring->buffer_info = NULL;
633
634 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
635 rx_ring->dma);
636 rx_ring->desc = NULL;
637 }
638
639 /**
640 * igbvf_update_itr - update the dynamic ITR value based on statistics
641 * @adapter: pointer to adapter
642 * @itr_setting: current adapter->itr
643 * @packets: the number of packets during this measurement interval
644 * @bytes: the number of bytes during this measurement interval
645 *
646 * Stores a new ITR value based on packets and byte
647 * counts during the last interrupt. The advantage of per interrupt
648 * computation is faster updates and more accurate ITR for the current
649 * traffic pattern. Constants in this function were computed
650 * based on theoretical maximum wire speed and thresholds were set based
651 * on testing data as well as attempting to minimize response time
652 * while increasing bulk throughput. This functionality is controlled
653 * by the InterruptThrottleRate module parameter.
654 **/
655 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
656 u16 itr_setting, int packets,
657 int bytes)
658 {
659 unsigned int retval = itr_setting;
660
661 if (packets == 0)
662 goto update_itr_done;
663
664 switch (itr_setting) {
665 case lowest_latency:
666 /* handle TSO and jumbo frames */
667 if (bytes/packets > 8000)
668 retval = bulk_latency;
669 else if ((packets < 5) && (bytes > 512))
670 retval = low_latency;
671 break;
672 case low_latency: /* 50 usec aka 20000 ints/s */
673 if (bytes > 10000) {
674 /* this if handles the TSO accounting */
675 if (bytes/packets > 8000)
676 retval = bulk_latency;
677 else if ((packets < 10) || ((bytes/packets) > 1200))
678 retval = bulk_latency;
679 else if ((packets > 35))
680 retval = lowest_latency;
681 } else if (bytes/packets > 2000) {
682 retval = bulk_latency;
683 } else if (packets <= 2 && bytes < 512) {
684 retval = lowest_latency;
685 }
686 break;
687 case bulk_latency: /* 250 usec aka 4000 ints/s */
688 if (bytes > 25000) {
689 if (packets > 35)
690 retval = low_latency;
691 } else if (bytes < 6000) {
692 retval = low_latency;
693 }
694 break;
695 }
696
697 update_itr_done:
698 return retval;
699 }
700
701 static void igbvf_set_itr(struct igbvf_adapter *adapter)
702 {
703 struct e1000_hw *hw = &adapter->hw;
704 u16 current_itr;
705 u32 new_itr = adapter->itr;
706
707 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
708 adapter->total_tx_packets,
709 adapter->total_tx_bytes);
710 /* conservative mode (itr 3) eliminates the lowest_latency setting */
711 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
712 adapter->tx_itr = low_latency;
713
714 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
715 adapter->total_rx_packets,
716 adapter->total_rx_bytes);
717 /* conservative mode (itr 3) eliminates the lowest_latency setting */
718 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
719 adapter->rx_itr = low_latency;
720
721 current_itr = max(adapter->rx_itr, adapter->tx_itr);
722
723 switch (current_itr) {
724 /* counts and packets in update_itr are dependent on these numbers */
725 case lowest_latency:
726 new_itr = 70000;
727 break;
728 case low_latency:
729 new_itr = 20000; /* aka hwitr = ~200 */
730 break;
731 case bulk_latency:
732 new_itr = 4000;
733 break;
734 default:
735 break;
736 }
737
738 if (new_itr != adapter->itr) {
739 /*
740 * this attempts to bias the interrupt rate towards Bulk
741 * by adding intermediate steps when interrupt rate is
742 * increasing
743 */
744 new_itr = new_itr > adapter->itr ?
745 min(adapter->itr + (new_itr >> 2), new_itr) :
746 new_itr;
747 adapter->itr = new_itr;
748 adapter->rx_ring->itr_val = 1952;
749
750 if (adapter->msix_entries)
751 adapter->rx_ring->set_itr = 1;
752 else
753 ew32(ITR, 1952);
754 }
755 }
756
757 /**
758 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
759 * @adapter: board private structure
760 * returns true if ring is completely cleaned
761 **/
762 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
763 {
764 struct igbvf_adapter *adapter = tx_ring->adapter;
765 struct e1000_hw *hw = &adapter->hw;
766 struct net_device *netdev = adapter->netdev;
767 struct igbvf_buffer *buffer_info;
768 struct sk_buff *skb;
769 union e1000_adv_tx_desc *tx_desc, *eop_desc;
770 unsigned int total_bytes = 0, total_packets = 0;
771 unsigned int i, eop, count = 0;
772 bool cleaned = false;
773
774 i = tx_ring->next_to_clean;
775 eop = tx_ring->buffer_info[i].next_to_watch;
776 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
777
778 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
779 (count < tx_ring->count)) {
780 for (cleaned = false; !cleaned; count++) {
781 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
782 buffer_info = &tx_ring->buffer_info[i];
783 cleaned = (i == eop);
784 skb = buffer_info->skb;
785
786 if (skb) {
787 unsigned int segs, bytecount;
788
789 /* gso_segs is currently only valid for tcp */
790 segs = skb_shinfo(skb)->gso_segs ?: 1;
791 /* multiply data chunks by size of headers */
792 bytecount = ((segs - 1) * skb_headlen(skb)) +
793 skb->len;
794 total_packets += segs;
795 total_bytes += bytecount;
796 }
797
798 igbvf_put_txbuf(adapter, buffer_info);
799 tx_desc->wb.status = 0;
800
801 i++;
802 if (i == tx_ring->count)
803 i = 0;
804 }
805 eop = tx_ring->buffer_info[i].next_to_watch;
806 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
807 }
808
809 tx_ring->next_to_clean = i;
810
811 if (unlikely(count &&
812 netif_carrier_ok(netdev) &&
813 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
814 /* Make sure that anybody stopping the queue after this
815 * sees the new next_to_clean.
816 */
817 smp_mb();
818 if (netif_queue_stopped(netdev) &&
819 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
820 netif_wake_queue(netdev);
821 ++adapter->restart_queue;
822 }
823 }
824
825 if (adapter->detect_tx_hung) {
826 /* Detect a transmit hang in hardware, this serializes the
827 * check with the clearing of time_stamp and movement of i */
828 adapter->detect_tx_hung = false;
829 if (tx_ring->buffer_info[i].time_stamp &&
830 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
831 (adapter->tx_timeout_factor * HZ))
832 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
833
834 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
835 /* detected Tx unit hang */
836 igbvf_print_tx_hang(adapter);
837
838 netif_stop_queue(netdev);
839 }
840 }
841 adapter->net_stats.tx_bytes += total_bytes;
842 adapter->net_stats.tx_packets += total_packets;
843 return (count < tx_ring->count);
844 }
845
846 static irqreturn_t igbvf_msix_other(int irq, void *data)
847 {
848 struct net_device *netdev = data;
849 struct igbvf_adapter *adapter = netdev_priv(netdev);
850 struct e1000_hw *hw = &adapter->hw;
851
852 adapter->int_counter1++;
853
854 netif_carrier_off(netdev);
855 hw->mac.get_link_status = 1;
856 if (!test_bit(__IGBVF_DOWN, &adapter->state))
857 mod_timer(&adapter->watchdog_timer, jiffies + 1);
858
859 ew32(EIMS, adapter->eims_other);
860
861 return IRQ_HANDLED;
862 }
863
864 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
865 {
866 struct net_device *netdev = data;
867 struct igbvf_adapter *adapter = netdev_priv(netdev);
868 struct e1000_hw *hw = &adapter->hw;
869 struct igbvf_ring *tx_ring = adapter->tx_ring;
870
871
872 adapter->total_tx_bytes = 0;
873 adapter->total_tx_packets = 0;
874
875 /* auto mask will automatically reenable the interrupt when we write
876 * EICS */
877 if (!igbvf_clean_tx_irq(tx_ring))
878 /* Ring was not completely cleaned, so fire another interrupt */
879 ew32(EICS, tx_ring->eims_value);
880 else
881 ew32(EIMS, tx_ring->eims_value);
882
883 return IRQ_HANDLED;
884 }
885
886 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
887 {
888 struct net_device *netdev = data;
889 struct igbvf_adapter *adapter = netdev_priv(netdev);
890
891 adapter->int_counter0++;
892
893 /* Write the ITR value calculated at the end of the
894 * previous interrupt.
895 */
896 if (adapter->rx_ring->set_itr) {
897 writel(adapter->rx_ring->itr_val,
898 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
899 adapter->rx_ring->set_itr = 0;
900 }
901
902 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
903 adapter->total_rx_bytes = 0;
904 adapter->total_rx_packets = 0;
905 __napi_schedule(&adapter->rx_ring->napi);
906 }
907
908 return IRQ_HANDLED;
909 }
910
911 #define IGBVF_NO_QUEUE -1
912
913 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
914 int tx_queue, int msix_vector)
915 {
916 struct e1000_hw *hw = &adapter->hw;
917 u32 ivar, index;
918
919 /* 82576 uses a table-based method for assigning vectors.
920 Each queue has a single entry in the table to which we write
921 a vector number along with a "valid" bit. Sadly, the layout
922 of the table is somewhat counterintuitive. */
923 if (rx_queue > IGBVF_NO_QUEUE) {
924 index = (rx_queue >> 1);
925 ivar = array_er32(IVAR0, index);
926 if (rx_queue & 0x1) {
927 /* vector goes into third byte of register */
928 ivar = ivar & 0xFF00FFFF;
929 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
930 } else {
931 /* vector goes into low byte of register */
932 ivar = ivar & 0xFFFFFF00;
933 ivar |= msix_vector | E1000_IVAR_VALID;
934 }
935 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
936 array_ew32(IVAR0, index, ivar);
937 }
938 if (tx_queue > IGBVF_NO_QUEUE) {
939 index = (tx_queue >> 1);
940 ivar = array_er32(IVAR0, index);
941 if (tx_queue & 0x1) {
942 /* vector goes into high byte of register */
943 ivar = ivar & 0x00FFFFFF;
944 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
945 } else {
946 /* vector goes into second byte of register */
947 ivar = ivar & 0xFFFF00FF;
948 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
949 }
950 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
951 array_ew32(IVAR0, index, ivar);
952 }
953 }
954
955 /**
956 * igbvf_configure_msix - Configure MSI-X hardware
957 *
958 * igbvf_configure_msix sets up the hardware to properly
959 * generate MSI-X interrupts.
960 **/
961 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
962 {
963 u32 tmp;
964 struct e1000_hw *hw = &adapter->hw;
965 struct igbvf_ring *tx_ring = adapter->tx_ring;
966 struct igbvf_ring *rx_ring = adapter->rx_ring;
967 int vector = 0;
968
969 adapter->eims_enable_mask = 0;
970
971 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
972 adapter->eims_enable_mask |= tx_ring->eims_value;
973 if (tx_ring->itr_val)
974 writel(tx_ring->itr_val,
975 hw->hw_addr + tx_ring->itr_register);
976 else
977 writel(1952, hw->hw_addr + tx_ring->itr_register);
978
979 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
980 adapter->eims_enable_mask |= rx_ring->eims_value;
981 if (rx_ring->itr_val)
982 writel(rx_ring->itr_val,
983 hw->hw_addr + rx_ring->itr_register);
984 else
985 writel(1952, hw->hw_addr + rx_ring->itr_register);
986
987 /* set vector for other causes, i.e. link changes */
988
989 tmp = (vector++ | E1000_IVAR_VALID);
990
991 ew32(IVAR_MISC, tmp);
992
993 adapter->eims_enable_mask = (1 << (vector)) - 1;
994 adapter->eims_other = 1 << (vector - 1);
995 e1e_flush();
996 }
997
998 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
999 {
1000 if (adapter->msix_entries) {
1001 pci_disable_msix(adapter->pdev);
1002 kfree(adapter->msix_entries);
1003 adapter->msix_entries = NULL;
1004 }
1005 }
1006
1007 /**
1008 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1009 *
1010 * Attempt to configure interrupts using the best available
1011 * capabilities of the hardware and kernel.
1012 **/
1013 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1014 {
1015 int err = -ENOMEM;
1016 int i;
1017
1018 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1019 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1020 GFP_KERNEL);
1021 if (adapter->msix_entries) {
1022 for (i = 0; i < 3; i++)
1023 adapter->msix_entries[i].entry = i;
1024
1025 err = pci_enable_msix(adapter->pdev,
1026 adapter->msix_entries, 3);
1027 }
1028
1029 if (err) {
1030 /* MSI-X failed */
1031 dev_err(&adapter->pdev->dev,
1032 "Failed to initialize MSI-X interrupts.\n");
1033 igbvf_reset_interrupt_capability(adapter);
1034 }
1035 }
1036
1037 /**
1038 * igbvf_request_msix - Initialize MSI-X interrupts
1039 *
1040 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1041 * kernel.
1042 **/
1043 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1044 {
1045 struct net_device *netdev = adapter->netdev;
1046 int err = 0, vector = 0;
1047
1048 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1049 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1050 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1051 } else {
1052 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1053 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1054 }
1055
1056 err = request_irq(adapter->msix_entries[vector].vector,
1057 &igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1058 netdev);
1059 if (err)
1060 goto out;
1061
1062 adapter->tx_ring->itr_register = E1000_EITR(vector);
1063 adapter->tx_ring->itr_val = 1952;
1064 vector++;
1065
1066 err = request_irq(adapter->msix_entries[vector].vector,
1067 &igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1068 netdev);
1069 if (err)
1070 goto out;
1071
1072 adapter->rx_ring->itr_register = E1000_EITR(vector);
1073 adapter->rx_ring->itr_val = 1952;
1074 vector++;
1075
1076 err = request_irq(adapter->msix_entries[vector].vector,
1077 &igbvf_msix_other, 0, netdev->name, netdev);
1078 if (err)
1079 goto out;
1080
1081 igbvf_configure_msix(adapter);
1082 return 0;
1083 out:
1084 return err;
1085 }
1086
1087 /**
1088 * igbvf_alloc_queues - Allocate memory for all rings
1089 * @adapter: board private structure to initialize
1090 **/
1091 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1092 {
1093 struct net_device *netdev = adapter->netdev;
1094
1095 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1096 if (!adapter->tx_ring)
1097 return -ENOMEM;
1098
1099 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1100 if (!adapter->rx_ring) {
1101 kfree(adapter->tx_ring);
1102 return -ENOMEM;
1103 }
1104
1105 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1106
1107 return 0;
1108 }
1109
1110 /**
1111 * igbvf_request_irq - initialize interrupts
1112 *
1113 * Attempts to configure interrupts using the best available
1114 * capabilities of the hardware and kernel.
1115 **/
1116 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1117 {
1118 int err = -1;
1119
1120 /* igbvf supports msi-x only */
1121 if (adapter->msix_entries)
1122 err = igbvf_request_msix(adapter);
1123
1124 if (!err)
1125 return err;
1126
1127 dev_err(&adapter->pdev->dev,
1128 "Unable to allocate interrupt, Error: %d\n", err);
1129
1130 return err;
1131 }
1132
1133 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1134 {
1135 struct net_device *netdev = adapter->netdev;
1136 int vector;
1137
1138 if (adapter->msix_entries) {
1139 for (vector = 0; vector < 3; vector++)
1140 free_irq(adapter->msix_entries[vector].vector, netdev);
1141 }
1142 }
1143
1144 /**
1145 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1146 **/
1147 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1148 {
1149 struct e1000_hw *hw = &adapter->hw;
1150
1151 ew32(EIMC, ~0);
1152
1153 if (adapter->msix_entries)
1154 ew32(EIAC, 0);
1155 }
1156
1157 /**
1158 * igbvf_irq_enable - Enable default interrupt generation settings
1159 **/
1160 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1161 {
1162 struct e1000_hw *hw = &adapter->hw;
1163
1164 ew32(EIAC, adapter->eims_enable_mask);
1165 ew32(EIAM, adapter->eims_enable_mask);
1166 ew32(EIMS, adapter->eims_enable_mask);
1167 }
1168
1169 /**
1170 * igbvf_poll - NAPI Rx polling callback
1171 * @napi: struct associated with this polling callback
1172 * @budget: amount of packets driver is allowed to process this poll
1173 **/
1174 static int igbvf_poll(struct napi_struct *napi, int budget)
1175 {
1176 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1177 struct igbvf_adapter *adapter = rx_ring->adapter;
1178 struct e1000_hw *hw = &adapter->hw;
1179 int work_done = 0;
1180
1181 igbvf_clean_rx_irq(adapter, &work_done, budget);
1182
1183 /* If not enough Rx work done, exit the polling mode */
1184 if (work_done < budget) {
1185 napi_complete(napi);
1186
1187 if (adapter->itr_setting & 3)
1188 igbvf_set_itr(adapter);
1189
1190 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1191 ew32(EIMS, adapter->rx_ring->eims_value);
1192 }
1193
1194 return work_done;
1195 }
1196
1197 /**
1198 * igbvf_set_rlpml - set receive large packet maximum length
1199 * @adapter: board private structure
1200 *
1201 * Configure the maximum size of packets that will be received
1202 */
1203 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1204 {
1205 int max_frame_size = adapter->max_frame_size;
1206 struct e1000_hw *hw = &adapter->hw;
1207
1208 if (adapter->vlgrp)
1209 max_frame_size += VLAN_TAG_SIZE;
1210
1211 e1000_rlpml_set_vf(hw, max_frame_size);
1212 }
1213
1214 static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1215 {
1216 struct igbvf_adapter *adapter = netdev_priv(netdev);
1217 struct e1000_hw *hw = &adapter->hw;
1218
1219 if (hw->mac.ops.set_vfta(hw, vid, true))
1220 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1221 }
1222
1223 static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1224 {
1225 struct igbvf_adapter *adapter = netdev_priv(netdev);
1226 struct e1000_hw *hw = &adapter->hw;
1227
1228 igbvf_irq_disable(adapter);
1229 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1230
1231 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1232 igbvf_irq_enable(adapter);
1233
1234 if (hw->mac.ops.set_vfta(hw, vid, false))
1235 dev_err(&adapter->pdev->dev,
1236 "Failed to remove vlan id %d\n", vid);
1237 }
1238
1239 static void igbvf_vlan_rx_register(struct net_device *netdev,
1240 struct vlan_group *grp)
1241 {
1242 struct igbvf_adapter *adapter = netdev_priv(netdev);
1243
1244 adapter->vlgrp = grp;
1245 }
1246
1247 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1248 {
1249 u16 vid;
1250
1251 if (!adapter->vlgrp)
1252 return;
1253
1254 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1255 if (!vlan_group_get_device(adapter->vlgrp, vid))
1256 continue;
1257 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1258 }
1259
1260 igbvf_set_rlpml(adapter);
1261 }
1262
1263 /**
1264 * igbvf_configure_tx - Configure Transmit Unit after Reset
1265 * @adapter: board private structure
1266 *
1267 * Configure the Tx unit of the MAC after a reset.
1268 **/
1269 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1270 {
1271 struct e1000_hw *hw = &adapter->hw;
1272 struct igbvf_ring *tx_ring = adapter->tx_ring;
1273 u64 tdba;
1274 u32 txdctl, dca_txctrl;
1275
1276 /* disable transmits */
1277 txdctl = er32(TXDCTL(0));
1278 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1279 msleep(10);
1280
1281 /* Setup the HW Tx Head and Tail descriptor pointers */
1282 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1283 tdba = tx_ring->dma;
1284 ew32(TDBAL(0), (tdba & DMA_32BIT_MASK));
1285 ew32(TDBAH(0), (tdba >> 32));
1286 ew32(TDH(0), 0);
1287 ew32(TDT(0), 0);
1288 tx_ring->head = E1000_TDH(0);
1289 tx_ring->tail = E1000_TDT(0);
1290
1291 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1292 * MUST be delivered in order or it will completely screw up
1293 * our bookeeping.
1294 */
1295 dca_txctrl = er32(DCA_TXCTRL(0));
1296 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1297 ew32(DCA_TXCTRL(0), dca_txctrl);
1298
1299 /* enable transmits */
1300 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1301 ew32(TXDCTL(0), txdctl);
1302
1303 /* Setup Transmit Descriptor Settings for eop descriptor */
1304 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1305
1306 /* enable Report Status bit */
1307 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1308
1309 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1310 }
1311
1312 /**
1313 * igbvf_setup_srrctl - configure the receive control registers
1314 * @adapter: Board private structure
1315 **/
1316 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1317 {
1318 struct e1000_hw *hw = &adapter->hw;
1319 u32 srrctl = 0;
1320
1321 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1322 E1000_SRRCTL_BSIZEHDR_MASK |
1323 E1000_SRRCTL_BSIZEPKT_MASK);
1324
1325 /* Enable queue drop to avoid head of line blocking */
1326 srrctl |= E1000_SRRCTL_DROP_EN;
1327
1328 /* Setup buffer sizes */
1329 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1330 E1000_SRRCTL_BSIZEPKT_SHIFT;
1331
1332 if (adapter->rx_buffer_len < 2048) {
1333 adapter->rx_ps_hdr_size = 0;
1334 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1335 } else {
1336 adapter->rx_ps_hdr_size = 128;
1337 srrctl |= adapter->rx_ps_hdr_size <<
1338 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1339 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1340 }
1341
1342 ew32(SRRCTL(0), srrctl);
1343 }
1344
1345 /**
1346 * igbvf_configure_rx - Configure Receive Unit after Reset
1347 * @adapter: board private structure
1348 *
1349 * Configure the Rx unit of the MAC after a reset.
1350 **/
1351 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1352 {
1353 struct e1000_hw *hw = &adapter->hw;
1354 struct igbvf_ring *rx_ring = adapter->rx_ring;
1355 u64 rdba;
1356 u32 rdlen, rxdctl;
1357
1358 /* disable receives */
1359 rxdctl = er32(RXDCTL(0));
1360 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1361 msleep(10);
1362
1363 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1364
1365 /*
1366 * Setup the HW Rx Head and Tail Descriptor Pointers and
1367 * the Base and Length of the Rx Descriptor Ring
1368 */
1369 rdba = rx_ring->dma;
1370 ew32(RDBAL(0), (rdba & DMA_32BIT_MASK));
1371 ew32(RDBAH(0), (rdba >> 32));
1372 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1373 rx_ring->head = E1000_RDH(0);
1374 rx_ring->tail = E1000_RDT(0);
1375 ew32(RDH(0), 0);
1376 ew32(RDT(0), 0);
1377
1378 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1379 rxdctl &= 0xFFF00000;
1380 rxdctl |= IGBVF_RX_PTHRESH;
1381 rxdctl |= IGBVF_RX_HTHRESH << 8;
1382 rxdctl |= IGBVF_RX_WTHRESH << 16;
1383
1384 igbvf_set_rlpml(adapter);
1385
1386 /* enable receives */
1387 ew32(RXDCTL(0), rxdctl);
1388 }
1389
1390 /**
1391 * igbvf_set_multi - Multicast and Promiscuous mode set
1392 * @netdev: network interface device structure
1393 *
1394 * The set_multi entry point is called whenever the multicast address
1395 * list or the network interface flags are updated. This routine is
1396 * responsible for configuring the hardware for proper multicast,
1397 * promiscuous mode, and all-multi behavior.
1398 **/
1399 static void igbvf_set_multi(struct net_device *netdev)
1400 {
1401 struct igbvf_adapter *adapter = netdev_priv(netdev);
1402 struct e1000_hw *hw = &adapter->hw;
1403 struct dev_mc_list *mc_ptr;
1404 u8 *mta_list = NULL;
1405 int i;
1406
1407 if (netdev->mc_count) {
1408 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1409 if (!mta_list) {
1410 dev_err(&adapter->pdev->dev,
1411 "failed to allocate multicast filter list\n");
1412 return;
1413 }
1414 }
1415
1416 /* prepare a packed array of only addresses. */
1417 mc_ptr = netdev->mc_list;
1418
1419 for (i = 0; i < netdev->mc_count; i++) {
1420 if (!mc_ptr)
1421 break;
1422 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1423 ETH_ALEN);
1424 mc_ptr = mc_ptr->next;
1425 }
1426
1427 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1428 kfree(mta_list);
1429 }
1430
1431 /**
1432 * igbvf_configure - configure the hardware for Rx and Tx
1433 * @adapter: private board structure
1434 **/
1435 static void igbvf_configure(struct igbvf_adapter *adapter)
1436 {
1437 igbvf_set_multi(adapter->netdev);
1438
1439 igbvf_restore_vlan(adapter);
1440
1441 igbvf_configure_tx(adapter);
1442 igbvf_setup_srrctl(adapter);
1443 igbvf_configure_rx(adapter);
1444 igbvf_alloc_rx_buffers(adapter->rx_ring,
1445 igbvf_desc_unused(adapter->rx_ring));
1446 }
1447
1448 /* igbvf_reset - bring the hardware into a known good state
1449 *
1450 * This function boots the hardware and enables some settings that
1451 * require a configuration cycle of the hardware - those cannot be
1452 * set/changed during runtime. After reset the device needs to be
1453 * properly configured for Rx, Tx etc.
1454 */
1455 static void igbvf_reset(struct igbvf_adapter *adapter)
1456 {
1457 struct e1000_mac_info *mac = &adapter->hw.mac;
1458 struct net_device *netdev = adapter->netdev;
1459 struct e1000_hw *hw = &adapter->hw;
1460
1461 /* Allow time for pending master requests to run */
1462 if (mac->ops.reset_hw(hw))
1463 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1464
1465 mac->ops.init_hw(hw);
1466
1467 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1468 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1469 netdev->addr_len);
1470 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1471 netdev->addr_len);
1472 }
1473 }
1474
1475 int igbvf_up(struct igbvf_adapter *adapter)
1476 {
1477 struct e1000_hw *hw = &adapter->hw;
1478
1479 /* hardware has been reset, we need to reload some things */
1480 igbvf_configure(adapter);
1481
1482 clear_bit(__IGBVF_DOWN, &adapter->state);
1483
1484 napi_enable(&adapter->rx_ring->napi);
1485 if (adapter->msix_entries)
1486 igbvf_configure_msix(adapter);
1487
1488 /* Clear any pending interrupts. */
1489 er32(EICR);
1490 igbvf_irq_enable(adapter);
1491
1492 /* start the watchdog */
1493 hw->mac.get_link_status = 1;
1494 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1495
1496
1497 return 0;
1498 }
1499
1500 void igbvf_down(struct igbvf_adapter *adapter)
1501 {
1502 struct net_device *netdev = adapter->netdev;
1503 struct e1000_hw *hw = &adapter->hw;
1504 u32 rxdctl, txdctl;
1505
1506 /*
1507 * signal that we're down so the interrupt handler does not
1508 * reschedule our watchdog timer
1509 */
1510 set_bit(__IGBVF_DOWN, &adapter->state);
1511
1512 /* disable receives in the hardware */
1513 rxdctl = er32(RXDCTL(0));
1514 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1515
1516 netif_stop_queue(netdev);
1517
1518 /* disable transmits in the hardware */
1519 txdctl = er32(TXDCTL(0));
1520 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1521
1522 /* flush both disables and wait for them to finish */
1523 e1e_flush();
1524 msleep(10);
1525
1526 napi_disable(&adapter->rx_ring->napi);
1527
1528 igbvf_irq_disable(adapter);
1529
1530 del_timer_sync(&adapter->watchdog_timer);
1531
1532 netdev->tx_queue_len = adapter->tx_queue_len;
1533 netif_carrier_off(netdev);
1534
1535 /* record the stats before reset*/
1536 igbvf_update_stats(adapter);
1537
1538 adapter->link_speed = 0;
1539 adapter->link_duplex = 0;
1540
1541 igbvf_reset(adapter);
1542 igbvf_clean_tx_ring(adapter->tx_ring);
1543 igbvf_clean_rx_ring(adapter->rx_ring);
1544 }
1545
1546 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1547 {
1548 might_sleep();
1549 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1550 msleep(1);
1551 igbvf_down(adapter);
1552 igbvf_up(adapter);
1553 clear_bit(__IGBVF_RESETTING, &adapter->state);
1554 }
1555
1556 /**
1557 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1558 * @adapter: board private structure to initialize
1559 *
1560 * igbvf_sw_init initializes the Adapter private data structure.
1561 * Fields are initialized based on PCI device information and
1562 * OS network device settings (MTU size).
1563 **/
1564 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1565 {
1566 struct net_device *netdev = adapter->netdev;
1567 s32 rc;
1568
1569 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1570 adapter->rx_ps_hdr_size = 0;
1571 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1572 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1573
1574 adapter->tx_int_delay = 8;
1575 adapter->tx_abs_int_delay = 32;
1576 adapter->rx_int_delay = 0;
1577 adapter->rx_abs_int_delay = 8;
1578 adapter->itr_setting = 3;
1579 adapter->itr = 20000;
1580
1581 /* Set various function pointers */
1582 adapter->ei->init_ops(&adapter->hw);
1583
1584 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1585 if (rc)
1586 return rc;
1587
1588 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1589 if (rc)
1590 return rc;
1591
1592 igbvf_set_interrupt_capability(adapter);
1593
1594 if (igbvf_alloc_queues(adapter))
1595 return -ENOMEM;
1596
1597 spin_lock_init(&adapter->tx_queue_lock);
1598
1599 /* Explicitly disable IRQ since the NIC can be in any state. */
1600 igbvf_irq_disable(adapter);
1601
1602 spin_lock_init(&adapter->stats_lock);
1603
1604 set_bit(__IGBVF_DOWN, &adapter->state);
1605 return 0;
1606 }
1607
1608 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1609 {
1610 struct e1000_hw *hw = &adapter->hw;
1611
1612 adapter->stats.last_gprc = er32(VFGPRC);
1613 adapter->stats.last_gorc = er32(VFGORC);
1614 adapter->stats.last_gptc = er32(VFGPTC);
1615 adapter->stats.last_gotc = er32(VFGOTC);
1616 adapter->stats.last_mprc = er32(VFMPRC);
1617 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1618 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1619 adapter->stats.last_gorlbc = er32(VFGORLBC);
1620 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1621
1622 adapter->stats.base_gprc = er32(VFGPRC);
1623 adapter->stats.base_gorc = er32(VFGORC);
1624 adapter->stats.base_gptc = er32(VFGPTC);
1625 adapter->stats.base_gotc = er32(VFGOTC);
1626 adapter->stats.base_mprc = er32(VFMPRC);
1627 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1628 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1629 adapter->stats.base_gorlbc = er32(VFGORLBC);
1630 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1631 }
1632
1633 /**
1634 * igbvf_open - Called when a network interface is made active
1635 * @netdev: network interface device structure
1636 *
1637 * Returns 0 on success, negative value on failure
1638 *
1639 * The open entry point is called when a network interface is made
1640 * active by the system (IFF_UP). At this point all resources needed
1641 * for transmit and receive operations are allocated, the interrupt
1642 * handler is registered with the OS, the watchdog timer is started,
1643 * and the stack is notified that the interface is ready.
1644 **/
1645 static int igbvf_open(struct net_device *netdev)
1646 {
1647 struct igbvf_adapter *adapter = netdev_priv(netdev);
1648 struct e1000_hw *hw = &adapter->hw;
1649 int err;
1650
1651 /* disallow open during test */
1652 if (test_bit(__IGBVF_TESTING, &adapter->state))
1653 return -EBUSY;
1654
1655 /* allocate transmit descriptors */
1656 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1657 if (err)
1658 goto err_setup_tx;
1659
1660 /* allocate receive descriptors */
1661 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1662 if (err)
1663 goto err_setup_rx;
1664
1665 /*
1666 * before we allocate an interrupt, we must be ready to handle it.
1667 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1668 * as soon as we call pci_request_irq, so we have to setup our
1669 * clean_rx handler before we do so.
1670 */
1671 igbvf_configure(adapter);
1672
1673 err = igbvf_request_irq(adapter);
1674 if (err)
1675 goto err_req_irq;
1676
1677 /* From here on the code is the same as igbvf_up() */
1678 clear_bit(__IGBVF_DOWN, &adapter->state);
1679
1680 napi_enable(&adapter->rx_ring->napi);
1681
1682 /* clear any pending interrupts */
1683 er32(EICR);
1684
1685 igbvf_irq_enable(adapter);
1686
1687 /* start the watchdog */
1688 hw->mac.get_link_status = 1;
1689 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1690
1691 return 0;
1692
1693 err_req_irq:
1694 igbvf_free_rx_resources(adapter->rx_ring);
1695 err_setup_rx:
1696 igbvf_free_tx_resources(adapter->tx_ring);
1697 err_setup_tx:
1698 igbvf_reset(adapter);
1699
1700 return err;
1701 }
1702
1703 /**
1704 * igbvf_close - Disables a network interface
1705 * @netdev: network interface device structure
1706 *
1707 * Returns 0, this is not allowed to fail
1708 *
1709 * The close entry point is called when an interface is de-activated
1710 * by the OS. The hardware is still under the drivers control, but
1711 * needs to be disabled. A global MAC reset is issued to stop the
1712 * hardware, and all transmit and receive resources are freed.
1713 **/
1714 static int igbvf_close(struct net_device *netdev)
1715 {
1716 struct igbvf_adapter *adapter = netdev_priv(netdev);
1717
1718 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1719 igbvf_down(adapter);
1720
1721 igbvf_free_irq(adapter);
1722
1723 igbvf_free_tx_resources(adapter->tx_ring);
1724 igbvf_free_rx_resources(adapter->rx_ring);
1725
1726 return 0;
1727 }
1728 /**
1729 * igbvf_set_mac - Change the Ethernet Address of the NIC
1730 * @netdev: network interface device structure
1731 * @p: pointer to an address structure
1732 *
1733 * Returns 0 on success, negative on failure
1734 **/
1735 static int igbvf_set_mac(struct net_device *netdev, void *p)
1736 {
1737 struct igbvf_adapter *adapter = netdev_priv(netdev);
1738 struct e1000_hw *hw = &adapter->hw;
1739 struct sockaddr *addr = p;
1740
1741 if (!is_valid_ether_addr(addr->sa_data))
1742 return -EADDRNOTAVAIL;
1743
1744 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1745
1746 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1747
1748 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1749 return -EADDRNOTAVAIL;
1750
1751 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1752
1753 return 0;
1754 }
1755
1756 #define UPDATE_VF_COUNTER(reg, name) \
1757 { \
1758 u32 current_counter = er32(reg); \
1759 if (current_counter < adapter->stats.last_##name) \
1760 adapter->stats.name += 0x100000000LL; \
1761 adapter->stats.last_##name = current_counter; \
1762 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1763 adapter->stats.name |= current_counter; \
1764 }
1765
1766 /**
1767 * igbvf_update_stats - Update the board statistics counters
1768 * @adapter: board private structure
1769 **/
1770 void igbvf_update_stats(struct igbvf_adapter *adapter)
1771 {
1772 struct e1000_hw *hw = &adapter->hw;
1773 struct pci_dev *pdev = adapter->pdev;
1774
1775 /*
1776 * Prevent stats update while adapter is being reset, link is down
1777 * or if the pci connection is down.
1778 */
1779 if (adapter->link_speed == 0)
1780 return;
1781
1782 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1783 return;
1784
1785 if (pci_channel_offline(pdev))
1786 return;
1787
1788 UPDATE_VF_COUNTER(VFGPRC, gprc);
1789 UPDATE_VF_COUNTER(VFGORC, gorc);
1790 UPDATE_VF_COUNTER(VFGPTC, gptc);
1791 UPDATE_VF_COUNTER(VFGOTC, gotc);
1792 UPDATE_VF_COUNTER(VFMPRC, mprc);
1793 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1794 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1795 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1796 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1797
1798 /* Fill out the OS statistics structure */
1799 adapter->net_stats.multicast = adapter->stats.mprc;
1800 }
1801
1802 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1803 {
1804 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1805 adapter->link_speed,
1806 ((adapter->link_duplex == FULL_DUPLEX) ?
1807 "Full Duplex" : "Half Duplex"));
1808 }
1809
1810 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1811 {
1812 struct e1000_hw *hw = &adapter->hw;
1813 s32 ret_val = E1000_SUCCESS;
1814 bool link_active;
1815
1816 ret_val = hw->mac.ops.check_for_link(hw);
1817 link_active = !hw->mac.get_link_status;
1818
1819 /* if check for link returns error we will need to reset */
1820 if (ret_val)
1821 schedule_work(&adapter->reset_task);
1822
1823 return link_active;
1824 }
1825
1826 /**
1827 * igbvf_watchdog - Timer Call-back
1828 * @data: pointer to adapter cast into an unsigned long
1829 **/
1830 static void igbvf_watchdog(unsigned long data)
1831 {
1832 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1833
1834 /* Do the rest outside of interrupt context */
1835 schedule_work(&adapter->watchdog_task);
1836 }
1837
1838 static void igbvf_watchdog_task(struct work_struct *work)
1839 {
1840 struct igbvf_adapter *adapter = container_of(work,
1841 struct igbvf_adapter,
1842 watchdog_task);
1843 struct net_device *netdev = adapter->netdev;
1844 struct e1000_mac_info *mac = &adapter->hw.mac;
1845 struct igbvf_ring *tx_ring = adapter->tx_ring;
1846 struct e1000_hw *hw = &adapter->hw;
1847 u32 link;
1848 int tx_pending = 0;
1849
1850 link = igbvf_has_link(adapter);
1851
1852 if (link) {
1853 if (!netif_carrier_ok(netdev)) {
1854 bool txb2b = 1;
1855
1856 mac->ops.get_link_up_info(&adapter->hw,
1857 &adapter->link_speed,
1858 &adapter->link_duplex);
1859 igbvf_print_link_info(adapter);
1860
1861 /*
1862 * tweak tx_queue_len according to speed/duplex
1863 * and adjust the timeout factor
1864 */
1865 netdev->tx_queue_len = adapter->tx_queue_len;
1866 adapter->tx_timeout_factor = 1;
1867 switch (adapter->link_speed) {
1868 case SPEED_10:
1869 txb2b = 0;
1870 netdev->tx_queue_len = 10;
1871 adapter->tx_timeout_factor = 16;
1872 break;
1873 case SPEED_100:
1874 txb2b = 0;
1875 netdev->tx_queue_len = 100;
1876 /* maybe add some timeout factor ? */
1877 break;
1878 }
1879
1880 netif_carrier_on(netdev);
1881 netif_wake_queue(netdev);
1882 }
1883 } else {
1884 if (netif_carrier_ok(netdev)) {
1885 adapter->link_speed = 0;
1886 adapter->link_duplex = 0;
1887 dev_info(&adapter->pdev->dev, "Link is Down\n");
1888 netif_carrier_off(netdev);
1889 netif_stop_queue(netdev);
1890 }
1891 }
1892
1893 if (netif_carrier_ok(netdev)) {
1894 igbvf_update_stats(adapter);
1895 } else {
1896 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1897 tx_ring->count);
1898 if (tx_pending) {
1899 /*
1900 * We've lost link, so the controller stops DMA,
1901 * but we've got queued Tx work that's never going
1902 * to get done, so reset controller to flush Tx.
1903 * (Do the reset outside of interrupt context).
1904 */
1905 adapter->tx_timeout_count++;
1906 schedule_work(&adapter->reset_task);
1907 }
1908 }
1909
1910 /* Cause software interrupt to ensure Rx ring is cleaned */
1911 ew32(EICS, adapter->rx_ring->eims_value);
1912
1913 /* Force detection of hung controller every watchdog period */
1914 adapter->detect_tx_hung = 1;
1915
1916 /* Reset the timer */
1917 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1918 mod_timer(&adapter->watchdog_timer,
1919 round_jiffies(jiffies + (2 * HZ)));
1920 }
1921
1922 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1923 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1924 #define IGBVF_TX_FLAGS_TSO 0x00000004
1925 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1926 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1927 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1928
1929 static int igbvf_tso(struct igbvf_adapter *adapter,
1930 struct igbvf_ring *tx_ring,
1931 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1932 {
1933 struct e1000_adv_tx_context_desc *context_desc;
1934 unsigned int i;
1935 int err;
1936 struct igbvf_buffer *buffer_info;
1937 u32 info = 0, tu_cmd = 0;
1938 u32 mss_l4len_idx, l4len;
1939 *hdr_len = 0;
1940
1941 if (skb_header_cloned(skb)) {
1942 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1943 if (err) {
1944 dev_err(&adapter->pdev->dev,
1945 "igbvf_tso returning an error\n");
1946 return err;
1947 }
1948 }
1949
1950 l4len = tcp_hdrlen(skb);
1951 *hdr_len += l4len;
1952
1953 if (skb->protocol == htons(ETH_P_IP)) {
1954 struct iphdr *iph = ip_hdr(skb);
1955 iph->tot_len = 0;
1956 iph->check = 0;
1957 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1958 iph->daddr, 0,
1959 IPPROTO_TCP,
1960 0);
1961 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
1962 ipv6_hdr(skb)->payload_len = 0;
1963 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1964 &ipv6_hdr(skb)->daddr,
1965 0, IPPROTO_TCP, 0);
1966 }
1967
1968 i = tx_ring->next_to_use;
1969
1970 buffer_info = &tx_ring->buffer_info[i];
1971 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1972 /* VLAN MACLEN IPLEN */
1973 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1974 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1975 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1976 *hdr_len += skb_network_offset(skb);
1977 info |= (skb_transport_header(skb) - skb_network_header(skb));
1978 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1979 context_desc->vlan_macip_lens = cpu_to_le32(info);
1980
1981 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1982 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1983
1984 if (skb->protocol == htons(ETH_P_IP))
1985 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1986 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1987
1988 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1989
1990 /* MSS L4LEN IDX */
1991 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1992 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1993
1994 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1995 context_desc->seqnum_seed = 0;
1996
1997 buffer_info->time_stamp = jiffies;
1998 buffer_info->next_to_watch = i;
1999 buffer_info->dma = 0;
2000 i++;
2001 if (i == tx_ring->count)
2002 i = 0;
2003
2004 tx_ring->next_to_use = i;
2005
2006 return true;
2007 }
2008
2009 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
2010 struct igbvf_ring *tx_ring,
2011 struct sk_buff *skb, u32 tx_flags)
2012 {
2013 struct e1000_adv_tx_context_desc *context_desc;
2014 unsigned int i;
2015 struct igbvf_buffer *buffer_info;
2016 u32 info = 0, tu_cmd = 0;
2017
2018 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2019 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2020 i = tx_ring->next_to_use;
2021 buffer_info = &tx_ring->buffer_info[i];
2022 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2023
2024 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2025 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2026
2027 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2028 if (skb->ip_summed == CHECKSUM_PARTIAL)
2029 info |= (skb_transport_header(skb) -
2030 skb_network_header(skb));
2031
2032
2033 context_desc->vlan_macip_lens = cpu_to_le32(info);
2034
2035 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2036
2037 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2038 switch (skb->protocol) {
2039 case __constant_htons(ETH_P_IP):
2040 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2041 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2042 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2043 break;
2044 case __constant_htons(ETH_P_IPV6):
2045 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2046 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2047 break;
2048 default:
2049 break;
2050 }
2051 }
2052
2053 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2054 context_desc->seqnum_seed = 0;
2055 context_desc->mss_l4len_idx = 0;
2056
2057 buffer_info->time_stamp = jiffies;
2058 buffer_info->next_to_watch = i;
2059 buffer_info->dma = 0;
2060 i++;
2061 if (i == tx_ring->count)
2062 i = 0;
2063 tx_ring->next_to_use = i;
2064
2065 return true;
2066 }
2067
2068 return false;
2069 }
2070
2071 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2072 {
2073 struct igbvf_adapter *adapter = netdev_priv(netdev);
2074
2075 /* there is enough descriptors then we don't need to worry */
2076 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2077 return 0;
2078
2079 netif_stop_queue(netdev);
2080
2081 smp_mb();
2082
2083 /* We need to check again just in case room has been made available */
2084 if (igbvf_desc_unused(adapter->tx_ring) < size)
2085 return -EBUSY;
2086
2087 netif_wake_queue(netdev);
2088
2089 ++adapter->restart_queue;
2090 return 0;
2091 }
2092
2093 #define IGBVF_MAX_TXD_PWR 16
2094 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2095
2096 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2097 struct igbvf_ring *tx_ring,
2098 struct sk_buff *skb,
2099 unsigned int first)
2100 {
2101 struct igbvf_buffer *buffer_info;
2102 unsigned int len = skb_headlen(skb);
2103 unsigned int count = 0, i;
2104 unsigned int f;
2105 dma_addr_t *map;
2106
2107 i = tx_ring->next_to_use;
2108
2109 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2110 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2111 return 0;
2112 }
2113
2114 map = skb_shinfo(skb)->dma_maps;
2115
2116 buffer_info = &tx_ring->buffer_info[i];
2117 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2118 buffer_info->length = len;
2119 /* set time_stamp *before* dma to help avoid a possible race */
2120 buffer_info->time_stamp = jiffies;
2121 buffer_info->next_to_watch = i;
2122 buffer_info->dma = map[count];
2123 count++;
2124
2125 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2126 struct skb_frag_struct *frag;
2127
2128 i++;
2129 if (i == tx_ring->count)
2130 i = 0;
2131
2132 frag = &skb_shinfo(skb)->frags[f];
2133 len = frag->size;
2134
2135 buffer_info = &tx_ring->buffer_info[i];
2136 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2137 buffer_info->length = len;
2138 buffer_info->time_stamp = jiffies;
2139 buffer_info->next_to_watch = i;
2140 buffer_info->dma = map[count];
2141 count++;
2142 }
2143
2144 tx_ring->buffer_info[i].skb = skb;
2145 tx_ring->buffer_info[first].next_to_watch = i;
2146
2147 return count;
2148 }
2149
2150 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2151 struct igbvf_ring *tx_ring,
2152 int tx_flags, int count, u32 paylen,
2153 u8 hdr_len)
2154 {
2155 union e1000_adv_tx_desc *tx_desc = NULL;
2156 struct igbvf_buffer *buffer_info;
2157 u32 olinfo_status = 0, cmd_type_len;
2158 unsigned int i;
2159
2160 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2161 E1000_ADVTXD_DCMD_DEXT);
2162
2163 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2164 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2165
2166 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2167 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2168
2169 /* insert tcp checksum */
2170 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2171
2172 /* insert ip checksum */
2173 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2174 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2175
2176 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2177 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2178 }
2179
2180 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2181
2182 i = tx_ring->next_to_use;
2183 while (count--) {
2184 buffer_info = &tx_ring->buffer_info[i];
2185 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2186 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2187 tx_desc->read.cmd_type_len =
2188 cpu_to_le32(cmd_type_len | buffer_info->length);
2189 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2190 i++;
2191 if (i == tx_ring->count)
2192 i = 0;
2193 }
2194
2195 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2196 /* Force memory writes to complete before letting h/w
2197 * know there are new descriptors to fetch. (Only
2198 * applicable for weak-ordered memory model archs,
2199 * such as IA-64). */
2200 wmb();
2201
2202 tx_ring->next_to_use = i;
2203 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2204 /* we need this if more than one processor can write to our tail
2205 * at a time, it syncronizes IO on IA64/Altix systems */
2206 mmiowb();
2207 }
2208
2209 static int igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2210 struct net_device *netdev,
2211 struct igbvf_ring *tx_ring)
2212 {
2213 struct igbvf_adapter *adapter = netdev_priv(netdev);
2214 unsigned int first, tx_flags = 0;
2215 u8 hdr_len = 0;
2216 int count = 0;
2217 int tso = 0;
2218
2219 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2220 dev_kfree_skb_any(skb);
2221 return NETDEV_TX_OK;
2222 }
2223
2224 if (skb->len <= 0) {
2225 dev_kfree_skb_any(skb);
2226 return NETDEV_TX_OK;
2227 }
2228
2229 /*
2230 * need: count + 4 desc gap to keep tail from touching
2231 * + 2 desc gap to keep tail from touching head,
2232 * + 1 desc for skb->data,
2233 * + 1 desc for context descriptor,
2234 * head, otherwise try next time
2235 */
2236 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2237 /* this is a hard error */
2238 return NETDEV_TX_BUSY;
2239 }
2240
2241 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2242 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2243 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2244 }
2245
2246 if (skb->protocol == htons(ETH_P_IP))
2247 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2248
2249 first = tx_ring->next_to_use;
2250
2251 tso = skb_is_gso(skb) ?
2252 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2253 if (unlikely(tso < 0)) {
2254 dev_kfree_skb_any(skb);
2255 return NETDEV_TX_OK;
2256 }
2257
2258 if (tso)
2259 tx_flags |= IGBVF_TX_FLAGS_TSO;
2260 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2261 (skb->ip_summed == CHECKSUM_PARTIAL))
2262 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2263
2264 /*
2265 * count reflects descriptors mapped, if 0 then mapping error
2266 * has occured and we need to rewind the descriptor queue
2267 */
2268 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2269
2270 if (count) {
2271 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2272 skb->len, hdr_len);
2273 /* Make sure there is space in the ring for the next send. */
2274 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2275 } else {
2276 dev_kfree_skb_any(skb);
2277 tx_ring->buffer_info[first].time_stamp = 0;
2278 tx_ring->next_to_use = first;
2279 }
2280
2281 return NETDEV_TX_OK;
2282 }
2283
2284 static int igbvf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2285 {
2286 struct igbvf_adapter *adapter = netdev_priv(netdev);
2287 struct igbvf_ring *tx_ring;
2288 int retval;
2289
2290 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2291 dev_kfree_skb_any(skb);
2292 return NETDEV_TX_OK;
2293 }
2294
2295 tx_ring = &adapter->tx_ring[0];
2296
2297 retval = igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2298
2299 return retval;
2300 }
2301
2302 /**
2303 * igbvf_tx_timeout - Respond to a Tx Hang
2304 * @netdev: network interface device structure
2305 **/
2306 static void igbvf_tx_timeout(struct net_device *netdev)
2307 {
2308 struct igbvf_adapter *adapter = netdev_priv(netdev);
2309
2310 /* Do the reset outside of interrupt context */
2311 adapter->tx_timeout_count++;
2312 schedule_work(&adapter->reset_task);
2313 }
2314
2315 static void igbvf_reset_task(struct work_struct *work)
2316 {
2317 struct igbvf_adapter *adapter;
2318 adapter = container_of(work, struct igbvf_adapter, reset_task);
2319
2320 igbvf_reinit_locked(adapter);
2321 }
2322
2323 /**
2324 * igbvf_get_stats - Get System Network Statistics
2325 * @netdev: network interface device structure
2326 *
2327 * Returns the address of the device statistics structure.
2328 * The statistics are actually updated from the timer callback.
2329 **/
2330 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2331 {
2332 struct igbvf_adapter *adapter = netdev_priv(netdev);
2333
2334 /* only return the current stats */
2335 return &adapter->net_stats;
2336 }
2337
2338 /**
2339 * igbvf_change_mtu - Change the Maximum Transfer Unit
2340 * @netdev: network interface device structure
2341 * @new_mtu: new value for maximum frame size
2342 *
2343 * Returns 0 on success, negative on failure
2344 **/
2345 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2346 {
2347 struct igbvf_adapter *adapter = netdev_priv(netdev);
2348 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2349
2350 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2351 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2352 return -EINVAL;
2353 }
2354
2355 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2356 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2357 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2358 return -EINVAL;
2359 }
2360
2361 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2362 msleep(1);
2363 /* igbvf_down has a dependency on max_frame_size */
2364 adapter->max_frame_size = max_frame;
2365 if (netif_running(netdev))
2366 igbvf_down(adapter);
2367
2368 /*
2369 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2370 * means we reserve 2 more, this pushes us to allocate from the next
2371 * larger slab size.
2372 * i.e. RXBUFFER_2048 --> size-4096 slab
2373 * However with the new *_jumbo_rx* routines, jumbo receives will use
2374 * fragmented skbs
2375 */
2376
2377 if (max_frame <= 1024)
2378 adapter->rx_buffer_len = 1024;
2379 else if (max_frame <= 2048)
2380 adapter->rx_buffer_len = 2048;
2381 else
2382 #if (PAGE_SIZE / 2) > 16384
2383 adapter->rx_buffer_len = 16384;
2384 #else
2385 adapter->rx_buffer_len = PAGE_SIZE / 2;
2386 #endif
2387
2388
2389 /* adjust allocation if LPE protects us, and we aren't using SBP */
2390 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2391 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2392 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2393 ETH_FCS_LEN;
2394
2395 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2396 netdev->mtu, new_mtu);
2397 netdev->mtu = new_mtu;
2398
2399 if (netif_running(netdev))
2400 igbvf_up(adapter);
2401 else
2402 igbvf_reset(adapter);
2403
2404 clear_bit(__IGBVF_RESETTING, &adapter->state);
2405
2406 return 0;
2407 }
2408
2409 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2410 {
2411 switch (cmd) {
2412 default:
2413 return -EOPNOTSUPP;
2414 }
2415 }
2416
2417 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2418 {
2419 struct net_device *netdev = pci_get_drvdata(pdev);
2420 struct igbvf_adapter *adapter = netdev_priv(netdev);
2421 #ifdef CONFIG_PM
2422 int retval = 0;
2423 #endif
2424
2425 netif_device_detach(netdev);
2426
2427 if (netif_running(netdev)) {
2428 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2429 igbvf_down(adapter);
2430 igbvf_free_irq(adapter);
2431 }
2432
2433 #ifdef CONFIG_PM
2434 retval = pci_save_state(pdev);
2435 if (retval)
2436 return retval;
2437 #endif
2438
2439 pci_disable_device(pdev);
2440
2441 return 0;
2442 }
2443
2444 #ifdef CONFIG_PM
2445 static int igbvf_resume(struct pci_dev *pdev)
2446 {
2447 struct net_device *netdev = pci_get_drvdata(pdev);
2448 struct igbvf_adapter *adapter = netdev_priv(netdev);
2449 u32 err;
2450
2451 pci_restore_state(pdev);
2452 err = pci_enable_device_mem(pdev);
2453 if (err) {
2454 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2455 return err;
2456 }
2457
2458 pci_set_master(pdev);
2459
2460 if (netif_running(netdev)) {
2461 err = igbvf_request_irq(adapter);
2462 if (err)
2463 return err;
2464 }
2465
2466 igbvf_reset(adapter);
2467
2468 if (netif_running(netdev))
2469 igbvf_up(adapter);
2470
2471 netif_device_attach(netdev);
2472
2473 return 0;
2474 }
2475 #endif
2476
2477 static void igbvf_shutdown(struct pci_dev *pdev)
2478 {
2479 igbvf_suspend(pdev, PMSG_SUSPEND);
2480 }
2481
2482 #ifdef CONFIG_NET_POLL_CONTROLLER
2483 /*
2484 * Polling 'interrupt' - used by things like netconsole to send skbs
2485 * without having to re-enable interrupts. It's not called while
2486 * the interrupt routine is executing.
2487 */
2488 static void igbvf_netpoll(struct net_device *netdev)
2489 {
2490 struct igbvf_adapter *adapter = netdev_priv(netdev);
2491
2492 disable_irq(adapter->pdev->irq);
2493
2494 igbvf_clean_tx_irq(adapter->tx_ring);
2495
2496 enable_irq(adapter->pdev->irq);
2497 }
2498 #endif
2499
2500 /**
2501 * igbvf_io_error_detected - called when PCI error is detected
2502 * @pdev: Pointer to PCI device
2503 * @state: The current pci connection state
2504 *
2505 * This function is called after a PCI bus error affecting
2506 * this device has been detected.
2507 */
2508 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2509 pci_channel_state_t state)
2510 {
2511 struct net_device *netdev = pci_get_drvdata(pdev);
2512 struct igbvf_adapter *adapter = netdev_priv(netdev);
2513
2514 netif_device_detach(netdev);
2515
2516 if (netif_running(netdev))
2517 igbvf_down(adapter);
2518 pci_disable_device(pdev);
2519
2520 /* Request a slot slot reset. */
2521 return PCI_ERS_RESULT_NEED_RESET;
2522 }
2523
2524 /**
2525 * igbvf_io_slot_reset - called after the pci bus has been reset.
2526 * @pdev: Pointer to PCI device
2527 *
2528 * Restart the card from scratch, as if from a cold-boot. Implementation
2529 * resembles the first-half of the igbvf_resume routine.
2530 */
2531 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2532 {
2533 struct net_device *netdev = pci_get_drvdata(pdev);
2534 struct igbvf_adapter *adapter = netdev_priv(netdev);
2535
2536 if (pci_enable_device_mem(pdev)) {
2537 dev_err(&pdev->dev,
2538 "Cannot re-enable PCI device after reset.\n");
2539 return PCI_ERS_RESULT_DISCONNECT;
2540 }
2541 pci_set_master(pdev);
2542
2543 igbvf_reset(adapter);
2544
2545 return PCI_ERS_RESULT_RECOVERED;
2546 }
2547
2548 /**
2549 * igbvf_io_resume - called when traffic can start flowing again.
2550 * @pdev: Pointer to PCI device
2551 *
2552 * This callback is called when the error recovery driver tells us that
2553 * its OK to resume normal operation. Implementation resembles the
2554 * second-half of the igbvf_resume routine.
2555 */
2556 static void igbvf_io_resume(struct pci_dev *pdev)
2557 {
2558 struct net_device *netdev = pci_get_drvdata(pdev);
2559 struct igbvf_adapter *adapter = netdev_priv(netdev);
2560
2561 if (netif_running(netdev)) {
2562 if (igbvf_up(adapter)) {
2563 dev_err(&pdev->dev,
2564 "can't bring device back up after reset\n");
2565 return;
2566 }
2567 }
2568
2569 netif_device_attach(netdev);
2570 }
2571
2572 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2573 {
2574 struct e1000_hw *hw = &adapter->hw;
2575 struct net_device *netdev = adapter->netdev;
2576 struct pci_dev *pdev = adapter->pdev;
2577
2578 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2579 dev_info(&pdev->dev, "Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
2580 /* MAC address */
2581 netdev->dev_addr[0], netdev->dev_addr[1],
2582 netdev->dev_addr[2], netdev->dev_addr[3],
2583 netdev->dev_addr[4], netdev->dev_addr[5]);
2584 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2585 }
2586
2587 static const struct net_device_ops igbvf_netdev_ops = {
2588 .ndo_open = igbvf_open,
2589 .ndo_stop = igbvf_close,
2590 .ndo_start_xmit = igbvf_xmit_frame,
2591 .ndo_get_stats = igbvf_get_stats,
2592 .ndo_set_multicast_list = igbvf_set_multi,
2593 .ndo_set_mac_address = igbvf_set_mac,
2594 .ndo_change_mtu = igbvf_change_mtu,
2595 .ndo_do_ioctl = igbvf_ioctl,
2596 .ndo_tx_timeout = igbvf_tx_timeout,
2597 .ndo_vlan_rx_register = igbvf_vlan_rx_register,
2598 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2599 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2600 #ifdef CONFIG_NET_POLL_CONTROLLER
2601 .ndo_poll_controller = igbvf_netpoll,
2602 #endif
2603 };
2604
2605 /**
2606 * igbvf_probe - Device Initialization Routine
2607 * @pdev: PCI device information struct
2608 * @ent: entry in igbvf_pci_tbl
2609 *
2610 * Returns 0 on success, negative on failure
2611 *
2612 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2613 * The OS initialization, configuring of the adapter private structure,
2614 * and a hardware reset occur.
2615 **/
2616 static int __devinit igbvf_probe(struct pci_dev *pdev,
2617 const struct pci_device_id *ent)
2618 {
2619 struct net_device *netdev;
2620 struct igbvf_adapter *adapter;
2621 struct e1000_hw *hw;
2622 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2623
2624 static int cards_found;
2625 int err, pci_using_dac;
2626
2627 err = pci_enable_device_mem(pdev);
2628 if (err)
2629 return err;
2630
2631 pci_using_dac = 0;
2632 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
2633 if (!err) {
2634 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
2635 if (!err)
2636 pci_using_dac = 1;
2637 } else {
2638 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2639 if (err) {
2640 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2641 if (err) {
2642 dev_err(&pdev->dev, "No usable DMA "
2643 "configuration, aborting\n");
2644 goto err_dma;
2645 }
2646 }
2647 }
2648
2649 err = pci_request_regions(pdev, igbvf_driver_name);
2650 if (err)
2651 goto err_pci_reg;
2652
2653 pci_set_master(pdev);
2654
2655 err = -ENOMEM;
2656 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2657 if (!netdev)
2658 goto err_alloc_etherdev;
2659
2660 SET_NETDEV_DEV(netdev, &pdev->dev);
2661
2662 pci_set_drvdata(pdev, netdev);
2663 adapter = netdev_priv(netdev);
2664 hw = &adapter->hw;
2665 adapter->netdev = netdev;
2666 adapter->pdev = pdev;
2667 adapter->ei = ei;
2668 adapter->pba = ei->pba;
2669 adapter->flags = ei->flags;
2670 adapter->hw.back = adapter;
2671 adapter->hw.mac.type = ei->mac;
2672 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2673
2674 /* PCI config space info */
2675
2676 hw->vendor_id = pdev->vendor;
2677 hw->device_id = pdev->device;
2678 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2679 hw->subsystem_device_id = pdev->subsystem_device;
2680
2681 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2682
2683 err = -EIO;
2684 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2685 pci_resource_len(pdev, 0));
2686
2687 if (!adapter->hw.hw_addr)
2688 goto err_ioremap;
2689
2690 if (ei->get_variants) {
2691 err = ei->get_variants(adapter);
2692 if (err)
2693 goto err_ioremap;
2694 }
2695
2696 /* setup adapter struct */
2697 err = igbvf_sw_init(adapter);
2698 if (err)
2699 goto err_sw_init;
2700
2701 /* construct the net_device struct */
2702 netdev->netdev_ops = &igbvf_netdev_ops;
2703
2704 igbvf_set_ethtool_ops(netdev);
2705 netdev->watchdog_timeo = 5 * HZ;
2706 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2707
2708 adapter->bd_number = cards_found++;
2709
2710 netdev->features = NETIF_F_SG |
2711 NETIF_F_IP_CSUM |
2712 NETIF_F_HW_VLAN_TX |
2713 NETIF_F_HW_VLAN_RX |
2714 NETIF_F_HW_VLAN_FILTER;
2715
2716 netdev->features |= NETIF_F_IPV6_CSUM;
2717 netdev->features |= NETIF_F_TSO;
2718 netdev->features |= NETIF_F_TSO6;
2719
2720 if (pci_using_dac)
2721 netdev->features |= NETIF_F_HIGHDMA;
2722
2723 netdev->vlan_features |= NETIF_F_TSO;
2724 netdev->vlan_features |= NETIF_F_TSO6;
2725 netdev->vlan_features |= NETIF_F_IP_CSUM;
2726 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2727 netdev->vlan_features |= NETIF_F_SG;
2728
2729 /*reset the controller to put the device in a known good state */
2730 err = hw->mac.ops.reset_hw(hw);
2731 if (err) {
2732 dev_info(&pdev->dev,
2733 "PF still in reset state, assigning new address\n");
2734 random_ether_addr(hw->mac.addr);
2735 } else {
2736 err = hw->mac.ops.read_mac_addr(hw);
2737 if (err) {
2738 dev_err(&pdev->dev, "Error reading MAC address\n");
2739 goto err_hw_init;
2740 }
2741 }
2742
2743 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2744 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2745
2746 if (!is_valid_ether_addr(netdev->perm_addr)) {
2747 dev_err(&pdev->dev, "Invalid MAC Address: "
2748 "%02x:%02x:%02x:%02x:%02x:%02x\n",
2749 netdev->dev_addr[0], netdev->dev_addr[1],
2750 netdev->dev_addr[2], netdev->dev_addr[3],
2751 netdev->dev_addr[4], netdev->dev_addr[5]);
2752 err = -EIO;
2753 goto err_hw_init;
2754 }
2755
2756 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2757 (unsigned long) adapter);
2758
2759 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2760 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2761
2762 /* ring size defaults */
2763 adapter->rx_ring->count = 1024;
2764 adapter->tx_ring->count = 1024;
2765
2766 /* reset the hardware with the new settings */
2767 igbvf_reset(adapter);
2768
2769 /* tell the stack to leave us alone until igbvf_open() is called */
2770 netif_carrier_off(netdev);
2771 netif_stop_queue(netdev);
2772
2773 strcpy(netdev->name, "eth%d");
2774 err = register_netdev(netdev);
2775 if (err)
2776 goto err_hw_init;
2777
2778 igbvf_print_device_info(adapter);
2779
2780 igbvf_initialize_last_counter_stats(adapter);
2781
2782 return 0;
2783
2784 err_hw_init:
2785 kfree(adapter->tx_ring);
2786 kfree(adapter->rx_ring);
2787 err_sw_init:
2788 igbvf_reset_interrupt_capability(adapter);
2789 iounmap(adapter->hw.hw_addr);
2790 err_ioremap:
2791 free_netdev(netdev);
2792 err_alloc_etherdev:
2793 pci_release_regions(pdev);
2794 err_pci_reg:
2795 err_dma:
2796 pci_disable_device(pdev);
2797 return err;
2798 }
2799
2800 /**
2801 * igbvf_remove - Device Removal Routine
2802 * @pdev: PCI device information struct
2803 *
2804 * igbvf_remove is called by the PCI subsystem to alert the driver
2805 * that it should release a PCI device. The could be caused by a
2806 * Hot-Plug event, or because the driver is going to be removed from
2807 * memory.
2808 **/
2809 static void __devexit igbvf_remove(struct pci_dev *pdev)
2810 {
2811 struct net_device *netdev = pci_get_drvdata(pdev);
2812 struct igbvf_adapter *adapter = netdev_priv(netdev);
2813 struct e1000_hw *hw = &adapter->hw;
2814
2815 /*
2816 * flush_scheduled work may reschedule our watchdog task, so
2817 * explicitly disable watchdog tasks from being rescheduled
2818 */
2819 set_bit(__IGBVF_DOWN, &adapter->state);
2820 del_timer_sync(&adapter->watchdog_timer);
2821
2822 flush_scheduled_work();
2823
2824 unregister_netdev(netdev);
2825
2826 igbvf_reset_interrupt_capability(adapter);
2827
2828 /*
2829 * it is important to delete the napi struct prior to freeing the
2830 * rx ring so that you do not end up with null pointer refs
2831 */
2832 netif_napi_del(&adapter->rx_ring->napi);
2833 kfree(adapter->tx_ring);
2834 kfree(adapter->rx_ring);
2835
2836 iounmap(hw->hw_addr);
2837 if (hw->flash_address)
2838 iounmap(hw->flash_address);
2839 pci_release_regions(pdev);
2840
2841 free_netdev(netdev);
2842
2843 pci_disable_device(pdev);
2844 }
2845
2846 /* PCI Error Recovery (ERS) */
2847 static struct pci_error_handlers igbvf_err_handler = {
2848 .error_detected = igbvf_io_error_detected,
2849 .slot_reset = igbvf_io_slot_reset,
2850 .resume = igbvf_io_resume,
2851 };
2852
2853 static struct pci_device_id igbvf_pci_tbl[] = {
2854 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2855 { } /* terminate list */
2856 };
2857 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2858
2859 /* PCI Device API Driver */
2860 static struct pci_driver igbvf_driver = {
2861 .name = igbvf_driver_name,
2862 .id_table = igbvf_pci_tbl,
2863 .probe = igbvf_probe,
2864 .remove = __devexit_p(igbvf_remove),
2865 #ifdef CONFIG_PM
2866 /* Power Management Hooks */
2867 .suspend = igbvf_suspend,
2868 .resume = igbvf_resume,
2869 #endif
2870 .shutdown = igbvf_shutdown,
2871 .err_handler = &igbvf_err_handler
2872 };
2873
2874 /**
2875 * igbvf_init_module - Driver Registration Routine
2876 *
2877 * igbvf_init_module is the first routine called when the driver is
2878 * loaded. All it does is register with the PCI subsystem.
2879 **/
2880 static int __init igbvf_init_module(void)
2881 {
2882 int ret;
2883 printk(KERN_INFO "%s - version %s\n",
2884 igbvf_driver_string, igbvf_driver_version);
2885 printk(KERN_INFO "%s\n", igbvf_copyright);
2886
2887 ret = pci_register_driver(&igbvf_driver);
2888 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name,
2889 PM_QOS_DEFAULT_VALUE);
2890
2891 return ret;
2892 }
2893 module_init(igbvf_init_module);
2894
2895 /**
2896 * igbvf_exit_module - Driver Exit Cleanup Routine
2897 *
2898 * igbvf_exit_module is called just before the driver is removed
2899 * from memory.
2900 **/
2901 static void __exit igbvf_exit_module(void)
2902 {
2903 pci_unregister_driver(&igbvf_driver);
2904 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name);
2905 }
2906 module_exit(igbvf_exit_module);
2907
2908
2909 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2910 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2911 MODULE_LICENSE("GPL");
2912 MODULE_VERSION(DRV_VERSION);
2913
2914 /* netdev.c */
This page took 0.086074 seconds and 4 git commands to generate.