926c31b47261163e8f4da0dc46946b4a7b49c7b0
[deliverable/linux.git] / drivers / net / igbvf / netdev.c
1 /*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <linux/mii.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/pm_qos_params.h>
44
45 #include "igbvf.h"
46
47 #define DRV_VERSION "1.0.0-k0"
48 char igbvf_driver_name[] = "igbvf";
49 const char igbvf_driver_version[] = DRV_VERSION;
50 static const char igbvf_driver_string[] =
51 "Intel(R) Virtual Function Network Driver";
52 static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
53
54 static int igbvf_poll(struct napi_struct *napi, int budget);
55 static void igbvf_reset(struct igbvf_adapter *);
56 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
57 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
58
59 static struct igbvf_info igbvf_vf_info = {
60 .mac = e1000_vfadapt,
61 .flags = 0,
62 .pba = 10,
63 .init_ops = e1000_init_function_pointers_vf,
64 };
65
66 static const struct igbvf_info *igbvf_info_tbl[] = {
67 [board_vf] = &igbvf_vf_info,
68 };
69
70 /**
71 * igbvf_desc_unused - calculate if we have unused descriptors
72 **/
73 static int igbvf_desc_unused(struct igbvf_ring *ring)
74 {
75 if (ring->next_to_clean > ring->next_to_use)
76 return ring->next_to_clean - ring->next_to_use - 1;
77
78 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
79 }
80
81 /**
82 * igbvf_receive_skb - helper function to handle Rx indications
83 * @adapter: board private structure
84 * @status: descriptor status field as written by hardware
85 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
86 * @skb: pointer to sk_buff to be indicated to stack
87 **/
88 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
89 struct net_device *netdev,
90 struct sk_buff *skb,
91 u32 status, u16 vlan)
92 {
93 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
94 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
95 le16_to_cpu(vlan) &
96 E1000_RXD_SPC_VLAN_MASK);
97 else
98 netif_receive_skb(skb);
99
100 netdev->last_rx = jiffies;
101 }
102
103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105 {
106 skb->ip_summed = CHECKSUM_NONE;
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126 }
127
128 /**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135 {
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 pci_map_page(pdev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 PCI_DMA_FROMDEVICE);
172 }
173
174 if (!buffer_info->skb) {
175 skb = netdev_alloc_skb(netdev, bufsz + NET_IP_ALIGN);
176 if (!skb) {
177 adapter->alloc_rx_buff_failed++;
178 goto no_buffers;
179 }
180
181 /* Make buffer alignment 2 beyond a 16 byte boundary
182 * this will result in a 16 byte aligned IP header after
183 * the 14 byte MAC header is removed
184 */
185 skb_reserve(skb, NET_IP_ALIGN);
186
187 buffer_info->skb = skb;
188 buffer_info->dma = pci_map_single(pdev, skb->data,
189 bufsz,
190 PCI_DMA_FROMDEVICE);
191 }
192 /* Refresh the desc even if buffer_addrs didn't change because
193 * each write-back erases this info. */
194 if (adapter->rx_ps_hdr_size) {
195 rx_desc->read.pkt_addr =
196 cpu_to_le64(buffer_info->page_dma);
197 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
198 } else {
199 rx_desc->read.pkt_addr =
200 cpu_to_le64(buffer_info->dma);
201 rx_desc->read.hdr_addr = 0;
202 }
203
204 i++;
205 if (i == rx_ring->count)
206 i = 0;
207 buffer_info = &rx_ring->buffer_info[i];
208 }
209
210 no_buffers:
211 if (rx_ring->next_to_use != i) {
212 rx_ring->next_to_use = i;
213 if (i == 0)
214 i = (rx_ring->count - 1);
215 else
216 i--;
217
218 /* Force memory writes to complete before letting h/w
219 * know there are new descriptors to fetch. (Only
220 * applicable for weak-ordered memory model archs,
221 * such as IA-64). */
222 wmb();
223 writel(i, adapter->hw.hw_addr + rx_ring->tail);
224 }
225 }
226
227 /**
228 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
229 * @adapter: board private structure
230 *
231 * the return value indicates whether actual cleaning was done, there
232 * is no guarantee that everything was cleaned
233 **/
234 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
235 int *work_done, int work_to_do)
236 {
237 struct igbvf_ring *rx_ring = adapter->rx_ring;
238 struct net_device *netdev = adapter->netdev;
239 struct pci_dev *pdev = adapter->pdev;
240 union e1000_adv_rx_desc *rx_desc, *next_rxd;
241 struct igbvf_buffer *buffer_info, *next_buffer;
242 struct sk_buff *skb;
243 bool cleaned = false;
244 int cleaned_count = 0;
245 unsigned int total_bytes = 0, total_packets = 0;
246 unsigned int i;
247 u32 length, hlen, staterr;
248
249 i = rx_ring->next_to_clean;
250 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
251 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
252
253 while (staterr & E1000_RXD_STAT_DD) {
254 if (*work_done >= work_to_do)
255 break;
256 (*work_done)++;
257
258 buffer_info = &rx_ring->buffer_info[i];
259
260 /* HW will not DMA in data larger than the given buffer, even
261 * if it parses the (NFS, of course) header to be larger. In
262 * that case, it fills the header buffer and spills the rest
263 * into the page.
264 */
265 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
266 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
267 if (hlen > adapter->rx_ps_hdr_size)
268 hlen = adapter->rx_ps_hdr_size;
269
270 length = le16_to_cpu(rx_desc->wb.upper.length);
271 cleaned = true;
272 cleaned_count++;
273
274 skb = buffer_info->skb;
275 prefetch(skb->data - NET_IP_ALIGN);
276 buffer_info->skb = NULL;
277 if (!adapter->rx_ps_hdr_size) {
278 pci_unmap_single(pdev, buffer_info->dma,
279 adapter->rx_buffer_len,
280 PCI_DMA_FROMDEVICE);
281 buffer_info->dma = 0;
282 skb_put(skb, length);
283 goto send_up;
284 }
285
286 if (!skb_shinfo(skb)->nr_frags) {
287 pci_unmap_single(pdev, buffer_info->dma,
288 adapter->rx_ps_hdr_size,
289 PCI_DMA_FROMDEVICE);
290 skb_put(skb, hlen);
291 }
292
293 if (length) {
294 pci_unmap_page(pdev, buffer_info->page_dma,
295 PAGE_SIZE / 2,
296 PCI_DMA_FROMDEVICE);
297 buffer_info->page_dma = 0;
298
299 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
300 buffer_info->page,
301 buffer_info->page_offset,
302 length);
303
304 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
305 (page_count(buffer_info->page) != 1))
306 buffer_info->page = NULL;
307 else
308 get_page(buffer_info->page);
309
310 skb->len += length;
311 skb->data_len += length;
312 skb->truesize += length;
313 }
314 send_up:
315 i++;
316 if (i == rx_ring->count)
317 i = 0;
318 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
319 prefetch(next_rxd);
320 next_buffer = &rx_ring->buffer_info[i];
321
322 if (!(staterr & E1000_RXD_STAT_EOP)) {
323 buffer_info->skb = next_buffer->skb;
324 buffer_info->dma = next_buffer->dma;
325 next_buffer->skb = skb;
326 next_buffer->dma = 0;
327 goto next_desc;
328 }
329
330 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
331 dev_kfree_skb_irq(skb);
332 goto next_desc;
333 }
334
335 total_bytes += skb->len;
336 total_packets++;
337
338 igbvf_rx_checksum_adv(adapter, staterr, skb);
339
340 skb->protocol = eth_type_trans(skb, netdev);
341
342 igbvf_receive_skb(adapter, netdev, skb, staterr,
343 rx_desc->wb.upper.vlan);
344
345 netdev->last_rx = jiffies;
346
347 next_desc:
348 rx_desc->wb.upper.status_error = 0;
349
350 /* return some buffers to hardware, one at a time is too slow */
351 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
352 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
353 cleaned_count = 0;
354 }
355
356 /* use prefetched values */
357 rx_desc = next_rxd;
358 buffer_info = next_buffer;
359
360 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
361 }
362
363 rx_ring->next_to_clean = i;
364 cleaned_count = igbvf_desc_unused(rx_ring);
365
366 if (cleaned_count)
367 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
368
369 adapter->total_rx_packets += total_packets;
370 adapter->total_rx_bytes += total_bytes;
371 adapter->net_stats.rx_bytes += total_bytes;
372 adapter->net_stats.rx_packets += total_packets;
373 return cleaned;
374 }
375
376 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
377 struct igbvf_buffer *buffer_info)
378 {
379 buffer_info->dma = 0;
380 if (buffer_info->skb) {
381 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
382 DMA_TO_DEVICE);
383 dev_kfree_skb_any(buffer_info->skb);
384 buffer_info->skb = NULL;
385 }
386 buffer_info->time_stamp = 0;
387 }
388
389 static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
390 {
391 struct igbvf_ring *tx_ring = adapter->tx_ring;
392 unsigned int i = tx_ring->next_to_clean;
393 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
394 union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
395
396 /* detected Tx unit hang */
397 dev_err(&adapter->pdev->dev,
398 "Detected Tx Unit Hang:\n"
399 " TDH <%x>\n"
400 " TDT <%x>\n"
401 " next_to_use <%x>\n"
402 " next_to_clean <%x>\n"
403 "buffer_info[next_to_clean]:\n"
404 " time_stamp <%lx>\n"
405 " next_to_watch <%x>\n"
406 " jiffies <%lx>\n"
407 " next_to_watch.status <%x>\n",
408 readl(adapter->hw.hw_addr + tx_ring->head),
409 readl(adapter->hw.hw_addr + tx_ring->tail),
410 tx_ring->next_to_use,
411 tx_ring->next_to_clean,
412 tx_ring->buffer_info[eop].time_stamp,
413 eop,
414 jiffies,
415 eop_desc->wb.status);
416 }
417
418 /**
419 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
420 * @adapter: board private structure
421 *
422 * Return 0 on success, negative on failure
423 **/
424 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
425 struct igbvf_ring *tx_ring)
426 {
427 struct pci_dev *pdev = adapter->pdev;
428 int size;
429
430 size = sizeof(struct igbvf_buffer) * tx_ring->count;
431 tx_ring->buffer_info = vmalloc(size);
432 if (!tx_ring->buffer_info)
433 goto err;
434 memset(tx_ring->buffer_info, 0, size);
435
436 /* round up to nearest 4K */
437 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
438 tx_ring->size = ALIGN(tx_ring->size, 4096);
439
440 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
441 &tx_ring->dma);
442
443 if (!tx_ring->desc)
444 goto err;
445
446 tx_ring->adapter = adapter;
447 tx_ring->next_to_use = 0;
448 tx_ring->next_to_clean = 0;
449
450 return 0;
451 err:
452 vfree(tx_ring->buffer_info);
453 dev_err(&adapter->pdev->dev,
454 "Unable to allocate memory for the transmit descriptor ring\n");
455 return -ENOMEM;
456 }
457
458 /**
459 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
460 * @adapter: board private structure
461 *
462 * Returns 0 on success, negative on failure
463 **/
464 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
465 struct igbvf_ring *rx_ring)
466 {
467 struct pci_dev *pdev = adapter->pdev;
468 int size, desc_len;
469
470 size = sizeof(struct igbvf_buffer) * rx_ring->count;
471 rx_ring->buffer_info = vmalloc(size);
472 if (!rx_ring->buffer_info)
473 goto err;
474 memset(rx_ring->buffer_info, 0, size);
475
476 desc_len = sizeof(union e1000_adv_rx_desc);
477
478 /* Round up to nearest 4K */
479 rx_ring->size = rx_ring->count * desc_len;
480 rx_ring->size = ALIGN(rx_ring->size, 4096);
481
482 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
483 &rx_ring->dma);
484
485 if (!rx_ring->desc)
486 goto err;
487
488 rx_ring->next_to_clean = 0;
489 rx_ring->next_to_use = 0;
490
491 rx_ring->adapter = adapter;
492
493 return 0;
494
495 err:
496 vfree(rx_ring->buffer_info);
497 rx_ring->buffer_info = NULL;
498 dev_err(&adapter->pdev->dev,
499 "Unable to allocate memory for the receive descriptor ring\n");
500 return -ENOMEM;
501 }
502
503 /**
504 * igbvf_clean_tx_ring - Free Tx Buffers
505 * @tx_ring: ring to be cleaned
506 **/
507 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
508 {
509 struct igbvf_adapter *adapter = tx_ring->adapter;
510 struct igbvf_buffer *buffer_info;
511 unsigned long size;
512 unsigned int i;
513
514 if (!tx_ring->buffer_info)
515 return;
516
517 /* Free all the Tx ring sk_buffs */
518 for (i = 0; i < tx_ring->count; i++) {
519 buffer_info = &tx_ring->buffer_info[i];
520 igbvf_put_txbuf(adapter, buffer_info);
521 }
522
523 size = sizeof(struct igbvf_buffer) * tx_ring->count;
524 memset(tx_ring->buffer_info, 0, size);
525
526 /* Zero out the descriptor ring */
527 memset(tx_ring->desc, 0, tx_ring->size);
528
529 tx_ring->next_to_use = 0;
530 tx_ring->next_to_clean = 0;
531
532 writel(0, adapter->hw.hw_addr + tx_ring->head);
533 writel(0, adapter->hw.hw_addr + tx_ring->tail);
534 }
535
536 /**
537 * igbvf_free_tx_resources - Free Tx Resources per Queue
538 * @tx_ring: ring to free resources from
539 *
540 * Free all transmit software resources
541 **/
542 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
543 {
544 struct pci_dev *pdev = tx_ring->adapter->pdev;
545
546 igbvf_clean_tx_ring(tx_ring);
547
548 vfree(tx_ring->buffer_info);
549 tx_ring->buffer_info = NULL;
550
551 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
552
553 tx_ring->desc = NULL;
554 }
555
556 /**
557 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
558 * @adapter: board private structure
559 **/
560 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
561 {
562 struct igbvf_adapter *adapter = rx_ring->adapter;
563 struct igbvf_buffer *buffer_info;
564 struct pci_dev *pdev = adapter->pdev;
565 unsigned long size;
566 unsigned int i;
567
568 if (!rx_ring->buffer_info)
569 return;
570
571 /* Free all the Rx ring sk_buffs */
572 for (i = 0; i < rx_ring->count; i++) {
573 buffer_info = &rx_ring->buffer_info[i];
574 if (buffer_info->dma) {
575 if (adapter->rx_ps_hdr_size){
576 pci_unmap_single(pdev, buffer_info->dma,
577 adapter->rx_ps_hdr_size,
578 PCI_DMA_FROMDEVICE);
579 } else {
580 pci_unmap_single(pdev, buffer_info->dma,
581 adapter->rx_buffer_len,
582 PCI_DMA_FROMDEVICE);
583 }
584 buffer_info->dma = 0;
585 }
586
587 if (buffer_info->skb) {
588 dev_kfree_skb(buffer_info->skb);
589 buffer_info->skb = NULL;
590 }
591
592 if (buffer_info->page) {
593 if (buffer_info->page_dma)
594 pci_unmap_page(pdev, buffer_info->page_dma,
595 PAGE_SIZE / 2,
596 PCI_DMA_FROMDEVICE);
597 put_page(buffer_info->page);
598 buffer_info->page = NULL;
599 buffer_info->page_dma = 0;
600 buffer_info->page_offset = 0;
601 }
602 }
603
604 size = sizeof(struct igbvf_buffer) * rx_ring->count;
605 memset(rx_ring->buffer_info, 0, size);
606
607 /* Zero out the descriptor ring */
608 memset(rx_ring->desc, 0, rx_ring->size);
609
610 rx_ring->next_to_clean = 0;
611 rx_ring->next_to_use = 0;
612
613 writel(0, adapter->hw.hw_addr + rx_ring->head);
614 writel(0, adapter->hw.hw_addr + rx_ring->tail);
615 }
616
617 /**
618 * igbvf_free_rx_resources - Free Rx Resources
619 * @rx_ring: ring to clean the resources from
620 *
621 * Free all receive software resources
622 **/
623
624 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
625 {
626 struct pci_dev *pdev = rx_ring->adapter->pdev;
627
628 igbvf_clean_rx_ring(rx_ring);
629
630 vfree(rx_ring->buffer_info);
631 rx_ring->buffer_info = NULL;
632
633 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
634 rx_ring->dma);
635 rx_ring->desc = NULL;
636 }
637
638 /**
639 * igbvf_update_itr - update the dynamic ITR value based on statistics
640 * @adapter: pointer to adapter
641 * @itr_setting: current adapter->itr
642 * @packets: the number of packets during this measurement interval
643 * @bytes: the number of bytes during this measurement interval
644 *
645 * Stores a new ITR value based on packets and byte
646 * counts during the last interrupt. The advantage of per interrupt
647 * computation is faster updates and more accurate ITR for the current
648 * traffic pattern. Constants in this function were computed
649 * based on theoretical maximum wire speed and thresholds were set based
650 * on testing data as well as attempting to minimize response time
651 * while increasing bulk throughput. This functionality is controlled
652 * by the InterruptThrottleRate module parameter.
653 **/
654 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
655 u16 itr_setting, int packets,
656 int bytes)
657 {
658 unsigned int retval = itr_setting;
659
660 if (packets == 0)
661 goto update_itr_done;
662
663 switch (itr_setting) {
664 case lowest_latency:
665 /* handle TSO and jumbo frames */
666 if (bytes/packets > 8000)
667 retval = bulk_latency;
668 else if ((packets < 5) && (bytes > 512))
669 retval = low_latency;
670 break;
671 case low_latency: /* 50 usec aka 20000 ints/s */
672 if (bytes > 10000) {
673 /* this if handles the TSO accounting */
674 if (bytes/packets > 8000)
675 retval = bulk_latency;
676 else if ((packets < 10) || ((bytes/packets) > 1200))
677 retval = bulk_latency;
678 else if ((packets > 35))
679 retval = lowest_latency;
680 } else if (bytes/packets > 2000) {
681 retval = bulk_latency;
682 } else if (packets <= 2 && bytes < 512) {
683 retval = lowest_latency;
684 }
685 break;
686 case bulk_latency: /* 250 usec aka 4000 ints/s */
687 if (bytes > 25000) {
688 if (packets > 35)
689 retval = low_latency;
690 } else if (bytes < 6000) {
691 retval = low_latency;
692 }
693 break;
694 }
695
696 update_itr_done:
697 return retval;
698 }
699
700 static void igbvf_set_itr(struct igbvf_adapter *adapter)
701 {
702 struct e1000_hw *hw = &adapter->hw;
703 u16 current_itr;
704 u32 new_itr = adapter->itr;
705
706 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
707 adapter->total_tx_packets,
708 adapter->total_tx_bytes);
709 /* conservative mode (itr 3) eliminates the lowest_latency setting */
710 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
711 adapter->tx_itr = low_latency;
712
713 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
714 adapter->total_rx_packets,
715 adapter->total_rx_bytes);
716 /* conservative mode (itr 3) eliminates the lowest_latency setting */
717 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
718 adapter->rx_itr = low_latency;
719
720 current_itr = max(adapter->rx_itr, adapter->tx_itr);
721
722 switch (current_itr) {
723 /* counts and packets in update_itr are dependent on these numbers */
724 case lowest_latency:
725 new_itr = 70000;
726 break;
727 case low_latency:
728 new_itr = 20000; /* aka hwitr = ~200 */
729 break;
730 case bulk_latency:
731 new_itr = 4000;
732 break;
733 default:
734 break;
735 }
736
737 if (new_itr != adapter->itr) {
738 /*
739 * this attempts to bias the interrupt rate towards Bulk
740 * by adding intermediate steps when interrupt rate is
741 * increasing
742 */
743 new_itr = new_itr > adapter->itr ?
744 min(adapter->itr + (new_itr >> 2), new_itr) :
745 new_itr;
746 adapter->itr = new_itr;
747 adapter->rx_ring->itr_val = 1952;
748
749 if (adapter->msix_entries)
750 adapter->rx_ring->set_itr = 1;
751 else
752 ew32(ITR, 1952);
753 }
754 }
755
756 /**
757 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
758 * @adapter: board private structure
759 * returns true if ring is completely cleaned
760 **/
761 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
762 {
763 struct igbvf_adapter *adapter = tx_ring->adapter;
764 struct e1000_hw *hw = &adapter->hw;
765 struct net_device *netdev = adapter->netdev;
766 struct igbvf_buffer *buffer_info;
767 struct sk_buff *skb;
768 union e1000_adv_tx_desc *tx_desc, *eop_desc;
769 unsigned int total_bytes = 0, total_packets = 0;
770 unsigned int i, eop, count = 0;
771 bool cleaned = false;
772
773 i = tx_ring->next_to_clean;
774 eop = tx_ring->buffer_info[i].next_to_watch;
775 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
776
777 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
778 (count < tx_ring->count)) {
779 for (cleaned = false; !cleaned; count++) {
780 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
781 buffer_info = &tx_ring->buffer_info[i];
782 cleaned = (i == eop);
783 skb = buffer_info->skb;
784
785 if (skb) {
786 unsigned int segs, bytecount;
787
788 /* gso_segs is currently only valid for tcp */
789 segs = skb_shinfo(skb)->gso_segs ?: 1;
790 /* multiply data chunks by size of headers */
791 bytecount = ((segs - 1) * skb_headlen(skb)) +
792 skb->len;
793 total_packets += segs;
794 total_bytes += bytecount;
795 }
796
797 igbvf_put_txbuf(adapter, buffer_info);
798 tx_desc->wb.status = 0;
799
800 i++;
801 if (i == tx_ring->count)
802 i = 0;
803 }
804 eop = tx_ring->buffer_info[i].next_to_watch;
805 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
806 }
807
808 tx_ring->next_to_clean = i;
809
810 if (unlikely(count &&
811 netif_carrier_ok(netdev) &&
812 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
813 /* Make sure that anybody stopping the queue after this
814 * sees the new next_to_clean.
815 */
816 smp_mb();
817 if (netif_queue_stopped(netdev) &&
818 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
819 netif_wake_queue(netdev);
820 ++adapter->restart_queue;
821 }
822 }
823
824 if (adapter->detect_tx_hung) {
825 /* Detect a transmit hang in hardware, this serializes the
826 * check with the clearing of time_stamp and movement of i */
827 adapter->detect_tx_hung = false;
828 if (tx_ring->buffer_info[i].time_stamp &&
829 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
830 (adapter->tx_timeout_factor * HZ))
831 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
832
833 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
834 /* detected Tx unit hang */
835 igbvf_print_tx_hang(adapter);
836
837 netif_stop_queue(netdev);
838 }
839 }
840 adapter->net_stats.tx_bytes += total_bytes;
841 adapter->net_stats.tx_packets += total_packets;
842 return (count < tx_ring->count);
843 }
844
845 static irqreturn_t igbvf_msix_other(int irq, void *data)
846 {
847 struct net_device *netdev = data;
848 struct igbvf_adapter *adapter = netdev_priv(netdev);
849 struct e1000_hw *hw = &adapter->hw;
850
851 adapter->int_counter1++;
852
853 netif_carrier_off(netdev);
854 hw->mac.get_link_status = 1;
855 if (!test_bit(__IGBVF_DOWN, &adapter->state))
856 mod_timer(&adapter->watchdog_timer, jiffies + 1);
857
858 ew32(EIMS, adapter->eims_other);
859
860 return IRQ_HANDLED;
861 }
862
863 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
864 {
865 struct net_device *netdev = data;
866 struct igbvf_adapter *adapter = netdev_priv(netdev);
867 struct e1000_hw *hw = &adapter->hw;
868 struct igbvf_ring *tx_ring = adapter->tx_ring;
869
870
871 adapter->total_tx_bytes = 0;
872 adapter->total_tx_packets = 0;
873
874 /* auto mask will automatically reenable the interrupt when we write
875 * EICS */
876 if (!igbvf_clean_tx_irq(tx_ring))
877 /* Ring was not completely cleaned, so fire another interrupt */
878 ew32(EICS, tx_ring->eims_value);
879 else
880 ew32(EIMS, tx_ring->eims_value);
881
882 return IRQ_HANDLED;
883 }
884
885 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
886 {
887 struct net_device *netdev = data;
888 struct igbvf_adapter *adapter = netdev_priv(netdev);
889
890 adapter->int_counter0++;
891
892 /* Write the ITR value calculated at the end of the
893 * previous interrupt.
894 */
895 if (adapter->rx_ring->set_itr) {
896 writel(adapter->rx_ring->itr_val,
897 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
898 adapter->rx_ring->set_itr = 0;
899 }
900
901 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
902 adapter->total_rx_bytes = 0;
903 adapter->total_rx_packets = 0;
904 __napi_schedule(&adapter->rx_ring->napi);
905 }
906
907 return IRQ_HANDLED;
908 }
909
910 #define IGBVF_NO_QUEUE -1
911
912 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
913 int tx_queue, int msix_vector)
914 {
915 struct e1000_hw *hw = &adapter->hw;
916 u32 ivar, index;
917
918 /* 82576 uses a table-based method for assigning vectors.
919 Each queue has a single entry in the table to which we write
920 a vector number along with a "valid" bit. Sadly, the layout
921 of the table is somewhat counterintuitive. */
922 if (rx_queue > IGBVF_NO_QUEUE) {
923 index = (rx_queue >> 1);
924 ivar = array_er32(IVAR0, index);
925 if (rx_queue & 0x1) {
926 /* vector goes into third byte of register */
927 ivar = ivar & 0xFF00FFFF;
928 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
929 } else {
930 /* vector goes into low byte of register */
931 ivar = ivar & 0xFFFFFF00;
932 ivar |= msix_vector | E1000_IVAR_VALID;
933 }
934 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
935 array_ew32(IVAR0, index, ivar);
936 }
937 if (tx_queue > IGBVF_NO_QUEUE) {
938 index = (tx_queue >> 1);
939 ivar = array_er32(IVAR0, index);
940 if (tx_queue & 0x1) {
941 /* vector goes into high byte of register */
942 ivar = ivar & 0x00FFFFFF;
943 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
944 } else {
945 /* vector goes into second byte of register */
946 ivar = ivar & 0xFFFF00FF;
947 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
948 }
949 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
950 array_ew32(IVAR0, index, ivar);
951 }
952 }
953
954 /**
955 * igbvf_configure_msix - Configure MSI-X hardware
956 *
957 * igbvf_configure_msix sets up the hardware to properly
958 * generate MSI-X interrupts.
959 **/
960 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
961 {
962 u32 tmp;
963 struct e1000_hw *hw = &adapter->hw;
964 struct igbvf_ring *tx_ring = adapter->tx_ring;
965 struct igbvf_ring *rx_ring = adapter->rx_ring;
966 int vector = 0;
967
968 adapter->eims_enable_mask = 0;
969
970 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
971 adapter->eims_enable_mask |= tx_ring->eims_value;
972 if (tx_ring->itr_val)
973 writel(tx_ring->itr_val,
974 hw->hw_addr + tx_ring->itr_register);
975 else
976 writel(1952, hw->hw_addr + tx_ring->itr_register);
977
978 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
979 adapter->eims_enable_mask |= rx_ring->eims_value;
980 if (rx_ring->itr_val)
981 writel(rx_ring->itr_val,
982 hw->hw_addr + rx_ring->itr_register);
983 else
984 writel(1952, hw->hw_addr + rx_ring->itr_register);
985
986 /* set vector for other causes, i.e. link changes */
987
988 tmp = (vector++ | E1000_IVAR_VALID);
989
990 ew32(IVAR_MISC, tmp);
991
992 adapter->eims_enable_mask = (1 << (vector)) - 1;
993 adapter->eims_other = 1 << (vector - 1);
994 e1e_flush();
995 }
996
997 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
998 {
999 if (adapter->msix_entries) {
1000 pci_disable_msix(adapter->pdev);
1001 kfree(adapter->msix_entries);
1002 adapter->msix_entries = NULL;
1003 }
1004 }
1005
1006 /**
1007 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1008 *
1009 * Attempt to configure interrupts using the best available
1010 * capabilities of the hardware and kernel.
1011 **/
1012 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1013 {
1014 int err = -ENOMEM;
1015 int i;
1016
1017 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1018 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1019 GFP_KERNEL);
1020 if (adapter->msix_entries) {
1021 for (i = 0; i < 3; i++)
1022 adapter->msix_entries[i].entry = i;
1023
1024 err = pci_enable_msix(adapter->pdev,
1025 adapter->msix_entries, 3);
1026 }
1027
1028 if (err) {
1029 /* MSI-X failed */
1030 dev_err(&adapter->pdev->dev,
1031 "Failed to initialize MSI-X interrupts.\n");
1032 igbvf_reset_interrupt_capability(adapter);
1033 }
1034 }
1035
1036 /**
1037 * igbvf_request_msix - Initialize MSI-X interrupts
1038 *
1039 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1040 * kernel.
1041 **/
1042 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1043 {
1044 struct net_device *netdev = adapter->netdev;
1045 int err = 0, vector = 0;
1046
1047 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1048 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1049 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1050 } else {
1051 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1052 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1053 }
1054
1055 err = request_irq(adapter->msix_entries[vector].vector,
1056 &igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1057 netdev);
1058 if (err)
1059 goto out;
1060
1061 adapter->tx_ring->itr_register = E1000_EITR(vector);
1062 adapter->tx_ring->itr_val = 1952;
1063 vector++;
1064
1065 err = request_irq(adapter->msix_entries[vector].vector,
1066 &igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1067 netdev);
1068 if (err)
1069 goto out;
1070
1071 adapter->rx_ring->itr_register = E1000_EITR(vector);
1072 adapter->rx_ring->itr_val = 1952;
1073 vector++;
1074
1075 err = request_irq(adapter->msix_entries[vector].vector,
1076 &igbvf_msix_other, 0, netdev->name, netdev);
1077 if (err)
1078 goto out;
1079
1080 igbvf_configure_msix(adapter);
1081 return 0;
1082 out:
1083 return err;
1084 }
1085
1086 /**
1087 * igbvf_alloc_queues - Allocate memory for all rings
1088 * @adapter: board private structure to initialize
1089 **/
1090 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1091 {
1092 struct net_device *netdev = adapter->netdev;
1093
1094 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1095 if (!adapter->tx_ring)
1096 return -ENOMEM;
1097
1098 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1099 if (!adapter->rx_ring) {
1100 kfree(adapter->tx_ring);
1101 return -ENOMEM;
1102 }
1103
1104 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * igbvf_request_irq - initialize interrupts
1111 *
1112 * Attempts to configure interrupts using the best available
1113 * capabilities of the hardware and kernel.
1114 **/
1115 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1116 {
1117 int err = -1;
1118
1119 /* igbvf supports msi-x only */
1120 if (adapter->msix_entries)
1121 err = igbvf_request_msix(adapter);
1122
1123 if (!err)
1124 return err;
1125
1126 dev_err(&adapter->pdev->dev,
1127 "Unable to allocate interrupt, Error: %d\n", err);
1128
1129 return err;
1130 }
1131
1132 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1133 {
1134 struct net_device *netdev = adapter->netdev;
1135 int vector;
1136
1137 if (adapter->msix_entries) {
1138 for (vector = 0; vector < 3; vector++)
1139 free_irq(adapter->msix_entries[vector].vector, netdev);
1140 }
1141 }
1142
1143 /**
1144 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1145 **/
1146 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1147 {
1148 struct e1000_hw *hw = &adapter->hw;
1149
1150 ew32(EIMC, ~0);
1151
1152 if (adapter->msix_entries)
1153 ew32(EIAC, 0);
1154 }
1155
1156 /**
1157 * igbvf_irq_enable - Enable default interrupt generation settings
1158 **/
1159 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1160 {
1161 struct e1000_hw *hw = &adapter->hw;
1162
1163 ew32(EIAC, adapter->eims_enable_mask);
1164 ew32(EIAM, adapter->eims_enable_mask);
1165 ew32(EIMS, adapter->eims_enable_mask);
1166 }
1167
1168 /**
1169 * igbvf_poll - NAPI Rx polling callback
1170 * @napi: struct associated with this polling callback
1171 * @budget: amount of packets driver is allowed to process this poll
1172 **/
1173 static int igbvf_poll(struct napi_struct *napi, int budget)
1174 {
1175 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1176 struct igbvf_adapter *adapter = rx_ring->adapter;
1177 struct e1000_hw *hw = &adapter->hw;
1178 int work_done = 0;
1179
1180 igbvf_clean_rx_irq(adapter, &work_done, budget);
1181
1182 /* If not enough Rx work done, exit the polling mode */
1183 if (work_done < budget) {
1184 napi_complete(napi);
1185
1186 if (adapter->itr_setting & 3)
1187 igbvf_set_itr(adapter);
1188
1189 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1190 ew32(EIMS, adapter->rx_ring->eims_value);
1191 }
1192
1193 return work_done;
1194 }
1195
1196 /**
1197 * igbvf_set_rlpml - set receive large packet maximum length
1198 * @adapter: board private structure
1199 *
1200 * Configure the maximum size of packets that will be received
1201 */
1202 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1203 {
1204 int max_frame_size = adapter->max_frame_size;
1205 struct e1000_hw *hw = &adapter->hw;
1206
1207 if (adapter->vlgrp)
1208 max_frame_size += VLAN_TAG_SIZE;
1209
1210 e1000_rlpml_set_vf(hw, max_frame_size);
1211 }
1212
1213 static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1214 {
1215 struct igbvf_adapter *adapter = netdev_priv(netdev);
1216 struct e1000_hw *hw = &adapter->hw;
1217
1218 if (hw->mac.ops.set_vfta(hw, vid, true))
1219 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1220 }
1221
1222 static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1223 {
1224 struct igbvf_adapter *adapter = netdev_priv(netdev);
1225 struct e1000_hw *hw = &adapter->hw;
1226
1227 igbvf_irq_disable(adapter);
1228 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1229
1230 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1231 igbvf_irq_enable(adapter);
1232
1233 if (hw->mac.ops.set_vfta(hw, vid, false))
1234 dev_err(&adapter->pdev->dev,
1235 "Failed to remove vlan id %d\n", vid);
1236 }
1237
1238 static void igbvf_vlan_rx_register(struct net_device *netdev,
1239 struct vlan_group *grp)
1240 {
1241 struct igbvf_adapter *adapter = netdev_priv(netdev);
1242
1243 adapter->vlgrp = grp;
1244 }
1245
1246 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1247 {
1248 u16 vid;
1249
1250 if (!adapter->vlgrp)
1251 return;
1252
1253 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1254 if (!vlan_group_get_device(adapter->vlgrp, vid))
1255 continue;
1256 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1257 }
1258
1259 igbvf_set_rlpml(adapter);
1260 }
1261
1262 /**
1263 * igbvf_configure_tx - Configure Transmit Unit after Reset
1264 * @adapter: board private structure
1265 *
1266 * Configure the Tx unit of the MAC after a reset.
1267 **/
1268 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1269 {
1270 struct e1000_hw *hw = &adapter->hw;
1271 struct igbvf_ring *tx_ring = adapter->tx_ring;
1272 u64 tdba;
1273 u32 txdctl, dca_txctrl;
1274
1275 /* disable transmits */
1276 txdctl = er32(TXDCTL(0));
1277 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1278 msleep(10);
1279
1280 /* Setup the HW Tx Head and Tail descriptor pointers */
1281 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1282 tdba = tx_ring->dma;
1283 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1284 ew32(TDBAH(0), (tdba >> 32));
1285 ew32(TDH(0), 0);
1286 ew32(TDT(0), 0);
1287 tx_ring->head = E1000_TDH(0);
1288 tx_ring->tail = E1000_TDT(0);
1289
1290 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1291 * MUST be delivered in order or it will completely screw up
1292 * our bookeeping.
1293 */
1294 dca_txctrl = er32(DCA_TXCTRL(0));
1295 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1296 ew32(DCA_TXCTRL(0), dca_txctrl);
1297
1298 /* enable transmits */
1299 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1300 ew32(TXDCTL(0), txdctl);
1301
1302 /* Setup Transmit Descriptor Settings for eop descriptor */
1303 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1304
1305 /* enable Report Status bit */
1306 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1307
1308 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1309 }
1310
1311 /**
1312 * igbvf_setup_srrctl - configure the receive control registers
1313 * @adapter: Board private structure
1314 **/
1315 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1316 {
1317 struct e1000_hw *hw = &adapter->hw;
1318 u32 srrctl = 0;
1319
1320 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1321 E1000_SRRCTL_BSIZEHDR_MASK |
1322 E1000_SRRCTL_BSIZEPKT_MASK);
1323
1324 /* Enable queue drop to avoid head of line blocking */
1325 srrctl |= E1000_SRRCTL_DROP_EN;
1326
1327 /* Setup buffer sizes */
1328 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1329 E1000_SRRCTL_BSIZEPKT_SHIFT;
1330
1331 if (adapter->rx_buffer_len < 2048) {
1332 adapter->rx_ps_hdr_size = 0;
1333 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1334 } else {
1335 adapter->rx_ps_hdr_size = 128;
1336 srrctl |= adapter->rx_ps_hdr_size <<
1337 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1338 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1339 }
1340
1341 ew32(SRRCTL(0), srrctl);
1342 }
1343
1344 /**
1345 * igbvf_configure_rx - Configure Receive Unit after Reset
1346 * @adapter: board private structure
1347 *
1348 * Configure the Rx unit of the MAC after a reset.
1349 **/
1350 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1351 {
1352 struct e1000_hw *hw = &adapter->hw;
1353 struct igbvf_ring *rx_ring = adapter->rx_ring;
1354 u64 rdba;
1355 u32 rdlen, rxdctl;
1356
1357 /* disable receives */
1358 rxdctl = er32(RXDCTL(0));
1359 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1360 msleep(10);
1361
1362 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1363
1364 /*
1365 * Setup the HW Rx Head and Tail Descriptor Pointers and
1366 * the Base and Length of the Rx Descriptor Ring
1367 */
1368 rdba = rx_ring->dma;
1369 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1370 ew32(RDBAH(0), (rdba >> 32));
1371 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1372 rx_ring->head = E1000_RDH(0);
1373 rx_ring->tail = E1000_RDT(0);
1374 ew32(RDH(0), 0);
1375 ew32(RDT(0), 0);
1376
1377 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1378 rxdctl &= 0xFFF00000;
1379 rxdctl |= IGBVF_RX_PTHRESH;
1380 rxdctl |= IGBVF_RX_HTHRESH << 8;
1381 rxdctl |= IGBVF_RX_WTHRESH << 16;
1382
1383 igbvf_set_rlpml(adapter);
1384
1385 /* enable receives */
1386 ew32(RXDCTL(0), rxdctl);
1387 }
1388
1389 /**
1390 * igbvf_set_multi - Multicast and Promiscuous mode set
1391 * @netdev: network interface device structure
1392 *
1393 * The set_multi entry point is called whenever the multicast address
1394 * list or the network interface flags are updated. This routine is
1395 * responsible for configuring the hardware for proper multicast,
1396 * promiscuous mode, and all-multi behavior.
1397 **/
1398 static void igbvf_set_multi(struct net_device *netdev)
1399 {
1400 struct igbvf_adapter *adapter = netdev_priv(netdev);
1401 struct e1000_hw *hw = &adapter->hw;
1402 struct dev_mc_list *mc_ptr;
1403 u8 *mta_list = NULL;
1404 int i;
1405
1406 if (netdev->mc_count) {
1407 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1408 if (!mta_list) {
1409 dev_err(&adapter->pdev->dev,
1410 "failed to allocate multicast filter list\n");
1411 return;
1412 }
1413 }
1414
1415 /* prepare a packed array of only addresses. */
1416 mc_ptr = netdev->mc_list;
1417
1418 for (i = 0; i < netdev->mc_count; i++) {
1419 if (!mc_ptr)
1420 break;
1421 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1422 ETH_ALEN);
1423 mc_ptr = mc_ptr->next;
1424 }
1425
1426 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1427 kfree(mta_list);
1428 }
1429
1430 /**
1431 * igbvf_configure - configure the hardware for Rx and Tx
1432 * @adapter: private board structure
1433 **/
1434 static void igbvf_configure(struct igbvf_adapter *adapter)
1435 {
1436 igbvf_set_multi(adapter->netdev);
1437
1438 igbvf_restore_vlan(adapter);
1439
1440 igbvf_configure_tx(adapter);
1441 igbvf_setup_srrctl(adapter);
1442 igbvf_configure_rx(adapter);
1443 igbvf_alloc_rx_buffers(adapter->rx_ring,
1444 igbvf_desc_unused(adapter->rx_ring));
1445 }
1446
1447 /* igbvf_reset - bring the hardware into a known good state
1448 *
1449 * This function boots the hardware and enables some settings that
1450 * require a configuration cycle of the hardware - those cannot be
1451 * set/changed during runtime. After reset the device needs to be
1452 * properly configured for Rx, Tx etc.
1453 */
1454 static void igbvf_reset(struct igbvf_adapter *adapter)
1455 {
1456 struct e1000_mac_info *mac = &adapter->hw.mac;
1457 struct net_device *netdev = adapter->netdev;
1458 struct e1000_hw *hw = &adapter->hw;
1459
1460 /* Allow time for pending master requests to run */
1461 if (mac->ops.reset_hw(hw))
1462 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1463
1464 mac->ops.init_hw(hw);
1465
1466 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1467 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1468 netdev->addr_len);
1469 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1470 netdev->addr_len);
1471 }
1472 }
1473
1474 int igbvf_up(struct igbvf_adapter *adapter)
1475 {
1476 struct e1000_hw *hw = &adapter->hw;
1477
1478 /* hardware has been reset, we need to reload some things */
1479 igbvf_configure(adapter);
1480
1481 clear_bit(__IGBVF_DOWN, &adapter->state);
1482
1483 napi_enable(&adapter->rx_ring->napi);
1484 if (adapter->msix_entries)
1485 igbvf_configure_msix(adapter);
1486
1487 /* Clear any pending interrupts. */
1488 er32(EICR);
1489 igbvf_irq_enable(adapter);
1490
1491 /* start the watchdog */
1492 hw->mac.get_link_status = 1;
1493 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1494
1495
1496 return 0;
1497 }
1498
1499 void igbvf_down(struct igbvf_adapter *adapter)
1500 {
1501 struct net_device *netdev = adapter->netdev;
1502 struct e1000_hw *hw = &adapter->hw;
1503 u32 rxdctl, txdctl;
1504
1505 /*
1506 * signal that we're down so the interrupt handler does not
1507 * reschedule our watchdog timer
1508 */
1509 set_bit(__IGBVF_DOWN, &adapter->state);
1510
1511 /* disable receives in the hardware */
1512 rxdctl = er32(RXDCTL(0));
1513 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1514
1515 netif_stop_queue(netdev);
1516
1517 /* disable transmits in the hardware */
1518 txdctl = er32(TXDCTL(0));
1519 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1520
1521 /* flush both disables and wait for them to finish */
1522 e1e_flush();
1523 msleep(10);
1524
1525 napi_disable(&adapter->rx_ring->napi);
1526
1527 igbvf_irq_disable(adapter);
1528
1529 del_timer_sync(&adapter->watchdog_timer);
1530
1531 netdev->tx_queue_len = adapter->tx_queue_len;
1532 netif_carrier_off(netdev);
1533
1534 /* record the stats before reset*/
1535 igbvf_update_stats(adapter);
1536
1537 adapter->link_speed = 0;
1538 adapter->link_duplex = 0;
1539
1540 igbvf_reset(adapter);
1541 igbvf_clean_tx_ring(adapter->tx_ring);
1542 igbvf_clean_rx_ring(adapter->rx_ring);
1543 }
1544
1545 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1546 {
1547 might_sleep();
1548 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1549 msleep(1);
1550 igbvf_down(adapter);
1551 igbvf_up(adapter);
1552 clear_bit(__IGBVF_RESETTING, &adapter->state);
1553 }
1554
1555 /**
1556 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1557 * @adapter: board private structure to initialize
1558 *
1559 * igbvf_sw_init initializes the Adapter private data structure.
1560 * Fields are initialized based on PCI device information and
1561 * OS network device settings (MTU size).
1562 **/
1563 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1564 {
1565 struct net_device *netdev = adapter->netdev;
1566 s32 rc;
1567
1568 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1569 adapter->rx_ps_hdr_size = 0;
1570 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1571 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1572
1573 adapter->tx_int_delay = 8;
1574 adapter->tx_abs_int_delay = 32;
1575 adapter->rx_int_delay = 0;
1576 adapter->rx_abs_int_delay = 8;
1577 adapter->itr_setting = 3;
1578 adapter->itr = 20000;
1579
1580 /* Set various function pointers */
1581 adapter->ei->init_ops(&adapter->hw);
1582
1583 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1584 if (rc)
1585 return rc;
1586
1587 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1588 if (rc)
1589 return rc;
1590
1591 igbvf_set_interrupt_capability(adapter);
1592
1593 if (igbvf_alloc_queues(adapter))
1594 return -ENOMEM;
1595
1596 spin_lock_init(&adapter->tx_queue_lock);
1597
1598 /* Explicitly disable IRQ since the NIC can be in any state. */
1599 igbvf_irq_disable(adapter);
1600
1601 spin_lock_init(&adapter->stats_lock);
1602
1603 set_bit(__IGBVF_DOWN, &adapter->state);
1604 return 0;
1605 }
1606
1607 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1608 {
1609 struct e1000_hw *hw = &adapter->hw;
1610
1611 adapter->stats.last_gprc = er32(VFGPRC);
1612 adapter->stats.last_gorc = er32(VFGORC);
1613 adapter->stats.last_gptc = er32(VFGPTC);
1614 adapter->stats.last_gotc = er32(VFGOTC);
1615 adapter->stats.last_mprc = er32(VFMPRC);
1616 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1617 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1618 adapter->stats.last_gorlbc = er32(VFGORLBC);
1619 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1620
1621 adapter->stats.base_gprc = er32(VFGPRC);
1622 adapter->stats.base_gorc = er32(VFGORC);
1623 adapter->stats.base_gptc = er32(VFGPTC);
1624 adapter->stats.base_gotc = er32(VFGOTC);
1625 adapter->stats.base_mprc = er32(VFMPRC);
1626 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1627 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1628 adapter->stats.base_gorlbc = er32(VFGORLBC);
1629 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1630 }
1631
1632 /**
1633 * igbvf_open - Called when a network interface is made active
1634 * @netdev: network interface device structure
1635 *
1636 * Returns 0 on success, negative value on failure
1637 *
1638 * The open entry point is called when a network interface is made
1639 * active by the system (IFF_UP). At this point all resources needed
1640 * for transmit and receive operations are allocated, the interrupt
1641 * handler is registered with the OS, the watchdog timer is started,
1642 * and the stack is notified that the interface is ready.
1643 **/
1644 static int igbvf_open(struct net_device *netdev)
1645 {
1646 struct igbvf_adapter *adapter = netdev_priv(netdev);
1647 struct e1000_hw *hw = &adapter->hw;
1648 int err;
1649
1650 /* disallow open during test */
1651 if (test_bit(__IGBVF_TESTING, &adapter->state))
1652 return -EBUSY;
1653
1654 /* allocate transmit descriptors */
1655 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1656 if (err)
1657 goto err_setup_tx;
1658
1659 /* allocate receive descriptors */
1660 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1661 if (err)
1662 goto err_setup_rx;
1663
1664 /*
1665 * before we allocate an interrupt, we must be ready to handle it.
1666 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1667 * as soon as we call pci_request_irq, so we have to setup our
1668 * clean_rx handler before we do so.
1669 */
1670 igbvf_configure(adapter);
1671
1672 err = igbvf_request_irq(adapter);
1673 if (err)
1674 goto err_req_irq;
1675
1676 /* From here on the code is the same as igbvf_up() */
1677 clear_bit(__IGBVF_DOWN, &adapter->state);
1678
1679 napi_enable(&adapter->rx_ring->napi);
1680
1681 /* clear any pending interrupts */
1682 er32(EICR);
1683
1684 igbvf_irq_enable(adapter);
1685
1686 /* start the watchdog */
1687 hw->mac.get_link_status = 1;
1688 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1689
1690 return 0;
1691
1692 err_req_irq:
1693 igbvf_free_rx_resources(adapter->rx_ring);
1694 err_setup_rx:
1695 igbvf_free_tx_resources(adapter->tx_ring);
1696 err_setup_tx:
1697 igbvf_reset(adapter);
1698
1699 return err;
1700 }
1701
1702 /**
1703 * igbvf_close - Disables a network interface
1704 * @netdev: network interface device structure
1705 *
1706 * Returns 0, this is not allowed to fail
1707 *
1708 * The close entry point is called when an interface is de-activated
1709 * by the OS. The hardware is still under the drivers control, but
1710 * needs to be disabled. A global MAC reset is issued to stop the
1711 * hardware, and all transmit and receive resources are freed.
1712 **/
1713 static int igbvf_close(struct net_device *netdev)
1714 {
1715 struct igbvf_adapter *adapter = netdev_priv(netdev);
1716
1717 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1718 igbvf_down(adapter);
1719
1720 igbvf_free_irq(adapter);
1721
1722 igbvf_free_tx_resources(adapter->tx_ring);
1723 igbvf_free_rx_resources(adapter->rx_ring);
1724
1725 return 0;
1726 }
1727 /**
1728 * igbvf_set_mac - Change the Ethernet Address of the NIC
1729 * @netdev: network interface device structure
1730 * @p: pointer to an address structure
1731 *
1732 * Returns 0 on success, negative on failure
1733 **/
1734 static int igbvf_set_mac(struct net_device *netdev, void *p)
1735 {
1736 struct igbvf_adapter *adapter = netdev_priv(netdev);
1737 struct e1000_hw *hw = &adapter->hw;
1738 struct sockaddr *addr = p;
1739
1740 if (!is_valid_ether_addr(addr->sa_data))
1741 return -EADDRNOTAVAIL;
1742
1743 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1744
1745 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1746
1747 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1748 return -EADDRNOTAVAIL;
1749
1750 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1751
1752 return 0;
1753 }
1754
1755 #define UPDATE_VF_COUNTER(reg, name) \
1756 { \
1757 u32 current_counter = er32(reg); \
1758 if (current_counter < adapter->stats.last_##name) \
1759 adapter->stats.name += 0x100000000LL; \
1760 adapter->stats.last_##name = current_counter; \
1761 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1762 adapter->stats.name |= current_counter; \
1763 }
1764
1765 /**
1766 * igbvf_update_stats - Update the board statistics counters
1767 * @adapter: board private structure
1768 **/
1769 void igbvf_update_stats(struct igbvf_adapter *adapter)
1770 {
1771 struct e1000_hw *hw = &adapter->hw;
1772 struct pci_dev *pdev = adapter->pdev;
1773
1774 /*
1775 * Prevent stats update while adapter is being reset, link is down
1776 * or if the pci connection is down.
1777 */
1778 if (adapter->link_speed == 0)
1779 return;
1780
1781 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1782 return;
1783
1784 if (pci_channel_offline(pdev))
1785 return;
1786
1787 UPDATE_VF_COUNTER(VFGPRC, gprc);
1788 UPDATE_VF_COUNTER(VFGORC, gorc);
1789 UPDATE_VF_COUNTER(VFGPTC, gptc);
1790 UPDATE_VF_COUNTER(VFGOTC, gotc);
1791 UPDATE_VF_COUNTER(VFMPRC, mprc);
1792 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1793 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1794 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1795 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1796
1797 /* Fill out the OS statistics structure */
1798 adapter->net_stats.multicast = adapter->stats.mprc;
1799 }
1800
1801 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1802 {
1803 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1804 adapter->link_speed,
1805 ((adapter->link_duplex == FULL_DUPLEX) ?
1806 "Full Duplex" : "Half Duplex"));
1807 }
1808
1809 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1810 {
1811 struct e1000_hw *hw = &adapter->hw;
1812 s32 ret_val = E1000_SUCCESS;
1813 bool link_active;
1814
1815 ret_val = hw->mac.ops.check_for_link(hw);
1816 link_active = !hw->mac.get_link_status;
1817
1818 /* if check for link returns error we will need to reset */
1819 if (ret_val)
1820 schedule_work(&adapter->reset_task);
1821
1822 return link_active;
1823 }
1824
1825 /**
1826 * igbvf_watchdog - Timer Call-back
1827 * @data: pointer to adapter cast into an unsigned long
1828 **/
1829 static void igbvf_watchdog(unsigned long data)
1830 {
1831 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1832
1833 /* Do the rest outside of interrupt context */
1834 schedule_work(&adapter->watchdog_task);
1835 }
1836
1837 static void igbvf_watchdog_task(struct work_struct *work)
1838 {
1839 struct igbvf_adapter *adapter = container_of(work,
1840 struct igbvf_adapter,
1841 watchdog_task);
1842 struct net_device *netdev = adapter->netdev;
1843 struct e1000_mac_info *mac = &adapter->hw.mac;
1844 struct igbvf_ring *tx_ring = adapter->tx_ring;
1845 struct e1000_hw *hw = &adapter->hw;
1846 u32 link;
1847 int tx_pending = 0;
1848
1849 link = igbvf_has_link(adapter);
1850
1851 if (link) {
1852 if (!netif_carrier_ok(netdev)) {
1853 bool txb2b = 1;
1854
1855 mac->ops.get_link_up_info(&adapter->hw,
1856 &adapter->link_speed,
1857 &adapter->link_duplex);
1858 igbvf_print_link_info(adapter);
1859
1860 /*
1861 * tweak tx_queue_len according to speed/duplex
1862 * and adjust the timeout factor
1863 */
1864 netdev->tx_queue_len = adapter->tx_queue_len;
1865 adapter->tx_timeout_factor = 1;
1866 switch (adapter->link_speed) {
1867 case SPEED_10:
1868 txb2b = 0;
1869 netdev->tx_queue_len = 10;
1870 adapter->tx_timeout_factor = 16;
1871 break;
1872 case SPEED_100:
1873 txb2b = 0;
1874 netdev->tx_queue_len = 100;
1875 /* maybe add some timeout factor ? */
1876 break;
1877 }
1878
1879 netif_carrier_on(netdev);
1880 netif_wake_queue(netdev);
1881 }
1882 } else {
1883 if (netif_carrier_ok(netdev)) {
1884 adapter->link_speed = 0;
1885 adapter->link_duplex = 0;
1886 dev_info(&adapter->pdev->dev, "Link is Down\n");
1887 netif_carrier_off(netdev);
1888 netif_stop_queue(netdev);
1889 }
1890 }
1891
1892 if (netif_carrier_ok(netdev)) {
1893 igbvf_update_stats(adapter);
1894 } else {
1895 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1896 tx_ring->count);
1897 if (tx_pending) {
1898 /*
1899 * We've lost link, so the controller stops DMA,
1900 * but we've got queued Tx work that's never going
1901 * to get done, so reset controller to flush Tx.
1902 * (Do the reset outside of interrupt context).
1903 */
1904 adapter->tx_timeout_count++;
1905 schedule_work(&adapter->reset_task);
1906 }
1907 }
1908
1909 /* Cause software interrupt to ensure Rx ring is cleaned */
1910 ew32(EICS, adapter->rx_ring->eims_value);
1911
1912 /* Force detection of hung controller every watchdog period */
1913 adapter->detect_tx_hung = 1;
1914
1915 /* Reset the timer */
1916 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1917 mod_timer(&adapter->watchdog_timer,
1918 round_jiffies(jiffies + (2 * HZ)));
1919 }
1920
1921 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1922 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1923 #define IGBVF_TX_FLAGS_TSO 0x00000004
1924 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1925 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1926 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1927
1928 static int igbvf_tso(struct igbvf_adapter *adapter,
1929 struct igbvf_ring *tx_ring,
1930 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1931 {
1932 struct e1000_adv_tx_context_desc *context_desc;
1933 unsigned int i;
1934 int err;
1935 struct igbvf_buffer *buffer_info;
1936 u32 info = 0, tu_cmd = 0;
1937 u32 mss_l4len_idx, l4len;
1938 *hdr_len = 0;
1939
1940 if (skb_header_cloned(skb)) {
1941 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1942 if (err) {
1943 dev_err(&adapter->pdev->dev,
1944 "igbvf_tso returning an error\n");
1945 return err;
1946 }
1947 }
1948
1949 l4len = tcp_hdrlen(skb);
1950 *hdr_len += l4len;
1951
1952 if (skb->protocol == htons(ETH_P_IP)) {
1953 struct iphdr *iph = ip_hdr(skb);
1954 iph->tot_len = 0;
1955 iph->check = 0;
1956 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1957 iph->daddr, 0,
1958 IPPROTO_TCP,
1959 0);
1960 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
1961 ipv6_hdr(skb)->payload_len = 0;
1962 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1963 &ipv6_hdr(skb)->daddr,
1964 0, IPPROTO_TCP, 0);
1965 }
1966
1967 i = tx_ring->next_to_use;
1968
1969 buffer_info = &tx_ring->buffer_info[i];
1970 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1971 /* VLAN MACLEN IPLEN */
1972 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1973 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1974 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1975 *hdr_len += skb_network_offset(skb);
1976 info |= (skb_transport_header(skb) - skb_network_header(skb));
1977 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1978 context_desc->vlan_macip_lens = cpu_to_le32(info);
1979
1980 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1981 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1982
1983 if (skb->protocol == htons(ETH_P_IP))
1984 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1985 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1986
1987 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1988
1989 /* MSS L4LEN IDX */
1990 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1991 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1992
1993 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1994 context_desc->seqnum_seed = 0;
1995
1996 buffer_info->time_stamp = jiffies;
1997 buffer_info->next_to_watch = i;
1998 buffer_info->dma = 0;
1999 i++;
2000 if (i == tx_ring->count)
2001 i = 0;
2002
2003 tx_ring->next_to_use = i;
2004
2005 return true;
2006 }
2007
2008 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
2009 struct igbvf_ring *tx_ring,
2010 struct sk_buff *skb, u32 tx_flags)
2011 {
2012 struct e1000_adv_tx_context_desc *context_desc;
2013 unsigned int i;
2014 struct igbvf_buffer *buffer_info;
2015 u32 info = 0, tu_cmd = 0;
2016
2017 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2018 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2019 i = tx_ring->next_to_use;
2020 buffer_info = &tx_ring->buffer_info[i];
2021 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2022
2023 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2024 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2025
2026 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2027 if (skb->ip_summed == CHECKSUM_PARTIAL)
2028 info |= (skb_transport_header(skb) -
2029 skb_network_header(skb));
2030
2031
2032 context_desc->vlan_macip_lens = cpu_to_le32(info);
2033
2034 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2035
2036 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2037 switch (skb->protocol) {
2038 case __constant_htons(ETH_P_IP):
2039 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2040 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2041 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2042 break;
2043 case __constant_htons(ETH_P_IPV6):
2044 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2045 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2046 break;
2047 default:
2048 break;
2049 }
2050 }
2051
2052 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2053 context_desc->seqnum_seed = 0;
2054 context_desc->mss_l4len_idx = 0;
2055
2056 buffer_info->time_stamp = jiffies;
2057 buffer_info->next_to_watch = i;
2058 buffer_info->dma = 0;
2059 i++;
2060 if (i == tx_ring->count)
2061 i = 0;
2062 tx_ring->next_to_use = i;
2063
2064 return true;
2065 }
2066
2067 return false;
2068 }
2069
2070 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2071 {
2072 struct igbvf_adapter *adapter = netdev_priv(netdev);
2073
2074 /* there is enough descriptors then we don't need to worry */
2075 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2076 return 0;
2077
2078 netif_stop_queue(netdev);
2079
2080 smp_mb();
2081
2082 /* We need to check again just in case room has been made available */
2083 if (igbvf_desc_unused(adapter->tx_ring) < size)
2084 return -EBUSY;
2085
2086 netif_wake_queue(netdev);
2087
2088 ++adapter->restart_queue;
2089 return 0;
2090 }
2091
2092 #define IGBVF_MAX_TXD_PWR 16
2093 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2094
2095 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2096 struct igbvf_ring *tx_ring,
2097 struct sk_buff *skb,
2098 unsigned int first)
2099 {
2100 struct igbvf_buffer *buffer_info;
2101 unsigned int len = skb_headlen(skb);
2102 unsigned int count = 0, i;
2103 unsigned int f;
2104 dma_addr_t *map;
2105
2106 i = tx_ring->next_to_use;
2107
2108 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2109 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2110 return 0;
2111 }
2112
2113 map = skb_shinfo(skb)->dma_maps;
2114
2115 buffer_info = &tx_ring->buffer_info[i];
2116 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2117 buffer_info->length = len;
2118 /* set time_stamp *before* dma to help avoid a possible race */
2119 buffer_info->time_stamp = jiffies;
2120 buffer_info->next_to_watch = i;
2121 buffer_info->dma = skb_shinfo(skb)->dma_head;
2122
2123 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2124 struct skb_frag_struct *frag;
2125
2126 i++;
2127 if (i == tx_ring->count)
2128 i = 0;
2129
2130 frag = &skb_shinfo(skb)->frags[f];
2131 len = frag->size;
2132
2133 buffer_info = &tx_ring->buffer_info[i];
2134 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2135 buffer_info->length = len;
2136 buffer_info->time_stamp = jiffies;
2137 buffer_info->next_to_watch = i;
2138 buffer_info->dma = map[count];
2139 count++;
2140 }
2141
2142 tx_ring->buffer_info[i].skb = skb;
2143 tx_ring->buffer_info[first].next_to_watch = i;
2144
2145 return count + 1;
2146 }
2147
2148 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2149 struct igbvf_ring *tx_ring,
2150 int tx_flags, int count, u32 paylen,
2151 u8 hdr_len)
2152 {
2153 union e1000_adv_tx_desc *tx_desc = NULL;
2154 struct igbvf_buffer *buffer_info;
2155 u32 olinfo_status = 0, cmd_type_len;
2156 unsigned int i;
2157
2158 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2159 E1000_ADVTXD_DCMD_DEXT);
2160
2161 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2162 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2163
2164 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2165 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2166
2167 /* insert tcp checksum */
2168 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2169
2170 /* insert ip checksum */
2171 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2172 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2173
2174 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2175 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2176 }
2177
2178 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2179
2180 i = tx_ring->next_to_use;
2181 while (count--) {
2182 buffer_info = &tx_ring->buffer_info[i];
2183 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2184 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2185 tx_desc->read.cmd_type_len =
2186 cpu_to_le32(cmd_type_len | buffer_info->length);
2187 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2188 i++;
2189 if (i == tx_ring->count)
2190 i = 0;
2191 }
2192
2193 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2194 /* Force memory writes to complete before letting h/w
2195 * know there are new descriptors to fetch. (Only
2196 * applicable for weak-ordered memory model archs,
2197 * such as IA-64). */
2198 wmb();
2199
2200 tx_ring->next_to_use = i;
2201 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2202 /* we need this if more than one processor can write to our tail
2203 * at a time, it syncronizes IO on IA64/Altix systems */
2204 mmiowb();
2205 }
2206
2207 static int igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2208 struct net_device *netdev,
2209 struct igbvf_ring *tx_ring)
2210 {
2211 struct igbvf_adapter *adapter = netdev_priv(netdev);
2212 unsigned int first, tx_flags = 0;
2213 u8 hdr_len = 0;
2214 int count = 0;
2215 int tso = 0;
2216
2217 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2218 dev_kfree_skb_any(skb);
2219 return NETDEV_TX_OK;
2220 }
2221
2222 if (skb->len <= 0) {
2223 dev_kfree_skb_any(skb);
2224 return NETDEV_TX_OK;
2225 }
2226
2227 /*
2228 * need: count + 4 desc gap to keep tail from touching
2229 * + 2 desc gap to keep tail from touching head,
2230 * + 1 desc for skb->data,
2231 * + 1 desc for context descriptor,
2232 * head, otherwise try next time
2233 */
2234 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2235 /* this is a hard error */
2236 return NETDEV_TX_BUSY;
2237 }
2238
2239 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2240 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2241 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2242 }
2243
2244 if (skb->protocol == htons(ETH_P_IP))
2245 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2246
2247 first = tx_ring->next_to_use;
2248
2249 tso = skb_is_gso(skb) ?
2250 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2251 if (unlikely(tso < 0)) {
2252 dev_kfree_skb_any(skb);
2253 return NETDEV_TX_OK;
2254 }
2255
2256 if (tso)
2257 tx_flags |= IGBVF_TX_FLAGS_TSO;
2258 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2259 (skb->ip_summed == CHECKSUM_PARTIAL))
2260 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2261
2262 /*
2263 * count reflects descriptors mapped, if 0 then mapping error
2264 * has occured and we need to rewind the descriptor queue
2265 */
2266 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2267
2268 if (count) {
2269 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2270 skb->len, hdr_len);
2271 /* Make sure there is space in the ring for the next send. */
2272 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2273 } else {
2274 dev_kfree_skb_any(skb);
2275 tx_ring->buffer_info[first].time_stamp = 0;
2276 tx_ring->next_to_use = first;
2277 }
2278
2279 return NETDEV_TX_OK;
2280 }
2281
2282 static int igbvf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2283 {
2284 struct igbvf_adapter *adapter = netdev_priv(netdev);
2285 struct igbvf_ring *tx_ring;
2286 int retval;
2287
2288 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2289 dev_kfree_skb_any(skb);
2290 return NETDEV_TX_OK;
2291 }
2292
2293 tx_ring = &adapter->tx_ring[0];
2294
2295 retval = igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2296
2297 return retval;
2298 }
2299
2300 /**
2301 * igbvf_tx_timeout - Respond to a Tx Hang
2302 * @netdev: network interface device structure
2303 **/
2304 static void igbvf_tx_timeout(struct net_device *netdev)
2305 {
2306 struct igbvf_adapter *adapter = netdev_priv(netdev);
2307
2308 /* Do the reset outside of interrupt context */
2309 adapter->tx_timeout_count++;
2310 schedule_work(&adapter->reset_task);
2311 }
2312
2313 static void igbvf_reset_task(struct work_struct *work)
2314 {
2315 struct igbvf_adapter *adapter;
2316 adapter = container_of(work, struct igbvf_adapter, reset_task);
2317
2318 igbvf_reinit_locked(adapter);
2319 }
2320
2321 /**
2322 * igbvf_get_stats - Get System Network Statistics
2323 * @netdev: network interface device structure
2324 *
2325 * Returns the address of the device statistics structure.
2326 * The statistics are actually updated from the timer callback.
2327 **/
2328 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2329 {
2330 struct igbvf_adapter *adapter = netdev_priv(netdev);
2331
2332 /* only return the current stats */
2333 return &adapter->net_stats;
2334 }
2335
2336 /**
2337 * igbvf_change_mtu - Change the Maximum Transfer Unit
2338 * @netdev: network interface device structure
2339 * @new_mtu: new value for maximum frame size
2340 *
2341 * Returns 0 on success, negative on failure
2342 **/
2343 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2344 {
2345 struct igbvf_adapter *adapter = netdev_priv(netdev);
2346 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2347
2348 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2349 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2350 return -EINVAL;
2351 }
2352
2353 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2354 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2355 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2356 return -EINVAL;
2357 }
2358
2359 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2360 msleep(1);
2361 /* igbvf_down has a dependency on max_frame_size */
2362 adapter->max_frame_size = max_frame;
2363 if (netif_running(netdev))
2364 igbvf_down(adapter);
2365
2366 /*
2367 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2368 * means we reserve 2 more, this pushes us to allocate from the next
2369 * larger slab size.
2370 * i.e. RXBUFFER_2048 --> size-4096 slab
2371 * However with the new *_jumbo_rx* routines, jumbo receives will use
2372 * fragmented skbs
2373 */
2374
2375 if (max_frame <= 1024)
2376 adapter->rx_buffer_len = 1024;
2377 else if (max_frame <= 2048)
2378 adapter->rx_buffer_len = 2048;
2379 else
2380 #if (PAGE_SIZE / 2) > 16384
2381 adapter->rx_buffer_len = 16384;
2382 #else
2383 adapter->rx_buffer_len = PAGE_SIZE / 2;
2384 #endif
2385
2386
2387 /* adjust allocation if LPE protects us, and we aren't using SBP */
2388 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2389 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2390 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2391 ETH_FCS_LEN;
2392
2393 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2394 netdev->mtu, new_mtu);
2395 netdev->mtu = new_mtu;
2396
2397 if (netif_running(netdev))
2398 igbvf_up(adapter);
2399 else
2400 igbvf_reset(adapter);
2401
2402 clear_bit(__IGBVF_RESETTING, &adapter->state);
2403
2404 return 0;
2405 }
2406
2407 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2408 {
2409 switch (cmd) {
2410 default:
2411 return -EOPNOTSUPP;
2412 }
2413 }
2414
2415 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2416 {
2417 struct net_device *netdev = pci_get_drvdata(pdev);
2418 struct igbvf_adapter *adapter = netdev_priv(netdev);
2419 #ifdef CONFIG_PM
2420 int retval = 0;
2421 #endif
2422
2423 netif_device_detach(netdev);
2424
2425 if (netif_running(netdev)) {
2426 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2427 igbvf_down(adapter);
2428 igbvf_free_irq(adapter);
2429 }
2430
2431 #ifdef CONFIG_PM
2432 retval = pci_save_state(pdev);
2433 if (retval)
2434 return retval;
2435 #endif
2436
2437 pci_disable_device(pdev);
2438
2439 return 0;
2440 }
2441
2442 #ifdef CONFIG_PM
2443 static int igbvf_resume(struct pci_dev *pdev)
2444 {
2445 struct net_device *netdev = pci_get_drvdata(pdev);
2446 struct igbvf_adapter *adapter = netdev_priv(netdev);
2447 u32 err;
2448
2449 pci_restore_state(pdev);
2450 err = pci_enable_device_mem(pdev);
2451 if (err) {
2452 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2453 return err;
2454 }
2455
2456 pci_set_master(pdev);
2457
2458 if (netif_running(netdev)) {
2459 err = igbvf_request_irq(adapter);
2460 if (err)
2461 return err;
2462 }
2463
2464 igbvf_reset(adapter);
2465
2466 if (netif_running(netdev))
2467 igbvf_up(adapter);
2468
2469 netif_device_attach(netdev);
2470
2471 return 0;
2472 }
2473 #endif
2474
2475 static void igbvf_shutdown(struct pci_dev *pdev)
2476 {
2477 igbvf_suspend(pdev, PMSG_SUSPEND);
2478 }
2479
2480 #ifdef CONFIG_NET_POLL_CONTROLLER
2481 /*
2482 * Polling 'interrupt' - used by things like netconsole to send skbs
2483 * without having to re-enable interrupts. It's not called while
2484 * the interrupt routine is executing.
2485 */
2486 static void igbvf_netpoll(struct net_device *netdev)
2487 {
2488 struct igbvf_adapter *adapter = netdev_priv(netdev);
2489
2490 disable_irq(adapter->pdev->irq);
2491
2492 igbvf_clean_tx_irq(adapter->tx_ring);
2493
2494 enable_irq(adapter->pdev->irq);
2495 }
2496 #endif
2497
2498 /**
2499 * igbvf_io_error_detected - called when PCI error is detected
2500 * @pdev: Pointer to PCI device
2501 * @state: The current pci connection state
2502 *
2503 * This function is called after a PCI bus error affecting
2504 * this device has been detected.
2505 */
2506 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2507 pci_channel_state_t state)
2508 {
2509 struct net_device *netdev = pci_get_drvdata(pdev);
2510 struct igbvf_adapter *adapter = netdev_priv(netdev);
2511
2512 netif_device_detach(netdev);
2513
2514 if (netif_running(netdev))
2515 igbvf_down(adapter);
2516 pci_disable_device(pdev);
2517
2518 /* Request a slot slot reset. */
2519 return PCI_ERS_RESULT_NEED_RESET;
2520 }
2521
2522 /**
2523 * igbvf_io_slot_reset - called after the pci bus has been reset.
2524 * @pdev: Pointer to PCI device
2525 *
2526 * Restart the card from scratch, as if from a cold-boot. Implementation
2527 * resembles the first-half of the igbvf_resume routine.
2528 */
2529 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2530 {
2531 struct net_device *netdev = pci_get_drvdata(pdev);
2532 struct igbvf_adapter *adapter = netdev_priv(netdev);
2533
2534 if (pci_enable_device_mem(pdev)) {
2535 dev_err(&pdev->dev,
2536 "Cannot re-enable PCI device after reset.\n");
2537 return PCI_ERS_RESULT_DISCONNECT;
2538 }
2539 pci_set_master(pdev);
2540
2541 igbvf_reset(adapter);
2542
2543 return PCI_ERS_RESULT_RECOVERED;
2544 }
2545
2546 /**
2547 * igbvf_io_resume - called when traffic can start flowing again.
2548 * @pdev: Pointer to PCI device
2549 *
2550 * This callback is called when the error recovery driver tells us that
2551 * its OK to resume normal operation. Implementation resembles the
2552 * second-half of the igbvf_resume routine.
2553 */
2554 static void igbvf_io_resume(struct pci_dev *pdev)
2555 {
2556 struct net_device *netdev = pci_get_drvdata(pdev);
2557 struct igbvf_adapter *adapter = netdev_priv(netdev);
2558
2559 if (netif_running(netdev)) {
2560 if (igbvf_up(adapter)) {
2561 dev_err(&pdev->dev,
2562 "can't bring device back up after reset\n");
2563 return;
2564 }
2565 }
2566
2567 netif_device_attach(netdev);
2568 }
2569
2570 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2571 {
2572 struct e1000_hw *hw = &adapter->hw;
2573 struct net_device *netdev = adapter->netdev;
2574 struct pci_dev *pdev = adapter->pdev;
2575
2576 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2577 dev_info(&pdev->dev, "Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
2578 /* MAC address */
2579 netdev->dev_addr[0], netdev->dev_addr[1],
2580 netdev->dev_addr[2], netdev->dev_addr[3],
2581 netdev->dev_addr[4], netdev->dev_addr[5]);
2582 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2583 }
2584
2585 static const struct net_device_ops igbvf_netdev_ops = {
2586 .ndo_open = igbvf_open,
2587 .ndo_stop = igbvf_close,
2588 .ndo_start_xmit = igbvf_xmit_frame,
2589 .ndo_get_stats = igbvf_get_stats,
2590 .ndo_set_multicast_list = igbvf_set_multi,
2591 .ndo_set_mac_address = igbvf_set_mac,
2592 .ndo_change_mtu = igbvf_change_mtu,
2593 .ndo_do_ioctl = igbvf_ioctl,
2594 .ndo_tx_timeout = igbvf_tx_timeout,
2595 .ndo_vlan_rx_register = igbvf_vlan_rx_register,
2596 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2597 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2598 #ifdef CONFIG_NET_POLL_CONTROLLER
2599 .ndo_poll_controller = igbvf_netpoll,
2600 #endif
2601 };
2602
2603 /**
2604 * igbvf_probe - Device Initialization Routine
2605 * @pdev: PCI device information struct
2606 * @ent: entry in igbvf_pci_tbl
2607 *
2608 * Returns 0 on success, negative on failure
2609 *
2610 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2611 * The OS initialization, configuring of the adapter private structure,
2612 * and a hardware reset occur.
2613 **/
2614 static int __devinit igbvf_probe(struct pci_dev *pdev,
2615 const struct pci_device_id *ent)
2616 {
2617 struct net_device *netdev;
2618 struct igbvf_adapter *adapter;
2619 struct e1000_hw *hw;
2620 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2621
2622 static int cards_found;
2623 int err, pci_using_dac;
2624
2625 err = pci_enable_device_mem(pdev);
2626 if (err)
2627 return err;
2628
2629 pci_using_dac = 0;
2630 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2631 if (!err) {
2632 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2633 if (!err)
2634 pci_using_dac = 1;
2635 } else {
2636 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2637 if (err) {
2638 err = pci_set_consistent_dma_mask(pdev,
2639 DMA_BIT_MASK(32));
2640 if (err) {
2641 dev_err(&pdev->dev, "No usable DMA "
2642 "configuration, aborting\n");
2643 goto err_dma;
2644 }
2645 }
2646 }
2647
2648 err = pci_request_regions(pdev, igbvf_driver_name);
2649 if (err)
2650 goto err_pci_reg;
2651
2652 pci_set_master(pdev);
2653
2654 err = -ENOMEM;
2655 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2656 if (!netdev)
2657 goto err_alloc_etherdev;
2658
2659 SET_NETDEV_DEV(netdev, &pdev->dev);
2660
2661 pci_set_drvdata(pdev, netdev);
2662 adapter = netdev_priv(netdev);
2663 hw = &adapter->hw;
2664 adapter->netdev = netdev;
2665 adapter->pdev = pdev;
2666 adapter->ei = ei;
2667 adapter->pba = ei->pba;
2668 adapter->flags = ei->flags;
2669 adapter->hw.back = adapter;
2670 adapter->hw.mac.type = ei->mac;
2671 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2672
2673 /* PCI config space info */
2674
2675 hw->vendor_id = pdev->vendor;
2676 hw->device_id = pdev->device;
2677 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2678 hw->subsystem_device_id = pdev->subsystem_device;
2679
2680 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2681
2682 err = -EIO;
2683 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2684 pci_resource_len(pdev, 0));
2685
2686 if (!adapter->hw.hw_addr)
2687 goto err_ioremap;
2688
2689 if (ei->get_variants) {
2690 err = ei->get_variants(adapter);
2691 if (err)
2692 goto err_ioremap;
2693 }
2694
2695 /* setup adapter struct */
2696 err = igbvf_sw_init(adapter);
2697 if (err)
2698 goto err_sw_init;
2699
2700 /* construct the net_device struct */
2701 netdev->netdev_ops = &igbvf_netdev_ops;
2702
2703 igbvf_set_ethtool_ops(netdev);
2704 netdev->watchdog_timeo = 5 * HZ;
2705 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2706
2707 adapter->bd_number = cards_found++;
2708
2709 netdev->features = NETIF_F_SG |
2710 NETIF_F_IP_CSUM |
2711 NETIF_F_HW_VLAN_TX |
2712 NETIF_F_HW_VLAN_RX |
2713 NETIF_F_HW_VLAN_FILTER;
2714
2715 netdev->features |= NETIF_F_IPV6_CSUM;
2716 netdev->features |= NETIF_F_TSO;
2717 netdev->features |= NETIF_F_TSO6;
2718
2719 if (pci_using_dac)
2720 netdev->features |= NETIF_F_HIGHDMA;
2721
2722 netdev->vlan_features |= NETIF_F_TSO;
2723 netdev->vlan_features |= NETIF_F_TSO6;
2724 netdev->vlan_features |= NETIF_F_IP_CSUM;
2725 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2726 netdev->vlan_features |= NETIF_F_SG;
2727
2728 /*reset the controller to put the device in a known good state */
2729 err = hw->mac.ops.reset_hw(hw);
2730 if (err) {
2731 dev_info(&pdev->dev,
2732 "PF still in reset state, assigning new address\n");
2733 random_ether_addr(hw->mac.addr);
2734 } else {
2735 err = hw->mac.ops.read_mac_addr(hw);
2736 if (err) {
2737 dev_err(&pdev->dev, "Error reading MAC address\n");
2738 goto err_hw_init;
2739 }
2740 }
2741
2742 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2743 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2744
2745 if (!is_valid_ether_addr(netdev->perm_addr)) {
2746 dev_err(&pdev->dev, "Invalid MAC Address: "
2747 "%02x:%02x:%02x:%02x:%02x:%02x\n",
2748 netdev->dev_addr[0], netdev->dev_addr[1],
2749 netdev->dev_addr[2], netdev->dev_addr[3],
2750 netdev->dev_addr[4], netdev->dev_addr[5]);
2751 err = -EIO;
2752 goto err_hw_init;
2753 }
2754
2755 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2756 (unsigned long) adapter);
2757
2758 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2759 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2760
2761 /* ring size defaults */
2762 adapter->rx_ring->count = 1024;
2763 adapter->tx_ring->count = 1024;
2764
2765 /* reset the hardware with the new settings */
2766 igbvf_reset(adapter);
2767
2768 /* tell the stack to leave us alone until igbvf_open() is called */
2769 netif_carrier_off(netdev);
2770 netif_stop_queue(netdev);
2771
2772 strcpy(netdev->name, "eth%d");
2773 err = register_netdev(netdev);
2774 if (err)
2775 goto err_hw_init;
2776
2777 igbvf_print_device_info(adapter);
2778
2779 igbvf_initialize_last_counter_stats(adapter);
2780
2781 return 0;
2782
2783 err_hw_init:
2784 kfree(adapter->tx_ring);
2785 kfree(adapter->rx_ring);
2786 err_sw_init:
2787 igbvf_reset_interrupt_capability(adapter);
2788 iounmap(adapter->hw.hw_addr);
2789 err_ioremap:
2790 free_netdev(netdev);
2791 err_alloc_etherdev:
2792 pci_release_regions(pdev);
2793 err_pci_reg:
2794 err_dma:
2795 pci_disable_device(pdev);
2796 return err;
2797 }
2798
2799 /**
2800 * igbvf_remove - Device Removal Routine
2801 * @pdev: PCI device information struct
2802 *
2803 * igbvf_remove is called by the PCI subsystem to alert the driver
2804 * that it should release a PCI device. The could be caused by a
2805 * Hot-Plug event, or because the driver is going to be removed from
2806 * memory.
2807 **/
2808 static void __devexit igbvf_remove(struct pci_dev *pdev)
2809 {
2810 struct net_device *netdev = pci_get_drvdata(pdev);
2811 struct igbvf_adapter *adapter = netdev_priv(netdev);
2812 struct e1000_hw *hw = &adapter->hw;
2813
2814 /*
2815 * flush_scheduled work may reschedule our watchdog task, so
2816 * explicitly disable watchdog tasks from being rescheduled
2817 */
2818 set_bit(__IGBVF_DOWN, &adapter->state);
2819 del_timer_sync(&adapter->watchdog_timer);
2820
2821 flush_scheduled_work();
2822
2823 unregister_netdev(netdev);
2824
2825 igbvf_reset_interrupt_capability(adapter);
2826
2827 /*
2828 * it is important to delete the napi struct prior to freeing the
2829 * rx ring so that you do not end up with null pointer refs
2830 */
2831 netif_napi_del(&adapter->rx_ring->napi);
2832 kfree(adapter->tx_ring);
2833 kfree(adapter->rx_ring);
2834
2835 iounmap(hw->hw_addr);
2836 if (hw->flash_address)
2837 iounmap(hw->flash_address);
2838 pci_release_regions(pdev);
2839
2840 free_netdev(netdev);
2841
2842 pci_disable_device(pdev);
2843 }
2844
2845 /* PCI Error Recovery (ERS) */
2846 static struct pci_error_handlers igbvf_err_handler = {
2847 .error_detected = igbvf_io_error_detected,
2848 .slot_reset = igbvf_io_slot_reset,
2849 .resume = igbvf_io_resume,
2850 };
2851
2852 static struct pci_device_id igbvf_pci_tbl[] = {
2853 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2854 { } /* terminate list */
2855 };
2856 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2857
2858 /* PCI Device API Driver */
2859 static struct pci_driver igbvf_driver = {
2860 .name = igbvf_driver_name,
2861 .id_table = igbvf_pci_tbl,
2862 .probe = igbvf_probe,
2863 .remove = __devexit_p(igbvf_remove),
2864 #ifdef CONFIG_PM
2865 /* Power Management Hooks */
2866 .suspend = igbvf_suspend,
2867 .resume = igbvf_resume,
2868 #endif
2869 .shutdown = igbvf_shutdown,
2870 .err_handler = &igbvf_err_handler
2871 };
2872
2873 /**
2874 * igbvf_init_module - Driver Registration Routine
2875 *
2876 * igbvf_init_module is the first routine called when the driver is
2877 * loaded. All it does is register with the PCI subsystem.
2878 **/
2879 static int __init igbvf_init_module(void)
2880 {
2881 int ret;
2882 printk(KERN_INFO "%s - version %s\n",
2883 igbvf_driver_string, igbvf_driver_version);
2884 printk(KERN_INFO "%s\n", igbvf_copyright);
2885
2886 ret = pci_register_driver(&igbvf_driver);
2887 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name,
2888 PM_QOS_DEFAULT_VALUE);
2889
2890 return ret;
2891 }
2892 module_init(igbvf_init_module);
2893
2894 /**
2895 * igbvf_exit_module - Driver Exit Cleanup Routine
2896 *
2897 * igbvf_exit_module is called just before the driver is removed
2898 * from memory.
2899 **/
2900 static void __exit igbvf_exit_module(void)
2901 {
2902 pci_unregister_driver(&igbvf_driver);
2903 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name);
2904 }
2905 module_exit(igbvf_exit_module);
2906
2907
2908 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2909 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2910 MODULE_LICENSE("GPL");
2911 MODULE_VERSION(DRV_VERSION);
2912
2913 /* netdev.c */
This page took 0.122699 seconds and 4 git commands to generate.