b470281158e912835017d30fd337a2e9b7fd237c
[deliverable/linux.git] / drivers / net / ipg.c
1 /*
2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3 *
4 * Copyright (C) 2003, 2007 IC Plus Corp
5 *
6 * Original Author:
7 *
8 * Craig Rich
9 * Sundance Technology, Inc.
10 * www.sundanceti.com
11 * craig_rich@sundanceti.com
12 *
13 * Current Maintainer:
14 *
15 * Sorbica Shieh.
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
18 *
19 * Jesse Huang
20 * http://www.icplus.com.tw
21 * jesse@icplus.com.tw
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/crc32.h>
27 #include <linux/ethtool.h>
28 #include <linux/interrupt.h>
29 #include <linux/gfp.h>
30 #include <linux/mii.h>
31 #include <linux/mutex.h>
32
33 #include <asm/div64.h>
34
35 #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
36 #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
37 #define IPG_RESET_MASK \
38 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
39 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
40 IPG_AC_AUTO_INIT)
41
42 #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg))
43 #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg))
44 #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg))
45
46 #define ipg_r32(reg) ioread32(ioaddr + (reg))
47 #define ipg_r16(reg) ioread16(ioaddr + (reg))
48 #define ipg_r8(reg) ioread8(ioaddr + (reg))
49
50 enum {
51 netdev_io_size = 128
52 };
53
54 #include "ipg.h"
55 #define DRV_NAME "ipg"
56
57 MODULE_AUTHOR("IC Plus Corp. 2003");
58 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
59 MODULE_LICENSE("GPL");
60
61 /*
62 * Defaults
63 */
64 #define IPG_MAX_RXFRAME_SIZE 0x0600
65 #define IPG_RXFRAG_SIZE 0x0600
66 #define IPG_RXSUPPORT_SIZE 0x0600
67 #define IPG_IS_JUMBO false
68
69 /*
70 * Variable record -- index by leading revision/length
71 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
72 */
73 static const unsigned short DefaultPhyParam[] = {
74 /* 11/12/03 IP1000A v1-3 rev=0x40 */
75 /*--------------------------------------------------------------------------
76 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
77 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
78 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
79 --------------------------------------------------------------------------*/
80 /* 12/17/03 IP1000A v1-4 rev=0x40 */
81 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
82 0x0000,
83 30, 0x005e, 9, 0x0700,
84 /* 01/09/04 IP1000A v1-5 rev=0x41 */
85 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
86 0x0000,
87 30, 0x005e, 9, 0x0700,
88 0x0000
89 };
90
91 static const char * const ipg_brand_name[] = {
92 "IC PLUS IP1000 1000/100/10 based NIC",
93 "Sundance Technology ST2021 based NIC",
94 "Tamarack Microelectronics TC9020/9021 based NIC",
95 "D-Link NIC IP1000A"
96 };
97
98 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = {
99 { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
100 { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
101 { PCI_VDEVICE(DLINK, 0x9021), 2 },
102 { PCI_VDEVICE(DLINK, 0x4020), 3 },
103 { 0, }
104 };
105
106 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
107
108 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
109 {
110 struct ipg_nic_private *sp = netdev_priv(dev);
111 return sp->ioaddr;
112 }
113
114 #ifdef IPG_DEBUG
115 static void ipg_dump_rfdlist(struct net_device *dev)
116 {
117 struct ipg_nic_private *sp = netdev_priv(dev);
118 void __iomem *ioaddr = sp->ioaddr;
119 unsigned int i;
120 u32 offset;
121
122 IPG_DEBUG_MSG("_dump_rfdlist\n");
123
124 netdev_info(dev, "rx_current = %02x\n", sp->rx_current);
125 netdev_info(dev, "rx_dirty = %02x\n", sp->rx_dirty);
126 netdev_info(dev, "RFDList start address = %016lx\n",
127 (unsigned long)sp->rxd_map);
128 netdev_info(dev, "RFDListPtr register = %08x%08x\n",
129 ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
130
131 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
132 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
133 netdev_info(dev, "%02x %04x RFDNextPtr = %016lx\n",
134 i, offset, (unsigned long)sp->rxd[i].next_desc);
135 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
136 netdev_info(dev, "%02x %04x RFS = %016lx\n",
137 i, offset, (unsigned long)sp->rxd[i].rfs);
138 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
139 netdev_info(dev, "%02x %04x frag_info = %016lx\n",
140 i, offset, (unsigned long)sp->rxd[i].frag_info);
141 }
142 }
143
144 static void ipg_dump_tfdlist(struct net_device *dev)
145 {
146 struct ipg_nic_private *sp = netdev_priv(dev);
147 void __iomem *ioaddr = sp->ioaddr;
148 unsigned int i;
149 u32 offset;
150
151 IPG_DEBUG_MSG("_dump_tfdlist\n");
152
153 netdev_info(dev, "tx_current = %02x\n", sp->tx_current);
154 netdev_info(dev, "tx_dirty = %02x\n", sp->tx_dirty);
155 netdev_info(dev, "TFDList start address = %016lx\n",
156 (unsigned long) sp->txd_map);
157 netdev_info(dev, "TFDListPtr register = %08x%08x\n",
158 ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
159
160 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
161 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
162 netdev_info(dev, "%02x %04x TFDNextPtr = %016lx\n",
163 i, offset, (unsigned long)sp->txd[i].next_desc);
164
165 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
166 netdev_info(dev, "%02x %04x TFC = %016lx\n",
167 i, offset, (unsigned long) sp->txd[i].tfc);
168 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
169 netdev_info(dev, "%02x %04x frag_info = %016lx\n",
170 i, offset, (unsigned long) sp->txd[i].frag_info);
171 }
172 }
173 #endif
174
175 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
176 {
177 ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
178 ndelay(IPG_PC_PHYCTRLWAIT_NS);
179 }
180
181 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
182 {
183 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
184 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
185 }
186
187 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
188 {
189 phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
190
191 ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
192 }
193
194 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
195 {
196 ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
197 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
198 }
199
200 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
201 {
202 u16 bit_data;
203
204 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
205
206 bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
207
208 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
209
210 return bit_data;
211 }
212
213 /*
214 * Read a register from the Physical Layer device located
215 * on the IPG NIC, using the IPG PHYCTRL register.
216 */
217 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
218 {
219 void __iomem *ioaddr = ipg_ioaddr(dev);
220 /*
221 * The GMII mangement frame structure for a read is as follows:
222 *
223 * |Preamble|st|op|phyad|regad|ta| data |idle|
224 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
225 *
226 * <32 1s> = 32 consecutive logic 1 values
227 * A = bit of Physical Layer device address (MSB first)
228 * R = bit of register address (MSB first)
229 * z = High impedance state
230 * D = bit of read data (MSB first)
231 *
232 * Transmission order is 'Preamble' field first, bits transmitted
233 * left to right (first to last).
234 */
235 struct {
236 u32 field;
237 unsigned int len;
238 } p[] = {
239 { GMII_PREAMBLE, 32 }, /* Preamble */
240 { GMII_ST, 2 }, /* ST */
241 { GMII_READ, 2 }, /* OP */
242 { phy_id, 5 }, /* PHYAD */
243 { phy_reg, 5 }, /* REGAD */
244 { 0x0000, 2 }, /* TA */
245 { 0x0000, 16 }, /* DATA */
246 { 0x0000, 1 } /* IDLE */
247 };
248 unsigned int i, j;
249 u8 polarity, data;
250
251 polarity = ipg_r8(PHY_CTRL);
252 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
253
254 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
255 for (j = 0; j < 5; j++) {
256 for (i = 0; i < p[j].len; i++) {
257 /* For each variable length field, the MSB must be
258 * transmitted first. Rotate through the field bits,
259 * starting with the MSB, and move each bit into the
260 * the 1st (2^1) bit position (this is the bit position
261 * corresponding to the MgmtData bit of the PhyCtrl
262 * register for the IPG).
263 *
264 * Example: ST = 01;
265 *
266 * First write a '0' to bit 1 of the PhyCtrl
267 * register, then write a '1' to bit 1 of the
268 * PhyCtrl register.
269 *
270 * To do this, right shift the MSB of ST by the value:
271 * [field length - 1 - #ST bits already written]
272 * then left shift this result by 1.
273 */
274 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
275 data &= IPG_PC_MGMTDATA;
276 data |= polarity | IPG_PC_MGMTDIR;
277
278 ipg_drive_phy_ctl_low_high(ioaddr, data);
279 }
280 }
281
282 send_three_state(ioaddr, polarity);
283
284 read_phy_bit(ioaddr, polarity);
285
286 /*
287 * For a read cycle, the bits for the next two fields (TA and
288 * DATA) are driven by the PHY (the IPG reads these bits).
289 */
290 for (i = 0; i < p[6].len; i++) {
291 p[6].field |=
292 (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
293 }
294
295 send_three_state(ioaddr, polarity);
296 send_three_state(ioaddr, polarity);
297 send_three_state(ioaddr, polarity);
298 send_end(ioaddr, polarity);
299
300 /* Return the value of the DATA field. */
301 return p[6].field;
302 }
303
304 /*
305 * Write to a register from the Physical Layer device located
306 * on the IPG NIC, using the IPG PHYCTRL register.
307 */
308 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
309 {
310 void __iomem *ioaddr = ipg_ioaddr(dev);
311 /*
312 * The GMII mangement frame structure for a read is as follows:
313 *
314 * |Preamble|st|op|phyad|regad|ta| data |idle|
315 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
316 *
317 * <32 1s> = 32 consecutive logic 1 values
318 * A = bit of Physical Layer device address (MSB first)
319 * R = bit of register address (MSB first)
320 * z = High impedance state
321 * D = bit of write data (MSB first)
322 *
323 * Transmission order is 'Preamble' field first, bits transmitted
324 * left to right (first to last).
325 */
326 struct {
327 u32 field;
328 unsigned int len;
329 } p[] = {
330 { GMII_PREAMBLE, 32 }, /* Preamble */
331 { GMII_ST, 2 }, /* ST */
332 { GMII_WRITE, 2 }, /* OP */
333 { phy_id, 5 }, /* PHYAD */
334 { phy_reg, 5 }, /* REGAD */
335 { 0x0002, 2 }, /* TA */
336 { val & 0xffff, 16 }, /* DATA */
337 { 0x0000, 1 } /* IDLE */
338 };
339 unsigned int i, j;
340 u8 polarity, data;
341
342 polarity = ipg_r8(PHY_CTRL);
343 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
344
345 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
346 for (j = 0; j < 7; j++) {
347 for (i = 0; i < p[j].len; i++) {
348 /* For each variable length field, the MSB must be
349 * transmitted first. Rotate through the field bits,
350 * starting with the MSB, and move each bit into the
351 * the 1st (2^1) bit position (this is the bit position
352 * corresponding to the MgmtData bit of the PhyCtrl
353 * register for the IPG).
354 *
355 * Example: ST = 01;
356 *
357 * First write a '0' to bit 1 of the PhyCtrl
358 * register, then write a '1' to bit 1 of the
359 * PhyCtrl register.
360 *
361 * To do this, right shift the MSB of ST by the value:
362 * [field length - 1 - #ST bits already written]
363 * then left shift this result by 1.
364 */
365 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
366 data &= IPG_PC_MGMTDATA;
367 data |= polarity | IPG_PC_MGMTDIR;
368
369 ipg_drive_phy_ctl_low_high(ioaddr, data);
370 }
371 }
372
373 /* The last cycle is a tri-state, so read from the PHY. */
374 for (j = 7; j < 8; j++) {
375 for (i = 0; i < p[j].len; i++) {
376 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
377
378 p[j].field |= ((ipg_r8(PHY_CTRL) &
379 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
380
381 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
382 }
383 }
384 }
385
386 static void ipg_set_led_mode(struct net_device *dev)
387 {
388 struct ipg_nic_private *sp = netdev_priv(dev);
389 void __iomem *ioaddr = sp->ioaddr;
390 u32 mode;
391
392 mode = ipg_r32(ASIC_CTRL);
393 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
394
395 if ((sp->led_mode & 0x03) > 1)
396 mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */
397
398 if ((sp->led_mode & 0x01) == 1)
399 mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */
400
401 if ((sp->led_mode & 0x08) == 8)
402 mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */
403
404 ipg_w32(mode, ASIC_CTRL);
405 }
406
407 static void ipg_set_phy_set(struct net_device *dev)
408 {
409 struct ipg_nic_private *sp = netdev_priv(dev);
410 void __iomem *ioaddr = sp->ioaddr;
411 int physet;
412
413 physet = ipg_r8(PHY_SET);
414 physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
415 physet |= ((sp->led_mode & 0x70) >> 4);
416 ipg_w8(physet, PHY_SET);
417 }
418
419 static int ipg_reset(struct net_device *dev, u32 resetflags)
420 {
421 /* Assert functional resets via the IPG AsicCtrl
422 * register as specified by the 'resetflags' input
423 * parameter.
424 */
425 void __iomem *ioaddr = ipg_ioaddr(dev);
426 unsigned int timeout_count = 0;
427
428 IPG_DEBUG_MSG("_reset\n");
429
430 ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
431
432 /* Delay added to account for problem with 10Mbps reset. */
433 mdelay(IPG_AC_RESETWAIT);
434
435 while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
436 mdelay(IPG_AC_RESETWAIT);
437 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
438 return -ETIME;
439 }
440 /* Set LED Mode in Asic Control */
441 ipg_set_led_mode(dev);
442
443 /* Set PHYSet Register Value */
444 ipg_set_phy_set(dev);
445 return 0;
446 }
447
448 /* Find the GMII PHY address. */
449 static int ipg_find_phyaddr(struct net_device *dev)
450 {
451 unsigned int phyaddr, i;
452
453 for (i = 0; i < 32; i++) {
454 u32 status;
455
456 /* Search for the correct PHY address among 32 possible. */
457 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
458
459 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
460 GMII_PHY_ID1
461 */
462
463 status = mdio_read(dev, phyaddr, MII_BMSR);
464
465 if ((status != 0xFFFF) && (status != 0))
466 return phyaddr;
467 }
468
469 return 0x1f;
470 }
471
472 /*
473 * Configure IPG based on result of IEEE 802.3 PHY
474 * auto-negotiation.
475 */
476 static int ipg_config_autoneg(struct net_device *dev)
477 {
478 struct ipg_nic_private *sp = netdev_priv(dev);
479 void __iomem *ioaddr = sp->ioaddr;
480 unsigned int txflowcontrol;
481 unsigned int rxflowcontrol;
482 unsigned int fullduplex;
483 u32 mac_ctrl_val;
484 u32 asicctrl;
485 u8 phyctrl;
486 const char *speed;
487 const char *duplex;
488 const char *tx_desc;
489 const char *rx_desc;
490
491 IPG_DEBUG_MSG("_config_autoneg\n");
492
493 asicctrl = ipg_r32(ASIC_CTRL);
494 phyctrl = ipg_r8(PHY_CTRL);
495 mac_ctrl_val = ipg_r32(MAC_CTRL);
496
497 /* Set flags for use in resolving auto-negotiation, assuming
498 * non-1000Mbps, half duplex, no flow control.
499 */
500 fullduplex = 0;
501 txflowcontrol = 0;
502 rxflowcontrol = 0;
503
504 /* To accommodate a problem in 10Mbps operation,
505 * set a global flag if PHY running in 10Mbps mode.
506 */
507 sp->tenmbpsmode = 0;
508
509 /* Determine actual speed of operation. */
510 switch (phyctrl & IPG_PC_LINK_SPEED) {
511 case IPG_PC_LINK_SPEED_10MBPS:
512 speed = "10Mbps";
513 sp->tenmbpsmode = 1;
514 break;
515 case IPG_PC_LINK_SPEED_100MBPS:
516 speed = "100Mbps";
517 break;
518 case IPG_PC_LINK_SPEED_1000MBPS:
519 speed = "1000Mbps";
520 break;
521 default:
522 speed = "undefined!";
523 return 0;
524 }
525
526 netdev_info(dev, "Link speed = %s\n", speed);
527 if (sp->tenmbpsmode == 1)
528 netdev_info(dev, "10Mbps operational mode enabled\n");
529
530 if (phyctrl & IPG_PC_DUPLEX_STATUS) {
531 fullduplex = 1;
532 txflowcontrol = 1;
533 rxflowcontrol = 1;
534 }
535
536 /* Configure full duplex, and flow control. */
537 if (fullduplex == 1) {
538
539 /* Configure IPG for full duplex operation. */
540
541 duplex = "full";
542
543 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
544
545 if (txflowcontrol == 1) {
546 tx_desc = "";
547 mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
548 } else {
549 tx_desc = "no ";
550 mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
551 }
552
553 if (rxflowcontrol == 1) {
554 rx_desc = "";
555 mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
556 } else {
557 rx_desc = "no ";
558 mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
559 }
560 } else {
561 duplex = "half";
562 tx_desc = "no ";
563 rx_desc = "no ";
564 mac_ctrl_val &= (~IPG_MC_DUPLEX_SELECT_FD &
565 ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
566 ~IPG_MC_RX_FLOW_CONTROL_ENABLE);
567 }
568
569 netdev_info(dev, "setting %s duplex, %sTX, %sRX flow control\n",
570 duplex, tx_desc, rx_desc);
571 ipg_w32(mac_ctrl_val, MAC_CTRL);
572
573 return 0;
574 }
575
576 /* Determine and configure multicast operation and set
577 * receive mode for IPG.
578 */
579 static void ipg_nic_set_multicast_list(struct net_device *dev)
580 {
581 void __iomem *ioaddr = ipg_ioaddr(dev);
582 struct netdev_hw_addr *ha;
583 unsigned int hashindex;
584 u32 hashtable[2];
585 u8 receivemode;
586
587 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
588
589 receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
590
591 if (dev->flags & IFF_PROMISC) {
592 /* NIC to be configured in promiscuous mode. */
593 receivemode = IPG_RM_RECEIVEALLFRAMES;
594 } else if ((dev->flags & IFF_ALLMULTI) ||
595 ((dev->flags & IFF_MULTICAST) &&
596 (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
597 /* NIC to be configured to receive all multicast
598 * frames. */
599 receivemode |= IPG_RM_RECEIVEMULTICAST;
600 } else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
601 /* NIC to be configured to receive selected
602 * multicast addresses. */
603 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
604 }
605
606 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
607 * The IPG applies a cyclic-redundancy-check (the same CRC
608 * used to calculate the frame data FCS) to the destination
609 * address all incoming multicast frames whose destination
610 * address has the multicast bit set. The least significant
611 * 6 bits of the CRC result are used as an addressing index
612 * into the hash table. If the value of the bit addressed by
613 * this index is a 1, the frame is passed to the host system.
614 */
615
616 /* Clear hashtable. */
617 hashtable[0] = 0x00000000;
618 hashtable[1] = 0x00000000;
619
620 /* Cycle through all multicast addresses to filter. */
621 netdev_for_each_mc_addr(ha, dev) {
622 /* Calculate CRC result for each multicast address. */
623 hashindex = crc32_le(0xffffffff, ha->addr,
624 ETH_ALEN);
625
626 /* Use only the least significant 6 bits. */
627 hashindex = hashindex & 0x3F;
628
629 /* Within "hashtable", set bit number "hashindex"
630 * to a logic 1.
631 */
632 set_bit(hashindex, (void *)hashtable);
633 }
634
635 /* Write the value of the hashtable, to the 4, 16 bit
636 * HASHTABLE IPG registers.
637 */
638 ipg_w32(hashtable[0], HASHTABLE_0);
639 ipg_w32(hashtable[1], HASHTABLE_1);
640
641 ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
642
643 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
644 }
645
646 static int ipg_io_config(struct net_device *dev)
647 {
648 struct ipg_nic_private *sp = netdev_priv(dev);
649 void __iomem *ioaddr = ipg_ioaddr(dev);
650 u32 origmacctrl;
651 u32 restoremacctrl;
652
653 IPG_DEBUG_MSG("_io_config\n");
654
655 origmacctrl = ipg_r32(MAC_CTRL);
656
657 restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
658
659 /* Based on compilation option, determine if FCS is to be
660 * stripped on receive frames by IPG.
661 */
662 if (!IPG_STRIP_FCS_ON_RX)
663 restoremacctrl |= IPG_MC_RCV_FCS;
664
665 /* Determine if transmitter and/or receiver are
666 * enabled so we may restore MACCTRL correctly.
667 */
668 if (origmacctrl & IPG_MC_TX_ENABLED)
669 restoremacctrl |= IPG_MC_TX_ENABLE;
670
671 if (origmacctrl & IPG_MC_RX_ENABLED)
672 restoremacctrl |= IPG_MC_RX_ENABLE;
673
674 /* Transmitter and receiver must be disabled before setting
675 * IFSSelect.
676 */
677 ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
678 IPG_MC_RSVD_MASK, MAC_CTRL);
679
680 /* Now that transmitter and receiver are disabled, write
681 * to IFSSelect.
682 */
683 ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
684
685 /* Set RECEIVEMODE register. */
686 ipg_nic_set_multicast_list(dev);
687
688 ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
689
690 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD);
691 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
692 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH);
693 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD);
694 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
695 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH);
696 ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
697 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
698 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
699 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
700 ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH);
701 ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
702
703 /* IPG multi-frag frame bug workaround.
704 * Per silicon revision B3 eratta.
705 */
706 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
707
708 /* IPG TX poll now bug workaround.
709 * Per silicon revision B3 eratta.
710 */
711 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
712
713 /* IPG RX poll now bug workaround.
714 * Per silicon revision B3 eratta.
715 */
716 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
717
718 /* Now restore MACCTRL to original setting. */
719 ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
720
721 /* Disable unused RMON statistics. */
722 ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
723
724 /* Disable unused MIB statistics. */
725 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
726 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
727 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
728 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
729 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
730 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
731
732 return 0;
733 }
734
735 /*
736 * Create a receive buffer within system memory and update
737 * NIC private structure appropriately.
738 */
739 static int ipg_get_rxbuff(struct net_device *dev, int entry)
740 {
741 struct ipg_nic_private *sp = netdev_priv(dev);
742 struct ipg_rx *rxfd = sp->rxd + entry;
743 struct sk_buff *skb;
744 u64 rxfragsize;
745
746 IPG_DEBUG_MSG("_get_rxbuff\n");
747
748 skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
749 if (!skb) {
750 sp->rx_buff[entry] = NULL;
751 return -ENOMEM;
752 }
753
754 /* Associate the receive buffer with the IPG NIC. */
755 skb->dev = dev;
756
757 /* Save the address of the sk_buff structure. */
758 sp->rx_buff[entry] = skb;
759
760 rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
761 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
762
763 /* Set the RFD fragment length. */
764 rxfragsize = sp->rxfrag_size;
765 rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
766
767 return 0;
768 }
769
770 static int init_rfdlist(struct net_device *dev)
771 {
772 struct ipg_nic_private *sp = netdev_priv(dev);
773 void __iomem *ioaddr = sp->ioaddr;
774 unsigned int i;
775
776 IPG_DEBUG_MSG("_init_rfdlist\n");
777
778 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
779 struct ipg_rx *rxfd = sp->rxd + i;
780
781 if (sp->rx_buff[i]) {
782 pci_unmap_single(sp->pdev,
783 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
784 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
785 dev_kfree_skb_irq(sp->rx_buff[i]);
786 sp->rx_buff[i] = NULL;
787 }
788
789 /* Clear out the RFS field. */
790 rxfd->rfs = 0x0000000000000000;
791
792 if (ipg_get_rxbuff(dev, i) < 0) {
793 /*
794 * A receive buffer was not ready, break the
795 * RFD list here.
796 */
797 IPG_DEBUG_MSG("Cannot allocate Rx buffer\n");
798
799 /* Just in case we cannot allocate a single RFD.
800 * Should not occur.
801 */
802 if (i == 0) {
803 netdev_err(dev, "No memory available for RFD list\n");
804 return -ENOMEM;
805 }
806 }
807
808 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
809 sizeof(struct ipg_rx)*(i + 1));
810 }
811 sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
812
813 sp->rx_current = 0;
814 sp->rx_dirty = 0;
815
816 /* Write the location of the RFDList to the IPG. */
817 ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
818 ipg_w32(0x00000000, RFD_LIST_PTR_1);
819
820 return 0;
821 }
822
823 static void init_tfdlist(struct net_device *dev)
824 {
825 struct ipg_nic_private *sp = netdev_priv(dev);
826 void __iomem *ioaddr = sp->ioaddr;
827 unsigned int i;
828
829 IPG_DEBUG_MSG("_init_tfdlist\n");
830
831 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
832 struct ipg_tx *txfd = sp->txd + i;
833
834 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
835
836 if (sp->tx_buff[i]) {
837 dev_kfree_skb_irq(sp->tx_buff[i]);
838 sp->tx_buff[i] = NULL;
839 }
840
841 txfd->next_desc = cpu_to_le64(sp->txd_map +
842 sizeof(struct ipg_tx)*(i + 1));
843 }
844 sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
845
846 sp->tx_current = 0;
847 sp->tx_dirty = 0;
848
849 /* Write the location of the TFDList to the IPG. */
850 IPG_DDEBUG_MSG("Starting TFDListPtr = %08x\n",
851 (u32) sp->txd_map);
852 ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
853 ipg_w32(0x00000000, TFD_LIST_PTR_1);
854
855 sp->reset_current_tfd = 1;
856 }
857
858 /*
859 * Free all transmit buffers which have already been transferred
860 * via DMA to the IPG.
861 */
862 static void ipg_nic_txfree(struct net_device *dev)
863 {
864 struct ipg_nic_private *sp = netdev_priv(dev);
865 unsigned int released, pending, dirty;
866
867 IPG_DEBUG_MSG("_nic_txfree\n");
868
869 pending = sp->tx_current - sp->tx_dirty;
870 dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
871
872 for (released = 0; released < pending; released++) {
873 struct sk_buff *skb = sp->tx_buff[dirty];
874 struct ipg_tx *txfd = sp->txd + dirty;
875
876 IPG_DEBUG_MSG("TFC = %016lx\n", (unsigned long) txfd->tfc);
877
878 /* Look at each TFD's TFC field beginning
879 * at the last freed TFD up to the current TFD.
880 * If the TFDDone bit is set, free the associated
881 * buffer.
882 */
883 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
884 break;
885
886 /* Free the transmit buffer. */
887 if (skb) {
888 pci_unmap_single(sp->pdev,
889 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
890 skb->len, PCI_DMA_TODEVICE);
891
892 dev_kfree_skb_irq(skb);
893
894 sp->tx_buff[dirty] = NULL;
895 }
896 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
897 }
898
899 sp->tx_dirty += released;
900
901 if (netif_queue_stopped(dev) &&
902 (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
903 netif_wake_queue(dev);
904 }
905 }
906
907 static void ipg_tx_timeout(struct net_device *dev)
908 {
909 struct ipg_nic_private *sp = netdev_priv(dev);
910 void __iomem *ioaddr = sp->ioaddr;
911
912 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
913 IPG_AC_FIFO);
914
915 spin_lock_irq(&sp->lock);
916
917 /* Re-configure after DMA reset. */
918 if (ipg_io_config(dev) < 0)
919 netdev_info(dev, "Error during re-configuration\n");
920
921 init_tfdlist(dev);
922
923 spin_unlock_irq(&sp->lock);
924
925 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
926 MAC_CTRL);
927 }
928
929 /*
930 * For TxComplete interrupts, free all transmit
931 * buffers which have already been transferred via DMA
932 * to the IPG.
933 */
934 static void ipg_nic_txcleanup(struct net_device *dev)
935 {
936 struct ipg_nic_private *sp = netdev_priv(dev);
937 void __iomem *ioaddr = sp->ioaddr;
938 unsigned int i;
939
940 IPG_DEBUG_MSG("_nic_txcleanup\n");
941
942 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
943 /* Reading the TXSTATUS register clears the
944 * TX_COMPLETE interrupt.
945 */
946 u32 txstatusdword = ipg_r32(TX_STATUS);
947
948 IPG_DEBUG_MSG("TxStatus = %08x\n", txstatusdword);
949
950 /* Check for Transmit errors. Error bits only valid if
951 * TX_COMPLETE bit in the TXSTATUS register is a 1.
952 */
953 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
954 break;
955
956 /* If in 10Mbps mode, indicate transmit is ready. */
957 if (sp->tenmbpsmode) {
958 netif_wake_queue(dev);
959 }
960
961 /* Transmit error, increment stat counters. */
962 if (txstatusdword & IPG_TS_TX_ERROR) {
963 IPG_DEBUG_MSG("Transmit error\n");
964 sp->stats.tx_errors++;
965 }
966
967 /* Late collision, re-enable transmitter. */
968 if (txstatusdword & IPG_TS_LATE_COLLISION) {
969 IPG_DEBUG_MSG("Late collision on transmit\n");
970 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
971 IPG_MC_RSVD_MASK, MAC_CTRL);
972 }
973
974 /* Maximum collisions, re-enable transmitter. */
975 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
976 IPG_DEBUG_MSG("Maximum collisions on transmit\n");
977 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
978 IPG_MC_RSVD_MASK, MAC_CTRL);
979 }
980
981 /* Transmit underrun, reset and re-enable
982 * transmitter.
983 */
984 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
985 IPG_DEBUG_MSG("Transmitter underrun\n");
986 sp->stats.tx_fifo_errors++;
987 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
988 IPG_AC_NETWORK | IPG_AC_FIFO);
989
990 /* Re-configure after DMA reset. */
991 if (ipg_io_config(dev) < 0) {
992 netdev_info(dev, "Error during re-configuration\n");
993 }
994 init_tfdlist(dev);
995
996 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
997 IPG_MC_RSVD_MASK, MAC_CTRL);
998 }
999 }
1000
1001 ipg_nic_txfree(dev);
1002 }
1003
1004 /* Provides statistical information about the IPG NIC. */
1005 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1006 {
1007 struct ipg_nic_private *sp = netdev_priv(dev);
1008 void __iomem *ioaddr = sp->ioaddr;
1009 u16 temp1;
1010 u16 temp2;
1011
1012 IPG_DEBUG_MSG("_nic_get_stats\n");
1013
1014 /* Check to see if the NIC has been initialized via nic_open,
1015 * before trying to read statistic registers.
1016 */
1017 if (!test_bit(__LINK_STATE_START, &dev->state))
1018 return &sp->stats;
1019
1020 sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1021 sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1022 sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1023 sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1024 temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1025 sp->stats.rx_errors += temp1;
1026 sp->stats.rx_missed_errors += temp1;
1027 temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1028 ipg_r32(IPG_LATECOLLISIONS);
1029 temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1030 sp->stats.collisions += temp1;
1031 sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1032 sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1033 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1034 sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1035
1036 /* detailed tx_errors */
1037 sp->stats.tx_carrier_errors += temp2;
1038
1039 /* detailed rx_errors */
1040 sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1041 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1042 sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1043
1044 /* Unutilized IPG statistic registers. */
1045 ipg_r32(IPG_MCSTFRAMESRCVDOK);
1046
1047 return &sp->stats;
1048 }
1049
1050 /* Restore used receive buffers. */
1051 static int ipg_nic_rxrestore(struct net_device *dev)
1052 {
1053 struct ipg_nic_private *sp = netdev_priv(dev);
1054 const unsigned int curr = sp->rx_current;
1055 unsigned int dirty = sp->rx_dirty;
1056
1057 IPG_DEBUG_MSG("_nic_rxrestore\n");
1058
1059 for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1060 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1061
1062 /* rx_copybreak may poke hole here and there. */
1063 if (sp->rx_buff[entry])
1064 continue;
1065
1066 /* Generate a new receive buffer to replace the
1067 * current buffer (which will be released by the
1068 * Linux system).
1069 */
1070 if (ipg_get_rxbuff(dev, entry) < 0) {
1071 IPG_DEBUG_MSG("Cannot allocate new Rx buffer\n");
1072
1073 break;
1074 }
1075
1076 /* Reset the RFS field. */
1077 sp->rxd[entry].rfs = 0x0000000000000000;
1078 }
1079 sp->rx_dirty = dirty;
1080
1081 return 0;
1082 }
1083
1084 /* use jumboindex and jumbosize to control jumbo frame status
1085 * initial status is jumboindex=-1 and jumbosize=0
1086 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1087 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1088 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1089 * previous receiving and need to continue dumping the current one
1090 */
1091 enum {
1092 NORMAL_PACKET,
1093 ERROR_PACKET
1094 };
1095
1096 enum {
1097 FRAME_NO_START_NO_END = 0,
1098 FRAME_WITH_START = 1,
1099 FRAME_WITH_END = 10,
1100 FRAME_WITH_START_WITH_END = 11
1101 };
1102
1103 static void ipg_nic_rx_free_skb(struct net_device *dev)
1104 {
1105 struct ipg_nic_private *sp = netdev_priv(dev);
1106 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1107
1108 if (sp->rx_buff[entry]) {
1109 struct ipg_rx *rxfd = sp->rxd + entry;
1110
1111 pci_unmap_single(sp->pdev,
1112 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1113 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1114 dev_kfree_skb_irq(sp->rx_buff[entry]);
1115 sp->rx_buff[entry] = NULL;
1116 }
1117 }
1118
1119 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1120 {
1121 struct ipg_nic_private *sp = netdev_priv(dev);
1122 struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1123 int type = FRAME_NO_START_NO_END;
1124
1125 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1126 type += FRAME_WITH_START;
1127 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1128 type += FRAME_WITH_END;
1129 return type;
1130 }
1131
1132 static int ipg_nic_rx_check_error(struct net_device *dev)
1133 {
1134 struct ipg_nic_private *sp = netdev_priv(dev);
1135 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1136 struct ipg_rx *rxfd = sp->rxd + entry;
1137
1138 if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1139 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1140 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1141 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1142 IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1143 (unsigned long) rxfd->rfs);
1144
1145 /* Increment general receive error statistic. */
1146 sp->stats.rx_errors++;
1147
1148 /* Increment detailed receive error statistics. */
1149 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1150 IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1151
1152 sp->stats.rx_fifo_errors++;
1153 }
1154
1155 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1156 IPG_DEBUG_MSG("RX runt occurred\n");
1157 sp->stats.rx_length_errors++;
1158 }
1159
1160 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1161 * error count handled by a IPG statistic register.
1162 */
1163
1164 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1165 IPG_DEBUG_MSG("RX alignment error occurred\n");
1166 sp->stats.rx_frame_errors++;
1167 }
1168
1169 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1170 * handled by a IPG statistic register.
1171 */
1172
1173 /* Free the memory associated with the RX
1174 * buffer since it is erroneous and we will
1175 * not pass it to higher layer processes.
1176 */
1177 if (sp->rx_buff[entry]) {
1178 pci_unmap_single(sp->pdev,
1179 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1180 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1181
1182 dev_kfree_skb_irq(sp->rx_buff[entry]);
1183 sp->rx_buff[entry] = NULL;
1184 }
1185 return ERROR_PACKET;
1186 }
1187 return NORMAL_PACKET;
1188 }
1189
1190 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1191 struct ipg_nic_private *sp,
1192 struct ipg_rx *rxfd, unsigned entry)
1193 {
1194 struct ipg_jumbo *jumbo = &sp->jumbo;
1195 struct sk_buff *skb;
1196 int framelen;
1197
1198 if (jumbo->found_start) {
1199 dev_kfree_skb_irq(jumbo->skb);
1200 jumbo->found_start = 0;
1201 jumbo->current_size = 0;
1202 jumbo->skb = NULL;
1203 }
1204
1205 /* 1: found error, 0 no error */
1206 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1207 return;
1208
1209 skb = sp->rx_buff[entry];
1210 if (!skb)
1211 return;
1212
1213 /* accept this frame and send to upper layer */
1214 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1215 if (framelen > sp->rxfrag_size)
1216 framelen = sp->rxfrag_size;
1217
1218 skb_put(skb, framelen);
1219 skb->protocol = eth_type_trans(skb, dev);
1220 skb_checksum_none_assert(skb);
1221 netif_rx(skb);
1222 sp->rx_buff[entry] = NULL;
1223 }
1224
1225 static void ipg_nic_rx_with_start(struct net_device *dev,
1226 struct ipg_nic_private *sp,
1227 struct ipg_rx *rxfd, unsigned entry)
1228 {
1229 struct ipg_jumbo *jumbo = &sp->jumbo;
1230 struct pci_dev *pdev = sp->pdev;
1231 struct sk_buff *skb;
1232
1233 /* 1: found error, 0 no error */
1234 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1235 return;
1236
1237 /* accept this frame and send to upper layer */
1238 skb = sp->rx_buff[entry];
1239 if (!skb)
1240 return;
1241
1242 if (jumbo->found_start)
1243 dev_kfree_skb_irq(jumbo->skb);
1244
1245 pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1246 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1247
1248 skb_put(skb, sp->rxfrag_size);
1249
1250 jumbo->found_start = 1;
1251 jumbo->current_size = sp->rxfrag_size;
1252 jumbo->skb = skb;
1253
1254 sp->rx_buff[entry] = NULL;
1255 }
1256
1257 static void ipg_nic_rx_with_end(struct net_device *dev,
1258 struct ipg_nic_private *sp,
1259 struct ipg_rx *rxfd, unsigned entry)
1260 {
1261 struct ipg_jumbo *jumbo = &sp->jumbo;
1262
1263 /* 1: found error, 0 no error */
1264 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1265 struct sk_buff *skb = sp->rx_buff[entry];
1266
1267 if (!skb)
1268 return;
1269
1270 if (jumbo->found_start) {
1271 int framelen, endframelen;
1272
1273 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1274
1275 endframelen = framelen - jumbo->current_size;
1276 if (framelen > sp->rxsupport_size)
1277 dev_kfree_skb_irq(jumbo->skb);
1278 else {
1279 memcpy(skb_put(jumbo->skb, endframelen),
1280 skb->data, endframelen);
1281
1282 jumbo->skb->protocol =
1283 eth_type_trans(jumbo->skb, dev);
1284
1285 skb_checksum_none_assert(jumbo->skb);
1286 netif_rx(jumbo->skb);
1287 }
1288 }
1289
1290 jumbo->found_start = 0;
1291 jumbo->current_size = 0;
1292 jumbo->skb = NULL;
1293
1294 ipg_nic_rx_free_skb(dev);
1295 } else {
1296 dev_kfree_skb_irq(jumbo->skb);
1297 jumbo->found_start = 0;
1298 jumbo->current_size = 0;
1299 jumbo->skb = NULL;
1300 }
1301 }
1302
1303 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1304 struct ipg_nic_private *sp,
1305 struct ipg_rx *rxfd, unsigned entry)
1306 {
1307 struct ipg_jumbo *jumbo = &sp->jumbo;
1308
1309 /* 1: found error, 0 no error */
1310 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1311 struct sk_buff *skb = sp->rx_buff[entry];
1312
1313 if (skb) {
1314 if (jumbo->found_start) {
1315 jumbo->current_size += sp->rxfrag_size;
1316 if (jumbo->current_size <= sp->rxsupport_size) {
1317 memcpy(skb_put(jumbo->skb,
1318 sp->rxfrag_size),
1319 skb->data, sp->rxfrag_size);
1320 }
1321 }
1322 ipg_nic_rx_free_skb(dev);
1323 }
1324 } else {
1325 dev_kfree_skb_irq(jumbo->skb);
1326 jumbo->found_start = 0;
1327 jumbo->current_size = 0;
1328 jumbo->skb = NULL;
1329 }
1330 }
1331
1332 static int ipg_nic_rx_jumbo(struct net_device *dev)
1333 {
1334 struct ipg_nic_private *sp = netdev_priv(dev);
1335 unsigned int curr = sp->rx_current;
1336 void __iomem *ioaddr = sp->ioaddr;
1337 unsigned int i;
1338
1339 IPG_DEBUG_MSG("_nic_rx\n");
1340
1341 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1342 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1343 struct ipg_rx *rxfd = sp->rxd + entry;
1344
1345 if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1346 break;
1347
1348 switch (ipg_nic_rx_check_frame_type(dev)) {
1349 case FRAME_WITH_START_WITH_END:
1350 ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1351 break;
1352 case FRAME_WITH_START:
1353 ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1354 break;
1355 case FRAME_WITH_END:
1356 ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1357 break;
1358 case FRAME_NO_START_NO_END:
1359 ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1360 break;
1361 }
1362 }
1363
1364 sp->rx_current = curr;
1365
1366 if (i == IPG_MAXRFDPROCESS_COUNT) {
1367 /* There are more RFDs to process, however the
1368 * allocated amount of RFD processing time has
1369 * expired. Assert Interrupt Requested to make
1370 * sure we come back to process the remaining RFDs.
1371 */
1372 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1373 }
1374
1375 ipg_nic_rxrestore(dev);
1376
1377 return 0;
1378 }
1379
1380 static int ipg_nic_rx(struct net_device *dev)
1381 {
1382 /* Transfer received Ethernet frames to higher network layers. */
1383 struct ipg_nic_private *sp = netdev_priv(dev);
1384 unsigned int curr = sp->rx_current;
1385 void __iomem *ioaddr = sp->ioaddr;
1386 struct ipg_rx *rxfd;
1387 unsigned int i;
1388
1389 IPG_DEBUG_MSG("_nic_rx\n");
1390
1391 #define __RFS_MASK \
1392 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1393
1394 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1395 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1396 struct sk_buff *skb = sp->rx_buff[entry];
1397 unsigned int framelen;
1398
1399 rxfd = sp->rxd + entry;
1400
1401 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1402 break;
1403
1404 /* Get received frame length. */
1405 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1406
1407 /* Check for jumbo frame arrival with too small
1408 * RXFRAG_SIZE.
1409 */
1410 if (framelen > sp->rxfrag_size) {
1411 IPG_DEBUG_MSG
1412 ("RFS FrameLen > allocated fragment size\n");
1413
1414 framelen = sp->rxfrag_size;
1415 }
1416
1417 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1418 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1419 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1420 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1421
1422 IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1423 (unsigned long int) rxfd->rfs);
1424
1425 /* Increment general receive error statistic. */
1426 sp->stats.rx_errors++;
1427
1428 /* Increment detailed receive error statistics. */
1429 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1430 IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1431 sp->stats.rx_fifo_errors++;
1432 }
1433
1434 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1435 IPG_DEBUG_MSG("RX runt occurred\n");
1436 sp->stats.rx_length_errors++;
1437 }
1438
1439 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1440 /* Do nothing, error count handled by a IPG
1441 * statistic register.
1442 */
1443
1444 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1445 IPG_DEBUG_MSG("RX alignment error occurred\n");
1446 sp->stats.rx_frame_errors++;
1447 }
1448
1449 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1450 /* Do nothing, error count handled by a IPG
1451 * statistic register.
1452 */
1453
1454 /* Free the memory associated with the RX
1455 * buffer since it is erroneous and we will
1456 * not pass it to higher layer processes.
1457 */
1458 if (skb) {
1459 __le64 info = rxfd->frag_info;
1460
1461 pci_unmap_single(sp->pdev,
1462 le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1463 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1464
1465 dev_kfree_skb_irq(skb);
1466 }
1467 } else {
1468
1469 /* Adjust the new buffer length to accommodate the size
1470 * of the received frame.
1471 */
1472 skb_put(skb, framelen);
1473
1474 /* Set the buffer's protocol field to Ethernet. */
1475 skb->protocol = eth_type_trans(skb, dev);
1476
1477 /* The IPG encountered an error with (or
1478 * there were no) IP/TCP/UDP checksums.
1479 * This may or may not indicate an invalid
1480 * IP/TCP/UDP frame was received. Let the
1481 * upper layer decide.
1482 */
1483 skb_checksum_none_assert(skb);
1484
1485 /* Hand off frame for higher layer processing.
1486 * The function netif_rx() releases the sk_buff
1487 * when processing completes.
1488 */
1489 netif_rx(skb);
1490 }
1491
1492 /* Assure RX buffer is not reused by IPG. */
1493 sp->rx_buff[entry] = NULL;
1494 }
1495
1496 /*
1497 * If there are more RFDs to process and the allocated amount of RFD
1498 * processing time has expired, assert Interrupt Requested to make
1499 * sure we come back to process the remaining RFDs.
1500 */
1501 if (i == IPG_MAXRFDPROCESS_COUNT)
1502 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1503
1504 #ifdef IPG_DEBUG
1505 /* Check if the RFD list contained no receive frame data. */
1506 if (!i)
1507 sp->EmptyRFDListCount++;
1508 #endif
1509 while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1510 !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1511 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1512 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1513
1514 rxfd = sp->rxd + entry;
1515
1516 IPG_DEBUG_MSG("Frame requires multiple RFDs\n");
1517
1518 /* An unexpected event, additional code needed to handle
1519 * properly. So for the time being, just disregard the
1520 * frame.
1521 */
1522
1523 /* Free the memory associated with the RX
1524 * buffer since it is erroneous and we will
1525 * not pass it to higher layer processes.
1526 */
1527 if (sp->rx_buff[entry]) {
1528 pci_unmap_single(sp->pdev,
1529 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1530 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1531 dev_kfree_skb_irq(sp->rx_buff[entry]);
1532 }
1533
1534 /* Assure RX buffer is not reused by IPG. */
1535 sp->rx_buff[entry] = NULL;
1536 }
1537
1538 sp->rx_current = curr;
1539
1540 /* Check to see if there are a minimum number of used
1541 * RFDs before restoring any (should improve performance.)
1542 */
1543 if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1544 ipg_nic_rxrestore(dev);
1545
1546 return 0;
1547 }
1548
1549 static void ipg_reset_after_host_error(struct work_struct *work)
1550 {
1551 struct ipg_nic_private *sp =
1552 container_of(work, struct ipg_nic_private, task.work);
1553 struct net_device *dev = sp->dev;
1554
1555 /*
1556 * Acknowledge HostError interrupt by resetting
1557 * IPG DMA and HOST.
1558 */
1559 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1560
1561 init_rfdlist(dev);
1562 init_tfdlist(dev);
1563
1564 if (ipg_io_config(dev) < 0) {
1565 netdev_info(dev, "Cannot recover from PCI error\n");
1566 schedule_delayed_work(&sp->task, HZ);
1567 }
1568 }
1569
1570 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1571 {
1572 struct net_device *dev = dev_inst;
1573 struct ipg_nic_private *sp = netdev_priv(dev);
1574 void __iomem *ioaddr = sp->ioaddr;
1575 unsigned int handled = 0;
1576 u16 status;
1577
1578 IPG_DEBUG_MSG("_interrupt_handler\n");
1579
1580 if (sp->is_jumbo)
1581 ipg_nic_rxrestore(dev);
1582
1583 spin_lock(&sp->lock);
1584
1585 /* Get interrupt source information, and acknowledge
1586 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1587 * IntRequested, MacControlFrame, LinkEvent) interrupts
1588 * if issued. Also, all IPG interrupts are disabled by
1589 * reading IntStatusAck.
1590 */
1591 status = ipg_r16(INT_STATUS_ACK);
1592
1593 IPG_DEBUG_MSG("IntStatusAck = %04x\n", status);
1594
1595 /* Shared IRQ of remove event. */
1596 if (!(status & IPG_IS_RSVD_MASK))
1597 goto out_enable;
1598
1599 handled = 1;
1600
1601 if (unlikely(!netif_running(dev)))
1602 goto out_unlock;
1603
1604 /* If RFDListEnd interrupt, restore all used RFDs. */
1605 if (status & IPG_IS_RFD_LIST_END) {
1606 IPG_DEBUG_MSG("RFDListEnd Interrupt\n");
1607
1608 /* The RFD list end indicates an RFD was encountered
1609 * with a 0 NextPtr, or with an RFDDone bit set to 1
1610 * (indicating the RFD is not read for use by the
1611 * IPG.) Try to restore all RFDs.
1612 */
1613 ipg_nic_rxrestore(dev);
1614
1615 #ifdef IPG_DEBUG
1616 /* Increment the RFDlistendCount counter. */
1617 sp->RFDlistendCount++;
1618 #endif
1619 }
1620
1621 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1622 * IntRequested interrupt, process received frames. */
1623 if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1624 (status & IPG_IS_RFD_LIST_END) ||
1625 (status & IPG_IS_RX_DMA_COMPLETE) ||
1626 (status & IPG_IS_INT_REQUESTED)) {
1627 #ifdef IPG_DEBUG
1628 /* Increment the RFD list checked counter if interrupted
1629 * only to check the RFD list. */
1630 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1631 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1632 (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1633 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1634 IPG_IS_UPDATE_STATS)))
1635 sp->RFDListCheckedCount++;
1636 #endif
1637
1638 if (sp->is_jumbo)
1639 ipg_nic_rx_jumbo(dev);
1640 else
1641 ipg_nic_rx(dev);
1642 }
1643
1644 /* If TxDMAComplete interrupt, free used TFDs. */
1645 if (status & IPG_IS_TX_DMA_COMPLETE)
1646 ipg_nic_txfree(dev);
1647
1648 /* TxComplete interrupts indicate one of numerous actions.
1649 * Determine what action to take based on TXSTATUS register.
1650 */
1651 if (status & IPG_IS_TX_COMPLETE)
1652 ipg_nic_txcleanup(dev);
1653
1654 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1655 if (status & IPG_IS_UPDATE_STATS)
1656 ipg_nic_get_stats(dev);
1657
1658 /* If HostError interrupt, reset IPG. */
1659 if (status & IPG_IS_HOST_ERROR) {
1660 IPG_DDEBUG_MSG("HostError Interrupt\n");
1661
1662 schedule_delayed_work(&sp->task, 0);
1663 }
1664
1665 /* If LinkEvent interrupt, resolve autonegotiation. */
1666 if (status & IPG_IS_LINK_EVENT) {
1667 if (ipg_config_autoneg(dev) < 0)
1668 netdev_info(dev, "Auto-negotiation error\n");
1669 }
1670
1671 /* If MACCtrlFrame interrupt, do nothing. */
1672 if (status & IPG_IS_MAC_CTRL_FRAME)
1673 IPG_DEBUG_MSG("MACCtrlFrame interrupt\n");
1674
1675 /* If RxComplete interrupt, do nothing. */
1676 if (status & IPG_IS_RX_COMPLETE)
1677 IPG_DEBUG_MSG("RxComplete interrupt\n");
1678
1679 /* If RxEarly interrupt, do nothing. */
1680 if (status & IPG_IS_RX_EARLY)
1681 IPG_DEBUG_MSG("RxEarly interrupt\n");
1682
1683 out_enable:
1684 /* Re-enable IPG interrupts. */
1685 ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1686 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1687 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1688 out_unlock:
1689 spin_unlock(&sp->lock);
1690
1691 return IRQ_RETVAL(handled);
1692 }
1693
1694 static void ipg_rx_clear(struct ipg_nic_private *sp)
1695 {
1696 unsigned int i;
1697
1698 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1699 if (sp->rx_buff[i]) {
1700 struct ipg_rx *rxfd = sp->rxd + i;
1701
1702 dev_kfree_skb_irq(sp->rx_buff[i]);
1703 sp->rx_buff[i] = NULL;
1704 pci_unmap_single(sp->pdev,
1705 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1706 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1707 }
1708 }
1709 }
1710
1711 static void ipg_tx_clear(struct ipg_nic_private *sp)
1712 {
1713 unsigned int i;
1714
1715 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1716 if (sp->tx_buff[i]) {
1717 struct ipg_tx *txfd = sp->txd + i;
1718
1719 pci_unmap_single(sp->pdev,
1720 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1721 sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1722
1723 dev_kfree_skb_irq(sp->tx_buff[i]);
1724
1725 sp->tx_buff[i] = NULL;
1726 }
1727 }
1728 }
1729
1730 static int ipg_nic_open(struct net_device *dev)
1731 {
1732 struct ipg_nic_private *sp = netdev_priv(dev);
1733 void __iomem *ioaddr = sp->ioaddr;
1734 struct pci_dev *pdev = sp->pdev;
1735 int rc;
1736
1737 IPG_DEBUG_MSG("_nic_open\n");
1738
1739 sp->rx_buf_sz = sp->rxsupport_size;
1740
1741 /* Check for interrupt line conflicts, and request interrupt
1742 * line for IPG.
1743 *
1744 * IMPORTANT: Disable IPG interrupts prior to registering
1745 * IRQ.
1746 */
1747 ipg_w16(0x0000, INT_ENABLE);
1748
1749 /* Register the interrupt line to be used by the IPG within
1750 * the Linux system.
1751 */
1752 rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
1753 dev->name, dev);
1754 if (rc < 0) {
1755 netdev_info(dev, "Error when requesting interrupt\n");
1756 goto out;
1757 }
1758
1759 dev->irq = pdev->irq;
1760
1761 rc = -ENOMEM;
1762
1763 sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1764 &sp->rxd_map, GFP_KERNEL);
1765 if (!sp->rxd)
1766 goto err_free_irq_0;
1767
1768 sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1769 &sp->txd_map, GFP_KERNEL);
1770 if (!sp->txd)
1771 goto err_free_rx_1;
1772
1773 rc = init_rfdlist(dev);
1774 if (rc < 0) {
1775 netdev_info(dev, "Error during configuration\n");
1776 goto err_free_tx_2;
1777 }
1778
1779 init_tfdlist(dev);
1780
1781 rc = ipg_io_config(dev);
1782 if (rc < 0) {
1783 netdev_info(dev, "Error during configuration\n");
1784 goto err_release_tfdlist_3;
1785 }
1786
1787 /* Resolve autonegotiation. */
1788 if (ipg_config_autoneg(dev) < 0)
1789 netdev_info(dev, "Auto-negotiation error\n");
1790
1791 /* initialize JUMBO Frame control variable */
1792 sp->jumbo.found_start = 0;
1793 sp->jumbo.current_size = 0;
1794 sp->jumbo.skb = NULL;
1795
1796 /* Enable transmit and receive operation of the IPG. */
1797 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1798 IPG_MC_RSVD_MASK, MAC_CTRL);
1799
1800 netif_start_queue(dev);
1801 out:
1802 return rc;
1803
1804 err_release_tfdlist_3:
1805 ipg_tx_clear(sp);
1806 ipg_rx_clear(sp);
1807 err_free_tx_2:
1808 dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1809 err_free_rx_1:
1810 dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1811 err_free_irq_0:
1812 free_irq(pdev->irq, dev);
1813 goto out;
1814 }
1815
1816 static int ipg_nic_stop(struct net_device *dev)
1817 {
1818 struct ipg_nic_private *sp = netdev_priv(dev);
1819 void __iomem *ioaddr = sp->ioaddr;
1820 struct pci_dev *pdev = sp->pdev;
1821
1822 IPG_DEBUG_MSG("_nic_stop\n");
1823
1824 netif_stop_queue(dev);
1825
1826 IPG_DUMPTFDLIST(dev);
1827
1828 do {
1829 (void) ipg_r16(INT_STATUS_ACK);
1830
1831 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1832
1833 synchronize_irq(pdev->irq);
1834 } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1835
1836 ipg_rx_clear(sp);
1837
1838 ipg_tx_clear(sp);
1839
1840 pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1841 pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1842
1843 free_irq(pdev->irq, dev);
1844
1845 return 0;
1846 }
1847
1848 static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
1849 struct net_device *dev)
1850 {
1851 struct ipg_nic_private *sp = netdev_priv(dev);
1852 void __iomem *ioaddr = sp->ioaddr;
1853 unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1854 unsigned long flags;
1855 struct ipg_tx *txfd;
1856
1857 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1858
1859 /* If in 10Mbps mode, stop the transmit queue so
1860 * no more transmit frames are accepted.
1861 */
1862 if (sp->tenmbpsmode)
1863 netif_stop_queue(dev);
1864
1865 if (sp->reset_current_tfd) {
1866 sp->reset_current_tfd = 0;
1867 entry = 0;
1868 }
1869
1870 txfd = sp->txd + entry;
1871
1872 sp->tx_buff[entry] = skb;
1873
1874 /* Clear all TFC fields, except TFDDONE. */
1875 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1876
1877 /* Specify the TFC field within the TFD. */
1878 txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1879 (IPG_TFC_FRAMEID & sp->tx_current) |
1880 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1881 /*
1882 * 16--17 (WordAlign) <- 3 (disable),
1883 * 0--15 (FrameId) <- sp->tx_current,
1884 * 24--27 (FragCount) <- 1
1885 */
1886
1887 /* Request TxComplete interrupts at an interval defined
1888 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1889 * Request TxComplete interrupt for every frame
1890 * if in 10Mbps mode to accommodate problem with 10Mbps
1891 * processing.
1892 */
1893 if (sp->tenmbpsmode)
1894 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1895 txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1896 /* Based on compilation option, determine if FCS is to be
1897 * appended to transmit frame by IPG.
1898 */
1899 if (!(IPG_APPEND_FCS_ON_TX))
1900 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1901
1902 /* Based on compilation option, determine if IP, TCP and/or
1903 * UDP checksums are to be added to transmit frame by IPG.
1904 */
1905 if (IPG_ADD_IPCHECKSUM_ON_TX)
1906 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1907
1908 if (IPG_ADD_TCPCHECKSUM_ON_TX)
1909 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1910
1911 if (IPG_ADD_UDPCHECKSUM_ON_TX)
1912 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1913
1914 /* Based on compilation option, determine if VLAN tag info is to be
1915 * inserted into transmit frame by IPG.
1916 */
1917 if (IPG_INSERT_MANUAL_VLAN_TAG) {
1918 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1919 ((u64) IPG_MANUAL_VLAN_VID << 32) |
1920 ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1921 ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1922 }
1923
1924 /* The fragment start location within system memory is defined
1925 * by the sk_buff structure's data field. The physical address
1926 * of this location within the system's virtual memory space
1927 * is determined using the IPG_HOST2BUS_MAP function.
1928 */
1929 txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1930 skb->len, PCI_DMA_TODEVICE));
1931
1932 /* The length of the fragment within system memory is defined by
1933 * the sk_buff structure's len field.
1934 */
1935 txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1936 ((u64) (skb->len & 0xffff) << 48));
1937
1938 /* Clear the TFDDone bit last to indicate the TFD is ready
1939 * for transfer to the IPG.
1940 */
1941 txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1942
1943 spin_lock_irqsave(&sp->lock, flags);
1944
1945 sp->tx_current++;
1946
1947 mmiowb();
1948
1949 ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1950
1951 if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1952 netif_stop_queue(dev);
1953
1954 spin_unlock_irqrestore(&sp->lock, flags);
1955
1956 return NETDEV_TX_OK;
1957 }
1958
1959 static void ipg_set_phy_default_param(unsigned char rev,
1960 struct net_device *dev, int phy_address)
1961 {
1962 unsigned short length;
1963 unsigned char revision;
1964 const unsigned short *phy_param;
1965 unsigned short address, value;
1966
1967 phy_param = &DefaultPhyParam[0];
1968 length = *phy_param & 0x00FF;
1969 revision = (unsigned char)((*phy_param) >> 8);
1970 phy_param++;
1971 while (length != 0) {
1972 if (rev == revision) {
1973 while (length > 1) {
1974 address = *phy_param;
1975 value = *(phy_param + 1);
1976 phy_param += 2;
1977 mdio_write(dev, phy_address, address, value);
1978 length -= 4;
1979 }
1980 break;
1981 } else {
1982 phy_param += length / 2;
1983 length = *phy_param & 0x00FF;
1984 revision = (unsigned char)((*phy_param) >> 8);
1985 phy_param++;
1986 }
1987 }
1988 }
1989
1990 static int read_eeprom(struct net_device *dev, int eep_addr)
1991 {
1992 void __iomem *ioaddr = ipg_ioaddr(dev);
1993 unsigned int i;
1994 int ret = 0;
1995 u16 value;
1996
1997 value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
1998 ipg_w16(value, EEPROM_CTRL);
1999
2000 for (i = 0; i < 1000; i++) {
2001 u16 data;
2002
2003 mdelay(10);
2004 data = ipg_r16(EEPROM_CTRL);
2005 if (!(data & IPG_EC_EEPROM_BUSY)) {
2006 ret = ipg_r16(EEPROM_DATA);
2007 break;
2008 }
2009 }
2010 return ret;
2011 }
2012
2013 static void ipg_init_mii(struct net_device *dev)
2014 {
2015 struct ipg_nic_private *sp = netdev_priv(dev);
2016 struct mii_if_info *mii_if = &sp->mii_if;
2017 int phyaddr;
2018
2019 mii_if->dev = dev;
2020 mii_if->mdio_read = mdio_read;
2021 mii_if->mdio_write = mdio_write;
2022 mii_if->phy_id_mask = 0x1f;
2023 mii_if->reg_num_mask = 0x1f;
2024
2025 mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2026
2027 if (phyaddr != 0x1f) {
2028 u16 mii_phyctrl, mii_1000cr;
2029
2030 mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000);
2031 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2032 GMII_PHY_1000BASETCONTROL_PreferMaster;
2033 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2034
2035 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2036
2037 /* Set default phyparam */
2038 ipg_set_phy_default_param(sp->pdev->revision, dev, phyaddr);
2039
2040 /* Reset PHY */
2041 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2042 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2043
2044 }
2045 }
2046
2047 static int ipg_hw_init(struct net_device *dev)
2048 {
2049 struct ipg_nic_private *sp = netdev_priv(dev);
2050 void __iomem *ioaddr = sp->ioaddr;
2051 unsigned int i;
2052 int rc;
2053
2054 /* Read/Write and Reset EEPROM Value */
2055 /* Read LED Mode Configuration from EEPROM */
2056 sp->led_mode = read_eeprom(dev, 6);
2057
2058 /* Reset all functions within the IPG. Do not assert
2059 * RST_OUT as not compatible with some PHYs.
2060 */
2061 rc = ipg_reset(dev, IPG_RESET_MASK);
2062 if (rc < 0)
2063 goto out;
2064
2065 ipg_init_mii(dev);
2066
2067 /* Read MAC Address from EEPROM */
2068 for (i = 0; i < 3; i++)
2069 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2070
2071 for (i = 0; i < 3; i++)
2072 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2073
2074 /* Set station address in ethernet_device structure. */
2075 dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2076 dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2077 dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2078 dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2079 dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2080 dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2081 out:
2082 return rc;
2083 }
2084
2085 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2086 {
2087 struct ipg_nic_private *sp = netdev_priv(dev);
2088 int rc;
2089
2090 mutex_lock(&sp->mii_mutex);
2091 rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2092 mutex_unlock(&sp->mii_mutex);
2093
2094 return rc;
2095 }
2096
2097 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2098 {
2099 struct ipg_nic_private *sp = netdev_priv(dev);
2100 int err;
2101
2102 /* Function to accommodate changes to Maximum Transfer Unit
2103 * (or MTU) of IPG NIC. Cannot use default function since
2104 * the default will not allow for MTU > 1500 bytes.
2105 */
2106
2107 IPG_DEBUG_MSG("_nic_change_mtu\n");
2108
2109 /*
2110 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2111 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2112 */
2113 if (new_mtu < 68 || new_mtu > 10240)
2114 return -EINVAL;
2115
2116 err = ipg_nic_stop(dev);
2117 if (err)
2118 return err;
2119
2120 dev->mtu = new_mtu;
2121
2122 sp->max_rxframe_size = new_mtu;
2123
2124 sp->rxfrag_size = new_mtu;
2125 if (sp->rxfrag_size > 4088)
2126 sp->rxfrag_size = 4088;
2127
2128 sp->rxsupport_size = sp->max_rxframe_size;
2129
2130 if (new_mtu > 0x0600)
2131 sp->is_jumbo = true;
2132 else
2133 sp->is_jumbo = false;
2134
2135 return ipg_nic_open(dev);
2136 }
2137
2138 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2139 {
2140 struct ipg_nic_private *sp = netdev_priv(dev);
2141 int rc;
2142
2143 mutex_lock(&sp->mii_mutex);
2144 rc = mii_ethtool_gset(&sp->mii_if, cmd);
2145 mutex_unlock(&sp->mii_mutex);
2146
2147 return rc;
2148 }
2149
2150 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2151 {
2152 struct ipg_nic_private *sp = netdev_priv(dev);
2153 int rc;
2154
2155 mutex_lock(&sp->mii_mutex);
2156 rc = mii_ethtool_sset(&sp->mii_if, cmd);
2157 mutex_unlock(&sp->mii_mutex);
2158
2159 return rc;
2160 }
2161
2162 static int ipg_nway_reset(struct net_device *dev)
2163 {
2164 struct ipg_nic_private *sp = netdev_priv(dev);
2165 int rc;
2166
2167 mutex_lock(&sp->mii_mutex);
2168 rc = mii_nway_restart(&sp->mii_if);
2169 mutex_unlock(&sp->mii_mutex);
2170
2171 return rc;
2172 }
2173
2174 static const struct ethtool_ops ipg_ethtool_ops = {
2175 .get_settings = ipg_get_settings,
2176 .set_settings = ipg_set_settings,
2177 .nway_reset = ipg_nway_reset,
2178 };
2179
2180 static void __devexit ipg_remove(struct pci_dev *pdev)
2181 {
2182 struct net_device *dev = pci_get_drvdata(pdev);
2183 struct ipg_nic_private *sp = netdev_priv(dev);
2184
2185 IPG_DEBUG_MSG("_remove\n");
2186
2187 /* Un-register Ethernet device. */
2188 unregister_netdev(dev);
2189
2190 pci_iounmap(pdev, sp->ioaddr);
2191
2192 pci_release_regions(pdev);
2193
2194 free_netdev(dev);
2195 pci_disable_device(pdev);
2196 pci_set_drvdata(pdev, NULL);
2197 }
2198
2199 static const struct net_device_ops ipg_netdev_ops = {
2200 .ndo_open = ipg_nic_open,
2201 .ndo_stop = ipg_nic_stop,
2202 .ndo_start_xmit = ipg_nic_hard_start_xmit,
2203 .ndo_get_stats = ipg_nic_get_stats,
2204 .ndo_set_multicast_list = ipg_nic_set_multicast_list,
2205 .ndo_do_ioctl = ipg_ioctl,
2206 .ndo_tx_timeout = ipg_tx_timeout,
2207 .ndo_change_mtu = ipg_nic_change_mtu,
2208 .ndo_set_mac_address = eth_mac_addr,
2209 .ndo_validate_addr = eth_validate_addr,
2210 };
2211
2212 static int __devinit ipg_probe(struct pci_dev *pdev,
2213 const struct pci_device_id *id)
2214 {
2215 unsigned int i = id->driver_data;
2216 struct ipg_nic_private *sp;
2217 struct net_device *dev;
2218 void __iomem *ioaddr;
2219 int rc;
2220
2221 rc = pci_enable_device(pdev);
2222 if (rc < 0)
2223 goto out;
2224
2225 pr_info("%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2226
2227 pci_set_master(pdev);
2228
2229 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2230 if (rc < 0) {
2231 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2232 if (rc < 0) {
2233 pr_err("%s: DMA config failed\n", pci_name(pdev));
2234 goto err_disable_0;
2235 }
2236 }
2237
2238 /*
2239 * Initialize net device.
2240 */
2241 dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2242 if (!dev) {
2243 pr_err("%s: alloc_etherdev failed\n", pci_name(pdev));
2244 rc = -ENOMEM;
2245 goto err_disable_0;
2246 }
2247
2248 sp = netdev_priv(dev);
2249 spin_lock_init(&sp->lock);
2250 mutex_init(&sp->mii_mutex);
2251
2252 sp->is_jumbo = IPG_IS_JUMBO;
2253 sp->rxfrag_size = IPG_RXFRAG_SIZE;
2254 sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2255 sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2256
2257 /* Declare IPG NIC functions for Ethernet device methods.
2258 */
2259 dev->netdev_ops = &ipg_netdev_ops;
2260 SET_NETDEV_DEV(dev, &pdev->dev);
2261 SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2262
2263 rc = pci_request_regions(pdev, DRV_NAME);
2264 if (rc)
2265 goto err_free_dev_1;
2266
2267 ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2268 if (!ioaddr) {
2269 pr_err("%s: cannot map MMIO\n", pci_name(pdev));
2270 rc = -EIO;
2271 goto err_release_regions_2;
2272 }
2273
2274 /* Save the pointer to the PCI device information. */
2275 sp->ioaddr = ioaddr;
2276 sp->pdev = pdev;
2277 sp->dev = dev;
2278
2279 INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2280
2281 pci_set_drvdata(pdev, dev);
2282
2283 rc = ipg_hw_init(dev);
2284 if (rc < 0)
2285 goto err_unmap_3;
2286
2287 rc = register_netdev(dev);
2288 if (rc < 0)
2289 goto err_unmap_3;
2290
2291 netdev_info(dev, "Ethernet device registered\n");
2292 out:
2293 return rc;
2294
2295 err_unmap_3:
2296 pci_iounmap(pdev, ioaddr);
2297 err_release_regions_2:
2298 pci_release_regions(pdev);
2299 err_free_dev_1:
2300 free_netdev(dev);
2301 err_disable_0:
2302 pci_disable_device(pdev);
2303 goto out;
2304 }
2305
2306 static struct pci_driver ipg_pci_driver = {
2307 .name = IPG_DRIVER_NAME,
2308 .id_table = ipg_pci_tbl,
2309 .probe = ipg_probe,
2310 .remove = __devexit_p(ipg_remove),
2311 };
2312
2313 static int __init ipg_init_module(void)
2314 {
2315 return pci_register_driver(&ipg_pci_driver);
2316 }
2317
2318 static void __exit ipg_exit_module(void)
2319 {
2320 pci_unregister_driver(&ipg_pci_driver);
2321 }
2322
2323 module_init(ipg_init_module);
2324 module_exit(ipg_exit_module);
This page took 0.110554 seconds and 4 git commands to generate.