Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / irda / au1k_ir.c
1 /*
2 * Alchemy Semi Au1000 IrDA driver
3 *
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 * ppopov@mvista.com or source@mvista.com
7 *
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 * for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/interrupt.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/time.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29
30 #include <net/irda/irda.h>
31 #include <net/irda/irmod.h>
32 #include <net/irda/wrapper.h>
33 #include <net/irda/irda_device.h>
34 #include <asm/mach-au1x00/au1000.h>
35
36 /* registers */
37 #define IR_RING_PTR_STATUS 0x00
38 #define IR_RING_BASE_ADDR_H 0x04
39 #define IR_RING_BASE_ADDR_L 0x08
40 #define IR_RING_SIZE 0x0C
41 #define IR_RING_PROMPT 0x10
42 #define IR_RING_ADDR_CMPR 0x14
43 #define IR_INT_CLEAR 0x18
44 #define IR_CONFIG_1 0x20
45 #define IR_SIR_FLAGS 0x24
46 #define IR_STATUS 0x28
47 #define IR_READ_PHY_CONFIG 0x2C
48 #define IR_WRITE_PHY_CONFIG 0x30
49 #define IR_MAX_PKT_LEN 0x34
50 #define IR_RX_BYTE_CNT 0x38
51 #define IR_CONFIG_2 0x3C
52 #define IR_ENABLE 0x40
53
54 /* Config1 */
55 #define IR_RX_INVERT_LED (1 << 0)
56 #define IR_TX_INVERT_LED (1 << 1)
57 #define IR_ST (1 << 2)
58 #define IR_SF (1 << 3)
59 #define IR_SIR (1 << 4)
60 #define IR_MIR (1 << 5)
61 #define IR_FIR (1 << 6)
62 #define IR_16CRC (1 << 7)
63 #define IR_TD (1 << 8)
64 #define IR_RX_ALL (1 << 9)
65 #define IR_DMA_ENABLE (1 << 10)
66 #define IR_RX_ENABLE (1 << 11)
67 #define IR_TX_ENABLE (1 << 12)
68 #define IR_LOOPBACK (1 << 14)
69 #define IR_SIR_MODE (IR_SIR | IR_DMA_ENABLE | \
70 IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
71 IR_16CRC)
72
73 /* ir_status */
74 #define IR_RX_STATUS (1 << 9)
75 #define IR_TX_STATUS (1 << 10)
76 #define IR_PHYEN (1 << 15)
77
78 /* ir_write_phy_config */
79 #define IR_BR(x) (((x) & 0x3f) << 10) /* baud rate */
80 #define IR_PW(x) (((x) & 0x1f) << 5) /* pulse width */
81 #define IR_P(x) ((x) & 0x1f) /* preamble bits */
82
83 /* Config2 */
84 #define IR_MODE_INV (1 << 0)
85 #define IR_ONE_PIN (1 << 1)
86 #define IR_PHYCLK_40MHZ (0 << 2)
87 #define IR_PHYCLK_48MHZ (1 << 2)
88 #define IR_PHYCLK_56MHZ (2 << 2)
89 #define IR_PHYCLK_64MHZ (3 << 2)
90 #define IR_DP (1 << 4)
91 #define IR_DA (1 << 5)
92 #define IR_FLT_HIGH (0 << 6)
93 #define IR_FLT_MEDHI (1 << 6)
94 #define IR_FLT_MEDLO (2 << 6)
95 #define IR_FLT_LO (3 << 6)
96 #define IR_IEN (1 << 8)
97
98 /* ir_enable */
99 #define IR_HC (1 << 3) /* divide SBUS clock by 2 */
100 #define IR_CE (1 << 2) /* clock enable */
101 #define IR_C (1 << 1) /* coherency bit */
102 #define IR_BE (1 << 0) /* set in big endian mode */
103
104 #define NUM_IR_DESC 64
105 #define RING_SIZE_4 0x0
106 #define RING_SIZE_16 0x3
107 #define RING_SIZE_64 0xF
108 #define MAX_NUM_IR_DESC 64
109 #define MAX_BUF_SIZE 2048
110
111 /* Ring descriptor flags */
112 #define AU_OWN (1 << 7) /* tx,rx */
113 #define IR_DIS_CRC (1 << 6) /* tx */
114 #define IR_BAD_CRC (1 << 5) /* tx */
115 #define IR_NEED_PULSE (1 << 4) /* tx */
116 #define IR_FORCE_UNDER (1 << 3) /* tx */
117 #define IR_DISABLE_TX (1 << 2) /* tx */
118 #define IR_HW_UNDER (1 << 0) /* tx */
119 #define IR_TX_ERROR (IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
120
121 #define IR_PHY_ERROR (1 << 6) /* rx */
122 #define IR_CRC_ERROR (1 << 5) /* rx */
123 #define IR_MAX_LEN (1 << 4) /* rx */
124 #define IR_FIFO_OVER (1 << 3) /* rx */
125 #define IR_SIR_ERROR (1 << 2) /* rx */
126 #define IR_RX_ERROR (IR_PHY_ERROR | IR_CRC_ERROR | \
127 IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
128
129 struct db_dest {
130 struct db_dest *pnext;
131 volatile u32 *vaddr;
132 dma_addr_t dma_addr;
133 };
134
135 struct ring_dest {
136 u8 count_0; /* 7:0 */
137 u8 count_1; /* 12:8 */
138 u8 reserved;
139 u8 flags;
140 u8 addr_0; /* 7:0 */
141 u8 addr_1; /* 15:8 */
142 u8 addr_2; /* 23:16 */
143 u8 addr_3; /* 31:24 */
144 };
145
146 /* Private data for each instance */
147 struct au1k_private {
148 void __iomem *iobase;
149 int irq_rx, irq_tx;
150
151 struct db_dest *pDBfree;
152 struct db_dest db[2 * NUM_IR_DESC];
153 volatile struct ring_dest *rx_ring[NUM_IR_DESC];
154 volatile struct ring_dest *tx_ring[NUM_IR_DESC];
155 struct db_dest *rx_db_inuse[NUM_IR_DESC];
156 struct db_dest *tx_db_inuse[NUM_IR_DESC];
157 u32 rx_head;
158 u32 tx_head;
159 u32 tx_tail;
160 u32 tx_full;
161
162 iobuff_t rx_buff;
163
164 struct net_device *netdev;
165 struct timeval stamp;
166 struct timeval now;
167 struct qos_info qos;
168 struct irlap_cb *irlap;
169
170 u8 open;
171 u32 speed;
172 u32 newspeed;
173
174 struct timer_list timer;
175
176 struct resource *ioarea;
177 struct au1k_irda_platform_data *platdata;
178 };
179
180 static int qos_mtt_bits = 0x07; /* 1 ms or more */
181
182 #define RUN_AT(x) (jiffies + (x))
183
184 static void au1k_irda_plat_set_phy_mode(struct au1k_private *p, int mode)
185 {
186 if (p->platdata && p->platdata->set_phy_mode)
187 p->platdata->set_phy_mode(mode);
188 }
189
190 static inline unsigned long irda_read(struct au1k_private *p,
191 unsigned long ofs)
192 {
193 /*
194 * IrDA peripheral bug. You have to read the register
195 * twice to get the right value.
196 */
197 (void)__raw_readl(p->iobase + ofs);
198 return __raw_readl(p->iobase + ofs);
199 }
200
201 static inline void irda_write(struct au1k_private *p, unsigned long ofs,
202 unsigned long val)
203 {
204 __raw_writel(val, p->iobase + ofs);
205 wmb();
206 }
207
208 /*
209 * Buffer allocation/deallocation routines. The buffer descriptor returned
210 * has the virtual and dma address of a buffer suitable for
211 * both, receive and transmit operations.
212 */
213 static struct db_dest *GetFreeDB(struct au1k_private *aup)
214 {
215 struct db_dest *db;
216 db = aup->pDBfree;
217
218 if (db)
219 aup->pDBfree = db->pnext;
220 return db;
221 }
222
223 /*
224 DMA memory allocation, derived from pci_alloc_consistent.
225 However, the Au1000 data cache is coherent (when programmed
226 so), therefore we return KSEG0 address, not KSEG1.
227 */
228 static void *dma_alloc(size_t size, dma_addr_t *dma_handle)
229 {
230 void *ret;
231 int gfp = GFP_ATOMIC | GFP_DMA;
232
233 ret = (void *)__get_free_pages(gfp, get_order(size));
234
235 if (ret != NULL) {
236 memset(ret, 0, size);
237 *dma_handle = virt_to_bus(ret);
238 ret = (void *)KSEG0ADDR(ret);
239 }
240 return ret;
241 }
242
243 static void dma_free(void *vaddr, size_t size)
244 {
245 vaddr = (void *)KSEG0ADDR(vaddr);
246 free_pages((unsigned long) vaddr, get_order(size));
247 }
248
249
250 static void setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
251 {
252 int i;
253 for (i = 0; i < NUM_IR_DESC; i++) {
254 aup->rx_ring[i] = (volatile struct ring_dest *)
255 (rx_base + sizeof(struct ring_dest) * i);
256 }
257 for (i = 0; i < NUM_IR_DESC; i++) {
258 aup->tx_ring[i] = (volatile struct ring_dest *)
259 (tx_base + sizeof(struct ring_dest) * i);
260 }
261 }
262
263 static int au1k_irda_init_iobuf(iobuff_t *io, int size)
264 {
265 io->head = kmalloc(size, GFP_KERNEL);
266 if (io->head != NULL) {
267 io->truesize = size;
268 io->in_frame = FALSE;
269 io->state = OUTSIDE_FRAME;
270 io->data = io->head;
271 }
272 return io->head ? 0 : -ENOMEM;
273 }
274
275 /*
276 * Set the IrDA communications speed.
277 */
278 static int au1k_irda_set_speed(struct net_device *dev, int speed)
279 {
280 struct au1k_private *aup = netdev_priv(dev);
281 volatile struct ring_dest *ptxd;
282 unsigned long control;
283 int ret = 0, timeout = 10, i;
284
285 if (speed == aup->speed)
286 return ret;
287
288 /* disable PHY first */
289 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
290 irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
291
292 /* disable RX/TX */
293 irda_write(aup, IR_CONFIG_1,
294 irda_read(aup, IR_CONFIG_1) & ~(IR_RX_ENABLE | IR_TX_ENABLE));
295 msleep(20);
296 while (irda_read(aup, IR_STATUS) & (IR_RX_STATUS | IR_TX_STATUS)) {
297 msleep(20);
298 if (!timeout--) {
299 printk(KERN_ERR "%s: rx/tx disable timeout\n",
300 dev->name);
301 break;
302 }
303 }
304
305 /* disable DMA */
306 irda_write(aup, IR_CONFIG_1,
307 irda_read(aup, IR_CONFIG_1) & ~IR_DMA_ENABLE);
308 msleep(20);
309
310 /* After we disable tx/rx. the index pointers go back to zero. */
311 aup->tx_head = aup->tx_tail = aup->rx_head = 0;
312 for (i = 0; i < NUM_IR_DESC; i++) {
313 ptxd = aup->tx_ring[i];
314 ptxd->flags = 0;
315 ptxd->count_0 = 0;
316 ptxd->count_1 = 0;
317 }
318
319 for (i = 0; i < NUM_IR_DESC; i++) {
320 ptxd = aup->rx_ring[i];
321 ptxd->count_0 = 0;
322 ptxd->count_1 = 0;
323 ptxd->flags = AU_OWN;
324 }
325
326 if (speed == 4000000)
327 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_FIR);
328 else
329 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
330
331 switch (speed) {
332 case 9600:
333 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(11) | IR_PW(12));
334 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
335 break;
336 case 19200:
337 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(5) | IR_PW(12));
338 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
339 break;
340 case 38400:
341 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(2) | IR_PW(12));
342 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
343 break;
344 case 57600:
345 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(1) | IR_PW(12));
346 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
347 break;
348 case 115200:
349 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_PW(12));
350 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
351 break;
352 case 4000000:
353 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_P(15));
354 irda_write(aup, IR_CONFIG_1, IR_FIR | IR_DMA_ENABLE |
355 IR_RX_ENABLE);
356 break;
357 default:
358 printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
359 ret = -EINVAL;
360 break;
361 }
362
363 aup->speed = speed;
364 irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) | IR_PHYEN);
365
366 control = irda_read(aup, IR_STATUS);
367 irda_write(aup, IR_RING_PROMPT, 0);
368
369 if (control & (1 << 14)) {
370 printk(KERN_ERR "%s: configuration error\n", dev->name);
371 } else {
372 if (control & (1 << 11))
373 printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
374 if (control & (1 << 12))
375 printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
376 if (control & (1 << 13))
377 printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
378 if (control & (1 << 10))
379 printk(KERN_DEBUG "%s TX enabled\n", dev->name);
380 if (control & (1 << 9))
381 printk(KERN_DEBUG "%s RX enabled\n", dev->name);
382 }
383
384 return ret;
385 }
386
387 static void update_rx_stats(struct net_device *dev, u32 status, u32 count)
388 {
389 struct net_device_stats *ps = &dev->stats;
390
391 ps->rx_packets++;
392
393 if (status & IR_RX_ERROR) {
394 ps->rx_errors++;
395 if (status & (IR_PHY_ERROR | IR_FIFO_OVER))
396 ps->rx_missed_errors++;
397 if (status & IR_MAX_LEN)
398 ps->rx_length_errors++;
399 if (status & IR_CRC_ERROR)
400 ps->rx_crc_errors++;
401 } else
402 ps->rx_bytes += count;
403 }
404
405 static void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
406 {
407 struct net_device_stats *ps = &dev->stats;
408
409 ps->tx_packets++;
410 ps->tx_bytes += pkt_len;
411
412 if (status & IR_TX_ERROR) {
413 ps->tx_errors++;
414 ps->tx_aborted_errors++;
415 }
416 }
417
418 static void au1k_tx_ack(struct net_device *dev)
419 {
420 struct au1k_private *aup = netdev_priv(dev);
421 volatile struct ring_dest *ptxd;
422
423 ptxd = aup->tx_ring[aup->tx_tail];
424 while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
425 update_tx_stats(dev, ptxd->flags,
426 (ptxd->count_1 << 8) | ptxd->count_0);
427 ptxd->count_0 = 0;
428 ptxd->count_1 = 0;
429 wmb();
430 aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
431 ptxd = aup->tx_ring[aup->tx_tail];
432
433 if (aup->tx_full) {
434 aup->tx_full = 0;
435 netif_wake_queue(dev);
436 }
437 }
438
439 if (aup->tx_tail == aup->tx_head) {
440 if (aup->newspeed) {
441 au1k_irda_set_speed(dev, aup->newspeed);
442 aup->newspeed = 0;
443 } else {
444 irda_write(aup, IR_CONFIG_1,
445 irda_read(aup, IR_CONFIG_1) & ~IR_TX_ENABLE);
446 irda_write(aup, IR_CONFIG_1,
447 irda_read(aup, IR_CONFIG_1) | IR_RX_ENABLE);
448 irda_write(aup, IR_RING_PROMPT, 0);
449 }
450 }
451 }
452
453 static int au1k_irda_rx(struct net_device *dev)
454 {
455 struct au1k_private *aup = netdev_priv(dev);
456 volatile struct ring_dest *prxd;
457 struct sk_buff *skb;
458 struct db_dest *pDB;
459 u32 flags, count;
460
461 prxd = aup->rx_ring[aup->rx_head];
462 flags = prxd->flags;
463
464 while (!(flags & AU_OWN)) {
465 pDB = aup->rx_db_inuse[aup->rx_head];
466 count = (prxd->count_1 << 8) | prxd->count_0;
467 if (!(flags & IR_RX_ERROR)) {
468 /* good frame */
469 update_rx_stats(dev, flags, count);
470 skb = alloc_skb(count + 1, GFP_ATOMIC);
471 if (skb == NULL) {
472 dev->stats.rx_dropped++;
473 continue;
474 }
475 skb_reserve(skb, 1);
476 if (aup->speed == 4000000)
477 skb_put(skb, count);
478 else
479 skb_put(skb, count - 2);
480 skb_copy_to_linear_data(skb, (void *)pDB->vaddr,
481 count - 2);
482 skb->dev = dev;
483 skb_reset_mac_header(skb);
484 skb->protocol = htons(ETH_P_IRDA);
485 netif_rx(skb);
486 prxd->count_0 = 0;
487 prxd->count_1 = 0;
488 }
489 prxd->flags |= AU_OWN;
490 aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
491 irda_write(aup, IR_RING_PROMPT, 0);
492
493 /* next descriptor */
494 prxd = aup->rx_ring[aup->rx_head];
495 flags = prxd->flags;
496
497 }
498 return 0;
499 }
500
501 static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
502 {
503 struct net_device *dev = dev_id;
504 struct au1k_private *aup = netdev_priv(dev);
505
506 irda_write(aup, IR_INT_CLEAR, 0); /* ack irda interrupts */
507
508 au1k_irda_rx(dev);
509 au1k_tx_ack(dev);
510
511 return IRQ_HANDLED;
512 }
513
514 static int au1k_init(struct net_device *dev)
515 {
516 struct au1k_private *aup = netdev_priv(dev);
517 u32 enable, ring_address;
518 int i;
519
520 enable = IR_HC | IR_CE | IR_C;
521 #ifndef CONFIG_CPU_LITTLE_ENDIAN
522 enable |= IR_BE;
523 #endif
524 aup->tx_head = 0;
525 aup->tx_tail = 0;
526 aup->rx_head = 0;
527
528 for (i = 0; i < NUM_IR_DESC; i++)
529 aup->rx_ring[i]->flags = AU_OWN;
530
531 irda_write(aup, IR_ENABLE, enable);
532 msleep(20);
533
534 /* disable PHY */
535 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
536 irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
537 msleep(20);
538
539 irda_write(aup, IR_MAX_PKT_LEN, MAX_BUF_SIZE);
540
541 ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
542 irda_write(aup, IR_RING_BASE_ADDR_H, ring_address >> 26);
543 irda_write(aup, IR_RING_BASE_ADDR_L, (ring_address >> 10) & 0xffff);
544
545 irda_write(aup, IR_RING_SIZE,
546 (RING_SIZE_64 << 8) | (RING_SIZE_64 << 12));
547
548 irda_write(aup, IR_CONFIG_2, IR_PHYCLK_48MHZ | IR_ONE_PIN);
549 irda_write(aup, IR_RING_ADDR_CMPR, 0);
550
551 au1k_irda_set_speed(dev, 9600);
552 return 0;
553 }
554
555 static int au1k_irda_start(struct net_device *dev)
556 {
557 struct au1k_private *aup = netdev_priv(dev);
558 char hwname[32];
559 int retval;
560
561 retval = au1k_init(dev);
562 if (retval) {
563 printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
564 return retval;
565 }
566
567 retval = request_irq(aup->irq_tx, &au1k_irda_interrupt, 0,
568 dev->name, dev);
569 if (retval) {
570 printk(KERN_ERR "%s: unable to get IRQ %d\n",
571 dev->name, dev->irq);
572 return retval;
573 }
574 retval = request_irq(aup->irq_rx, &au1k_irda_interrupt, 0,
575 dev->name, dev);
576 if (retval) {
577 free_irq(aup->irq_tx, dev);
578 printk(KERN_ERR "%s: unable to get IRQ %d\n",
579 dev->name, dev->irq);
580 return retval;
581 }
582
583 /* Give self a hardware name */
584 sprintf(hwname, "Au1000 SIR/FIR");
585 aup->irlap = irlap_open(dev, &aup->qos, hwname);
586 netif_start_queue(dev);
587
588 /* int enable */
589 irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) | IR_IEN);
590
591 /* power up */
592 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
593
594 aup->timer.expires = RUN_AT((3 * HZ));
595 aup->timer.data = (unsigned long)dev;
596 return 0;
597 }
598
599 static int au1k_irda_stop(struct net_device *dev)
600 {
601 struct au1k_private *aup = netdev_priv(dev);
602
603 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
604
605 /* disable interrupts */
606 irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) & ~IR_IEN);
607 irda_write(aup, IR_CONFIG_1, 0);
608 irda_write(aup, IR_ENABLE, 0); /* disable clock */
609
610 if (aup->irlap) {
611 irlap_close(aup->irlap);
612 aup->irlap = NULL;
613 }
614
615 netif_stop_queue(dev);
616 del_timer(&aup->timer);
617
618 /* disable the interrupt */
619 free_irq(aup->irq_tx, dev);
620 free_irq(aup->irq_rx, dev);
621
622 return 0;
623 }
624
625 /*
626 * Au1000 transmit routine.
627 */
628 static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
629 {
630 struct au1k_private *aup = netdev_priv(dev);
631 int speed = irda_get_next_speed(skb);
632 volatile struct ring_dest *ptxd;
633 struct db_dest *pDB;
634 u32 len, flags;
635
636 if (speed != aup->speed && speed != -1)
637 aup->newspeed = speed;
638
639 if ((skb->len == 0) && (aup->newspeed)) {
640 if (aup->tx_tail == aup->tx_head) {
641 au1k_irda_set_speed(dev, speed);
642 aup->newspeed = 0;
643 }
644 dev_kfree_skb(skb);
645 return NETDEV_TX_OK;
646 }
647
648 ptxd = aup->tx_ring[aup->tx_head];
649 flags = ptxd->flags;
650
651 if (flags & AU_OWN) {
652 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
653 netif_stop_queue(dev);
654 aup->tx_full = 1;
655 return 1;
656 } else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
657 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
658 netif_stop_queue(dev);
659 aup->tx_full = 1;
660 return 1;
661 }
662
663 pDB = aup->tx_db_inuse[aup->tx_head];
664
665 #if 0
666 if (irda_read(aup, IR_RX_BYTE_CNT) != 0) {
667 printk(KERN_DEBUG "tx warning: rx byte cnt %x\n",
668 irda_read(aup, IR_RX_BYTE_CNT));
669 }
670 #endif
671
672 if (aup->speed == 4000000) {
673 /* FIR */
674 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
675 ptxd->count_0 = skb->len & 0xff;
676 ptxd->count_1 = (skb->len >> 8) & 0xff;
677 } else {
678 /* SIR */
679 len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
680 ptxd->count_0 = len & 0xff;
681 ptxd->count_1 = (len >> 8) & 0xff;
682 ptxd->flags |= IR_DIS_CRC;
683 }
684 ptxd->flags |= AU_OWN;
685 wmb();
686
687 irda_write(aup, IR_CONFIG_1,
688 irda_read(aup, IR_CONFIG_1) | IR_TX_ENABLE);
689 irda_write(aup, IR_RING_PROMPT, 0);
690
691 dev_kfree_skb(skb);
692 aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
693 return NETDEV_TX_OK;
694 }
695
696 /*
697 * The Tx ring has been full longer than the watchdog timeout
698 * value. The transmitter must be hung?
699 */
700 static void au1k_tx_timeout(struct net_device *dev)
701 {
702 u32 speed;
703 struct au1k_private *aup = netdev_priv(dev);
704
705 printk(KERN_ERR "%s: tx timeout\n", dev->name);
706 speed = aup->speed;
707 aup->speed = 0;
708 au1k_irda_set_speed(dev, speed);
709 aup->tx_full = 0;
710 netif_wake_queue(dev);
711 }
712
713 static int au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
714 {
715 struct if_irda_req *rq = (struct if_irda_req *)ifreq;
716 struct au1k_private *aup = netdev_priv(dev);
717 int ret = -EOPNOTSUPP;
718
719 switch (cmd) {
720 case SIOCSBANDWIDTH:
721 if (capable(CAP_NET_ADMIN)) {
722 /*
723 * We are unable to set the speed if the
724 * device is not running.
725 */
726 if (aup->open)
727 ret = au1k_irda_set_speed(dev,
728 rq->ifr_baudrate);
729 else {
730 printk(KERN_ERR "%s ioctl: !netif_running\n",
731 dev->name);
732 ret = 0;
733 }
734 }
735 break;
736
737 case SIOCSMEDIABUSY:
738 ret = -EPERM;
739 if (capable(CAP_NET_ADMIN)) {
740 irda_device_set_media_busy(dev, TRUE);
741 ret = 0;
742 }
743 break;
744
745 case SIOCGRECEIVING:
746 rq->ifr_receiving = 0;
747 break;
748 default:
749 break;
750 }
751 return ret;
752 }
753
754 static const struct net_device_ops au1k_irda_netdev_ops = {
755 .ndo_open = au1k_irda_start,
756 .ndo_stop = au1k_irda_stop,
757 .ndo_start_xmit = au1k_irda_hard_xmit,
758 .ndo_tx_timeout = au1k_tx_timeout,
759 .ndo_do_ioctl = au1k_irda_ioctl,
760 };
761
762 static int au1k_irda_net_init(struct net_device *dev)
763 {
764 struct au1k_private *aup = netdev_priv(dev);
765 struct db_dest *pDB, *pDBfree;
766 int i, err, retval = 0;
767 dma_addr_t temp;
768
769 err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
770 if (err)
771 goto out1;
772
773 dev->netdev_ops = &au1k_irda_netdev_ops;
774
775 irda_init_max_qos_capabilies(&aup->qos);
776
777 /* The only value we must override it the baudrate */
778 aup->qos.baud_rate.bits = IR_9600 | IR_19200 | IR_38400 |
779 IR_57600 | IR_115200 | IR_576000 | (IR_4000000 << 8);
780
781 aup->qos.min_turn_time.bits = qos_mtt_bits;
782 irda_qos_bits_to_value(&aup->qos);
783
784 retval = -ENOMEM;
785
786 /* Tx ring follows rx ring + 512 bytes */
787 /* we need a 1k aligned buffer */
788 aup->rx_ring[0] = (struct ring_dest *)
789 dma_alloc(2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)),
790 &temp);
791 if (!aup->rx_ring[0])
792 goto out2;
793
794 /* allocate the data buffers */
795 aup->db[0].vaddr =
796 dma_alloc(MAX_BUF_SIZE * 2 * NUM_IR_DESC, &temp);
797 if (!aup->db[0].vaddr)
798 goto out3;
799
800 setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
801
802 pDBfree = NULL;
803 pDB = aup->db;
804 for (i = 0; i < (2 * NUM_IR_DESC); i++) {
805 pDB->pnext = pDBfree;
806 pDBfree = pDB;
807 pDB->vaddr =
808 (u32 *)((unsigned)aup->db[0].vaddr + (MAX_BUF_SIZE * i));
809 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
810 pDB++;
811 }
812 aup->pDBfree = pDBfree;
813
814 /* attach a data buffer to each descriptor */
815 for (i = 0; i < NUM_IR_DESC; i++) {
816 pDB = GetFreeDB(aup);
817 if (!pDB)
818 goto out3;
819 aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
820 aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr >> 8) & 0xff);
821 aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
822 aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
823 aup->rx_db_inuse[i] = pDB;
824 }
825 for (i = 0; i < NUM_IR_DESC; i++) {
826 pDB = GetFreeDB(aup);
827 if (!pDB)
828 goto out3;
829 aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
830 aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr >> 8) & 0xff);
831 aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
832 aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
833 aup->tx_ring[i]->count_0 = 0;
834 aup->tx_ring[i]->count_1 = 0;
835 aup->tx_ring[i]->flags = 0;
836 aup->tx_db_inuse[i] = pDB;
837 }
838
839 return 0;
840
841 out3:
842 dma_free((void *)aup->rx_ring[0],
843 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
844 out2:
845 kfree(aup->rx_buff.head);
846 out1:
847 printk(KERN_ERR "au1k_irda_net_init() failed. Returns %d\n", retval);
848 return retval;
849 }
850
851 static int au1k_irda_probe(struct platform_device *pdev)
852 {
853 struct au1k_private *aup;
854 struct net_device *dev;
855 struct resource *r;
856 int err;
857
858 dev = alloc_irdadev(sizeof(struct au1k_private));
859 if (!dev)
860 return -ENOMEM;
861
862 aup = netdev_priv(dev);
863
864 aup->platdata = pdev->dev.platform_data;
865
866 err = -EINVAL;
867 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
868 if (!r)
869 goto out;
870
871 aup->irq_tx = r->start;
872
873 r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
874 if (!r)
875 goto out;
876
877 aup->irq_rx = r->start;
878
879 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
880 if (!r)
881 goto out;
882
883 err = -EBUSY;
884 aup->ioarea = request_mem_region(r->start, resource_size(r),
885 pdev->name);
886 if (!aup->ioarea)
887 goto out;
888
889 aup->iobase = ioremap_nocache(r->start, resource_size(r));
890 if (!aup->iobase)
891 goto out2;
892
893 dev->irq = aup->irq_rx;
894
895 err = au1k_irda_net_init(dev);
896 if (err)
897 goto out3;
898 err = register_netdev(dev);
899 if (err)
900 goto out4;
901
902 platform_set_drvdata(pdev, dev);
903
904 printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
905 return 0;
906
907 out4:
908 dma_free((void *)aup->db[0].vaddr,
909 MAX_BUF_SIZE * 2 * NUM_IR_DESC);
910 dma_free((void *)aup->rx_ring[0],
911 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
912 kfree(aup->rx_buff.head);
913 out3:
914 iounmap(aup->iobase);
915 out2:
916 release_resource(aup->ioarea);
917 kfree(aup->ioarea);
918 out:
919 free_netdev(dev);
920 return err;
921 }
922
923 static int au1k_irda_remove(struct platform_device *pdev)
924 {
925 struct net_device *dev = platform_get_drvdata(pdev);
926 struct au1k_private *aup = netdev_priv(dev);
927
928 unregister_netdev(dev);
929
930 dma_free((void *)aup->db[0].vaddr,
931 MAX_BUF_SIZE * 2 * NUM_IR_DESC);
932 dma_free((void *)aup->rx_ring[0],
933 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
934 kfree(aup->rx_buff.head);
935
936 iounmap(aup->iobase);
937 release_resource(aup->ioarea);
938 kfree(aup->ioarea);
939
940 free_netdev(dev);
941
942 return 0;
943 }
944
945 static struct platform_driver au1k_irda_driver = {
946 .driver = {
947 .name = "au1000-irda",
948 .owner = THIS_MODULE,
949 },
950 .probe = au1k_irda_probe,
951 .remove = au1k_irda_remove,
952 };
953
954 module_platform_driver(au1k_irda_driver);
955
956 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
957 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
This page took 0.105653 seconds and 5 git commands to generate.