netdevice: safe convert to netdev_priv() #part-2
[deliverable/linux.git] / drivers / net / irda / vlsi_ir.c
1 /*********************************************************************
2 *
3 * vlsi_ir.c: VLSI82C147 PCI IrDA controller driver for Linux
4 *
5 * Copyright (c) 2001-2003 Martin Diehl
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
20 * MA 02111-1307 USA
21 *
22 ********************************************************************/
23
24 #include <linux/module.h>
25
26 #define DRIVER_NAME "vlsi_ir"
27 #define DRIVER_VERSION "v0.5"
28 #define DRIVER_DESCRIPTION "IrDA SIR/MIR/FIR driver for VLSI 82C147"
29 #define DRIVER_AUTHOR "Martin Diehl <info@mdiehl.de>"
30
31 MODULE_DESCRIPTION(DRIVER_DESCRIPTION);
32 MODULE_AUTHOR(DRIVER_AUTHOR);
33 MODULE_LICENSE("GPL");
34
35 /********************************************************/
36
37 #include <linux/kernel.h>
38 #include <linux/init.h>
39 #include <linux/pci.h>
40 #include <linux/slab.h>
41 #include <linux/netdevice.h>
42 #include <linux/skbuff.h>
43 #include <linux/delay.h>
44 #include <linux/time.h>
45 #include <linux/proc_fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/mutex.h>
48 #include <asm/uaccess.h>
49 #include <asm/byteorder.h>
50
51 #include <net/irda/irda.h>
52 #include <net/irda/irda_device.h>
53 #include <net/irda/wrapper.h>
54 #include <net/irda/crc.h>
55
56 #include "vlsi_ir.h"
57
58 /********************************************************/
59
60 static /* const */ char drivername[] = DRIVER_NAME;
61
62 static struct pci_device_id vlsi_irda_table [] = {
63 {
64 .class = PCI_CLASS_WIRELESS_IRDA << 8,
65 .class_mask = PCI_CLASS_SUBCLASS_MASK << 8,
66 .vendor = PCI_VENDOR_ID_VLSI,
67 .device = PCI_DEVICE_ID_VLSI_82C147,
68 .subvendor = PCI_ANY_ID,
69 .subdevice = PCI_ANY_ID,
70 },
71 { /* all zeroes */ }
72 };
73
74 MODULE_DEVICE_TABLE(pci, vlsi_irda_table);
75
76 /********************************************************/
77
78 /* clksrc: which clock source to be used
79 * 0: auto - try PLL, fallback to 40MHz XCLK
80 * 1: on-chip 48MHz PLL
81 * 2: external 48MHz XCLK
82 * 3: external 40MHz XCLK (HP OB-800)
83 */
84
85 static int clksrc = 0; /* default is 0(auto) */
86 module_param(clksrc, int, 0);
87 MODULE_PARM_DESC(clksrc, "clock input source selection");
88
89 /* ringsize: size of the tx and rx descriptor rings
90 * independent for tx and rx
91 * specify as ringsize=tx[,rx]
92 * allowed values: 4, 8, 16, 32, 64
93 * Due to the IrDA 1.x max. allowed window size=7,
94 * there should be no gain when using rings larger than 8
95 */
96
97 static int ringsize[] = {8,8}; /* default is tx=8 / rx=8 */
98 module_param_array(ringsize, int, NULL, 0);
99 MODULE_PARM_DESC(ringsize, "TX, RX ring descriptor size");
100
101 /* sirpulse: tuning of the SIR pulse width within IrPHY 1.3 limits
102 * 0: very short, 1.5us (exception: 6us at 2.4 kbaud)
103 * 1: nominal 3/16 bittime width
104 * note: IrDA compliant peer devices should be happy regardless
105 * which one is used. Primary goal is to save some power
106 * on the sender's side - at 9.6kbaud for example the short
107 * pulse width saves more than 90% of the transmitted IR power.
108 */
109
110 static int sirpulse = 1; /* default is 3/16 bittime */
111 module_param(sirpulse, int, 0);
112 MODULE_PARM_DESC(sirpulse, "SIR pulse width tuning");
113
114 /* qos_mtt_bits: encoded min-turn-time value we require the peer device
115 * to use before transmitting to us. "Type 1" (per-station)
116 * bitfield according to IrLAP definition (section 6.6.8)
117 * Don't know which transceiver is used by my OB800 - the
118 * pretty common HP HDLS-1100 requires 1 msec - so lets use this.
119 */
120
121 static int qos_mtt_bits = 0x07; /* default is 1 ms or more */
122 module_param(qos_mtt_bits, int, 0);
123 MODULE_PARM_DESC(qos_mtt_bits, "IrLAP bitfield representing min-turn-time");
124
125 /********************************************************/
126
127 static void vlsi_reg_debug(unsigned iobase, const char *s)
128 {
129 int i;
130
131 printk(KERN_DEBUG "%s: ", s);
132 for (i = 0; i < 0x20; i++)
133 printk("%02x", (unsigned)inb((iobase+i)));
134 printk("\n");
135 }
136
137 static void vlsi_ring_debug(struct vlsi_ring *r)
138 {
139 struct ring_descr *rd;
140 unsigned i;
141
142 printk(KERN_DEBUG "%s - ring %p / size %u / mask 0x%04x / len %u / dir %d / hw %p\n",
143 __func__, r, r->size, r->mask, r->len, r->dir, r->rd[0].hw);
144 printk(KERN_DEBUG "%s - head = %d / tail = %d\n", __func__,
145 atomic_read(&r->head) & r->mask, atomic_read(&r->tail) & r->mask);
146 for (i = 0; i < r->size; i++) {
147 rd = &r->rd[i];
148 printk(KERN_DEBUG "%s - ring descr %u: ", __func__, i);
149 printk("skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw);
150 printk(KERN_DEBUG "%s - hw: status=%02x count=%u addr=0x%08x\n",
151 __func__, (unsigned) rd_get_status(rd),
152 (unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd));
153 }
154 }
155
156 /********************************************************/
157
158 /* needed regardless of CONFIG_PROC_FS */
159 static struct proc_dir_entry *vlsi_proc_root = NULL;
160
161 #ifdef CONFIG_PROC_FS
162
163 static void vlsi_proc_pdev(struct seq_file *seq, struct pci_dev *pdev)
164 {
165 unsigned iobase = pci_resource_start(pdev, 0);
166 unsigned i;
167
168 seq_printf(seq, "\n%s (vid/did: [%04x:%04x])\n",
169 pci_name(pdev), (int)pdev->vendor, (int)pdev->device);
170 seq_printf(seq, "pci-power-state: %u\n", (unsigned) pdev->current_state);
171 seq_printf(seq, "resources: irq=%u / io=0x%04x / dma_mask=0x%016Lx\n",
172 pdev->irq, (unsigned)pci_resource_start(pdev, 0), (unsigned long long)pdev->dma_mask);
173 seq_printf(seq, "hw registers: ");
174 for (i = 0; i < 0x20; i++)
175 seq_printf(seq, "%02x", (unsigned)inb((iobase+i)));
176 seq_printf(seq, "\n");
177 }
178
179 static void vlsi_proc_ndev(struct seq_file *seq, struct net_device *ndev)
180 {
181 vlsi_irda_dev_t *idev = netdev_priv(ndev);
182 u8 byte;
183 u16 word;
184 unsigned delta1, delta2;
185 struct timeval now;
186 unsigned iobase = ndev->base_addr;
187
188 seq_printf(seq, "\n%s link state: %s / %s / %s / %s\n", ndev->name,
189 netif_device_present(ndev) ? "attached" : "detached",
190 netif_running(ndev) ? "running" : "not running",
191 netif_carrier_ok(ndev) ? "carrier ok" : "no carrier",
192 netif_queue_stopped(ndev) ? "queue stopped" : "queue running");
193
194 if (!netif_running(ndev))
195 return;
196
197 seq_printf(seq, "\nhw-state:\n");
198 pci_read_config_byte(idev->pdev, VLSI_PCI_IRMISC, &byte);
199 seq_printf(seq, "IRMISC:%s%s%s uart%s",
200 (byte&IRMISC_IRRAIL) ? " irrail" : "",
201 (byte&IRMISC_IRPD) ? " irpd" : "",
202 (byte&IRMISC_UARTTST) ? " uarttest" : "",
203 (byte&IRMISC_UARTEN) ? "@" : " disabled\n");
204 if (byte&IRMISC_UARTEN) {
205 seq_printf(seq, "0x%s\n",
206 (byte&2) ? ((byte&1) ? "3e8" : "2e8")
207 : ((byte&1) ? "3f8" : "2f8"));
208 }
209 pci_read_config_byte(idev->pdev, VLSI_PCI_CLKCTL, &byte);
210 seq_printf(seq, "CLKCTL: PLL %s%s%s / clock %s / wakeup %s\n",
211 (byte&CLKCTL_PD_INV) ? "powered" : "down",
212 (byte&CLKCTL_LOCK) ? " locked" : "",
213 (byte&CLKCTL_EXTCLK) ? ((byte&CLKCTL_XCKSEL)?" / 40 MHz XCLK":" / 48 MHz XCLK") : "",
214 (byte&CLKCTL_CLKSTP) ? "stopped" : "running",
215 (byte&CLKCTL_WAKE) ? "enabled" : "disabled");
216 pci_read_config_byte(idev->pdev, VLSI_PCI_MSTRPAGE, &byte);
217 seq_printf(seq, "MSTRPAGE: 0x%02x\n", (unsigned)byte);
218
219 byte = inb(iobase+VLSI_PIO_IRINTR);
220 seq_printf(seq, "IRINTR:%s%s%s%s%s%s%s%s\n",
221 (byte&IRINTR_ACTEN) ? " ACTEN" : "",
222 (byte&IRINTR_RPKTEN) ? " RPKTEN" : "",
223 (byte&IRINTR_TPKTEN) ? " TPKTEN" : "",
224 (byte&IRINTR_OE_EN) ? " OE_EN" : "",
225 (byte&IRINTR_ACTIVITY) ? " ACTIVITY" : "",
226 (byte&IRINTR_RPKTINT) ? " RPKTINT" : "",
227 (byte&IRINTR_TPKTINT) ? " TPKTINT" : "",
228 (byte&IRINTR_OE_INT) ? " OE_INT" : "");
229 word = inw(iobase+VLSI_PIO_RINGPTR);
230 seq_printf(seq, "RINGPTR: rx=%u / tx=%u\n", RINGPTR_GET_RX(word), RINGPTR_GET_TX(word));
231 word = inw(iobase+VLSI_PIO_RINGBASE);
232 seq_printf(seq, "RINGBASE: busmap=0x%08x\n",
233 ((unsigned)word << 10)|(MSTRPAGE_VALUE<<24));
234 word = inw(iobase+VLSI_PIO_RINGSIZE);
235 seq_printf(seq, "RINGSIZE: rx=%u / tx=%u\n", RINGSIZE_TO_RXSIZE(word),
236 RINGSIZE_TO_TXSIZE(word));
237
238 word = inw(iobase+VLSI_PIO_IRCFG);
239 seq_printf(seq, "IRCFG:%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
240 (word&IRCFG_LOOP) ? " LOOP" : "",
241 (word&IRCFG_ENTX) ? " ENTX" : "",
242 (word&IRCFG_ENRX) ? " ENRX" : "",
243 (word&IRCFG_MSTR) ? " MSTR" : "",
244 (word&IRCFG_RXANY) ? " RXANY" : "",
245 (word&IRCFG_CRC16) ? " CRC16" : "",
246 (word&IRCFG_FIR) ? " FIR" : "",
247 (word&IRCFG_MIR) ? " MIR" : "",
248 (word&IRCFG_SIR) ? " SIR" : "",
249 (word&IRCFG_SIRFILT) ? " SIRFILT" : "",
250 (word&IRCFG_SIRTEST) ? " SIRTEST" : "",
251 (word&IRCFG_TXPOL) ? " TXPOL" : "",
252 (word&IRCFG_RXPOL) ? " RXPOL" : "");
253 word = inw(iobase+VLSI_PIO_IRENABLE);
254 seq_printf(seq, "IRENABLE:%s%s%s%s%s%s%s%s\n",
255 (word&IRENABLE_PHYANDCLOCK) ? " PHYANDCLOCK" : "",
256 (word&IRENABLE_CFGER) ? " CFGERR" : "",
257 (word&IRENABLE_FIR_ON) ? " FIR_ON" : "",
258 (word&IRENABLE_MIR_ON) ? " MIR_ON" : "",
259 (word&IRENABLE_SIR_ON) ? " SIR_ON" : "",
260 (word&IRENABLE_ENTXST) ? " ENTXST" : "",
261 (word&IRENABLE_ENRXST) ? " ENRXST" : "",
262 (word&IRENABLE_CRC16_ON) ? " CRC16_ON" : "");
263 word = inw(iobase+VLSI_PIO_PHYCTL);
264 seq_printf(seq, "PHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n",
265 (unsigned)PHYCTL_TO_BAUD(word),
266 (unsigned)PHYCTL_TO_PLSWID(word),
267 (unsigned)PHYCTL_TO_PREAMB(word));
268 word = inw(iobase+VLSI_PIO_NPHYCTL);
269 seq_printf(seq, "NPHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n",
270 (unsigned)PHYCTL_TO_BAUD(word),
271 (unsigned)PHYCTL_TO_PLSWID(word),
272 (unsigned)PHYCTL_TO_PREAMB(word));
273 word = inw(iobase+VLSI_PIO_MAXPKT);
274 seq_printf(seq, "MAXPKT: max. rx packet size = %u\n", word);
275 word = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
276 seq_printf(seq, "RCVBCNT: rx-fifo filling level = %u\n", word);
277
278 seq_printf(seq, "\nsw-state:\n");
279 seq_printf(seq, "IrPHY setup: %d baud - %s encoding\n", idev->baud,
280 (idev->mode==IFF_SIR)?"SIR":((idev->mode==IFF_MIR)?"MIR":"FIR"));
281 do_gettimeofday(&now);
282 if (now.tv_usec >= idev->last_rx.tv_usec) {
283 delta2 = now.tv_usec - idev->last_rx.tv_usec;
284 delta1 = 0;
285 }
286 else {
287 delta2 = 1000000 + now.tv_usec - idev->last_rx.tv_usec;
288 delta1 = 1;
289 }
290 seq_printf(seq, "last rx: %lu.%06u sec\n",
291 now.tv_sec - idev->last_rx.tv_sec - delta1, delta2);
292
293 seq_printf(seq, "RX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu",
294 idev->stats.rx_packets, idev->stats.rx_bytes, idev->stats.rx_errors,
295 idev->stats.rx_dropped);
296 seq_printf(seq, " / overrun=%lu / length=%lu / frame=%lu / crc=%lu\n",
297 idev->stats.rx_over_errors, idev->stats.rx_length_errors,
298 idev->stats.rx_frame_errors, idev->stats.rx_crc_errors);
299 seq_printf(seq, "TX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu / fifo=%lu\n",
300 idev->stats.tx_packets, idev->stats.tx_bytes, idev->stats.tx_errors,
301 idev->stats.tx_dropped, idev->stats.tx_fifo_errors);
302
303 }
304
305 static void vlsi_proc_ring(struct seq_file *seq, struct vlsi_ring *r)
306 {
307 struct ring_descr *rd;
308 unsigned i, j;
309 int h, t;
310
311 seq_printf(seq, "size %u / mask 0x%04x / len %u / dir %d / hw %p\n",
312 r->size, r->mask, r->len, r->dir, r->rd[0].hw);
313 h = atomic_read(&r->head) & r->mask;
314 t = atomic_read(&r->tail) & r->mask;
315 seq_printf(seq, "head = %d / tail = %d ", h, t);
316 if (h == t)
317 seq_printf(seq, "(empty)\n");
318 else {
319 if (((t+1)&r->mask) == h)
320 seq_printf(seq, "(full)\n");
321 else
322 seq_printf(seq, "(level = %d)\n", ((unsigned)(t-h) & r->mask));
323 rd = &r->rd[h];
324 j = (unsigned) rd_get_count(rd);
325 seq_printf(seq, "current: rd = %d / status = %02x / len = %u\n",
326 h, (unsigned)rd_get_status(rd), j);
327 if (j > 0) {
328 seq_printf(seq, " data:");
329 if (j > 20)
330 j = 20;
331 for (i = 0; i < j; i++)
332 seq_printf(seq, " %02x", (unsigned)((unsigned char *)rd->buf)[i]);
333 seq_printf(seq, "\n");
334 }
335 }
336 for (i = 0; i < r->size; i++) {
337 rd = &r->rd[i];
338 seq_printf(seq, "> ring descr %u: ", i);
339 seq_printf(seq, "skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw);
340 seq_printf(seq, " hw: status=%02x count=%u busaddr=0x%08x\n",
341 (unsigned) rd_get_status(rd),
342 (unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd));
343 }
344 }
345
346 static int vlsi_seq_show(struct seq_file *seq, void *v)
347 {
348 struct net_device *ndev = seq->private;
349 vlsi_irda_dev_t *idev = netdev_priv(ndev);
350 unsigned long flags;
351
352 seq_printf(seq, "\n%s %s\n\n", DRIVER_NAME, DRIVER_VERSION);
353 seq_printf(seq, "clksrc: %s\n",
354 (clksrc>=2) ? ((clksrc==3)?"40MHz XCLK":"48MHz XCLK")
355 : ((clksrc==1)?"48MHz PLL":"autodetect"));
356 seq_printf(seq, "ringsize: tx=%d / rx=%d\n",
357 ringsize[0], ringsize[1]);
358 seq_printf(seq, "sirpulse: %s\n", (sirpulse)?"3/16 bittime":"short");
359 seq_printf(seq, "qos_mtt_bits: 0x%02x\n", (unsigned)qos_mtt_bits);
360
361 spin_lock_irqsave(&idev->lock, flags);
362 if (idev->pdev != NULL) {
363 vlsi_proc_pdev(seq, idev->pdev);
364
365 if (idev->pdev->current_state == 0)
366 vlsi_proc_ndev(seq, ndev);
367 else
368 seq_printf(seq, "\nPCI controller down - resume_ok = %d\n",
369 idev->resume_ok);
370 if (netif_running(ndev) && idev->rx_ring && idev->tx_ring) {
371 seq_printf(seq, "\n--------- RX ring -----------\n\n");
372 vlsi_proc_ring(seq, idev->rx_ring);
373 seq_printf(seq, "\n--------- TX ring -----------\n\n");
374 vlsi_proc_ring(seq, idev->tx_ring);
375 }
376 }
377 seq_printf(seq, "\n");
378 spin_unlock_irqrestore(&idev->lock, flags);
379
380 return 0;
381 }
382
383 static int vlsi_seq_open(struct inode *inode, struct file *file)
384 {
385 return single_open(file, vlsi_seq_show, PDE(inode)->data);
386 }
387
388 static const struct file_operations vlsi_proc_fops = {
389 .owner = THIS_MODULE,
390 .open = vlsi_seq_open,
391 .read = seq_read,
392 .llseek = seq_lseek,
393 .release = single_release,
394 };
395
396 #define VLSI_PROC_FOPS (&vlsi_proc_fops)
397
398 #else /* CONFIG_PROC_FS */
399 #define VLSI_PROC_FOPS NULL
400 #endif
401
402 /********************************************************/
403
404 static struct vlsi_ring *vlsi_alloc_ring(struct pci_dev *pdev, struct ring_descr_hw *hwmap,
405 unsigned size, unsigned len, int dir)
406 {
407 struct vlsi_ring *r;
408 struct ring_descr *rd;
409 unsigned i, j;
410 dma_addr_t busaddr;
411
412 if (!size || ((size-1)&size)!=0) /* must be >0 and power of 2 */
413 return NULL;
414
415 r = kmalloc(sizeof(*r) + size * sizeof(struct ring_descr), GFP_KERNEL);
416 if (!r)
417 return NULL;
418 memset(r, 0, sizeof(*r));
419
420 r->pdev = pdev;
421 r->dir = dir;
422 r->len = len;
423 r->rd = (struct ring_descr *)(r+1);
424 r->mask = size - 1;
425 r->size = size;
426 atomic_set(&r->head, 0);
427 atomic_set(&r->tail, 0);
428
429 for (i = 0; i < size; i++) {
430 rd = r->rd + i;
431 memset(rd, 0, sizeof(*rd));
432 rd->hw = hwmap + i;
433 rd->buf = kmalloc(len, GFP_KERNEL|GFP_DMA);
434 if (rd->buf == NULL
435 || !(busaddr = pci_map_single(pdev, rd->buf, len, dir))) {
436 if (rd->buf) {
437 IRDA_ERROR("%s: failed to create PCI-MAP for %p",
438 __func__, rd->buf);
439 kfree(rd->buf);
440 rd->buf = NULL;
441 }
442 for (j = 0; j < i; j++) {
443 rd = r->rd + j;
444 busaddr = rd_get_addr(rd);
445 rd_set_addr_status(rd, 0, 0);
446 if (busaddr)
447 pci_unmap_single(pdev, busaddr, len, dir);
448 kfree(rd->buf);
449 rd->buf = NULL;
450 }
451 kfree(r);
452 return NULL;
453 }
454 rd_set_addr_status(rd, busaddr, 0);
455 /* initially, the dma buffer is owned by the CPU */
456 rd->skb = NULL;
457 }
458 return r;
459 }
460
461 static int vlsi_free_ring(struct vlsi_ring *r)
462 {
463 struct ring_descr *rd;
464 unsigned i;
465 dma_addr_t busaddr;
466
467 for (i = 0; i < r->size; i++) {
468 rd = r->rd + i;
469 if (rd->skb)
470 dev_kfree_skb_any(rd->skb);
471 busaddr = rd_get_addr(rd);
472 rd_set_addr_status(rd, 0, 0);
473 if (busaddr)
474 pci_unmap_single(r->pdev, busaddr, r->len, r->dir);
475 kfree(rd->buf);
476 }
477 kfree(r);
478 return 0;
479 }
480
481 static int vlsi_create_hwif(vlsi_irda_dev_t *idev)
482 {
483 char *ringarea;
484 struct ring_descr_hw *hwmap;
485
486 idev->virtaddr = NULL;
487 idev->busaddr = 0;
488
489 ringarea = pci_alloc_consistent(idev->pdev, HW_RING_AREA_SIZE, &idev->busaddr);
490 if (!ringarea) {
491 IRDA_ERROR("%s: insufficient memory for descriptor rings\n",
492 __func__);
493 goto out;
494 }
495 memset(ringarea, 0, HW_RING_AREA_SIZE);
496
497 hwmap = (struct ring_descr_hw *)ringarea;
498 idev->rx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[1],
499 XFER_BUF_SIZE, PCI_DMA_FROMDEVICE);
500 if (idev->rx_ring == NULL)
501 goto out_unmap;
502
503 hwmap += MAX_RING_DESCR;
504 idev->tx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[0],
505 XFER_BUF_SIZE, PCI_DMA_TODEVICE);
506 if (idev->tx_ring == NULL)
507 goto out_free_rx;
508
509 idev->virtaddr = ringarea;
510 return 0;
511
512 out_free_rx:
513 vlsi_free_ring(idev->rx_ring);
514 out_unmap:
515 idev->rx_ring = idev->tx_ring = NULL;
516 pci_free_consistent(idev->pdev, HW_RING_AREA_SIZE, ringarea, idev->busaddr);
517 idev->busaddr = 0;
518 out:
519 return -ENOMEM;
520 }
521
522 static int vlsi_destroy_hwif(vlsi_irda_dev_t *idev)
523 {
524 vlsi_free_ring(idev->rx_ring);
525 vlsi_free_ring(idev->tx_ring);
526 idev->rx_ring = idev->tx_ring = NULL;
527
528 if (idev->busaddr)
529 pci_free_consistent(idev->pdev,HW_RING_AREA_SIZE,idev->virtaddr,idev->busaddr);
530
531 idev->virtaddr = NULL;
532 idev->busaddr = 0;
533
534 return 0;
535 }
536
537 /********************************************************/
538
539 static int vlsi_process_rx(struct vlsi_ring *r, struct ring_descr *rd)
540 {
541 u16 status;
542 int crclen, len = 0;
543 struct sk_buff *skb;
544 int ret = 0;
545 struct net_device *ndev = (struct net_device *)pci_get_drvdata(r->pdev);
546 vlsi_irda_dev_t *idev = netdev_priv(ndev);
547
548 pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
549 /* dma buffer now owned by the CPU */
550 status = rd_get_status(rd);
551 if (status & RD_RX_ERROR) {
552 if (status & RD_RX_OVER)
553 ret |= VLSI_RX_OVER;
554 if (status & RD_RX_LENGTH)
555 ret |= VLSI_RX_LENGTH;
556 if (status & RD_RX_PHYERR)
557 ret |= VLSI_RX_FRAME;
558 if (status & RD_RX_CRCERR)
559 ret |= VLSI_RX_CRC;
560 goto done;
561 }
562
563 len = rd_get_count(rd);
564 crclen = (idev->mode==IFF_FIR) ? sizeof(u32) : sizeof(u16);
565 len -= crclen; /* remove trailing CRC */
566 if (len <= 0) {
567 IRDA_DEBUG(0, "%s: strange frame (len=%d)\n", __func__, len);
568 ret |= VLSI_RX_DROP;
569 goto done;
570 }
571
572 if (idev->mode == IFF_SIR) { /* hw checks CRC in MIR, FIR mode */
573
574 /* rd->buf is a streaming PCI_DMA_FROMDEVICE map. Doing the
575 * endian-adjustment there just in place will dirty a cache line
576 * which belongs to the map and thus we must be sure it will
577 * get flushed before giving the buffer back to hardware.
578 * vlsi_fill_rx() will do this anyway - but here we rely on.
579 */
580 le16_to_cpus(rd->buf+len);
581 if (irda_calc_crc16(INIT_FCS,rd->buf,len+crclen) != GOOD_FCS) {
582 IRDA_DEBUG(0, "%s: crc error\n", __func__);
583 ret |= VLSI_RX_CRC;
584 goto done;
585 }
586 }
587
588 if (!rd->skb) {
589 IRDA_WARNING("%s: rx packet lost\n", __func__);
590 ret |= VLSI_RX_DROP;
591 goto done;
592 }
593
594 skb = rd->skb;
595 rd->skb = NULL;
596 skb->dev = ndev;
597 memcpy(skb_put(skb,len), rd->buf, len);
598 skb_reset_mac_header(skb);
599 if (in_interrupt())
600 netif_rx(skb);
601 else
602 netif_rx_ni(skb);
603
604 done:
605 rd_set_status(rd, 0);
606 rd_set_count(rd, 0);
607 /* buffer still owned by CPU */
608
609 return (ret) ? -ret : len;
610 }
611
612 static void vlsi_fill_rx(struct vlsi_ring *r)
613 {
614 struct ring_descr *rd;
615
616 for (rd = ring_last(r); rd != NULL; rd = ring_put(r)) {
617 if (rd_is_active(rd)) {
618 IRDA_WARNING("%s: driver bug: rx descr race with hw\n",
619 __func__);
620 vlsi_ring_debug(r);
621 break;
622 }
623 if (!rd->skb) {
624 rd->skb = dev_alloc_skb(IRLAP_SKB_ALLOCSIZE);
625 if (rd->skb) {
626 skb_reserve(rd->skb,1);
627 rd->skb->protocol = htons(ETH_P_IRDA);
628 }
629 else
630 break; /* probably not worth logging? */
631 }
632 /* give dma buffer back to busmaster */
633 pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir);
634 rd_activate(rd);
635 }
636 }
637
638 static void vlsi_rx_interrupt(struct net_device *ndev)
639 {
640 vlsi_irda_dev_t *idev = netdev_priv(ndev);
641 struct vlsi_ring *r = idev->rx_ring;
642 struct ring_descr *rd;
643 int ret;
644
645 for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
646
647 if (rd_is_active(rd))
648 break;
649
650 ret = vlsi_process_rx(r, rd);
651
652 if (ret < 0) {
653 ret = -ret;
654 idev->stats.rx_errors++;
655 if (ret & VLSI_RX_DROP)
656 idev->stats.rx_dropped++;
657 if (ret & VLSI_RX_OVER)
658 idev->stats.rx_over_errors++;
659 if (ret & VLSI_RX_LENGTH)
660 idev->stats.rx_length_errors++;
661 if (ret & VLSI_RX_FRAME)
662 idev->stats.rx_frame_errors++;
663 if (ret & VLSI_RX_CRC)
664 idev->stats.rx_crc_errors++;
665 }
666 else if (ret > 0) {
667 idev->stats.rx_packets++;
668 idev->stats.rx_bytes += ret;
669 }
670 }
671
672 do_gettimeofday(&idev->last_rx); /* remember "now" for later mtt delay */
673
674 vlsi_fill_rx(r);
675
676 if (ring_first(r) == NULL) {
677 /* we are in big trouble, if this should ever happen */
678 IRDA_ERROR("%s: rx ring exhausted!\n", __func__);
679 vlsi_ring_debug(r);
680 }
681 else
682 outw(0, ndev->base_addr+VLSI_PIO_PROMPT);
683 }
684
685 /* caller must have stopped the controller from busmastering */
686
687 static void vlsi_unarm_rx(vlsi_irda_dev_t *idev)
688 {
689 struct vlsi_ring *r = idev->rx_ring;
690 struct ring_descr *rd;
691 int ret;
692
693 for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
694
695 ret = 0;
696 if (rd_is_active(rd)) {
697 rd_set_status(rd, 0);
698 if (rd_get_count(rd)) {
699 IRDA_DEBUG(0, "%s - dropping rx packet\n", __func__);
700 ret = -VLSI_RX_DROP;
701 }
702 rd_set_count(rd, 0);
703 pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
704 if (rd->skb) {
705 dev_kfree_skb_any(rd->skb);
706 rd->skb = NULL;
707 }
708 }
709 else
710 ret = vlsi_process_rx(r, rd);
711
712 if (ret < 0) {
713 ret = -ret;
714 idev->stats.rx_errors++;
715 if (ret & VLSI_RX_DROP)
716 idev->stats.rx_dropped++;
717 if (ret & VLSI_RX_OVER)
718 idev->stats.rx_over_errors++;
719 if (ret & VLSI_RX_LENGTH)
720 idev->stats.rx_length_errors++;
721 if (ret & VLSI_RX_FRAME)
722 idev->stats.rx_frame_errors++;
723 if (ret & VLSI_RX_CRC)
724 idev->stats.rx_crc_errors++;
725 }
726 else if (ret > 0) {
727 idev->stats.rx_packets++;
728 idev->stats.rx_bytes += ret;
729 }
730 }
731 }
732
733 /********************************************************/
734
735 static int vlsi_process_tx(struct vlsi_ring *r, struct ring_descr *rd)
736 {
737 u16 status;
738 int len;
739 int ret;
740
741 pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
742 /* dma buffer now owned by the CPU */
743 status = rd_get_status(rd);
744 if (status & RD_TX_UNDRN)
745 ret = VLSI_TX_FIFO;
746 else
747 ret = 0;
748 rd_set_status(rd, 0);
749
750 if (rd->skb) {
751 len = rd->skb->len;
752 dev_kfree_skb_any(rd->skb);
753 rd->skb = NULL;
754 }
755 else /* tx-skb already freed? - should never happen */
756 len = rd_get_count(rd); /* incorrect for SIR! (due to wrapping) */
757
758 rd_set_count(rd, 0);
759 /* dma buffer still owned by the CPU */
760
761 return (ret) ? -ret : len;
762 }
763
764 static int vlsi_set_baud(vlsi_irda_dev_t *idev, unsigned iobase)
765 {
766 u16 nphyctl;
767 u16 config;
768 unsigned mode;
769 int ret;
770 int baudrate;
771 int fifocnt;
772
773 baudrate = idev->new_baud;
774 IRDA_DEBUG(2, "%s: %d -> %d\n", __func__, idev->baud, idev->new_baud);
775 if (baudrate == 4000000) {
776 mode = IFF_FIR;
777 config = IRCFG_FIR;
778 nphyctl = PHYCTL_FIR;
779 }
780 else if (baudrate == 1152000) {
781 mode = IFF_MIR;
782 config = IRCFG_MIR | IRCFG_CRC16;
783 nphyctl = PHYCTL_MIR(clksrc==3);
784 }
785 else {
786 mode = IFF_SIR;
787 config = IRCFG_SIR | IRCFG_SIRFILT | IRCFG_RXANY;
788 switch(baudrate) {
789 default:
790 IRDA_WARNING("%s: undefined baudrate %d - fallback to 9600!\n",
791 __func__, baudrate);
792 baudrate = 9600;
793 /* fallthru */
794 case 2400:
795 case 9600:
796 case 19200:
797 case 38400:
798 case 57600:
799 case 115200:
800 nphyctl = PHYCTL_SIR(baudrate,sirpulse,clksrc==3);
801 break;
802 }
803 }
804 config |= IRCFG_MSTR | IRCFG_ENRX;
805
806 fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
807 if (fifocnt != 0) {
808 IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __func__, fifocnt);
809 }
810
811 outw(0, iobase+VLSI_PIO_IRENABLE);
812 outw(config, iobase+VLSI_PIO_IRCFG);
813 outw(nphyctl, iobase+VLSI_PIO_NPHYCTL);
814 wmb();
815 outw(IRENABLE_PHYANDCLOCK, iobase+VLSI_PIO_IRENABLE);
816 mb();
817
818 udelay(1); /* chip applies IRCFG on next rising edge of its 8MHz clock */
819
820 /* read back settings for validation */
821
822 config = inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_MASK;
823
824 if (mode == IFF_FIR)
825 config ^= IRENABLE_FIR_ON;
826 else if (mode == IFF_MIR)
827 config ^= (IRENABLE_MIR_ON|IRENABLE_CRC16_ON);
828 else
829 config ^= IRENABLE_SIR_ON;
830
831 if (config != (IRENABLE_PHYANDCLOCK|IRENABLE_ENRXST)) {
832 IRDA_WARNING("%s: failed to set %s mode!\n", __func__,
833 (mode==IFF_SIR)?"SIR":((mode==IFF_MIR)?"MIR":"FIR"));
834 ret = -1;
835 }
836 else {
837 if (inw(iobase+VLSI_PIO_PHYCTL) != nphyctl) {
838 IRDA_WARNING("%s: failed to apply baudrate %d\n",
839 __func__, baudrate);
840 ret = -1;
841 }
842 else {
843 idev->mode = mode;
844 idev->baud = baudrate;
845 idev->new_baud = 0;
846 ret = 0;
847 }
848 }
849
850 if (ret)
851 vlsi_reg_debug(iobase,__func__);
852
853 return ret;
854 }
855
856 static int vlsi_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
857 {
858 vlsi_irda_dev_t *idev = netdev_priv(ndev);
859 struct vlsi_ring *r = idev->tx_ring;
860 struct ring_descr *rd;
861 unsigned long flags;
862 unsigned iobase = ndev->base_addr;
863 u8 status;
864 u16 config;
865 int mtt;
866 int len, speed;
867 struct timeval now, ready;
868 char *msg = NULL;
869
870 speed = irda_get_next_speed(skb);
871 spin_lock_irqsave(&idev->lock, flags);
872 if (speed != -1 && speed != idev->baud) {
873 netif_stop_queue(ndev);
874 idev->new_baud = speed;
875 status = RD_TX_CLRENTX; /* stop tx-ring after this frame */
876 }
877 else
878 status = 0;
879
880 if (skb->len == 0) {
881 /* handle zero packets - should be speed change */
882 if (status == 0) {
883 msg = "bogus zero-length packet";
884 goto drop_unlock;
885 }
886
887 /* due to the completely asynch tx operation we might have
888 * IrLAP racing with the hardware here, f.e. if the controller
889 * is just sending the last packet with current speed while
890 * the LAP is already switching the speed using synchronous
891 * len=0 packet. Immediate execution would lead to hw lockup
892 * requiring a powercycle to reset. Good candidate to trigger
893 * this is the final UA:RSP packet after receiving a DISC:CMD
894 * when getting the LAP down.
895 * Note that we are not protected by the queue_stop approach
896 * because the final UA:RSP arrives _without_ request to apply
897 * new-speed-after-this-packet - hence the driver doesn't know
898 * this was the last packet and doesn't stop the queue. So the
899 * forced switch to default speed from LAP gets through as fast
900 * as only some 10 usec later while the UA:RSP is still processed
901 * by the hardware and we would get screwed.
902 */
903
904 if (ring_first(idev->tx_ring) == NULL) {
905 /* no race - tx-ring already empty */
906 vlsi_set_baud(idev, iobase);
907 netif_wake_queue(ndev);
908 }
909 else
910 ;
911 /* keep the speed change pending like it would
912 * for any len>0 packet. tx completion interrupt
913 * will apply it when the tx ring becomes empty.
914 */
915 spin_unlock_irqrestore(&idev->lock, flags);
916 dev_kfree_skb_any(skb);
917 return 0;
918 }
919
920 /* sanity checks - simply drop the packet */
921
922 rd = ring_last(r);
923 if (!rd) {
924 msg = "ring full, but queue wasn't stopped";
925 goto drop_unlock;
926 }
927
928 if (rd_is_active(rd)) {
929 msg = "entry still owned by hw";
930 goto drop_unlock;
931 }
932
933 if (!rd->buf) {
934 msg = "tx ring entry without pci buffer";
935 goto drop_unlock;
936 }
937
938 if (rd->skb) {
939 msg = "ring entry with old skb still attached";
940 goto drop_unlock;
941 }
942
943 /* no need for serialization or interrupt disable during mtt */
944 spin_unlock_irqrestore(&idev->lock, flags);
945
946 if ((mtt = irda_get_mtt(skb)) > 0) {
947
948 ready.tv_usec = idev->last_rx.tv_usec + mtt;
949 ready.tv_sec = idev->last_rx.tv_sec;
950 if (ready.tv_usec >= 1000000) {
951 ready.tv_usec -= 1000000;
952 ready.tv_sec++; /* IrLAP 1.1: mtt always < 1 sec */
953 }
954 for(;;) {
955 do_gettimeofday(&now);
956 if (now.tv_sec > ready.tv_sec
957 || (now.tv_sec==ready.tv_sec && now.tv_usec>=ready.tv_usec))
958 break;
959 udelay(100);
960 /* must not sleep here - called under netif_tx_lock! */
961 }
962 }
963
964 /* tx buffer already owned by CPU due to pci_dma_sync_single_for_cpu()
965 * after subsequent tx-completion
966 */
967
968 if (idev->mode == IFF_SIR) {
969 status |= RD_TX_DISCRC; /* no hw-crc creation */
970 len = async_wrap_skb(skb, rd->buf, r->len);
971
972 /* Some rare worst case situation in SIR mode might lead to
973 * potential buffer overflow. The wrapper detects this, returns
974 * with a shortened frame (without FCS/EOF) but doesn't provide
975 * any error indication about the invalid packet which we are
976 * going to transmit.
977 * Therefore we log if the buffer got filled to the point, where the
978 * wrapper would abort, i.e. when there are less than 5 bytes left to
979 * allow appending the FCS/EOF.
980 */
981
982 if (len >= r->len-5)
983 IRDA_WARNING("%s: possible buffer overflow with SIR wrapping!\n",
984 __func__);
985 }
986 else {
987 /* hw deals with MIR/FIR mode wrapping */
988 status |= RD_TX_PULSE; /* send 2 us highspeed indication pulse */
989 len = skb->len;
990 if (len > r->len) {
991 msg = "frame exceeds tx buffer length";
992 goto drop;
993 }
994 else
995 skb_copy_from_linear_data(skb, rd->buf, len);
996 }
997
998 rd->skb = skb; /* remember skb for tx-complete stats */
999
1000 rd_set_count(rd, len);
1001 rd_set_status(rd, status); /* not yet active! */
1002
1003 /* give dma buffer back to busmaster-hw (flush caches to make
1004 * CPU-driven changes visible from the pci bus).
1005 */
1006
1007 pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir);
1008
1009 /* Switching to TX mode here races with the controller
1010 * which may stop TX at any time when fetching an inactive descriptor
1011 * or one with CLR_ENTX set. So we switch on TX only, if TX was not running
1012 * _after_ the new descriptor was activated on the ring. This ensures
1013 * we will either find TX already stopped or we can be sure, there
1014 * will be a TX-complete interrupt even if the chip stopped doing
1015 * TX just after we found it still running. The ISR will then find
1016 * the non-empty ring and restart TX processing. The enclosing
1017 * spinlock provides the correct serialization to prevent race with isr.
1018 */
1019
1020 spin_lock_irqsave(&idev->lock,flags);
1021
1022 rd_activate(rd);
1023
1024 if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) {
1025 int fifocnt;
1026
1027 fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
1028 if (fifocnt != 0) {
1029 IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __func__, fifocnt);
1030 }
1031
1032 config = inw(iobase+VLSI_PIO_IRCFG);
1033 mb();
1034 outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG);
1035 wmb();
1036 outw(0, iobase+VLSI_PIO_PROMPT);
1037 }
1038 ndev->trans_start = jiffies;
1039
1040 if (ring_put(r) == NULL) {
1041 netif_stop_queue(ndev);
1042 IRDA_DEBUG(3, "%s: tx ring full - queue stopped\n", __func__);
1043 }
1044 spin_unlock_irqrestore(&idev->lock, flags);
1045
1046 return 0;
1047
1048 drop_unlock:
1049 spin_unlock_irqrestore(&idev->lock, flags);
1050 drop:
1051 IRDA_WARNING("%s: dropping packet - %s\n", __func__, msg);
1052 dev_kfree_skb_any(skb);
1053 idev->stats.tx_errors++;
1054 idev->stats.tx_dropped++;
1055 /* Don't even think about returning NET_XMIT_DROP (=1) here!
1056 * In fact any retval!=0 causes the packet scheduler to requeue the
1057 * packet for later retry of transmission - which isn't exactly
1058 * what we want after we've just called dev_kfree_skb_any ;-)
1059 */
1060 return 0;
1061 }
1062
1063 static void vlsi_tx_interrupt(struct net_device *ndev)
1064 {
1065 vlsi_irda_dev_t *idev = netdev_priv(ndev);
1066 struct vlsi_ring *r = idev->tx_ring;
1067 struct ring_descr *rd;
1068 unsigned iobase;
1069 int ret;
1070 u16 config;
1071
1072 for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
1073
1074 if (rd_is_active(rd))
1075 break;
1076
1077 ret = vlsi_process_tx(r, rd);
1078
1079 if (ret < 0) {
1080 ret = -ret;
1081 idev->stats.tx_errors++;
1082 if (ret & VLSI_TX_DROP)
1083 idev->stats.tx_dropped++;
1084 if (ret & VLSI_TX_FIFO)
1085 idev->stats.tx_fifo_errors++;
1086 }
1087 else if (ret > 0){
1088 idev->stats.tx_packets++;
1089 idev->stats.tx_bytes += ret;
1090 }
1091 }
1092
1093 iobase = ndev->base_addr;
1094
1095 if (idev->new_baud && rd == NULL) /* tx ring empty and speed change pending */
1096 vlsi_set_baud(idev, iobase);
1097
1098 config = inw(iobase+VLSI_PIO_IRCFG);
1099 if (rd == NULL) /* tx ring empty: re-enable rx */
1100 outw((config & ~IRCFG_ENTX) | IRCFG_ENRX, iobase+VLSI_PIO_IRCFG);
1101
1102 else if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) {
1103 int fifocnt;
1104
1105 fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
1106 if (fifocnt != 0) {
1107 IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n",
1108 __func__, fifocnt);
1109 }
1110 outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG);
1111 }
1112
1113 outw(0, iobase+VLSI_PIO_PROMPT);
1114
1115 if (netif_queue_stopped(ndev) && !idev->new_baud) {
1116 netif_wake_queue(ndev);
1117 IRDA_DEBUG(3, "%s: queue awoken\n", __func__);
1118 }
1119 }
1120
1121 /* caller must have stopped the controller from busmastering */
1122
1123 static void vlsi_unarm_tx(vlsi_irda_dev_t *idev)
1124 {
1125 struct vlsi_ring *r = idev->tx_ring;
1126 struct ring_descr *rd;
1127 int ret;
1128
1129 for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
1130
1131 ret = 0;
1132 if (rd_is_active(rd)) {
1133 rd_set_status(rd, 0);
1134 rd_set_count(rd, 0);
1135 pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
1136 if (rd->skb) {
1137 dev_kfree_skb_any(rd->skb);
1138 rd->skb = NULL;
1139 }
1140 IRDA_DEBUG(0, "%s - dropping tx packet\n", __func__);
1141 ret = -VLSI_TX_DROP;
1142 }
1143 else
1144 ret = vlsi_process_tx(r, rd);
1145
1146 if (ret < 0) {
1147 ret = -ret;
1148 idev->stats.tx_errors++;
1149 if (ret & VLSI_TX_DROP)
1150 idev->stats.tx_dropped++;
1151 if (ret & VLSI_TX_FIFO)
1152 idev->stats.tx_fifo_errors++;
1153 }
1154 else if (ret > 0){
1155 idev->stats.tx_packets++;
1156 idev->stats.tx_bytes += ret;
1157 }
1158 }
1159
1160 }
1161
1162 /********************************************************/
1163
1164 static int vlsi_start_clock(struct pci_dev *pdev)
1165 {
1166 u8 clkctl, lock;
1167 int i, count;
1168
1169 if (clksrc < 2) { /* auto or PLL: try PLL */
1170 clkctl = CLKCTL_PD_INV | CLKCTL_CLKSTP;
1171 pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1172
1173 /* procedure to detect PLL lock synchronisation:
1174 * after 0.5 msec initial delay we expect to find 3 PLL lock
1175 * indications within 10 msec for successful PLL detection.
1176 */
1177 udelay(500);
1178 count = 0;
1179 for (i = 500; i <= 10000; i += 50) { /* max 10 msec */
1180 pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &lock);
1181 if (lock&CLKCTL_LOCK) {
1182 if (++count >= 3)
1183 break;
1184 }
1185 udelay(50);
1186 }
1187 if (count < 3) {
1188 if (clksrc == 1) { /* explicitly asked for PLL hence bail out */
1189 IRDA_ERROR("%s: no PLL or failed to lock!\n",
1190 __func__);
1191 clkctl = CLKCTL_CLKSTP;
1192 pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1193 return -1;
1194 }
1195 else /* was: clksrc=0(auto) */
1196 clksrc = 3; /* fallback to 40MHz XCLK (OB800) */
1197
1198 IRDA_DEBUG(0, "%s: PLL not locked, fallback to clksrc=%d\n",
1199 __func__, clksrc);
1200 }
1201 else
1202 clksrc = 1; /* got successful PLL lock */
1203 }
1204
1205 if (clksrc != 1) {
1206 /* we get here if either no PLL detected in auto-mode or
1207 an external clock source was explicitly specified */
1208
1209 clkctl = CLKCTL_EXTCLK | CLKCTL_CLKSTP;
1210 if (clksrc == 3)
1211 clkctl |= CLKCTL_XCKSEL;
1212 pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1213
1214 /* no way to test for working XCLK */
1215 }
1216 else
1217 pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl);
1218
1219 /* ok, now going to connect the chip with the clock source */
1220
1221 clkctl &= ~CLKCTL_CLKSTP;
1222 pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1223
1224 return 0;
1225 }
1226
1227 static void vlsi_stop_clock(struct pci_dev *pdev)
1228 {
1229 u8 clkctl;
1230
1231 /* disconnect chip from clock source */
1232 pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl);
1233 clkctl |= CLKCTL_CLKSTP;
1234 pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1235
1236 /* disable all clock sources */
1237 clkctl &= ~(CLKCTL_EXTCLK | CLKCTL_PD_INV);
1238 pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
1239 }
1240
1241 /********************************************************/
1242
1243 /* writing all-zero to the VLSI PCI IO register area seems to prevent
1244 * some occasional situations where the hardware fails (symptoms are
1245 * what appears as stalled tx/rx state machines, i.e. everything ok for
1246 * receive or transmit but hw makes no progress or is unable to access
1247 * the bus memory locations).
1248 * Best place to call this is immediately after/before the internal clock
1249 * gets started/stopped.
1250 */
1251
1252 static inline void vlsi_clear_regs(unsigned iobase)
1253 {
1254 unsigned i;
1255 const unsigned chip_io_extent = 32;
1256
1257 for (i = 0; i < chip_io_extent; i += sizeof(u16))
1258 outw(0, iobase + i);
1259 }
1260
1261 static int vlsi_init_chip(struct pci_dev *pdev)
1262 {
1263 struct net_device *ndev = pci_get_drvdata(pdev);
1264 vlsi_irda_dev_t *idev = netdev_priv(ndev);
1265 unsigned iobase;
1266 u16 ptr;
1267
1268 /* start the clock and clean the registers */
1269
1270 if (vlsi_start_clock(pdev)) {
1271 IRDA_ERROR("%s: no valid clock source\n", __func__);
1272 return -1;
1273 }
1274 iobase = ndev->base_addr;
1275 vlsi_clear_regs(iobase);
1276
1277 outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); /* w/c pending IRQ, disable all INT */
1278
1279 outw(0, iobase+VLSI_PIO_IRENABLE); /* disable IrPHY-interface */
1280
1281 /* disable everything, particularly IRCFG_MSTR - (also resetting the RING_PTR) */
1282
1283 outw(0, iobase+VLSI_PIO_IRCFG);
1284 wmb();
1285
1286 outw(MAX_PACKET_LENGTH, iobase+VLSI_PIO_MAXPKT); /* max possible value=0x0fff */
1287
1288 outw(BUS_TO_RINGBASE(idev->busaddr), iobase+VLSI_PIO_RINGBASE);
1289
1290 outw(TX_RX_TO_RINGSIZE(idev->tx_ring->size, idev->rx_ring->size),
1291 iobase+VLSI_PIO_RINGSIZE);
1292
1293 ptr = inw(iobase+VLSI_PIO_RINGPTR);
1294 atomic_set(&idev->rx_ring->head, RINGPTR_GET_RX(ptr));
1295 atomic_set(&idev->rx_ring->tail, RINGPTR_GET_RX(ptr));
1296 atomic_set(&idev->tx_ring->head, RINGPTR_GET_TX(ptr));
1297 atomic_set(&idev->tx_ring->tail, RINGPTR_GET_TX(ptr));
1298
1299 vlsi_set_baud(idev, iobase); /* idev->new_baud used as provided by caller */
1300
1301 outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); /* just in case - w/c pending IRQ's */
1302 wmb();
1303
1304 /* DO NOT BLINDLY ENABLE IRINTR_ACTEN!
1305 * basically every received pulse fires an ACTIVITY-INT
1306 * leading to >>1000 INT's per second instead of few 10
1307 */
1308
1309 outb(IRINTR_RPKTEN|IRINTR_TPKTEN, iobase+VLSI_PIO_IRINTR);
1310
1311 return 0;
1312 }
1313
1314 static int vlsi_start_hw(vlsi_irda_dev_t *idev)
1315 {
1316 struct pci_dev *pdev = idev->pdev;
1317 struct net_device *ndev = pci_get_drvdata(pdev);
1318 unsigned iobase = ndev->base_addr;
1319 u8 byte;
1320
1321 /* we don't use the legacy UART, disable its address decoding */
1322
1323 pci_read_config_byte(pdev, VLSI_PCI_IRMISC, &byte);
1324 byte &= ~(IRMISC_UARTEN | IRMISC_UARTTST);
1325 pci_write_config_byte(pdev, VLSI_PCI_IRMISC, byte);
1326
1327 /* enable PCI busmaster access to our 16MB page */
1328
1329 pci_write_config_byte(pdev, VLSI_PCI_MSTRPAGE, MSTRPAGE_VALUE);
1330 pci_set_master(pdev);
1331
1332 if (vlsi_init_chip(pdev) < 0) {
1333 pci_disable_device(pdev);
1334 return -1;
1335 }
1336
1337 vlsi_fill_rx(idev->rx_ring);
1338
1339 do_gettimeofday(&idev->last_rx); /* first mtt may start from now on */
1340
1341 outw(0, iobase+VLSI_PIO_PROMPT); /* kick hw state machine */
1342
1343 return 0;
1344 }
1345
1346 static int vlsi_stop_hw(vlsi_irda_dev_t *idev)
1347 {
1348 struct pci_dev *pdev = idev->pdev;
1349 struct net_device *ndev = pci_get_drvdata(pdev);
1350 unsigned iobase = ndev->base_addr;
1351 unsigned long flags;
1352
1353 spin_lock_irqsave(&idev->lock,flags);
1354 outw(0, iobase+VLSI_PIO_IRENABLE);
1355 outw(0, iobase+VLSI_PIO_IRCFG); /* disable everything */
1356
1357 /* disable and w/c irqs */
1358 outb(0, iobase+VLSI_PIO_IRINTR);
1359 wmb();
1360 outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR);
1361 spin_unlock_irqrestore(&idev->lock,flags);
1362
1363 vlsi_unarm_tx(idev);
1364 vlsi_unarm_rx(idev);
1365
1366 vlsi_clear_regs(iobase);
1367 vlsi_stop_clock(pdev);
1368
1369 pci_disable_device(pdev);
1370
1371 return 0;
1372 }
1373
1374 /**************************************************************/
1375
1376 static struct net_device_stats * vlsi_get_stats(struct net_device *ndev)
1377 {
1378 vlsi_irda_dev_t *idev = netdev_priv(ndev);
1379
1380 return &idev->stats;
1381 }
1382
1383 static void vlsi_tx_timeout(struct net_device *ndev)
1384 {
1385 vlsi_irda_dev_t *idev = netdev_priv(ndev);
1386
1387
1388 vlsi_reg_debug(ndev->base_addr, __func__);
1389 vlsi_ring_debug(idev->tx_ring);
1390
1391 if (netif_running(ndev))
1392 netif_stop_queue(ndev);
1393
1394 vlsi_stop_hw(idev);
1395
1396 /* now simply restart the whole thing */
1397
1398 if (!idev->new_baud)
1399 idev->new_baud = idev->baud; /* keep current baudrate */
1400
1401 if (vlsi_start_hw(idev))
1402 IRDA_ERROR("%s: failed to restart hw - %s(%s) unusable!\n",
1403 __func__, pci_name(idev->pdev), ndev->name);
1404 else
1405 netif_start_queue(ndev);
1406 }
1407
1408 static int vlsi_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1409 {
1410 vlsi_irda_dev_t *idev = netdev_priv(ndev);
1411 struct if_irda_req *irq = (struct if_irda_req *) rq;
1412 unsigned long flags;
1413 u16 fifocnt;
1414 int ret = 0;
1415
1416 switch (cmd) {
1417 case SIOCSBANDWIDTH:
1418 if (!capable(CAP_NET_ADMIN)) {
1419 ret = -EPERM;
1420 break;
1421 }
1422 spin_lock_irqsave(&idev->lock, flags);
1423 idev->new_baud = irq->ifr_baudrate;
1424 /* when called from userland there might be a minor race window here
1425 * if the stack tries to change speed concurrently - which would be
1426 * pretty strange anyway with the userland having full control...
1427 */
1428 vlsi_set_baud(idev, ndev->base_addr);
1429 spin_unlock_irqrestore(&idev->lock, flags);
1430 break;
1431 case SIOCSMEDIABUSY:
1432 if (!capable(CAP_NET_ADMIN)) {
1433 ret = -EPERM;
1434 break;
1435 }
1436 irda_device_set_media_busy(ndev, TRUE);
1437 break;
1438 case SIOCGRECEIVING:
1439 /* the best we can do: check whether there are any bytes in rx fifo.
1440 * The trustable window (in case some data arrives just afterwards)
1441 * may be as short as 1usec or so at 4Mbps.
1442 */
1443 fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
1444 irq->ifr_receiving = (fifocnt!=0) ? 1 : 0;
1445 break;
1446 default:
1447 IRDA_WARNING("%s: notsupp - cmd=%04x\n",
1448 __func__, cmd);
1449 ret = -EOPNOTSUPP;
1450 }
1451
1452 return ret;
1453 }
1454
1455 /********************************************************/
1456
1457 static irqreturn_t vlsi_interrupt(int irq, void *dev_instance)
1458 {
1459 struct net_device *ndev = dev_instance;
1460 vlsi_irda_dev_t *idev = netdev_priv(ndev);
1461 unsigned iobase;
1462 u8 irintr;
1463 int boguscount = 5;
1464 unsigned long flags;
1465 int handled = 0;
1466
1467 iobase = ndev->base_addr;
1468 spin_lock_irqsave(&idev->lock,flags);
1469 do {
1470 irintr = inb(iobase+VLSI_PIO_IRINTR);
1471 mb();
1472 outb(irintr, iobase+VLSI_PIO_IRINTR); /* acknowledge asap */
1473
1474 if (!(irintr&=IRINTR_INT_MASK)) /* not our INT - probably shared */
1475 break;
1476
1477 handled = 1;
1478
1479 if (unlikely(!(irintr & ~IRINTR_ACTIVITY)))
1480 break; /* nothing todo if only activity */
1481
1482 if (irintr&IRINTR_RPKTINT)
1483 vlsi_rx_interrupt(ndev);
1484
1485 if (irintr&IRINTR_TPKTINT)
1486 vlsi_tx_interrupt(ndev);
1487
1488 } while (--boguscount > 0);
1489 spin_unlock_irqrestore(&idev->lock,flags);
1490
1491 if (boguscount <= 0)
1492 IRDA_MESSAGE("%s: too much work in interrupt!\n",
1493 __func__);
1494 return IRQ_RETVAL(handled);
1495 }
1496
1497 /********************************************************/
1498
1499 static int vlsi_open(struct net_device *ndev)
1500 {
1501 vlsi_irda_dev_t *idev = netdev_priv(ndev);
1502 int err = -EAGAIN;
1503 char hwname[32];
1504
1505 if (pci_request_regions(idev->pdev, drivername)) {
1506 IRDA_WARNING("%s: io resource busy\n", __func__);
1507 goto errout;
1508 }
1509 ndev->base_addr = pci_resource_start(idev->pdev,0);
1510 ndev->irq = idev->pdev->irq;
1511
1512 /* under some rare occasions the chip apparently comes up with
1513 * IRQ's pending. We better w/c pending IRQ and disable them all
1514 */
1515
1516 outb(IRINTR_INT_MASK, ndev->base_addr+VLSI_PIO_IRINTR);
1517
1518 if (request_irq(ndev->irq, vlsi_interrupt, IRQF_SHARED,
1519 drivername, ndev)) {
1520 IRDA_WARNING("%s: couldn't get IRQ: %d\n",
1521 __func__, ndev->irq);
1522 goto errout_io;
1523 }
1524
1525 if ((err = vlsi_create_hwif(idev)) != 0)
1526 goto errout_irq;
1527
1528 sprintf(hwname, "VLSI-FIR @ 0x%04x", (unsigned)ndev->base_addr);
1529 idev->irlap = irlap_open(ndev,&idev->qos,hwname);
1530 if (!idev->irlap)
1531 goto errout_free_ring;
1532
1533 do_gettimeofday(&idev->last_rx); /* first mtt may start from now on */
1534
1535 idev->new_baud = 9600; /* start with IrPHY using 9600(SIR) mode */
1536
1537 if ((err = vlsi_start_hw(idev)) != 0)
1538 goto errout_close_irlap;
1539
1540 netif_start_queue(ndev);
1541
1542 IRDA_MESSAGE("%s: device %s operational\n", __func__, ndev->name);
1543
1544 return 0;
1545
1546 errout_close_irlap:
1547 irlap_close(idev->irlap);
1548 errout_free_ring:
1549 vlsi_destroy_hwif(idev);
1550 errout_irq:
1551 free_irq(ndev->irq,ndev);
1552 errout_io:
1553 pci_release_regions(idev->pdev);
1554 errout:
1555 return err;
1556 }
1557
1558 static int vlsi_close(struct net_device *ndev)
1559 {
1560 vlsi_irda_dev_t *idev = netdev_priv(ndev);
1561
1562 netif_stop_queue(ndev);
1563
1564 if (idev->irlap)
1565 irlap_close(idev->irlap);
1566 idev->irlap = NULL;
1567
1568 vlsi_stop_hw(idev);
1569
1570 vlsi_destroy_hwif(idev);
1571
1572 free_irq(ndev->irq,ndev);
1573
1574 pci_release_regions(idev->pdev);
1575
1576 IRDA_MESSAGE("%s: device %s stopped\n", __func__, ndev->name);
1577
1578 return 0;
1579 }
1580
1581 static int vlsi_irda_init(struct net_device *ndev)
1582 {
1583 vlsi_irda_dev_t *idev = netdev_priv(ndev);
1584 struct pci_dev *pdev = idev->pdev;
1585
1586 ndev->irq = pdev->irq;
1587 ndev->base_addr = pci_resource_start(pdev,0);
1588
1589 /* PCI busmastering
1590 * see include file for details why we need these 2 masks, in this order!
1591 */
1592
1593 if (pci_set_dma_mask(pdev,DMA_MASK_USED_BY_HW)
1594 || pci_set_dma_mask(pdev,DMA_MASK_MSTRPAGE)) {
1595 IRDA_ERROR("%s: aborting due to PCI BM-DMA address limitations\n", __func__);
1596 return -1;
1597 }
1598
1599 irda_init_max_qos_capabilies(&idev->qos);
1600
1601 /* the VLSI82C147 does not support 576000! */
1602
1603 idev->qos.baud_rate.bits = IR_2400 | IR_9600
1604 | IR_19200 | IR_38400 | IR_57600 | IR_115200
1605 | IR_1152000 | (IR_4000000 << 8);
1606
1607 idev->qos.min_turn_time.bits = qos_mtt_bits;
1608
1609 irda_qos_bits_to_value(&idev->qos);
1610
1611 /* currently no public media definitions for IrDA */
1612
1613 ndev->flags |= IFF_PORTSEL | IFF_AUTOMEDIA;
1614 ndev->if_port = IF_PORT_UNKNOWN;
1615
1616 ndev->open = vlsi_open;
1617 ndev->stop = vlsi_close;
1618 ndev->get_stats = vlsi_get_stats;
1619 ndev->hard_start_xmit = vlsi_hard_start_xmit;
1620 ndev->do_ioctl = vlsi_ioctl;
1621 ndev->tx_timeout = vlsi_tx_timeout;
1622 ndev->watchdog_timeo = 500*HZ/1000; /* max. allowed turn time for IrLAP */
1623
1624 SET_NETDEV_DEV(ndev, &pdev->dev);
1625
1626 return 0;
1627 }
1628
1629 /**************************************************************/
1630
1631 static int __devinit
1632 vlsi_irda_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1633 {
1634 struct net_device *ndev;
1635 vlsi_irda_dev_t *idev;
1636
1637 if (pci_enable_device(pdev))
1638 goto out;
1639 else
1640 pdev->current_state = 0; /* hw must be running now */
1641
1642 IRDA_MESSAGE("%s: IrDA PCI controller %s detected\n",
1643 drivername, pci_name(pdev));
1644
1645 if ( !pci_resource_start(pdev,0)
1646 || !(pci_resource_flags(pdev,0) & IORESOURCE_IO) ) {
1647 IRDA_ERROR("%s: bar 0 invalid", __func__);
1648 goto out_disable;
1649 }
1650
1651 ndev = alloc_irdadev(sizeof(*idev));
1652 if (ndev==NULL) {
1653 IRDA_ERROR("%s: Unable to allocate device memory.\n",
1654 __func__);
1655 goto out_disable;
1656 }
1657
1658 idev = netdev_priv(ndev);
1659
1660 spin_lock_init(&idev->lock);
1661 mutex_init(&idev->mtx);
1662 mutex_lock(&idev->mtx);
1663 idev->pdev = pdev;
1664
1665 if (vlsi_irda_init(ndev) < 0)
1666 goto out_freedev;
1667
1668 if (register_netdev(ndev) < 0) {
1669 IRDA_ERROR("%s: register_netdev failed\n", __func__);
1670 goto out_freedev;
1671 }
1672
1673 if (vlsi_proc_root != NULL) {
1674 struct proc_dir_entry *ent;
1675
1676 ent = proc_create_data(ndev->name, S_IFREG|S_IRUGO,
1677 vlsi_proc_root, VLSI_PROC_FOPS, ndev);
1678 if (!ent) {
1679 IRDA_WARNING("%s: failed to create proc entry\n",
1680 __func__);
1681 } else {
1682 ent->size = 0;
1683 }
1684 idev->proc_entry = ent;
1685 }
1686 IRDA_MESSAGE("%s: registered device %s\n", drivername, ndev->name);
1687
1688 pci_set_drvdata(pdev, ndev);
1689 mutex_unlock(&idev->mtx);
1690
1691 return 0;
1692
1693 out_freedev:
1694 mutex_unlock(&idev->mtx);
1695 free_netdev(ndev);
1696 out_disable:
1697 pci_disable_device(pdev);
1698 out:
1699 pci_set_drvdata(pdev, NULL);
1700 return -ENODEV;
1701 }
1702
1703 static void __devexit vlsi_irda_remove(struct pci_dev *pdev)
1704 {
1705 struct net_device *ndev = pci_get_drvdata(pdev);
1706 vlsi_irda_dev_t *idev;
1707
1708 if (!ndev) {
1709 IRDA_ERROR("%s: lost netdevice?\n", drivername);
1710 return;
1711 }
1712
1713 unregister_netdev(ndev);
1714
1715 idev = netdev_priv(ndev);
1716 mutex_lock(&idev->mtx);
1717 if (idev->proc_entry) {
1718 remove_proc_entry(ndev->name, vlsi_proc_root);
1719 idev->proc_entry = NULL;
1720 }
1721 mutex_unlock(&idev->mtx);
1722
1723 free_netdev(ndev);
1724
1725 pci_set_drvdata(pdev, NULL);
1726
1727 IRDA_MESSAGE("%s: %s removed\n", drivername, pci_name(pdev));
1728 }
1729
1730 #ifdef CONFIG_PM
1731
1732 /* The Controller doesn't provide PCI PM capabilities as defined by PCI specs.
1733 * Some of the Linux PCI-PM code however depends on this, for example in
1734 * pci_set_power_state(). So we have to take care to perform the required
1735 * operations on our own (particularly reflecting the pdev->current_state)
1736 * otherwise we might get cheated by pci-pm.
1737 */
1738
1739
1740 static int vlsi_irda_suspend(struct pci_dev *pdev, pm_message_t state)
1741 {
1742 struct net_device *ndev = pci_get_drvdata(pdev);
1743 vlsi_irda_dev_t *idev;
1744
1745 if (!ndev) {
1746 IRDA_ERROR("%s - %s: no netdevice \n",
1747 __func__, pci_name(pdev));
1748 return 0;
1749 }
1750 idev = netdev_priv(ndev);
1751 mutex_lock(&idev->mtx);
1752 if (pdev->current_state != 0) { /* already suspended */
1753 if (state.event > pdev->current_state) { /* simply go deeper */
1754 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1755 pdev->current_state = state.event;
1756 }
1757 else
1758 IRDA_ERROR("%s - %s: invalid suspend request %u -> %u\n", __func__, pci_name(pdev), pdev->current_state, state.event);
1759 mutex_unlock(&idev->mtx);
1760 return 0;
1761 }
1762
1763 if (netif_running(ndev)) {
1764 netif_device_detach(ndev);
1765 vlsi_stop_hw(idev);
1766 pci_save_state(pdev);
1767 if (!idev->new_baud)
1768 /* remember speed settings to restore on resume */
1769 idev->new_baud = idev->baud;
1770 }
1771
1772 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1773 pdev->current_state = state.event;
1774 idev->resume_ok = 1;
1775 mutex_unlock(&idev->mtx);
1776 return 0;
1777 }
1778
1779 static int vlsi_irda_resume(struct pci_dev *pdev)
1780 {
1781 struct net_device *ndev = pci_get_drvdata(pdev);
1782 vlsi_irda_dev_t *idev;
1783
1784 if (!ndev) {
1785 IRDA_ERROR("%s - %s: no netdevice \n",
1786 __func__, pci_name(pdev));
1787 return 0;
1788 }
1789 idev = netdev_priv(ndev);
1790 mutex_lock(&idev->mtx);
1791 if (pdev->current_state == 0) {
1792 mutex_unlock(&idev->mtx);
1793 IRDA_WARNING("%s - %s: already resumed\n",
1794 __func__, pci_name(pdev));
1795 return 0;
1796 }
1797
1798 pci_set_power_state(pdev, PCI_D0);
1799 pdev->current_state = PM_EVENT_ON;
1800
1801 if (!idev->resume_ok) {
1802 /* should be obsolete now - but used to happen due to:
1803 * - pci layer initially setting pdev->current_state = 4 (unknown)
1804 * - pci layer did not walk the save_state-tree (might be APM problem)
1805 * so we could not refuse to suspend from undefined state
1806 * - vlsi_irda_suspend detected invalid state and refused to save
1807 * configuration for resume - but was too late to stop suspending
1808 * - vlsi_irda_resume got screwed when trying to resume from garbage
1809 *
1810 * now we explicitly set pdev->current_state = 0 after enabling the
1811 * device and independently resume_ok should catch any garbage config.
1812 */
1813 IRDA_WARNING("%s - hm, nothing to resume?\n", __func__);
1814 mutex_unlock(&idev->mtx);
1815 return 0;
1816 }
1817
1818 if (netif_running(ndev)) {
1819 pci_restore_state(pdev);
1820 vlsi_start_hw(idev);
1821 netif_device_attach(ndev);
1822 }
1823 idev->resume_ok = 0;
1824 mutex_unlock(&idev->mtx);
1825 return 0;
1826 }
1827
1828 #endif /* CONFIG_PM */
1829
1830 /*********************************************************/
1831
1832 static struct pci_driver vlsi_irda_driver = {
1833 .name = drivername,
1834 .id_table = vlsi_irda_table,
1835 .probe = vlsi_irda_probe,
1836 .remove = __devexit_p(vlsi_irda_remove),
1837 #ifdef CONFIG_PM
1838 .suspend = vlsi_irda_suspend,
1839 .resume = vlsi_irda_resume,
1840 #endif
1841 };
1842
1843 #define PROC_DIR ("driver/" DRIVER_NAME)
1844
1845 static int __init vlsi_mod_init(void)
1846 {
1847 int i, ret;
1848
1849 if (clksrc < 0 || clksrc > 3) {
1850 IRDA_ERROR("%s: invalid clksrc=%d\n", drivername, clksrc);
1851 return -1;
1852 }
1853
1854 for (i = 0; i < 2; i++) {
1855 switch(ringsize[i]) {
1856 case 4:
1857 case 8:
1858 case 16:
1859 case 32:
1860 case 64:
1861 break;
1862 default:
1863 IRDA_WARNING("%s: invalid %s ringsize %d, using default=8", drivername, (i)?"rx":"tx", ringsize[i]);
1864 ringsize[i] = 8;
1865 break;
1866 }
1867 }
1868
1869 sirpulse = !!sirpulse;
1870
1871 /* proc_mkdir returns NULL if !CONFIG_PROC_FS.
1872 * Failure to create the procfs entry is handled like running
1873 * without procfs - it's not required for the driver to work.
1874 */
1875 vlsi_proc_root = proc_mkdir(PROC_DIR, NULL);
1876 if (vlsi_proc_root) {
1877 /* protect registered procdir against module removal.
1878 * Because we are in the module init path there's no race
1879 * window after create_proc_entry (and no barrier needed).
1880 */
1881 vlsi_proc_root->owner = THIS_MODULE;
1882 }
1883
1884 ret = pci_register_driver(&vlsi_irda_driver);
1885
1886 if (ret && vlsi_proc_root)
1887 remove_proc_entry(PROC_DIR, NULL);
1888 return ret;
1889
1890 }
1891
1892 static void __exit vlsi_mod_exit(void)
1893 {
1894 pci_unregister_driver(&vlsi_irda_driver);
1895 if (vlsi_proc_root)
1896 remove_proc_entry(PROC_DIR, NULL);
1897 }
1898
1899 module_init(vlsi_mod_init);
1900 module_exit(vlsi_mod_exit);
This page took 0.133262 seconds and 5 git commands to generate.