ethtool: Introduce n-tuple filter programming support
[deliverable/linux.git] / drivers / net / ixgbe / ixgbe_common.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
32
33 #include "ixgbe.h"
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
36
37 static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
50
51 static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
52 static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
53 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54 static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
55 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
56
57 /**
58 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
59 * @hw: pointer to hardware structure
60 *
61 * Starts the hardware by filling the bus info structure and media type, clears
62 * all on chip counters, initializes receive address registers, multicast
63 * table, VLAN filter table, calls routine to set up link and flow control
64 * settings, and leaves transmit and receive units disabled and uninitialized
65 **/
66 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
67 {
68 u32 ctrl_ext;
69
70 /* Set the media type */
71 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
72
73 /* Identify the PHY */
74 hw->phy.ops.identify(hw);
75
76 /* Clear the VLAN filter table */
77 hw->mac.ops.clear_vfta(hw);
78
79 /* Clear statistics registers */
80 hw->mac.ops.clear_hw_cntrs(hw);
81
82 /* Set No Snoop Disable */
83 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
84 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
85 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
86 IXGBE_WRITE_FLUSH(hw);
87
88 /* Setup flow control */
89 ixgbe_setup_fc(hw, 0);
90
91 /* Clear adapter stopped flag */
92 hw->adapter_stopped = false;
93
94 return 0;
95 }
96
97 /**
98 * ixgbe_init_hw_generic - Generic hardware initialization
99 * @hw: pointer to hardware structure
100 *
101 * Initialize the hardware by resetting the hardware, filling the bus info
102 * structure and media type, clears all on chip counters, initializes receive
103 * address registers, multicast table, VLAN filter table, calls routine to set
104 * up link and flow control settings, and leaves transmit and receive units
105 * disabled and uninitialized
106 **/
107 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
108 {
109 s32 status;
110
111 /* Reset the hardware */
112 status = hw->mac.ops.reset_hw(hw);
113
114 if (status == 0) {
115 /* Start the HW */
116 status = hw->mac.ops.start_hw(hw);
117 }
118
119 return status;
120 }
121
122 /**
123 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
124 * @hw: pointer to hardware structure
125 *
126 * Clears all hardware statistics counters by reading them from the hardware
127 * Statistics counters are clear on read.
128 **/
129 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
130 {
131 u16 i = 0;
132
133 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
134 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
135 IXGBE_READ_REG(hw, IXGBE_ERRBC);
136 IXGBE_READ_REG(hw, IXGBE_MSPDC);
137 for (i = 0; i < 8; i++)
138 IXGBE_READ_REG(hw, IXGBE_MPC(i));
139
140 IXGBE_READ_REG(hw, IXGBE_MLFC);
141 IXGBE_READ_REG(hw, IXGBE_MRFC);
142 IXGBE_READ_REG(hw, IXGBE_RLEC);
143 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
144 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
145 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
146 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
147
148 for (i = 0; i < 8; i++) {
149 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
150 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
151 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
152 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
153 }
154
155 IXGBE_READ_REG(hw, IXGBE_PRC64);
156 IXGBE_READ_REG(hw, IXGBE_PRC127);
157 IXGBE_READ_REG(hw, IXGBE_PRC255);
158 IXGBE_READ_REG(hw, IXGBE_PRC511);
159 IXGBE_READ_REG(hw, IXGBE_PRC1023);
160 IXGBE_READ_REG(hw, IXGBE_PRC1522);
161 IXGBE_READ_REG(hw, IXGBE_GPRC);
162 IXGBE_READ_REG(hw, IXGBE_BPRC);
163 IXGBE_READ_REG(hw, IXGBE_MPRC);
164 IXGBE_READ_REG(hw, IXGBE_GPTC);
165 IXGBE_READ_REG(hw, IXGBE_GORCL);
166 IXGBE_READ_REG(hw, IXGBE_GORCH);
167 IXGBE_READ_REG(hw, IXGBE_GOTCL);
168 IXGBE_READ_REG(hw, IXGBE_GOTCH);
169 for (i = 0; i < 8; i++)
170 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
171 IXGBE_READ_REG(hw, IXGBE_RUC);
172 IXGBE_READ_REG(hw, IXGBE_RFC);
173 IXGBE_READ_REG(hw, IXGBE_ROC);
174 IXGBE_READ_REG(hw, IXGBE_RJC);
175 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
176 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
177 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
178 IXGBE_READ_REG(hw, IXGBE_TORL);
179 IXGBE_READ_REG(hw, IXGBE_TORH);
180 IXGBE_READ_REG(hw, IXGBE_TPR);
181 IXGBE_READ_REG(hw, IXGBE_TPT);
182 IXGBE_READ_REG(hw, IXGBE_PTC64);
183 IXGBE_READ_REG(hw, IXGBE_PTC127);
184 IXGBE_READ_REG(hw, IXGBE_PTC255);
185 IXGBE_READ_REG(hw, IXGBE_PTC511);
186 IXGBE_READ_REG(hw, IXGBE_PTC1023);
187 IXGBE_READ_REG(hw, IXGBE_PTC1522);
188 IXGBE_READ_REG(hw, IXGBE_MPTC);
189 IXGBE_READ_REG(hw, IXGBE_BPTC);
190 for (i = 0; i < 16; i++) {
191 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
192 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
193 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
194 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
195 }
196
197 return 0;
198 }
199
200 /**
201 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
202 * @hw: pointer to hardware structure
203 * @pba_num: stores the part number from the EEPROM
204 *
205 * Reads the part number from the EEPROM.
206 **/
207 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
208 {
209 s32 ret_val;
210 u16 data;
211
212 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
213 if (ret_val) {
214 hw_dbg(hw, "NVM Read Error\n");
215 return ret_val;
216 }
217 *pba_num = (u32)(data << 16);
218
219 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
220 if (ret_val) {
221 hw_dbg(hw, "NVM Read Error\n");
222 return ret_val;
223 }
224 *pba_num |= data;
225
226 return 0;
227 }
228
229 /**
230 * ixgbe_get_mac_addr_generic - Generic get MAC address
231 * @hw: pointer to hardware structure
232 * @mac_addr: Adapter MAC address
233 *
234 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
235 * A reset of the adapter must be performed prior to calling this function
236 * in order for the MAC address to have been loaded from the EEPROM into RAR0
237 **/
238 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
239 {
240 u32 rar_high;
241 u32 rar_low;
242 u16 i;
243
244 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
245 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
246
247 for (i = 0; i < 4; i++)
248 mac_addr[i] = (u8)(rar_low >> (i*8));
249
250 for (i = 0; i < 2; i++)
251 mac_addr[i+4] = (u8)(rar_high >> (i*8));
252
253 return 0;
254 }
255
256 /**
257 * ixgbe_get_bus_info_generic - Generic set PCI bus info
258 * @hw: pointer to hardware structure
259 *
260 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
261 **/
262 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
263 {
264 struct ixgbe_adapter *adapter = hw->back;
265 struct ixgbe_mac_info *mac = &hw->mac;
266 u16 link_status;
267
268 hw->bus.type = ixgbe_bus_type_pci_express;
269
270 /* Get the negotiated link width and speed from PCI config space */
271 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
272 &link_status);
273
274 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
275 case IXGBE_PCI_LINK_WIDTH_1:
276 hw->bus.width = ixgbe_bus_width_pcie_x1;
277 break;
278 case IXGBE_PCI_LINK_WIDTH_2:
279 hw->bus.width = ixgbe_bus_width_pcie_x2;
280 break;
281 case IXGBE_PCI_LINK_WIDTH_4:
282 hw->bus.width = ixgbe_bus_width_pcie_x4;
283 break;
284 case IXGBE_PCI_LINK_WIDTH_8:
285 hw->bus.width = ixgbe_bus_width_pcie_x8;
286 break;
287 default:
288 hw->bus.width = ixgbe_bus_width_unknown;
289 break;
290 }
291
292 switch (link_status & IXGBE_PCI_LINK_SPEED) {
293 case IXGBE_PCI_LINK_SPEED_2500:
294 hw->bus.speed = ixgbe_bus_speed_2500;
295 break;
296 case IXGBE_PCI_LINK_SPEED_5000:
297 hw->bus.speed = ixgbe_bus_speed_5000;
298 break;
299 default:
300 hw->bus.speed = ixgbe_bus_speed_unknown;
301 break;
302 }
303
304 mac->ops.set_lan_id(hw);
305
306 return 0;
307 }
308
309 /**
310 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
311 * @hw: pointer to the HW structure
312 *
313 * Determines the LAN function id by reading memory-mapped registers
314 * and swaps the port value if requested.
315 **/
316 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
317 {
318 struct ixgbe_bus_info *bus = &hw->bus;
319 u32 reg;
320
321 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
322 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
323 bus->lan_id = bus->func;
324
325 /* check for a port swap */
326 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
327 if (reg & IXGBE_FACTPS_LFS)
328 bus->func ^= 0x1;
329 }
330
331 /**
332 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
333 * @hw: pointer to hardware structure
334 *
335 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
336 * disables transmit and receive units. The adapter_stopped flag is used by
337 * the shared code and drivers to determine if the adapter is in a stopped
338 * state and should not touch the hardware.
339 **/
340 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
341 {
342 u32 number_of_queues;
343 u32 reg_val;
344 u16 i;
345
346 /*
347 * Set the adapter_stopped flag so other driver functions stop touching
348 * the hardware
349 */
350 hw->adapter_stopped = true;
351
352 /* Disable the receive unit */
353 reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
354 reg_val &= ~(IXGBE_RXCTRL_RXEN);
355 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
356 IXGBE_WRITE_FLUSH(hw);
357 msleep(2);
358
359 /* Clear interrupt mask to stop from interrupts being generated */
360 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
361
362 /* Clear any pending interrupts */
363 IXGBE_READ_REG(hw, IXGBE_EICR);
364
365 /* Disable the transmit unit. Each queue must be disabled. */
366 number_of_queues = hw->mac.max_tx_queues;
367 for (i = 0; i < number_of_queues; i++) {
368 reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
369 if (reg_val & IXGBE_TXDCTL_ENABLE) {
370 reg_val &= ~IXGBE_TXDCTL_ENABLE;
371 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
372 }
373 }
374
375 /*
376 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
377 * access and verify no pending requests
378 */
379 if (ixgbe_disable_pcie_master(hw) != 0)
380 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
381
382 return 0;
383 }
384
385 /**
386 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
387 * @hw: pointer to hardware structure
388 * @index: led number to turn on
389 **/
390 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
391 {
392 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
393
394 /* To turn on the LED, set mode to ON. */
395 led_reg &= ~IXGBE_LED_MODE_MASK(index);
396 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
397 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
398 IXGBE_WRITE_FLUSH(hw);
399
400 return 0;
401 }
402
403 /**
404 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
405 * @hw: pointer to hardware structure
406 * @index: led number to turn off
407 **/
408 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
409 {
410 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
411
412 /* To turn off the LED, set mode to OFF. */
413 led_reg &= ~IXGBE_LED_MODE_MASK(index);
414 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
415 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
416 IXGBE_WRITE_FLUSH(hw);
417
418 return 0;
419 }
420
421 /**
422 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
423 * @hw: pointer to hardware structure
424 *
425 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
426 * ixgbe_hw struct in order to set up EEPROM access.
427 **/
428 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
429 {
430 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
431 u32 eec;
432 u16 eeprom_size;
433
434 if (eeprom->type == ixgbe_eeprom_uninitialized) {
435 eeprom->type = ixgbe_eeprom_none;
436 /* Set default semaphore delay to 10ms which is a well
437 * tested value */
438 eeprom->semaphore_delay = 10;
439
440 /*
441 * Check for EEPROM present first.
442 * If not present leave as none
443 */
444 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
445 if (eec & IXGBE_EEC_PRES) {
446 eeprom->type = ixgbe_eeprom_spi;
447
448 /*
449 * SPI EEPROM is assumed here. This code would need to
450 * change if a future EEPROM is not SPI.
451 */
452 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
453 IXGBE_EEC_SIZE_SHIFT);
454 eeprom->word_size = 1 << (eeprom_size +
455 IXGBE_EEPROM_WORD_SIZE_SHIFT);
456 }
457
458 if (eec & IXGBE_EEC_ADDR_SIZE)
459 eeprom->address_bits = 16;
460 else
461 eeprom->address_bits = 8;
462 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
463 "%d\n", eeprom->type, eeprom->word_size,
464 eeprom->address_bits);
465 }
466
467 return 0;
468 }
469
470 /**
471 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
472 * @hw: pointer to hardware structure
473 * @offset: offset within the EEPROM to be written to
474 * @data: 16 bit word to be written to the EEPROM
475 *
476 * If ixgbe_eeprom_update_checksum is not called after this function, the
477 * EEPROM will most likely contain an invalid checksum.
478 **/
479 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
480 {
481 s32 status;
482 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
483
484 hw->eeprom.ops.init_params(hw);
485
486 if (offset >= hw->eeprom.word_size) {
487 status = IXGBE_ERR_EEPROM;
488 goto out;
489 }
490
491 /* Prepare the EEPROM for writing */
492 status = ixgbe_acquire_eeprom(hw);
493
494 if (status == 0) {
495 if (ixgbe_ready_eeprom(hw) != 0) {
496 ixgbe_release_eeprom(hw);
497 status = IXGBE_ERR_EEPROM;
498 }
499 }
500
501 if (status == 0) {
502 ixgbe_standby_eeprom(hw);
503
504 /* Send the WRITE ENABLE command (8 bit opcode ) */
505 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
506 IXGBE_EEPROM_OPCODE_BITS);
507
508 ixgbe_standby_eeprom(hw);
509
510 /*
511 * Some SPI eeproms use the 8th address bit embedded in the
512 * opcode
513 */
514 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
515 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
516
517 /* Send the Write command (8-bit opcode + addr) */
518 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
519 IXGBE_EEPROM_OPCODE_BITS);
520 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
521 hw->eeprom.address_bits);
522
523 /* Send the data */
524 data = (data >> 8) | (data << 8);
525 ixgbe_shift_out_eeprom_bits(hw, data, 16);
526 ixgbe_standby_eeprom(hw);
527
528 msleep(hw->eeprom.semaphore_delay);
529 /* Done with writing - release the EEPROM */
530 ixgbe_release_eeprom(hw);
531 }
532
533 out:
534 return status;
535 }
536
537 /**
538 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
539 * @hw: pointer to hardware structure
540 * @offset: offset within the EEPROM to be read
541 * @data: read 16 bit value from EEPROM
542 *
543 * Reads 16 bit value from EEPROM through bit-bang method
544 **/
545 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
546 u16 *data)
547 {
548 s32 status;
549 u16 word_in;
550 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
551
552 hw->eeprom.ops.init_params(hw);
553
554 if (offset >= hw->eeprom.word_size) {
555 status = IXGBE_ERR_EEPROM;
556 goto out;
557 }
558
559 /* Prepare the EEPROM for reading */
560 status = ixgbe_acquire_eeprom(hw);
561
562 if (status == 0) {
563 if (ixgbe_ready_eeprom(hw) != 0) {
564 ixgbe_release_eeprom(hw);
565 status = IXGBE_ERR_EEPROM;
566 }
567 }
568
569 if (status == 0) {
570 ixgbe_standby_eeprom(hw);
571
572 /*
573 * Some SPI eeproms use the 8th address bit embedded in the
574 * opcode
575 */
576 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
577 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
578
579 /* Send the READ command (opcode + addr) */
580 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
581 IXGBE_EEPROM_OPCODE_BITS);
582 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
583 hw->eeprom.address_bits);
584
585 /* Read the data. */
586 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
587 *data = (word_in >> 8) | (word_in << 8);
588
589 /* End this read operation */
590 ixgbe_release_eeprom(hw);
591 }
592
593 out:
594 return status;
595 }
596
597 /**
598 * ixgbe_read_eeprom_generic - Read EEPROM word using EERD
599 * @hw: pointer to hardware structure
600 * @offset: offset of word in the EEPROM to read
601 * @data: word read from the EEPROM
602 *
603 * Reads a 16 bit word from the EEPROM using the EERD register.
604 **/
605 s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
606 {
607 u32 eerd;
608 s32 status;
609
610 hw->eeprom.ops.init_params(hw);
611
612 if (offset >= hw->eeprom.word_size) {
613 status = IXGBE_ERR_EEPROM;
614 goto out;
615 }
616
617 eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
618 IXGBE_EEPROM_READ_REG_START;
619
620 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
621 status = ixgbe_poll_eeprom_eerd_done(hw);
622
623 if (status == 0)
624 *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
625 IXGBE_EEPROM_READ_REG_DATA);
626 else
627 hw_dbg(hw, "Eeprom read timed out\n");
628
629 out:
630 return status;
631 }
632
633 /**
634 * ixgbe_poll_eeprom_eerd_done - Poll EERD status
635 * @hw: pointer to hardware structure
636 *
637 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
638 **/
639 static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
640 {
641 u32 i;
642 u32 reg;
643 s32 status = IXGBE_ERR_EEPROM;
644
645 for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
646 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
647 if (reg & IXGBE_EEPROM_READ_REG_DONE) {
648 status = 0;
649 break;
650 }
651 udelay(5);
652 }
653 return status;
654 }
655
656 /**
657 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
658 * @hw: pointer to hardware structure
659 *
660 * Prepares EEPROM for access using bit-bang method. This function should
661 * be called before issuing a command to the EEPROM.
662 **/
663 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
664 {
665 s32 status = 0;
666 u32 eec = 0;
667 u32 i;
668
669 if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
670 status = IXGBE_ERR_SWFW_SYNC;
671
672 if (status == 0) {
673 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
674
675 /* Request EEPROM Access */
676 eec |= IXGBE_EEC_REQ;
677 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
678
679 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
680 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
681 if (eec & IXGBE_EEC_GNT)
682 break;
683 udelay(5);
684 }
685
686 /* Release if grant not acquired */
687 if (!(eec & IXGBE_EEC_GNT)) {
688 eec &= ~IXGBE_EEC_REQ;
689 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
690 hw_dbg(hw, "Could not acquire EEPROM grant\n");
691
692 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
693 status = IXGBE_ERR_EEPROM;
694 }
695 }
696
697 /* Setup EEPROM for Read/Write */
698 if (status == 0) {
699 /* Clear CS and SK */
700 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
701 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
702 IXGBE_WRITE_FLUSH(hw);
703 udelay(1);
704 }
705 return status;
706 }
707
708 /**
709 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
710 * @hw: pointer to hardware structure
711 *
712 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
713 **/
714 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
715 {
716 s32 status = IXGBE_ERR_EEPROM;
717 u32 timeout;
718 u32 i;
719 u32 swsm;
720
721 /* Set timeout value based on size of EEPROM */
722 timeout = hw->eeprom.word_size + 1;
723
724 /* Get SMBI software semaphore between device drivers first */
725 for (i = 0; i < timeout; i++) {
726 /*
727 * If the SMBI bit is 0 when we read it, then the bit will be
728 * set and we have the semaphore
729 */
730 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
731 if (!(swsm & IXGBE_SWSM_SMBI)) {
732 status = 0;
733 break;
734 }
735 msleep(1);
736 }
737
738 /* Now get the semaphore between SW/FW through the SWESMBI bit */
739 if (status == 0) {
740 for (i = 0; i < timeout; i++) {
741 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
742
743 /* Set the SW EEPROM semaphore bit to request access */
744 swsm |= IXGBE_SWSM_SWESMBI;
745 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
746
747 /*
748 * If we set the bit successfully then we got the
749 * semaphore.
750 */
751 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
752 if (swsm & IXGBE_SWSM_SWESMBI)
753 break;
754
755 udelay(50);
756 }
757
758 /*
759 * Release semaphores and return error if SW EEPROM semaphore
760 * was not granted because we don't have access to the EEPROM
761 */
762 if (i >= timeout) {
763 hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
764 "not granted.\n");
765 ixgbe_release_eeprom_semaphore(hw);
766 status = IXGBE_ERR_EEPROM;
767 }
768 }
769
770 return status;
771 }
772
773 /**
774 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
775 * @hw: pointer to hardware structure
776 *
777 * This function clears hardware semaphore bits.
778 **/
779 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
780 {
781 u32 swsm;
782
783 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
784
785 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
786 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
787 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
788 IXGBE_WRITE_FLUSH(hw);
789 }
790
791 /**
792 * ixgbe_ready_eeprom - Polls for EEPROM ready
793 * @hw: pointer to hardware structure
794 **/
795 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
796 {
797 s32 status = 0;
798 u16 i;
799 u8 spi_stat_reg;
800
801 /*
802 * Read "Status Register" repeatedly until the LSB is cleared. The
803 * EEPROM will signal that the command has been completed by clearing
804 * bit 0 of the internal status register. If it's not cleared within
805 * 5 milliseconds, then error out.
806 */
807 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
808 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
809 IXGBE_EEPROM_OPCODE_BITS);
810 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
811 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
812 break;
813
814 udelay(5);
815 ixgbe_standby_eeprom(hw);
816 };
817
818 /*
819 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
820 * devices (and only 0-5mSec on 5V devices)
821 */
822 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
823 hw_dbg(hw, "SPI EEPROM Status error\n");
824 status = IXGBE_ERR_EEPROM;
825 }
826
827 return status;
828 }
829
830 /**
831 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
832 * @hw: pointer to hardware structure
833 **/
834 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
835 {
836 u32 eec;
837
838 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
839
840 /* Toggle CS to flush commands */
841 eec |= IXGBE_EEC_CS;
842 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
843 IXGBE_WRITE_FLUSH(hw);
844 udelay(1);
845 eec &= ~IXGBE_EEC_CS;
846 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
847 IXGBE_WRITE_FLUSH(hw);
848 udelay(1);
849 }
850
851 /**
852 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
853 * @hw: pointer to hardware structure
854 * @data: data to send to the EEPROM
855 * @count: number of bits to shift out
856 **/
857 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
858 u16 count)
859 {
860 u32 eec;
861 u32 mask;
862 u32 i;
863
864 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
865
866 /*
867 * Mask is used to shift "count" bits of "data" out to the EEPROM
868 * one bit at a time. Determine the starting bit based on count
869 */
870 mask = 0x01 << (count - 1);
871
872 for (i = 0; i < count; i++) {
873 /*
874 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
875 * "1", and then raising and then lowering the clock (the SK
876 * bit controls the clock input to the EEPROM). A "0" is
877 * shifted out to the EEPROM by setting "DI" to "0" and then
878 * raising and then lowering the clock.
879 */
880 if (data & mask)
881 eec |= IXGBE_EEC_DI;
882 else
883 eec &= ~IXGBE_EEC_DI;
884
885 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
886 IXGBE_WRITE_FLUSH(hw);
887
888 udelay(1);
889
890 ixgbe_raise_eeprom_clk(hw, &eec);
891 ixgbe_lower_eeprom_clk(hw, &eec);
892
893 /*
894 * Shift mask to signify next bit of data to shift in to the
895 * EEPROM
896 */
897 mask = mask >> 1;
898 };
899
900 /* We leave the "DI" bit set to "0" when we leave this routine. */
901 eec &= ~IXGBE_EEC_DI;
902 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
903 IXGBE_WRITE_FLUSH(hw);
904 }
905
906 /**
907 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
908 * @hw: pointer to hardware structure
909 **/
910 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
911 {
912 u32 eec;
913 u32 i;
914 u16 data = 0;
915
916 /*
917 * In order to read a register from the EEPROM, we need to shift
918 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
919 * the clock input to the EEPROM (setting the SK bit), and then reading
920 * the value of the "DO" bit. During this "shifting in" process the
921 * "DI" bit should always be clear.
922 */
923 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
924
925 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
926
927 for (i = 0; i < count; i++) {
928 data = data << 1;
929 ixgbe_raise_eeprom_clk(hw, &eec);
930
931 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
932
933 eec &= ~(IXGBE_EEC_DI);
934 if (eec & IXGBE_EEC_DO)
935 data |= 1;
936
937 ixgbe_lower_eeprom_clk(hw, &eec);
938 }
939
940 return data;
941 }
942
943 /**
944 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
945 * @hw: pointer to hardware structure
946 * @eec: EEC register's current value
947 **/
948 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
949 {
950 /*
951 * Raise the clock input to the EEPROM
952 * (setting the SK bit), then delay
953 */
954 *eec = *eec | IXGBE_EEC_SK;
955 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
956 IXGBE_WRITE_FLUSH(hw);
957 udelay(1);
958 }
959
960 /**
961 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
962 * @hw: pointer to hardware structure
963 * @eecd: EECD's current value
964 **/
965 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
966 {
967 /*
968 * Lower the clock input to the EEPROM (clearing the SK bit), then
969 * delay
970 */
971 *eec = *eec & ~IXGBE_EEC_SK;
972 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
973 IXGBE_WRITE_FLUSH(hw);
974 udelay(1);
975 }
976
977 /**
978 * ixgbe_release_eeprom - Release EEPROM, release semaphores
979 * @hw: pointer to hardware structure
980 **/
981 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
982 {
983 u32 eec;
984
985 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
986
987 eec |= IXGBE_EEC_CS; /* Pull CS high */
988 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
989
990 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
991 IXGBE_WRITE_FLUSH(hw);
992
993 udelay(1);
994
995 /* Stop requesting EEPROM access */
996 eec &= ~IXGBE_EEC_REQ;
997 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
998
999 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1000 }
1001
1002 /**
1003 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
1004 * @hw: pointer to hardware structure
1005 **/
1006 static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
1007 {
1008 u16 i;
1009 u16 j;
1010 u16 checksum = 0;
1011 u16 length = 0;
1012 u16 pointer = 0;
1013 u16 word = 0;
1014
1015 /* Include 0x0-0x3F in the checksum */
1016 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1017 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1018 hw_dbg(hw, "EEPROM read failed\n");
1019 break;
1020 }
1021 checksum += word;
1022 }
1023
1024 /* Include all data from pointers except for the fw pointer */
1025 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1026 hw->eeprom.ops.read(hw, i, &pointer);
1027
1028 /* Make sure the pointer seems valid */
1029 if (pointer != 0xFFFF && pointer != 0) {
1030 hw->eeprom.ops.read(hw, pointer, &length);
1031
1032 if (length != 0xFFFF && length != 0) {
1033 for (j = pointer+1; j <= pointer+length; j++) {
1034 hw->eeprom.ops.read(hw, j, &word);
1035 checksum += word;
1036 }
1037 }
1038 }
1039 }
1040
1041 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1042
1043 return checksum;
1044 }
1045
1046 /**
1047 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1048 * @hw: pointer to hardware structure
1049 * @checksum_val: calculated checksum
1050 *
1051 * Performs checksum calculation and validates the EEPROM checksum. If the
1052 * caller does not need checksum_val, the value can be NULL.
1053 **/
1054 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1055 u16 *checksum_val)
1056 {
1057 s32 status;
1058 u16 checksum;
1059 u16 read_checksum = 0;
1060
1061 /*
1062 * Read the first word from the EEPROM. If this times out or fails, do
1063 * not continue or we could be in for a very long wait while every
1064 * EEPROM read fails
1065 */
1066 status = hw->eeprom.ops.read(hw, 0, &checksum);
1067
1068 if (status == 0) {
1069 checksum = ixgbe_calc_eeprom_checksum(hw);
1070
1071 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1072
1073 /*
1074 * Verify read checksum from EEPROM is the same as
1075 * calculated checksum
1076 */
1077 if (read_checksum != checksum)
1078 status = IXGBE_ERR_EEPROM_CHECKSUM;
1079
1080 /* If the user cares, return the calculated checksum */
1081 if (checksum_val)
1082 *checksum_val = checksum;
1083 } else {
1084 hw_dbg(hw, "EEPROM read failed\n");
1085 }
1086
1087 return status;
1088 }
1089
1090 /**
1091 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1092 * @hw: pointer to hardware structure
1093 **/
1094 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1095 {
1096 s32 status;
1097 u16 checksum;
1098
1099 /*
1100 * Read the first word from the EEPROM. If this times out or fails, do
1101 * not continue or we could be in for a very long wait while every
1102 * EEPROM read fails
1103 */
1104 status = hw->eeprom.ops.read(hw, 0, &checksum);
1105
1106 if (status == 0) {
1107 checksum = ixgbe_calc_eeprom_checksum(hw);
1108 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1109 checksum);
1110 } else {
1111 hw_dbg(hw, "EEPROM read failed\n");
1112 }
1113
1114 return status;
1115 }
1116
1117 /**
1118 * ixgbe_validate_mac_addr - Validate MAC address
1119 * @mac_addr: pointer to MAC address.
1120 *
1121 * Tests a MAC address to ensure it is a valid Individual Address
1122 **/
1123 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1124 {
1125 s32 status = 0;
1126
1127 /* Make sure it is not a multicast address */
1128 if (IXGBE_IS_MULTICAST(mac_addr))
1129 status = IXGBE_ERR_INVALID_MAC_ADDR;
1130 /* Not a broadcast address */
1131 else if (IXGBE_IS_BROADCAST(mac_addr))
1132 status = IXGBE_ERR_INVALID_MAC_ADDR;
1133 /* Reject the zero address */
1134 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1135 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1136 status = IXGBE_ERR_INVALID_MAC_ADDR;
1137
1138 return status;
1139 }
1140
1141 /**
1142 * ixgbe_set_rar_generic - Set Rx address register
1143 * @hw: pointer to hardware structure
1144 * @index: Receive address register to write
1145 * @addr: Address to put into receive address register
1146 * @vmdq: VMDq "set" or "pool" index
1147 * @enable_addr: set flag that address is active
1148 *
1149 * Puts an ethernet address into a receive address register.
1150 **/
1151 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1152 u32 enable_addr)
1153 {
1154 u32 rar_low, rar_high;
1155 u32 rar_entries = hw->mac.num_rar_entries;
1156
1157 /* setup VMDq pool selection before this RAR gets enabled */
1158 hw->mac.ops.set_vmdq(hw, index, vmdq);
1159
1160 /* Make sure we are using a valid rar index range */
1161 if (index < rar_entries) {
1162 /*
1163 * HW expects these in little endian so we reverse the byte
1164 * order from network order (big endian) to little endian
1165 */
1166 rar_low = ((u32)addr[0] |
1167 ((u32)addr[1] << 8) |
1168 ((u32)addr[2] << 16) |
1169 ((u32)addr[3] << 24));
1170 /*
1171 * Some parts put the VMDq setting in the extra RAH bits,
1172 * so save everything except the lower 16 bits that hold part
1173 * of the address and the address valid bit.
1174 */
1175 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1176 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1177 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1178
1179 if (enable_addr != 0)
1180 rar_high |= IXGBE_RAH_AV;
1181
1182 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1183 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1184 } else {
1185 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1186 }
1187
1188 return 0;
1189 }
1190
1191 /**
1192 * ixgbe_clear_rar_generic - Remove Rx address register
1193 * @hw: pointer to hardware structure
1194 * @index: Receive address register to write
1195 *
1196 * Clears an ethernet address from a receive address register.
1197 **/
1198 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1199 {
1200 u32 rar_high;
1201 u32 rar_entries = hw->mac.num_rar_entries;
1202
1203 /* Make sure we are using a valid rar index range */
1204 if (index < rar_entries) {
1205 /*
1206 * Some parts put the VMDq setting in the extra RAH bits,
1207 * so save everything except the lower 16 bits that hold part
1208 * of the address and the address valid bit.
1209 */
1210 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1211 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1212
1213 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1214 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1215 } else {
1216 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1217 }
1218
1219 /* clear VMDq pool/queue selection for this RAR */
1220 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1221
1222 return 0;
1223 }
1224
1225 /**
1226 * ixgbe_enable_rar - Enable Rx address register
1227 * @hw: pointer to hardware structure
1228 * @index: index into the RAR table
1229 *
1230 * Enables the select receive address register.
1231 **/
1232 static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
1233 {
1234 u32 rar_high;
1235
1236 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1237 rar_high |= IXGBE_RAH_AV;
1238 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1239 }
1240
1241 /**
1242 * ixgbe_disable_rar - Disable Rx address register
1243 * @hw: pointer to hardware structure
1244 * @index: index into the RAR table
1245 *
1246 * Disables the select receive address register.
1247 **/
1248 static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
1249 {
1250 u32 rar_high;
1251
1252 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1253 rar_high &= (~IXGBE_RAH_AV);
1254 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1255 }
1256
1257 /**
1258 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1259 * @hw: pointer to hardware structure
1260 *
1261 * Places the MAC address in receive address register 0 and clears the rest
1262 * of the receive address registers. Clears the multicast table. Assumes
1263 * the receiver is in reset when the routine is called.
1264 **/
1265 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1266 {
1267 u32 i;
1268 u32 rar_entries = hw->mac.num_rar_entries;
1269
1270 /*
1271 * If the current mac address is valid, assume it is a software override
1272 * to the permanent address.
1273 * Otherwise, use the permanent address from the eeprom.
1274 */
1275 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1276 IXGBE_ERR_INVALID_MAC_ADDR) {
1277 /* Get the MAC address from the RAR0 for later reference */
1278 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1279
1280 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1281 } else {
1282 /* Setup the receive address. */
1283 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1284 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1285
1286 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1287 }
1288 hw->addr_ctrl.overflow_promisc = 0;
1289
1290 hw->addr_ctrl.rar_used_count = 1;
1291
1292 /* Zero out the other receive addresses. */
1293 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1294 for (i = 1; i < rar_entries; i++) {
1295 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1296 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1297 }
1298
1299 /* Clear the MTA */
1300 hw->addr_ctrl.mc_addr_in_rar_count = 0;
1301 hw->addr_ctrl.mta_in_use = 0;
1302 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1303
1304 hw_dbg(hw, " Clearing MTA\n");
1305 for (i = 0; i < hw->mac.mcft_size; i++)
1306 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1307
1308 if (hw->mac.ops.init_uta_tables)
1309 hw->mac.ops.init_uta_tables(hw);
1310
1311 return 0;
1312 }
1313
1314 /**
1315 * ixgbe_add_uc_addr - Adds a secondary unicast address.
1316 * @hw: pointer to hardware structure
1317 * @addr: new address
1318 *
1319 * Adds it to unused receive address register or goes into promiscuous mode.
1320 **/
1321 static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
1322 {
1323 u32 rar_entries = hw->mac.num_rar_entries;
1324 u32 rar;
1325
1326 hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1327 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
1328
1329 /*
1330 * Place this address in the RAR if there is room,
1331 * else put the controller into promiscuous mode
1332 */
1333 if (hw->addr_ctrl.rar_used_count < rar_entries) {
1334 rar = hw->addr_ctrl.rar_used_count -
1335 hw->addr_ctrl.mc_addr_in_rar_count;
1336 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
1337 hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
1338 hw->addr_ctrl.rar_used_count++;
1339 } else {
1340 hw->addr_ctrl.overflow_promisc++;
1341 }
1342
1343 hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
1344 }
1345
1346 /**
1347 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
1348 * @hw: pointer to hardware structure
1349 * @netdev: pointer to net device structure
1350 *
1351 * The given list replaces any existing list. Clears the secondary addrs from
1352 * receive address registers. Uses unused receive address registers for the
1353 * first secondary addresses, and falls back to promiscuous mode as needed.
1354 *
1355 * Drivers using secondary unicast addresses must set user_set_promisc when
1356 * manually putting the device into promiscuous mode.
1357 **/
1358 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw,
1359 struct net_device *netdev)
1360 {
1361 u32 i;
1362 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
1363 u32 uc_addr_in_use;
1364 u32 fctrl;
1365 struct netdev_hw_addr *ha;
1366
1367 /*
1368 * Clear accounting of old secondary address list,
1369 * don't count RAR[0]
1370 */
1371 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
1372 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
1373 hw->addr_ctrl.overflow_promisc = 0;
1374
1375 /* Zero out the other receive addresses */
1376 hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use + 1);
1377 for (i = 0; i < uc_addr_in_use; i++) {
1378 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
1379 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
1380 }
1381
1382 /* Add the new addresses */
1383 netdev_for_each_uc_addr(ha, netdev) {
1384 hw_dbg(hw, " Adding the secondary addresses:\n");
1385 ixgbe_add_uc_addr(hw, ha->addr, 0);
1386 }
1387
1388 if (hw->addr_ctrl.overflow_promisc) {
1389 /* enable promisc if not already in overflow or set by user */
1390 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1391 hw_dbg(hw, " Entering address overflow promisc mode\n");
1392 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1393 fctrl |= IXGBE_FCTRL_UPE;
1394 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1395 }
1396 } else {
1397 /* only disable if set by overflow, not by user */
1398 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1399 hw_dbg(hw, " Leaving address overflow promisc mode\n");
1400 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1401 fctrl &= ~IXGBE_FCTRL_UPE;
1402 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1403 }
1404 }
1405
1406 hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
1407 return 0;
1408 }
1409
1410 /**
1411 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1412 * @hw: pointer to hardware structure
1413 * @mc_addr: the multicast address
1414 *
1415 * Extracts the 12 bits, from a multicast address, to determine which
1416 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1417 * incoming rx multicast addresses, to determine the bit-vector to check in
1418 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1419 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1420 * to mc_filter_type.
1421 **/
1422 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1423 {
1424 u32 vector = 0;
1425
1426 switch (hw->mac.mc_filter_type) {
1427 case 0: /* use bits [47:36] of the address */
1428 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1429 break;
1430 case 1: /* use bits [46:35] of the address */
1431 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1432 break;
1433 case 2: /* use bits [45:34] of the address */
1434 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1435 break;
1436 case 3: /* use bits [43:32] of the address */
1437 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1438 break;
1439 default: /* Invalid mc_filter_type */
1440 hw_dbg(hw, "MC filter type param set incorrectly\n");
1441 break;
1442 }
1443
1444 /* vector can only be 12-bits or boundary will be exceeded */
1445 vector &= 0xFFF;
1446 return vector;
1447 }
1448
1449 /**
1450 * ixgbe_set_mta - Set bit-vector in multicast table
1451 * @hw: pointer to hardware structure
1452 * @hash_value: Multicast address hash value
1453 *
1454 * Sets the bit-vector in the multicast table.
1455 **/
1456 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1457 {
1458 u32 vector;
1459 u32 vector_bit;
1460 u32 vector_reg;
1461 u32 mta_reg;
1462
1463 hw->addr_ctrl.mta_in_use++;
1464
1465 vector = ixgbe_mta_vector(hw, mc_addr);
1466 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1467
1468 /*
1469 * The MTA is a register array of 128 32-bit registers. It is treated
1470 * like an array of 4096 bits. We want to set bit
1471 * BitArray[vector_value]. So we figure out what register the bit is
1472 * in, read it, OR in the new bit, then write back the new value. The
1473 * register is determined by the upper 7 bits of the vector value and
1474 * the bit within that register are determined by the lower 5 bits of
1475 * the value.
1476 */
1477 vector_reg = (vector >> 5) & 0x7F;
1478 vector_bit = vector & 0x1F;
1479 mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
1480 mta_reg |= (1 << vector_bit);
1481 IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
1482 }
1483
1484 /**
1485 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1486 * @hw: pointer to hardware structure
1487 * @mc_addr_list: the list of new multicast addresses
1488 * @mc_addr_count: number of addresses
1489 * @next: iterator function to walk the multicast address list
1490 *
1491 * The given list replaces any existing list. Clears the MC addrs from receive
1492 * address registers and the multicast table. Uses unused receive address
1493 * registers for the first multicast addresses, and hashes the rest into the
1494 * multicast table.
1495 **/
1496 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
1497 u32 mc_addr_count, ixgbe_mc_addr_itr next)
1498 {
1499 u32 i;
1500 u32 vmdq;
1501
1502 /*
1503 * Set the new number of MC addresses that we are being requested to
1504 * use.
1505 */
1506 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
1507 hw->addr_ctrl.mta_in_use = 0;
1508
1509 /* Clear the MTA */
1510 hw_dbg(hw, " Clearing MTA\n");
1511 for (i = 0; i < hw->mac.mcft_size; i++)
1512 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1513
1514 /* Add the new addresses */
1515 for (i = 0; i < mc_addr_count; i++) {
1516 hw_dbg(hw, " Adding the multicast addresses:\n");
1517 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
1518 }
1519
1520 /* Enable mta */
1521 if (hw->addr_ctrl.mta_in_use > 0)
1522 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1523 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1524
1525 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1526 return 0;
1527 }
1528
1529 /**
1530 * ixgbe_enable_mc_generic - Enable multicast address in RAR
1531 * @hw: pointer to hardware structure
1532 *
1533 * Enables multicast address in RAR and the use of the multicast hash table.
1534 **/
1535 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1536 {
1537 u32 i;
1538 u32 rar_entries = hw->mac.num_rar_entries;
1539 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1540
1541 if (a->mc_addr_in_rar_count > 0)
1542 for (i = (rar_entries - a->mc_addr_in_rar_count);
1543 i < rar_entries; i++)
1544 ixgbe_enable_rar(hw, i);
1545
1546 if (a->mta_in_use > 0)
1547 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1548 hw->mac.mc_filter_type);
1549
1550 return 0;
1551 }
1552
1553 /**
1554 * ixgbe_disable_mc_generic - Disable multicast address in RAR
1555 * @hw: pointer to hardware structure
1556 *
1557 * Disables multicast address in RAR and the use of the multicast hash table.
1558 **/
1559 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1560 {
1561 u32 i;
1562 u32 rar_entries = hw->mac.num_rar_entries;
1563 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1564
1565 if (a->mc_addr_in_rar_count > 0)
1566 for (i = (rar_entries - a->mc_addr_in_rar_count);
1567 i < rar_entries; i++)
1568 ixgbe_disable_rar(hw, i);
1569
1570 if (a->mta_in_use > 0)
1571 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1572
1573 return 0;
1574 }
1575
1576 /**
1577 * ixgbe_fc_enable_generic - Enable flow control
1578 * @hw: pointer to hardware structure
1579 * @packetbuf_num: packet buffer number (0-7)
1580 *
1581 * Enable flow control according to the current settings.
1582 **/
1583 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1584 {
1585 s32 ret_val = 0;
1586 u32 mflcn_reg, fccfg_reg;
1587 u32 reg;
1588 u32 rx_pba_size;
1589
1590 #ifdef CONFIG_DCB
1591 if (hw->fc.requested_mode == ixgbe_fc_pfc)
1592 goto out;
1593
1594 #endif /* CONFIG_DCB */
1595 /* Negotiate the fc mode to use */
1596 ret_val = ixgbe_fc_autoneg(hw);
1597 if (ret_val)
1598 goto out;
1599
1600 /* Disable any previous flow control settings */
1601 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1602 mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1603
1604 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1605 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1606
1607 /*
1608 * The possible values of fc.current_mode are:
1609 * 0: Flow control is completely disabled
1610 * 1: Rx flow control is enabled (we can receive pause frames,
1611 * but not send pause frames).
1612 * 2: Tx flow control is enabled (we can send pause frames but
1613 * we do not support receiving pause frames).
1614 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1615 * 4: Priority Flow Control is enabled.
1616 * other: Invalid.
1617 */
1618 switch (hw->fc.current_mode) {
1619 case ixgbe_fc_none:
1620 /*
1621 * Flow control is disabled by software override or autoneg.
1622 * The code below will actually disable it in the HW.
1623 */
1624 break;
1625 case ixgbe_fc_rx_pause:
1626 /*
1627 * Rx Flow control is enabled and Tx Flow control is
1628 * disabled by software override. Since there really
1629 * isn't a way to advertise that we are capable of RX
1630 * Pause ONLY, we will advertise that we support both
1631 * symmetric and asymmetric Rx PAUSE. Later, we will
1632 * disable the adapter's ability to send PAUSE frames.
1633 */
1634 mflcn_reg |= IXGBE_MFLCN_RFCE;
1635 break;
1636 case ixgbe_fc_tx_pause:
1637 /*
1638 * Tx Flow control is enabled, and Rx Flow control is
1639 * disabled by software override.
1640 */
1641 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1642 break;
1643 case ixgbe_fc_full:
1644 /* Flow control (both Rx and Tx) is enabled by SW override. */
1645 mflcn_reg |= IXGBE_MFLCN_RFCE;
1646 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1647 break;
1648 #ifdef CONFIG_DCB
1649 case ixgbe_fc_pfc:
1650 goto out;
1651 break;
1652 #endif /* CONFIG_DCB */
1653 default:
1654 hw_dbg(hw, "Flow control param set incorrectly\n");
1655 ret_val = IXGBE_ERR_CONFIG;
1656 goto out;
1657 break;
1658 }
1659
1660 /* Set 802.3x based flow control settings. */
1661 mflcn_reg |= IXGBE_MFLCN_DPF;
1662 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
1663 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
1664
1665 reg = IXGBE_READ_REG(hw, IXGBE_MTQC);
1666 /* Thresholds are different for link flow control when in DCB mode */
1667 if (reg & IXGBE_MTQC_RT_ENA) {
1668 rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
1669
1670 /* Always disable XON for LFC when in DCB mode */
1671 reg = (rx_pba_size >> 5) & 0xFFE0;
1672 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), reg);
1673
1674 reg = (rx_pba_size >> 2) & 0xFFE0;
1675 if (hw->fc.current_mode & ixgbe_fc_tx_pause)
1676 reg |= IXGBE_FCRTH_FCEN;
1677 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), reg);
1678 } else {
1679 /*
1680 * Set up and enable Rx high/low water mark thresholds,
1681 * enable XON.
1682 */
1683 if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
1684 if (hw->fc.send_xon) {
1685 IXGBE_WRITE_REG(hw,
1686 IXGBE_FCRTL_82599(packetbuf_num),
1687 (hw->fc.low_water |
1688 IXGBE_FCRTL_XONE));
1689 } else {
1690 IXGBE_WRITE_REG(hw,
1691 IXGBE_FCRTL_82599(packetbuf_num),
1692 hw->fc.low_water);
1693 }
1694
1695 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num),
1696 (hw->fc.high_water | IXGBE_FCRTH_FCEN));
1697 }
1698 }
1699
1700 /* Configure pause time (2 TCs per register) */
1701 reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
1702 if ((packetbuf_num & 1) == 0)
1703 reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
1704 else
1705 reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
1706 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
1707
1708 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1709
1710 out:
1711 return ret_val;
1712 }
1713
1714 /**
1715 * ixgbe_fc_autoneg - Configure flow control
1716 * @hw: pointer to hardware structure
1717 *
1718 * Compares our advertised flow control capabilities to those advertised by
1719 * our link partner, and determines the proper flow control mode to use.
1720 **/
1721 s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
1722 {
1723 s32 ret_val = 0;
1724 ixgbe_link_speed speed;
1725 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
1726 u32 links2, anlp1_reg, autoc_reg, links;
1727 bool link_up;
1728
1729 /*
1730 * AN should have completed when the cable was plugged in.
1731 * Look for reasons to bail out. Bail out if:
1732 * - FC autoneg is disabled, or if
1733 * - link is not up.
1734 *
1735 * Since we're being called from an LSC, link is already known to be up.
1736 * So use link_up_wait_to_complete=false.
1737 */
1738 hw->mac.ops.check_link(hw, &speed, &link_up, false);
1739
1740 if (hw->fc.disable_fc_autoneg || (!link_up)) {
1741 hw->fc.fc_was_autonegged = false;
1742 hw->fc.current_mode = hw->fc.requested_mode;
1743 goto out;
1744 }
1745
1746 /*
1747 * On backplane, bail out if
1748 * - backplane autoneg was not completed, or if
1749 * - we are 82599 and link partner is not AN enabled
1750 */
1751 if (hw->phy.media_type == ixgbe_media_type_backplane) {
1752 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
1753 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
1754 hw->fc.fc_was_autonegged = false;
1755 hw->fc.current_mode = hw->fc.requested_mode;
1756 goto out;
1757 }
1758
1759 if (hw->mac.type == ixgbe_mac_82599EB) {
1760 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
1761 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
1762 hw->fc.fc_was_autonegged = false;
1763 hw->fc.current_mode = hw->fc.requested_mode;
1764 goto out;
1765 }
1766 }
1767 }
1768
1769 /*
1770 * On multispeed fiber at 1g, bail out if
1771 * - link is up but AN did not complete, or if
1772 * - link is up and AN completed but timed out
1773 */
1774 if (hw->phy.multispeed_fiber && (speed == IXGBE_LINK_SPEED_1GB_FULL)) {
1775 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
1776 if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
1777 ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
1778 hw->fc.fc_was_autonegged = false;
1779 hw->fc.current_mode = hw->fc.requested_mode;
1780 goto out;
1781 }
1782 }
1783
1784 /*
1785 * Bail out on
1786 * - copper or CX4 adapters
1787 * - fiber adapters running at 10gig
1788 */
1789 if ((hw->phy.media_type == ixgbe_media_type_copper) ||
1790 (hw->phy.media_type == ixgbe_media_type_cx4) ||
1791 ((hw->phy.media_type == ixgbe_media_type_fiber) &&
1792 (speed == IXGBE_LINK_SPEED_10GB_FULL))) {
1793 hw->fc.fc_was_autonegged = false;
1794 hw->fc.current_mode = hw->fc.requested_mode;
1795 goto out;
1796 }
1797
1798 /*
1799 * Read the AN advertisement and LP ability registers and resolve
1800 * local flow control settings accordingly
1801 */
1802 if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
1803 (hw->phy.media_type != ixgbe_media_type_backplane)) {
1804 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1805 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
1806 if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1807 (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE)) {
1808 /*
1809 * Now we need to check if the user selected Rx ONLY
1810 * of pause frames. In this case, we had to advertise
1811 * FULL flow control because we could not advertise RX
1812 * ONLY. Hence, we must now check to see if we need to
1813 * turn OFF the TRANSMISSION of PAUSE frames.
1814 */
1815 if (hw->fc.requested_mode == ixgbe_fc_full) {
1816 hw->fc.current_mode = ixgbe_fc_full;
1817 hw_dbg(hw, "Flow Control = FULL.\n");
1818 } else {
1819 hw->fc.current_mode = ixgbe_fc_rx_pause;
1820 hw_dbg(hw, "Flow Control=RX PAUSE only\n");
1821 }
1822 } else if (!(pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1823 (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1824 (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1825 (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1826 hw->fc.current_mode = ixgbe_fc_tx_pause;
1827 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1828 } else if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1829 (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1830 !(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1831 (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1832 hw->fc.current_mode = ixgbe_fc_rx_pause;
1833 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1834 } else {
1835 hw->fc.current_mode = ixgbe_fc_none;
1836 hw_dbg(hw, "Flow Control = NONE.\n");
1837 }
1838 }
1839
1840 if (hw->phy.media_type == ixgbe_media_type_backplane) {
1841 /*
1842 * Read the 10g AN autoc and LP ability registers and resolve
1843 * local flow control settings accordingly
1844 */
1845 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
1846 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
1847
1848 if ((autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
1849 (anlp1_reg & IXGBE_ANLP1_SYM_PAUSE)) {
1850 /*
1851 * Now we need to check if the user selected Rx ONLY
1852 * of pause frames. In this case, we had to advertise
1853 * FULL flow control because we could not advertise RX
1854 * ONLY. Hence, we must now check to see if we need to
1855 * turn OFF the TRANSMISSION of PAUSE frames.
1856 */
1857 if (hw->fc.requested_mode == ixgbe_fc_full) {
1858 hw->fc.current_mode = ixgbe_fc_full;
1859 hw_dbg(hw, "Flow Control = FULL.\n");
1860 } else {
1861 hw->fc.current_mode = ixgbe_fc_rx_pause;
1862 hw_dbg(hw, "Flow Control=RX PAUSE only\n");
1863 }
1864 } else if (!(autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
1865 (autoc_reg & IXGBE_AUTOC_ASM_PAUSE) &&
1866 (anlp1_reg & IXGBE_ANLP1_SYM_PAUSE) &&
1867 (anlp1_reg & IXGBE_ANLP1_ASM_PAUSE)) {
1868 hw->fc.current_mode = ixgbe_fc_tx_pause;
1869 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1870 } else if ((autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
1871 (autoc_reg & IXGBE_AUTOC_ASM_PAUSE) &&
1872 !(anlp1_reg & IXGBE_ANLP1_SYM_PAUSE) &&
1873 (anlp1_reg & IXGBE_ANLP1_ASM_PAUSE)) {
1874 hw->fc.current_mode = ixgbe_fc_rx_pause;
1875 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1876 } else {
1877 hw->fc.current_mode = ixgbe_fc_none;
1878 hw_dbg(hw, "Flow Control = NONE.\n");
1879 }
1880 }
1881 /* Record that current_mode is the result of a successful autoneg */
1882 hw->fc.fc_was_autonegged = true;
1883
1884 out:
1885 return ret_val;
1886 }
1887
1888 /**
1889 * ixgbe_setup_fc - Set up flow control
1890 * @hw: pointer to hardware structure
1891 *
1892 * Called at init time to set up flow control.
1893 **/
1894 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
1895 {
1896 s32 ret_val = 0;
1897 u32 reg;
1898
1899 #ifdef CONFIG_DCB
1900 if (hw->fc.requested_mode == ixgbe_fc_pfc) {
1901 hw->fc.current_mode = hw->fc.requested_mode;
1902 goto out;
1903 }
1904
1905 #endif
1906 /* Validate the packetbuf configuration */
1907 if (packetbuf_num < 0 || packetbuf_num > 7) {
1908 hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
1909 "is 0-7\n", packetbuf_num);
1910 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1911 goto out;
1912 }
1913
1914 /*
1915 * Validate the water mark configuration. Zero water marks are invalid
1916 * because it causes the controller to just blast out fc packets.
1917 */
1918 if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
1919 hw_dbg(hw, "Invalid water mark configuration\n");
1920 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1921 goto out;
1922 }
1923
1924 /*
1925 * Validate the requested mode. Strict IEEE mode does not allow
1926 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
1927 */
1928 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
1929 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
1930 "IEEE mode\n");
1931 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1932 goto out;
1933 }
1934
1935 /*
1936 * 10gig parts do not have a word in the EEPROM to determine the
1937 * default flow control setting, so we explicitly set it to full.
1938 */
1939 if (hw->fc.requested_mode == ixgbe_fc_default)
1940 hw->fc.requested_mode = ixgbe_fc_full;
1941
1942 /*
1943 * Set up the 1G flow control advertisement registers so the HW will be
1944 * able to do fc autoneg once the cable is plugged in. If we end up
1945 * using 10g instead, this is harmless.
1946 */
1947 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1948
1949 /*
1950 * The possible values of fc.requested_mode are:
1951 * 0: Flow control is completely disabled
1952 * 1: Rx flow control is enabled (we can receive pause frames,
1953 * but not send pause frames).
1954 * 2: Tx flow control is enabled (we can send pause frames but
1955 * we do not support receiving pause frames).
1956 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1957 #ifdef CONFIG_DCB
1958 * 4: Priority Flow Control is enabled.
1959 #endif
1960 * other: Invalid.
1961 */
1962 switch (hw->fc.requested_mode) {
1963 case ixgbe_fc_none:
1964 /* Flow control completely disabled by software override. */
1965 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1966 break;
1967 case ixgbe_fc_rx_pause:
1968 /*
1969 * Rx Flow control is enabled and Tx Flow control is
1970 * disabled by software override. Since there really
1971 * isn't a way to advertise that we are capable of RX
1972 * Pause ONLY, we will advertise that we support both
1973 * symmetric and asymmetric Rx PAUSE. Later, we will
1974 * disable the adapter's ability to send PAUSE frames.
1975 */
1976 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1977 break;
1978 case ixgbe_fc_tx_pause:
1979 /*
1980 * Tx Flow control is enabled, and Rx Flow control is
1981 * disabled by software override.
1982 */
1983 reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
1984 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
1985 break;
1986 case ixgbe_fc_full:
1987 /* Flow control (both Rx and Tx) is enabled by SW override. */
1988 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1989 break;
1990 #ifdef CONFIG_DCB
1991 case ixgbe_fc_pfc:
1992 goto out;
1993 break;
1994 #endif /* CONFIG_DCB */
1995 default:
1996 hw_dbg(hw, "Flow control param set incorrectly\n");
1997 ret_val = IXGBE_ERR_CONFIG;
1998 goto out;
1999 break;
2000 }
2001
2002 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2003 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2004
2005 /* Disable AN timeout */
2006 if (hw->fc.strict_ieee)
2007 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2008
2009 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2010 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2011
2012 /*
2013 * Set up the 10G flow control advertisement registers so the HW
2014 * can do fc autoneg once the cable is plugged in. If we end up
2015 * using 1g instead, this is harmless.
2016 */
2017 reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2018
2019 /*
2020 * The possible values of fc.requested_mode are:
2021 * 0: Flow control is completely disabled
2022 * 1: Rx flow control is enabled (we can receive pause frames,
2023 * but not send pause frames).
2024 * 2: Tx flow control is enabled (we can send pause frames but
2025 * we do not support receiving pause frames).
2026 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2027 * other: Invalid.
2028 */
2029 switch (hw->fc.requested_mode) {
2030 case ixgbe_fc_none:
2031 /* Flow control completely disabled by software override. */
2032 reg &= ~(IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
2033 break;
2034 case ixgbe_fc_rx_pause:
2035 /*
2036 * Rx Flow control is enabled and Tx Flow control is
2037 * disabled by software override. Since there really
2038 * isn't a way to advertise that we are capable of RX
2039 * Pause ONLY, we will advertise that we support both
2040 * symmetric and asymmetric Rx PAUSE. Later, we will
2041 * disable the adapter's ability to send PAUSE frames.
2042 */
2043 reg |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
2044 break;
2045 case ixgbe_fc_tx_pause:
2046 /*
2047 * Tx Flow control is enabled, and Rx Flow control is
2048 * disabled by software override.
2049 */
2050 reg |= (IXGBE_AUTOC_ASM_PAUSE);
2051 reg &= ~(IXGBE_AUTOC_SYM_PAUSE);
2052 break;
2053 case ixgbe_fc_full:
2054 /* Flow control (both Rx and Tx) is enabled by SW override. */
2055 reg |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
2056 break;
2057 #ifdef CONFIG_DCB
2058 case ixgbe_fc_pfc:
2059 goto out;
2060 break;
2061 #endif /* CONFIG_DCB */
2062 default:
2063 hw_dbg(hw, "Flow control param set incorrectly\n");
2064 ret_val = IXGBE_ERR_CONFIG;
2065 goto out;
2066 break;
2067 }
2068 /*
2069 * AUTOC restart handles negotiation of 1G and 10G. There is
2070 * no need to set the PCS1GCTL register.
2071 */
2072 reg |= IXGBE_AUTOC_AN_RESTART;
2073 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg);
2074 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2075
2076 out:
2077 return ret_val;
2078 }
2079
2080 /**
2081 * ixgbe_disable_pcie_master - Disable PCI-express master access
2082 * @hw: pointer to hardware structure
2083 *
2084 * Disables PCI-Express master access and verifies there are no pending
2085 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2086 * bit hasn't caused the master requests to be disabled, else 0
2087 * is returned signifying master requests disabled.
2088 **/
2089 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2090 {
2091 u32 i;
2092 u32 reg_val;
2093 u32 number_of_queues;
2094 s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2095
2096 /* Disable the receive unit by stopping each queue */
2097 number_of_queues = hw->mac.max_rx_queues;
2098 for (i = 0; i < number_of_queues; i++) {
2099 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
2100 if (reg_val & IXGBE_RXDCTL_ENABLE) {
2101 reg_val &= ~IXGBE_RXDCTL_ENABLE;
2102 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
2103 }
2104 }
2105
2106 reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
2107 reg_val |= IXGBE_CTRL_GIO_DIS;
2108 IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
2109
2110 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2111 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
2112 status = 0;
2113 break;
2114 }
2115 udelay(100);
2116 }
2117
2118 return status;
2119 }
2120
2121
2122 /**
2123 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2124 * @hw: pointer to hardware structure
2125 * @mask: Mask to specify which semaphore to acquire
2126 *
2127 * Acquires the SWFW semaphore thought the GSSR register for the specified
2128 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2129 **/
2130 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2131 {
2132 u32 gssr;
2133 u32 swmask = mask;
2134 u32 fwmask = mask << 5;
2135 s32 timeout = 200;
2136
2137 while (timeout) {
2138 if (ixgbe_get_eeprom_semaphore(hw))
2139 return IXGBE_ERR_SWFW_SYNC;
2140
2141 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2142 if (!(gssr & (fwmask | swmask)))
2143 break;
2144
2145 /*
2146 * Firmware currently using resource (fwmask) or other software
2147 * thread currently using resource (swmask)
2148 */
2149 ixgbe_release_eeprom_semaphore(hw);
2150 msleep(5);
2151 timeout--;
2152 }
2153
2154 if (!timeout) {
2155 hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
2156 return IXGBE_ERR_SWFW_SYNC;
2157 }
2158
2159 gssr |= swmask;
2160 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2161
2162 ixgbe_release_eeprom_semaphore(hw);
2163 return 0;
2164 }
2165
2166 /**
2167 * ixgbe_release_swfw_sync - Release SWFW semaphore
2168 * @hw: pointer to hardware structure
2169 * @mask: Mask to specify which semaphore to release
2170 *
2171 * Releases the SWFW semaphore thought the GSSR register for the specified
2172 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2173 **/
2174 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2175 {
2176 u32 gssr;
2177 u32 swmask = mask;
2178
2179 ixgbe_get_eeprom_semaphore(hw);
2180
2181 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2182 gssr &= ~swmask;
2183 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2184
2185 ixgbe_release_eeprom_semaphore(hw);
2186 }
2187
2188 /**
2189 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2190 * @hw: pointer to hardware structure
2191 * @regval: register value to write to RXCTRL
2192 *
2193 * Enables the Rx DMA unit
2194 **/
2195 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2196 {
2197 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2198
2199 return 0;
2200 }
2201
2202 /**
2203 * ixgbe_blink_led_start_generic - Blink LED based on index.
2204 * @hw: pointer to hardware structure
2205 * @index: led number to blink
2206 **/
2207 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2208 {
2209 ixgbe_link_speed speed = 0;
2210 bool link_up = 0;
2211 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2212 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2213
2214 /*
2215 * Link must be up to auto-blink the LEDs;
2216 * Force it if link is down.
2217 */
2218 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2219
2220 if (!link_up) {
2221 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2222 autoc_reg |= IXGBE_AUTOC_FLU;
2223 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2224 msleep(10);
2225 }
2226
2227 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2228 led_reg |= IXGBE_LED_BLINK(index);
2229 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2230 IXGBE_WRITE_FLUSH(hw);
2231
2232 return 0;
2233 }
2234
2235 /**
2236 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2237 * @hw: pointer to hardware structure
2238 * @index: led number to stop blinking
2239 **/
2240 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2241 {
2242 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2243 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2244
2245 autoc_reg &= ~IXGBE_AUTOC_FLU;
2246 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2247 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2248
2249 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2250 led_reg &= ~IXGBE_LED_BLINK(index);
2251 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2252 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2253 IXGBE_WRITE_FLUSH(hw);
2254
2255 return 0;
2256 }
This page took 0.079561 seconds and 5 git commands to generate.