drivers/net: request_irq - Remove unnecessary leading & from second arg
[deliverable/linux.git] / drivers / net / korina.c
1 /*
2 * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3 *
4 * Copyright 2004 IDT Inc. (rischelp@idt.com)
5 * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6 * Copyright 2008 Florian Fainelli <florian@openwrt.org>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
14 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
16 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
19 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
27 *
28 * Writing to a DMA status register:
29 *
30 * When writing to the status register, you should mask the bit you have
31 * been testing the status register with. Both Tx and Rx DMA registers
32 * should stick to this procedure.
33 */
34
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
56
57 #include <asm/bootinfo.h>
58 #include <asm/system.h>
59 #include <asm/bitops.h>
60 #include <asm/pgtable.h>
61 #include <asm/segment.h>
62 #include <asm/io.h>
63 #include <asm/dma.h>
64
65 #include <asm/mach-rc32434/rb.h>
66 #include <asm/mach-rc32434/rc32434.h>
67 #include <asm/mach-rc32434/eth.h>
68 #include <asm/mach-rc32434/dma_v.h>
69
70 #define DRV_NAME "korina"
71 #define DRV_VERSION "0.10"
72 #define DRV_RELDATE "04Mar2008"
73
74 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
75 ((dev)->dev_addr[1]))
76 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
77 ((dev)->dev_addr[3] << 16) | \
78 ((dev)->dev_addr[4] << 8) | \
79 ((dev)->dev_addr[5]))
80
81 #define MII_CLOCK 1250000 /* no more than 2.5MHz */
82
83 /* the following must be powers of two */
84 #define KORINA_NUM_RDS 64 /* number of receive descriptors */
85 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
86
87 /* KORINA_RBSIZE is the hardware's default maximum receive
88 * frame size in bytes. Having this hardcoded means that there
89 * is no support for MTU sizes greater than 1500. */
90 #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
91 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
92 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
93 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
94 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
95
96 #define TX_TIMEOUT (6000 * HZ / 1000)
97
98 enum chain_status { desc_filled, desc_empty };
99 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
100 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
101 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
102
103 /* Information that need to be kept for each board. */
104 struct korina_private {
105 struct eth_regs *eth_regs;
106 struct dma_reg *rx_dma_regs;
107 struct dma_reg *tx_dma_regs;
108 struct dma_desc *td_ring; /* transmit descriptor ring */
109 struct dma_desc *rd_ring; /* receive descriptor ring */
110
111 struct sk_buff *tx_skb[KORINA_NUM_TDS];
112 struct sk_buff *rx_skb[KORINA_NUM_RDS];
113
114 int rx_next_done;
115 int rx_chain_head;
116 int rx_chain_tail;
117 enum chain_status rx_chain_status;
118
119 int tx_next_done;
120 int tx_chain_head;
121 int tx_chain_tail;
122 enum chain_status tx_chain_status;
123 int tx_count;
124 int tx_full;
125
126 int rx_irq;
127 int tx_irq;
128 int ovr_irq;
129 int und_irq;
130
131 spinlock_t lock; /* NIC xmit lock */
132
133 int dma_halt_cnt;
134 int dma_run_cnt;
135 struct napi_struct napi;
136 struct timer_list media_check_timer;
137 struct mii_if_info mii_if;
138 struct net_device *dev;
139 int phy_addr;
140 };
141
142 extern unsigned int idt_cpu_freq;
143
144 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
145 {
146 writel(0, &ch->dmandptr);
147 writel(dma_addr, &ch->dmadptr);
148 }
149
150 static inline void korina_abort_dma(struct net_device *dev,
151 struct dma_reg *ch)
152 {
153 if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
154 writel(0x10, &ch->dmac);
155
156 while (!(readl(&ch->dmas) & DMA_STAT_HALT))
157 dev->trans_start = jiffies;
158
159 writel(0, &ch->dmas);
160 }
161
162 writel(0, &ch->dmadptr);
163 writel(0, &ch->dmandptr);
164 }
165
166 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
167 {
168 writel(dma_addr, &ch->dmandptr);
169 }
170
171 static void korina_abort_tx(struct net_device *dev)
172 {
173 struct korina_private *lp = netdev_priv(dev);
174
175 korina_abort_dma(dev, lp->tx_dma_regs);
176 }
177
178 static void korina_abort_rx(struct net_device *dev)
179 {
180 struct korina_private *lp = netdev_priv(dev);
181
182 korina_abort_dma(dev, lp->rx_dma_regs);
183 }
184
185 static void korina_start_rx(struct korina_private *lp,
186 struct dma_desc *rd)
187 {
188 korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
189 }
190
191 static void korina_chain_rx(struct korina_private *lp,
192 struct dma_desc *rd)
193 {
194 korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
195 }
196
197 /* transmit packet */
198 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
199 {
200 struct korina_private *lp = netdev_priv(dev);
201 unsigned long flags;
202 u32 length;
203 u32 chain_prev, chain_next;
204 struct dma_desc *td;
205
206 spin_lock_irqsave(&lp->lock, flags);
207
208 td = &lp->td_ring[lp->tx_chain_tail];
209
210 /* stop queue when full, drop pkts if queue already full */
211 if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
212 lp->tx_full = 1;
213
214 if (lp->tx_count == (KORINA_NUM_TDS - 2))
215 netif_stop_queue(dev);
216 else {
217 dev->stats.tx_dropped++;
218 dev_kfree_skb_any(skb);
219 spin_unlock_irqrestore(&lp->lock, flags);
220
221 return NETDEV_TX_BUSY;
222 }
223 }
224
225 lp->tx_count++;
226
227 lp->tx_skb[lp->tx_chain_tail] = skb;
228
229 length = skb->len;
230 dma_cache_wback((u32)skb->data, skb->len);
231
232 /* Setup the transmit descriptor. */
233 dma_cache_inv((u32) td, sizeof(*td));
234 td->ca = CPHYSADDR(skb->data);
235 chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
236 chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
237
238 if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
239 if (lp->tx_chain_status == desc_empty) {
240 /* Update tail */
241 td->control = DMA_COUNT(length) |
242 DMA_DESC_COF | DMA_DESC_IOF;
243 /* Move tail */
244 lp->tx_chain_tail = chain_next;
245 /* Write to NDPTR */
246 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
247 &lp->tx_dma_regs->dmandptr);
248 /* Move head to tail */
249 lp->tx_chain_head = lp->tx_chain_tail;
250 } else {
251 /* Update tail */
252 td->control = DMA_COUNT(length) |
253 DMA_DESC_COF | DMA_DESC_IOF;
254 /* Link to prev */
255 lp->td_ring[chain_prev].control &=
256 ~DMA_DESC_COF;
257 /* Link to prev */
258 lp->td_ring[chain_prev].link = CPHYSADDR(td);
259 /* Move tail */
260 lp->tx_chain_tail = chain_next;
261 /* Write to NDPTR */
262 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
263 &(lp->tx_dma_regs->dmandptr));
264 /* Move head to tail */
265 lp->tx_chain_head = lp->tx_chain_tail;
266 lp->tx_chain_status = desc_empty;
267 }
268 } else {
269 if (lp->tx_chain_status == desc_empty) {
270 /* Update tail */
271 td->control = DMA_COUNT(length) |
272 DMA_DESC_COF | DMA_DESC_IOF;
273 /* Move tail */
274 lp->tx_chain_tail = chain_next;
275 lp->tx_chain_status = desc_filled;
276 } else {
277 /* Update tail */
278 td->control = DMA_COUNT(length) |
279 DMA_DESC_COF | DMA_DESC_IOF;
280 lp->td_ring[chain_prev].control &=
281 ~DMA_DESC_COF;
282 lp->td_ring[chain_prev].link = CPHYSADDR(td);
283 lp->tx_chain_tail = chain_next;
284 }
285 }
286 dma_cache_wback((u32) td, sizeof(*td));
287
288 dev->trans_start = jiffies;
289 spin_unlock_irqrestore(&lp->lock, flags);
290
291 return NETDEV_TX_OK;
292 }
293
294 static int mdio_read(struct net_device *dev, int mii_id, int reg)
295 {
296 struct korina_private *lp = netdev_priv(dev);
297 int ret;
298
299 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
300
301 writel(0, &lp->eth_regs->miimcfg);
302 writel(0, &lp->eth_regs->miimcmd);
303 writel(mii_id | reg, &lp->eth_regs->miimaddr);
304 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
305
306 ret = (int)(readl(&lp->eth_regs->miimrdd));
307 return ret;
308 }
309
310 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
311 {
312 struct korina_private *lp = netdev_priv(dev);
313
314 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
315
316 writel(0, &lp->eth_regs->miimcfg);
317 writel(1, &lp->eth_regs->miimcmd);
318 writel(mii_id | reg, &lp->eth_regs->miimaddr);
319 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
320 writel(val, &lp->eth_regs->miimwtd);
321 }
322
323 /* Ethernet Rx DMA interrupt */
324 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
325 {
326 struct net_device *dev = dev_id;
327 struct korina_private *lp = netdev_priv(dev);
328 u32 dmas, dmasm;
329 irqreturn_t retval;
330
331 dmas = readl(&lp->rx_dma_regs->dmas);
332 if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
333 dmasm = readl(&lp->rx_dma_regs->dmasm);
334 writel(dmasm | (DMA_STAT_DONE |
335 DMA_STAT_HALT | DMA_STAT_ERR),
336 &lp->rx_dma_regs->dmasm);
337
338 napi_schedule(&lp->napi);
339
340 if (dmas & DMA_STAT_ERR)
341 printk(KERN_ERR "%s: DMA error\n", dev->name);
342
343 retval = IRQ_HANDLED;
344 } else
345 retval = IRQ_NONE;
346
347 return retval;
348 }
349
350 static int korina_rx(struct net_device *dev, int limit)
351 {
352 struct korina_private *lp = netdev_priv(dev);
353 struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
354 struct sk_buff *skb, *skb_new;
355 u8 *pkt_buf;
356 u32 devcs, pkt_len, dmas;
357 int count;
358
359 dma_cache_inv((u32)rd, sizeof(*rd));
360
361 for (count = 0; count < limit; count++) {
362 skb = lp->rx_skb[lp->rx_next_done];
363 skb_new = NULL;
364
365 devcs = rd->devcs;
366
367 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
368 break;
369
370 /* Update statistics counters */
371 if (devcs & ETH_RX_CRC)
372 dev->stats.rx_crc_errors++;
373 if (devcs & ETH_RX_LOR)
374 dev->stats.rx_length_errors++;
375 if (devcs & ETH_RX_LE)
376 dev->stats.rx_length_errors++;
377 if (devcs & ETH_RX_OVR)
378 dev->stats.rx_over_errors++;
379 if (devcs & ETH_RX_CV)
380 dev->stats.rx_frame_errors++;
381 if (devcs & ETH_RX_CES)
382 dev->stats.rx_length_errors++;
383 if (devcs & ETH_RX_MP)
384 dev->stats.multicast++;
385
386 if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
387 /* check that this is a whole packet
388 * WARNING: DMA_FD bit incorrectly set
389 * in Rc32434 (errata ref #077) */
390 dev->stats.rx_errors++;
391 dev->stats.rx_dropped++;
392 } else if ((devcs & ETH_RX_ROK)) {
393 pkt_len = RCVPKT_LENGTH(devcs);
394
395 /* must be the (first and) last
396 * descriptor then */
397 pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
398
399 /* invalidate the cache */
400 dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
401
402 /* Malloc up new buffer. */
403 skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
404
405 if (!skb_new)
406 break;
407 /* Do not count the CRC */
408 skb_put(skb, pkt_len - 4);
409 skb->protocol = eth_type_trans(skb, dev);
410
411 /* Pass the packet to upper layers */
412 netif_receive_skb(skb);
413 dev->stats.rx_packets++;
414 dev->stats.rx_bytes += pkt_len;
415
416 /* Update the mcast stats */
417 if (devcs & ETH_RX_MP)
418 dev->stats.multicast++;
419
420 lp->rx_skb[lp->rx_next_done] = skb_new;
421 }
422
423 rd->devcs = 0;
424
425 /* Restore descriptor's curr_addr */
426 if (skb_new)
427 rd->ca = CPHYSADDR(skb_new->data);
428 else
429 rd->ca = CPHYSADDR(skb->data);
430
431 rd->control = DMA_COUNT(KORINA_RBSIZE) |
432 DMA_DESC_COD | DMA_DESC_IOD;
433 lp->rd_ring[(lp->rx_next_done - 1) &
434 KORINA_RDS_MASK].control &=
435 ~DMA_DESC_COD;
436
437 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
438 dma_cache_wback((u32)rd, sizeof(*rd));
439 rd = &lp->rd_ring[lp->rx_next_done];
440 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
441 }
442
443 dmas = readl(&lp->rx_dma_regs->dmas);
444
445 if (dmas & DMA_STAT_HALT) {
446 writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
447 &lp->rx_dma_regs->dmas);
448
449 lp->dma_halt_cnt++;
450 rd->devcs = 0;
451 skb = lp->rx_skb[lp->rx_next_done];
452 rd->ca = CPHYSADDR(skb->data);
453 dma_cache_wback((u32)rd, sizeof(*rd));
454 korina_chain_rx(lp, rd);
455 }
456
457 return count;
458 }
459
460 static int korina_poll(struct napi_struct *napi, int budget)
461 {
462 struct korina_private *lp =
463 container_of(napi, struct korina_private, napi);
464 struct net_device *dev = lp->dev;
465 int work_done;
466
467 work_done = korina_rx(dev, budget);
468 if (work_done < budget) {
469 napi_complete(napi);
470
471 writel(readl(&lp->rx_dma_regs->dmasm) &
472 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
473 &lp->rx_dma_regs->dmasm);
474 }
475 return work_done;
476 }
477
478 /*
479 * Set or clear the multicast filter for this adaptor.
480 */
481 static void korina_multicast_list(struct net_device *dev)
482 {
483 struct korina_private *lp = netdev_priv(dev);
484 unsigned long flags;
485 struct dev_mc_list *dmi = dev->mc_list;
486 u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
487 int i;
488
489 /* Set promiscuous mode */
490 if (dev->flags & IFF_PROMISC)
491 recognise |= ETH_ARC_PRO;
492
493 else if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 4))
494 /* All multicast and broadcast */
495 recognise |= ETH_ARC_AM;
496
497 /* Build the hash table */
498 if (dev->mc_count > 4) {
499 u16 hash_table[4];
500 u32 crc;
501
502 for (i = 0; i < 4; i++)
503 hash_table[i] = 0;
504
505 for (i = 0; i < dev->mc_count; i++) {
506 char *addrs = dmi->dmi_addr;
507
508 dmi = dmi->next;
509
510 if (!(*addrs & 1))
511 continue;
512
513 crc = ether_crc_le(6, addrs);
514 crc >>= 26;
515 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
516 }
517 /* Accept filtered multicast */
518 recognise |= ETH_ARC_AFM;
519
520 /* Fill the MAC hash tables with their values */
521 writel((u32)(hash_table[1] << 16 | hash_table[0]),
522 &lp->eth_regs->ethhash0);
523 writel((u32)(hash_table[3] << 16 | hash_table[2]),
524 &lp->eth_regs->ethhash1);
525 }
526
527 spin_lock_irqsave(&lp->lock, flags);
528 writel(recognise, &lp->eth_regs->etharc);
529 spin_unlock_irqrestore(&lp->lock, flags);
530 }
531
532 static void korina_tx(struct net_device *dev)
533 {
534 struct korina_private *lp = netdev_priv(dev);
535 struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
536 u32 devcs;
537 u32 dmas;
538
539 spin_lock(&lp->lock);
540
541 /* Process all desc that are done */
542 while (IS_DMA_FINISHED(td->control)) {
543 if (lp->tx_full == 1) {
544 netif_wake_queue(dev);
545 lp->tx_full = 0;
546 }
547
548 devcs = lp->td_ring[lp->tx_next_done].devcs;
549 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
550 (ETH_TX_FD | ETH_TX_LD)) {
551 dev->stats.tx_errors++;
552 dev->stats.tx_dropped++;
553
554 /* Should never happen */
555 printk(KERN_ERR "%s: split tx ignored\n",
556 dev->name);
557 } else if (devcs & ETH_TX_TOK) {
558 dev->stats.tx_packets++;
559 dev->stats.tx_bytes +=
560 lp->tx_skb[lp->tx_next_done]->len;
561 } else {
562 dev->stats.tx_errors++;
563 dev->stats.tx_dropped++;
564
565 /* Underflow */
566 if (devcs & ETH_TX_UND)
567 dev->stats.tx_fifo_errors++;
568
569 /* Oversized frame */
570 if (devcs & ETH_TX_OF)
571 dev->stats.tx_aborted_errors++;
572
573 /* Excessive deferrals */
574 if (devcs & ETH_TX_ED)
575 dev->stats.tx_carrier_errors++;
576
577 /* Collisions: medium busy */
578 if (devcs & ETH_TX_EC)
579 dev->stats.collisions++;
580
581 /* Late collision */
582 if (devcs & ETH_TX_LC)
583 dev->stats.tx_window_errors++;
584 }
585
586 /* We must always free the original skb */
587 if (lp->tx_skb[lp->tx_next_done]) {
588 dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
589 lp->tx_skb[lp->tx_next_done] = NULL;
590 }
591
592 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
593 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
594 lp->td_ring[lp->tx_next_done].link = 0;
595 lp->td_ring[lp->tx_next_done].ca = 0;
596 lp->tx_count--;
597
598 /* Go on to next transmission */
599 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
600 td = &lp->td_ring[lp->tx_next_done];
601
602 }
603
604 /* Clear the DMA status register */
605 dmas = readl(&lp->tx_dma_regs->dmas);
606 writel(~dmas, &lp->tx_dma_regs->dmas);
607
608 writel(readl(&lp->tx_dma_regs->dmasm) &
609 ~(DMA_STAT_FINI | DMA_STAT_ERR),
610 &lp->tx_dma_regs->dmasm);
611
612 spin_unlock(&lp->lock);
613 }
614
615 static irqreturn_t
616 korina_tx_dma_interrupt(int irq, void *dev_id)
617 {
618 struct net_device *dev = dev_id;
619 struct korina_private *lp = netdev_priv(dev);
620 u32 dmas, dmasm;
621 irqreturn_t retval;
622
623 dmas = readl(&lp->tx_dma_regs->dmas);
624
625 if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
626 dmasm = readl(&lp->tx_dma_regs->dmasm);
627 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
628 &lp->tx_dma_regs->dmasm);
629
630 korina_tx(dev);
631
632 if (lp->tx_chain_status == desc_filled &&
633 (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
634 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
635 &(lp->tx_dma_regs->dmandptr));
636 lp->tx_chain_status = desc_empty;
637 lp->tx_chain_head = lp->tx_chain_tail;
638 dev->trans_start = jiffies;
639 }
640 if (dmas & DMA_STAT_ERR)
641 printk(KERN_ERR "%s: DMA error\n", dev->name);
642
643 retval = IRQ_HANDLED;
644 } else
645 retval = IRQ_NONE;
646
647 return retval;
648 }
649
650
651 static void korina_check_media(struct net_device *dev, unsigned int init_media)
652 {
653 struct korina_private *lp = netdev_priv(dev);
654
655 mii_check_media(&lp->mii_if, 0, init_media);
656
657 if (lp->mii_if.full_duplex)
658 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
659 &lp->eth_regs->ethmac2);
660 else
661 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
662 &lp->eth_regs->ethmac2);
663 }
664
665 static void korina_poll_media(unsigned long data)
666 {
667 struct net_device *dev = (struct net_device *) data;
668 struct korina_private *lp = netdev_priv(dev);
669
670 korina_check_media(dev, 0);
671 mod_timer(&lp->media_check_timer, jiffies + HZ);
672 }
673
674 static void korina_set_carrier(struct mii_if_info *mii)
675 {
676 if (mii->force_media) {
677 /* autoneg is off: Link is always assumed to be up */
678 if (!netif_carrier_ok(mii->dev))
679 netif_carrier_on(mii->dev);
680 } else /* Let MMI library update carrier status */
681 korina_check_media(mii->dev, 0);
682 }
683
684 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
685 {
686 struct korina_private *lp = netdev_priv(dev);
687 struct mii_ioctl_data *data = if_mii(rq);
688 int rc;
689
690 if (!netif_running(dev))
691 return -EINVAL;
692 spin_lock_irq(&lp->lock);
693 rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
694 spin_unlock_irq(&lp->lock);
695 korina_set_carrier(&lp->mii_if);
696
697 return rc;
698 }
699
700 /* ethtool helpers */
701 static void netdev_get_drvinfo(struct net_device *dev,
702 struct ethtool_drvinfo *info)
703 {
704 struct korina_private *lp = netdev_priv(dev);
705
706 strcpy(info->driver, DRV_NAME);
707 strcpy(info->version, DRV_VERSION);
708 strcpy(info->bus_info, lp->dev->name);
709 }
710
711 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
712 {
713 struct korina_private *lp = netdev_priv(dev);
714 int rc;
715
716 spin_lock_irq(&lp->lock);
717 rc = mii_ethtool_gset(&lp->mii_if, cmd);
718 spin_unlock_irq(&lp->lock);
719
720 return rc;
721 }
722
723 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
724 {
725 struct korina_private *lp = netdev_priv(dev);
726 int rc;
727
728 spin_lock_irq(&lp->lock);
729 rc = mii_ethtool_sset(&lp->mii_if, cmd);
730 spin_unlock_irq(&lp->lock);
731 korina_set_carrier(&lp->mii_if);
732
733 return rc;
734 }
735
736 static u32 netdev_get_link(struct net_device *dev)
737 {
738 struct korina_private *lp = netdev_priv(dev);
739
740 return mii_link_ok(&lp->mii_if);
741 }
742
743 static const struct ethtool_ops netdev_ethtool_ops = {
744 .get_drvinfo = netdev_get_drvinfo,
745 .get_settings = netdev_get_settings,
746 .set_settings = netdev_set_settings,
747 .get_link = netdev_get_link,
748 };
749
750 static int korina_alloc_ring(struct net_device *dev)
751 {
752 struct korina_private *lp = netdev_priv(dev);
753 struct sk_buff *skb;
754 int i;
755
756 /* Initialize the transmit descriptors */
757 for (i = 0; i < KORINA_NUM_TDS; i++) {
758 lp->td_ring[i].control = DMA_DESC_IOF;
759 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
760 lp->td_ring[i].ca = 0;
761 lp->td_ring[i].link = 0;
762 }
763 lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
764 lp->tx_full = lp->tx_count = 0;
765 lp->tx_chain_status = desc_empty;
766
767 /* Initialize the receive descriptors */
768 for (i = 0; i < KORINA_NUM_RDS; i++) {
769 skb = dev_alloc_skb(KORINA_RBSIZE + 2);
770 if (!skb)
771 return -ENOMEM;
772 skb_reserve(skb, 2);
773 lp->rx_skb[i] = skb;
774 lp->rd_ring[i].control = DMA_DESC_IOD |
775 DMA_COUNT(KORINA_RBSIZE);
776 lp->rd_ring[i].devcs = 0;
777 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
778 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
779 }
780
781 /* loop back receive descriptors, so the last
782 * descriptor points to the first one */
783 lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
784 lp->rd_ring[i - 1].control |= DMA_DESC_COD;
785
786 lp->rx_next_done = 0;
787 lp->rx_chain_head = 0;
788 lp->rx_chain_tail = 0;
789 lp->rx_chain_status = desc_empty;
790
791 return 0;
792 }
793
794 static void korina_free_ring(struct net_device *dev)
795 {
796 struct korina_private *lp = netdev_priv(dev);
797 int i;
798
799 for (i = 0; i < KORINA_NUM_RDS; i++) {
800 lp->rd_ring[i].control = 0;
801 if (lp->rx_skb[i])
802 dev_kfree_skb_any(lp->rx_skb[i]);
803 lp->rx_skb[i] = NULL;
804 }
805
806 for (i = 0; i < KORINA_NUM_TDS; i++) {
807 lp->td_ring[i].control = 0;
808 if (lp->tx_skb[i])
809 dev_kfree_skb_any(lp->tx_skb[i]);
810 lp->tx_skb[i] = NULL;
811 }
812 }
813
814 /*
815 * Initialize the RC32434 ethernet controller.
816 */
817 static int korina_init(struct net_device *dev)
818 {
819 struct korina_private *lp = netdev_priv(dev);
820
821 /* Disable DMA */
822 korina_abort_tx(dev);
823 korina_abort_rx(dev);
824
825 /* reset ethernet logic */
826 writel(0, &lp->eth_regs->ethintfc);
827 while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
828 dev->trans_start = jiffies;
829
830 /* Enable Ethernet Interface */
831 writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
832
833 /* Allocate rings */
834 if (korina_alloc_ring(dev)) {
835 printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
836 korina_free_ring(dev);
837 return -ENOMEM;
838 }
839
840 writel(0, &lp->rx_dma_regs->dmas);
841 /* Start Rx DMA */
842 korina_start_rx(lp, &lp->rd_ring[0]);
843
844 writel(readl(&lp->tx_dma_regs->dmasm) &
845 ~(DMA_STAT_FINI | DMA_STAT_ERR),
846 &lp->tx_dma_regs->dmasm);
847 writel(readl(&lp->rx_dma_regs->dmasm) &
848 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
849 &lp->rx_dma_regs->dmasm);
850
851 /* Accept only packets destined for this Ethernet device address */
852 writel(ETH_ARC_AB, &lp->eth_regs->etharc);
853
854 /* Set all Ether station address registers to their initial values */
855 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
856 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
857
858 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
859 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
860
861 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
862 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
863
864 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
865 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
866
867
868 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
869 writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
870 &lp->eth_regs->ethmac2);
871
872 /* Back to back inter-packet-gap */
873 writel(0x15, &lp->eth_regs->ethipgt);
874 /* Non - Back to back inter-packet-gap */
875 writel(0x12, &lp->eth_regs->ethipgr);
876
877 /* Management Clock Prescaler Divisor
878 * Clock independent setting */
879 writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
880 &lp->eth_regs->ethmcp);
881
882 /* don't transmit until fifo contains 48b */
883 writel(48, &lp->eth_regs->ethfifott);
884
885 writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
886
887 napi_enable(&lp->napi);
888 netif_start_queue(dev);
889
890 return 0;
891 }
892
893 /*
894 * Restart the RC32434 ethernet controller.
895 * FIXME: check the return status where we call it
896 */
897 static int korina_restart(struct net_device *dev)
898 {
899 struct korina_private *lp = netdev_priv(dev);
900 int ret;
901
902 /*
903 * Disable interrupts
904 */
905 disable_irq(lp->rx_irq);
906 disable_irq(lp->tx_irq);
907 disable_irq(lp->ovr_irq);
908 disable_irq(lp->und_irq);
909
910 writel(readl(&lp->tx_dma_regs->dmasm) |
911 DMA_STAT_FINI | DMA_STAT_ERR,
912 &lp->tx_dma_regs->dmasm);
913 writel(readl(&lp->rx_dma_regs->dmasm) |
914 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
915 &lp->rx_dma_regs->dmasm);
916
917 korina_free_ring(dev);
918
919 napi_disable(&lp->napi);
920
921 ret = korina_init(dev);
922 if (ret < 0) {
923 printk(KERN_ERR "%s: cannot restart device\n", dev->name);
924 return ret;
925 }
926 korina_multicast_list(dev);
927
928 enable_irq(lp->und_irq);
929 enable_irq(lp->ovr_irq);
930 enable_irq(lp->tx_irq);
931 enable_irq(lp->rx_irq);
932
933 return ret;
934 }
935
936 static void korina_clear_and_restart(struct net_device *dev, u32 value)
937 {
938 struct korina_private *lp = netdev_priv(dev);
939
940 netif_stop_queue(dev);
941 writel(value, &lp->eth_regs->ethintfc);
942 korina_restart(dev);
943 }
944
945 /* Ethernet Tx Underflow interrupt */
946 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
947 {
948 struct net_device *dev = dev_id;
949 struct korina_private *lp = netdev_priv(dev);
950 unsigned int und;
951
952 spin_lock(&lp->lock);
953
954 und = readl(&lp->eth_regs->ethintfc);
955
956 if (und & ETH_INT_FC_UND)
957 korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
958
959 spin_unlock(&lp->lock);
960
961 return IRQ_HANDLED;
962 }
963
964 static void korina_tx_timeout(struct net_device *dev)
965 {
966 struct korina_private *lp = netdev_priv(dev);
967 unsigned long flags;
968
969 spin_lock_irqsave(&lp->lock, flags);
970 korina_restart(dev);
971 spin_unlock_irqrestore(&lp->lock, flags);
972 }
973
974 /* Ethernet Rx Overflow interrupt */
975 static irqreturn_t
976 korina_ovr_interrupt(int irq, void *dev_id)
977 {
978 struct net_device *dev = dev_id;
979 struct korina_private *lp = netdev_priv(dev);
980 unsigned int ovr;
981
982 spin_lock(&lp->lock);
983 ovr = readl(&lp->eth_regs->ethintfc);
984
985 if (ovr & ETH_INT_FC_OVR)
986 korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
987
988 spin_unlock(&lp->lock);
989
990 return IRQ_HANDLED;
991 }
992
993 #ifdef CONFIG_NET_POLL_CONTROLLER
994 static void korina_poll_controller(struct net_device *dev)
995 {
996 disable_irq(dev->irq);
997 korina_tx_dma_interrupt(dev->irq, dev);
998 enable_irq(dev->irq);
999 }
1000 #endif
1001
1002 static int korina_open(struct net_device *dev)
1003 {
1004 struct korina_private *lp = netdev_priv(dev);
1005 int ret;
1006
1007 /* Initialize */
1008 ret = korina_init(dev);
1009 if (ret < 0) {
1010 printk(KERN_ERR "%s: cannot open device\n", dev->name);
1011 goto out;
1012 }
1013
1014 /* Install the interrupt handler
1015 * that handles the Done Finished
1016 * Ovr and Und Events */
1017 ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1018 IRQF_DISABLED, "Korina ethernet Rx", dev);
1019 if (ret < 0) {
1020 printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1021 dev->name, lp->rx_irq);
1022 goto err_release;
1023 }
1024 ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1025 IRQF_DISABLED, "Korina ethernet Tx", dev);
1026 if (ret < 0) {
1027 printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1028 dev->name, lp->tx_irq);
1029 goto err_free_rx_irq;
1030 }
1031
1032 /* Install handler for overrun error. */
1033 ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
1034 IRQF_DISABLED, "Ethernet Overflow", dev);
1035 if (ret < 0) {
1036 printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
1037 dev->name, lp->ovr_irq);
1038 goto err_free_tx_irq;
1039 }
1040
1041 /* Install handler for underflow error. */
1042 ret = request_irq(lp->und_irq, korina_und_interrupt,
1043 IRQF_DISABLED, "Ethernet Underflow", dev);
1044 if (ret < 0) {
1045 printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
1046 dev->name, lp->und_irq);
1047 goto err_free_ovr_irq;
1048 }
1049 mod_timer(&lp->media_check_timer, jiffies + 1);
1050 out:
1051 return ret;
1052
1053 err_free_ovr_irq:
1054 free_irq(lp->ovr_irq, dev);
1055 err_free_tx_irq:
1056 free_irq(lp->tx_irq, dev);
1057 err_free_rx_irq:
1058 free_irq(lp->rx_irq, dev);
1059 err_release:
1060 korina_free_ring(dev);
1061 goto out;
1062 }
1063
1064 static int korina_close(struct net_device *dev)
1065 {
1066 struct korina_private *lp = netdev_priv(dev);
1067 u32 tmp;
1068
1069 del_timer(&lp->media_check_timer);
1070
1071 /* Disable interrupts */
1072 disable_irq(lp->rx_irq);
1073 disable_irq(lp->tx_irq);
1074 disable_irq(lp->ovr_irq);
1075 disable_irq(lp->und_irq);
1076
1077 korina_abort_tx(dev);
1078 tmp = readl(&lp->tx_dma_regs->dmasm);
1079 tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1080 writel(tmp, &lp->tx_dma_regs->dmasm);
1081
1082 korina_abort_rx(dev);
1083 tmp = readl(&lp->rx_dma_regs->dmasm);
1084 tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1085 writel(tmp, &lp->rx_dma_regs->dmasm);
1086
1087 korina_free_ring(dev);
1088
1089 napi_disable(&lp->napi);
1090
1091 free_irq(lp->rx_irq, dev);
1092 free_irq(lp->tx_irq, dev);
1093 free_irq(lp->ovr_irq, dev);
1094 free_irq(lp->und_irq, dev);
1095
1096 return 0;
1097 }
1098
1099 static const struct net_device_ops korina_netdev_ops = {
1100 .ndo_open = korina_open,
1101 .ndo_stop = korina_close,
1102 .ndo_start_xmit = korina_send_packet,
1103 .ndo_set_multicast_list = korina_multicast_list,
1104 .ndo_tx_timeout = korina_tx_timeout,
1105 .ndo_do_ioctl = korina_ioctl,
1106 .ndo_change_mtu = eth_change_mtu,
1107 .ndo_validate_addr = eth_validate_addr,
1108 .ndo_set_mac_address = eth_mac_addr,
1109 #ifdef CONFIG_NET_POLL_CONTROLLER
1110 .ndo_poll_controller = korina_poll_controller,
1111 #endif
1112 };
1113
1114 static int korina_probe(struct platform_device *pdev)
1115 {
1116 struct korina_device *bif = platform_get_drvdata(pdev);
1117 struct korina_private *lp;
1118 struct net_device *dev;
1119 struct resource *r;
1120 int rc;
1121
1122 dev = alloc_etherdev(sizeof(struct korina_private));
1123 if (!dev) {
1124 printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
1125 return -ENOMEM;
1126 }
1127 SET_NETDEV_DEV(dev, &pdev->dev);
1128 lp = netdev_priv(dev);
1129
1130 bif->dev = dev;
1131 memcpy(dev->dev_addr, bif->mac, 6);
1132
1133 lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1134 lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1135 lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1136 lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1137
1138 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1139 dev->base_addr = r->start;
1140 lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
1141 if (!lp->eth_regs) {
1142 printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1143 rc = -ENXIO;
1144 goto probe_err_out;
1145 }
1146
1147 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1148 lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
1149 if (!lp->rx_dma_regs) {
1150 printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1151 rc = -ENXIO;
1152 goto probe_err_dma_rx;
1153 }
1154
1155 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1156 lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
1157 if (!lp->tx_dma_regs) {
1158 printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1159 rc = -ENXIO;
1160 goto probe_err_dma_tx;
1161 }
1162
1163 lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1164 if (!lp->td_ring) {
1165 printk(KERN_ERR DRV_NAME ": cannot allocate descriptors\n");
1166 rc = -ENXIO;
1167 goto probe_err_td_ring;
1168 }
1169
1170 dma_cache_inv((unsigned long)(lp->td_ring),
1171 TD_RING_SIZE + RD_RING_SIZE);
1172
1173 /* now convert TD_RING pointer to KSEG1 */
1174 lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1175 lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1176
1177 spin_lock_init(&lp->lock);
1178 /* just use the rx dma irq */
1179 dev->irq = lp->rx_irq;
1180 lp->dev = dev;
1181
1182 dev->netdev_ops = &korina_netdev_ops;
1183 dev->ethtool_ops = &netdev_ethtool_ops;
1184 dev->watchdog_timeo = TX_TIMEOUT;
1185 netif_napi_add(dev, &lp->napi, korina_poll, 64);
1186
1187 lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1188 lp->mii_if.dev = dev;
1189 lp->mii_if.mdio_read = mdio_read;
1190 lp->mii_if.mdio_write = mdio_write;
1191 lp->mii_if.phy_id = lp->phy_addr;
1192 lp->mii_if.phy_id_mask = 0x1f;
1193 lp->mii_if.reg_num_mask = 0x1f;
1194
1195 rc = register_netdev(dev);
1196 if (rc < 0) {
1197 printk(KERN_ERR DRV_NAME
1198 ": cannot register net device: %d\n", rc);
1199 goto probe_err_register;
1200 }
1201 setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
1202
1203 printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1204 dev->name);
1205 out:
1206 return rc;
1207
1208 probe_err_register:
1209 kfree(lp->td_ring);
1210 probe_err_td_ring:
1211 iounmap(lp->tx_dma_regs);
1212 probe_err_dma_tx:
1213 iounmap(lp->rx_dma_regs);
1214 probe_err_dma_rx:
1215 iounmap(lp->eth_regs);
1216 probe_err_out:
1217 free_netdev(dev);
1218 goto out;
1219 }
1220
1221 static int korina_remove(struct platform_device *pdev)
1222 {
1223 struct korina_device *bif = platform_get_drvdata(pdev);
1224 struct korina_private *lp = netdev_priv(bif->dev);
1225
1226 iounmap(lp->eth_regs);
1227 iounmap(lp->rx_dma_regs);
1228 iounmap(lp->tx_dma_regs);
1229
1230 platform_set_drvdata(pdev, NULL);
1231 unregister_netdev(bif->dev);
1232 free_netdev(bif->dev);
1233
1234 return 0;
1235 }
1236
1237 static struct platform_driver korina_driver = {
1238 .driver.name = "korina",
1239 .probe = korina_probe,
1240 .remove = korina_remove,
1241 };
1242
1243 static int __init korina_init_module(void)
1244 {
1245 return platform_driver_register(&korina_driver);
1246 }
1247
1248 static void korina_cleanup_module(void)
1249 {
1250 return platform_driver_unregister(&korina_driver);
1251 }
1252
1253 module_init(korina_init_module);
1254 module_exit(korina_cleanup_module);
1255
1256 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1257 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1258 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1259 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1260 MODULE_LICENSE("GPL");
This page took 0.058446 seconds and 5 git commands to generate.