[NET] drivers/net: statistics cleanup #1 -- save memory and shrink code
[deliverable/linux.git] / drivers / net / mv643xx_eth.c
1 /*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2006 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/in.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/etherdevice.h>
40
41 #include <linux/bitops.h>
42 #include <linux/delay.h>
43 #include <linux/ethtool.h>
44 #include <linux/platform_device.h>
45
46 #include <asm/io.h>
47 #include <asm/types.h>
48 #include <asm/pgtable.h>
49 #include <asm/system.h>
50 #include <asm/delay.h>
51 #include "mv643xx_eth.h"
52
53 /* Static function declarations */
54 static void eth_port_uc_addr_get(unsigned int port_num, unsigned char *p_addr);
55 static void eth_port_uc_addr_set(unsigned int port_num, unsigned char *p_addr);
56 static void eth_port_set_multicast_list(struct net_device *);
57 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
58 unsigned int queues);
59 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
60 unsigned int queues);
61 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
62 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
63 static int mv643xx_eth_open(struct net_device *);
64 static int mv643xx_eth_stop(struct net_device *);
65 static int mv643xx_eth_change_mtu(struct net_device *, int);
66 static void eth_port_init_mac_tables(unsigned int eth_port_num);
67 #ifdef MV643XX_NAPI
68 static int mv643xx_poll(struct napi_struct *napi, int budget);
69 #endif
70 static int ethernet_phy_get(unsigned int eth_port_num);
71 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
72 static int ethernet_phy_detect(unsigned int eth_port_num);
73 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
74 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
75 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
76 static const struct ethtool_ops mv643xx_ethtool_ops;
77
78 static char mv643xx_driver_name[] = "mv643xx_eth";
79 static char mv643xx_driver_version[] = "1.0";
80
81 static void __iomem *mv643xx_eth_shared_base;
82
83 /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
84 static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
85
86 static inline u32 mv_read(int offset)
87 {
88 void __iomem *reg_base;
89
90 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
91
92 return readl(reg_base + offset);
93 }
94
95 static inline void mv_write(int offset, u32 data)
96 {
97 void __iomem *reg_base;
98
99 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
100 writel(data, reg_base + offset);
101 }
102
103 /*
104 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
105 *
106 * Input : pointer to ethernet interface network device structure
107 * new mtu size
108 * Output : 0 upon success, -EINVAL upon failure
109 */
110 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
111 {
112 if ((new_mtu > 9500) || (new_mtu < 64))
113 return -EINVAL;
114
115 dev->mtu = new_mtu;
116 /*
117 * Stop then re-open the interface. This will allocate RX skb's with
118 * the new MTU.
119 * There is a possible danger that the open will not successed, due
120 * to memory is full, which might fail the open function.
121 */
122 if (netif_running(dev)) {
123 mv643xx_eth_stop(dev);
124 if (mv643xx_eth_open(dev))
125 printk(KERN_ERR
126 "%s: Fatal error on opening device\n",
127 dev->name);
128 }
129
130 return 0;
131 }
132
133 /*
134 * mv643xx_eth_rx_refill_descs
135 *
136 * Fills / refills RX queue on a certain gigabit ethernet port
137 *
138 * Input : pointer to ethernet interface network device structure
139 * Output : N/A
140 */
141 static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
142 {
143 struct mv643xx_private *mp = netdev_priv(dev);
144 struct pkt_info pkt_info;
145 struct sk_buff *skb;
146 int unaligned;
147
148 while (mp->rx_desc_count < mp->rx_ring_size) {
149 skb = dev_alloc_skb(ETH_RX_SKB_SIZE + dma_get_cache_alignment());
150 if (!skb)
151 break;
152 mp->rx_desc_count++;
153 unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1);
154 if (unaligned)
155 skb_reserve(skb, dma_get_cache_alignment() - unaligned);
156 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
157 pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
158 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
159 ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
160 pkt_info.return_info = skb;
161 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
162 printk(KERN_ERR
163 "%s: Error allocating RX Ring\n", dev->name);
164 break;
165 }
166 skb_reserve(skb, ETH_HW_IP_ALIGN);
167 }
168 /*
169 * If RX ring is empty of SKB, set a timer to try allocating
170 * again at a later time.
171 */
172 if (mp->rx_desc_count == 0) {
173 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
174 mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
175 add_timer(&mp->timeout);
176 }
177 }
178
179 /*
180 * mv643xx_eth_rx_refill_descs_timer_wrapper
181 *
182 * Timer routine to wake up RX queue filling task. This function is
183 * used only in case the RX queue is empty, and all alloc_skb has
184 * failed (due to out of memory event).
185 *
186 * Input : pointer to ethernet interface network device structure
187 * Output : N/A
188 */
189 static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
190 {
191 mv643xx_eth_rx_refill_descs((struct net_device *)data);
192 }
193
194 /*
195 * mv643xx_eth_update_mac_address
196 *
197 * Update the MAC address of the port in the address table
198 *
199 * Input : pointer to ethernet interface network device structure
200 * Output : N/A
201 */
202 static void mv643xx_eth_update_mac_address(struct net_device *dev)
203 {
204 struct mv643xx_private *mp = netdev_priv(dev);
205 unsigned int port_num = mp->port_num;
206
207 eth_port_init_mac_tables(port_num);
208 eth_port_uc_addr_set(port_num, dev->dev_addr);
209 }
210
211 /*
212 * mv643xx_eth_set_rx_mode
213 *
214 * Change from promiscuos to regular rx mode
215 *
216 * Input : pointer to ethernet interface network device structure
217 * Output : N/A
218 */
219 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
220 {
221 struct mv643xx_private *mp = netdev_priv(dev);
222 u32 config_reg;
223
224 config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num));
225 if (dev->flags & IFF_PROMISC)
226 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
227 else
228 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
229 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), config_reg);
230
231 eth_port_set_multicast_list(dev);
232 }
233
234 /*
235 * mv643xx_eth_set_mac_address
236 *
237 * Change the interface's mac address.
238 * No special hardware thing should be done because interface is always
239 * put in promiscuous mode.
240 *
241 * Input : pointer to ethernet interface network device structure and
242 * a pointer to the designated entry to be added to the cache.
243 * Output : zero upon success, negative upon failure
244 */
245 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
246 {
247 int i;
248
249 for (i = 0; i < 6; i++)
250 /* +2 is for the offset of the HW addr type */
251 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
252 mv643xx_eth_update_mac_address(dev);
253 return 0;
254 }
255
256 /*
257 * mv643xx_eth_tx_timeout
258 *
259 * Called upon a timeout on transmitting a packet
260 *
261 * Input : pointer to ethernet interface network device structure.
262 * Output : N/A
263 */
264 static void mv643xx_eth_tx_timeout(struct net_device *dev)
265 {
266 struct mv643xx_private *mp = netdev_priv(dev);
267
268 printk(KERN_INFO "%s: TX timeout ", dev->name);
269
270 /* Do the reset outside of interrupt context */
271 schedule_work(&mp->tx_timeout_task);
272 }
273
274 /*
275 * mv643xx_eth_tx_timeout_task
276 *
277 * Actual routine to reset the adapter when a timeout on Tx has occurred
278 */
279 static void mv643xx_eth_tx_timeout_task(struct work_struct *ugly)
280 {
281 struct mv643xx_private *mp = container_of(ugly, struct mv643xx_private,
282 tx_timeout_task);
283 struct net_device *dev = mp->mii.dev; /* yuck */
284
285 if (!netif_running(dev))
286 return;
287
288 netif_stop_queue(dev);
289
290 eth_port_reset(mp->port_num);
291 eth_port_start(dev);
292
293 if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
294 netif_wake_queue(dev);
295 }
296
297 /**
298 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
299 *
300 * If force is non-zero, frees uncompleted descriptors as well
301 */
302 int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
303 {
304 struct mv643xx_private *mp = netdev_priv(dev);
305 struct eth_tx_desc *desc;
306 u32 cmd_sts;
307 struct sk_buff *skb;
308 unsigned long flags;
309 int tx_index;
310 dma_addr_t addr;
311 int count;
312 int released = 0;
313
314 while (mp->tx_desc_count > 0) {
315 spin_lock_irqsave(&mp->lock, flags);
316
317 /* tx_desc_count might have changed before acquiring the lock */
318 if (mp->tx_desc_count <= 0) {
319 spin_unlock_irqrestore(&mp->lock, flags);
320 return released;
321 }
322
323 tx_index = mp->tx_used_desc_q;
324 desc = &mp->p_tx_desc_area[tx_index];
325 cmd_sts = desc->cmd_sts;
326
327 if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
328 spin_unlock_irqrestore(&mp->lock, flags);
329 return released;
330 }
331
332 mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
333 mp->tx_desc_count--;
334
335 addr = desc->buf_ptr;
336 count = desc->byte_cnt;
337 skb = mp->tx_skb[tx_index];
338 if (skb)
339 mp->tx_skb[tx_index] = NULL;
340
341 if (cmd_sts & ETH_ERROR_SUMMARY) {
342 printk("%s: Error in TX\n", dev->name);
343 dev->stats.tx_errors++;
344 }
345
346 spin_unlock_irqrestore(&mp->lock, flags);
347
348 if (cmd_sts & ETH_TX_FIRST_DESC)
349 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
350 else
351 dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
352
353 if (skb)
354 dev_kfree_skb_irq(skb);
355
356 released = 1;
357 }
358
359 return released;
360 }
361
362 static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
363 {
364 struct mv643xx_private *mp = netdev_priv(dev);
365
366 if (mv643xx_eth_free_tx_descs(dev, 0) &&
367 mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
368 netif_wake_queue(dev);
369 }
370
371 static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
372 {
373 mv643xx_eth_free_tx_descs(dev, 1);
374 }
375
376 /*
377 * mv643xx_eth_receive
378 *
379 * This function is forward packets that are received from the port's
380 * queues toward kernel core or FastRoute them to another interface.
381 *
382 * Input : dev - a pointer to the required interface
383 * max - maximum number to receive (0 means unlimted)
384 *
385 * Output : number of served packets
386 */
387 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
388 {
389 struct mv643xx_private *mp = netdev_priv(dev);
390 struct net_device_stats *stats = &dev->stats;
391 unsigned int received_packets = 0;
392 struct sk_buff *skb;
393 struct pkt_info pkt_info;
394
395 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
396 dma_unmap_single(NULL, pkt_info.buf_ptr, ETH_RX_SKB_SIZE,
397 DMA_FROM_DEVICE);
398 mp->rx_desc_count--;
399 received_packets++;
400
401 /*
402 * Update statistics.
403 * Note byte count includes 4 byte CRC count
404 */
405 stats->rx_packets++;
406 stats->rx_bytes += pkt_info.byte_cnt;
407 skb = pkt_info.return_info;
408 /*
409 * In case received a packet without first / last bits on OR
410 * the error summary bit is on, the packets needs to be dropeed.
411 */
412 if (((pkt_info.cmd_sts
413 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
414 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
415 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
416 stats->rx_dropped++;
417 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
418 ETH_RX_LAST_DESC)) !=
419 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
420 if (net_ratelimit())
421 printk(KERN_ERR
422 "%s: Received packet spread "
423 "on multiple descriptors\n",
424 dev->name);
425 }
426 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
427 stats->rx_errors++;
428
429 dev_kfree_skb_irq(skb);
430 } else {
431 /*
432 * The -4 is for the CRC in the trailer of the
433 * received packet
434 */
435 skb_put(skb, pkt_info.byte_cnt - 4);
436
437 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
438 skb->ip_summed = CHECKSUM_UNNECESSARY;
439 skb->csum = htons(
440 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
441 }
442 skb->protocol = eth_type_trans(skb, dev);
443 #ifdef MV643XX_NAPI
444 netif_receive_skb(skb);
445 #else
446 netif_rx(skb);
447 #endif
448 }
449 dev->last_rx = jiffies;
450 }
451 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
452
453 return received_packets;
454 }
455
456 /* Set the mv643xx port configuration register for the speed/duplex mode. */
457 static void mv643xx_eth_update_pscr(struct net_device *dev,
458 struct ethtool_cmd *ecmd)
459 {
460 struct mv643xx_private *mp = netdev_priv(dev);
461 int port_num = mp->port_num;
462 u32 o_pscr, n_pscr;
463 unsigned int queues;
464
465 o_pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
466 n_pscr = o_pscr;
467
468 /* clear speed, duplex and rx buffer size fields */
469 n_pscr &= ~(MV643XX_ETH_SET_MII_SPEED_TO_100 |
470 MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
471 MV643XX_ETH_SET_FULL_DUPLEX_MODE |
472 MV643XX_ETH_MAX_RX_PACKET_MASK);
473
474 if (ecmd->duplex == DUPLEX_FULL)
475 n_pscr |= MV643XX_ETH_SET_FULL_DUPLEX_MODE;
476
477 if (ecmd->speed == SPEED_1000)
478 n_pscr |= MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
479 MV643XX_ETH_MAX_RX_PACKET_9700BYTE;
480 else {
481 if (ecmd->speed == SPEED_100)
482 n_pscr |= MV643XX_ETH_SET_MII_SPEED_TO_100;
483 n_pscr |= MV643XX_ETH_MAX_RX_PACKET_1522BYTE;
484 }
485
486 if (n_pscr != o_pscr) {
487 if ((o_pscr & MV643XX_ETH_SERIAL_PORT_ENABLE) == 0)
488 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
489 n_pscr);
490 else {
491 queues = mv643xx_eth_port_disable_tx(port_num);
492
493 o_pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
494 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
495 o_pscr);
496 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
497 n_pscr);
498 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
499 n_pscr);
500 if (queues)
501 mv643xx_eth_port_enable_tx(port_num, queues);
502 }
503 }
504 }
505
506 /*
507 * mv643xx_eth_int_handler
508 *
509 * Main interrupt handler for the gigbit ethernet ports
510 *
511 * Input : irq - irq number (not used)
512 * dev_id - a pointer to the required interface's data structure
513 * regs - not used
514 * Output : N/A
515 */
516
517 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id)
518 {
519 struct net_device *dev = (struct net_device *)dev_id;
520 struct mv643xx_private *mp = netdev_priv(dev);
521 u32 eth_int_cause, eth_int_cause_ext = 0;
522 unsigned int port_num = mp->port_num;
523
524 /* Read interrupt cause registers */
525 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
526 ETH_INT_UNMASK_ALL;
527 if (eth_int_cause & ETH_INT_CAUSE_EXT) {
528 eth_int_cause_ext = mv_read(
529 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
530 ETH_INT_UNMASK_ALL_EXT;
531 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num),
532 ~eth_int_cause_ext);
533 }
534
535 /* PHY status changed */
536 if (eth_int_cause_ext & (ETH_INT_CAUSE_PHY | ETH_INT_CAUSE_STATE)) {
537 struct ethtool_cmd cmd;
538
539 if (mii_link_ok(&mp->mii)) {
540 mii_ethtool_gset(&mp->mii, &cmd);
541 mv643xx_eth_update_pscr(dev, &cmd);
542 mv643xx_eth_port_enable_tx(port_num,
543 ETH_TX_QUEUES_ENABLED);
544 if (!netif_carrier_ok(dev)) {
545 netif_carrier_on(dev);
546 if (mp->tx_ring_size - mp->tx_desc_count >=
547 MAX_DESCS_PER_SKB)
548 netif_wake_queue(dev);
549 }
550 } else if (netif_carrier_ok(dev)) {
551 netif_stop_queue(dev);
552 netif_carrier_off(dev);
553 }
554 }
555
556 #ifdef MV643XX_NAPI
557 if (eth_int_cause & ETH_INT_CAUSE_RX) {
558 /* schedule the NAPI poll routine to maintain port */
559 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
560 ETH_INT_MASK_ALL);
561 /* wait for previous write to complete */
562 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
563
564 netif_rx_schedule(dev, &mp->napi);
565 }
566 #else
567 if (eth_int_cause & ETH_INT_CAUSE_RX)
568 mv643xx_eth_receive_queue(dev, INT_MAX);
569 #endif
570 if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
571 mv643xx_eth_free_completed_tx_descs(dev);
572
573 /*
574 * If no real interrupt occured, exit.
575 * This can happen when using gigE interrupt coalescing mechanism.
576 */
577 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
578 return IRQ_NONE;
579
580 return IRQ_HANDLED;
581 }
582
583 #ifdef MV643XX_COAL
584
585 /*
586 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
587 *
588 * DESCRIPTION:
589 * This routine sets the RX coalescing interrupt mechanism parameter.
590 * This parameter is a timeout counter, that counts in 64 t_clk
591 * chunks ; that when timeout event occurs a maskable interrupt
592 * occurs.
593 * The parameter is calculated using the tClk of the MV-643xx chip
594 * , and the required delay of the interrupt in usec.
595 *
596 * INPUT:
597 * unsigned int eth_port_num Ethernet port number
598 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
599 * unsigned int delay Delay in usec
600 *
601 * OUTPUT:
602 * Interrupt coalescing mechanism value is set in MV-643xx chip.
603 *
604 * RETURN:
605 * The interrupt coalescing value set in the gigE port.
606 *
607 */
608 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
609 unsigned int t_clk, unsigned int delay)
610 {
611 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
612
613 /* Set RX Coalescing mechanism */
614 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
615 ((coal & 0x3fff) << 8) |
616 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
617 & 0xffc000ff));
618
619 return coal;
620 }
621 #endif
622
623 /*
624 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
625 *
626 * DESCRIPTION:
627 * This routine sets the TX coalescing interrupt mechanism parameter.
628 * This parameter is a timeout counter, that counts in 64 t_clk
629 * chunks ; that when timeout event occurs a maskable interrupt
630 * occurs.
631 * The parameter is calculated using the t_cLK frequency of the
632 * MV-643xx chip and the required delay in the interrupt in uSec
633 *
634 * INPUT:
635 * unsigned int eth_port_num Ethernet port number
636 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
637 * unsigned int delay Delay in uSeconds
638 *
639 * OUTPUT:
640 * Interrupt coalescing mechanism value is set in MV-643xx chip.
641 *
642 * RETURN:
643 * The interrupt coalescing value set in the gigE port.
644 *
645 */
646 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
647 unsigned int t_clk, unsigned int delay)
648 {
649 unsigned int coal;
650 coal = ((t_clk / 1000000) * delay) / 64;
651 /* Set TX Coalescing mechanism */
652 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
653 coal << 4);
654 return coal;
655 }
656
657 /*
658 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
659 *
660 * DESCRIPTION:
661 * This function prepares a Rx chained list of descriptors and packet
662 * buffers in a form of a ring. The routine must be called after port
663 * initialization routine and before port start routine.
664 * The Ethernet SDMA engine uses CPU bus addresses to access the various
665 * devices in the system (i.e. DRAM). This function uses the ethernet
666 * struct 'virtual to physical' routine (set by the user) to set the ring
667 * with physical addresses.
668 *
669 * INPUT:
670 * struct mv643xx_private *mp Ethernet Port Control srtuct.
671 *
672 * OUTPUT:
673 * The routine updates the Ethernet port control struct with information
674 * regarding the Rx descriptors and buffers.
675 *
676 * RETURN:
677 * None.
678 */
679 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
680 {
681 volatile struct eth_rx_desc *p_rx_desc;
682 int rx_desc_num = mp->rx_ring_size;
683 int i;
684
685 /* initialize the next_desc_ptr links in the Rx descriptors ring */
686 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
687 for (i = 0; i < rx_desc_num; i++) {
688 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
689 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
690 }
691
692 /* Save Rx desc pointer to driver struct. */
693 mp->rx_curr_desc_q = 0;
694 mp->rx_used_desc_q = 0;
695
696 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
697 }
698
699 /*
700 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
701 *
702 * DESCRIPTION:
703 * This function prepares a Tx chained list of descriptors and packet
704 * buffers in a form of a ring. The routine must be called after port
705 * initialization routine and before port start routine.
706 * The Ethernet SDMA engine uses CPU bus addresses to access the various
707 * devices in the system (i.e. DRAM). This function uses the ethernet
708 * struct 'virtual to physical' routine (set by the user) to set the ring
709 * with physical addresses.
710 *
711 * INPUT:
712 * struct mv643xx_private *mp Ethernet Port Control srtuct.
713 *
714 * OUTPUT:
715 * The routine updates the Ethernet port control struct with information
716 * regarding the Tx descriptors and buffers.
717 *
718 * RETURN:
719 * None.
720 */
721 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
722 {
723 int tx_desc_num = mp->tx_ring_size;
724 struct eth_tx_desc *p_tx_desc;
725 int i;
726
727 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
728 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
729 for (i = 0; i < tx_desc_num; i++) {
730 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
731 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
732 }
733
734 mp->tx_curr_desc_q = 0;
735 mp->tx_used_desc_q = 0;
736
737 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
738 }
739
740 static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
741 {
742 struct mv643xx_private *mp = netdev_priv(dev);
743 int err;
744
745 spin_lock_irq(&mp->lock);
746 err = mii_ethtool_sset(&mp->mii, cmd);
747 spin_unlock_irq(&mp->lock);
748
749 return err;
750 }
751
752 static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
753 {
754 struct mv643xx_private *mp = netdev_priv(dev);
755 int err;
756
757 spin_lock_irq(&mp->lock);
758 err = mii_ethtool_gset(&mp->mii, cmd);
759 spin_unlock_irq(&mp->lock);
760
761 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
762 cmd->supported &= ~SUPPORTED_1000baseT_Half;
763 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
764
765 return err;
766 }
767
768 /*
769 * mv643xx_eth_open
770 *
771 * This function is called when openning the network device. The function
772 * should initialize all the hardware, initialize cyclic Rx/Tx
773 * descriptors chain and buffers and allocate an IRQ to the network
774 * device.
775 *
776 * Input : a pointer to the network device structure
777 *
778 * Output : zero of success , nonzero if fails.
779 */
780
781 static int mv643xx_eth_open(struct net_device *dev)
782 {
783 struct mv643xx_private *mp = netdev_priv(dev);
784 unsigned int port_num = mp->port_num;
785 unsigned int size;
786 int err;
787
788 /* Clear any pending ethernet port interrupts */
789 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
790 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
791 /* wait for previous write to complete */
792 mv_read (MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num));
793
794 err = request_irq(dev->irq, mv643xx_eth_int_handler,
795 IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
796 if (err) {
797 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
798 port_num);
799 return -EAGAIN;
800 }
801
802 eth_port_init(mp);
803
804 memset(&mp->timeout, 0, sizeof(struct timer_list));
805 mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
806 mp->timeout.data = (unsigned long)dev;
807
808 /* Allocate RX and TX skb rings */
809 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
810 GFP_KERNEL);
811 if (!mp->rx_skb) {
812 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
813 err = -ENOMEM;
814 goto out_free_irq;
815 }
816 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
817 GFP_KERNEL);
818 if (!mp->tx_skb) {
819 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
820 err = -ENOMEM;
821 goto out_free_rx_skb;
822 }
823
824 /* Allocate TX ring */
825 mp->tx_desc_count = 0;
826 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
827 mp->tx_desc_area_size = size;
828
829 if (mp->tx_sram_size) {
830 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
831 mp->tx_sram_size);
832 mp->tx_desc_dma = mp->tx_sram_addr;
833 } else
834 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
835 &mp->tx_desc_dma,
836 GFP_KERNEL);
837
838 if (!mp->p_tx_desc_area) {
839 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
840 dev->name, size);
841 err = -ENOMEM;
842 goto out_free_tx_skb;
843 }
844 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
845 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
846
847 ether_init_tx_desc_ring(mp);
848
849 /* Allocate RX ring */
850 mp->rx_desc_count = 0;
851 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
852 mp->rx_desc_area_size = size;
853
854 if (mp->rx_sram_size) {
855 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
856 mp->rx_sram_size);
857 mp->rx_desc_dma = mp->rx_sram_addr;
858 } else
859 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
860 &mp->rx_desc_dma,
861 GFP_KERNEL);
862
863 if (!mp->p_rx_desc_area) {
864 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
865 dev->name, size);
866 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
867 dev->name);
868 if (mp->rx_sram_size)
869 iounmap(mp->p_tx_desc_area);
870 else
871 dma_free_coherent(NULL, mp->tx_desc_area_size,
872 mp->p_tx_desc_area, mp->tx_desc_dma);
873 err = -ENOMEM;
874 goto out_free_tx_skb;
875 }
876 memset((void *)mp->p_rx_desc_area, 0, size);
877
878 ether_init_rx_desc_ring(mp);
879
880 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
881
882 #ifdef MV643XX_NAPI
883 napi_enable(&mp->napi);
884 #endif
885
886 eth_port_start(dev);
887
888 /* Interrupt Coalescing */
889
890 #ifdef MV643XX_COAL
891 mp->rx_int_coal =
892 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
893 #endif
894
895 mp->tx_int_coal =
896 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
897
898 /* Unmask phy and link status changes interrupts */
899 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
900 ETH_INT_UNMASK_ALL_EXT);
901
902 /* Unmask RX buffer and TX end interrupt */
903 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
904
905 return 0;
906
907 out_free_tx_skb:
908 kfree(mp->tx_skb);
909 out_free_rx_skb:
910 kfree(mp->rx_skb);
911 out_free_irq:
912 free_irq(dev->irq, dev);
913
914 return err;
915 }
916
917 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
918 {
919 struct mv643xx_private *mp = netdev_priv(dev);
920
921 /* Stop Tx Queues */
922 mv643xx_eth_port_disable_tx(mp->port_num);
923
924 /* Free outstanding skb's on TX ring */
925 mv643xx_eth_free_all_tx_descs(dev);
926
927 BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
928
929 /* Free TX ring */
930 if (mp->tx_sram_size)
931 iounmap(mp->p_tx_desc_area);
932 else
933 dma_free_coherent(NULL, mp->tx_desc_area_size,
934 mp->p_tx_desc_area, mp->tx_desc_dma);
935 }
936
937 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
938 {
939 struct mv643xx_private *mp = netdev_priv(dev);
940 unsigned int port_num = mp->port_num;
941 int curr;
942
943 /* Stop RX Queues */
944 mv643xx_eth_port_disable_rx(port_num);
945
946 /* Free preallocated skb's on RX rings */
947 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
948 if (mp->rx_skb[curr]) {
949 dev_kfree_skb(mp->rx_skb[curr]);
950 mp->rx_desc_count--;
951 }
952 }
953
954 if (mp->rx_desc_count)
955 printk(KERN_ERR
956 "%s: Error in freeing Rx Ring. %d skb's still"
957 " stuck in RX Ring - ignoring them\n", dev->name,
958 mp->rx_desc_count);
959 /* Free RX ring */
960 if (mp->rx_sram_size)
961 iounmap(mp->p_rx_desc_area);
962 else
963 dma_free_coherent(NULL, mp->rx_desc_area_size,
964 mp->p_rx_desc_area, mp->rx_desc_dma);
965 }
966
967 /*
968 * mv643xx_eth_stop
969 *
970 * This function is used when closing the network device.
971 * It updates the hardware,
972 * release all memory that holds buffers and descriptors and release the IRQ.
973 * Input : a pointer to the device structure
974 * Output : zero if success , nonzero if fails
975 */
976
977 static int mv643xx_eth_stop(struct net_device *dev)
978 {
979 struct mv643xx_private *mp = netdev_priv(dev);
980 unsigned int port_num = mp->port_num;
981
982 /* Mask all interrupts on ethernet port */
983 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
984 /* wait for previous write to complete */
985 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
986
987 #ifdef MV643XX_NAPI
988 napi_disable(&mp->napi);
989 #endif
990 netif_carrier_off(dev);
991 netif_stop_queue(dev);
992
993 eth_port_reset(mp->port_num);
994
995 mv643xx_eth_free_tx_rings(dev);
996 mv643xx_eth_free_rx_rings(dev);
997
998 free_irq(dev->irq, dev);
999
1000 return 0;
1001 }
1002
1003 #ifdef MV643XX_NAPI
1004 /*
1005 * mv643xx_poll
1006 *
1007 * This function is used in case of NAPI
1008 */
1009 static int mv643xx_poll(struct napi_struct *napi, int budget)
1010 {
1011 struct mv643xx_private *mp = container_of(napi, struct mv643xx_private, napi);
1012 struct net_device *dev = mp->dev;
1013 unsigned int port_num = mp->port_num;
1014 int work_done;
1015
1016 #ifdef MV643XX_TX_FAST_REFILL
1017 if (++mp->tx_clean_threshold > 5) {
1018 mv643xx_eth_free_completed_tx_descs(dev);
1019 mp->tx_clean_threshold = 0;
1020 }
1021 #endif
1022
1023 work_done = 0;
1024 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1025 != (u32) mp->rx_used_desc_q)
1026 work_done = mv643xx_eth_receive_queue(dev, budget);
1027
1028 if (work_done < budget) {
1029 netif_rx_complete(dev, napi);
1030 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1031 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1032 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1033 ETH_INT_UNMASK_ALL);
1034 }
1035
1036 return work_done;
1037 }
1038 #endif
1039
1040 /**
1041 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1042 *
1043 * Hardware can't handle unaligned fragments smaller than 9 bytes.
1044 * This helper function detects that case.
1045 */
1046
1047 static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1048 {
1049 unsigned int frag;
1050 skb_frag_t *fragp;
1051
1052 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1053 fragp = &skb_shinfo(skb)->frags[frag];
1054 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1055 return 1;
1056 }
1057 return 0;
1058 }
1059
1060 /**
1061 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1062 */
1063 static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1064 {
1065 int tx_desc_curr;
1066
1067 BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
1068
1069 tx_desc_curr = mp->tx_curr_desc_q;
1070 mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1071
1072 BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1073
1074 return tx_desc_curr;
1075 }
1076
1077 /**
1078 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1079 *
1080 * Ensure the data for each fragment to be transmitted is mapped properly,
1081 * then fill in descriptors in the tx hw queue.
1082 */
1083 static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1084 struct sk_buff *skb)
1085 {
1086 int frag;
1087 int tx_index;
1088 struct eth_tx_desc *desc;
1089
1090 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1091 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1092
1093 tx_index = eth_alloc_tx_desc_index(mp);
1094 desc = &mp->p_tx_desc_area[tx_index];
1095
1096 desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1097 /* Last Frag enables interrupt and frees the skb */
1098 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1099 desc->cmd_sts |= ETH_ZERO_PADDING |
1100 ETH_TX_LAST_DESC |
1101 ETH_TX_ENABLE_INTERRUPT;
1102 mp->tx_skb[tx_index] = skb;
1103 } else
1104 mp->tx_skb[tx_index] = NULL;
1105
1106 desc = &mp->p_tx_desc_area[tx_index];
1107 desc->l4i_chk = 0;
1108 desc->byte_cnt = this_frag->size;
1109 desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1110 this_frag->page_offset,
1111 this_frag->size,
1112 DMA_TO_DEVICE);
1113 }
1114 }
1115
1116 /**
1117 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1118 *
1119 * Ensure the data for an skb to be transmitted is mapped properly,
1120 * then fill in descriptors in the tx hw queue and start the hardware.
1121 */
1122 static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1123 struct sk_buff *skb)
1124 {
1125 int tx_index;
1126 struct eth_tx_desc *desc;
1127 u32 cmd_sts;
1128 int length;
1129 int nr_frags = skb_shinfo(skb)->nr_frags;
1130
1131 cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1132
1133 tx_index = eth_alloc_tx_desc_index(mp);
1134 desc = &mp->p_tx_desc_area[tx_index];
1135
1136 if (nr_frags) {
1137 eth_tx_fill_frag_descs(mp, skb);
1138
1139 length = skb_headlen(skb);
1140 mp->tx_skb[tx_index] = NULL;
1141 } else {
1142 cmd_sts |= ETH_ZERO_PADDING |
1143 ETH_TX_LAST_DESC |
1144 ETH_TX_ENABLE_INTERRUPT;
1145 length = skb->len;
1146 mp->tx_skb[tx_index] = skb;
1147 }
1148
1149 desc->byte_cnt = length;
1150 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1151
1152 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1153 BUG_ON(skb->protocol != ETH_P_IP);
1154
1155 cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1156 ETH_GEN_IP_V_4_CHECKSUM |
1157 ip_hdr(skb)->ihl << ETH_TX_IHL_SHIFT;
1158
1159 switch (ip_hdr(skb)->protocol) {
1160 case IPPROTO_UDP:
1161 cmd_sts |= ETH_UDP_FRAME;
1162 desc->l4i_chk = udp_hdr(skb)->check;
1163 break;
1164 case IPPROTO_TCP:
1165 desc->l4i_chk = tcp_hdr(skb)->check;
1166 break;
1167 default:
1168 BUG();
1169 }
1170 } else {
1171 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1172 cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1173 desc->l4i_chk = 0;
1174 }
1175
1176 /* ensure all other descriptors are written before first cmd_sts */
1177 wmb();
1178 desc->cmd_sts = cmd_sts;
1179
1180 /* ensure all descriptors are written before poking hardware */
1181 wmb();
1182 mv643xx_eth_port_enable_tx(mp->port_num, ETH_TX_QUEUES_ENABLED);
1183
1184 mp->tx_desc_count += nr_frags + 1;
1185 }
1186
1187 /**
1188 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1189 *
1190 */
1191 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1192 {
1193 struct mv643xx_private *mp = netdev_priv(dev);
1194 struct net_device_stats *stats = &dev->stats;
1195 unsigned long flags;
1196
1197 BUG_ON(netif_queue_stopped(dev));
1198 BUG_ON(skb == NULL);
1199
1200 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
1201 printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
1202 netif_stop_queue(dev);
1203 return 1;
1204 }
1205
1206 if (has_tiny_unaligned_frags(skb)) {
1207 if (__skb_linearize(skb)) {
1208 stats->tx_dropped++;
1209 printk(KERN_DEBUG "%s: failed to linearize tiny "
1210 "unaligned fragment\n", dev->name);
1211 return 1;
1212 }
1213 }
1214
1215 spin_lock_irqsave(&mp->lock, flags);
1216
1217 eth_tx_submit_descs_for_skb(mp, skb);
1218 stats->tx_bytes += skb->len;
1219 stats->tx_packets++;
1220 dev->trans_start = jiffies;
1221
1222 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1223 netif_stop_queue(dev);
1224
1225 spin_unlock_irqrestore(&mp->lock, flags);
1226
1227 return 0; /* success */
1228 }
1229
1230 #ifdef CONFIG_NET_POLL_CONTROLLER
1231 static void mv643xx_netpoll(struct net_device *netdev)
1232 {
1233 struct mv643xx_private *mp = netdev_priv(netdev);
1234 int port_num = mp->port_num;
1235
1236 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1237 /* wait for previous write to complete */
1238 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1239
1240 mv643xx_eth_int_handler(netdev->irq, netdev);
1241
1242 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1243 }
1244 #endif
1245
1246 static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1247 int speed, int duplex,
1248 struct ethtool_cmd *cmd)
1249 {
1250 struct mv643xx_private *mp = netdev_priv(dev);
1251
1252 memset(cmd, 0, sizeof(*cmd));
1253
1254 cmd->port = PORT_MII;
1255 cmd->transceiver = XCVR_INTERNAL;
1256 cmd->phy_address = phy_address;
1257
1258 if (speed == 0) {
1259 cmd->autoneg = AUTONEG_ENABLE;
1260 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1261 cmd->speed = SPEED_100;
1262 cmd->advertising = ADVERTISED_10baseT_Half |
1263 ADVERTISED_10baseT_Full |
1264 ADVERTISED_100baseT_Half |
1265 ADVERTISED_100baseT_Full;
1266 if (mp->mii.supports_gmii)
1267 cmd->advertising |= ADVERTISED_1000baseT_Full;
1268 } else {
1269 cmd->autoneg = AUTONEG_DISABLE;
1270 cmd->speed = speed;
1271 cmd->duplex = duplex;
1272 }
1273 }
1274
1275 /*/
1276 * mv643xx_eth_probe
1277 *
1278 * First function called after registering the network device.
1279 * It's purpose is to initialize the device as an ethernet device,
1280 * fill the ethernet device structure with pointers * to functions,
1281 * and set the MAC address of the interface
1282 *
1283 * Input : struct device *
1284 * Output : -ENOMEM if failed , 0 if success
1285 */
1286 static int mv643xx_eth_probe(struct platform_device *pdev)
1287 {
1288 struct mv643xx_eth_platform_data *pd;
1289 int port_num;
1290 struct mv643xx_private *mp;
1291 struct net_device *dev;
1292 u8 *p;
1293 struct resource *res;
1294 int err;
1295 struct ethtool_cmd cmd;
1296 int duplex = DUPLEX_HALF;
1297 int speed = 0; /* default to auto-negotiation */
1298
1299 pd = pdev->dev.platform_data;
1300 if (pd == NULL) {
1301 printk(KERN_ERR "No mv643xx_eth_platform_data\n");
1302 return -ENODEV;
1303 }
1304
1305 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1306 if (!dev)
1307 return -ENOMEM;
1308
1309 platform_set_drvdata(pdev, dev);
1310
1311 mp = netdev_priv(dev);
1312 mp->dev = dev;
1313 #ifdef MV643XX_NAPI
1314 netif_napi_add(dev, &mp->napi, mv643xx_poll, 64);
1315 #endif
1316
1317 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1318 BUG_ON(!res);
1319 dev->irq = res->start;
1320
1321 dev->open = mv643xx_eth_open;
1322 dev->stop = mv643xx_eth_stop;
1323 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1324 dev->set_mac_address = mv643xx_eth_set_mac_address;
1325 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1326
1327 /* No need to Tx Timeout */
1328 dev->tx_timeout = mv643xx_eth_tx_timeout;
1329
1330 #ifdef CONFIG_NET_POLL_CONTROLLER
1331 dev->poll_controller = mv643xx_netpoll;
1332 #endif
1333
1334 dev->watchdog_timeo = 2 * HZ;
1335 dev->base_addr = 0;
1336 dev->change_mtu = mv643xx_eth_change_mtu;
1337 dev->do_ioctl = mv643xx_eth_do_ioctl;
1338 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1339
1340 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1341 #ifdef MAX_SKB_FRAGS
1342 /*
1343 * Zero copy can only work if we use Discovery II memory. Else, we will
1344 * have to map the buffers to ISA memory which is only 16 MB
1345 */
1346 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1347 #endif
1348 #endif
1349
1350 /* Configure the timeout task */
1351 INIT_WORK(&mp->tx_timeout_task, mv643xx_eth_tx_timeout_task);
1352
1353 spin_lock_init(&mp->lock);
1354
1355 port_num = mp->port_num = pd->port_number;
1356
1357 /* set default config values */
1358 eth_port_uc_addr_get(port_num, dev->dev_addr);
1359 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1360 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1361
1362 if (is_valid_ether_addr(pd->mac_addr))
1363 memcpy(dev->dev_addr, pd->mac_addr, 6);
1364
1365 if (pd->phy_addr || pd->force_phy_addr)
1366 ethernet_phy_set(port_num, pd->phy_addr);
1367
1368 if (pd->rx_queue_size)
1369 mp->rx_ring_size = pd->rx_queue_size;
1370
1371 if (pd->tx_queue_size)
1372 mp->tx_ring_size = pd->tx_queue_size;
1373
1374 if (pd->tx_sram_size) {
1375 mp->tx_sram_size = pd->tx_sram_size;
1376 mp->tx_sram_addr = pd->tx_sram_addr;
1377 }
1378
1379 if (pd->rx_sram_size) {
1380 mp->rx_sram_size = pd->rx_sram_size;
1381 mp->rx_sram_addr = pd->rx_sram_addr;
1382 }
1383
1384 duplex = pd->duplex;
1385 speed = pd->speed;
1386
1387 /* Hook up MII support for ethtool */
1388 mp->mii.dev = dev;
1389 mp->mii.mdio_read = mv643xx_mdio_read;
1390 mp->mii.mdio_write = mv643xx_mdio_write;
1391 mp->mii.phy_id = ethernet_phy_get(port_num);
1392 mp->mii.phy_id_mask = 0x3f;
1393 mp->mii.reg_num_mask = 0x1f;
1394
1395 err = ethernet_phy_detect(port_num);
1396 if (err) {
1397 pr_debug("MV643xx ethernet port %d: "
1398 "No PHY detected at addr %d\n",
1399 port_num, ethernet_phy_get(port_num));
1400 goto out;
1401 }
1402
1403 ethernet_phy_reset(port_num);
1404 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
1405 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1406 mv643xx_eth_update_pscr(dev, &cmd);
1407 mv643xx_set_settings(dev, &cmd);
1408
1409 SET_NETDEV_DEV(dev, &pdev->dev);
1410 err = register_netdev(dev);
1411 if (err)
1412 goto out;
1413
1414 p = dev->dev_addr;
1415 printk(KERN_NOTICE
1416 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1417 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1418
1419 if (dev->features & NETIF_F_SG)
1420 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1421
1422 if (dev->features & NETIF_F_IP_CSUM)
1423 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1424 dev->name);
1425
1426 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1427 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1428 #endif
1429
1430 #ifdef MV643XX_COAL
1431 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1432 dev->name);
1433 #endif
1434
1435 #ifdef MV643XX_NAPI
1436 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1437 #endif
1438
1439 if (mp->tx_sram_size > 0)
1440 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1441
1442 return 0;
1443
1444 out:
1445 free_netdev(dev);
1446
1447 return err;
1448 }
1449
1450 static int mv643xx_eth_remove(struct platform_device *pdev)
1451 {
1452 struct net_device *dev = platform_get_drvdata(pdev);
1453
1454 unregister_netdev(dev);
1455 flush_scheduled_work();
1456
1457 free_netdev(dev);
1458 platform_set_drvdata(pdev, NULL);
1459 return 0;
1460 }
1461
1462 static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1463 {
1464 struct resource *res;
1465
1466 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1467
1468 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1469 if (res == NULL)
1470 return -ENODEV;
1471
1472 mv643xx_eth_shared_base = ioremap(res->start,
1473 MV643XX_ETH_SHARED_REGS_SIZE);
1474 if (mv643xx_eth_shared_base == NULL)
1475 return -ENOMEM;
1476
1477 return 0;
1478
1479 }
1480
1481 static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1482 {
1483 iounmap(mv643xx_eth_shared_base);
1484 mv643xx_eth_shared_base = NULL;
1485
1486 return 0;
1487 }
1488
1489 static void mv643xx_eth_shutdown(struct platform_device *pdev)
1490 {
1491 struct net_device *dev = platform_get_drvdata(pdev);
1492 struct mv643xx_private *mp = netdev_priv(dev);
1493 unsigned int port_num = mp->port_num;
1494
1495 /* Mask all interrupts on ethernet port */
1496 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
1497 mv_read (MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1498
1499 eth_port_reset(port_num);
1500 }
1501
1502 static struct platform_driver mv643xx_eth_driver = {
1503 .probe = mv643xx_eth_probe,
1504 .remove = mv643xx_eth_remove,
1505 .shutdown = mv643xx_eth_shutdown,
1506 .driver = {
1507 .name = MV643XX_ETH_NAME,
1508 },
1509 };
1510
1511 static struct platform_driver mv643xx_eth_shared_driver = {
1512 .probe = mv643xx_eth_shared_probe,
1513 .remove = mv643xx_eth_shared_remove,
1514 .driver = {
1515 .name = MV643XX_ETH_SHARED_NAME,
1516 },
1517 };
1518
1519 /*
1520 * mv643xx_init_module
1521 *
1522 * Registers the network drivers into the Linux kernel
1523 *
1524 * Input : N/A
1525 *
1526 * Output : N/A
1527 */
1528 static int __init mv643xx_init_module(void)
1529 {
1530 int rc;
1531
1532 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1533 if (!rc) {
1534 rc = platform_driver_register(&mv643xx_eth_driver);
1535 if (rc)
1536 platform_driver_unregister(&mv643xx_eth_shared_driver);
1537 }
1538 return rc;
1539 }
1540
1541 /*
1542 * mv643xx_cleanup_module
1543 *
1544 * Registers the network drivers into the Linux kernel
1545 *
1546 * Input : N/A
1547 *
1548 * Output : N/A
1549 */
1550 static void __exit mv643xx_cleanup_module(void)
1551 {
1552 platform_driver_unregister(&mv643xx_eth_driver);
1553 platform_driver_unregister(&mv643xx_eth_shared_driver);
1554 }
1555
1556 module_init(mv643xx_init_module);
1557 module_exit(mv643xx_cleanup_module);
1558
1559 MODULE_LICENSE("GPL");
1560 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1561 " and Dale Farnsworth");
1562 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1563
1564 /*
1565 * The second part is the low level driver of the gigE ethernet ports.
1566 */
1567
1568 /*
1569 * Marvell's Gigabit Ethernet controller low level driver
1570 *
1571 * DESCRIPTION:
1572 * This file introduce low level API to Marvell's Gigabit Ethernet
1573 * controller. This Gigabit Ethernet Controller driver API controls
1574 * 1) Operations (i.e. port init, start, reset etc').
1575 * 2) Data flow (i.e. port send, receive etc').
1576 * Each Gigabit Ethernet port is controlled via
1577 * struct mv643xx_private.
1578 * This struct includes user configuration information as well as
1579 * driver internal data needed for its operations.
1580 *
1581 * Supported Features:
1582 * - This low level driver is OS independent. Allocating memory for
1583 * the descriptor rings and buffers are not within the scope of
1584 * this driver.
1585 * - The user is free from Rx/Tx queue managing.
1586 * - This low level driver introduce functionality API that enable
1587 * the to operate Marvell's Gigabit Ethernet Controller in a
1588 * convenient way.
1589 * - Simple Gigabit Ethernet port operation API.
1590 * - Simple Gigabit Ethernet port data flow API.
1591 * - Data flow and operation API support per queue functionality.
1592 * - Support cached descriptors for better performance.
1593 * - Enable access to all four DRAM banks and internal SRAM memory
1594 * spaces.
1595 * - PHY access and control API.
1596 * - Port control register configuration API.
1597 * - Full control over Unicast and Multicast MAC configurations.
1598 *
1599 * Operation flow:
1600 *
1601 * Initialization phase
1602 * This phase complete the initialization of the the
1603 * mv643xx_private struct.
1604 * User information regarding port configuration has to be set
1605 * prior to calling the port initialization routine.
1606 *
1607 * In this phase any port Tx/Rx activity is halted, MIB counters
1608 * are cleared, PHY address is set according to user parameter and
1609 * access to DRAM and internal SRAM memory spaces.
1610 *
1611 * Driver ring initialization
1612 * Allocating memory for the descriptor rings and buffers is not
1613 * within the scope of this driver. Thus, the user is required to
1614 * allocate memory for the descriptors ring and buffers. Those
1615 * memory parameters are used by the Rx and Tx ring initialization
1616 * routines in order to curve the descriptor linked list in a form
1617 * of a ring.
1618 * Note: Pay special attention to alignment issues when using
1619 * cached descriptors/buffers. In this phase the driver store
1620 * information in the mv643xx_private struct regarding each queue
1621 * ring.
1622 *
1623 * Driver start
1624 * This phase prepares the Ethernet port for Rx and Tx activity.
1625 * It uses the information stored in the mv643xx_private struct to
1626 * initialize the various port registers.
1627 *
1628 * Data flow:
1629 * All packet references to/from the driver are done using
1630 * struct pkt_info.
1631 * This struct is a unified struct used with Rx and Tx operations.
1632 * This way the user is not required to be familiar with neither
1633 * Tx nor Rx descriptors structures.
1634 * The driver's descriptors rings are management by indexes.
1635 * Those indexes controls the ring resources and used to indicate
1636 * a SW resource error:
1637 * 'current'
1638 * This index points to the current available resource for use. For
1639 * example in Rx process this index will point to the descriptor
1640 * that will be passed to the user upon calling the receive
1641 * routine. In Tx process, this index will point to the descriptor
1642 * that will be assigned with the user packet info and transmitted.
1643 * 'used'
1644 * This index points to the descriptor that need to restore its
1645 * resources. For example in Rx process, using the Rx buffer return
1646 * API will attach the buffer returned in packet info to the
1647 * descriptor pointed by 'used'. In Tx process, using the Tx
1648 * descriptor return will merely return the user packet info with
1649 * the command status of the transmitted buffer pointed by the
1650 * 'used' index. Nevertheless, it is essential to use this routine
1651 * to update the 'used' index.
1652 * 'first'
1653 * This index supports Tx Scatter-Gather. It points to the first
1654 * descriptor of a packet assembled of multiple buffers. For
1655 * example when in middle of Such packet we have a Tx resource
1656 * error the 'curr' index get the value of 'first' to indicate
1657 * that the ring returned to its state before trying to transmit
1658 * this packet.
1659 *
1660 * Receive operation:
1661 * The eth_port_receive API set the packet information struct,
1662 * passed by the caller, with received information from the
1663 * 'current' SDMA descriptor.
1664 * It is the user responsibility to return this resource back
1665 * to the Rx descriptor ring to enable the reuse of this source.
1666 * Return Rx resource is done using the eth_rx_return_buff API.
1667 *
1668 * Prior to calling the initialization routine eth_port_init() the user
1669 * must set the following fields under mv643xx_private struct:
1670 * port_num User Ethernet port number.
1671 * port_config User port configuration value.
1672 * port_config_extend User port config extend value.
1673 * port_sdma_config User port SDMA config value.
1674 * port_serial_control User port serial control value.
1675 *
1676 * This driver data flow is done using the struct pkt_info which
1677 * is a unified struct for Rx and Tx operations:
1678 *
1679 * byte_cnt Tx/Rx descriptor buffer byte count.
1680 * l4i_chk CPU provided TCP Checksum. For Tx operation
1681 * only.
1682 * cmd_sts Tx/Rx descriptor command status.
1683 * buf_ptr Tx/Rx descriptor buffer pointer.
1684 * return_info Tx/Rx user resource return information.
1685 */
1686
1687 /* PHY routines */
1688 static int ethernet_phy_get(unsigned int eth_port_num);
1689 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1690
1691 /* Ethernet Port routines */
1692 static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1693
1694 /*
1695 * eth_port_init - Initialize the Ethernet port driver
1696 *
1697 * DESCRIPTION:
1698 * This function prepares the ethernet port to start its activity:
1699 * 1) Completes the ethernet port driver struct initialization toward port
1700 * start routine.
1701 * 2) Resets the device to a quiescent state in case of warm reboot.
1702 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1703 * 4) Clean MAC tables. The reset status of those tables is unknown.
1704 * 5) Set PHY address.
1705 * Note: Call this routine prior to eth_port_start routine and after
1706 * setting user values in the user fields of Ethernet port control
1707 * struct.
1708 *
1709 * INPUT:
1710 * struct mv643xx_private *mp Ethernet port control struct
1711 *
1712 * OUTPUT:
1713 * See description.
1714 *
1715 * RETURN:
1716 * None.
1717 */
1718 static void eth_port_init(struct mv643xx_private *mp)
1719 {
1720 mp->rx_resource_err = 0;
1721
1722 eth_port_reset(mp->port_num);
1723
1724 eth_port_init_mac_tables(mp->port_num);
1725 }
1726
1727 /*
1728 * eth_port_start - Start the Ethernet port activity.
1729 *
1730 * DESCRIPTION:
1731 * This routine prepares the Ethernet port for Rx and Tx activity:
1732 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1733 * has been initialized a descriptor's ring (using
1734 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1735 * 2. Initialize and enable the Ethernet configuration port by writing to
1736 * the port's configuration and command registers.
1737 * 3. Initialize and enable the SDMA by writing to the SDMA's
1738 * configuration and command registers. After completing these steps,
1739 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1740 *
1741 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1742 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1743 * and ether_init_rx_desc_ring for Rx queues).
1744 *
1745 * INPUT:
1746 * dev - a pointer to the required interface
1747 *
1748 * OUTPUT:
1749 * Ethernet port is ready to receive and transmit.
1750 *
1751 * RETURN:
1752 * None.
1753 */
1754 static void eth_port_start(struct net_device *dev)
1755 {
1756 struct mv643xx_private *mp = netdev_priv(dev);
1757 unsigned int port_num = mp->port_num;
1758 int tx_curr_desc, rx_curr_desc;
1759 u32 pscr;
1760 struct ethtool_cmd ethtool_cmd;
1761
1762 /* Assignment of Tx CTRP of given queue */
1763 tx_curr_desc = mp->tx_curr_desc_q;
1764 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1765 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1766
1767 /* Assignment of Rx CRDP of given queue */
1768 rx_curr_desc = mp->rx_curr_desc_q;
1769 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1770 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1771
1772 /* Add the assigned Ethernet address to the port's address table */
1773 eth_port_uc_addr_set(port_num, dev->dev_addr);
1774
1775 /* Assign port configuration and command. */
1776 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num),
1777 MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE);
1778
1779 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1780 MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE);
1781
1782 pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
1783
1784 pscr &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE | MV643XX_ETH_FORCE_LINK_PASS);
1785 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1786
1787 pscr |= MV643XX_ETH_DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
1788 MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII |
1789 MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX |
1790 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
1791 MV643XX_ETH_SERIAL_PORT_CONTROL_RESERVED;
1792
1793 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1794
1795 pscr |= MV643XX_ETH_SERIAL_PORT_ENABLE;
1796 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1797
1798 /* Assign port SDMA configuration */
1799 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1800 MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE);
1801
1802 /* Enable port Rx. */
1803 mv643xx_eth_port_enable_rx(port_num, ETH_RX_QUEUES_ENABLED);
1804
1805 /* Disable port bandwidth limits by clearing MTU register */
1806 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1807
1808 /* save phy settings across reset */
1809 mv643xx_get_settings(dev, &ethtool_cmd);
1810 ethernet_phy_reset(mp->port_num);
1811 mv643xx_set_settings(dev, &ethtool_cmd);
1812 }
1813
1814 /*
1815 * eth_port_uc_addr_set - Write a MAC address into the port's hw registers
1816 */
1817 static void eth_port_uc_addr_set(unsigned int port_num, unsigned char *p_addr)
1818 {
1819 unsigned int mac_h;
1820 unsigned int mac_l;
1821 int table;
1822
1823 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1824 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1825 (p_addr[3] << 0);
1826
1827 mv_write(MV643XX_ETH_MAC_ADDR_LOW(port_num), mac_l);
1828 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(port_num), mac_h);
1829
1830 /* Accept frames with this address */
1831 table = MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE(port_num);
1832 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1833 }
1834
1835 /*
1836 * eth_port_uc_addr_get - Read the MAC address from the port's hw registers
1837 */
1838 static void eth_port_uc_addr_get(unsigned int port_num, unsigned char *p_addr)
1839 {
1840 unsigned int mac_h;
1841 unsigned int mac_l;
1842
1843 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(port_num));
1844 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(port_num));
1845
1846 p_addr[0] = (mac_h >> 24) & 0xff;
1847 p_addr[1] = (mac_h >> 16) & 0xff;
1848 p_addr[2] = (mac_h >> 8) & 0xff;
1849 p_addr[3] = mac_h & 0xff;
1850 p_addr[4] = (mac_l >> 8) & 0xff;
1851 p_addr[5] = mac_l & 0xff;
1852 }
1853
1854 /*
1855 * The entries in each table are indexed by a hash of a packet's MAC
1856 * address. One bit in each entry determines whether the packet is
1857 * accepted. There are 4 entries (each 8 bits wide) in each register
1858 * of the table. The bits in each entry are defined as follows:
1859 * 0 Accept=1, Drop=0
1860 * 3-1 Queue (ETH_Q0=0)
1861 * 7-4 Reserved = 0;
1862 */
1863 static void eth_port_set_filter_table_entry(int table, unsigned char entry)
1864 {
1865 unsigned int table_reg;
1866 unsigned int tbl_offset;
1867 unsigned int reg_offset;
1868
1869 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
1870 reg_offset = entry % 4; /* Entry offset within the register */
1871
1872 /* Set "accepts frame bit" at specified table entry */
1873 table_reg = mv_read(table + tbl_offset);
1874 table_reg |= 0x01 << (8 * reg_offset);
1875 mv_write(table + tbl_offset, table_reg);
1876 }
1877
1878 /*
1879 * eth_port_mc_addr - Multicast address settings.
1880 *
1881 * The MV device supports multicast using two tables:
1882 * 1) Special Multicast Table for MAC addresses of the form
1883 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
1884 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1885 * Table entries in the DA-Filter table.
1886 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
1887 * is used as an index to the Other Multicast Table entries in the
1888 * DA-Filter table. This function calculates the CRC-8bit value.
1889 * In either case, eth_port_set_filter_table_entry() is then called
1890 * to set to set the actual table entry.
1891 */
1892 static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
1893 {
1894 unsigned int mac_h;
1895 unsigned int mac_l;
1896 unsigned char crc_result = 0;
1897 int table;
1898 int mac_array[48];
1899 int crc[8];
1900 int i;
1901
1902 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
1903 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
1904 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
1905 (eth_port_num);
1906 eth_port_set_filter_table_entry(table, p_addr[5]);
1907 return;
1908 }
1909
1910 /* Calculate CRC-8 out of the given address */
1911 mac_h = (p_addr[0] << 8) | (p_addr[1]);
1912 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
1913 (p_addr[4] << 8) | (p_addr[5] << 0);
1914
1915 for (i = 0; i < 32; i++)
1916 mac_array[i] = (mac_l >> i) & 0x1;
1917 for (i = 32; i < 48; i++)
1918 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
1919
1920 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
1921 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
1922 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
1923 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
1924 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
1925
1926 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1927 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
1928 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
1929 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
1930 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
1931 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
1932 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
1933
1934 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
1935 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
1936 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
1937 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
1938 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
1939 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
1940
1941 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1942 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
1943 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
1944 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
1945 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
1946 mac_array[3] ^ mac_array[2] ^ mac_array[1];
1947
1948 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
1949 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
1950 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
1951 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
1952 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
1953 mac_array[3] ^ mac_array[2];
1954
1955 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
1956 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
1957 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
1958 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
1959 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
1960 mac_array[4] ^ mac_array[3];
1961
1962 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
1963 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
1964 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
1965 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
1966 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
1967 mac_array[4];
1968
1969 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
1970 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
1971 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
1972 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
1973 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
1974
1975 for (i = 0; i < 8; i++)
1976 crc_result = crc_result | (crc[i] << i);
1977
1978 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
1979 eth_port_set_filter_table_entry(table, crc_result);
1980 }
1981
1982 /*
1983 * Set the entire multicast list based on dev->mc_list.
1984 */
1985 static void eth_port_set_multicast_list(struct net_device *dev)
1986 {
1987
1988 struct dev_mc_list *mc_list;
1989 int i;
1990 int table_index;
1991 struct mv643xx_private *mp = netdev_priv(dev);
1992 unsigned int eth_port_num = mp->port_num;
1993
1994 /* If the device is in promiscuous mode or in all multicast mode,
1995 * we will fully populate both multicast tables with accept.
1996 * This is guaranteed to yield a match on all multicast addresses...
1997 */
1998 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
1999 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2000 /* Set all entries in DA filter special multicast
2001 * table (Ex_dFSMT)
2002 * Set for ETH_Q0 for now
2003 * Bits
2004 * 0 Accept=1, Drop=0
2005 * 3-1 Queue ETH_Q0=0
2006 * 7-4 Reserved = 0;
2007 */
2008 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2009
2010 /* Set all entries in DA filter other multicast
2011 * table (Ex_dFOMT)
2012 * Set for ETH_Q0 for now
2013 * Bits
2014 * 0 Accept=1, Drop=0
2015 * 3-1 Queue ETH_Q0=0
2016 * 7-4 Reserved = 0;
2017 */
2018 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2019 }
2020 return;
2021 }
2022
2023 /* We will clear out multicast tables every time we get the list.
2024 * Then add the entire new list...
2025 */
2026 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2027 /* Clear DA filter special multicast table (Ex_dFSMT) */
2028 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2029 (eth_port_num) + table_index, 0);
2030
2031 /* Clear DA filter other multicast table (Ex_dFOMT) */
2032 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2033 (eth_port_num) + table_index, 0);
2034 }
2035
2036 /* Get pointer to net_device multicast list and add each one... */
2037 for (i = 0, mc_list = dev->mc_list;
2038 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2039 i++, mc_list = mc_list->next)
2040 if (mc_list->dmi_addrlen == 6)
2041 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2042 }
2043
2044 /*
2045 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2046 *
2047 * DESCRIPTION:
2048 * Go through all the DA filter tables (Unicast, Special Multicast &
2049 * Other Multicast) and set each entry to 0.
2050 *
2051 * INPUT:
2052 * unsigned int eth_port_num Ethernet Port number.
2053 *
2054 * OUTPUT:
2055 * Multicast and Unicast packets are rejected.
2056 *
2057 * RETURN:
2058 * None.
2059 */
2060 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2061 {
2062 int table_index;
2063
2064 /* Clear DA filter unicast table (Ex_dFUT) */
2065 for (table_index = 0; table_index <= 0xC; table_index += 4)
2066 mv_write(MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2067 (eth_port_num) + table_index, 0);
2068
2069 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2070 /* Clear DA filter special multicast table (Ex_dFSMT) */
2071 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2072 (eth_port_num) + table_index, 0);
2073 /* Clear DA filter other multicast table (Ex_dFOMT) */
2074 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2075 (eth_port_num) + table_index, 0);
2076 }
2077 }
2078
2079 /*
2080 * eth_clear_mib_counters - Clear all MIB counters
2081 *
2082 * DESCRIPTION:
2083 * This function clears all MIB counters of a specific ethernet port.
2084 * A read from the MIB counter will reset the counter.
2085 *
2086 * INPUT:
2087 * unsigned int eth_port_num Ethernet Port number.
2088 *
2089 * OUTPUT:
2090 * After reading all MIB counters, the counters resets.
2091 *
2092 * RETURN:
2093 * MIB counter value.
2094 *
2095 */
2096 static void eth_clear_mib_counters(unsigned int eth_port_num)
2097 {
2098 int i;
2099
2100 /* Perform dummy reads from MIB counters */
2101 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2102 i += 4)
2103 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2104 }
2105
2106 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2107 {
2108 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2109 }
2110
2111 static void eth_update_mib_counters(struct mv643xx_private *mp)
2112 {
2113 struct mv643xx_mib_counters *p = &mp->mib_counters;
2114 int offset;
2115
2116 p->good_octets_received +=
2117 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2118 p->good_octets_received +=
2119 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2120
2121 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2122 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2123 offset += 4)
2124 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2125
2126 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2127 p->good_octets_sent +=
2128 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2129
2130 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2131 offset <= ETH_MIB_LATE_COLLISION;
2132 offset += 4)
2133 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2134 }
2135
2136 /*
2137 * ethernet_phy_detect - Detect whether a phy is present
2138 *
2139 * DESCRIPTION:
2140 * This function tests whether there is a PHY present on
2141 * the specified port.
2142 *
2143 * INPUT:
2144 * unsigned int eth_port_num Ethernet Port number.
2145 *
2146 * OUTPUT:
2147 * None
2148 *
2149 * RETURN:
2150 * 0 on success
2151 * -ENODEV on failure
2152 *
2153 */
2154 static int ethernet_phy_detect(unsigned int port_num)
2155 {
2156 unsigned int phy_reg_data0;
2157 int auto_neg;
2158
2159 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2160 auto_neg = phy_reg_data0 & 0x1000;
2161 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2162 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2163
2164 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2165 if ((phy_reg_data0 & 0x1000) == auto_neg)
2166 return -ENODEV; /* change didn't take */
2167
2168 phy_reg_data0 ^= 0x1000;
2169 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2170 return 0;
2171 }
2172
2173 /*
2174 * ethernet_phy_get - Get the ethernet port PHY address.
2175 *
2176 * DESCRIPTION:
2177 * This routine returns the given ethernet port PHY address.
2178 *
2179 * INPUT:
2180 * unsigned int eth_port_num Ethernet Port number.
2181 *
2182 * OUTPUT:
2183 * None.
2184 *
2185 * RETURN:
2186 * PHY address.
2187 *
2188 */
2189 static int ethernet_phy_get(unsigned int eth_port_num)
2190 {
2191 unsigned int reg_data;
2192
2193 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2194
2195 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2196 }
2197
2198 /*
2199 * ethernet_phy_set - Set the ethernet port PHY address.
2200 *
2201 * DESCRIPTION:
2202 * This routine sets the given ethernet port PHY address.
2203 *
2204 * INPUT:
2205 * unsigned int eth_port_num Ethernet Port number.
2206 * int phy_addr PHY address.
2207 *
2208 * OUTPUT:
2209 * None.
2210 *
2211 * RETURN:
2212 * None.
2213 *
2214 */
2215 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2216 {
2217 u32 reg_data;
2218 int addr_shift = 5 * eth_port_num;
2219
2220 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2221 reg_data &= ~(0x1f << addr_shift);
2222 reg_data |= (phy_addr & 0x1f) << addr_shift;
2223 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2224 }
2225
2226 /*
2227 * ethernet_phy_reset - Reset Ethernet port PHY.
2228 *
2229 * DESCRIPTION:
2230 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2231 *
2232 * INPUT:
2233 * unsigned int eth_port_num Ethernet Port number.
2234 *
2235 * OUTPUT:
2236 * The PHY is reset.
2237 *
2238 * RETURN:
2239 * None.
2240 *
2241 */
2242 static void ethernet_phy_reset(unsigned int eth_port_num)
2243 {
2244 unsigned int phy_reg_data;
2245
2246 /* Reset the PHY */
2247 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2248 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2249 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2250
2251 /* wait for PHY to come out of reset */
2252 do {
2253 udelay(1);
2254 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2255 } while (phy_reg_data & 0x8000);
2256 }
2257
2258 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
2259 unsigned int queues)
2260 {
2261 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), queues);
2262 }
2263
2264 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
2265 unsigned int queues)
2266 {
2267 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), queues);
2268 }
2269
2270 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2271 {
2272 u32 queues;
2273
2274 /* Stop Tx port activity. Check port Tx activity. */
2275 queues = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2276 & 0xFF;
2277 if (queues) {
2278 /* Issue stop command for active queues only */
2279 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2280 (queues << 8));
2281
2282 /* Wait for all Tx activity to terminate. */
2283 /* Check port cause register that all Tx queues are stopped */
2284 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2285 & 0xFF)
2286 udelay(PHY_WAIT_MICRO_SECONDS);
2287
2288 /* Wait for Tx FIFO to empty */
2289 while (mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num)) &
2290 ETH_PORT_TX_FIFO_EMPTY)
2291 udelay(PHY_WAIT_MICRO_SECONDS);
2292 }
2293
2294 return queues;
2295 }
2296
2297 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2298 {
2299 u32 queues;
2300
2301 /* Stop Rx port activity. Check port Rx activity. */
2302 queues = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2303 & 0xFF;
2304 if (queues) {
2305 /* Issue stop command for active queues only */
2306 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2307 (queues << 8));
2308
2309 /* Wait for all Rx activity to terminate. */
2310 /* Check port cause register that all Rx queues are stopped */
2311 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2312 & 0xFF)
2313 udelay(PHY_WAIT_MICRO_SECONDS);
2314 }
2315
2316 return queues;
2317 }
2318
2319 /*
2320 * eth_port_reset - Reset Ethernet port
2321 *
2322 * DESCRIPTION:
2323 * This routine resets the chip by aborting any SDMA engine activity and
2324 * clearing the MIB counters. The Receiver and the Transmit unit are in
2325 * idle state after this command is performed and the port is disabled.
2326 *
2327 * INPUT:
2328 * unsigned int eth_port_num Ethernet Port number.
2329 *
2330 * OUTPUT:
2331 * Channel activity is halted.
2332 *
2333 * RETURN:
2334 * None.
2335 *
2336 */
2337 static void eth_port_reset(unsigned int port_num)
2338 {
2339 unsigned int reg_data;
2340
2341 mv643xx_eth_port_disable_tx(port_num);
2342 mv643xx_eth_port_disable_rx(port_num);
2343
2344 /* Clear all MIB counters */
2345 eth_clear_mib_counters(port_num);
2346
2347 /* Reset the Enable bit in the Configuration Register */
2348 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2349 reg_data &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE |
2350 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
2351 MV643XX_ETH_FORCE_LINK_PASS);
2352 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2353 }
2354
2355
2356 /*
2357 * eth_port_read_smi_reg - Read PHY registers
2358 *
2359 * DESCRIPTION:
2360 * This routine utilize the SMI interface to interact with the PHY in
2361 * order to perform PHY register read.
2362 *
2363 * INPUT:
2364 * unsigned int port_num Ethernet Port number.
2365 * unsigned int phy_reg PHY register address offset.
2366 * unsigned int *value Register value buffer.
2367 *
2368 * OUTPUT:
2369 * Write the value of a specified PHY register into given buffer.
2370 *
2371 * RETURN:
2372 * false if the PHY is busy or read data is not in valid state.
2373 * true otherwise.
2374 *
2375 */
2376 static void eth_port_read_smi_reg(unsigned int port_num,
2377 unsigned int phy_reg, unsigned int *value)
2378 {
2379 int phy_addr = ethernet_phy_get(port_num);
2380 unsigned long flags;
2381 int i;
2382
2383 /* the SMI register is a shared resource */
2384 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2385
2386 /* wait for the SMI register to become available */
2387 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2388 if (i == PHY_WAIT_ITERATIONS) {
2389 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2390 goto out;
2391 }
2392 udelay(PHY_WAIT_MICRO_SECONDS);
2393 }
2394
2395 mv_write(MV643XX_ETH_SMI_REG,
2396 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2397
2398 /* now wait for the data to be valid */
2399 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2400 if (i == PHY_WAIT_ITERATIONS) {
2401 printk("mv643xx PHY read timeout, port %d\n", port_num);
2402 goto out;
2403 }
2404 udelay(PHY_WAIT_MICRO_SECONDS);
2405 }
2406
2407 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2408 out:
2409 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2410 }
2411
2412 /*
2413 * eth_port_write_smi_reg - Write to PHY registers
2414 *
2415 * DESCRIPTION:
2416 * This routine utilize the SMI interface to interact with the PHY in
2417 * order to perform writes to PHY registers.
2418 *
2419 * INPUT:
2420 * unsigned int eth_port_num Ethernet Port number.
2421 * unsigned int phy_reg PHY register address offset.
2422 * unsigned int value Register value.
2423 *
2424 * OUTPUT:
2425 * Write the given value to the specified PHY register.
2426 *
2427 * RETURN:
2428 * false if the PHY is busy.
2429 * true otherwise.
2430 *
2431 */
2432 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2433 unsigned int phy_reg, unsigned int value)
2434 {
2435 int phy_addr;
2436 int i;
2437 unsigned long flags;
2438
2439 phy_addr = ethernet_phy_get(eth_port_num);
2440
2441 /* the SMI register is a shared resource */
2442 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2443
2444 /* wait for the SMI register to become available */
2445 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2446 if (i == PHY_WAIT_ITERATIONS) {
2447 printk("mv643xx PHY busy timeout, port %d\n",
2448 eth_port_num);
2449 goto out;
2450 }
2451 udelay(PHY_WAIT_MICRO_SECONDS);
2452 }
2453
2454 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2455 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2456 out:
2457 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2458 }
2459
2460 /*
2461 * Wrappers for MII support library.
2462 */
2463 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2464 {
2465 int val;
2466 struct mv643xx_private *mp = netdev_priv(dev);
2467
2468 eth_port_read_smi_reg(mp->port_num, location, &val);
2469 return val;
2470 }
2471
2472 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2473 {
2474 struct mv643xx_private *mp = netdev_priv(dev);
2475 eth_port_write_smi_reg(mp->port_num, location, val);
2476 }
2477
2478 /*
2479 * eth_port_receive - Get received information from Rx ring.
2480 *
2481 * DESCRIPTION:
2482 * This routine returns the received data to the caller. There is no
2483 * data copying during routine operation. All information is returned
2484 * using pointer to packet information struct passed from the caller.
2485 * If the routine exhausts Rx ring resources then the resource error flag
2486 * is set.
2487 *
2488 * INPUT:
2489 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2490 * struct pkt_info *p_pkt_info User packet buffer.
2491 *
2492 * OUTPUT:
2493 * Rx ring current and used indexes are updated.
2494 *
2495 * RETURN:
2496 * ETH_ERROR in case the routine can not access Rx desc ring.
2497 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2498 * ETH_END_OF_JOB if there is no received data.
2499 * ETH_OK otherwise.
2500 */
2501 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2502 struct pkt_info *p_pkt_info)
2503 {
2504 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2505 volatile struct eth_rx_desc *p_rx_desc;
2506 unsigned int command_status;
2507 unsigned long flags;
2508
2509 /* Do not process Rx ring in case of Rx ring resource error */
2510 if (mp->rx_resource_err)
2511 return ETH_QUEUE_FULL;
2512
2513 spin_lock_irqsave(&mp->lock, flags);
2514
2515 /* Get the Rx Desc ring 'curr and 'used' indexes */
2516 rx_curr_desc = mp->rx_curr_desc_q;
2517 rx_used_desc = mp->rx_used_desc_q;
2518
2519 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2520
2521 /* The following parameters are used to save readings from memory */
2522 command_status = p_rx_desc->cmd_sts;
2523 rmb();
2524
2525 /* Nothing to receive... */
2526 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2527 spin_unlock_irqrestore(&mp->lock, flags);
2528 return ETH_END_OF_JOB;
2529 }
2530
2531 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2532 p_pkt_info->cmd_sts = command_status;
2533 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2534 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2535 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2536
2537 /*
2538 * Clean the return info field to indicate that the
2539 * packet has been moved to the upper layers
2540 */
2541 mp->rx_skb[rx_curr_desc] = NULL;
2542
2543 /* Update current index in data structure */
2544 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2545 mp->rx_curr_desc_q = rx_next_curr_desc;
2546
2547 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2548 if (rx_next_curr_desc == rx_used_desc)
2549 mp->rx_resource_err = 1;
2550
2551 spin_unlock_irqrestore(&mp->lock, flags);
2552
2553 return ETH_OK;
2554 }
2555
2556 /*
2557 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2558 *
2559 * DESCRIPTION:
2560 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2561 * next 'used' descriptor and attached the returned buffer to it.
2562 * In case the Rx ring was in "resource error" condition, where there are
2563 * no available Rx resources, the function resets the resource error flag.
2564 *
2565 * INPUT:
2566 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2567 * struct pkt_info *p_pkt_info Information on returned buffer.
2568 *
2569 * OUTPUT:
2570 * New available Rx resource in Rx descriptor ring.
2571 *
2572 * RETURN:
2573 * ETH_ERROR in case the routine can not access Rx desc ring.
2574 * ETH_OK otherwise.
2575 */
2576 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2577 struct pkt_info *p_pkt_info)
2578 {
2579 int used_rx_desc; /* Where to return Rx resource */
2580 volatile struct eth_rx_desc *p_used_rx_desc;
2581 unsigned long flags;
2582
2583 spin_lock_irqsave(&mp->lock, flags);
2584
2585 /* Get 'used' Rx descriptor */
2586 used_rx_desc = mp->rx_used_desc_q;
2587 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2588
2589 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2590 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2591 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2592
2593 /* Flush the write pipe */
2594
2595 /* Return the descriptor to DMA ownership */
2596 wmb();
2597 p_used_rx_desc->cmd_sts =
2598 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2599 wmb();
2600
2601 /* Move the used descriptor pointer to the next descriptor */
2602 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2603
2604 /* Any Rx return cancels the Rx resource error status */
2605 mp->rx_resource_err = 0;
2606
2607 spin_unlock_irqrestore(&mp->lock, flags);
2608
2609 return ETH_OK;
2610 }
2611
2612 /************* Begin ethtool support *************************/
2613
2614 struct mv643xx_stats {
2615 char stat_string[ETH_GSTRING_LEN];
2616 int sizeof_stat;
2617 int stat_offset;
2618 };
2619
2620 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2621 offsetof(struct mv643xx_private, m)
2622
2623 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2624 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2625 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2626 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2627 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2628 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2629 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2630 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2631 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2632 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2633 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2634 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2635 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2636 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2637 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2638 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2639 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2640 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2641 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2642 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2643 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2644 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2645 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2646 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2647 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2648 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2649 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2650 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2651 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2652 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2653 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2654 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2655 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2656 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2657 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2658 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2659 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2660 { "collision", MV643XX_STAT(mib_counters.collision) },
2661 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2662 };
2663
2664 #define MV643XX_STATS_LEN ARRAY_SIZE(mv643xx_gstrings_stats)
2665
2666 static void mv643xx_get_drvinfo(struct net_device *netdev,
2667 struct ethtool_drvinfo *drvinfo)
2668 {
2669 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2670 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2671 strncpy(drvinfo->fw_version, "N/A", 32);
2672 strncpy(drvinfo->bus_info, "mv643xx", 32);
2673 drvinfo->n_stats = MV643XX_STATS_LEN;
2674 }
2675
2676 static int mv643xx_get_stats_count(struct net_device *netdev)
2677 {
2678 return MV643XX_STATS_LEN;
2679 }
2680
2681 static void mv643xx_get_ethtool_stats(struct net_device *netdev,
2682 struct ethtool_stats *stats, uint64_t *data)
2683 {
2684 struct mv643xx_private *mp = netdev->priv;
2685 int i;
2686
2687 eth_update_mib_counters(mp);
2688
2689 for (i = 0; i < MV643XX_STATS_LEN; i++) {
2690 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
2691 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
2692 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
2693 }
2694 }
2695
2696 static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
2697 uint8_t *data)
2698 {
2699 int i;
2700
2701 switch(stringset) {
2702 case ETH_SS_STATS:
2703 for (i=0; i < MV643XX_STATS_LEN; i++) {
2704 memcpy(data + i * ETH_GSTRING_LEN,
2705 mv643xx_gstrings_stats[i].stat_string,
2706 ETH_GSTRING_LEN);
2707 }
2708 break;
2709 }
2710 }
2711
2712 static u32 mv643xx_eth_get_link(struct net_device *dev)
2713 {
2714 struct mv643xx_private *mp = netdev_priv(dev);
2715
2716 return mii_link_ok(&mp->mii);
2717 }
2718
2719 static int mv643xx_eth_nway_restart(struct net_device *dev)
2720 {
2721 struct mv643xx_private *mp = netdev_priv(dev);
2722
2723 return mii_nway_restart(&mp->mii);
2724 }
2725
2726 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2727 {
2728 struct mv643xx_private *mp = netdev_priv(dev);
2729
2730 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
2731 }
2732
2733 static const struct ethtool_ops mv643xx_ethtool_ops = {
2734 .get_settings = mv643xx_get_settings,
2735 .set_settings = mv643xx_set_settings,
2736 .get_drvinfo = mv643xx_get_drvinfo,
2737 .get_link = mv643xx_eth_get_link,
2738 .get_sg = ethtool_op_get_sg,
2739 .set_sg = ethtool_op_set_sg,
2740 .get_stats_count = mv643xx_get_stats_count,
2741 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2742 .get_strings = mv643xx_get_strings,
2743 .nway_reset = mv643xx_eth_nway_restart,
2744 };
2745
2746 /************* End ethtool support *************************/
This page took 0.091705 seconds and 5 git commands to generate.