signals: consolidate checks for whether or not to ignore a signal
[deliverable/linux.git] / drivers / net / mv643xx_eth.c
1 /*
2 * Driver for Marvell Discovery (MV643XX) and Marvell Orion ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 Rabeeh Khoury <rabeeh@galileo.co.il>
7 * Rabeeh Khoury <rabeeh@marvell.com>
8 *
9 * Copyright (C) 2003 PMC-Sierra, Inc.,
10 * written by Manish Lachwani
11 *
12 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
13 *
14 * Copyright (C) 2004-2006 MontaVista Software, Inc.
15 * Dale Farnsworth <dale@farnsworth.org>
16 *
17 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
18 * <sjhill@realitydiluted.com>
19 *
20 * Copyright (C) 2007-2008 Marvell Semiconductor
21 * Lennert Buytenhek <buytenh@marvell.com>
22 *
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version 2
26 * of the License, or (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 *
33 * You should have received a copy of the GNU General Public License
34 * along with this program; if not, write to the Free Software
35 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
36 */
37 #include <linux/init.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/in.h>
40 #include <linux/ip.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/etherdevice.h>
44
45 #include <linux/bitops.h>
46 #include <linux/delay.h>
47 #include <linux/ethtool.h>
48 #include <linux/platform_device.h>
49
50 #include <linux/module.h>
51 #include <linux/kernel.h>
52 #include <linux/spinlock.h>
53 #include <linux/workqueue.h>
54 #include <linux/mii.h>
55
56 #include <linux/mv643xx_eth.h>
57
58 #include <asm/io.h>
59 #include <asm/types.h>
60 #include <asm/pgtable.h>
61 #include <asm/system.h>
62 #include <asm/delay.h>
63 #include <asm/dma-mapping.h>
64
65 #define MV643XX_CHECKSUM_OFFLOAD_TX
66 #define MV643XX_NAPI
67 #define MV643XX_TX_FAST_REFILL
68 #undef MV643XX_COAL
69
70 #define MV643XX_TX_COAL 100
71 #ifdef MV643XX_COAL
72 #define MV643XX_RX_COAL 100
73 #endif
74
75 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
76 #define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
77 #else
78 #define MAX_DESCS_PER_SKB 1
79 #endif
80
81 #define ETH_VLAN_HLEN 4
82 #define ETH_FCS_LEN 4
83 #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
84 #define ETH_WRAPPER_LEN (ETH_HW_IP_ALIGN + ETH_HLEN + \
85 ETH_VLAN_HLEN + ETH_FCS_LEN)
86 #define ETH_RX_SKB_SIZE (dev->mtu + ETH_WRAPPER_LEN + \
87 dma_get_cache_alignment())
88
89 /*
90 * Registers shared between all ports.
91 */
92 #define PHY_ADDR_REG 0x0000
93 #define SMI_REG 0x0004
94
95 /*
96 * Per-port registers.
97 */
98 #define PORT_CONFIG_REG(p) (0x0400 + ((p) << 10))
99 #define PORT_CONFIG_EXTEND_REG(p) (0x0404 + ((p) << 10))
100 #define MAC_ADDR_LOW(p) (0x0414 + ((p) << 10))
101 #define MAC_ADDR_HIGH(p) (0x0418 + ((p) << 10))
102 #define SDMA_CONFIG_REG(p) (0x041c + ((p) << 10))
103 #define PORT_SERIAL_CONTROL_REG(p) (0x043c + ((p) << 10))
104 #define PORT_STATUS_REG(p) (0x0444 + ((p) << 10))
105 #define TRANSMIT_QUEUE_COMMAND_REG(p) (0x0448 + ((p) << 10))
106 #define MAXIMUM_TRANSMIT_UNIT(p) (0x0458 + ((p) << 10))
107 #define INTERRUPT_CAUSE_REG(p) (0x0460 + ((p) << 10))
108 #define INTERRUPT_CAUSE_EXTEND_REG(p) (0x0464 + ((p) << 10))
109 #define INTERRUPT_MASK_REG(p) (0x0468 + ((p) << 10))
110 #define INTERRUPT_EXTEND_MASK_REG(p) (0x046c + ((p) << 10))
111 #define TX_FIFO_URGENT_THRESHOLD_REG(p) (0x0474 + ((p) << 10))
112 #define RX_CURRENT_QUEUE_DESC_PTR_0(p) (0x060c + ((p) << 10))
113 #define RECEIVE_QUEUE_COMMAND_REG(p) (0x0680 + ((p) << 10))
114 #define TX_CURRENT_QUEUE_DESC_PTR_0(p) (0x06c0 + ((p) << 10))
115 #define MIB_COUNTERS_BASE(p) (0x1000 + ((p) << 7))
116 #define DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(p) (0x1400 + ((p) << 10))
117 #define DA_FILTER_OTHER_MULTICAST_TABLE_BASE(p) (0x1500 + ((p) << 10))
118 #define DA_FILTER_UNICAST_TABLE_BASE(p) (0x1600 + ((p) << 10))
119
120 /* These macros describe Ethernet Port configuration reg (Px_cR) bits */
121 #define UNICAST_NORMAL_MODE (0 << 0)
122 #define UNICAST_PROMISCUOUS_MODE (1 << 0)
123 #define DEFAULT_RX_QUEUE(queue) ((queue) << 1)
124 #define DEFAULT_RX_ARP_QUEUE(queue) ((queue) << 4)
125 #define RECEIVE_BC_IF_NOT_IP_OR_ARP (0 << 7)
126 #define REJECT_BC_IF_NOT_IP_OR_ARP (1 << 7)
127 #define RECEIVE_BC_IF_IP (0 << 8)
128 #define REJECT_BC_IF_IP (1 << 8)
129 #define RECEIVE_BC_IF_ARP (0 << 9)
130 #define REJECT_BC_IF_ARP (1 << 9)
131 #define TX_AM_NO_UPDATE_ERROR_SUMMARY (1 << 12)
132 #define CAPTURE_TCP_FRAMES_DIS (0 << 14)
133 #define CAPTURE_TCP_FRAMES_EN (1 << 14)
134 #define CAPTURE_UDP_FRAMES_DIS (0 << 15)
135 #define CAPTURE_UDP_FRAMES_EN (1 << 15)
136 #define DEFAULT_RX_TCP_QUEUE(queue) ((queue) << 16)
137 #define DEFAULT_RX_UDP_QUEUE(queue) ((queue) << 19)
138 #define DEFAULT_RX_BPDU_QUEUE(queue) ((queue) << 22)
139
140 #define PORT_CONFIG_DEFAULT_VALUE \
141 UNICAST_NORMAL_MODE | \
142 DEFAULT_RX_QUEUE(0) | \
143 DEFAULT_RX_ARP_QUEUE(0) | \
144 RECEIVE_BC_IF_NOT_IP_OR_ARP | \
145 RECEIVE_BC_IF_IP | \
146 RECEIVE_BC_IF_ARP | \
147 CAPTURE_TCP_FRAMES_DIS | \
148 CAPTURE_UDP_FRAMES_DIS | \
149 DEFAULT_RX_TCP_QUEUE(0) | \
150 DEFAULT_RX_UDP_QUEUE(0) | \
151 DEFAULT_RX_BPDU_QUEUE(0)
152
153 /* These macros describe Ethernet Port configuration extend reg (Px_cXR) bits*/
154 #define CLASSIFY_EN (1 << 0)
155 #define SPAN_BPDU_PACKETS_AS_NORMAL (0 << 1)
156 #define SPAN_BPDU_PACKETS_TO_RX_QUEUE_7 (1 << 1)
157 #define PARTITION_DISABLE (0 << 2)
158 #define PARTITION_ENABLE (1 << 2)
159
160 #define PORT_CONFIG_EXTEND_DEFAULT_VALUE \
161 SPAN_BPDU_PACKETS_AS_NORMAL | \
162 PARTITION_DISABLE
163
164 /* These macros describe Ethernet Port Sdma configuration reg (SDCR) bits */
165 #define RIFB (1 << 0)
166 #define RX_BURST_SIZE_1_64BIT (0 << 1)
167 #define RX_BURST_SIZE_2_64BIT (1 << 1)
168 #define RX_BURST_SIZE_4_64BIT (2 << 1)
169 #define RX_BURST_SIZE_8_64BIT (3 << 1)
170 #define RX_BURST_SIZE_16_64BIT (4 << 1)
171 #define BLM_RX_NO_SWAP (1 << 4)
172 #define BLM_RX_BYTE_SWAP (0 << 4)
173 #define BLM_TX_NO_SWAP (1 << 5)
174 #define BLM_TX_BYTE_SWAP (0 << 5)
175 #define DESCRIPTORS_BYTE_SWAP (1 << 6)
176 #define DESCRIPTORS_NO_SWAP (0 << 6)
177 #define IPG_INT_RX(value) (((value) & 0x3fff) << 8)
178 #define TX_BURST_SIZE_1_64BIT (0 << 22)
179 #define TX_BURST_SIZE_2_64BIT (1 << 22)
180 #define TX_BURST_SIZE_4_64BIT (2 << 22)
181 #define TX_BURST_SIZE_8_64BIT (3 << 22)
182 #define TX_BURST_SIZE_16_64BIT (4 << 22)
183
184 #if defined(__BIG_ENDIAN)
185 #define PORT_SDMA_CONFIG_DEFAULT_VALUE \
186 RX_BURST_SIZE_4_64BIT | \
187 IPG_INT_RX(0) | \
188 TX_BURST_SIZE_4_64BIT
189 #elif defined(__LITTLE_ENDIAN)
190 #define PORT_SDMA_CONFIG_DEFAULT_VALUE \
191 RX_BURST_SIZE_4_64BIT | \
192 BLM_RX_NO_SWAP | \
193 BLM_TX_NO_SWAP | \
194 IPG_INT_RX(0) | \
195 TX_BURST_SIZE_4_64BIT
196 #else
197 #error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined
198 #endif
199
200 /* These macros describe Ethernet Port serial control reg (PSCR) bits */
201 #define SERIAL_PORT_DISABLE (0 << 0)
202 #define SERIAL_PORT_ENABLE (1 << 0)
203 #define DO_NOT_FORCE_LINK_PASS (0 << 1)
204 #define FORCE_LINK_PASS (1 << 1)
205 #define ENABLE_AUTO_NEG_FOR_DUPLX (0 << 2)
206 #define DISABLE_AUTO_NEG_FOR_DUPLX (1 << 2)
207 #define ENABLE_AUTO_NEG_FOR_FLOW_CTRL (0 << 3)
208 #define DISABLE_AUTO_NEG_FOR_FLOW_CTRL (1 << 3)
209 #define ADV_NO_FLOW_CTRL (0 << 4)
210 #define ADV_SYMMETRIC_FLOW_CTRL (1 << 4)
211 #define FORCE_FC_MODE_NO_PAUSE_DIS_TX (0 << 5)
212 #define FORCE_FC_MODE_TX_PAUSE_DIS (1 << 5)
213 #define FORCE_BP_MODE_NO_JAM (0 << 7)
214 #define FORCE_BP_MODE_JAM_TX (1 << 7)
215 #define FORCE_BP_MODE_JAM_TX_ON_RX_ERR (2 << 7)
216 #define SERIAL_PORT_CONTROL_RESERVED (1 << 9)
217 #define FORCE_LINK_FAIL (0 << 10)
218 #define DO_NOT_FORCE_LINK_FAIL (1 << 10)
219 #define RETRANSMIT_16_ATTEMPTS (0 << 11)
220 #define RETRANSMIT_FOREVER (1 << 11)
221 #define ENABLE_AUTO_NEG_SPEED_GMII (0 << 13)
222 #define DISABLE_AUTO_NEG_SPEED_GMII (1 << 13)
223 #define DTE_ADV_0 (0 << 14)
224 #define DTE_ADV_1 (1 << 14)
225 #define DISABLE_AUTO_NEG_BYPASS (0 << 15)
226 #define ENABLE_AUTO_NEG_BYPASS (1 << 15)
227 #define AUTO_NEG_NO_CHANGE (0 << 16)
228 #define RESTART_AUTO_NEG (1 << 16)
229 #define MAX_RX_PACKET_1518BYTE (0 << 17)
230 #define MAX_RX_PACKET_1522BYTE (1 << 17)
231 #define MAX_RX_PACKET_1552BYTE (2 << 17)
232 #define MAX_RX_PACKET_9022BYTE (3 << 17)
233 #define MAX_RX_PACKET_9192BYTE (4 << 17)
234 #define MAX_RX_PACKET_9700BYTE (5 << 17)
235 #define MAX_RX_PACKET_MASK (7 << 17)
236 #define CLR_EXT_LOOPBACK (0 << 20)
237 #define SET_EXT_LOOPBACK (1 << 20)
238 #define SET_HALF_DUPLEX_MODE (0 << 21)
239 #define SET_FULL_DUPLEX_MODE (1 << 21)
240 #define DISABLE_FLOW_CTRL_TX_RX_IN_FULL_DUPLEX (0 << 22)
241 #define ENABLE_FLOW_CTRL_TX_RX_IN_FULL_DUPLEX (1 << 22)
242 #define SET_GMII_SPEED_TO_10_100 (0 << 23)
243 #define SET_GMII_SPEED_TO_1000 (1 << 23)
244 #define SET_MII_SPEED_TO_10 (0 << 24)
245 #define SET_MII_SPEED_TO_100 (1 << 24)
246
247 #define PORT_SERIAL_CONTROL_DEFAULT_VALUE \
248 DO_NOT_FORCE_LINK_PASS | \
249 ENABLE_AUTO_NEG_FOR_DUPLX | \
250 DISABLE_AUTO_NEG_FOR_FLOW_CTRL | \
251 ADV_SYMMETRIC_FLOW_CTRL | \
252 FORCE_FC_MODE_NO_PAUSE_DIS_TX | \
253 FORCE_BP_MODE_NO_JAM | \
254 (1 << 9) /* reserved */ | \
255 DO_NOT_FORCE_LINK_FAIL | \
256 RETRANSMIT_16_ATTEMPTS | \
257 ENABLE_AUTO_NEG_SPEED_GMII | \
258 DTE_ADV_0 | \
259 DISABLE_AUTO_NEG_BYPASS | \
260 AUTO_NEG_NO_CHANGE | \
261 MAX_RX_PACKET_9700BYTE | \
262 CLR_EXT_LOOPBACK | \
263 SET_FULL_DUPLEX_MODE | \
264 ENABLE_FLOW_CTRL_TX_RX_IN_FULL_DUPLEX
265
266 /* These macros describe Ethernet Serial Status reg (PSR) bits */
267 #define PORT_STATUS_MODE_10_BIT (1 << 0)
268 #define PORT_STATUS_LINK_UP (1 << 1)
269 #define PORT_STATUS_FULL_DUPLEX (1 << 2)
270 #define PORT_STATUS_FLOW_CONTROL (1 << 3)
271 #define PORT_STATUS_GMII_1000 (1 << 4)
272 #define PORT_STATUS_MII_100 (1 << 5)
273 /* PSR bit 6 is undocumented */
274 #define PORT_STATUS_TX_IN_PROGRESS (1 << 7)
275 #define PORT_STATUS_AUTONEG_BYPASSED (1 << 8)
276 #define PORT_STATUS_PARTITION (1 << 9)
277 #define PORT_STATUS_TX_FIFO_EMPTY (1 << 10)
278 /* PSR bits 11-31 are reserved */
279
280 #define PORT_DEFAULT_TRANSMIT_QUEUE_SIZE 800
281 #define PORT_DEFAULT_RECEIVE_QUEUE_SIZE 400
282
283 #define DESC_SIZE 64
284
285 #define ETH_RX_QUEUES_ENABLED (1 << 0) /* use only Q0 for receive */
286 #define ETH_TX_QUEUES_ENABLED (1 << 0) /* use only Q0 for transmit */
287
288 #define ETH_INT_CAUSE_RX_DONE (ETH_RX_QUEUES_ENABLED << 2)
289 #define ETH_INT_CAUSE_RX_ERROR (ETH_RX_QUEUES_ENABLED << 9)
290 #define ETH_INT_CAUSE_RX (ETH_INT_CAUSE_RX_DONE | ETH_INT_CAUSE_RX_ERROR)
291 #define ETH_INT_CAUSE_EXT 0x00000002
292 #define ETH_INT_UNMASK_ALL (ETH_INT_CAUSE_RX | ETH_INT_CAUSE_EXT)
293
294 #define ETH_INT_CAUSE_TX_DONE (ETH_TX_QUEUES_ENABLED << 0)
295 #define ETH_INT_CAUSE_TX_ERROR (ETH_TX_QUEUES_ENABLED << 8)
296 #define ETH_INT_CAUSE_TX (ETH_INT_CAUSE_TX_DONE | ETH_INT_CAUSE_TX_ERROR)
297 #define ETH_INT_CAUSE_PHY 0x00010000
298 #define ETH_INT_CAUSE_STATE 0x00100000
299 #define ETH_INT_UNMASK_ALL_EXT (ETH_INT_CAUSE_TX | ETH_INT_CAUSE_PHY | \
300 ETH_INT_CAUSE_STATE)
301
302 #define ETH_INT_MASK_ALL 0x00000000
303 #define ETH_INT_MASK_ALL_EXT 0x00000000
304
305 #define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
306 #define PHY_WAIT_MICRO_SECONDS 10
307
308 /* Buffer offset from buffer pointer */
309 #define RX_BUF_OFFSET 0x2
310
311 /* Gigabit Ethernet Unit Global Registers */
312
313 /* MIB Counters register definitions */
314 #define ETH_MIB_GOOD_OCTETS_RECEIVED_LOW 0x0
315 #define ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH 0x4
316 #define ETH_MIB_BAD_OCTETS_RECEIVED 0x8
317 #define ETH_MIB_INTERNAL_MAC_TRANSMIT_ERR 0xc
318 #define ETH_MIB_GOOD_FRAMES_RECEIVED 0x10
319 #define ETH_MIB_BAD_FRAMES_RECEIVED 0x14
320 #define ETH_MIB_BROADCAST_FRAMES_RECEIVED 0x18
321 #define ETH_MIB_MULTICAST_FRAMES_RECEIVED 0x1c
322 #define ETH_MIB_FRAMES_64_OCTETS 0x20
323 #define ETH_MIB_FRAMES_65_TO_127_OCTETS 0x24
324 #define ETH_MIB_FRAMES_128_TO_255_OCTETS 0x28
325 #define ETH_MIB_FRAMES_256_TO_511_OCTETS 0x2c
326 #define ETH_MIB_FRAMES_512_TO_1023_OCTETS 0x30
327 #define ETH_MIB_FRAMES_1024_TO_MAX_OCTETS 0x34
328 #define ETH_MIB_GOOD_OCTETS_SENT_LOW 0x38
329 #define ETH_MIB_GOOD_OCTETS_SENT_HIGH 0x3c
330 #define ETH_MIB_GOOD_FRAMES_SENT 0x40
331 #define ETH_MIB_EXCESSIVE_COLLISION 0x44
332 #define ETH_MIB_MULTICAST_FRAMES_SENT 0x48
333 #define ETH_MIB_BROADCAST_FRAMES_SENT 0x4c
334 #define ETH_MIB_UNREC_MAC_CONTROL_RECEIVED 0x50
335 #define ETH_MIB_FC_SENT 0x54
336 #define ETH_MIB_GOOD_FC_RECEIVED 0x58
337 #define ETH_MIB_BAD_FC_RECEIVED 0x5c
338 #define ETH_MIB_UNDERSIZE_RECEIVED 0x60
339 #define ETH_MIB_FRAGMENTS_RECEIVED 0x64
340 #define ETH_MIB_OVERSIZE_RECEIVED 0x68
341 #define ETH_MIB_JABBER_RECEIVED 0x6c
342 #define ETH_MIB_MAC_RECEIVE_ERROR 0x70
343 #define ETH_MIB_BAD_CRC_EVENT 0x74
344 #define ETH_MIB_COLLISION 0x78
345 #define ETH_MIB_LATE_COLLISION 0x7c
346
347 /* Port serial status reg (PSR) */
348 #define ETH_INTERFACE_PCM 0x00000001
349 #define ETH_LINK_IS_UP 0x00000002
350 #define ETH_PORT_AT_FULL_DUPLEX 0x00000004
351 #define ETH_RX_FLOW_CTRL_ENABLED 0x00000008
352 #define ETH_GMII_SPEED_1000 0x00000010
353 #define ETH_MII_SPEED_100 0x00000020
354 #define ETH_TX_IN_PROGRESS 0x00000080
355 #define ETH_BYPASS_ACTIVE 0x00000100
356 #define ETH_PORT_AT_PARTITION_STATE 0x00000200
357 #define ETH_PORT_TX_FIFO_EMPTY 0x00000400
358
359 /* SMI reg */
360 #define ETH_SMI_BUSY 0x10000000 /* 0 - Write, 1 - Read */
361 #define ETH_SMI_READ_VALID 0x08000000 /* 0 - Write, 1 - Read */
362 #define ETH_SMI_OPCODE_WRITE 0 /* Completion of Read */
363 #define ETH_SMI_OPCODE_READ 0x04000000 /* Operation is in progress */
364
365 /* Interrupt Cause Register Bit Definitions */
366
367 /* SDMA command status fields macros */
368
369 /* Tx & Rx descriptors status */
370 #define ETH_ERROR_SUMMARY 0x00000001
371
372 /* Tx & Rx descriptors command */
373 #define ETH_BUFFER_OWNED_BY_DMA 0x80000000
374
375 /* Tx descriptors status */
376 #define ETH_LC_ERROR 0
377 #define ETH_UR_ERROR 0x00000002
378 #define ETH_RL_ERROR 0x00000004
379 #define ETH_LLC_SNAP_FORMAT 0x00000200
380
381 /* Rx descriptors status */
382 #define ETH_OVERRUN_ERROR 0x00000002
383 #define ETH_MAX_FRAME_LENGTH_ERROR 0x00000004
384 #define ETH_RESOURCE_ERROR 0x00000006
385 #define ETH_VLAN_TAGGED 0x00080000
386 #define ETH_BPDU_FRAME 0x00100000
387 #define ETH_UDP_FRAME_OVER_IP_V_4 0x00200000
388 #define ETH_OTHER_FRAME_TYPE 0x00400000
389 #define ETH_LAYER_2_IS_ETH_V_2 0x00800000
390 #define ETH_FRAME_TYPE_IP_V_4 0x01000000
391 #define ETH_FRAME_HEADER_OK 0x02000000
392 #define ETH_RX_LAST_DESC 0x04000000
393 #define ETH_RX_FIRST_DESC 0x08000000
394 #define ETH_UNKNOWN_DESTINATION_ADDR 0x10000000
395 #define ETH_RX_ENABLE_INTERRUPT 0x20000000
396 #define ETH_LAYER_4_CHECKSUM_OK 0x40000000
397
398 /* Rx descriptors byte count */
399 #define ETH_FRAME_FRAGMENTED 0x00000004
400
401 /* Tx descriptors command */
402 #define ETH_LAYER_4_CHECKSUM_FIRST_DESC 0x00000400
403 #define ETH_FRAME_SET_TO_VLAN 0x00008000
404 #define ETH_UDP_FRAME 0x00010000
405 #define ETH_GEN_TCP_UDP_CHECKSUM 0x00020000
406 #define ETH_GEN_IP_V_4_CHECKSUM 0x00040000
407 #define ETH_ZERO_PADDING 0x00080000
408 #define ETH_TX_LAST_DESC 0x00100000
409 #define ETH_TX_FIRST_DESC 0x00200000
410 #define ETH_GEN_CRC 0x00400000
411 #define ETH_TX_ENABLE_INTERRUPT 0x00800000
412 #define ETH_AUTO_MODE 0x40000000
413
414 #define ETH_TX_IHL_SHIFT 11
415
416 /* typedefs */
417
418 typedef enum _eth_func_ret_status {
419 ETH_OK, /* Returned as expected. */
420 ETH_ERROR, /* Fundamental error. */
421 ETH_RETRY, /* Could not process request. Try later.*/
422 ETH_END_OF_JOB, /* Ring has nothing to process. */
423 ETH_QUEUE_FULL, /* Ring resource error. */
424 ETH_QUEUE_LAST_RESOURCE /* Ring resources about to exhaust. */
425 } ETH_FUNC_RET_STATUS;
426
427 /* These are for big-endian machines. Little endian needs different
428 * definitions.
429 */
430 #if defined(__BIG_ENDIAN)
431 struct eth_rx_desc {
432 u16 byte_cnt; /* Descriptor buffer byte count */
433 u16 buf_size; /* Buffer size */
434 u32 cmd_sts; /* Descriptor command status */
435 u32 next_desc_ptr; /* Next descriptor pointer */
436 u32 buf_ptr; /* Descriptor buffer pointer */
437 };
438
439 struct eth_tx_desc {
440 u16 byte_cnt; /* buffer byte count */
441 u16 l4i_chk; /* CPU provided TCP checksum */
442 u32 cmd_sts; /* Command/status field */
443 u32 next_desc_ptr; /* Pointer to next descriptor */
444 u32 buf_ptr; /* pointer to buffer for this descriptor*/
445 };
446 #elif defined(__LITTLE_ENDIAN)
447 struct eth_rx_desc {
448 u32 cmd_sts; /* Descriptor command status */
449 u16 buf_size; /* Buffer size */
450 u16 byte_cnt; /* Descriptor buffer byte count */
451 u32 buf_ptr; /* Descriptor buffer pointer */
452 u32 next_desc_ptr; /* Next descriptor pointer */
453 };
454
455 struct eth_tx_desc {
456 u32 cmd_sts; /* Command/status field */
457 u16 l4i_chk; /* CPU provided TCP checksum */
458 u16 byte_cnt; /* buffer byte count */
459 u32 buf_ptr; /* pointer to buffer for this descriptor*/
460 u32 next_desc_ptr; /* Pointer to next descriptor */
461 };
462 #else
463 #error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined
464 #endif
465
466 /* Unified struct for Rx and Tx operations. The user is not required to */
467 /* be familier with neither Tx nor Rx descriptors. */
468 struct pkt_info {
469 unsigned short byte_cnt; /* Descriptor buffer byte count */
470 unsigned short l4i_chk; /* Tx CPU provided TCP Checksum */
471 unsigned int cmd_sts; /* Descriptor command status */
472 dma_addr_t buf_ptr; /* Descriptor buffer pointer */
473 struct sk_buff *return_info; /* User resource return information */
474 };
475
476 /* Ethernet port specific information */
477 struct mv643xx_mib_counters {
478 u64 good_octets_received;
479 u32 bad_octets_received;
480 u32 internal_mac_transmit_err;
481 u32 good_frames_received;
482 u32 bad_frames_received;
483 u32 broadcast_frames_received;
484 u32 multicast_frames_received;
485 u32 frames_64_octets;
486 u32 frames_65_to_127_octets;
487 u32 frames_128_to_255_octets;
488 u32 frames_256_to_511_octets;
489 u32 frames_512_to_1023_octets;
490 u32 frames_1024_to_max_octets;
491 u64 good_octets_sent;
492 u32 good_frames_sent;
493 u32 excessive_collision;
494 u32 multicast_frames_sent;
495 u32 broadcast_frames_sent;
496 u32 unrec_mac_control_received;
497 u32 fc_sent;
498 u32 good_fc_received;
499 u32 bad_fc_received;
500 u32 undersize_received;
501 u32 fragments_received;
502 u32 oversize_received;
503 u32 jabber_received;
504 u32 mac_receive_error;
505 u32 bad_crc_event;
506 u32 collision;
507 u32 late_collision;
508 };
509
510 struct mv643xx_private {
511 int port_num; /* User Ethernet port number */
512
513 u32 rx_sram_addr; /* Base address of rx sram area */
514 u32 rx_sram_size; /* Size of rx sram area */
515 u32 tx_sram_addr; /* Base address of tx sram area */
516 u32 tx_sram_size; /* Size of tx sram area */
517
518 int rx_resource_err; /* Rx ring resource error flag */
519
520 /* Tx/Rx rings managment indexes fields. For driver use */
521
522 /* Next available and first returning Rx resource */
523 int rx_curr_desc_q, rx_used_desc_q;
524
525 /* Next available and first returning Tx resource */
526 int tx_curr_desc_q, tx_used_desc_q;
527
528 #ifdef MV643XX_TX_FAST_REFILL
529 u32 tx_clean_threshold;
530 #endif
531
532 struct eth_rx_desc *p_rx_desc_area;
533 dma_addr_t rx_desc_dma;
534 int rx_desc_area_size;
535 struct sk_buff **rx_skb;
536
537 struct eth_tx_desc *p_tx_desc_area;
538 dma_addr_t tx_desc_dma;
539 int tx_desc_area_size;
540 struct sk_buff **tx_skb;
541
542 struct work_struct tx_timeout_task;
543
544 struct net_device *dev;
545 struct napi_struct napi;
546 struct net_device_stats stats;
547 struct mv643xx_mib_counters mib_counters;
548 spinlock_t lock;
549 /* Size of Tx Ring per queue */
550 int tx_ring_size;
551 /* Number of tx descriptors in use */
552 int tx_desc_count;
553 /* Size of Rx Ring per queue */
554 int rx_ring_size;
555 /* Number of rx descriptors in use */
556 int rx_desc_count;
557
558 /*
559 * Used in case RX Ring is empty, which can be caused when
560 * system does not have resources (skb's)
561 */
562 struct timer_list timeout;
563
564 u32 rx_int_coal;
565 u32 tx_int_coal;
566 struct mii_if_info mii;
567 };
568
569 /* Static function declarations */
570 static void eth_port_init(struct mv643xx_private *mp);
571 static void eth_port_reset(struct mv643xx_private *mp);
572 static void eth_port_start(struct net_device *dev);
573
574 static void ethernet_phy_reset(struct mv643xx_private *mp);
575
576 static void eth_port_write_smi_reg(struct mv643xx_private *mp,
577 unsigned int phy_reg, unsigned int value);
578
579 static void eth_port_read_smi_reg(struct mv643xx_private *mp,
580 unsigned int phy_reg, unsigned int *value);
581
582 static void eth_clear_mib_counters(struct mv643xx_private *mp);
583
584 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
585 struct pkt_info *p_pkt_info);
586 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
587 struct pkt_info *p_pkt_info);
588
589 static void eth_port_uc_addr_get(struct mv643xx_private *mp,
590 unsigned char *p_addr);
591 static void eth_port_uc_addr_set(struct mv643xx_private *mp,
592 unsigned char *p_addr);
593 static void eth_port_set_multicast_list(struct net_device *);
594 static void mv643xx_eth_port_enable_tx(struct mv643xx_private *mp,
595 unsigned int queues);
596 static void mv643xx_eth_port_enable_rx(struct mv643xx_private *mp,
597 unsigned int queues);
598 static unsigned int mv643xx_eth_port_disable_tx(struct mv643xx_private *mp);
599 static unsigned int mv643xx_eth_port_disable_rx(struct mv643xx_private *mp);
600 static int mv643xx_eth_open(struct net_device *);
601 static int mv643xx_eth_stop(struct net_device *);
602 static void eth_port_init_mac_tables(struct mv643xx_private *mp);
603 #ifdef MV643XX_NAPI
604 static int mv643xx_poll(struct napi_struct *napi, int budget);
605 #endif
606 static int ethernet_phy_get(struct mv643xx_private *mp);
607 static void ethernet_phy_set(struct mv643xx_private *mp, int phy_addr);
608 static int ethernet_phy_detect(struct mv643xx_private *mp);
609 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
610 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
611 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
612 static const struct ethtool_ops mv643xx_ethtool_ops;
613
614 static char mv643xx_driver_name[] = "mv643xx_eth";
615 static char mv643xx_driver_version[] = "1.0";
616
617 static void __iomem *mv643xx_eth_base;
618
619 /* used to protect SMI_REG, which is shared across ports */
620 static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
621
622 static inline u32 rdl(struct mv643xx_private *mp, int offset)
623 {
624 return readl(mv643xx_eth_base + offset);
625 }
626
627 static inline void wrl(struct mv643xx_private *mp, int offset, u32 data)
628 {
629 writel(data, mv643xx_eth_base + offset);
630 }
631
632 /*
633 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
634 *
635 * Input : pointer to ethernet interface network device structure
636 * new mtu size
637 * Output : 0 upon success, -EINVAL upon failure
638 */
639 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
640 {
641 if ((new_mtu > 9500) || (new_mtu < 64))
642 return -EINVAL;
643
644 dev->mtu = new_mtu;
645 if (!netif_running(dev))
646 return 0;
647
648 /*
649 * Stop and then re-open the interface. This will allocate RX
650 * skbs of the new MTU.
651 * There is a possible danger that the open will not succeed,
652 * due to memory being full, which might fail the open function.
653 */
654 mv643xx_eth_stop(dev);
655 if (mv643xx_eth_open(dev)) {
656 printk(KERN_ERR "%s: Fatal error on opening device\n",
657 dev->name);
658 }
659
660 return 0;
661 }
662
663 /*
664 * mv643xx_eth_rx_refill_descs
665 *
666 * Fills / refills RX queue on a certain gigabit ethernet port
667 *
668 * Input : pointer to ethernet interface network device structure
669 * Output : N/A
670 */
671 static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
672 {
673 struct mv643xx_private *mp = netdev_priv(dev);
674 struct pkt_info pkt_info;
675 struct sk_buff *skb;
676 int unaligned;
677
678 while (mp->rx_desc_count < mp->rx_ring_size) {
679 skb = dev_alloc_skb(ETH_RX_SKB_SIZE + dma_get_cache_alignment());
680 if (!skb)
681 break;
682 mp->rx_desc_count++;
683 unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1);
684 if (unaligned)
685 skb_reserve(skb, dma_get_cache_alignment() - unaligned);
686 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
687 pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
688 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
689 ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
690 pkt_info.return_info = skb;
691 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
692 printk(KERN_ERR
693 "%s: Error allocating RX Ring\n", dev->name);
694 break;
695 }
696 skb_reserve(skb, ETH_HW_IP_ALIGN);
697 }
698 /*
699 * If RX ring is empty of SKB, set a timer to try allocating
700 * again at a later time.
701 */
702 if (mp->rx_desc_count == 0) {
703 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
704 mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
705 add_timer(&mp->timeout);
706 }
707 }
708
709 /*
710 * mv643xx_eth_rx_refill_descs_timer_wrapper
711 *
712 * Timer routine to wake up RX queue filling task. This function is
713 * used only in case the RX queue is empty, and all alloc_skb has
714 * failed (due to out of memory event).
715 *
716 * Input : pointer to ethernet interface network device structure
717 * Output : N/A
718 */
719 static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
720 {
721 mv643xx_eth_rx_refill_descs((struct net_device *)data);
722 }
723
724 /*
725 * mv643xx_eth_update_mac_address
726 *
727 * Update the MAC address of the port in the address table
728 *
729 * Input : pointer to ethernet interface network device structure
730 * Output : N/A
731 */
732 static void mv643xx_eth_update_mac_address(struct net_device *dev)
733 {
734 struct mv643xx_private *mp = netdev_priv(dev);
735
736 eth_port_init_mac_tables(mp);
737 eth_port_uc_addr_set(mp, dev->dev_addr);
738 }
739
740 /*
741 * mv643xx_eth_set_rx_mode
742 *
743 * Change from promiscuos to regular rx mode
744 *
745 * Input : pointer to ethernet interface network device structure
746 * Output : N/A
747 */
748 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
749 {
750 struct mv643xx_private *mp = netdev_priv(dev);
751 u32 config_reg;
752
753 config_reg = rdl(mp, PORT_CONFIG_REG(mp->port_num));
754 if (dev->flags & IFF_PROMISC)
755 config_reg |= (u32) UNICAST_PROMISCUOUS_MODE;
756 else
757 config_reg &= ~(u32) UNICAST_PROMISCUOUS_MODE;
758 wrl(mp, PORT_CONFIG_REG(mp->port_num), config_reg);
759
760 eth_port_set_multicast_list(dev);
761 }
762
763 /*
764 * mv643xx_eth_set_mac_address
765 *
766 * Change the interface's mac address.
767 * No special hardware thing should be done because interface is always
768 * put in promiscuous mode.
769 *
770 * Input : pointer to ethernet interface network device structure and
771 * a pointer to the designated entry to be added to the cache.
772 * Output : zero upon success, negative upon failure
773 */
774 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
775 {
776 int i;
777
778 for (i = 0; i < 6; i++)
779 /* +2 is for the offset of the HW addr type */
780 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
781 mv643xx_eth_update_mac_address(dev);
782 return 0;
783 }
784
785 /*
786 * mv643xx_eth_tx_timeout
787 *
788 * Called upon a timeout on transmitting a packet
789 *
790 * Input : pointer to ethernet interface network device structure.
791 * Output : N/A
792 */
793 static void mv643xx_eth_tx_timeout(struct net_device *dev)
794 {
795 struct mv643xx_private *mp = netdev_priv(dev);
796
797 printk(KERN_INFO "%s: TX timeout ", dev->name);
798
799 /* Do the reset outside of interrupt context */
800 schedule_work(&mp->tx_timeout_task);
801 }
802
803 /*
804 * mv643xx_eth_tx_timeout_task
805 *
806 * Actual routine to reset the adapter when a timeout on Tx has occurred
807 */
808 static void mv643xx_eth_tx_timeout_task(struct work_struct *ugly)
809 {
810 struct mv643xx_private *mp = container_of(ugly, struct mv643xx_private,
811 tx_timeout_task);
812 struct net_device *dev = mp->dev;
813
814 if (!netif_running(dev))
815 return;
816
817 netif_stop_queue(dev);
818
819 eth_port_reset(mp);
820 eth_port_start(dev);
821
822 if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
823 netif_wake_queue(dev);
824 }
825
826 /**
827 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
828 *
829 * If force is non-zero, frees uncompleted descriptors as well
830 */
831 static int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
832 {
833 struct mv643xx_private *mp = netdev_priv(dev);
834 struct eth_tx_desc *desc;
835 u32 cmd_sts;
836 struct sk_buff *skb;
837 unsigned long flags;
838 int tx_index;
839 dma_addr_t addr;
840 int count;
841 int released = 0;
842
843 while (mp->tx_desc_count > 0) {
844 spin_lock_irqsave(&mp->lock, flags);
845
846 /* tx_desc_count might have changed before acquiring the lock */
847 if (mp->tx_desc_count <= 0) {
848 spin_unlock_irqrestore(&mp->lock, flags);
849 return released;
850 }
851
852 tx_index = mp->tx_used_desc_q;
853 desc = &mp->p_tx_desc_area[tx_index];
854 cmd_sts = desc->cmd_sts;
855
856 if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
857 spin_unlock_irqrestore(&mp->lock, flags);
858 return released;
859 }
860
861 mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
862 mp->tx_desc_count--;
863
864 addr = desc->buf_ptr;
865 count = desc->byte_cnt;
866 skb = mp->tx_skb[tx_index];
867 if (skb)
868 mp->tx_skb[tx_index] = NULL;
869
870 if (cmd_sts & ETH_ERROR_SUMMARY) {
871 printk("%s: Error in TX\n", dev->name);
872 dev->stats.tx_errors++;
873 }
874
875 spin_unlock_irqrestore(&mp->lock, flags);
876
877 if (cmd_sts & ETH_TX_FIRST_DESC)
878 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
879 else
880 dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
881
882 if (skb)
883 dev_kfree_skb_irq(skb);
884
885 released = 1;
886 }
887
888 return released;
889 }
890
891 static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
892 {
893 struct mv643xx_private *mp = netdev_priv(dev);
894
895 if (mv643xx_eth_free_tx_descs(dev, 0) &&
896 mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
897 netif_wake_queue(dev);
898 }
899
900 static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
901 {
902 mv643xx_eth_free_tx_descs(dev, 1);
903 }
904
905 /*
906 * mv643xx_eth_receive
907 *
908 * This function is forward packets that are received from the port's
909 * queues toward kernel core or FastRoute them to another interface.
910 *
911 * Input : dev - a pointer to the required interface
912 * max - maximum number to receive (0 means unlimted)
913 *
914 * Output : number of served packets
915 */
916 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
917 {
918 struct mv643xx_private *mp = netdev_priv(dev);
919 struct net_device_stats *stats = &dev->stats;
920 unsigned int received_packets = 0;
921 struct sk_buff *skb;
922 struct pkt_info pkt_info;
923
924 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
925 dma_unmap_single(NULL, pkt_info.buf_ptr, ETH_RX_SKB_SIZE,
926 DMA_FROM_DEVICE);
927 mp->rx_desc_count--;
928 received_packets++;
929
930 /*
931 * Update statistics.
932 * Note byte count includes 4 byte CRC count
933 */
934 stats->rx_packets++;
935 stats->rx_bytes += pkt_info.byte_cnt;
936 skb = pkt_info.return_info;
937 /*
938 * In case received a packet without first / last bits on OR
939 * the error summary bit is on, the packets needs to be dropeed.
940 */
941 if (((pkt_info.cmd_sts
942 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
943 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
944 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
945 stats->rx_dropped++;
946 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
947 ETH_RX_LAST_DESC)) !=
948 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
949 if (net_ratelimit())
950 printk(KERN_ERR
951 "%s: Received packet spread "
952 "on multiple descriptors\n",
953 dev->name);
954 }
955 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
956 stats->rx_errors++;
957
958 dev_kfree_skb_irq(skb);
959 } else {
960 /*
961 * The -4 is for the CRC in the trailer of the
962 * received packet
963 */
964 skb_put(skb, pkt_info.byte_cnt - 4);
965
966 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
967 skb->ip_summed = CHECKSUM_UNNECESSARY;
968 skb->csum = htons(
969 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
970 }
971 skb->protocol = eth_type_trans(skb, dev);
972 #ifdef MV643XX_NAPI
973 netif_receive_skb(skb);
974 #else
975 netif_rx(skb);
976 #endif
977 }
978 dev->last_rx = jiffies;
979 }
980 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
981
982 return received_packets;
983 }
984
985 /* Set the mv643xx port configuration register for the speed/duplex mode. */
986 static void mv643xx_eth_update_pscr(struct net_device *dev,
987 struct ethtool_cmd *ecmd)
988 {
989 struct mv643xx_private *mp = netdev_priv(dev);
990 int port_num = mp->port_num;
991 u32 o_pscr, n_pscr;
992 unsigned int queues;
993
994 o_pscr = rdl(mp, PORT_SERIAL_CONTROL_REG(port_num));
995 n_pscr = o_pscr;
996
997 /* clear speed, duplex and rx buffer size fields */
998 n_pscr &= ~(SET_MII_SPEED_TO_100 |
999 SET_GMII_SPEED_TO_1000 |
1000 SET_FULL_DUPLEX_MODE |
1001 MAX_RX_PACKET_MASK);
1002
1003 if (ecmd->duplex == DUPLEX_FULL)
1004 n_pscr |= SET_FULL_DUPLEX_MODE;
1005
1006 if (ecmd->speed == SPEED_1000)
1007 n_pscr |= SET_GMII_SPEED_TO_1000 |
1008 MAX_RX_PACKET_9700BYTE;
1009 else {
1010 if (ecmd->speed == SPEED_100)
1011 n_pscr |= SET_MII_SPEED_TO_100;
1012 n_pscr |= MAX_RX_PACKET_1522BYTE;
1013 }
1014
1015 if (n_pscr != o_pscr) {
1016 if ((o_pscr & SERIAL_PORT_ENABLE) == 0)
1017 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), n_pscr);
1018 else {
1019 queues = mv643xx_eth_port_disable_tx(mp);
1020
1021 o_pscr &= ~SERIAL_PORT_ENABLE;
1022 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), o_pscr);
1023 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), n_pscr);
1024 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), n_pscr);
1025 if (queues)
1026 mv643xx_eth_port_enable_tx(mp, queues);
1027 }
1028 }
1029 }
1030
1031 /*
1032 * mv643xx_eth_int_handler
1033 *
1034 * Main interrupt handler for the gigbit ethernet ports
1035 *
1036 * Input : irq - irq number (not used)
1037 * dev_id - a pointer to the required interface's data structure
1038 * regs - not used
1039 * Output : N/A
1040 */
1041
1042 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id)
1043 {
1044 struct net_device *dev = (struct net_device *)dev_id;
1045 struct mv643xx_private *mp = netdev_priv(dev);
1046 u32 eth_int_cause, eth_int_cause_ext = 0;
1047 unsigned int port_num = mp->port_num;
1048
1049 /* Read interrupt cause registers */
1050 eth_int_cause = rdl(mp, INTERRUPT_CAUSE_REG(port_num)) &
1051 ETH_INT_UNMASK_ALL;
1052 if (eth_int_cause & ETH_INT_CAUSE_EXT) {
1053 eth_int_cause_ext = rdl(mp,
1054 INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
1055 ETH_INT_UNMASK_ALL_EXT;
1056 wrl(mp, INTERRUPT_CAUSE_EXTEND_REG(port_num),
1057 ~eth_int_cause_ext);
1058 }
1059
1060 /* PHY status changed */
1061 if (eth_int_cause_ext & (ETH_INT_CAUSE_PHY | ETH_INT_CAUSE_STATE)) {
1062 struct ethtool_cmd cmd;
1063
1064 if (mii_link_ok(&mp->mii)) {
1065 mii_ethtool_gset(&mp->mii, &cmd);
1066 mv643xx_eth_update_pscr(dev, &cmd);
1067 mv643xx_eth_port_enable_tx(mp, ETH_TX_QUEUES_ENABLED);
1068 if (!netif_carrier_ok(dev)) {
1069 netif_carrier_on(dev);
1070 if (mp->tx_ring_size - mp->tx_desc_count >=
1071 MAX_DESCS_PER_SKB)
1072 netif_wake_queue(dev);
1073 }
1074 } else if (netif_carrier_ok(dev)) {
1075 netif_stop_queue(dev);
1076 netif_carrier_off(dev);
1077 }
1078 }
1079
1080 #ifdef MV643XX_NAPI
1081 if (eth_int_cause & ETH_INT_CAUSE_RX) {
1082 /* schedule the NAPI poll routine to maintain port */
1083 wrl(mp, INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1084
1085 /* wait for previous write to complete */
1086 rdl(mp, INTERRUPT_MASK_REG(port_num));
1087
1088 netif_rx_schedule(dev, &mp->napi);
1089 }
1090 #else
1091 if (eth_int_cause & ETH_INT_CAUSE_RX)
1092 mv643xx_eth_receive_queue(dev, INT_MAX);
1093 #endif
1094 if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
1095 mv643xx_eth_free_completed_tx_descs(dev);
1096
1097 /*
1098 * If no real interrupt occured, exit.
1099 * This can happen when using gigE interrupt coalescing mechanism.
1100 */
1101 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
1102 return IRQ_NONE;
1103
1104 return IRQ_HANDLED;
1105 }
1106
1107 #ifdef MV643XX_COAL
1108
1109 /*
1110 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
1111 *
1112 * DESCRIPTION:
1113 * This routine sets the RX coalescing interrupt mechanism parameter.
1114 * This parameter is a timeout counter, that counts in 64 t_clk
1115 * chunks ; that when timeout event occurs a maskable interrupt
1116 * occurs.
1117 * The parameter is calculated using the tClk of the MV-643xx chip
1118 * , and the required delay of the interrupt in usec.
1119 *
1120 * INPUT:
1121 * struct mv643xx_private *mp Ethernet port
1122 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
1123 * unsigned int delay Delay in usec
1124 *
1125 * OUTPUT:
1126 * Interrupt coalescing mechanism value is set in MV-643xx chip.
1127 *
1128 * RETURN:
1129 * The interrupt coalescing value set in the gigE port.
1130 *
1131 */
1132 static unsigned int eth_port_set_rx_coal(struct mv643xx_private *mp,
1133 unsigned int t_clk, unsigned int delay)
1134 {
1135 unsigned int port_num = mp->port_num;
1136 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
1137
1138 /* Set RX Coalescing mechanism */
1139 wrl(mp, SDMA_CONFIG_REG(port_num),
1140 ((coal & 0x3fff) << 8) |
1141 (rdl(mp, SDMA_CONFIG_REG(port_num))
1142 & 0xffc000ff));
1143
1144 return coal;
1145 }
1146 #endif
1147
1148 /*
1149 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
1150 *
1151 * DESCRIPTION:
1152 * This routine sets the TX coalescing interrupt mechanism parameter.
1153 * This parameter is a timeout counter, that counts in 64 t_clk
1154 * chunks ; that when timeout event occurs a maskable interrupt
1155 * occurs.
1156 * The parameter is calculated using the t_cLK frequency of the
1157 * MV-643xx chip and the required delay in the interrupt in uSec
1158 *
1159 * INPUT:
1160 * struct mv643xx_private *mp Ethernet port
1161 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
1162 * unsigned int delay Delay in uSeconds
1163 *
1164 * OUTPUT:
1165 * Interrupt coalescing mechanism value is set in MV-643xx chip.
1166 *
1167 * RETURN:
1168 * The interrupt coalescing value set in the gigE port.
1169 *
1170 */
1171 static unsigned int eth_port_set_tx_coal(struct mv643xx_private *mp,
1172 unsigned int t_clk, unsigned int delay)
1173 {
1174 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
1175
1176 /* Set TX Coalescing mechanism */
1177 wrl(mp, TX_FIFO_URGENT_THRESHOLD_REG(mp->port_num), coal << 4);
1178
1179 return coal;
1180 }
1181
1182 /*
1183 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
1184 *
1185 * DESCRIPTION:
1186 * This function prepares a Rx chained list of descriptors and packet
1187 * buffers in a form of a ring. The routine must be called after port
1188 * initialization routine and before port start routine.
1189 * The Ethernet SDMA engine uses CPU bus addresses to access the various
1190 * devices in the system (i.e. DRAM). This function uses the ethernet
1191 * struct 'virtual to physical' routine (set by the user) to set the ring
1192 * with physical addresses.
1193 *
1194 * INPUT:
1195 * struct mv643xx_private *mp Ethernet Port Control srtuct.
1196 *
1197 * OUTPUT:
1198 * The routine updates the Ethernet port control struct with information
1199 * regarding the Rx descriptors and buffers.
1200 *
1201 * RETURN:
1202 * None.
1203 */
1204 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
1205 {
1206 volatile struct eth_rx_desc *p_rx_desc;
1207 int rx_desc_num = mp->rx_ring_size;
1208 int i;
1209
1210 /* initialize the next_desc_ptr links in the Rx descriptors ring */
1211 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
1212 for (i = 0; i < rx_desc_num; i++) {
1213 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
1214 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
1215 }
1216
1217 /* Save Rx desc pointer to driver struct. */
1218 mp->rx_curr_desc_q = 0;
1219 mp->rx_used_desc_q = 0;
1220
1221 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
1222 }
1223
1224 /*
1225 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
1226 *
1227 * DESCRIPTION:
1228 * This function prepares a Tx chained list of descriptors and packet
1229 * buffers in a form of a ring. The routine must be called after port
1230 * initialization routine and before port start routine.
1231 * The Ethernet SDMA engine uses CPU bus addresses to access the various
1232 * devices in the system (i.e. DRAM). This function uses the ethernet
1233 * struct 'virtual to physical' routine (set by the user) to set the ring
1234 * with physical addresses.
1235 *
1236 * INPUT:
1237 * struct mv643xx_private *mp Ethernet Port Control srtuct.
1238 *
1239 * OUTPUT:
1240 * The routine updates the Ethernet port control struct with information
1241 * regarding the Tx descriptors and buffers.
1242 *
1243 * RETURN:
1244 * None.
1245 */
1246 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
1247 {
1248 int tx_desc_num = mp->tx_ring_size;
1249 struct eth_tx_desc *p_tx_desc;
1250 int i;
1251
1252 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1253 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
1254 for (i = 0; i < tx_desc_num; i++) {
1255 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
1256 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
1257 }
1258
1259 mp->tx_curr_desc_q = 0;
1260 mp->tx_used_desc_q = 0;
1261
1262 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
1263 }
1264
1265 static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1266 {
1267 struct mv643xx_private *mp = netdev_priv(dev);
1268 int err;
1269
1270 spin_lock_irq(&mp->lock);
1271 err = mii_ethtool_sset(&mp->mii, cmd);
1272 spin_unlock_irq(&mp->lock);
1273
1274 return err;
1275 }
1276
1277 static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1278 {
1279 struct mv643xx_private *mp = netdev_priv(dev);
1280 int err;
1281
1282 spin_lock_irq(&mp->lock);
1283 err = mii_ethtool_gset(&mp->mii, cmd);
1284 spin_unlock_irq(&mp->lock);
1285
1286 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
1287 cmd->supported &= ~SUPPORTED_1000baseT_Half;
1288 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
1289
1290 return err;
1291 }
1292
1293 /*
1294 * mv643xx_eth_open
1295 *
1296 * This function is called when openning the network device. The function
1297 * should initialize all the hardware, initialize cyclic Rx/Tx
1298 * descriptors chain and buffers and allocate an IRQ to the network
1299 * device.
1300 *
1301 * Input : a pointer to the network device structure
1302 *
1303 * Output : zero of success , nonzero if fails.
1304 */
1305
1306 static int mv643xx_eth_open(struct net_device *dev)
1307 {
1308 struct mv643xx_private *mp = netdev_priv(dev);
1309 unsigned int port_num = mp->port_num;
1310 unsigned int size;
1311 int err;
1312
1313 /* Clear any pending ethernet port interrupts */
1314 wrl(mp, INTERRUPT_CAUSE_REG(port_num), 0);
1315 wrl(mp, INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1316 /* wait for previous write to complete */
1317 rdl(mp, INTERRUPT_CAUSE_EXTEND_REG(port_num));
1318
1319 err = request_irq(dev->irq, mv643xx_eth_int_handler,
1320 IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
1321 if (err) {
1322 printk(KERN_ERR "%s: Can not assign IRQ\n", dev->name);
1323 return -EAGAIN;
1324 }
1325
1326 eth_port_init(mp);
1327
1328 memset(&mp->timeout, 0, sizeof(struct timer_list));
1329 mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
1330 mp->timeout.data = (unsigned long)dev;
1331
1332 /* Allocate RX and TX skb rings */
1333 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
1334 GFP_KERNEL);
1335 if (!mp->rx_skb) {
1336 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
1337 err = -ENOMEM;
1338 goto out_free_irq;
1339 }
1340 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
1341 GFP_KERNEL);
1342 if (!mp->tx_skb) {
1343 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
1344 err = -ENOMEM;
1345 goto out_free_rx_skb;
1346 }
1347
1348 /* Allocate TX ring */
1349 mp->tx_desc_count = 0;
1350 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
1351 mp->tx_desc_area_size = size;
1352
1353 if (mp->tx_sram_size) {
1354 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
1355 mp->tx_sram_size);
1356 mp->tx_desc_dma = mp->tx_sram_addr;
1357 } else
1358 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
1359 &mp->tx_desc_dma,
1360 GFP_KERNEL);
1361
1362 if (!mp->p_tx_desc_area) {
1363 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
1364 dev->name, size);
1365 err = -ENOMEM;
1366 goto out_free_tx_skb;
1367 }
1368 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
1369 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
1370
1371 ether_init_tx_desc_ring(mp);
1372
1373 /* Allocate RX ring */
1374 mp->rx_desc_count = 0;
1375 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
1376 mp->rx_desc_area_size = size;
1377
1378 if (mp->rx_sram_size) {
1379 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
1380 mp->rx_sram_size);
1381 mp->rx_desc_dma = mp->rx_sram_addr;
1382 } else
1383 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
1384 &mp->rx_desc_dma,
1385 GFP_KERNEL);
1386
1387 if (!mp->p_rx_desc_area) {
1388 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
1389 dev->name, size);
1390 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
1391 dev->name);
1392 if (mp->rx_sram_size)
1393 iounmap(mp->p_tx_desc_area);
1394 else
1395 dma_free_coherent(NULL, mp->tx_desc_area_size,
1396 mp->p_tx_desc_area, mp->tx_desc_dma);
1397 err = -ENOMEM;
1398 goto out_free_tx_skb;
1399 }
1400 memset((void *)mp->p_rx_desc_area, 0, size);
1401
1402 ether_init_rx_desc_ring(mp);
1403
1404 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
1405
1406 #ifdef MV643XX_NAPI
1407 napi_enable(&mp->napi);
1408 #endif
1409
1410 eth_port_start(dev);
1411
1412 /* Interrupt Coalescing */
1413
1414 #ifdef MV643XX_COAL
1415 mp->rx_int_coal =
1416 eth_port_set_rx_coal(mp, 133000000, MV643XX_RX_COAL);
1417 #endif
1418
1419 mp->tx_int_coal =
1420 eth_port_set_tx_coal(mp, 133000000, MV643XX_TX_COAL);
1421
1422 /* Unmask phy and link status changes interrupts */
1423 wrl(mp, INTERRUPT_EXTEND_MASK_REG(port_num), ETH_INT_UNMASK_ALL_EXT);
1424
1425 /* Unmask RX buffer and TX end interrupt */
1426 wrl(mp, INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1427
1428 return 0;
1429
1430 out_free_tx_skb:
1431 kfree(mp->tx_skb);
1432 out_free_rx_skb:
1433 kfree(mp->rx_skb);
1434 out_free_irq:
1435 free_irq(dev->irq, dev);
1436
1437 return err;
1438 }
1439
1440 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
1441 {
1442 struct mv643xx_private *mp = netdev_priv(dev);
1443
1444 /* Stop Tx Queues */
1445 mv643xx_eth_port_disable_tx(mp);
1446
1447 /* Free outstanding skb's on TX ring */
1448 mv643xx_eth_free_all_tx_descs(dev);
1449
1450 BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
1451
1452 /* Free TX ring */
1453 if (mp->tx_sram_size)
1454 iounmap(mp->p_tx_desc_area);
1455 else
1456 dma_free_coherent(NULL, mp->tx_desc_area_size,
1457 mp->p_tx_desc_area, mp->tx_desc_dma);
1458 }
1459
1460 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
1461 {
1462 struct mv643xx_private *mp = netdev_priv(dev);
1463 int curr;
1464
1465 /* Stop RX Queues */
1466 mv643xx_eth_port_disable_rx(mp);
1467
1468 /* Free preallocated skb's on RX rings */
1469 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
1470 if (mp->rx_skb[curr]) {
1471 dev_kfree_skb(mp->rx_skb[curr]);
1472 mp->rx_desc_count--;
1473 }
1474 }
1475
1476 if (mp->rx_desc_count)
1477 printk(KERN_ERR
1478 "%s: Error in freeing Rx Ring. %d skb's still"
1479 " stuck in RX Ring - ignoring them\n", dev->name,
1480 mp->rx_desc_count);
1481 /* Free RX ring */
1482 if (mp->rx_sram_size)
1483 iounmap(mp->p_rx_desc_area);
1484 else
1485 dma_free_coherent(NULL, mp->rx_desc_area_size,
1486 mp->p_rx_desc_area, mp->rx_desc_dma);
1487 }
1488
1489 /*
1490 * mv643xx_eth_stop
1491 *
1492 * This function is used when closing the network device.
1493 * It updates the hardware,
1494 * release all memory that holds buffers and descriptors and release the IRQ.
1495 * Input : a pointer to the device structure
1496 * Output : zero if success , nonzero if fails
1497 */
1498
1499 static int mv643xx_eth_stop(struct net_device *dev)
1500 {
1501 struct mv643xx_private *mp = netdev_priv(dev);
1502 unsigned int port_num = mp->port_num;
1503
1504 /* Mask all interrupts on ethernet port */
1505 wrl(mp, INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1506 /* wait for previous write to complete */
1507 rdl(mp, INTERRUPT_MASK_REG(port_num));
1508
1509 #ifdef MV643XX_NAPI
1510 napi_disable(&mp->napi);
1511 #endif
1512 netif_carrier_off(dev);
1513 netif_stop_queue(dev);
1514
1515 eth_port_reset(mp);
1516
1517 mv643xx_eth_free_tx_rings(dev);
1518 mv643xx_eth_free_rx_rings(dev);
1519
1520 free_irq(dev->irq, dev);
1521
1522 return 0;
1523 }
1524
1525 #ifdef MV643XX_NAPI
1526 /*
1527 * mv643xx_poll
1528 *
1529 * This function is used in case of NAPI
1530 */
1531 static int mv643xx_poll(struct napi_struct *napi, int budget)
1532 {
1533 struct mv643xx_private *mp = container_of(napi, struct mv643xx_private, napi);
1534 struct net_device *dev = mp->dev;
1535 unsigned int port_num = mp->port_num;
1536 int work_done;
1537
1538 #ifdef MV643XX_TX_FAST_REFILL
1539 if (++mp->tx_clean_threshold > 5) {
1540 mv643xx_eth_free_completed_tx_descs(dev);
1541 mp->tx_clean_threshold = 0;
1542 }
1543 #endif
1544
1545 work_done = 0;
1546 if ((rdl(mp, RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1547 != (u32) mp->rx_used_desc_q)
1548 work_done = mv643xx_eth_receive_queue(dev, budget);
1549
1550 if (work_done < budget) {
1551 netif_rx_complete(dev, napi);
1552 wrl(mp, INTERRUPT_CAUSE_REG(port_num), 0);
1553 wrl(mp, INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1554 wrl(mp, INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1555 }
1556
1557 return work_done;
1558 }
1559 #endif
1560
1561 /**
1562 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1563 *
1564 * Hardware can't handle unaligned fragments smaller than 9 bytes.
1565 * This helper function detects that case.
1566 */
1567
1568 static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1569 {
1570 unsigned int frag;
1571 skb_frag_t *fragp;
1572
1573 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1574 fragp = &skb_shinfo(skb)->frags[frag];
1575 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1576 return 1;
1577 }
1578 return 0;
1579 }
1580
1581 /**
1582 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1583 */
1584 static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1585 {
1586 int tx_desc_curr;
1587
1588 BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
1589
1590 tx_desc_curr = mp->tx_curr_desc_q;
1591 mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1592
1593 BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1594
1595 return tx_desc_curr;
1596 }
1597
1598 /**
1599 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1600 *
1601 * Ensure the data for each fragment to be transmitted is mapped properly,
1602 * then fill in descriptors in the tx hw queue.
1603 */
1604 static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1605 struct sk_buff *skb)
1606 {
1607 int frag;
1608 int tx_index;
1609 struct eth_tx_desc *desc;
1610
1611 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1612 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1613
1614 tx_index = eth_alloc_tx_desc_index(mp);
1615 desc = &mp->p_tx_desc_area[tx_index];
1616
1617 desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1618 /* Last Frag enables interrupt and frees the skb */
1619 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1620 desc->cmd_sts |= ETH_ZERO_PADDING |
1621 ETH_TX_LAST_DESC |
1622 ETH_TX_ENABLE_INTERRUPT;
1623 mp->tx_skb[tx_index] = skb;
1624 } else
1625 mp->tx_skb[tx_index] = NULL;
1626
1627 desc = &mp->p_tx_desc_area[tx_index];
1628 desc->l4i_chk = 0;
1629 desc->byte_cnt = this_frag->size;
1630 desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1631 this_frag->page_offset,
1632 this_frag->size,
1633 DMA_TO_DEVICE);
1634 }
1635 }
1636
1637 static inline __be16 sum16_as_be(__sum16 sum)
1638 {
1639 return (__force __be16)sum;
1640 }
1641
1642 /**
1643 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1644 *
1645 * Ensure the data for an skb to be transmitted is mapped properly,
1646 * then fill in descriptors in the tx hw queue and start the hardware.
1647 */
1648 static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1649 struct sk_buff *skb)
1650 {
1651 int tx_index;
1652 struct eth_tx_desc *desc;
1653 u32 cmd_sts;
1654 int length;
1655 int nr_frags = skb_shinfo(skb)->nr_frags;
1656
1657 cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1658
1659 tx_index = eth_alloc_tx_desc_index(mp);
1660 desc = &mp->p_tx_desc_area[tx_index];
1661
1662 if (nr_frags) {
1663 eth_tx_fill_frag_descs(mp, skb);
1664
1665 length = skb_headlen(skb);
1666 mp->tx_skb[tx_index] = NULL;
1667 } else {
1668 cmd_sts |= ETH_ZERO_PADDING |
1669 ETH_TX_LAST_DESC |
1670 ETH_TX_ENABLE_INTERRUPT;
1671 length = skb->len;
1672 mp->tx_skb[tx_index] = skb;
1673 }
1674
1675 desc->byte_cnt = length;
1676 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1677
1678 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1679 BUG_ON(skb->protocol != htons(ETH_P_IP));
1680
1681 cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1682 ETH_GEN_IP_V_4_CHECKSUM |
1683 ip_hdr(skb)->ihl << ETH_TX_IHL_SHIFT;
1684
1685 switch (ip_hdr(skb)->protocol) {
1686 case IPPROTO_UDP:
1687 cmd_sts |= ETH_UDP_FRAME;
1688 desc->l4i_chk = ntohs(sum16_as_be(udp_hdr(skb)->check));
1689 break;
1690 case IPPROTO_TCP:
1691 desc->l4i_chk = ntohs(sum16_as_be(tcp_hdr(skb)->check));
1692 break;
1693 default:
1694 BUG();
1695 }
1696 } else {
1697 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1698 cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1699 desc->l4i_chk = 0;
1700 }
1701
1702 /* ensure all other descriptors are written before first cmd_sts */
1703 wmb();
1704 desc->cmd_sts = cmd_sts;
1705
1706 /* ensure all descriptors are written before poking hardware */
1707 wmb();
1708 mv643xx_eth_port_enable_tx(mp, ETH_TX_QUEUES_ENABLED);
1709
1710 mp->tx_desc_count += nr_frags + 1;
1711 }
1712
1713 /**
1714 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1715 *
1716 */
1717 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1718 {
1719 struct mv643xx_private *mp = netdev_priv(dev);
1720 struct net_device_stats *stats = &dev->stats;
1721 unsigned long flags;
1722
1723 BUG_ON(netif_queue_stopped(dev));
1724
1725 if (has_tiny_unaligned_frags(skb) && __skb_linearize(skb)) {
1726 stats->tx_dropped++;
1727 printk(KERN_DEBUG "%s: failed to linearize tiny "
1728 "unaligned fragment\n", dev->name);
1729 return NETDEV_TX_BUSY;
1730 }
1731
1732 spin_lock_irqsave(&mp->lock, flags);
1733
1734 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
1735 printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
1736 netif_stop_queue(dev);
1737 spin_unlock_irqrestore(&mp->lock, flags);
1738 return NETDEV_TX_BUSY;
1739 }
1740
1741 eth_tx_submit_descs_for_skb(mp, skb);
1742 stats->tx_bytes += skb->len;
1743 stats->tx_packets++;
1744 dev->trans_start = jiffies;
1745
1746 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1747 netif_stop_queue(dev);
1748
1749 spin_unlock_irqrestore(&mp->lock, flags);
1750
1751 return NETDEV_TX_OK;
1752 }
1753
1754 #ifdef CONFIG_NET_POLL_CONTROLLER
1755 static void mv643xx_netpoll(struct net_device *netdev)
1756 {
1757 struct mv643xx_private *mp = netdev_priv(netdev);
1758 int port_num = mp->port_num;
1759
1760 wrl(mp, INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1761 /* wait for previous write to complete */
1762 rdl(mp, INTERRUPT_MASK_REG(port_num));
1763
1764 mv643xx_eth_int_handler(netdev->irq, netdev);
1765
1766 wrl(mp, INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1767 }
1768 #endif
1769
1770 static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1771 int speed, int duplex,
1772 struct ethtool_cmd *cmd)
1773 {
1774 struct mv643xx_private *mp = netdev_priv(dev);
1775
1776 memset(cmd, 0, sizeof(*cmd));
1777
1778 cmd->port = PORT_MII;
1779 cmd->transceiver = XCVR_INTERNAL;
1780 cmd->phy_address = phy_address;
1781
1782 if (speed == 0) {
1783 cmd->autoneg = AUTONEG_ENABLE;
1784 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1785 cmd->speed = SPEED_100;
1786 cmd->advertising = ADVERTISED_10baseT_Half |
1787 ADVERTISED_10baseT_Full |
1788 ADVERTISED_100baseT_Half |
1789 ADVERTISED_100baseT_Full;
1790 if (mp->mii.supports_gmii)
1791 cmd->advertising |= ADVERTISED_1000baseT_Full;
1792 } else {
1793 cmd->autoneg = AUTONEG_DISABLE;
1794 cmd->speed = speed;
1795 cmd->duplex = duplex;
1796 }
1797 }
1798
1799 /*/
1800 * mv643xx_eth_probe
1801 *
1802 * First function called after registering the network device.
1803 * It's purpose is to initialize the device as an ethernet device,
1804 * fill the ethernet device structure with pointers * to functions,
1805 * and set the MAC address of the interface
1806 *
1807 * Input : struct device *
1808 * Output : -ENOMEM if failed , 0 if success
1809 */
1810 static int mv643xx_eth_probe(struct platform_device *pdev)
1811 {
1812 struct mv643xx_eth_platform_data *pd;
1813 int port_num;
1814 struct mv643xx_private *mp;
1815 struct net_device *dev;
1816 u8 *p;
1817 struct resource *res;
1818 int err;
1819 struct ethtool_cmd cmd;
1820 int duplex = DUPLEX_HALF;
1821 int speed = 0; /* default to auto-negotiation */
1822 DECLARE_MAC_BUF(mac);
1823
1824 pd = pdev->dev.platform_data;
1825 if (pd == NULL) {
1826 printk(KERN_ERR "No mv643xx_eth_platform_data\n");
1827 return -ENODEV;
1828 }
1829
1830 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1831 if (!dev)
1832 return -ENOMEM;
1833
1834 platform_set_drvdata(pdev, dev);
1835
1836 mp = netdev_priv(dev);
1837 mp->dev = dev;
1838 #ifdef MV643XX_NAPI
1839 netif_napi_add(dev, &mp->napi, mv643xx_poll, 64);
1840 #endif
1841
1842 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1843 BUG_ON(!res);
1844 dev->irq = res->start;
1845
1846 dev->open = mv643xx_eth_open;
1847 dev->stop = mv643xx_eth_stop;
1848 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1849 dev->set_mac_address = mv643xx_eth_set_mac_address;
1850 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1851
1852 /* No need to Tx Timeout */
1853 dev->tx_timeout = mv643xx_eth_tx_timeout;
1854
1855 #ifdef CONFIG_NET_POLL_CONTROLLER
1856 dev->poll_controller = mv643xx_netpoll;
1857 #endif
1858
1859 dev->watchdog_timeo = 2 * HZ;
1860 dev->base_addr = 0;
1861 dev->change_mtu = mv643xx_eth_change_mtu;
1862 dev->do_ioctl = mv643xx_eth_do_ioctl;
1863 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1864
1865 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1866 #ifdef MAX_SKB_FRAGS
1867 /*
1868 * Zero copy can only work if we use Discovery II memory. Else, we will
1869 * have to map the buffers to ISA memory which is only 16 MB
1870 */
1871 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1872 #endif
1873 #endif
1874
1875 /* Configure the timeout task */
1876 INIT_WORK(&mp->tx_timeout_task, mv643xx_eth_tx_timeout_task);
1877
1878 spin_lock_init(&mp->lock);
1879
1880 port_num = mp->port_num = pd->port_number;
1881
1882 /* set default config values */
1883 eth_port_uc_addr_get(mp, dev->dev_addr);
1884 mp->rx_ring_size = PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1885 mp->tx_ring_size = PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1886
1887 if (is_valid_ether_addr(pd->mac_addr))
1888 memcpy(dev->dev_addr, pd->mac_addr, 6);
1889
1890 if (pd->phy_addr || pd->force_phy_addr)
1891 ethernet_phy_set(mp, pd->phy_addr);
1892
1893 if (pd->rx_queue_size)
1894 mp->rx_ring_size = pd->rx_queue_size;
1895
1896 if (pd->tx_queue_size)
1897 mp->tx_ring_size = pd->tx_queue_size;
1898
1899 if (pd->tx_sram_size) {
1900 mp->tx_sram_size = pd->tx_sram_size;
1901 mp->tx_sram_addr = pd->tx_sram_addr;
1902 }
1903
1904 if (pd->rx_sram_size) {
1905 mp->rx_sram_size = pd->rx_sram_size;
1906 mp->rx_sram_addr = pd->rx_sram_addr;
1907 }
1908
1909 duplex = pd->duplex;
1910 speed = pd->speed;
1911
1912 /* Hook up MII support for ethtool */
1913 mp->mii.dev = dev;
1914 mp->mii.mdio_read = mv643xx_mdio_read;
1915 mp->mii.mdio_write = mv643xx_mdio_write;
1916 mp->mii.phy_id = ethernet_phy_get(mp);
1917 mp->mii.phy_id_mask = 0x3f;
1918 mp->mii.reg_num_mask = 0x1f;
1919
1920 err = ethernet_phy_detect(mp);
1921 if (err) {
1922 pr_debug("%s: No PHY detected at addr %d\n",
1923 dev->name, ethernet_phy_get(mp));
1924 goto out;
1925 }
1926
1927 ethernet_phy_reset(mp);
1928 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
1929 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1930 mv643xx_eth_update_pscr(dev, &cmd);
1931 mv643xx_set_settings(dev, &cmd);
1932
1933 SET_NETDEV_DEV(dev, &pdev->dev);
1934 err = register_netdev(dev);
1935 if (err)
1936 goto out;
1937
1938 p = dev->dev_addr;
1939 printk(KERN_NOTICE
1940 "%s: port %d with MAC address %s\n",
1941 dev->name, port_num, print_mac(mac, p));
1942
1943 if (dev->features & NETIF_F_SG)
1944 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1945
1946 if (dev->features & NETIF_F_IP_CSUM)
1947 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1948 dev->name);
1949
1950 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1951 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1952 #endif
1953
1954 #ifdef MV643XX_COAL
1955 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1956 dev->name);
1957 #endif
1958
1959 #ifdef MV643XX_NAPI
1960 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1961 #endif
1962
1963 if (mp->tx_sram_size > 0)
1964 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1965
1966 return 0;
1967
1968 out:
1969 free_netdev(dev);
1970
1971 return err;
1972 }
1973
1974 static int mv643xx_eth_remove(struct platform_device *pdev)
1975 {
1976 struct net_device *dev = platform_get_drvdata(pdev);
1977
1978 unregister_netdev(dev);
1979 flush_scheduled_work();
1980
1981 free_netdev(dev);
1982 platform_set_drvdata(pdev, NULL);
1983 return 0;
1984 }
1985
1986 static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1987 {
1988 static int mv643xx_version_printed = 0;
1989 struct resource *res;
1990
1991 if (!mv643xx_version_printed++)
1992 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1993
1994 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1995 if (res == NULL)
1996 return -ENODEV;
1997
1998 mv643xx_eth_base = ioremap(res->start, res->end - res->start + 1);
1999 if (mv643xx_eth_base == NULL)
2000 return -ENOMEM;
2001
2002 return 0;
2003
2004 }
2005
2006 static int mv643xx_eth_shared_remove(struct platform_device *pdev)
2007 {
2008 iounmap(mv643xx_eth_base);
2009 mv643xx_eth_base = NULL;
2010
2011 return 0;
2012 }
2013
2014 static void mv643xx_eth_shutdown(struct platform_device *pdev)
2015 {
2016 struct net_device *dev = platform_get_drvdata(pdev);
2017 struct mv643xx_private *mp = netdev_priv(dev);
2018 unsigned int port_num = mp->port_num;
2019
2020 /* Mask all interrupts on ethernet port */
2021 wrl(mp, INTERRUPT_MASK_REG(port_num), 0);
2022 rdl(mp, INTERRUPT_MASK_REG(port_num));
2023
2024 eth_port_reset(mp);
2025 }
2026
2027 static struct platform_driver mv643xx_eth_driver = {
2028 .probe = mv643xx_eth_probe,
2029 .remove = mv643xx_eth_remove,
2030 .shutdown = mv643xx_eth_shutdown,
2031 .driver = {
2032 .name = MV643XX_ETH_NAME,
2033 .owner = THIS_MODULE,
2034 },
2035 };
2036
2037 static struct platform_driver mv643xx_eth_shared_driver = {
2038 .probe = mv643xx_eth_shared_probe,
2039 .remove = mv643xx_eth_shared_remove,
2040 .driver = {
2041 .name = MV643XX_ETH_SHARED_NAME,
2042 .owner = THIS_MODULE,
2043 },
2044 };
2045
2046 /*
2047 * mv643xx_init_module
2048 *
2049 * Registers the network drivers into the Linux kernel
2050 *
2051 * Input : N/A
2052 *
2053 * Output : N/A
2054 */
2055 static int __init mv643xx_init_module(void)
2056 {
2057 int rc;
2058
2059 rc = platform_driver_register(&mv643xx_eth_shared_driver);
2060 if (!rc) {
2061 rc = platform_driver_register(&mv643xx_eth_driver);
2062 if (rc)
2063 platform_driver_unregister(&mv643xx_eth_shared_driver);
2064 }
2065 return rc;
2066 }
2067
2068 /*
2069 * mv643xx_cleanup_module
2070 *
2071 * Registers the network drivers into the Linux kernel
2072 *
2073 * Input : N/A
2074 *
2075 * Output : N/A
2076 */
2077 static void __exit mv643xx_cleanup_module(void)
2078 {
2079 platform_driver_unregister(&mv643xx_eth_driver);
2080 platform_driver_unregister(&mv643xx_eth_shared_driver);
2081 }
2082
2083 module_init(mv643xx_init_module);
2084 module_exit(mv643xx_cleanup_module);
2085
2086 MODULE_LICENSE("GPL");
2087 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
2088 " and Dale Farnsworth");
2089 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
2090 MODULE_ALIAS("platform:" MV643XX_ETH_NAME);
2091 MODULE_ALIAS("platform:" MV643XX_ETH_SHARED_NAME);
2092
2093 /*
2094 * The second part is the low level driver of the gigE ethernet ports.
2095 */
2096
2097 /*
2098 * Marvell's Gigabit Ethernet controller low level driver
2099 *
2100 * DESCRIPTION:
2101 * This file introduce low level API to Marvell's Gigabit Ethernet
2102 * controller. This Gigabit Ethernet Controller driver API controls
2103 * 1) Operations (i.e. port init, start, reset etc').
2104 * 2) Data flow (i.e. port send, receive etc').
2105 * Each Gigabit Ethernet port is controlled via
2106 * struct mv643xx_private.
2107 * This struct includes user configuration information as well as
2108 * driver internal data needed for its operations.
2109 *
2110 * Supported Features:
2111 * - This low level driver is OS independent. Allocating memory for
2112 * the descriptor rings and buffers are not within the scope of
2113 * this driver.
2114 * - The user is free from Rx/Tx queue managing.
2115 * - This low level driver introduce functionality API that enable
2116 * the to operate Marvell's Gigabit Ethernet Controller in a
2117 * convenient way.
2118 * - Simple Gigabit Ethernet port operation API.
2119 * - Simple Gigabit Ethernet port data flow API.
2120 * - Data flow and operation API support per queue functionality.
2121 * - Support cached descriptors for better performance.
2122 * - Enable access to all four DRAM banks and internal SRAM memory
2123 * spaces.
2124 * - PHY access and control API.
2125 * - Port control register configuration API.
2126 * - Full control over Unicast and Multicast MAC configurations.
2127 *
2128 * Operation flow:
2129 *
2130 * Initialization phase
2131 * This phase complete the initialization of the the
2132 * mv643xx_private struct.
2133 * User information regarding port configuration has to be set
2134 * prior to calling the port initialization routine.
2135 *
2136 * In this phase any port Tx/Rx activity is halted, MIB counters
2137 * are cleared, PHY address is set according to user parameter and
2138 * access to DRAM and internal SRAM memory spaces.
2139 *
2140 * Driver ring initialization
2141 * Allocating memory for the descriptor rings and buffers is not
2142 * within the scope of this driver. Thus, the user is required to
2143 * allocate memory for the descriptors ring and buffers. Those
2144 * memory parameters are used by the Rx and Tx ring initialization
2145 * routines in order to curve the descriptor linked list in a form
2146 * of a ring.
2147 * Note: Pay special attention to alignment issues when using
2148 * cached descriptors/buffers. In this phase the driver store
2149 * information in the mv643xx_private struct regarding each queue
2150 * ring.
2151 *
2152 * Driver start
2153 * This phase prepares the Ethernet port for Rx and Tx activity.
2154 * It uses the information stored in the mv643xx_private struct to
2155 * initialize the various port registers.
2156 *
2157 * Data flow:
2158 * All packet references to/from the driver are done using
2159 * struct pkt_info.
2160 * This struct is a unified struct used with Rx and Tx operations.
2161 * This way the user is not required to be familiar with neither
2162 * Tx nor Rx descriptors structures.
2163 * The driver's descriptors rings are management by indexes.
2164 * Those indexes controls the ring resources and used to indicate
2165 * a SW resource error:
2166 * 'current'
2167 * This index points to the current available resource for use. For
2168 * example in Rx process this index will point to the descriptor
2169 * that will be passed to the user upon calling the receive
2170 * routine. In Tx process, this index will point to the descriptor
2171 * that will be assigned with the user packet info and transmitted.
2172 * 'used'
2173 * This index points to the descriptor that need to restore its
2174 * resources. For example in Rx process, using the Rx buffer return
2175 * API will attach the buffer returned in packet info to the
2176 * descriptor pointed by 'used'. In Tx process, using the Tx
2177 * descriptor return will merely return the user packet info with
2178 * the command status of the transmitted buffer pointed by the
2179 * 'used' index. Nevertheless, it is essential to use this routine
2180 * to update the 'used' index.
2181 * 'first'
2182 * This index supports Tx Scatter-Gather. It points to the first
2183 * descriptor of a packet assembled of multiple buffers. For
2184 * example when in middle of Such packet we have a Tx resource
2185 * error the 'curr' index get the value of 'first' to indicate
2186 * that the ring returned to its state before trying to transmit
2187 * this packet.
2188 *
2189 * Receive operation:
2190 * The eth_port_receive API set the packet information struct,
2191 * passed by the caller, with received information from the
2192 * 'current' SDMA descriptor.
2193 * It is the user responsibility to return this resource back
2194 * to the Rx descriptor ring to enable the reuse of this source.
2195 * Return Rx resource is done using the eth_rx_return_buff API.
2196 *
2197 * Prior to calling the initialization routine eth_port_init() the user
2198 * must set the following fields under mv643xx_private struct:
2199 * port_num User Ethernet port number.
2200 * port_config User port configuration value.
2201 * port_config_extend User port config extend value.
2202 * port_sdma_config User port SDMA config value.
2203 * port_serial_control User port serial control value.
2204 *
2205 * This driver data flow is done using the struct pkt_info which
2206 * is a unified struct for Rx and Tx operations:
2207 *
2208 * byte_cnt Tx/Rx descriptor buffer byte count.
2209 * l4i_chk CPU provided TCP Checksum. For Tx operation
2210 * only.
2211 * cmd_sts Tx/Rx descriptor command status.
2212 * buf_ptr Tx/Rx descriptor buffer pointer.
2213 * return_info Tx/Rx user resource return information.
2214 */
2215
2216 /* Ethernet Port routines */
2217 static void eth_port_set_filter_table_entry(struct mv643xx_private *mp,
2218 int table, unsigned char entry);
2219
2220 /*
2221 * eth_port_init - Initialize the Ethernet port driver
2222 *
2223 * DESCRIPTION:
2224 * This function prepares the ethernet port to start its activity:
2225 * 1) Completes the ethernet port driver struct initialization toward port
2226 * start routine.
2227 * 2) Resets the device to a quiescent state in case of warm reboot.
2228 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
2229 * 4) Clean MAC tables. The reset status of those tables is unknown.
2230 * 5) Set PHY address.
2231 * Note: Call this routine prior to eth_port_start routine and after
2232 * setting user values in the user fields of Ethernet port control
2233 * struct.
2234 *
2235 * INPUT:
2236 * struct mv643xx_private *mp Ethernet port control struct
2237 *
2238 * OUTPUT:
2239 * See description.
2240 *
2241 * RETURN:
2242 * None.
2243 */
2244 static void eth_port_init(struct mv643xx_private *mp)
2245 {
2246 mp->rx_resource_err = 0;
2247
2248 eth_port_reset(mp);
2249
2250 eth_port_init_mac_tables(mp);
2251 }
2252
2253 /*
2254 * eth_port_start - Start the Ethernet port activity.
2255 *
2256 * DESCRIPTION:
2257 * This routine prepares the Ethernet port for Rx and Tx activity:
2258 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
2259 * has been initialized a descriptor's ring (using
2260 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
2261 * 2. Initialize and enable the Ethernet configuration port by writing to
2262 * the port's configuration and command registers.
2263 * 3. Initialize and enable the SDMA by writing to the SDMA's
2264 * configuration and command registers. After completing these steps,
2265 * the ethernet port SDMA can starts to perform Rx and Tx activities.
2266 *
2267 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
2268 * to calling this function (use ether_init_tx_desc_ring for Tx queues
2269 * and ether_init_rx_desc_ring for Rx queues).
2270 *
2271 * INPUT:
2272 * dev - a pointer to the required interface
2273 *
2274 * OUTPUT:
2275 * Ethernet port is ready to receive and transmit.
2276 *
2277 * RETURN:
2278 * None.
2279 */
2280 static void eth_port_start(struct net_device *dev)
2281 {
2282 struct mv643xx_private *mp = netdev_priv(dev);
2283 unsigned int port_num = mp->port_num;
2284 int tx_curr_desc, rx_curr_desc;
2285 u32 pscr;
2286 struct ethtool_cmd ethtool_cmd;
2287
2288 /* Assignment of Tx CTRP of given queue */
2289 tx_curr_desc = mp->tx_curr_desc_q;
2290 wrl(mp, TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
2291 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
2292
2293 /* Assignment of Rx CRDP of given queue */
2294 rx_curr_desc = mp->rx_curr_desc_q;
2295 wrl(mp, RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
2296 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
2297
2298 /* Add the assigned Ethernet address to the port's address table */
2299 eth_port_uc_addr_set(mp, dev->dev_addr);
2300
2301 /* Assign port configuration and command. */
2302 wrl(mp, PORT_CONFIG_REG(port_num),
2303 PORT_CONFIG_DEFAULT_VALUE);
2304
2305 wrl(mp, PORT_CONFIG_EXTEND_REG(port_num),
2306 PORT_CONFIG_EXTEND_DEFAULT_VALUE);
2307
2308 pscr = rdl(mp, PORT_SERIAL_CONTROL_REG(port_num));
2309
2310 pscr &= ~(SERIAL_PORT_ENABLE | FORCE_LINK_PASS);
2311 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), pscr);
2312
2313 pscr |= DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
2314 DISABLE_AUTO_NEG_SPEED_GMII |
2315 DISABLE_AUTO_NEG_FOR_DUPLX |
2316 DO_NOT_FORCE_LINK_FAIL |
2317 SERIAL_PORT_CONTROL_RESERVED;
2318
2319 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), pscr);
2320
2321 pscr |= SERIAL_PORT_ENABLE;
2322 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), pscr);
2323
2324 /* Assign port SDMA configuration */
2325 wrl(mp, SDMA_CONFIG_REG(port_num),
2326 PORT_SDMA_CONFIG_DEFAULT_VALUE);
2327
2328 /* Enable port Rx. */
2329 mv643xx_eth_port_enable_rx(mp, ETH_RX_QUEUES_ENABLED);
2330
2331 /* Disable port bandwidth limits by clearing MTU register */
2332 wrl(mp, MAXIMUM_TRANSMIT_UNIT(port_num), 0);
2333
2334 /* save phy settings across reset */
2335 mv643xx_get_settings(dev, &ethtool_cmd);
2336 ethernet_phy_reset(mp);
2337 mv643xx_set_settings(dev, &ethtool_cmd);
2338 }
2339
2340 /*
2341 * eth_port_uc_addr_set - Write a MAC address into the port's hw registers
2342 */
2343 static void eth_port_uc_addr_set(struct mv643xx_private *mp,
2344 unsigned char *p_addr)
2345 {
2346 unsigned int port_num = mp->port_num;
2347 unsigned int mac_h;
2348 unsigned int mac_l;
2349 int table;
2350
2351 mac_l = (p_addr[4] << 8) | (p_addr[5]);
2352 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
2353 (p_addr[3] << 0);
2354
2355 wrl(mp, MAC_ADDR_LOW(port_num), mac_l);
2356 wrl(mp, MAC_ADDR_HIGH(port_num), mac_h);
2357
2358 /* Accept frames with this address */
2359 table = DA_FILTER_UNICAST_TABLE_BASE(port_num);
2360 eth_port_set_filter_table_entry(mp, table, p_addr[5] & 0x0f);
2361 }
2362
2363 /*
2364 * eth_port_uc_addr_get - Read the MAC address from the port's hw registers
2365 */
2366 static void eth_port_uc_addr_get(struct mv643xx_private *mp,
2367 unsigned char *p_addr)
2368 {
2369 unsigned int port_num = mp->port_num;
2370 unsigned int mac_h;
2371 unsigned int mac_l;
2372
2373 mac_h = rdl(mp, MAC_ADDR_HIGH(port_num));
2374 mac_l = rdl(mp, MAC_ADDR_LOW(port_num));
2375
2376 p_addr[0] = (mac_h >> 24) & 0xff;
2377 p_addr[1] = (mac_h >> 16) & 0xff;
2378 p_addr[2] = (mac_h >> 8) & 0xff;
2379 p_addr[3] = mac_h & 0xff;
2380 p_addr[4] = (mac_l >> 8) & 0xff;
2381 p_addr[5] = mac_l & 0xff;
2382 }
2383
2384 /*
2385 * The entries in each table are indexed by a hash of a packet's MAC
2386 * address. One bit in each entry determines whether the packet is
2387 * accepted. There are 4 entries (each 8 bits wide) in each register
2388 * of the table. The bits in each entry are defined as follows:
2389 * 0 Accept=1, Drop=0
2390 * 3-1 Queue (ETH_Q0=0)
2391 * 7-4 Reserved = 0;
2392 */
2393 static void eth_port_set_filter_table_entry(struct mv643xx_private *mp,
2394 int table, unsigned char entry)
2395 {
2396 unsigned int table_reg;
2397 unsigned int tbl_offset;
2398 unsigned int reg_offset;
2399
2400 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
2401 reg_offset = entry % 4; /* Entry offset within the register */
2402
2403 /* Set "accepts frame bit" at specified table entry */
2404 table_reg = rdl(mp, table + tbl_offset);
2405 table_reg |= 0x01 << (8 * reg_offset);
2406 wrl(mp, table + tbl_offset, table_reg);
2407 }
2408
2409 /*
2410 * eth_port_mc_addr - Multicast address settings.
2411 *
2412 * The MV device supports multicast using two tables:
2413 * 1) Special Multicast Table for MAC addresses of the form
2414 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
2415 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2416 * Table entries in the DA-Filter table.
2417 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
2418 * is used as an index to the Other Multicast Table entries in the
2419 * DA-Filter table. This function calculates the CRC-8bit value.
2420 * In either case, eth_port_set_filter_table_entry() is then called
2421 * to set to set the actual table entry.
2422 */
2423 static void eth_port_mc_addr(struct mv643xx_private *mp, unsigned char *p_addr)
2424 {
2425 unsigned int port_num = mp->port_num;
2426 unsigned int mac_h;
2427 unsigned int mac_l;
2428 unsigned char crc_result = 0;
2429 int table;
2430 int mac_array[48];
2431 int crc[8];
2432 int i;
2433
2434 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
2435 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
2436 table = DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(port_num);
2437 eth_port_set_filter_table_entry(mp, table, p_addr[5]);
2438 return;
2439 }
2440
2441 /* Calculate CRC-8 out of the given address */
2442 mac_h = (p_addr[0] << 8) | (p_addr[1]);
2443 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
2444 (p_addr[4] << 8) | (p_addr[5] << 0);
2445
2446 for (i = 0; i < 32; i++)
2447 mac_array[i] = (mac_l >> i) & 0x1;
2448 for (i = 32; i < 48; i++)
2449 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
2450
2451 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
2452 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
2453 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
2454 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
2455 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
2456
2457 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2458 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
2459 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
2460 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
2461 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
2462 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
2463 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
2464
2465 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
2466 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
2467 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
2468 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
2469 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
2470 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
2471
2472 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2473 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
2474 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
2475 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
2476 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
2477 mac_array[3] ^ mac_array[2] ^ mac_array[1];
2478
2479 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
2480 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
2481 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
2482 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
2483 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
2484 mac_array[3] ^ mac_array[2];
2485
2486 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
2487 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
2488 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
2489 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
2490 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
2491 mac_array[4] ^ mac_array[3];
2492
2493 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
2494 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
2495 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
2496 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2497 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2498 mac_array[4];
2499
2500 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2501 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2502 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2503 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2504 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2505
2506 for (i = 0; i < 8; i++)
2507 crc_result = crc_result | (crc[i] << i);
2508
2509 table = DA_FILTER_OTHER_MULTICAST_TABLE_BASE(port_num);
2510 eth_port_set_filter_table_entry(mp, table, crc_result);
2511 }
2512
2513 /*
2514 * Set the entire multicast list based on dev->mc_list.
2515 */
2516 static void eth_port_set_multicast_list(struct net_device *dev)
2517 {
2518
2519 struct dev_mc_list *mc_list;
2520 int i;
2521 int table_index;
2522 struct mv643xx_private *mp = netdev_priv(dev);
2523 unsigned int eth_port_num = mp->port_num;
2524
2525 /* If the device is in promiscuous mode or in all multicast mode,
2526 * we will fully populate both multicast tables with accept.
2527 * This is guaranteed to yield a match on all multicast addresses...
2528 */
2529 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2530 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2531 /* Set all entries in DA filter special multicast
2532 * table (Ex_dFSMT)
2533 * Set for ETH_Q0 for now
2534 * Bits
2535 * 0 Accept=1, Drop=0
2536 * 3-1 Queue ETH_Q0=0
2537 * 7-4 Reserved = 0;
2538 */
2539 wrl(mp, DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2540
2541 /* Set all entries in DA filter other multicast
2542 * table (Ex_dFOMT)
2543 * Set for ETH_Q0 for now
2544 * Bits
2545 * 0 Accept=1, Drop=0
2546 * 3-1 Queue ETH_Q0=0
2547 * 7-4 Reserved = 0;
2548 */
2549 wrl(mp, DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2550 }
2551 return;
2552 }
2553
2554 /* We will clear out multicast tables every time we get the list.
2555 * Then add the entire new list...
2556 */
2557 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2558 /* Clear DA filter special multicast table (Ex_dFSMT) */
2559 wrl(mp, DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2560 (eth_port_num) + table_index, 0);
2561
2562 /* Clear DA filter other multicast table (Ex_dFOMT) */
2563 wrl(mp, DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2564 (eth_port_num) + table_index, 0);
2565 }
2566
2567 /* Get pointer to net_device multicast list and add each one... */
2568 for (i = 0, mc_list = dev->mc_list;
2569 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2570 i++, mc_list = mc_list->next)
2571 if (mc_list->dmi_addrlen == 6)
2572 eth_port_mc_addr(mp, mc_list->dmi_addr);
2573 }
2574
2575 /*
2576 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2577 *
2578 * DESCRIPTION:
2579 * Go through all the DA filter tables (Unicast, Special Multicast &
2580 * Other Multicast) and set each entry to 0.
2581 *
2582 * INPUT:
2583 * struct mv643xx_private *mp Ethernet Port.
2584 *
2585 * OUTPUT:
2586 * Multicast and Unicast packets are rejected.
2587 *
2588 * RETURN:
2589 * None.
2590 */
2591 static void eth_port_init_mac_tables(struct mv643xx_private *mp)
2592 {
2593 unsigned int port_num = mp->port_num;
2594 int table_index;
2595
2596 /* Clear DA filter unicast table (Ex_dFUT) */
2597 for (table_index = 0; table_index <= 0xC; table_index += 4)
2598 wrl(mp, DA_FILTER_UNICAST_TABLE_BASE(port_num) +
2599 table_index, 0);
2600
2601 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2602 /* Clear DA filter special multicast table (Ex_dFSMT) */
2603 wrl(mp, DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(port_num) +
2604 table_index, 0);
2605 /* Clear DA filter other multicast table (Ex_dFOMT) */
2606 wrl(mp, DA_FILTER_OTHER_MULTICAST_TABLE_BASE(port_num) +
2607 table_index, 0);
2608 }
2609 }
2610
2611 /*
2612 * eth_clear_mib_counters - Clear all MIB counters
2613 *
2614 * DESCRIPTION:
2615 * This function clears all MIB counters of a specific ethernet port.
2616 * A read from the MIB counter will reset the counter.
2617 *
2618 * INPUT:
2619 * struct mv643xx_private *mp Ethernet Port.
2620 *
2621 * OUTPUT:
2622 * After reading all MIB counters, the counters resets.
2623 *
2624 * RETURN:
2625 * MIB counter value.
2626 *
2627 */
2628 static void eth_clear_mib_counters(struct mv643xx_private *mp)
2629 {
2630 unsigned int port_num = mp->port_num;
2631 int i;
2632
2633 /* Perform dummy reads from MIB counters */
2634 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2635 i += 4)
2636 rdl(mp, MIB_COUNTERS_BASE(port_num) + i);
2637 }
2638
2639 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2640 {
2641 return rdl(mp, MIB_COUNTERS_BASE(mp->port_num) + offset);
2642 }
2643
2644 static void eth_update_mib_counters(struct mv643xx_private *mp)
2645 {
2646 struct mv643xx_mib_counters *p = &mp->mib_counters;
2647 int offset;
2648
2649 p->good_octets_received +=
2650 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2651 p->good_octets_received +=
2652 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2653
2654 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2655 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2656 offset += 4)
2657 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2658
2659 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2660 p->good_octets_sent +=
2661 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2662
2663 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2664 offset <= ETH_MIB_LATE_COLLISION;
2665 offset += 4)
2666 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2667 }
2668
2669 /*
2670 * ethernet_phy_detect - Detect whether a phy is present
2671 *
2672 * DESCRIPTION:
2673 * This function tests whether there is a PHY present on
2674 * the specified port.
2675 *
2676 * INPUT:
2677 * struct mv643xx_private *mp Ethernet Port.
2678 *
2679 * OUTPUT:
2680 * None
2681 *
2682 * RETURN:
2683 * 0 on success
2684 * -ENODEV on failure
2685 *
2686 */
2687 static int ethernet_phy_detect(struct mv643xx_private *mp)
2688 {
2689 unsigned int phy_reg_data0;
2690 int auto_neg;
2691
2692 eth_port_read_smi_reg(mp, 0, &phy_reg_data0);
2693 auto_neg = phy_reg_data0 & 0x1000;
2694 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2695 eth_port_write_smi_reg(mp, 0, phy_reg_data0);
2696
2697 eth_port_read_smi_reg(mp, 0, &phy_reg_data0);
2698 if ((phy_reg_data0 & 0x1000) == auto_neg)
2699 return -ENODEV; /* change didn't take */
2700
2701 phy_reg_data0 ^= 0x1000;
2702 eth_port_write_smi_reg(mp, 0, phy_reg_data0);
2703 return 0;
2704 }
2705
2706 /*
2707 * ethernet_phy_get - Get the ethernet port PHY address.
2708 *
2709 * DESCRIPTION:
2710 * This routine returns the given ethernet port PHY address.
2711 *
2712 * INPUT:
2713 * struct mv643xx_private *mp Ethernet Port.
2714 *
2715 * OUTPUT:
2716 * None.
2717 *
2718 * RETURN:
2719 * PHY address.
2720 *
2721 */
2722 static int ethernet_phy_get(struct mv643xx_private *mp)
2723 {
2724 unsigned int reg_data;
2725
2726 reg_data = rdl(mp, PHY_ADDR_REG);
2727
2728 return ((reg_data >> (5 * mp->port_num)) & 0x1f);
2729 }
2730
2731 /*
2732 * ethernet_phy_set - Set the ethernet port PHY address.
2733 *
2734 * DESCRIPTION:
2735 * This routine sets the given ethernet port PHY address.
2736 *
2737 * INPUT:
2738 * struct mv643xx_private *mp Ethernet Port.
2739 * int phy_addr PHY address.
2740 *
2741 * OUTPUT:
2742 * None.
2743 *
2744 * RETURN:
2745 * None.
2746 *
2747 */
2748 static void ethernet_phy_set(struct mv643xx_private *mp, int phy_addr)
2749 {
2750 u32 reg_data;
2751 int addr_shift = 5 * mp->port_num;
2752
2753 reg_data = rdl(mp, PHY_ADDR_REG);
2754 reg_data &= ~(0x1f << addr_shift);
2755 reg_data |= (phy_addr & 0x1f) << addr_shift;
2756 wrl(mp, PHY_ADDR_REG, reg_data);
2757 }
2758
2759 /*
2760 * ethernet_phy_reset - Reset Ethernet port PHY.
2761 *
2762 * DESCRIPTION:
2763 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2764 *
2765 * INPUT:
2766 * struct mv643xx_private *mp Ethernet Port.
2767 *
2768 * OUTPUT:
2769 * The PHY is reset.
2770 *
2771 * RETURN:
2772 * None.
2773 *
2774 */
2775 static void ethernet_phy_reset(struct mv643xx_private *mp)
2776 {
2777 unsigned int phy_reg_data;
2778
2779 /* Reset the PHY */
2780 eth_port_read_smi_reg(mp, 0, &phy_reg_data);
2781 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2782 eth_port_write_smi_reg(mp, 0, phy_reg_data);
2783
2784 /* wait for PHY to come out of reset */
2785 do {
2786 udelay(1);
2787 eth_port_read_smi_reg(mp, 0, &phy_reg_data);
2788 } while (phy_reg_data & 0x8000);
2789 }
2790
2791 static void mv643xx_eth_port_enable_tx(struct mv643xx_private *mp,
2792 unsigned int queues)
2793 {
2794 wrl(mp, TRANSMIT_QUEUE_COMMAND_REG(mp->port_num), queues);
2795 }
2796
2797 static void mv643xx_eth_port_enable_rx(struct mv643xx_private *mp,
2798 unsigned int queues)
2799 {
2800 wrl(mp, RECEIVE_QUEUE_COMMAND_REG(mp->port_num), queues);
2801 }
2802
2803 static unsigned int mv643xx_eth_port_disable_tx(struct mv643xx_private *mp)
2804 {
2805 unsigned int port_num = mp->port_num;
2806 u32 queues;
2807
2808 /* Stop Tx port activity. Check port Tx activity. */
2809 queues = rdl(mp, TRANSMIT_QUEUE_COMMAND_REG(port_num)) & 0xFF;
2810 if (queues) {
2811 /* Issue stop command for active queues only */
2812 wrl(mp, TRANSMIT_QUEUE_COMMAND_REG(port_num), (queues << 8));
2813
2814 /* Wait for all Tx activity to terminate. */
2815 /* Check port cause register that all Tx queues are stopped */
2816 while (rdl(mp, TRANSMIT_QUEUE_COMMAND_REG(port_num)) & 0xFF)
2817 udelay(PHY_WAIT_MICRO_SECONDS);
2818
2819 /* Wait for Tx FIFO to empty */
2820 while (rdl(mp, PORT_STATUS_REG(port_num)) &
2821 ETH_PORT_TX_FIFO_EMPTY)
2822 udelay(PHY_WAIT_MICRO_SECONDS);
2823 }
2824
2825 return queues;
2826 }
2827
2828 static unsigned int mv643xx_eth_port_disable_rx(struct mv643xx_private *mp)
2829 {
2830 unsigned int port_num = mp->port_num;
2831 u32 queues;
2832
2833 /* Stop Rx port activity. Check port Rx activity. */
2834 queues = rdl(mp, RECEIVE_QUEUE_COMMAND_REG(port_num)) & 0xFF;
2835 if (queues) {
2836 /* Issue stop command for active queues only */
2837 wrl(mp, RECEIVE_QUEUE_COMMAND_REG(port_num), (queues << 8));
2838
2839 /* Wait for all Rx activity to terminate. */
2840 /* Check port cause register that all Rx queues are stopped */
2841 while (rdl(mp, RECEIVE_QUEUE_COMMAND_REG(port_num)) & 0xFF)
2842 udelay(PHY_WAIT_MICRO_SECONDS);
2843 }
2844
2845 return queues;
2846 }
2847
2848 /*
2849 * eth_port_reset - Reset Ethernet port
2850 *
2851 * DESCRIPTION:
2852 * This routine resets the chip by aborting any SDMA engine activity and
2853 * clearing the MIB counters. The Receiver and the Transmit unit are in
2854 * idle state after this command is performed and the port is disabled.
2855 *
2856 * INPUT:
2857 * struct mv643xx_private *mp Ethernet Port.
2858 *
2859 * OUTPUT:
2860 * Channel activity is halted.
2861 *
2862 * RETURN:
2863 * None.
2864 *
2865 */
2866 static void eth_port_reset(struct mv643xx_private *mp)
2867 {
2868 unsigned int port_num = mp->port_num;
2869 unsigned int reg_data;
2870
2871 mv643xx_eth_port_disable_tx(mp);
2872 mv643xx_eth_port_disable_rx(mp);
2873
2874 /* Clear all MIB counters */
2875 eth_clear_mib_counters(mp);
2876
2877 /* Reset the Enable bit in the Configuration Register */
2878 reg_data = rdl(mp, PORT_SERIAL_CONTROL_REG(port_num));
2879 reg_data &= ~(SERIAL_PORT_ENABLE |
2880 DO_NOT_FORCE_LINK_FAIL |
2881 FORCE_LINK_PASS);
2882 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2883 }
2884
2885
2886 /*
2887 * eth_port_read_smi_reg - Read PHY registers
2888 *
2889 * DESCRIPTION:
2890 * This routine utilize the SMI interface to interact with the PHY in
2891 * order to perform PHY register read.
2892 *
2893 * INPUT:
2894 * struct mv643xx_private *mp Ethernet Port.
2895 * unsigned int phy_reg PHY register address offset.
2896 * unsigned int *value Register value buffer.
2897 *
2898 * OUTPUT:
2899 * Write the value of a specified PHY register into given buffer.
2900 *
2901 * RETURN:
2902 * false if the PHY is busy or read data is not in valid state.
2903 * true otherwise.
2904 *
2905 */
2906 static void eth_port_read_smi_reg(struct mv643xx_private *mp,
2907 unsigned int phy_reg, unsigned int *value)
2908 {
2909 int phy_addr = ethernet_phy_get(mp);
2910 unsigned long flags;
2911 int i;
2912
2913 /* the SMI register is a shared resource */
2914 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2915
2916 /* wait for the SMI register to become available */
2917 for (i = 0; rdl(mp, SMI_REG) & ETH_SMI_BUSY; i++) {
2918 if (i == PHY_WAIT_ITERATIONS) {
2919 printk("%s: PHY busy timeout\n", mp->dev->name);
2920 goto out;
2921 }
2922 udelay(PHY_WAIT_MICRO_SECONDS);
2923 }
2924
2925 wrl(mp, SMI_REG,
2926 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2927
2928 /* now wait for the data to be valid */
2929 for (i = 0; !(rdl(mp, SMI_REG) & ETH_SMI_READ_VALID); i++) {
2930 if (i == PHY_WAIT_ITERATIONS) {
2931 printk("%s: PHY read timeout\n", mp->dev->name);
2932 goto out;
2933 }
2934 udelay(PHY_WAIT_MICRO_SECONDS);
2935 }
2936
2937 *value = rdl(mp, SMI_REG) & 0xffff;
2938 out:
2939 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2940 }
2941
2942 /*
2943 * eth_port_write_smi_reg - Write to PHY registers
2944 *
2945 * DESCRIPTION:
2946 * This routine utilize the SMI interface to interact with the PHY in
2947 * order to perform writes to PHY registers.
2948 *
2949 * INPUT:
2950 * struct mv643xx_private *mp Ethernet Port.
2951 * unsigned int phy_reg PHY register address offset.
2952 * unsigned int value Register value.
2953 *
2954 * OUTPUT:
2955 * Write the given value to the specified PHY register.
2956 *
2957 * RETURN:
2958 * false if the PHY is busy.
2959 * true otherwise.
2960 *
2961 */
2962 static void eth_port_write_smi_reg(struct mv643xx_private *mp,
2963 unsigned int phy_reg, unsigned int value)
2964 {
2965 int phy_addr;
2966 int i;
2967 unsigned long flags;
2968
2969 phy_addr = ethernet_phy_get(mp);
2970
2971 /* the SMI register is a shared resource */
2972 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2973
2974 /* wait for the SMI register to become available */
2975 for (i = 0; rdl(mp, SMI_REG) & ETH_SMI_BUSY; i++) {
2976 if (i == PHY_WAIT_ITERATIONS) {
2977 printk("%s: PHY busy timeout\n", mp->dev->name);
2978 goto out;
2979 }
2980 udelay(PHY_WAIT_MICRO_SECONDS);
2981 }
2982
2983 wrl(mp, SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2984 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2985 out:
2986 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2987 }
2988
2989 /*
2990 * Wrappers for MII support library.
2991 */
2992 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2993 {
2994 struct mv643xx_private *mp = netdev_priv(dev);
2995 int val;
2996
2997 eth_port_read_smi_reg(mp, location, &val);
2998 return val;
2999 }
3000
3001 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
3002 {
3003 struct mv643xx_private *mp = netdev_priv(dev);
3004 eth_port_write_smi_reg(mp, location, val);
3005 }
3006
3007 /*
3008 * eth_port_receive - Get received information from Rx ring.
3009 *
3010 * DESCRIPTION:
3011 * This routine returns the received data to the caller. There is no
3012 * data copying during routine operation. All information is returned
3013 * using pointer to packet information struct passed from the caller.
3014 * If the routine exhausts Rx ring resources then the resource error flag
3015 * is set.
3016 *
3017 * INPUT:
3018 * struct mv643xx_private *mp Ethernet Port Control srtuct.
3019 * struct pkt_info *p_pkt_info User packet buffer.
3020 *
3021 * OUTPUT:
3022 * Rx ring current and used indexes are updated.
3023 *
3024 * RETURN:
3025 * ETH_ERROR in case the routine can not access Rx desc ring.
3026 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
3027 * ETH_END_OF_JOB if there is no received data.
3028 * ETH_OK otherwise.
3029 */
3030 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
3031 struct pkt_info *p_pkt_info)
3032 {
3033 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
3034 volatile struct eth_rx_desc *p_rx_desc;
3035 unsigned int command_status;
3036 unsigned long flags;
3037
3038 /* Do not process Rx ring in case of Rx ring resource error */
3039 if (mp->rx_resource_err)
3040 return ETH_QUEUE_FULL;
3041
3042 spin_lock_irqsave(&mp->lock, flags);
3043
3044 /* Get the Rx Desc ring 'curr and 'used' indexes */
3045 rx_curr_desc = mp->rx_curr_desc_q;
3046 rx_used_desc = mp->rx_used_desc_q;
3047
3048 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
3049
3050 /* The following parameters are used to save readings from memory */
3051 command_status = p_rx_desc->cmd_sts;
3052 rmb();
3053
3054 /* Nothing to receive... */
3055 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
3056 spin_unlock_irqrestore(&mp->lock, flags);
3057 return ETH_END_OF_JOB;
3058 }
3059
3060 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
3061 p_pkt_info->cmd_sts = command_status;
3062 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
3063 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
3064 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
3065
3066 /*
3067 * Clean the return info field to indicate that the
3068 * packet has been moved to the upper layers
3069 */
3070 mp->rx_skb[rx_curr_desc] = NULL;
3071
3072 /* Update current index in data structure */
3073 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
3074 mp->rx_curr_desc_q = rx_next_curr_desc;
3075
3076 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
3077 if (rx_next_curr_desc == rx_used_desc)
3078 mp->rx_resource_err = 1;
3079
3080 spin_unlock_irqrestore(&mp->lock, flags);
3081
3082 return ETH_OK;
3083 }
3084
3085 /*
3086 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
3087 *
3088 * DESCRIPTION:
3089 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
3090 * next 'used' descriptor and attached the returned buffer to it.
3091 * In case the Rx ring was in "resource error" condition, where there are
3092 * no available Rx resources, the function resets the resource error flag.
3093 *
3094 * INPUT:
3095 * struct mv643xx_private *mp Ethernet Port Control srtuct.
3096 * struct pkt_info *p_pkt_info Information on returned buffer.
3097 *
3098 * OUTPUT:
3099 * New available Rx resource in Rx descriptor ring.
3100 *
3101 * RETURN:
3102 * ETH_ERROR in case the routine can not access Rx desc ring.
3103 * ETH_OK otherwise.
3104 */
3105 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
3106 struct pkt_info *p_pkt_info)
3107 {
3108 int used_rx_desc; /* Where to return Rx resource */
3109 volatile struct eth_rx_desc *p_used_rx_desc;
3110 unsigned long flags;
3111
3112 spin_lock_irqsave(&mp->lock, flags);
3113
3114 /* Get 'used' Rx descriptor */
3115 used_rx_desc = mp->rx_used_desc_q;
3116 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
3117
3118 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
3119 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
3120 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
3121
3122 /* Flush the write pipe */
3123
3124 /* Return the descriptor to DMA ownership */
3125 wmb();
3126 p_used_rx_desc->cmd_sts =
3127 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
3128 wmb();
3129
3130 /* Move the used descriptor pointer to the next descriptor */
3131 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
3132
3133 /* Any Rx return cancels the Rx resource error status */
3134 mp->rx_resource_err = 0;
3135
3136 spin_unlock_irqrestore(&mp->lock, flags);
3137
3138 return ETH_OK;
3139 }
3140
3141 /************* Begin ethtool support *************************/
3142
3143 struct mv643xx_stats {
3144 char stat_string[ETH_GSTRING_LEN];
3145 int sizeof_stat;
3146 int stat_offset;
3147 };
3148
3149 #define MV643XX_STAT(m) FIELD_SIZEOF(struct mv643xx_private, m), \
3150 offsetof(struct mv643xx_private, m)
3151
3152 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
3153 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
3154 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
3155 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
3156 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
3157 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
3158 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
3159 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
3160 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
3161 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
3162 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
3163 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
3164 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
3165 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
3166 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
3167 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
3168 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
3169 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
3170 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
3171 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
3172 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
3173 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
3174 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
3175 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
3176 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
3177 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
3178 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
3179 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
3180 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
3181 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
3182 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
3183 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
3184 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
3185 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
3186 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
3187 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
3188 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
3189 { "collision", MV643XX_STAT(mib_counters.collision) },
3190 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
3191 };
3192
3193 #define MV643XX_STATS_LEN ARRAY_SIZE(mv643xx_gstrings_stats)
3194
3195 static void mv643xx_get_drvinfo(struct net_device *netdev,
3196 struct ethtool_drvinfo *drvinfo)
3197 {
3198 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
3199 strncpy(drvinfo->version, mv643xx_driver_version, 32);
3200 strncpy(drvinfo->fw_version, "N/A", 32);
3201 strncpy(drvinfo->bus_info, "mv643xx", 32);
3202 drvinfo->n_stats = MV643XX_STATS_LEN;
3203 }
3204
3205 static int mv643xx_get_sset_count(struct net_device *netdev, int sset)
3206 {
3207 switch (sset) {
3208 case ETH_SS_STATS:
3209 return MV643XX_STATS_LEN;
3210 default:
3211 return -EOPNOTSUPP;
3212 }
3213 }
3214
3215 static void mv643xx_get_ethtool_stats(struct net_device *netdev,
3216 struct ethtool_stats *stats, uint64_t *data)
3217 {
3218 struct mv643xx_private *mp = netdev->priv;
3219 int i;
3220
3221 eth_update_mib_counters(mp);
3222
3223 for (i = 0; i < MV643XX_STATS_LEN; i++) {
3224 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
3225 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
3226 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3227 }
3228 }
3229
3230 static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
3231 uint8_t *data)
3232 {
3233 int i;
3234
3235 switch(stringset) {
3236 case ETH_SS_STATS:
3237 for (i=0; i < MV643XX_STATS_LEN; i++) {
3238 memcpy(data + i * ETH_GSTRING_LEN,
3239 mv643xx_gstrings_stats[i].stat_string,
3240 ETH_GSTRING_LEN);
3241 }
3242 break;
3243 }
3244 }
3245
3246 static u32 mv643xx_eth_get_link(struct net_device *dev)
3247 {
3248 struct mv643xx_private *mp = netdev_priv(dev);
3249
3250 return mii_link_ok(&mp->mii);
3251 }
3252
3253 static int mv643xx_eth_nway_restart(struct net_device *dev)
3254 {
3255 struct mv643xx_private *mp = netdev_priv(dev);
3256
3257 return mii_nway_restart(&mp->mii);
3258 }
3259
3260 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3261 {
3262 struct mv643xx_private *mp = netdev_priv(dev);
3263
3264 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
3265 }
3266
3267 static const struct ethtool_ops mv643xx_ethtool_ops = {
3268 .get_settings = mv643xx_get_settings,
3269 .set_settings = mv643xx_set_settings,
3270 .get_drvinfo = mv643xx_get_drvinfo,
3271 .get_link = mv643xx_eth_get_link,
3272 .set_sg = ethtool_op_set_sg,
3273 .get_sset_count = mv643xx_get_sset_count,
3274 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3275 .get_strings = mv643xx_get_strings,
3276 .nway_reset = mv643xx_eth_nway_restart,
3277 };
3278
3279 /************* End ethtool support *************************/
This page took 0.112843 seconds and 5 git commands to generate.