/spare/repo/netdev-2.6 branch 'master'
[deliverable/linux.git] / drivers / net / mv643xx_eth.c
1 /*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani (lachwani@pmc-sierra.com)
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2005 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/tcp.h>
36 #include <linux/udp.h>
37 #include <linux/etherdevice.h>
38
39 #include <linux/bitops.h>
40 #include <linux/delay.h>
41 #include <linux/ethtool.h>
42 #include <asm/io.h>
43 #include <asm/types.h>
44 #include <asm/pgtable.h>
45 #include <asm/system.h>
46 #include <asm/delay.h>
47 #include "mv643xx_eth.h"
48
49 /*
50 * The first part is the high level driver of the gigE ethernet ports.
51 */
52
53 /* Constants */
54 #define VLAN_HLEN 4
55 #define FCS_LEN 4
56 #define WRAP NET_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
57 #define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
58
59 #define INT_CAUSE_UNMASK_ALL 0x0007ffff
60 #define INT_CAUSE_UNMASK_ALL_EXT 0x0011ffff
61 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
62 #define INT_CAUSE_MASK_ALL 0x00000000
63 #define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
64 #define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
65 #endif
66
67 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
68 #define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
69 #else
70 #define MAX_DESCS_PER_SKB 1
71 #endif
72
73 #define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
74 #define PHY_WAIT_MICRO_SECONDS 10
75
76 /* Static function declarations */
77 static int eth_port_link_is_up(unsigned int eth_port_num);
78 static void eth_port_uc_addr_get(struct net_device *dev,
79 unsigned char *MacAddr);
80 static int mv643xx_eth_real_open(struct net_device *);
81 static int mv643xx_eth_real_stop(struct net_device *);
82 static int mv643xx_eth_change_mtu(struct net_device *, int);
83 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
84 static void eth_port_init_mac_tables(unsigned int eth_port_num);
85 #ifdef MV643XX_NAPI
86 static int mv643xx_poll(struct net_device *dev, int *budget);
87 #endif
88 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
89 static int ethernet_phy_detect(unsigned int eth_port_num);
90 static struct ethtool_ops mv643xx_ethtool_ops;
91
92 static char mv643xx_driver_name[] = "mv643xx_eth";
93 static char mv643xx_driver_version[] = "1.0";
94
95 static void __iomem *mv643xx_eth_shared_base;
96
97 /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
98 static spinlock_t mv643xx_eth_phy_lock = SPIN_LOCK_UNLOCKED;
99
100 static inline u32 mv_read(int offset)
101 {
102 void __iomem *reg_base;
103
104 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
105
106 return readl(reg_base + offset);
107 }
108
109 static inline void mv_write(int offset, u32 data)
110 {
111 void __iomem *reg_base;
112
113 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
114 writel(data, reg_base + offset);
115 }
116
117 /*
118 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
119 *
120 * Input : pointer to ethernet interface network device structure
121 * new mtu size
122 * Output : 0 upon success, -EINVAL upon failure
123 */
124 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
125 {
126 struct mv643xx_private *mp = netdev_priv(dev);
127 unsigned long flags;
128
129 spin_lock_irqsave(&mp->lock, flags);
130
131 if ((new_mtu > 9500) || (new_mtu < 64)) {
132 spin_unlock_irqrestore(&mp->lock, flags);
133 return -EINVAL;
134 }
135
136 dev->mtu = new_mtu;
137 /*
138 * Stop then re-open the interface. This will allocate RX skb's with
139 * the new MTU.
140 * There is a possible danger that the open will not successed, due
141 * to memory is full, which might fail the open function.
142 */
143 if (netif_running(dev)) {
144 if (mv643xx_eth_real_stop(dev))
145 printk(KERN_ERR
146 "%s: Fatal error on stopping device\n",
147 dev->name);
148 if (mv643xx_eth_real_open(dev))
149 printk(KERN_ERR
150 "%s: Fatal error on opening device\n",
151 dev->name);
152 }
153
154 spin_unlock_irqrestore(&mp->lock, flags);
155 return 0;
156 }
157
158 /*
159 * mv643xx_eth_rx_task
160 *
161 * Fills / refills RX queue on a certain gigabit ethernet port
162 *
163 * Input : pointer to ethernet interface network device structure
164 * Output : N/A
165 */
166 static void mv643xx_eth_rx_task(void *data)
167 {
168 struct net_device *dev = (struct net_device *)data;
169 struct mv643xx_private *mp = netdev_priv(dev);
170 struct pkt_info pkt_info;
171 struct sk_buff *skb;
172
173 if (test_and_set_bit(0, &mp->rx_task_busy))
174 panic("%s: Error in test_set_bit / clear_bit", dev->name);
175
176 while (mp->rx_ring_skbs < (mp->rx_ring_size - 5)) {
177 skb = dev_alloc_skb(RX_SKB_SIZE);
178 if (!skb)
179 break;
180 mp->rx_ring_skbs++;
181 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
182 pkt_info.byte_cnt = RX_SKB_SIZE;
183 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
184 DMA_FROM_DEVICE);
185 pkt_info.return_info = skb;
186 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
187 printk(KERN_ERR
188 "%s: Error allocating RX Ring\n", dev->name);
189 break;
190 }
191 skb_reserve(skb, 2);
192 }
193 clear_bit(0, &mp->rx_task_busy);
194 /*
195 * If RX ring is empty of SKB, set a timer to try allocating
196 * again in a later time .
197 */
198 if ((mp->rx_ring_skbs == 0) && (mp->rx_timer_flag == 0)) {
199 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
200 /* After 100mSec */
201 mp->timeout.expires = jiffies + (HZ / 10);
202 add_timer(&mp->timeout);
203 mp->rx_timer_flag = 1;
204 }
205 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
206 else {
207 /* Return interrupts */
208 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
209 INT_CAUSE_UNMASK_ALL);
210 }
211 #endif
212 }
213
214 /*
215 * mv643xx_eth_rx_task_timer_wrapper
216 *
217 * Timer routine to wake up RX queue filling task. This function is
218 * used only in case the RX queue is empty, and all alloc_skb has
219 * failed (due to out of memory event).
220 *
221 * Input : pointer to ethernet interface network device structure
222 * Output : N/A
223 */
224 static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
225 {
226 struct net_device *dev = (struct net_device *)data;
227 struct mv643xx_private *mp = netdev_priv(dev);
228
229 mp->rx_timer_flag = 0;
230 mv643xx_eth_rx_task((void *)data);
231 }
232
233 /*
234 * mv643xx_eth_update_mac_address
235 *
236 * Update the MAC address of the port in the address table
237 *
238 * Input : pointer to ethernet interface network device structure
239 * Output : N/A
240 */
241 static void mv643xx_eth_update_mac_address(struct net_device *dev)
242 {
243 struct mv643xx_private *mp = netdev_priv(dev);
244 unsigned int port_num = mp->port_num;
245
246 eth_port_init_mac_tables(port_num);
247 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
248 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
249 }
250
251 /*
252 * mv643xx_eth_set_rx_mode
253 *
254 * Change from promiscuos to regular rx mode
255 *
256 * Input : pointer to ethernet interface network device structure
257 * Output : N/A
258 */
259 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
260 {
261 struct mv643xx_private *mp = netdev_priv(dev);
262 u32 config_reg;
263
264 config_reg = ethernet_get_config_reg(mp->port_num);
265 if (dev->flags & IFF_PROMISC)
266 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
267 else
268 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
269 ethernet_set_config_reg(mp->port_num, config_reg);
270 }
271
272 /*
273 * mv643xx_eth_set_mac_address
274 *
275 * Change the interface's mac address.
276 * No special hardware thing should be done because interface is always
277 * put in promiscuous mode.
278 *
279 * Input : pointer to ethernet interface network device structure and
280 * a pointer to the designated entry to be added to the cache.
281 * Output : zero upon success, negative upon failure
282 */
283 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
284 {
285 int i;
286
287 for (i = 0; i < 6; i++)
288 /* +2 is for the offset of the HW addr type */
289 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
290 mv643xx_eth_update_mac_address(dev);
291 return 0;
292 }
293
294 /*
295 * mv643xx_eth_tx_timeout
296 *
297 * Called upon a timeout on transmitting a packet
298 *
299 * Input : pointer to ethernet interface network device structure.
300 * Output : N/A
301 */
302 static void mv643xx_eth_tx_timeout(struct net_device *dev)
303 {
304 struct mv643xx_private *mp = netdev_priv(dev);
305
306 printk(KERN_INFO "%s: TX timeout ", dev->name);
307
308 /* Do the reset outside of interrupt context */
309 schedule_work(&mp->tx_timeout_task);
310 }
311
312 /*
313 * mv643xx_eth_tx_timeout_task
314 *
315 * Actual routine to reset the adapter when a timeout on Tx has occurred
316 */
317 static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
318 {
319 struct mv643xx_private *mp = netdev_priv(dev);
320
321 netif_device_detach(dev);
322 eth_port_reset(mp->port_num);
323 eth_port_start(mp);
324 netif_device_attach(dev);
325 }
326
327 /*
328 * mv643xx_eth_free_tx_queue
329 *
330 * Input : dev - a pointer to the required interface
331 *
332 * Output : 0 if was able to release skb , nonzero otherwise
333 */
334 static int mv643xx_eth_free_tx_queue(struct net_device *dev,
335 unsigned int eth_int_cause_ext)
336 {
337 struct mv643xx_private *mp = netdev_priv(dev);
338 struct net_device_stats *stats = &mp->stats;
339 struct pkt_info pkt_info;
340 int released = 1;
341
342 if (!(eth_int_cause_ext & (BIT0 | BIT8)))
343 return released;
344
345 spin_lock(&mp->lock);
346
347 /* Check only queue 0 */
348 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
349 if (pkt_info.cmd_sts & BIT0) {
350 printk("%s: Error in TX\n", dev->name);
351 stats->tx_errors++;
352 }
353
354 /*
355 * If return_info is different than 0, release the skb.
356 * The case where return_info is not 0 is only in case
357 * when transmitted a scatter/gather packet, where only
358 * last skb releases the whole chain.
359 */
360 if (pkt_info.return_info) {
361 if (skb_shinfo(pkt_info.return_info)->nr_frags)
362 dma_unmap_page(NULL, pkt_info.buf_ptr,
363 pkt_info.byte_cnt,
364 DMA_TO_DEVICE);
365 else
366 dma_unmap_single(NULL, pkt_info.buf_ptr,
367 pkt_info.byte_cnt,
368 DMA_TO_DEVICE);
369
370 dev_kfree_skb_irq(pkt_info.return_info);
371 released = 0;
372
373 /*
374 * Decrement the number of outstanding skbs counter on
375 * the TX queue.
376 */
377 if (mp->tx_ring_skbs == 0)
378 panic("ERROR - TX outstanding SKBs"
379 " counter is corrupted");
380 mp->tx_ring_skbs--;
381 } else
382 dma_unmap_page(NULL, pkt_info.buf_ptr,
383 pkt_info.byte_cnt, DMA_TO_DEVICE);
384 }
385
386 spin_unlock(&mp->lock);
387
388 return released;
389 }
390
391 /*
392 * mv643xx_eth_receive
393 *
394 * This function is forward packets that are received from the port's
395 * queues toward kernel core or FastRoute them to another interface.
396 *
397 * Input : dev - a pointer to the required interface
398 * max - maximum number to receive (0 means unlimted)
399 *
400 * Output : number of served packets
401 */
402 #ifdef MV643XX_NAPI
403 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
404 #else
405 static int mv643xx_eth_receive_queue(struct net_device *dev)
406 #endif
407 {
408 struct mv643xx_private *mp = netdev_priv(dev);
409 struct net_device_stats *stats = &mp->stats;
410 unsigned int received_packets = 0;
411 struct sk_buff *skb;
412 struct pkt_info pkt_info;
413
414 #ifdef MV643XX_NAPI
415 while (eth_port_receive(mp, &pkt_info) == ETH_OK && budget > 0) {
416 #else
417 while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
418 #endif
419 mp->rx_ring_skbs--;
420 received_packets++;
421 #ifdef MV643XX_NAPI
422 budget--;
423 #endif
424 /* Update statistics. Note byte count includes 4 byte CRC count */
425 stats->rx_packets++;
426 stats->rx_bytes += pkt_info.byte_cnt;
427 skb = pkt_info.return_info;
428 /*
429 * In case received a packet without first / last bits on OR
430 * the error summary bit is on, the packets needs to be dropeed.
431 */
432 if (((pkt_info.cmd_sts
433 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
434 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
435 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
436 stats->rx_dropped++;
437 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
438 ETH_RX_LAST_DESC)) !=
439 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
440 if (net_ratelimit())
441 printk(KERN_ERR
442 "%s: Received packet spread "
443 "on multiple descriptors\n",
444 dev->name);
445 }
446 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
447 stats->rx_errors++;
448
449 dev_kfree_skb_irq(skb);
450 } else {
451 /*
452 * The -4 is for the CRC in the trailer of the
453 * received packet
454 */
455 skb_put(skb, pkt_info.byte_cnt - 4);
456 skb->dev = dev;
457
458 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
459 skb->ip_summed = CHECKSUM_UNNECESSARY;
460 skb->csum = htons(
461 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
462 }
463 skb->protocol = eth_type_trans(skb, dev);
464 #ifdef MV643XX_NAPI
465 netif_receive_skb(skb);
466 #else
467 netif_rx(skb);
468 #endif
469 }
470 }
471
472 return received_packets;
473 }
474
475 /*
476 * mv643xx_eth_int_handler
477 *
478 * Main interrupt handler for the gigbit ethernet ports
479 *
480 * Input : irq - irq number (not used)
481 * dev_id - a pointer to the required interface's data structure
482 * regs - not used
483 * Output : N/A
484 */
485
486 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
487 struct pt_regs *regs)
488 {
489 struct net_device *dev = (struct net_device *)dev_id;
490 struct mv643xx_private *mp = netdev_priv(dev);
491 u32 eth_int_cause, eth_int_cause_ext = 0;
492 unsigned int port_num = mp->port_num;
493
494 /* Read interrupt cause registers */
495 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
496 INT_CAUSE_UNMASK_ALL;
497
498 if (eth_int_cause & BIT1)
499 eth_int_cause_ext = mv_read(
500 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
501 INT_CAUSE_UNMASK_ALL_EXT;
502
503 #ifdef MV643XX_NAPI
504 if (!(eth_int_cause & 0x0007fffd)) {
505 /* Dont ack the Rx interrupt */
506 #endif
507 /*
508 * Clear specific ethernet port intrerrupt registers by
509 * acknowleding relevant bits.
510 */
511 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
512 ~eth_int_cause);
513 if (eth_int_cause_ext != 0x0)
514 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
515 (port_num), ~eth_int_cause_ext);
516
517 /* UDP change : We may need this */
518 if ((eth_int_cause_ext & 0x0000ffff) &&
519 (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
520 (mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
521 netif_wake_queue(dev);
522 #ifdef MV643XX_NAPI
523 } else {
524 if (netif_rx_schedule_prep(dev)) {
525 /* Mask all the interrupts */
526 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
527 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG
528 (port_num), 0);
529 __netif_rx_schedule(dev);
530 }
531 #else
532 if (eth_int_cause & (BIT2 | BIT11))
533 mv643xx_eth_receive_queue(dev, 0);
534
535 /*
536 * After forwarded received packets to upper layer, add a task
537 * in an interrupts enabled context that refills the RX ring
538 * with skb's.
539 */
540 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
541 /* Unmask all interrupts on ethernet port */
542 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
543 INT_CAUSE_MASK_ALL);
544 queue_task(&mp->rx_task, &tq_immediate);
545 mark_bh(IMMEDIATE_BH);
546 #else
547 mp->rx_task.func(dev);
548 #endif
549 #endif
550 }
551 /* PHY status changed */
552 if (eth_int_cause_ext & (BIT16 | BIT20)) {
553 if (eth_port_link_is_up(port_num)) {
554 netif_carrier_on(dev);
555 netif_wake_queue(dev);
556 /* Start TX queue */
557 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG
558 (port_num), 1);
559 } else {
560 netif_carrier_off(dev);
561 netif_stop_queue(dev);
562 }
563 }
564
565 /*
566 * If no real interrupt occured, exit.
567 * This can happen when using gigE interrupt coalescing mechanism.
568 */
569 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
570 return IRQ_NONE;
571
572 return IRQ_HANDLED;
573 }
574
575 #ifdef MV643XX_COAL
576
577 /*
578 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
579 *
580 * DESCRIPTION:
581 * This routine sets the RX coalescing interrupt mechanism parameter.
582 * This parameter is a timeout counter, that counts in 64 t_clk
583 * chunks ; that when timeout event occurs a maskable interrupt
584 * occurs.
585 * The parameter is calculated using the tClk of the MV-643xx chip
586 * , and the required delay of the interrupt in usec.
587 *
588 * INPUT:
589 * unsigned int eth_port_num Ethernet port number
590 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
591 * unsigned int delay Delay in usec
592 *
593 * OUTPUT:
594 * Interrupt coalescing mechanism value is set in MV-643xx chip.
595 *
596 * RETURN:
597 * The interrupt coalescing value set in the gigE port.
598 *
599 */
600 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
601 unsigned int t_clk, unsigned int delay)
602 {
603 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
604
605 /* Set RX Coalescing mechanism */
606 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
607 ((coal & 0x3fff) << 8) |
608 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
609 & 0xffc000ff));
610
611 return coal;
612 }
613 #endif
614
615 /*
616 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
617 *
618 * DESCRIPTION:
619 * This routine sets the TX coalescing interrupt mechanism parameter.
620 * This parameter is a timeout counter, that counts in 64 t_clk
621 * chunks ; that when timeout event occurs a maskable interrupt
622 * occurs.
623 * The parameter is calculated using the t_cLK frequency of the
624 * MV-643xx chip and the required delay in the interrupt in uSec
625 *
626 * INPUT:
627 * unsigned int eth_port_num Ethernet port number
628 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
629 * unsigned int delay Delay in uSeconds
630 *
631 * OUTPUT:
632 * Interrupt coalescing mechanism value is set in MV-643xx chip.
633 *
634 * RETURN:
635 * The interrupt coalescing value set in the gigE port.
636 *
637 */
638 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
639 unsigned int t_clk, unsigned int delay)
640 {
641 unsigned int coal;
642 coal = ((t_clk / 1000000) * delay) / 64;
643 /* Set TX Coalescing mechanism */
644 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
645 coal << 4);
646 return coal;
647 }
648
649 /*
650 * mv643xx_eth_open
651 *
652 * This function is called when openning the network device. The function
653 * should initialize all the hardware, initialize cyclic Rx/Tx
654 * descriptors chain and buffers and allocate an IRQ to the network
655 * device.
656 *
657 * Input : a pointer to the network device structure
658 *
659 * Output : zero of success , nonzero if fails.
660 */
661
662 static int mv643xx_eth_open(struct net_device *dev)
663 {
664 struct mv643xx_private *mp = netdev_priv(dev);
665 unsigned int port_num = mp->port_num;
666 int err;
667
668 spin_lock_irq(&mp->lock);
669
670 err = request_irq(dev->irq, mv643xx_eth_int_handler,
671 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
672
673 if (err) {
674 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
675 port_num);
676 err = -EAGAIN;
677 goto out;
678 }
679
680 if (mv643xx_eth_real_open(dev)) {
681 printk("%s: Error opening interface\n", dev->name);
682 err = -EBUSY;
683 goto out_free;
684 }
685
686 spin_unlock_irq(&mp->lock);
687
688 return 0;
689
690 out_free:
691 free_irq(dev->irq, dev);
692
693 out:
694 spin_unlock_irq(&mp->lock);
695
696 return err;
697 }
698
699 /*
700 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
701 *
702 * DESCRIPTION:
703 * This function prepares a Rx chained list of descriptors and packet
704 * buffers in a form of a ring. The routine must be called after port
705 * initialization routine and before port start routine.
706 * The Ethernet SDMA engine uses CPU bus addresses to access the various
707 * devices in the system (i.e. DRAM). This function uses the ethernet
708 * struct 'virtual to physical' routine (set by the user) to set the ring
709 * with physical addresses.
710 *
711 * INPUT:
712 * struct mv643xx_private *mp Ethernet Port Control srtuct.
713 *
714 * OUTPUT:
715 * The routine updates the Ethernet port control struct with information
716 * regarding the Rx descriptors and buffers.
717 *
718 * RETURN:
719 * None.
720 */
721 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
722 {
723 volatile struct eth_rx_desc *p_rx_desc;
724 int rx_desc_num = mp->rx_ring_size;
725 int i;
726
727 /* initialize the next_desc_ptr links in the Rx descriptors ring */
728 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
729 for (i = 0; i < rx_desc_num; i++) {
730 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
731 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
732 }
733
734 /* Save Rx desc pointer to driver struct. */
735 mp->rx_curr_desc_q = 0;
736 mp->rx_used_desc_q = 0;
737
738 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
739
740 /* Add the queue to the list of RX queues of this port */
741 mp->port_rx_queue_command |= 1;
742 }
743
744 /*
745 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
746 *
747 * DESCRIPTION:
748 * This function prepares a Tx chained list of descriptors and packet
749 * buffers in a form of a ring. The routine must be called after port
750 * initialization routine and before port start routine.
751 * The Ethernet SDMA engine uses CPU bus addresses to access the various
752 * devices in the system (i.e. DRAM). This function uses the ethernet
753 * struct 'virtual to physical' routine (set by the user) to set the ring
754 * with physical addresses.
755 *
756 * INPUT:
757 * struct mv643xx_private *mp Ethernet Port Control srtuct.
758 *
759 * OUTPUT:
760 * The routine updates the Ethernet port control struct with information
761 * regarding the Tx descriptors and buffers.
762 *
763 * RETURN:
764 * None.
765 */
766 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
767 {
768 int tx_desc_num = mp->tx_ring_size;
769 struct eth_tx_desc *p_tx_desc;
770 int i;
771
772 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
773 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
774 for (i = 0; i < tx_desc_num; i++) {
775 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
776 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
777 }
778
779 mp->tx_curr_desc_q = 0;
780 mp->tx_used_desc_q = 0;
781 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
782 mp->tx_first_desc_q = 0;
783 #endif
784
785 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
786
787 /* Add the queue to the list of Tx queues of this port */
788 mp->port_tx_queue_command |= 1;
789 }
790
791 /* Helper function for mv643xx_eth_open */
792 static int mv643xx_eth_real_open(struct net_device *dev)
793 {
794 struct mv643xx_private *mp = netdev_priv(dev);
795 unsigned int port_num = mp->port_num;
796 unsigned int size;
797
798 /* Stop RX Queues */
799 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
800
801 /* Clear the ethernet port interrupts */
802 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
803 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
804
805 /* Unmask RX buffer and TX end interrupt */
806 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
807 INT_CAUSE_UNMASK_ALL);
808
809 /* Unmask phy and link status changes interrupts */
810 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
811 INT_CAUSE_UNMASK_ALL_EXT);
812
813 /* Set the MAC Address */
814 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
815
816 eth_port_init(mp);
817
818 INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
819
820 memset(&mp->timeout, 0, sizeof(struct timer_list));
821 mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
822 mp->timeout.data = (unsigned long)dev;
823
824 mp->rx_task_busy = 0;
825 mp->rx_timer_flag = 0;
826
827 /* Allocate RX and TX skb rings */
828 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
829 GFP_KERNEL);
830 if (!mp->rx_skb) {
831 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
832 return -ENOMEM;
833 }
834 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
835 GFP_KERNEL);
836 if (!mp->tx_skb) {
837 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
838 kfree(mp->rx_skb);
839 return -ENOMEM;
840 }
841
842 /* Allocate TX ring */
843 mp->tx_ring_skbs = 0;
844 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
845 mp->tx_desc_area_size = size;
846
847 if (mp->tx_sram_size) {
848 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
849 mp->tx_sram_size);
850 mp->tx_desc_dma = mp->tx_sram_addr;
851 } else
852 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
853 &mp->tx_desc_dma,
854 GFP_KERNEL);
855
856 if (!mp->p_tx_desc_area) {
857 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
858 dev->name, size);
859 kfree(mp->rx_skb);
860 kfree(mp->tx_skb);
861 return -ENOMEM;
862 }
863 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
864 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
865
866 ether_init_tx_desc_ring(mp);
867
868 /* Allocate RX ring */
869 mp->rx_ring_skbs = 0;
870 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
871 mp->rx_desc_area_size = size;
872
873 if (mp->rx_sram_size) {
874 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
875 mp->rx_sram_size);
876 mp->rx_desc_dma = mp->rx_sram_addr;
877 } else
878 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
879 &mp->rx_desc_dma,
880 GFP_KERNEL);
881
882 if (!mp->p_rx_desc_area) {
883 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
884 dev->name, size);
885 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
886 dev->name);
887 if (mp->rx_sram_size)
888 iounmap(mp->p_rx_desc_area);
889 else
890 dma_free_coherent(NULL, mp->tx_desc_area_size,
891 mp->p_tx_desc_area, mp->tx_desc_dma);
892 kfree(mp->rx_skb);
893 kfree(mp->tx_skb);
894 return -ENOMEM;
895 }
896 memset((void *)mp->p_rx_desc_area, 0, size);
897
898 ether_init_rx_desc_ring(mp);
899
900 mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
901
902 eth_port_start(mp);
903
904 /* Interrupt Coalescing */
905
906 #ifdef MV643XX_COAL
907 mp->rx_int_coal =
908 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
909 #endif
910
911 mp->tx_int_coal =
912 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
913
914 netif_start_queue(dev);
915
916 return 0;
917 }
918
919 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
920 {
921 struct mv643xx_private *mp = netdev_priv(dev);
922 unsigned int port_num = mp->port_num;
923 unsigned int curr;
924
925 /* Stop Tx Queues */
926 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
927
928 /* Free outstanding skb's on TX rings */
929 for (curr = 0; mp->tx_ring_skbs && curr < mp->tx_ring_size; curr++) {
930 if (mp->tx_skb[curr]) {
931 dev_kfree_skb(mp->tx_skb[curr]);
932 mp->tx_ring_skbs--;
933 }
934 }
935 if (mp->tx_ring_skbs)
936 printk("%s: Error on Tx descriptor free - could not free %d"
937 " descriptors\n", dev->name, mp->tx_ring_skbs);
938
939 /* Free TX ring */
940 if (mp->tx_sram_size)
941 iounmap(mp->p_tx_desc_area);
942 else
943 dma_free_coherent(NULL, mp->tx_desc_area_size,
944 mp->p_tx_desc_area, mp->tx_desc_dma);
945 }
946
947 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
948 {
949 struct mv643xx_private *mp = netdev_priv(dev);
950 unsigned int port_num = mp->port_num;
951 int curr;
952
953 /* Stop RX Queues */
954 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
955
956 /* Free preallocated skb's on RX rings */
957 for (curr = 0; mp->rx_ring_skbs && curr < mp->rx_ring_size; curr++) {
958 if (mp->rx_skb[curr]) {
959 dev_kfree_skb(mp->rx_skb[curr]);
960 mp->rx_ring_skbs--;
961 }
962 }
963
964 if (mp->rx_ring_skbs)
965 printk(KERN_ERR
966 "%s: Error in freeing Rx Ring. %d skb's still"
967 " stuck in RX Ring - ignoring them\n", dev->name,
968 mp->rx_ring_skbs);
969 /* Free RX ring */
970 if (mp->rx_sram_size)
971 iounmap(mp->p_rx_desc_area);
972 else
973 dma_free_coherent(NULL, mp->rx_desc_area_size,
974 mp->p_rx_desc_area, mp->rx_desc_dma);
975 }
976
977 /*
978 * mv643xx_eth_stop
979 *
980 * This function is used when closing the network device.
981 * It updates the hardware,
982 * release all memory that holds buffers and descriptors and release the IRQ.
983 * Input : a pointer to the device structure
984 * Output : zero if success , nonzero if fails
985 */
986
987 /* Helper function for mv643xx_eth_stop */
988
989 static int mv643xx_eth_real_stop(struct net_device *dev)
990 {
991 struct mv643xx_private *mp = netdev_priv(dev);
992 unsigned int port_num = mp->port_num;
993
994 netif_carrier_off(dev);
995 netif_stop_queue(dev);
996
997 mv643xx_eth_free_tx_rings(dev);
998 mv643xx_eth_free_rx_rings(dev);
999
1000 eth_port_reset(mp->port_num);
1001
1002 /* Disable ethernet port interrupts */
1003 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1004 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1005
1006 /* Mask RX buffer and TX end interrupt */
1007 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
1008
1009 /* Mask phy and link status changes interrupts */
1010 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num), 0);
1011
1012 return 0;
1013 }
1014
1015 static int mv643xx_eth_stop(struct net_device *dev)
1016 {
1017 struct mv643xx_private *mp = netdev_priv(dev);
1018
1019 spin_lock_irq(&mp->lock);
1020
1021 mv643xx_eth_real_stop(dev);
1022
1023 free_irq(dev->irq, dev);
1024 spin_unlock_irq(&mp->lock);
1025
1026 return 0;
1027 }
1028
1029 #ifdef MV643XX_NAPI
1030 static void mv643xx_tx(struct net_device *dev)
1031 {
1032 struct mv643xx_private *mp = netdev_priv(dev);
1033 struct pkt_info pkt_info;
1034
1035 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
1036 if (pkt_info.return_info) {
1037 if (skb_shinfo(pkt_info.return_info)->nr_frags)
1038 dma_unmap_page(NULL, pkt_info.buf_ptr,
1039 pkt_info.byte_cnt,
1040 DMA_TO_DEVICE);
1041 else
1042 dma_unmap_single(NULL, pkt_info.buf_ptr,
1043 pkt_info.byte_cnt,
1044 DMA_TO_DEVICE);
1045
1046 dev_kfree_skb_irq(pkt_info.return_info);
1047
1048 if (mp->tx_ring_skbs)
1049 mp->tx_ring_skbs--;
1050 } else
1051 dma_unmap_page(NULL, pkt_info.buf_ptr,
1052 pkt_info.byte_cnt, DMA_TO_DEVICE);
1053 }
1054
1055 if (netif_queue_stopped(dev) &&
1056 mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB)
1057 netif_wake_queue(dev);
1058 }
1059
1060 /*
1061 * mv643xx_poll
1062 *
1063 * This function is used in case of NAPI
1064 */
1065 static int mv643xx_poll(struct net_device *dev, int *budget)
1066 {
1067 struct mv643xx_private *mp = netdev_priv(dev);
1068 int done = 1, orig_budget, work_done;
1069 unsigned int port_num = mp->port_num;
1070 unsigned long flags;
1071
1072 #ifdef MV643XX_TX_FAST_REFILL
1073 if (++mp->tx_clean_threshold > 5) {
1074 spin_lock_irqsave(&mp->lock, flags);
1075 mv643xx_tx(dev);
1076 mp->tx_clean_threshold = 0;
1077 spin_unlock_irqrestore(&mp->lock, flags);
1078 }
1079 #endif
1080
1081 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1082 != (u32) mp->rx_used_desc_q) {
1083 orig_budget = *budget;
1084 if (orig_budget > dev->quota)
1085 orig_budget = dev->quota;
1086 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1087 mp->rx_task.func(dev);
1088 *budget -= work_done;
1089 dev->quota -= work_done;
1090 if (work_done >= orig_budget)
1091 done = 0;
1092 }
1093
1094 if (done) {
1095 spin_lock_irqsave(&mp->lock, flags);
1096 __netif_rx_complete(dev);
1097 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1098 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1099 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1100 INT_CAUSE_UNMASK_ALL);
1101 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
1102 INT_CAUSE_UNMASK_ALL_EXT);
1103 spin_unlock_irqrestore(&mp->lock, flags);
1104 }
1105
1106 return done ? 0 : 1;
1107 }
1108 #endif
1109
1110 /*
1111 * mv643xx_eth_start_xmit
1112 *
1113 * This function is queues a packet in the Tx descriptor for
1114 * required port.
1115 *
1116 * Input : skb - a pointer to socket buffer
1117 * dev - a pointer to the required port
1118 *
1119 * Output : zero upon success
1120 */
1121 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1122 {
1123 struct mv643xx_private *mp = netdev_priv(dev);
1124 struct net_device_stats *stats = &mp->stats;
1125 ETH_FUNC_RET_STATUS status;
1126 unsigned long flags;
1127 struct pkt_info pkt_info;
1128
1129 if (netif_queue_stopped(dev)) {
1130 printk(KERN_ERR
1131 "%s: Tried sending packet when interface is stopped\n",
1132 dev->name);
1133 return 1;
1134 }
1135
1136 /* This is a hard error, log it. */
1137 if ((mp->tx_ring_size - mp->tx_ring_skbs) <=
1138 (skb_shinfo(skb)->nr_frags + 1)) {
1139 netif_stop_queue(dev);
1140 printk(KERN_ERR
1141 "%s: Bug in mv643xx_eth - Trying to transmit when"
1142 " queue full !\n", dev->name);
1143 return 1;
1144 }
1145
1146 /* Paranoid check - this shouldn't happen */
1147 if (skb == NULL) {
1148 stats->tx_dropped++;
1149 printk(KERN_ERR "mv64320_eth paranoid check failed\n");
1150 return 1;
1151 }
1152
1153 spin_lock_irqsave(&mp->lock, flags);
1154
1155 /* Update packet info data structure -- DMA owned, first last */
1156 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1157 if (!skb_shinfo(skb)->nr_frags) {
1158 linear:
1159 if (skb->ip_summed != CHECKSUM_HW) {
1160 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1161 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
1162 ETH_TX_FIRST_DESC |
1163 ETH_TX_LAST_DESC |
1164 5 << ETH_TX_IHL_SHIFT;
1165 pkt_info.l4i_chk = 0;
1166 } else {
1167
1168 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
1169 ETH_TX_FIRST_DESC |
1170 ETH_TX_LAST_DESC |
1171 ETH_GEN_TCP_UDP_CHECKSUM |
1172 ETH_GEN_IP_V_4_CHECKSUM |
1173 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1174 /* CPU already calculated pseudo header checksum. */
1175 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1176 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1177 pkt_info.l4i_chk = skb->h.uh->check;
1178 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1179 pkt_info.l4i_chk = skb->h.th->check;
1180 else {
1181 printk(KERN_ERR
1182 "%s: chksum proto != TCP or UDP\n",
1183 dev->name);
1184 spin_unlock_irqrestore(&mp->lock, flags);
1185 return 1;
1186 }
1187 }
1188 pkt_info.byte_cnt = skb->len;
1189 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1190 DMA_TO_DEVICE);
1191 pkt_info.return_info = skb;
1192 mp->tx_ring_skbs++;
1193 status = eth_port_send(mp, &pkt_info);
1194 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1195 printk(KERN_ERR "%s: Error on transmitting packet\n",
1196 dev->name);
1197 stats->tx_bytes += pkt_info.byte_cnt;
1198 } else {
1199 unsigned int frag;
1200
1201 /* Since hardware can't handle unaligned fragments smaller
1202 * than 9 bytes, if we find any, we linearize the skb
1203 * and start again. When I've seen it, it's always been
1204 * the first frag (probably near the end of the page),
1205 * but we check all frags to be safe.
1206 */
1207 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1208 skb_frag_t *fragp;
1209
1210 fragp = &skb_shinfo(skb)->frags[frag];
1211 if (fragp->size <= 8 && fragp->page_offset & 0x7) {
1212 skb_linearize(skb, GFP_ATOMIC);
1213 printk(KERN_DEBUG "%s: unaligned tiny fragment"
1214 "%d of %d, fixed\n",
1215 dev->name, frag,
1216 skb_shinfo(skb)->nr_frags);
1217 goto linear;
1218 }
1219 }
1220
1221 /* first frag which is skb header */
1222 pkt_info.byte_cnt = skb_headlen(skb);
1223 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
1224 skb_headlen(skb),
1225 DMA_TO_DEVICE);
1226 pkt_info.l4i_chk = 0;
1227 pkt_info.return_info = 0;
1228
1229 if (skb->ip_summed != CHECKSUM_HW)
1230 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1231 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1232 5 << ETH_TX_IHL_SHIFT;
1233 else {
1234 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1235 ETH_GEN_TCP_UDP_CHECKSUM |
1236 ETH_GEN_IP_V_4_CHECKSUM |
1237 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1238 /* CPU already calculated pseudo header checksum. */
1239 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1240 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1241 pkt_info.l4i_chk = skb->h.uh->check;
1242 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1243 pkt_info.l4i_chk = skb->h.th->check;
1244 else {
1245 printk(KERN_ERR
1246 "%s: chksum proto != TCP or UDP\n",
1247 dev->name);
1248 spin_unlock_irqrestore(&mp->lock, flags);
1249 return 1;
1250 }
1251 }
1252
1253 status = eth_port_send(mp, &pkt_info);
1254 if (status != ETH_OK) {
1255 if ((status == ETH_ERROR))
1256 printk(KERN_ERR
1257 "%s: Error on transmitting packet\n",
1258 dev->name);
1259 if (status == ETH_QUEUE_FULL)
1260 printk("Error on Queue Full \n");
1261 if (status == ETH_QUEUE_LAST_RESOURCE)
1262 printk("Tx resource error \n");
1263 }
1264 stats->tx_bytes += pkt_info.byte_cnt;
1265
1266 /* Check for the remaining frags */
1267 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1268 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1269 pkt_info.l4i_chk = 0x0000;
1270 pkt_info.cmd_sts = 0x00000000;
1271
1272 /* Last Frag enables interrupt and frees the skb */
1273 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1274 pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
1275 ETH_TX_LAST_DESC;
1276 pkt_info.return_info = skb;
1277 mp->tx_ring_skbs++;
1278 } else {
1279 pkt_info.return_info = 0;
1280 }
1281 pkt_info.l4i_chk = 0;
1282 pkt_info.byte_cnt = this_frag->size;
1283
1284 pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
1285 this_frag->page_offset,
1286 this_frag->size,
1287 DMA_TO_DEVICE);
1288
1289 status = eth_port_send(mp, &pkt_info);
1290
1291 if (status != ETH_OK) {
1292 if ((status == ETH_ERROR))
1293 printk(KERN_ERR "%s: Error on "
1294 "transmitting packet\n",
1295 dev->name);
1296
1297 if (status == ETH_QUEUE_LAST_RESOURCE)
1298 printk("Tx resource error \n");
1299
1300 if (status == ETH_QUEUE_FULL)
1301 printk("Queue is full \n");
1302 }
1303 stats->tx_bytes += pkt_info.byte_cnt;
1304 }
1305 }
1306 #else
1307 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
1308 ETH_TX_LAST_DESC;
1309 pkt_info.l4i_chk = 0;
1310 pkt_info.byte_cnt = skb->len;
1311 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1312 DMA_TO_DEVICE);
1313 pkt_info.return_info = skb;
1314 mp->tx_ring_skbs++;
1315 status = eth_port_send(mp, &pkt_info);
1316 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1317 printk(KERN_ERR "%s: Error on transmitting packet\n",
1318 dev->name);
1319 stats->tx_bytes += pkt_info.byte_cnt;
1320 #endif
1321
1322 /* Check if TX queue can handle another skb. If not, then
1323 * signal higher layers to stop requesting TX
1324 */
1325 if (mp->tx_ring_size <= (mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
1326 /*
1327 * Stop getting skb's from upper layers.
1328 * Getting skb's from upper layers will be enabled again after
1329 * packets are released.
1330 */
1331 netif_stop_queue(dev);
1332
1333 /* Update statistics and start of transmittion time */
1334 stats->tx_packets++;
1335 dev->trans_start = jiffies;
1336
1337 spin_unlock_irqrestore(&mp->lock, flags);
1338
1339 return 0; /* success */
1340 }
1341
1342 /*
1343 * mv643xx_eth_get_stats
1344 *
1345 * Returns a pointer to the interface statistics.
1346 *
1347 * Input : dev - a pointer to the required interface
1348 *
1349 * Output : a pointer to the interface's statistics
1350 */
1351
1352 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1353 {
1354 struct mv643xx_private *mp = netdev_priv(dev);
1355
1356 return &mp->stats;
1357 }
1358
1359 /*/
1360 * mv643xx_eth_probe
1361 *
1362 * First function called after registering the network device.
1363 * It's purpose is to initialize the device as an ethernet device,
1364 * fill the ethernet device structure with pointers * to functions,
1365 * and set the MAC address of the interface
1366 *
1367 * Input : struct device *
1368 * Output : -ENOMEM if failed , 0 if success
1369 */
1370 static int mv643xx_eth_probe(struct device *ddev)
1371 {
1372 struct platform_device *pdev = to_platform_device(ddev);
1373 struct mv643xx_eth_platform_data *pd;
1374 int port_num = pdev->id;
1375 struct mv643xx_private *mp;
1376 struct net_device *dev;
1377 u8 *p;
1378 struct resource *res;
1379 int err;
1380
1381 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1382 if (!dev)
1383 return -ENOMEM;
1384
1385 dev_set_drvdata(ddev, dev);
1386
1387 mp = netdev_priv(dev);
1388
1389 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1390 BUG_ON(!res);
1391 dev->irq = res->start;
1392
1393 mp->port_num = port_num;
1394
1395 dev->open = mv643xx_eth_open;
1396 dev->stop = mv643xx_eth_stop;
1397 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1398 dev->get_stats = mv643xx_eth_get_stats;
1399 dev->set_mac_address = mv643xx_eth_set_mac_address;
1400 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1401
1402 /* No need to Tx Timeout */
1403 dev->tx_timeout = mv643xx_eth_tx_timeout;
1404 #ifdef MV643XX_NAPI
1405 dev->poll = mv643xx_poll;
1406 dev->weight = 64;
1407 #endif
1408
1409 dev->watchdog_timeo = 2 * HZ;
1410 dev->tx_queue_len = mp->tx_ring_size;
1411 dev->base_addr = 0;
1412 dev->change_mtu = mv643xx_eth_change_mtu;
1413 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1414
1415 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1416 #ifdef MAX_SKB_FRAGS
1417 /*
1418 * Zero copy can only work if we use Discovery II memory. Else, we will
1419 * have to map the buffers to ISA memory which is only 16 MB
1420 */
1421 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HW_CSUM;
1422 #endif
1423 #endif
1424
1425 /* Configure the timeout task */
1426 INIT_WORK(&mp->tx_timeout_task,
1427 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1428
1429 spin_lock_init(&mp->lock);
1430
1431 /* set default config values */
1432 eth_port_uc_addr_get(dev, dev->dev_addr);
1433 mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE;
1434 mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE;
1435 mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE;
1436 mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE;
1437 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1438 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1439
1440 pd = pdev->dev.platform_data;
1441 if (pd) {
1442 if (pd->mac_addr != NULL)
1443 memcpy(dev->dev_addr, pd->mac_addr, 6);
1444
1445 if (pd->phy_addr || pd->force_phy_addr)
1446 ethernet_phy_set(port_num, pd->phy_addr);
1447
1448 if (pd->port_config || pd->force_port_config)
1449 mp->port_config = pd->port_config;
1450
1451 if (pd->port_config_extend || pd->force_port_config_extend)
1452 mp->port_config_extend = pd->port_config_extend;
1453
1454 if (pd->port_sdma_config || pd->force_port_sdma_config)
1455 mp->port_sdma_config = pd->port_sdma_config;
1456
1457 if (pd->port_serial_control || pd->force_port_serial_control)
1458 mp->port_serial_control = pd->port_serial_control;
1459
1460 if (pd->rx_queue_size)
1461 mp->rx_ring_size = pd->rx_queue_size;
1462
1463 if (pd->tx_queue_size)
1464 mp->tx_ring_size = pd->tx_queue_size;
1465
1466 if (pd->tx_sram_size) {
1467 mp->tx_sram_size = pd->tx_sram_size;
1468 mp->tx_sram_addr = pd->tx_sram_addr;
1469 }
1470
1471 if (pd->rx_sram_size) {
1472 mp->rx_sram_size = pd->rx_sram_size;
1473 mp->rx_sram_addr = pd->rx_sram_addr;
1474 }
1475 }
1476
1477 err = ethernet_phy_detect(port_num);
1478 if (err) {
1479 pr_debug("MV643xx ethernet port %d: "
1480 "No PHY detected at addr %d\n",
1481 port_num, ethernet_phy_get(port_num));
1482 return err;
1483 }
1484
1485 err = register_netdev(dev);
1486 if (err)
1487 goto out;
1488
1489 p = dev->dev_addr;
1490 printk(KERN_NOTICE
1491 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1492 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1493
1494 if (dev->features & NETIF_F_SG)
1495 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1496
1497 if (dev->features & NETIF_F_IP_CSUM)
1498 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1499 dev->name);
1500
1501 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1502 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1503 #endif
1504
1505 #ifdef MV643XX_COAL
1506 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1507 dev->name);
1508 #endif
1509
1510 #ifdef MV643XX_NAPI
1511 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1512 #endif
1513
1514 return 0;
1515
1516 out:
1517 free_netdev(dev);
1518
1519 return err;
1520 }
1521
1522 static int mv643xx_eth_remove(struct device *ddev)
1523 {
1524 struct net_device *dev = dev_get_drvdata(ddev);
1525
1526 unregister_netdev(dev);
1527 flush_scheduled_work();
1528
1529 free_netdev(dev);
1530 dev_set_drvdata(ddev, NULL);
1531 return 0;
1532 }
1533
1534 static int mv643xx_eth_shared_probe(struct device *ddev)
1535 {
1536 struct platform_device *pdev = to_platform_device(ddev);
1537 struct resource *res;
1538
1539 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1540
1541 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1542 if (res == NULL)
1543 return -ENODEV;
1544
1545 mv643xx_eth_shared_base = ioremap(res->start,
1546 MV643XX_ETH_SHARED_REGS_SIZE);
1547 if (mv643xx_eth_shared_base == NULL)
1548 return -ENOMEM;
1549
1550 return 0;
1551
1552 }
1553
1554 static int mv643xx_eth_shared_remove(struct device *ddev)
1555 {
1556 iounmap(mv643xx_eth_shared_base);
1557 mv643xx_eth_shared_base = NULL;
1558
1559 return 0;
1560 }
1561
1562 static struct device_driver mv643xx_eth_driver = {
1563 .name = MV643XX_ETH_NAME,
1564 .bus = &platform_bus_type,
1565 .probe = mv643xx_eth_probe,
1566 .remove = mv643xx_eth_remove,
1567 };
1568
1569 static struct device_driver mv643xx_eth_shared_driver = {
1570 .name = MV643XX_ETH_SHARED_NAME,
1571 .bus = &platform_bus_type,
1572 .probe = mv643xx_eth_shared_probe,
1573 .remove = mv643xx_eth_shared_remove,
1574 };
1575
1576 /*
1577 * mv643xx_init_module
1578 *
1579 * Registers the network drivers into the Linux kernel
1580 *
1581 * Input : N/A
1582 *
1583 * Output : N/A
1584 */
1585 static int __init mv643xx_init_module(void)
1586 {
1587 int rc;
1588
1589 rc = driver_register(&mv643xx_eth_shared_driver);
1590 if (!rc) {
1591 rc = driver_register(&mv643xx_eth_driver);
1592 if (rc)
1593 driver_unregister(&mv643xx_eth_shared_driver);
1594 }
1595 return rc;
1596 }
1597
1598 /*
1599 * mv643xx_cleanup_module
1600 *
1601 * Registers the network drivers into the Linux kernel
1602 *
1603 * Input : N/A
1604 *
1605 * Output : N/A
1606 */
1607 static void __exit mv643xx_cleanup_module(void)
1608 {
1609 driver_unregister(&mv643xx_eth_driver);
1610 driver_unregister(&mv643xx_eth_shared_driver);
1611 }
1612
1613 module_init(mv643xx_init_module);
1614 module_exit(mv643xx_cleanup_module);
1615
1616 MODULE_LICENSE("GPL");
1617 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1618 " and Dale Farnsworth");
1619 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1620
1621 /*
1622 * The second part is the low level driver of the gigE ethernet ports.
1623 */
1624
1625 /*
1626 * Marvell's Gigabit Ethernet controller low level driver
1627 *
1628 * DESCRIPTION:
1629 * This file introduce low level API to Marvell's Gigabit Ethernet
1630 * controller. This Gigabit Ethernet Controller driver API controls
1631 * 1) Operations (i.e. port init, start, reset etc').
1632 * 2) Data flow (i.e. port send, receive etc').
1633 * Each Gigabit Ethernet port is controlled via
1634 * struct mv643xx_private.
1635 * This struct includes user configuration information as well as
1636 * driver internal data needed for its operations.
1637 *
1638 * Supported Features:
1639 * - This low level driver is OS independent. Allocating memory for
1640 * the descriptor rings and buffers are not within the scope of
1641 * this driver.
1642 * - The user is free from Rx/Tx queue managing.
1643 * - This low level driver introduce functionality API that enable
1644 * the to operate Marvell's Gigabit Ethernet Controller in a
1645 * convenient way.
1646 * - Simple Gigabit Ethernet port operation API.
1647 * - Simple Gigabit Ethernet port data flow API.
1648 * - Data flow and operation API support per queue functionality.
1649 * - Support cached descriptors for better performance.
1650 * - Enable access to all four DRAM banks and internal SRAM memory
1651 * spaces.
1652 * - PHY access and control API.
1653 * - Port control register configuration API.
1654 * - Full control over Unicast and Multicast MAC configurations.
1655 *
1656 * Operation flow:
1657 *
1658 * Initialization phase
1659 * This phase complete the initialization of the the
1660 * mv643xx_private struct.
1661 * User information regarding port configuration has to be set
1662 * prior to calling the port initialization routine.
1663 *
1664 * In this phase any port Tx/Rx activity is halted, MIB counters
1665 * are cleared, PHY address is set according to user parameter and
1666 * access to DRAM and internal SRAM memory spaces.
1667 *
1668 * Driver ring initialization
1669 * Allocating memory for the descriptor rings and buffers is not
1670 * within the scope of this driver. Thus, the user is required to
1671 * allocate memory for the descriptors ring and buffers. Those
1672 * memory parameters are used by the Rx and Tx ring initialization
1673 * routines in order to curve the descriptor linked list in a form
1674 * of a ring.
1675 * Note: Pay special attention to alignment issues when using
1676 * cached descriptors/buffers. In this phase the driver store
1677 * information in the mv643xx_private struct regarding each queue
1678 * ring.
1679 *
1680 * Driver start
1681 * This phase prepares the Ethernet port for Rx and Tx activity.
1682 * It uses the information stored in the mv643xx_private struct to
1683 * initialize the various port registers.
1684 *
1685 * Data flow:
1686 * All packet references to/from the driver are done using
1687 * struct pkt_info.
1688 * This struct is a unified struct used with Rx and Tx operations.
1689 * This way the user is not required to be familiar with neither
1690 * Tx nor Rx descriptors structures.
1691 * The driver's descriptors rings are management by indexes.
1692 * Those indexes controls the ring resources and used to indicate
1693 * a SW resource error:
1694 * 'current'
1695 * This index points to the current available resource for use. For
1696 * example in Rx process this index will point to the descriptor
1697 * that will be passed to the user upon calling the receive
1698 * routine. In Tx process, this index will point to the descriptor
1699 * that will be assigned with the user packet info and transmitted.
1700 * 'used'
1701 * This index points to the descriptor that need to restore its
1702 * resources. For example in Rx process, using the Rx buffer return
1703 * API will attach the buffer returned in packet info to the
1704 * descriptor pointed by 'used'. In Tx process, using the Tx
1705 * descriptor return will merely return the user packet info with
1706 * the command status of the transmitted buffer pointed by the
1707 * 'used' index. Nevertheless, it is essential to use this routine
1708 * to update the 'used' index.
1709 * 'first'
1710 * This index supports Tx Scatter-Gather. It points to the first
1711 * descriptor of a packet assembled of multiple buffers. For
1712 * example when in middle of Such packet we have a Tx resource
1713 * error the 'curr' index get the value of 'first' to indicate
1714 * that the ring returned to its state before trying to transmit
1715 * this packet.
1716 *
1717 * Receive operation:
1718 * The eth_port_receive API set the packet information struct,
1719 * passed by the caller, with received information from the
1720 * 'current' SDMA descriptor.
1721 * It is the user responsibility to return this resource back
1722 * to the Rx descriptor ring to enable the reuse of this source.
1723 * Return Rx resource is done using the eth_rx_return_buff API.
1724 *
1725 * Transmit operation:
1726 * The eth_port_send API supports Scatter-Gather which enables to
1727 * send a packet spanned over multiple buffers. This means that
1728 * for each packet info structure given by the user and put into
1729 * the Tx descriptors ring, will be transmitted only if the 'LAST'
1730 * bit will be set in the packet info command status field. This
1731 * API also consider restriction regarding buffer alignments and
1732 * sizes.
1733 * The user must return a Tx resource after ensuring the buffer
1734 * has been transmitted to enable the Tx ring indexes to update.
1735 *
1736 * BOARD LAYOUT
1737 * This device is on-board. No jumper diagram is necessary.
1738 *
1739 * EXTERNAL INTERFACE
1740 *
1741 * Prior to calling the initialization routine eth_port_init() the user
1742 * must set the following fields under mv643xx_private struct:
1743 * port_num User Ethernet port number.
1744 * port_mac_addr[6] User defined port MAC address.
1745 * port_config User port configuration value.
1746 * port_config_extend User port config extend value.
1747 * port_sdma_config User port SDMA config value.
1748 * port_serial_control User port serial control value.
1749 *
1750 * This driver data flow is done using the struct pkt_info which
1751 * is a unified struct for Rx and Tx operations:
1752 *
1753 * byte_cnt Tx/Rx descriptor buffer byte count.
1754 * l4i_chk CPU provided TCP Checksum. For Tx operation
1755 * only.
1756 * cmd_sts Tx/Rx descriptor command status.
1757 * buf_ptr Tx/Rx descriptor buffer pointer.
1758 * return_info Tx/Rx user resource return information.
1759 */
1760
1761 /* defines */
1762 /* SDMA command macros */
1763 #define ETH_ENABLE_TX_QUEUE(eth_port) \
1764 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(eth_port), 1)
1765
1766 /* locals */
1767
1768 /* PHY routines */
1769 static int ethernet_phy_get(unsigned int eth_port_num);
1770 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1771
1772 /* Ethernet Port routines */
1773 static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1774 int option);
1775
1776 /*
1777 * eth_port_init - Initialize the Ethernet port driver
1778 *
1779 * DESCRIPTION:
1780 * This function prepares the ethernet port to start its activity:
1781 * 1) Completes the ethernet port driver struct initialization toward port
1782 * start routine.
1783 * 2) Resets the device to a quiescent state in case of warm reboot.
1784 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1785 * 4) Clean MAC tables. The reset status of those tables is unknown.
1786 * 5) Set PHY address.
1787 * Note: Call this routine prior to eth_port_start routine and after
1788 * setting user values in the user fields of Ethernet port control
1789 * struct.
1790 *
1791 * INPUT:
1792 * struct mv643xx_private *mp Ethernet port control struct
1793 *
1794 * OUTPUT:
1795 * See description.
1796 *
1797 * RETURN:
1798 * None.
1799 */
1800 static void eth_port_init(struct mv643xx_private *mp)
1801 {
1802 mp->port_rx_queue_command = 0;
1803 mp->port_tx_queue_command = 0;
1804
1805 mp->rx_resource_err = 0;
1806 mp->tx_resource_err = 0;
1807
1808 eth_port_reset(mp->port_num);
1809
1810 eth_port_init_mac_tables(mp->port_num);
1811
1812 ethernet_phy_reset(mp->port_num);
1813 }
1814
1815 /*
1816 * eth_port_start - Start the Ethernet port activity.
1817 *
1818 * DESCRIPTION:
1819 * This routine prepares the Ethernet port for Rx and Tx activity:
1820 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1821 * has been initialized a descriptor's ring (using
1822 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1823 * 2. Initialize and enable the Ethernet configuration port by writing to
1824 * the port's configuration and command registers.
1825 * 3. Initialize and enable the SDMA by writing to the SDMA's
1826 * configuration and command registers. After completing these steps,
1827 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1828 *
1829 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1830 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1831 * and ether_init_rx_desc_ring for Rx queues).
1832 *
1833 * INPUT:
1834 * struct mv643xx_private *mp Ethernet port control struct
1835 *
1836 * OUTPUT:
1837 * Ethernet port is ready to receive and transmit.
1838 *
1839 * RETURN:
1840 * None.
1841 */
1842 static void eth_port_start(struct mv643xx_private *mp)
1843 {
1844 unsigned int port_num = mp->port_num;
1845 int tx_curr_desc, rx_curr_desc;
1846
1847 /* Assignment of Tx CTRP of given queue */
1848 tx_curr_desc = mp->tx_curr_desc_q;
1849 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1850 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1851
1852 /* Assignment of Rx CRDP of given queue */
1853 rx_curr_desc = mp->rx_curr_desc_q;
1854 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1855 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1856
1857 /* Add the assigned Ethernet address to the port's address table */
1858 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
1859
1860 /* Assign port configuration and command. */
1861 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config);
1862
1863 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1864 mp->port_config_extend);
1865
1866
1867 /* Increase the Rx side buffer size if supporting GigE */
1868 if (mp->port_serial_control & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
1869 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1870 (mp->port_serial_control & 0xfff1ffff) | (0x5 << 17));
1871 else
1872 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1873 mp->port_serial_control);
1874
1875 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1876 mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)) |
1877 MV643XX_ETH_SERIAL_PORT_ENABLE);
1878
1879 /* Assign port SDMA configuration */
1880 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1881 mp->port_sdma_config);
1882
1883 /* Enable port Rx. */
1884 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
1885 mp->port_rx_queue_command);
1886 }
1887
1888 /*
1889 * eth_port_uc_addr_set - This function Set the port Unicast address.
1890 *
1891 * DESCRIPTION:
1892 * This function Set the port Ethernet MAC address.
1893 *
1894 * INPUT:
1895 * unsigned int eth_port_num Port number.
1896 * char * p_addr Address to be set
1897 *
1898 * OUTPUT:
1899 * Set MAC address low and high registers. also calls eth_port_uc_addr()
1900 * To set the unicast table with the proper information.
1901 *
1902 * RETURN:
1903 * N/A.
1904 *
1905 */
1906 static void eth_port_uc_addr_set(unsigned int eth_port_num,
1907 unsigned char *p_addr)
1908 {
1909 unsigned int mac_h;
1910 unsigned int mac_l;
1911
1912 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1913 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1914 (p_addr[3] << 0);
1915
1916 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1917 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1918
1919 /* Accept frames of this address */
1920 eth_port_uc_addr(eth_port_num, p_addr[5], ACCEPT_MAC_ADDR);
1921
1922 return;
1923 }
1924
1925 /*
1926 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1927 * (MAC address) from the ethernet hw registers.
1928 *
1929 * DESCRIPTION:
1930 * This function retrieves the port Ethernet MAC address.
1931 *
1932 * INPUT:
1933 * unsigned int eth_port_num Port number.
1934 * char *MacAddr pointer where the MAC address is stored
1935 *
1936 * OUTPUT:
1937 * Copy the MAC address to the location pointed to by MacAddr
1938 *
1939 * RETURN:
1940 * N/A.
1941 *
1942 */
1943 static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1944 {
1945 struct mv643xx_private *mp = netdev_priv(dev);
1946 unsigned int mac_h;
1947 unsigned int mac_l;
1948
1949 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1950 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1951
1952 p_addr[0] = (mac_h >> 24) & 0xff;
1953 p_addr[1] = (mac_h >> 16) & 0xff;
1954 p_addr[2] = (mac_h >> 8) & 0xff;
1955 p_addr[3] = mac_h & 0xff;
1956 p_addr[4] = (mac_l >> 8) & 0xff;
1957 p_addr[5] = mac_l & 0xff;
1958 }
1959
1960 /*
1961 * eth_port_uc_addr - This function Set the port unicast address table
1962 *
1963 * DESCRIPTION:
1964 * This function locates the proper entry in the Unicast table for the
1965 * specified MAC nibble and sets its properties according to function
1966 * parameters.
1967 *
1968 * INPUT:
1969 * unsigned int eth_port_num Port number.
1970 * unsigned char uc_nibble Unicast MAC Address last nibble.
1971 * int option 0 = Add, 1 = remove address.
1972 *
1973 * OUTPUT:
1974 * This function add/removes MAC addresses from the port unicast address
1975 * table.
1976 *
1977 * RETURN:
1978 * true is output succeeded.
1979 * false if option parameter is invalid.
1980 *
1981 */
1982 static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1983 int option)
1984 {
1985 unsigned int unicast_reg;
1986 unsigned int tbl_offset;
1987 unsigned int reg_offset;
1988
1989 /* Locate the Unicast table entry */
1990 uc_nibble = (0xf & uc_nibble);
1991 tbl_offset = (uc_nibble / 4) * 4; /* Register offset from unicast table base */
1992 reg_offset = uc_nibble % 4; /* Entry offset within the above register */
1993
1994 switch (option) {
1995 case REJECT_MAC_ADDR:
1996 /* Clear accepts frame bit at given unicast DA table entry */
1997 unicast_reg = mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1998 (eth_port_num) + tbl_offset));
1999
2000 unicast_reg &= (0x0E << (8 * reg_offset));
2001
2002 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2003 (eth_port_num) + tbl_offset), unicast_reg);
2004 break;
2005
2006 case ACCEPT_MAC_ADDR:
2007 /* Set accepts frame bit at unicast DA filter table entry */
2008 unicast_reg =
2009 mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2010 (eth_port_num) + tbl_offset));
2011
2012 unicast_reg |= (0x01 << (8 * reg_offset));
2013
2014 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2015 (eth_port_num) + tbl_offset), unicast_reg);
2016
2017 break;
2018
2019 default:
2020 return 0;
2021 }
2022
2023 return 1;
2024 }
2025
2026 /*
2027 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2028 *
2029 * DESCRIPTION:
2030 * Go through all the DA filter tables (Unicast, Special Multicast &
2031 * Other Multicast) and set each entry to 0.
2032 *
2033 * INPUT:
2034 * unsigned int eth_port_num Ethernet Port number.
2035 *
2036 * OUTPUT:
2037 * Multicast and Unicast packets are rejected.
2038 *
2039 * RETURN:
2040 * None.
2041 */
2042 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2043 {
2044 int table_index;
2045
2046 /* Clear DA filter unicast table (Ex_dFUT) */
2047 for (table_index = 0; table_index <= 0xC; table_index += 4)
2048 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2049 (eth_port_num) + table_index), 0);
2050
2051 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2052 /* Clear DA filter special multicast table (Ex_dFSMT) */
2053 mv_write((MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2054 (eth_port_num) + table_index), 0);
2055 /* Clear DA filter other multicast table (Ex_dFOMT) */
2056 mv_write((MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2057 (eth_port_num) + table_index), 0);
2058 }
2059 }
2060
2061 /*
2062 * eth_clear_mib_counters - Clear all MIB counters
2063 *
2064 * DESCRIPTION:
2065 * This function clears all MIB counters of a specific ethernet port.
2066 * A read from the MIB counter will reset the counter.
2067 *
2068 * INPUT:
2069 * unsigned int eth_port_num Ethernet Port number.
2070 *
2071 * OUTPUT:
2072 * After reading all MIB counters, the counters resets.
2073 *
2074 * RETURN:
2075 * MIB counter value.
2076 *
2077 */
2078 static void eth_clear_mib_counters(unsigned int eth_port_num)
2079 {
2080 int i;
2081
2082 /* Perform dummy reads from MIB counters */
2083 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2084 i += 4)
2085 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2086 }
2087
2088 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2089 {
2090 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2091 }
2092
2093 static void eth_update_mib_counters(struct mv643xx_private *mp)
2094 {
2095 struct mv643xx_mib_counters *p = &mp->mib_counters;
2096 int offset;
2097
2098 p->good_octets_received +=
2099 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2100 p->good_octets_received +=
2101 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2102
2103 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2104 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2105 offset += 4)
2106 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2107
2108 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2109 p->good_octets_sent +=
2110 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2111
2112 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2113 offset <= ETH_MIB_LATE_COLLISION;
2114 offset += 4)
2115 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2116 }
2117
2118 /*
2119 * ethernet_phy_detect - Detect whether a phy is present
2120 *
2121 * DESCRIPTION:
2122 * This function tests whether there is a PHY present on
2123 * the specified port.
2124 *
2125 * INPUT:
2126 * unsigned int eth_port_num Ethernet Port number.
2127 *
2128 * OUTPUT:
2129 * None
2130 *
2131 * RETURN:
2132 * 0 on success
2133 * -ENODEV on failure
2134 *
2135 */
2136 static int ethernet_phy_detect(unsigned int port_num)
2137 {
2138 unsigned int phy_reg_data0;
2139 int auto_neg;
2140
2141 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2142 auto_neg = phy_reg_data0 & 0x1000;
2143 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2144 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2145
2146 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2147 if ((phy_reg_data0 & 0x1000) == auto_neg)
2148 return -ENODEV; /* change didn't take */
2149
2150 phy_reg_data0 ^= 0x1000;
2151 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2152 return 0;
2153 }
2154
2155 /*
2156 * ethernet_phy_get - Get the ethernet port PHY address.
2157 *
2158 * DESCRIPTION:
2159 * This routine returns the given ethernet port PHY address.
2160 *
2161 * INPUT:
2162 * unsigned int eth_port_num Ethernet Port number.
2163 *
2164 * OUTPUT:
2165 * None.
2166 *
2167 * RETURN:
2168 * PHY address.
2169 *
2170 */
2171 static int ethernet_phy_get(unsigned int eth_port_num)
2172 {
2173 unsigned int reg_data;
2174
2175 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2176
2177 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2178 }
2179
2180 /*
2181 * ethernet_phy_set - Set the ethernet port PHY address.
2182 *
2183 * DESCRIPTION:
2184 * This routine sets the given ethernet port PHY address.
2185 *
2186 * INPUT:
2187 * unsigned int eth_port_num Ethernet Port number.
2188 * int phy_addr PHY address.
2189 *
2190 * OUTPUT:
2191 * None.
2192 *
2193 * RETURN:
2194 * None.
2195 *
2196 */
2197 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2198 {
2199 u32 reg_data;
2200 int addr_shift = 5 * eth_port_num;
2201
2202 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2203 reg_data &= ~(0x1f << addr_shift);
2204 reg_data |= (phy_addr & 0x1f) << addr_shift;
2205 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2206 }
2207
2208 /*
2209 * ethernet_phy_reset - Reset Ethernet port PHY.
2210 *
2211 * DESCRIPTION:
2212 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2213 *
2214 * INPUT:
2215 * unsigned int eth_port_num Ethernet Port number.
2216 *
2217 * OUTPUT:
2218 * The PHY is reset.
2219 *
2220 * RETURN:
2221 * None.
2222 *
2223 */
2224 static void ethernet_phy_reset(unsigned int eth_port_num)
2225 {
2226 unsigned int phy_reg_data;
2227
2228 /* Reset the PHY */
2229 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2230 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2231 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2232 }
2233
2234 /*
2235 * eth_port_reset - Reset Ethernet port
2236 *
2237 * DESCRIPTION:
2238 * This routine resets the chip by aborting any SDMA engine activity and
2239 * clearing the MIB counters. The Receiver and the Transmit unit are in
2240 * idle state after this command is performed and the port is disabled.
2241 *
2242 * INPUT:
2243 * unsigned int eth_port_num Ethernet Port number.
2244 *
2245 * OUTPUT:
2246 * Channel activity is halted.
2247 *
2248 * RETURN:
2249 * None.
2250 *
2251 */
2252 static void eth_port_reset(unsigned int port_num)
2253 {
2254 unsigned int reg_data;
2255
2256 /* Stop Tx port activity. Check port Tx activity. */
2257 reg_data = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num));
2258
2259 if (reg_data & 0xFF) {
2260 /* Issue stop command for active channels only */
2261 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2262 (reg_data << 8));
2263
2264 /* Wait for all Tx activity to terminate. */
2265 /* Check port cause register that all Tx queues are stopped */
2266 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2267 & 0xFF)
2268 udelay(10);
2269 }
2270
2271 /* Stop Rx port activity. Check port Rx activity. */
2272 reg_data = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num));
2273
2274 if (reg_data & 0xFF) {
2275 /* Issue stop command for active channels only */
2276 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2277 (reg_data << 8));
2278
2279 /* Wait for all Rx activity to terminate. */
2280 /* Check port cause register that all Rx queues are stopped */
2281 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2282 & 0xFF)
2283 udelay(10);
2284 }
2285
2286 /* Clear all MIB counters */
2287 eth_clear_mib_counters(port_num);
2288
2289 /* Reset the Enable bit in the Configuration Register */
2290 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2291 reg_data &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
2292 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2293 }
2294
2295 /*
2296 * ethernet_set_config_reg - Set specified bits in configuration register.
2297 *
2298 * DESCRIPTION:
2299 * This function sets specified bits in the given ethernet
2300 * configuration register.
2301 *
2302 * INPUT:
2303 * unsigned int eth_port_num Ethernet Port number.
2304 * unsigned int value 32 bit value.
2305 *
2306 * OUTPUT:
2307 * The set bits in the value parameter are set in the configuration
2308 * register.
2309 *
2310 * RETURN:
2311 * None.
2312 *
2313 */
2314 static void ethernet_set_config_reg(unsigned int eth_port_num,
2315 unsigned int value)
2316 {
2317 unsigned int eth_config_reg;
2318
2319 eth_config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(eth_port_num));
2320 eth_config_reg |= value;
2321 mv_write(MV643XX_ETH_PORT_CONFIG_REG(eth_port_num), eth_config_reg);
2322 }
2323
2324 static int eth_port_autoneg_supported(unsigned int eth_port_num)
2325 {
2326 unsigned int phy_reg_data0;
2327
2328 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data0);
2329
2330 return phy_reg_data0 & 0x1000;
2331 }
2332
2333 static int eth_port_link_is_up(unsigned int eth_port_num)
2334 {
2335 unsigned int phy_reg_data1;
2336
2337 eth_port_read_smi_reg(eth_port_num, 1, &phy_reg_data1);
2338
2339 if (eth_port_autoneg_supported(eth_port_num)) {
2340 if (phy_reg_data1 & 0x20) /* auto-neg complete */
2341 return 1;
2342 } else if (phy_reg_data1 & 0x4) /* link up */
2343 return 1;
2344
2345 return 0;
2346 }
2347
2348 /*
2349 * ethernet_get_config_reg - Get the port configuration register
2350 *
2351 * DESCRIPTION:
2352 * This function returns the configuration register value of the given
2353 * ethernet port.
2354 *
2355 * INPUT:
2356 * unsigned int eth_port_num Ethernet Port number.
2357 *
2358 * OUTPUT:
2359 * None.
2360 *
2361 * RETURN:
2362 * Port configuration register value.
2363 */
2364 static unsigned int ethernet_get_config_reg(unsigned int eth_port_num)
2365 {
2366 unsigned int eth_config_reg;
2367
2368 eth_config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_EXTEND_REG
2369 (eth_port_num));
2370 return eth_config_reg;
2371 }
2372
2373 /*
2374 * eth_port_read_smi_reg - Read PHY registers
2375 *
2376 * DESCRIPTION:
2377 * This routine utilize the SMI interface to interact with the PHY in
2378 * order to perform PHY register read.
2379 *
2380 * INPUT:
2381 * unsigned int port_num Ethernet Port number.
2382 * unsigned int phy_reg PHY register address offset.
2383 * unsigned int *value Register value buffer.
2384 *
2385 * OUTPUT:
2386 * Write the value of a specified PHY register into given buffer.
2387 *
2388 * RETURN:
2389 * false if the PHY is busy or read data is not in valid state.
2390 * true otherwise.
2391 *
2392 */
2393 static void eth_port_read_smi_reg(unsigned int port_num,
2394 unsigned int phy_reg, unsigned int *value)
2395 {
2396 int phy_addr = ethernet_phy_get(port_num);
2397 unsigned long flags;
2398 int i;
2399
2400 /* the SMI register is a shared resource */
2401 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2402
2403 /* wait for the SMI register to become available */
2404 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2405 if (i == PHY_WAIT_ITERATIONS) {
2406 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2407 goto out;
2408 }
2409 udelay(PHY_WAIT_MICRO_SECONDS);
2410 }
2411
2412 mv_write(MV643XX_ETH_SMI_REG,
2413 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2414
2415 /* now wait for the data to be valid */
2416 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2417 if (i == PHY_WAIT_ITERATIONS) {
2418 printk("mv643xx PHY read timeout, port %d\n", port_num);
2419 goto out;
2420 }
2421 udelay(PHY_WAIT_MICRO_SECONDS);
2422 }
2423
2424 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2425 out:
2426 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2427 }
2428
2429 /*
2430 * eth_port_write_smi_reg - Write to PHY registers
2431 *
2432 * DESCRIPTION:
2433 * This routine utilize the SMI interface to interact with the PHY in
2434 * order to perform writes to PHY registers.
2435 *
2436 * INPUT:
2437 * unsigned int eth_port_num Ethernet Port number.
2438 * unsigned int phy_reg PHY register address offset.
2439 * unsigned int value Register value.
2440 *
2441 * OUTPUT:
2442 * Write the given value to the specified PHY register.
2443 *
2444 * RETURN:
2445 * false if the PHY is busy.
2446 * true otherwise.
2447 *
2448 */
2449 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2450 unsigned int phy_reg, unsigned int value)
2451 {
2452 int phy_addr;
2453 int i;
2454 unsigned long flags;
2455
2456 phy_addr = ethernet_phy_get(eth_port_num);
2457
2458 /* the SMI register is a shared resource */
2459 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2460
2461 /* wait for the SMI register to become available */
2462 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2463 if (i == PHY_WAIT_ITERATIONS) {
2464 printk("mv643xx PHY busy timeout, port %d\n",
2465 eth_port_num);
2466 goto out;
2467 }
2468 udelay(PHY_WAIT_MICRO_SECONDS);
2469 }
2470
2471 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2472 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2473 out:
2474 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2475 }
2476
2477 /*
2478 * eth_port_send - Send an Ethernet packet
2479 *
2480 * DESCRIPTION:
2481 * This routine send a given packet described by p_pktinfo parameter. It
2482 * supports transmitting of a packet spaned over multiple buffers. The
2483 * routine updates 'curr' and 'first' indexes according to the packet
2484 * segment passed to the routine. In case the packet segment is first,
2485 * the 'first' index is update. In any case, the 'curr' index is updated.
2486 * If the routine get into Tx resource error it assigns 'curr' index as
2487 * 'first'. This way the function can abort Tx process of multiple
2488 * descriptors per packet.
2489 *
2490 * INPUT:
2491 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2492 * struct pkt_info *p_pkt_info User packet buffer.
2493 *
2494 * OUTPUT:
2495 * Tx ring 'curr' and 'first' indexes are updated.
2496 *
2497 * RETURN:
2498 * ETH_QUEUE_FULL in case of Tx resource error.
2499 * ETH_ERROR in case the routine can not access Tx desc ring.
2500 * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
2501 * ETH_OK otherwise.
2502 *
2503 */
2504 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2505 /*
2506 * Modified to include the first descriptor pointer in case of SG
2507 */
2508 static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2509 struct pkt_info *p_pkt_info)
2510 {
2511 int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
2512 struct eth_tx_desc *current_descriptor;
2513 struct eth_tx_desc *first_descriptor;
2514 u32 command;
2515
2516 /* Do not process Tx ring in case of Tx ring resource error */
2517 if (mp->tx_resource_err)
2518 return ETH_QUEUE_FULL;
2519
2520 /*
2521 * The hardware requires that each buffer that is <= 8 bytes
2522 * in length must be aligned on an 8 byte boundary.
2523 */
2524 if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
2525 printk(KERN_ERR
2526 "mv643xx_eth port %d: packet size <= 8 problem\n",
2527 mp->port_num);
2528 return ETH_ERROR;
2529 }
2530
2531 /* Get the Tx Desc ring indexes */
2532 tx_desc_curr = mp->tx_curr_desc_q;
2533 tx_desc_used = mp->tx_used_desc_q;
2534
2535 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2536
2537 tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
2538
2539 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2540 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2541 current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
2542 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2543
2544 command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
2545 ETH_BUFFER_OWNED_BY_DMA;
2546 if (command & ETH_TX_FIRST_DESC) {
2547 tx_first_desc = tx_desc_curr;
2548 mp->tx_first_desc_q = tx_first_desc;
2549 first_descriptor = current_descriptor;
2550 mp->tx_first_command = command;
2551 } else {
2552 tx_first_desc = mp->tx_first_desc_q;
2553 first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
2554 BUG_ON(first_descriptor == NULL);
2555 current_descriptor->cmd_sts = command;
2556 }
2557
2558 if (command & ETH_TX_LAST_DESC) {
2559 wmb();
2560 first_descriptor->cmd_sts = mp->tx_first_command;
2561
2562 wmb();
2563 ETH_ENABLE_TX_QUEUE(mp->port_num);
2564
2565 /*
2566 * Finish Tx packet. Update first desc in case of Tx resource
2567 * error */
2568 tx_first_desc = tx_next_desc;
2569 mp->tx_first_desc_q = tx_first_desc;
2570 }
2571
2572 /* Check for ring index overlap in the Tx desc ring */
2573 if (tx_next_desc == tx_desc_used) {
2574 mp->tx_resource_err = 1;
2575 mp->tx_curr_desc_q = tx_first_desc;
2576
2577 return ETH_QUEUE_LAST_RESOURCE;
2578 }
2579
2580 mp->tx_curr_desc_q = tx_next_desc;
2581
2582 return ETH_OK;
2583 }
2584 #else
2585 static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2586 struct pkt_info *p_pkt_info)
2587 {
2588 int tx_desc_curr;
2589 int tx_desc_used;
2590 struct eth_tx_desc *current_descriptor;
2591 unsigned int command_status;
2592
2593 /* Do not process Tx ring in case of Tx ring resource error */
2594 if (mp->tx_resource_err)
2595 return ETH_QUEUE_FULL;
2596
2597 /* Get the Tx Desc ring indexes */
2598 tx_desc_curr = mp->tx_curr_desc_q;
2599 tx_desc_used = mp->tx_used_desc_q;
2600 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2601
2602 command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
2603 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2604 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2605 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2606
2607 /* Set last desc with DMA ownership and interrupt enable. */
2608 wmb();
2609 current_descriptor->cmd_sts = command_status |
2610 ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
2611
2612 wmb();
2613 ETH_ENABLE_TX_QUEUE(mp->port_num);
2614
2615 /* Finish Tx packet. Update first desc in case of Tx resource error */
2616 tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
2617
2618 /* Update the current descriptor */
2619 mp->tx_curr_desc_q = tx_desc_curr;
2620
2621 /* Check for ring index overlap in the Tx desc ring */
2622 if (tx_desc_curr == tx_desc_used) {
2623 mp->tx_resource_err = 1;
2624 return ETH_QUEUE_LAST_RESOURCE;
2625 }
2626
2627 return ETH_OK;
2628 }
2629 #endif
2630
2631 /*
2632 * eth_tx_return_desc - Free all used Tx descriptors
2633 *
2634 * DESCRIPTION:
2635 * This routine returns the transmitted packet information to the caller.
2636 * It uses the 'first' index to support Tx desc return in case a transmit
2637 * of a packet spanned over multiple buffer still in process.
2638 * In case the Tx queue was in "resource error" condition, where there are
2639 * no available Tx resources, the function resets the resource error flag.
2640 *
2641 * INPUT:
2642 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2643 * struct pkt_info *p_pkt_info User packet buffer.
2644 *
2645 * OUTPUT:
2646 * Tx ring 'first' and 'used' indexes are updated.
2647 *
2648 * RETURN:
2649 * ETH_ERROR in case the routine can not access Tx desc ring.
2650 * ETH_RETRY in case there is transmission in process.
2651 * ETH_END_OF_JOB if the routine has nothing to release.
2652 * ETH_OK otherwise.
2653 *
2654 */
2655 static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
2656 struct pkt_info *p_pkt_info)
2657 {
2658 int tx_desc_used;
2659 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2660 int tx_busy_desc = mp->tx_first_desc_q;
2661 #else
2662 int tx_busy_desc = mp->tx_curr_desc_q;
2663 #endif
2664 struct eth_tx_desc *p_tx_desc_used;
2665 unsigned int command_status;
2666
2667 /* Get the Tx Desc ring indexes */
2668 tx_desc_used = mp->tx_used_desc_q;
2669
2670 p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
2671
2672 /* Sanity check */
2673 if (p_tx_desc_used == NULL)
2674 return ETH_ERROR;
2675
2676 /* Stop release. About to overlap the current available Tx descriptor */
2677 if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err)
2678 return ETH_END_OF_JOB;
2679
2680 command_status = p_tx_desc_used->cmd_sts;
2681
2682 /* Still transmitting... */
2683 if (command_status & (ETH_BUFFER_OWNED_BY_DMA))
2684 return ETH_RETRY;
2685
2686 /* Pass the packet information to the caller */
2687 p_pkt_info->cmd_sts = command_status;
2688 p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
2689 mp->tx_skb[tx_desc_used] = NULL;
2690
2691 /* Update the next descriptor to release. */
2692 mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
2693
2694 /* Any Tx return cancels the Tx resource error status */
2695 mp->tx_resource_err = 0;
2696
2697 return ETH_OK;
2698 }
2699
2700 /*
2701 * eth_port_receive - Get received information from Rx ring.
2702 *
2703 * DESCRIPTION:
2704 * This routine returns the received data to the caller. There is no
2705 * data copying during routine operation. All information is returned
2706 * using pointer to packet information struct passed from the caller.
2707 * If the routine exhausts Rx ring resources then the resource error flag
2708 * is set.
2709 *
2710 * INPUT:
2711 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2712 * struct pkt_info *p_pkt_info User packet buffer.
2713 *
2714 * OUTPUT:
2715 * Rx ring current and used indexes are updated.
2716 *
2717 * RETURN:
2718 * ETH_ERROR in case the routine can not access Rx desc ring.
2719 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2720 * ETH_END_OF_JOB if there is no received data.
2721 * ETH_OK otherwise.
2722 */
2723 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2724 struct pkt_info *p_pkt_info)
2725 {
2726 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2727 volatile struct eth_rx_desc *p_rx_desc;
2728 unsigned int command_status;
2729
2730 /* Do not process Rx ring in case of Rx ring resource error */
2731 if (mp->rx_resource_err)
2732 return ETH_QUEUE_FULL;
2733
2734 /* Get the Rx Desc ring 'curr and 'used' indexes */
2735 rx_curr_desc = mp->rx_curr_desc_q;
2736 rx_used_desc = mp->rx_used_desc_q;
2737
2738 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2739
2740 /* The following parameters are used to save readings from memory */
2741 command_status = p_rx_desc->cmd_sts;
2742 rmb();
2743
2744 /* Nothing to receive... */
2745 if (command_status & (ETH_BUFFER_OWNED_BY_DMA))
2746 return ETH_END_OF_JOB;
2747
2748 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2749 p_pkt_info->cmd_sts = command_status;
2750 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2751 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2752 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2753
2754 /* Clean the return info field to indicate that the packet has been */
2755 /* moved to the upper layers */
2756 mp->rx_skb[rx_curr_desc] = NULL;
2757
2758 /* Update current index in data structure */
2759 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2760 mp->rx_curr_desc_q = rx_next_curr_desc;
2761
2762 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2763 if (rx_next_curr_desc == rx_used_desc)
2764 mp->rx_resource_err = 1;
2765
2766 return ETH_OK;
2767 }
2768
2769 /*
2770 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2771 *
2772 * DESCRIPTION:
2773 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2774 * next 'used' descriptor and attached the returned buffer to it.
2775 * In case the Rx ring was in "resource error" condition, where there are
2776 * no available Rx resources, the function resets the resource error flag.
2777 *
2778 * INPUT:
2779 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2780 * struct pkt_info *p_pkt_info Information on returned buffer.
2781 *
2782 * OUTPUT:
2783 * New available Rx resource in Rx descriptor ring.
2784 *
2785 * RETURN:
2786 * ETH_ERROR in case the routine can not access Rx desc ring.
2787 * ETH_OK otherwise.
2788 */
2789 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2790 struct pkt_info *p_pkt_info)
2791 {
2792 int used_rx_desc; /* Where to return Rx resource */
2793 volatile struct eth_rx_desc *p_used_rx_desc;
2794
2795 /* Get 'used' Rx descriptor */
2796 used_rx_desc = mp->rx_used_desc_q;
2797 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2798
2799 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2800 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2801 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2802
2803 /* Flush the write pipe */
2804
2805 /* Return the descriptor to DMA ownership */
2806 wmb();
2807 p_used_rx_desc->cmd_sts =
2808 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2809 wmb();
2810
2811 /* Move the used descriptor pointer to the next descriptor */
2812 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2813
2814 /* Any Rx return cancels the Rx resource error status */
2815 mp->rx_resource_err = 0;
2816
2817 return ETH_OK;
2818 }
2819
2820 /************* Begin ethtool support *************************/
2821
2822 struct mv643xx_stats {
2823 char stat_string[ETH_GSTRING_LEN];
2824 int sizeof_stat;
2825 int stat_offset;
2826 };
2827
2828 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2829 offsetof(struct mv643xx_private, m)
2830
2831 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2832 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2833 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2834 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2835 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2836 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2837 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2838 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2839 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2840 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2841 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2842 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2843 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2844 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2845 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2846 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2847 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2848 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2849 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2850 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2851 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2852 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2853 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2854 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2855 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2856 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2857 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2858 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2859 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2860 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2861 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2862 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2863 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2864 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2865 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2866 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2867 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2868 { "collision", MV643XX_STAT(mib_counters.collision) },
2869 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2870 };
2871
2872 #define MV643XX_STATS_LEN \
2873 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2874
2875 static int
2876 mv643xx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2877 {
2878 struct mv643xx_private *mp = netdev->priv;
2879 int port_num = mp->port_num;
2880 int autoneg = eth_port_autoneg_supported(port_num);
2881 int mode_10_bit;
2882 int auto_duplex;
2883 int half_duplex = 0;
2884 int full_duplex = 0;
2885 int auto_speed;
2886 int speed_10 = 0;
2887 int speed_100 = 0;
2888 int speed_1000 = 0;
2889
2890 u32 pcs = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2891 u32 psr = mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num));
2892
2893 mode_10_bit = psr & MV643XX_ETH_PORT_STATUS_MODE_10_BIT;
2894
2895 if (mode_10_bit) {
2896 ecmd->supported = SUPPORTED_10baseT_Half;
2897 } else {
2898 ecmd->supported = (SUPPORTED_10baseT_Half |
2899 SUPPORTED_10baseT_Full |
2900 SUPPORTED_100baseT_Half |
2901 SUPPORTED_100baseT_Full |
2902 SUPPORTED_1000baseT_Full |
2903 (autoneg ? SUPPORTED_Autoneg : 0) |
2904 SUPPORTED_TP);
2905
2906 auto_duplex = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX);
2907 auto_speed = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII);
2908
2909 ecmd->advertising = ADVERTISED_TP;
2910
2911 if (autoneg) {
2912 ecmd->advertising |= ADVERTISED_Autoneg;
2913
2914 if (auto_duplex) {
2915 half_duplex = 1;
2916 full_duplex = 1;
2917 } else {
2918 if (pcs & MV643XX_ETH_SET_FULL_DUPLEX_MODE)
2919 full_duplex = 1;
2920 else
2921 half_duplex = 1;
2922 }
2923
2924 if (auto_speed) {
2925 speed_10 = 1;
2926 speed_100 = 1;
2927 speed_1000 = 1;
2928 } else {
2929 if (pcs & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
2930 speed_1000 = 1;
2931 else if (pcs & MV643XX_ETH_SET_MII_SPEED_TO_100)
2932 speed_100 = 1;
2933 else
2934 speed_10 = 1;
2935 }
2936
2937 if (speed_10 & half_duplex)
2938 ecmd->advertising |= ADVERTISED_10baseT_Half;
2939 if (speed_10 & full_duplex)
2940 ecmd->advertising |= ADVERTISED_10baseT_Full;
2941 if (speed_100 & half_duplex)
2942 ecmd->advertising |= ADVERTISED_100baseT_Half;
2943 if (speed_100 & full_duplex)
2944 ecmd->advertising |= ADVERTISED_100baseT_Full;
2945 if (speed_1000)
2946 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2947 }
2948 }
2949
2950 ecmd->port = PORT_TP;
2951 ecmd->phy_address = ethernet_phy_get(port_num);
2952
2953 ecmd->transceiver = XCVR_EXTERNAL;
2954
2955 if (netif_carrier_ok(netdev)) {
2956 if (mode_10_bit)
2957 ecmd->speed = SPEED_10;
2958 else {
2959 if (psr & MV643XX_ETH_PORT_STATUS_GMII_1000)
2960 ecmd->speed = SPEED_1000;
2961 else if (psr & MV643XX_ETH_PORT_STATUS_MII_100)
2962 ecmd->speed = SPEED_100;
2963 else
2964 ecmd->speed = SPEED_10;
2965 }
2966
2967 if (psr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX)
2968 ecmd->duplex = DUPLEX_FULL;
2969 else
2970 ecmd->duplex = DUPLEX_HALF;
2971 } else {
2972 ecmd->speed = -1;
2973 ecmd->duplex = -1;
2974 }
2975
2976 ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2977 return 0;
2978 }
2979
2980 static void
2981 mv643xx_get_drvinfo(struct net_device *netdev,
2982 struct ethtool_drvinfo *drvinfo)
2983 {
2984 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2985 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2986 strncpy(drvinfo->fw_version, "N/A", 32);
2987 strncpy(drvinfo->bus_info, "mv643xx", 32);
2988 drvinfo->n_stats = MV643XX_STATS_LEN;
2989 }
2990
2991 static int
2992 mv643xx_get_stats_count(struct net_device *netdev)
2993 {
2994 return MV643XX_STATS_LEN;
2995 }
2996
2997 static void
2998 mv643xx_get_ethtool_stats(struct net_device *netdev,
2999 struct ethtool_stats *stats, uint64_t *data)
3000 {
3001 struct mv643xx_private *mp = netdev->priv;
3002 int i;
3003
3004 eth_update_mib_counters(mp);
3005
3006 for(i = 0; i < MV643XX_STATS_LEN; i++) {
3007 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
3008 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
3009 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3010 }
3011 }
3012
3013 static void
3014 mv643xx_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
3015 {
3016 int i;
3017
3018 switch(stringset) {
3019 case ETH_SS_STATS:
3020 for (i=0; i < MV643XX_STATS_LEN; i++) {
3021 memcpy(data + i * ETH_GSTRING_LEN,
3022 mv643xx_gstrings_stats[i].stat_string,
3023 ETH_GSTRING_LEN);
3024 }
3025 break;
3026 }
3027 }
3028
3029 static struct ethtool_ops mv643xx_ethtool_ops = {
3030 .get_settings = mv643xx_get_settings,
3031 .get_drvinfo = mv643xx_get_drvinfo,
3032 .get_link = ethtool_op_get_link,
3033 .get_sg = ethtool_op_get_sg,
3034 .set_sg = ethtool_op_set_sg,
3035 .get_strings = mv643xx_get_strings,
3036 .get_stats_count = mv643xx_get_stats_count,
3037 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3038 };
3039
3040 /************* End ethtool support *************************/
This page took 0.096992 seconds and 5 git commands to generate.