Merge master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / drivers / net / mv643xx_eth.c
1 /*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2006 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/in.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/etherdevice.h>
40
41 #include <linux/bitops.h>
42 #include <linux/delay.h>
43 #include <linux/ethtool.h>
44 #include <linux/platform_device.h>
45
46 #include <asm/io.h>
47 #include <asm/types.h>
48 #include <asm/pgtable.h>
49 #include <asm/system.h>
50 #include <asm/delay.h>
51 #include "mv643xx_eth.h"
52
53 /* Static function declarations */
54 static void eth_port_uc_addr_get(struct net_device *dev,
55 unsigned char *MacAddr);
56 static void eth_port_set_multicast_list(struct net_device *);
57 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
58 unsigned int queues);
59 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
60 unsigned int queues);
61 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
62 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
63 static int mv643xx_eth_open(struct net_device *);
64 static int mv643xx_eth_stop(struct net_device *);
65 static int mv643xx_eth_change_mtu(struct net_device *, int);
66 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
67 static void eth_port_init_mac_tables(unsigned int eth_port_num);
68 #ifdef MV643XX_NAPI
69 static int mv643xx_poll(struct net_device *dev, int *budget);
70 #endif
71 static int ethernet_phy_get(unsigned int eth_port_num);
72 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
73 static int ethernet_phy_detect(unsigned int eth_port_num);
74 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
75 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
76 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
77 static const struct ethtool_ops mv643xx_ethtool_ops;
78
79 static char mv643xx_driver_name[] = "mv643xx_eth";
80 static char mv643xx_driver_version[] = "1.0";
81
82 static void __iomem *mv643xx_eth_shared_base;
83
84 /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
85 static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
86
87 static inline u32 mv_read(int offset)
88 {
89 void __iomem *reg_base;
90
91 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
92
93 return readl(reg_base + offset);
94 }
95
96 static inline void mv_write(int offset, u32 data)
97 {
98 void __iomem *reg_base;
99
100 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
101 writel(data, reg_base + offset);
102 }
103
104 /*
105 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
106 *
107 * Input : pointer to ethernet interface network device structure
108 * new mtu size
109 * Output : 0 upon success, -EINVAL upon failure
110 */
111 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
112 {
113 if ((new_mtu > 9500) || (new_mtu < 64))
114 return -EINVAL;
115
116 dev->mtu = new_mtu;
117 /*
118 * Stop then re-open the interface. This will allocate RX skb's with
119 * the new MTU.
120 * There is a possible danger that the open will not successed, due
121 * to memory is full, which might fail the open function.
122 */
123 if (netif_running(dev)) {
124 mv643xx_eth_stop(dev);
125 if (mv643xx_eth_open(dev))
126 printk(KERN_ERR
127 "%s: Fatal error on opening device\n",
128 dev->name);
129 }
130
131 return 0;
132 }
133
134 /*
135 * mv643xx_eth_rx_refill_descs
136 *
137 * Fills / refills RX queue on a certain gigabit ethernet port
138 *
139 * Input : pointer to ethernet interface network device structure
140 * Output : N/A
141 */
142 static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
143 {
144 struct mv643xx_private *mp = netdev_priv(dev);
145 struct pkt_info pkt_info;
146 struct sk_buff *skb;
147 int unaligned;
148
149 while (mp->rx_desc_count < mp->rx_ring_size) {
150 skb = dev_alloc_skb(ETH_RX_SKB_SIZE + dma_get_cache_alignment());
151 if (!skb)
152 break;
153 mp->rx_desc_count++;
154 unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1);
155 if (unaligned)
156 skb_reserve(skb, dma_get_cache_alignment() - unaligned);
157 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
158 pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
159 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
160 ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
161 pkt_info.return_info = skb;
162 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
163 printk(KERN_ERR
164 "%s: Error allocating RX Ring\n", dev->name);
165 break;
166 }
167 skb_reserve(skb, ETH_HW_IP_ALIGN);
168 }
169 /*
170 * If RX ring is empty of SKB, set a timer to try allocating
171 * again at a later time.
172 */
173 if (mp->rx_desc_count == 0) {
174 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
175 mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
176 add_timer(&mp->timeout);
177 }
178 }
179
180 /*
181 * mv643xx_eth_rx_refill_descs_timer_wrapper
182 *
183 * Timer routine to wake up RX queue filling task. This function is
184 * used only in case the RX queue is empty, and all alloc_skb has
185 * failed (due to out of memory event).
186 *
187 * Input : pointer to ethernet interface network device structure
188 * Output : N/A
189 */
190 static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
191 {
192 mv643xx_eth_rx_refill_descs((struct net_device *)data);
193 }
194
195 /*
196 * mv643xx_eth_update_mac_address
197 *
198 * Update the MAC address of the port in the address table
199 *
200 * Input : pointer to ethernet interface network device structure
201 * Output : N/A
202 */
203 static void mv643xx_eth_update_mac_address(struct net_device *dev)
204 {
205 struct mv643xx_private *mp = netdev_priv(dev);
206 unsigned int port_num = mp->port_num;
207
208 eth_port_init_mac_tables(port_num);
209 eth_port_uc_addr_set(port_num, dev->dev_addr);
210 }
211
212 /*
213 * mv643xx_eth_set_rx_mode
214 *
215 * Change from promiscuos to regular rx mode
216 *
217 * Input : pointer to ethernet interface network device structure
218 * Output : N/A
219 */
220 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
221 {
222 struct mv643xx_private *mp = netdev_priv(dev);
223 u32 config_reg;
224
225 config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num));
226 if (dev->flags & IFF_PROMISC)
227 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
228 else
229 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
230 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), config_reg);
231
232 eth_port_set_multicast_list(dev);
233 }
234
235 /*
236 * mv643xx_eth_set_mac_address
237 *
238 * Change the interface's mac address.
239 * No special hardware thing should be done because interface is always
240 * put in promiscuous mode.
241 *
242 * Input : pointer to ethernet interface network device structure and
243 * a pointer to the designated entry to be added to the cache.
244 * Output : zero upon success, negative upon failure
245 */
246 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
247 {
248 int i;
249
250 for (i = 0; i < 6; i++)
251 /* +2 is for the offset of the HW addr type */
252 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
253 mv643xx_eth_update_mac_address(dev);
254 return 0;
255 }
256
257 /*
258 * mv643xx_eth_tx_timeout
259 *
260 * Called upon a timeout on transmitting a packet
261 *
262 * Input : pointer to ethernet interface network device structure.
263 * Output : N/A
264 */
265 static void mv643xx_eth_tx_timeout(struct net_device *dev)
266 {
267 struct mv643xx_private *mp = netdev_priv(dev);
268
269 printk(KERN_INFO "%s: TX timeout ", dev->name);
270
271 /* Do the reset outside of interrupt context */
272 schedule_work(&mp->tx_timeout_task);
273 }
274
275 /*
276 * mv643xx_eth_tx_timeout_task
277 *
278 * Actual routine to reset the adapter when a timeout on Tx has occurred
279 */
280 static void mv643xx_eth_tx_timeout_task(struct work_struct *ugly)
281 {
282 struct mv643xx_private *mp = container_of(ugly, struct mv643xx_private,
283 tx_timeout_task);
284 struct net_device *dev = mp->mii.dev; /* yuck */
285
286 if (!netif_running(dev))
287 return;
288
289 netif_stop_queue(dev);
290
291 eth_port_reset(mp->port_num);
292 eth_port_start(dev);
293
294 if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
295 netif_wake_queue(dev);
296 }
297
298 /**
299 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
300 *
301 * If force is non-zero, frees uncompleted descriptors as well
302 */
303 int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
304 {
305 struct mv643xx_private *mp = netdev_priv(dev);
306 struct eth_tx_desc *desc;
307 u32 cmd_sts;
308 struct sk_buff *skb;
309 unsigned long flags;
310 int tx_index;
311 dma_addr_t addr;
312 int count;
313 int released = 0;
314
315 while (mp->tx_desc_count > 0) {
316 spin_lock_irqsave(&mp->lock, flags);
317
318 /* tx_desc_count might have changed before acquiring the lock */
319 if (mp->tx_desc_count <= 0) {
320 spin_unlock_irqrestore(&mp->lock, flags);
321 return released;
322 }
323
324 tx_index = mp->tx_used_desc_q;
325 desc = &mp->p_tx_desc_area[tx_index];
326 cmd_sts = desc->cmd_sts;
327
328 if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
329 spin_unlock_irqrestore(&mp->lock, flags);
330 return released;
331 }
332
333 mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
334 mp->tx_desc_count--;
335
336 addr = desc->buf_ptr;
337 count = desc->byte_cnt;
338 skb = mp->tx_skb[tx_index];
339 if (skb)
340 mp->tx_skb[tx_index] = NULL;
341
342 if (cmd_sts & ETH_ERROR_SUMMARY) {
343 printk("%s: Error in TX\n", dev->name);
344 mp->stats.tx_errors++;
345 }
346
347 spin_unlock_irqrestore(&mp->lock, flags);
348
349 if (cmd_sts & ETH_TX_FIRST_DESC)
350 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
351 else
352 dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
353
354 if (skb)
355 dev_kfree_skb_irq(skb);
356
357 released = 1;
358 }
359
360 return released;
361 }
362
363 static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
364 {
365 struct mv643xx_private *mp = netdev_priv(dev);
366
367 if (mv643xx_eth_free_tx_descs(dev, 0) &&
368 mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
369 netif_wake_queue(dev);
370 }
371
372 static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
373 {
374 mv643xx_eth_free_tx_descs(dev, 1);
375 }
376
377 /*
378 * mv643xx_eth_receive
379 *
380 * This function is forward packets that are received from the port's
381 * queues toward kernel core or FastRoute them to another interface.
382 *
383 * Input : dev - a pointer to the required interface
384 * max - maximum number to receive (0 means unlimted)
385 *
386 * Output : number of served packets
387 */
388 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
389 {
390 struct mv643xx_private *mp = netdev_priv(dev);
391 struct net_device_stats *stats = &mp->stats;
392 unsigned int received_packets = 0;
393 struct sk_buff *skb;
394 struct pkt_info pkt_info;
395
396 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
397 dma_unmap_single(NULL, pkt_info.buf_ptr, ETH_RX_SKB_SIZE,
398 DMA_FROM_DEVICE);
399 mp->rx_desc_count--;
400 received_packets++;
401
402 /*
403 * Update statistics.
404 * Note byte count includes 4 byte CRC count
405 */
406 stats->rx_packets++;
407 stats->rx_bytes += pkt_info.byte_cnt;
408 skb = pkt_info.return_info;
409 /*
410 * In case received a packet without first / last bits on OR
411 * the error summary bit is on, the packets needs to be dropeed.
412 */
413 if (((pkt_info.cmd_sts
414 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
415 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
416 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
417 stats->rx_dropped++;
418 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
419 ETH_RX_LAST_DESC)) !=
420 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
421 if (net_ratelimit())
422 printk(KERN_ERR
423 "%s: Received packet spread "
424 "on multiple descriptors\n",
425 dev->name);
426 }
427 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
428 stats->rx_errors++;
429
430 dev_kfree_skb_irq(skb);
431 } else {
432 /*
433 * The -4 is for the CRC in the trailer of the
434 * received packet
435 */
436 skb_put(skb, pkt_info.byte_cnt - 4);
437 skb->dev = dev;
438
439 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
440 skb->ip_summed = CHECKSUM_UNNECESSARY;
441 skb->csum = htons(
442 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
443 }
444 skb->protocol = eth_type_trans(skb, dev);
445 #ifdef MV643XX_NAPI
446 netif_receive_skb(skb);
447 #else
448 netif_rx(skb);
449 #endif
450 }
451 dev->last_rx = jiffies;
452 }
453 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
454
455 return received_packets;
456 }
457
458 /* Set the mv643xx port configuration register for the speed/duplex mode. */
459 static void mv643xx_eth_update_pscr(struct net_device *dev,
460 struct ethtool_cmd *ecmd)
461 {
462 struct mv643xx_private *mp = netdev_priv(dev);
463 int port_num = mp->port_num;
464 u32 o_pscr, n_pscr;
465 unsigned int queues;
466
467 o_pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
468 n_pscr = o_pscr;
469
470 /* clear speed, duplex and rx buffer size fields */
471 n_pscr &= ~(MV643XX_ETH_SET_MII_SPEED_TO_100 |
472 MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
473 MV643XX_ETH_SET_FULL_DUPLEX_MODE |
474 MV643XX_ETH_MAX_RX_PACKET_MASK);
475
476 if (ecmd->duplex == DUPLEX_FULL)
477 n_pscr |= MV643XX_ETH_SET_FULL_DUPLEX_MODE;
478
479 if (ecmd->speed == SPEED_1000)
480 n_pscr |= MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
481 MV643XX_ETH_MAX_RX_PACKET_9700BYTE;
482 else {
483 if (ecmd->speed == SPEED_100)
484 n_pscr |= MV643XX_ETH_SET_MII_SPEED_TO_100;
485 n_pscr |= MV643XX_ETH_MAX_RX_PACKET_1522BYTE;
486 }
487
488 if (n_pscr != o_pscr) {
489 if ((o_pscr & MV643XX_ETH_SERIAL_PORT_ENABLE) == 0)
490 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
491 n_pscr);
492 else {
493 queues = mv643xx_eth_port_disable_tx(port_num);
494
495 o_pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
496 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
497 o_pscr);
498 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
499 n_pscr);
500 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
501 n_pscr);
502 if (queues)
503 mv643xx_eth_port_enable_tx(port_num, queues);
504 }
505 }
506 }
507
508 /*
509 * mv643xx_eth_int_handler
510 *
511 * Main interrupt handler for the gigbit ethernet ports
512 *
513 * Input : irq - irq number (not used)
514 * dev_id - a pointer to the required interface's data structure
515 * regs - not used
516 * Output : N/A
517 */
518
519 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id)
520 {
521 struct net_device *dev = (struct net_device *)dev_id;
522 struct mv643xx_private *mp = netdev_priv(dev);
523 u32 eth_int_cause, eth_int_cause_ext = 0;
524 unsigned int port_num = mp->port_num;
525
526 /* Read interrupt cause registers */
527 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
528 ETH_INT_UNMASK_ALL;
529 if (eth_int_cause & ETH_INT_CAUSE_EXT) {
530 eth_int_cause_ext = mv_read(
531 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
532 ETH_INT_UNMASK_ALL_EXT;
533 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num),
534 ~eth_int_cause_ext);
535 }
536
537 /* PHY status changed */
538 if (eth_int_cause_ext & ETH_INT_CAUSE_PHY) {
539 struct ethtool_cmd cmd;
540
541 if (mii_link_ok(&mp->mii)) {
542 mii_ethtool_gset(&mp->mii, &cmd);
543 mv643xx_eth_update_pscr(dev, &cmd);
544 mv643xx_eth_port_enable_tx(port_num,
545 ETH_TX_QUEUES_ENABLED);
546 if (!netif_carrier_ok(dev)) {
547 netif_carrier_on(dev);
548 if (mp->tx_ring_size - mp->tx_desc_count >=
549 MAX_DESCS_PER_SKB)
550 netif_wake_queue(dev);
551 }
552 } else if (netif_carrier_ok(dev)) {
553 netif_stop_queue(dev);
554 netif_carrier_off(dev);
555 }
556 }
557
558 #ifdef MV643XX_NAPI
559 if (eth_int_cause & ETH_INT_CAUSE_RX) {
560 /* schedule the NAPI poll routine to maintain port */
561 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
562 ETH_INT_MASK_ALL);
563 /* wait for previous write to complete */
564 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
565
566 netif_rx_schedule(dev);
567 }
568 #else
569 if (eth_int_cause & ETH_INT_CAUSE_RX)
570 mv643xx_eth_receive_queue(dev, INT_MAX);
571 #endif
572 if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
573 mv643xx_eth_free_completed_tx_descs(dev);
574
575 /*
576 * If no real interrupt occured, exit.
577 * This can happen when using gigE interrupt coalescing mechanism.
578 */
579 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
580 return IRQ_NONE;
581
582 return IRQ_HANDLED;
583 }
584
585 #ifdef MV643XX_COAL
586
587 /*
588 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
589 *
590 * DESCRIPTION:
591 * This routine sets the RX coalescing interrupt mechanism parameter.
592 * This parameter is a timeout counter, that counts in 64 t_clk
593 * chunks ; that when timeout event occurs a maskable interrupt
594 * occurs.
595 * The parameter is calculated using the tClk of the MV-643xx chip
596 * , and the required delay of the interrupt in usec.
597 *
598 * INPUT:
599 * unsigned int eth_port_num Ethernet port number
600 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
601 * unsigned int delay Delay in usec
602 *
603 * OUTPUT:
604 * Interrupt coalescing mechanism value is set in MV-643xx chip.
605 *
606 * RETURN:
607 * The interrupt coalescing value set in the gigE port.
608 *
609 */
610 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
611 unsigned int t_clk, unsigned int delay)
612 {
613 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
614
615 /* Set RX Coalescing mechanism */
616 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
617 ((coal & 0x3fff) << 8) |
618 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
619 & 0xffc000ff));
620
621 return coal;
622 }
623 #endif
624
625 /*
626 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
627 *
628 * DESCRIPTION:
629 * This routine sets the TX coalescing interrupt mechanism parameter.
630 * This parameter is a timeout counter, that counts in 64 t_clk
631 * chunks ; that when timeout event occurs a maskable interrupt
632 * occurs.
633 * The parameter is calculated using the t_cLK frequency of the
634 * MV-643xx chip and the required delay in the interrupt in uSec
635 *
636 * INPUT:
637 * unsigned int eth_port_num Ethernet port number
638 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
639 * unsigned int delay Delay in uSeconds
640 *
641 * OUTPUT:
642 * Interrupt coalescing mechanism value is set in MV-643xx chip.
643 *
644 * RETURN:
645 * The interrupt coalescing value set in the gigE port.
646 *
647 */
648 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
649 unsigned int t_clk, unsigned int delay)
650 {
651 unsigned int coal;
652 coal = ((t_clk / 1000000) * delay) / 64;
653 /* Set TX Coalescing mechanism */
654 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
655 coal << 4);
656 return coal;
657 }
658
659 /*
660 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
661 *
662 * DESCRIPTION:
663 * This function prepares a Rx chained list of descriptors and packet
664 * buffers in a form of a ring. The routine must be called after port
665 * initialization routine and before port start routine.
666 * The Ethernet SDMA engine uses CPU bus addresses to access the various
667 * devices in the system (i.e. DRAM). This function uses the ethernet
668 * struct 'virtual to physical' routine (set by the user) to set the ring
669 * with physical addresses.
670 *
671 * INPUT:
672 * struct mv643xx_private *mp Ethernet Port Control srtuct.
673 *
674 * OUTPUT:
675 * The routine updates the Ethernet port control struct with information
676 * regarding the Rx descriptors and buffers.
677 *
678 * RETURN:
679 * None.
680 */
681 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
682 {
683 volatile struct eth_rx_desc *p_rx_desc;
684 int rx_desc_num = mp->rx_ring_size;
685 int i;
686
687 /* initialize the next_desc_ptr links in the Rx descriptors ring */
688 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
689 for (i = 0; i < rx_desc_num; i++) {
690 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
691 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
692 }
693
694 /* Save Rx desc pointer to driver struct. */
695 mp->rx_curr_desc_q = 0;
696 mp->rx_used_desc_q = 0;
697
698 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
699 }
700
701 /*
702 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
703 *
704 * DESCRIPTION:
705 * This function prepares a Tx chained list of descriptors and packet
706 * buffers in a form of a ring. The routine must be called after port
707 * initialization routine and before port start routine.
708 * The Ethernet SDMA engine uses CPU bus addresses to access the various
709 * devices in the system (i.e. DRAM). This function uses the ethernet
710 * struct 'virtual to physical' routine (set by the user) to set the ring
711 * with physical addresses.
712 *
713 * INPUT:
714 * struct mv643xx_private *mp Ethernet Port Control srtuct.
715 *
716 * OUTPUT:
717 * The routine updates the Ethernet port control struct with information
718 * regarding the Tx descriptors and buffers.
719 *
720 * RETURN:
721 * None.
722 */
723 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
724 {
725 int tx_desc_num = mp->tx_ring_size;
726 struct eth_tx_desc *p_tx_desc;
727 int i;
728
729 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
730 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
731 for (i = 0; i < tx_desc_num; i++) {
732 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
733 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
734 }
735
736 mp->tx_curr_desc_q = 0;
737 mp->tx_used_desc_q = 0;
738
739 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
740 }
741
742 static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
743 {
744 struct mv643xx_private *mp = netdev_priv(dev);
745 int err;
746
747 spin_lock_irq(&mp->lock);
748 err = mii_ethtool_sset(&mp->mii, cmd);
749 spin_unlock_irq(&mp->lock);
750
751 return err;
752 }
753
754 static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
755 {
756 struct mv643xx_private *mp = netdev_priv(dev);
757 int err;
758
759 spin_lock_irq(&mp->lock);
760 err = mii_ethtool_gset(&mp->mii, cmd);
761 spin_unlock_irq(&mp->lock);
762
763 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
764 cmd->supported &= ~SUPPORTED_1000baseT_Half;
765 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
766
767 return err;
768 }
769
770 /*
771 * mv643xx_eth_open
772 *
773 * This function is called when openning the network device. The function
774 * should initialize all the hardware, initialize cyclic Rx/Tx
775 * descriptors chain and buffers and allocate an IRQ to the network
776 * device.
777 *
778 * Input : a pointer to the network device structure
779 *
780 * Output : zero of success , nonzero if fails.
781 */
782
783 static int mv643xx_eth_open(struct net_device *dev)
784 {
785 struct mv643xx_private *mp = netdev_priv(dev);
786 unsigned int port_num = mp->port_num;
787 unsigned int size;
788 int err;
789
790 /* Clear any pending ethernet port interrupts */
791 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
792 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
793 /* wait for previous write to complete */
794 mv_read (MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num));
795
796 err = request_irq(dev->irq, mv643xx_eth_int_handler,
797 IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
798 if (err) {
799 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
800 port_num);
801 return -EAGAIN;
802 }
803
804 eth_port_init(mp);
805
806 memset(&mp->timeout, 0, sizeof(struct timer_list));
807 mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
808 mp->timeout.data = (unsigned long)dev;
809
810 /* Allocate RX and TX skb rings */
811 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
812 GFP_KERNEL);
813 if (!mp->rx_skb) {
814 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
815 err = -ENOMEM;
816 goto out_free_irq;
817 }
818 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
819 GFP_KERNEL);
820 if (!mp->tx_skb) {
821 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
822 err = -ENOMEM;
823 goto out_free_rx_skb;
824 }
825
826 /* Allocate TX ring */
827 mp->tx_desc_count = 0;
828 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
829 mp->tx_desc_area_size = size;
830
831 if (mp->tx_sram_size) {
832 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
833 mp->tx_sram_size);
834 mp->tx_desc_dma = mp->tx_sram_addr;
835 } else
836 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
837 &mp->tx_desc_dma,
838 GFP_KERNEL);
839
840 if (!mp->p_tx_desc_area) {
841 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
842 dev->name, size);
843 err = -ENOMEM;
844 goto out_free_tx_skb;
845 }
846 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
847 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
848
849 ether_init_tx_desc_ring(mp);
850
851 /* Allocate RX ring */
852 mp->rx_desc_count = 0;
853 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
854 mp->rx_desc_area_size = size;
855
856 if (mp->rx_sram_size) {
857 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
858 mp->rx_sram_size);
859 mp->rx_desc_dma = mp->rx_sram_addr;
860 } else
861 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
862 &mp->rx_desc_dma,
863 GFP_KERNEL);
864
865 if (!mp->p_rx_desc_area) {
866 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
867 dev->name, size);
868 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
869 dev->name);
870 if (mp->rx_sram_size)
871 iounmap(mp->p_tx_desc_area);
872 else
873 dma_free_coherent(NULL, mp->tx_desc_area_size,
874 mp->p_tx_desc_area, mp->tx_desc_dma);
875 err = -ENOMEM;
876 goto out_free_tx_skb;
877 }
878 memset((void *)mp->p_rx_desc_area, 0, size);
879
880 ether_init_rx_desc_ring(mp);
881
882 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
883
884 eth_port_start(dev);
885
886 /* Interrupt Coalescing */
887
888 #ifdef MV643XX_COAL
889 mp->rx_int_coal =
890 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
891 #endif
892
893 mp->tx_int_coal =
894 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
895
896 /* Unmask phy and link status changes interrupts */
897 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
898 ETH_INT_UNMASK_ALL_EXT);
899
900 /* Unmask RX buffer and TX end interrupt */
901 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
902
903 return 0;
904
905 out_free_tx_skb:
906 kfree(mp->tx_skb);
907 out_free_rx_skb:
908 kfree(mp->rx_skb);
909 out_free_irq:
910 free_irq(dev->irq, dev);
911
912 return err;
913 }
914
915 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
916 {
917 struct mv643xx_private *mp = netdev_priv(dev);
918
919 /* Stop Tx Queues */
920 mv643xx_eth_port_disable_tx(mp->port_num);
921
922 /* Free outstanding skb's on TX ring */
923 mv643xx_eth_free_all_tx_descs(dev);
924
925 BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
926
927 /* Free TX ring */
928 if (mp->tx_sram_size)
929 iounmap(mp->p_tx_desc_area);
930 else
931 dma_free_coherent(NULL, mp->tx_desc_area_size,
932 mp->p_tx_desc_area, mp->tx_desc_dma);
933 }
934
935 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
936 {
937 struct mv643xx_private *mp = netdev_priv(dev);
938 unsigned int port_num = mp->port_num;
939 int curr;
940
941 /* Stop RX Queues */
942 mv643xx_eth_port_disable_rx(port_num);
943
944 /* Free preallocated skb's on RX rings */
945 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
946 if (mp->rx_skb[curr]) {
947 dev_kfree_skb(mp->rx_skb[curr]);
948 mp->rx_desc_count--;
949 }
950 }
951
952 if (mp->rx_desc_count)
953 printk(KERN_ERR
954 "%s: Error in freeing Rx Ring. %d skb's still"
955 " stuck in RX Ring - ignoring them\n", dev->name,
956 mp->rx_desc_count);
957 /* Free RX ring */
958 if (mp->rx_sram_size)
959 iounmap(mp->p_rx_desc_area);
960 else
961 dma_free_coherent(NULL, mp->rx_desc_area_size,
962 mp->p_rx_desc_area, mp->rx_desc_dma);
963 }
964
965 /*
966 * mv643xx_eth_stop
967 *
968 * This function is used when closing the network device.
969 * It updates the hardware,
970 * release all memory that holds buffers and descriptors and release the IRQ.
971 * Input : a pointer to the device structure
972 * Output : zero if success , nonzero if fails
973 */
974
975 static int mv643xx_eth_stop(struct net_device *dev)
976 {
977 struct mv643xx_private *mp = netdev_priv(dev);
978 unsigned int port_num = mp->port_num;
979
980 /* Mask all interrupts on ethernet port */
981 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
982 /* wait for previous write to complete */
983 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
984
985 #ifdef MV643XX_NAPI
986 netif_poll_disable(dev);
987 #endif
988 netif_carrier_off(dev);
989 netif_stop_queue(dev);
990
991 eth_port_reset(mp->port_num);
992
993 mv643xx_eth_free_tx_rings(dev);
994 mv643xx_eth_free_rx_rings(dev);
995
996 #ifdef MV643XX_NAPI
997 netif_poll_enable(dev);
998 #endif
999
1000 free_irq(dev->irq, dev);
1001
1002 return 0;
1003 }
1004
1005 #ifdef MV643XX_NAPI
1006 /*
1007 * mv643xx_poll
1008 *
1009 * This function is used in case of NAPI
1010 */
1011 static int mv643xx_poll(struct net_device *dev, int *budget)
1012 {
1013 struct mv643xx_private *mp = netdev_priv(dev);
1014 int done = 1, orig_budget, work_done;
1015 unsigned int port_num = mp->port_num;
1016
1017 #ifdef MV643XX_TX_FAST_REFILL
1018 if (++mp->tx_clean_threshold > 5) {
1019 mv643xx_eth_free_completed_tx_descs(dev);
1020 mp->tx_clean_threshold = 0;
1021 }
1022 #endif
1023
1024 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1025 != (u32) mp->rx_used_desc_q) {
1026 orig_budget = *budget;
1027 if (orig_budget > dev->quota)
1028 orig_budget = dev->quota;
1029 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1030 *budget -= work_done;
1031 dev->quota -= work_done;
1032 if (work_done >= orig_budget)
1033 done = 0;
1034 }
1035
1036 if (done) {
1037 netif_rx_complete(dev);
1038 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1039 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1040 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1041 ETH_INT_UNMASK_ALL);
1042 }
1043
1044 return done ? 0 : 1;
1045 }
1046 #endif
1047
1048 /**
1049 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1050 *
1051 * Hardware can't handle unaligned fragments smaller than 9 bytes.
1052 * This helper function detects that case.
1053 */
1054
1055 static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1056 {
1057 unsigned int frag;
1058 skb_frag_t *fragp;
1059
1060 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1061 fragp = &skb_shinfo(skb)->frags[frag];
1062 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1063 return 1;
1064 }
1065 return 0;
1066 }
1067
1068 /**
1069 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1070 */
1071 static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1072 {
1073 int tx_desc_curr;
1074
1075 BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
1076
1077 tx_desc_curr = mp->tx_curr_desc_q;
1078 mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1079
1080 BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1081
1082 return tx_desc_curr;
1083 }
1084
1085 /**
1086 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1087 *
1088 * Ensure the data for each fragment to be transmitted is mapped properly,
1089 * then fill in descriptors in the tx hw queue.
1090 */
1091 static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1092 struct sk_buff *skb)
1093 {
1094 int frag;
1095 int tx_index;
1096 struct eth_tx_desc *desc;
1097
1098 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1099 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1100
1101 tx_index = eth_alloc_tx_desc_index(mp);
1102 desc = &mp->p_tx_desc_area[tx_index];
1103
1104 desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1105 /* Last Frag enables interrupt and frees the skb */
1106 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1107 desc->cmd_sts |= ETH_ZERO_PADDING |
1108 ETH_TX_LAST_DESC |
1109 ETH_TX_ENABLE_INTERRUPT;
1110 mp->tx_skb[tx_index] = skb;
1111 } else
1112 mp->tx_skb[tx_index] = NULL;
1113
1114 desc = &mp->p_tx_desc_area[tx_index];
1115 desc->l4i_chk = 0;
1116 desc->byte_cnt = this_frag->size;
1117 desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1118 this_frag->page_offset,
1119 this_frag->size,
1120 DMA_TO_DEVICE);
1121 }
1122 }
1123
1124 /**
1125 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1126 *
1127 * Ensure the data for an skb to be transmitted is mapped properly,
1128 * then fill in descriptors in the tx hw queue and start the hardware.
1129 */
1130 static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1131 struct sk_buff *skb)
1132 {
1133 int tx_index;
1134 struct eth_tx_desc *desc;
1135 u32 cmd_sts;
1136 int length;
1137 int nr_frags = skb_shinfo(skb)->nr_frags;
1138
1139 cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1140
1141 tx_index = eth_alloc_tx_desc_index(mp);
1142 desc = &mp->p_tx_desc_area[tx_index];
1143
1144 if (nr_frags) {
1145 eth_tx_fill_frag_descs(mp, skb);
1146
1147 length = skb_headlen(skb);
1148 mp->tx_skb[tx_index] = NULL;
1149 } else {
1150 cmd_sts |= ETH_ZERO_PADDING |
1151 ETH_TX_LAST_DESC |
1152 ETH_TX_ENABLE_INTERRUPT;
1153 length = skb->len;
1154 mp->tx_skb[tx_index] = skb;
1155 }
1156
1157 desc->byte_cnt = length;
1158 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1159
1160 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1161 BUG_ON(skb->protocol != ETH_P_IP);
1162
1163 cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1164 ETH_GEN_IP_V_4_CHECKSUM |
1165 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1166
1167 switch (skb->nh.iph->protocol) {
1168 case IPPROTO_UDP:
1169 cmd_sts |= ETH_UDP_FRAME;
1170 desc->l4i_chk = skb->h.uh->check;
1171 break;
1172 case IPPROTO_TCP:
1173 desc->l4i_chk = skb->h.th->check;
1174 break;
1175 default:
1176 BUG();
1177 }
1178 } else {
1179 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1180 cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1181 desc->l4i_chk = 0;
1182 }
1183
1184 /* ensure all other descriptors are written before first cmd_sts */
1185 wmb();
1186 desc->cmd_sts = cmd_sts;
1187
1188 /* ensure all descriptors are written before poking hardware */
1189 wmb();
1190 mv643xx_eth_port_enable_tx(mp->port_num, ETH_TX_QUEUES_ENABLED);
1191
1192 mp->tx_desc_count += nr_frags + 1;
1193 }
1194
1195 /**
1196 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1197 *
1198 */
1199 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1200 {
1201 struct mv643xx_private *mp = netdev_priv(dev);
1202 struct net_device_stats *stats = &mp->stats;
1203 unsigned long flags;
1204
1205 BUG_ON(netif_queue_stopped(dev));
1206 BUG_ON(skb == NULL);
1207
1208 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
1209 printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
1210 netif_stop_queue(dev);
1211 return 1;
1212 }
1213
1214 if (has_tiny_unaligned_frags(skb)) {
1215 if (__skb_linearize(skb)) {
1216 stats->tx_dropped++;
1217 printk(KERN_DEBUG "%s: failed to linearize tiny "
1218 "unaligned fragment\n", dev->name);
1219 return 1;
1220 }
1221 }
1222
1223 spin_lock_irqsave(&mp->lock, flags);
1224
1225 eth_tx_submit_descs_for_skb(mp, skb);
1226 stats->tx_bytes = skb->len;
1227 stats->tx_packets++;
1228 dev->trans_start = jiffies;
1229
1230 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1231 netif_stop_queue(dev);
1232
1233 spin_unlock_irqrestore(&mp->lock, flags);
1234
1235 return 0; /* success */
1236 }
1237
1238 /*
1239 * mv643xx_eth_get_stats
1240 *
1241 * Returns a pointer to the interface statistics.
1242 *
1243 * Input : dev - a pointer to the required interface
1244 *
1245 * Output : a pointer to the interface's statistics
1246 */
1247
1248 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1249 {
1250 struct mv643xx_private *mp = netdev_priv(dev);
1251
1252 return &mp->stats;
1253 }
1254
1255 #ifdef CONFIG_NET_POLL_CONTROLLER
1256 static void mv643xx_netpoll(struct net_device *netdev)
1257 {
1258 struct mv643xx_private *mp = netdev_priv(netdev);
1259 int port_num = mp->port_num;
1260
1261 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1262 /* wait for previous write to complete */
1263 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1264
1265 mv643xx_eth_int_handler(netdev->irq, netdev);
1266
1267 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1268 }
1269 #endif
1270
1271 static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1272 int speed, int duplex,
1273 struct ethtool_cmd *cmd)
1274 {
1275 struct mv643xx_private *mp = netdev_priv(dev);
1276
1277 memset(cmd, 0, sizeof(*cmd));
1278
1279 cmd->port = PORT_MII;
1280 cmd->transceiver = XCVR_INTERNAL;
1281 cmd->phy_address = phy_address;
1282
1283 if (speed == 0) {
1284 cmd->autoneg = AUTONEG_ENABLE;
1285 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1286 cmd->speed = SPEED_100;
1287 cmd->advertising = ADVERTISED_10baseT_Half |
1288 ADVERTISED_10baseT_Full |
1289 ADVERTISED_100baseT_Half |
1290 ADVERTISED_100baseT_Full;
1291 if (mp->mii.supports_gmii)
1292 cmd->advertising |= ADVERTISED_1000baseT_Full;
1293 } else {
1294 cmd->autoneg = AUTONEG_DISABLE;
1295 cmd->speed = speed;
1296 cmd->duplex = duplex;
1297 }
1298 }
1299
1300 /*/
1301 * mv643xx_eth_probe
1302 *
1303 * First function called after registering the network device.
1304 * It's purpose is to initialize the device as an ethernet device,
1305 * fill the ethernet device structure with pointers * to functions,
1306 * and set the MAC address of the interface
1307 *
1308 * Input : struct device *
1309 * Output : -ENOMEM if failed , 0 if success
1310 */
1311 static int mv643xx_eth_probe(struct platform_device *pdev)
1312 {
1313 struct mv643xx_eth_platform_data *pd;
1314 int port_num;
1315 struct mv643xx_private *mp;
1316 struct net_device *dev;
1317 u8 *p;
1318 struct resource *res;
1319 int err;
1320 struct ethtool_cmd cmd;
1321 int duplex = DUPLEX_HALF;
1322 int speed = 0; /* default to auto-negotiation */
1323
1324 pd = pdev->dev.platform_data;
1325 if (pd == NULL) {
1326 printk(KERN_ERR "No mv643xx_eth_platform_data\n");
1327 return -ENODEV;
1328 }
1329
1330 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1331 if (!dev)
1332 return -ENOMEM;
1333
1334 platform_set_drvdata(pdev, dev);
1335
1336 mp = netdev_priv(dev);
1337
1338 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1339 BUG_ON(!res);
1340 dev->irq = res->start;
1341
1342 dev->open = mv643xx_eth_open;
1343 dev->stop = mv643xx_eth_stop;
1344 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1345 dev->get_stats = mv643xx_eth_get_stats;
1346 dev->set_mac_address = mv643xx_eth_set_mac_address;
1347 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1348
1349 /* No need to Tx Timeout */
1350 dev->tx_timeout = mv643xx_eth_tx_timeout;
1351 #ifdef MV643XX_NAPI
1352 dev->poll = mv643xx_poll;
1353 dev->weight = 64;
1354 #endif
1355
1356 #ifdef CONFIG_NET_POLL_CONTROLLER
1357 dev->poll_controller = mv643xx_netpoll;
1358 #endif
1359
1360 dev->watchdog_timeo = 2 * HZ;
1361 dev->tx_queue_len = mp->tx_ring_size;
1362 dev->base_addr = 0;
1363 dev->change_mtu = mv643xx_eth_change_mtu;
1364 dev->do_ioctl = mv643xx_eth_do_ioctl;
1365 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1366
1367 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1368 #ifdef MAX_SKB_FRAGS
1369 /*
1370 * Zero copy can only work if we use Discovery II memory. Else, we will
1371 * have to map the buffers to ISA memory which is only 16 MB
1372 */
1373 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1374 #endif
1375 #endif
1376
1377 /* Configure the timeout task */
1378 INIT_WORK(&mp->tx_timeout_task, mv643xx_eth_tx_timeout_task);
1379
1380 spin_lock_init(&mp->lock);
1381
1382 port_num = pd->port_number;
1383
1384 /* set default config values */
1385 eth_port_uc_addr_get(dev, dev->dev_addr);
1386 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1387 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1388
1389 if (is_valid_ether_addr(pd->mac_addr))
1390 memcpy(dev->dev_addr, pd->mac_addr, 6);
1391
1392 if (pd->phy_addr || pd->force_phy_addr)
1393 ethernet_phy_set(port_num, pd->phy_addr);
1394
1395 if (pd->rx_queue_size)
1396 mp->rx_ring_size = pd->rx_queue_size;
1397
1398 if (pd->tx_queue_size)
1399 mp->tx_ring_size = pd->tx_queue_size;
1400
1401 if (pd->tx_sram_size) {
1402 mp->tx_sram_size = pd->tx_sram_size;
1403 mp->tx_sram_addr = pd->tx_sram_addr;
1404 }
1405
1406 if (pd->rx_sram_size) {
1407 mp->rx_sram_size = pd->rx_sram_size;
1408 mp->rx_sram_addr = pd->rx_sram_addr;
1409 }
1410
1411 duplex = pd->duplex;
1412 speed = pd->speed;
1413
1414 mp->port_num = port_num;
1415
1416 /* Hook up MII support for ethtool */
1417 mp->mii.dev = dev;
1418 mp->mii.mdio_read = mv643xx_mdio_read;
1419 mp->mii.mdio_write = mv643xx_mdio_write;
1420 mp->mii.phy_id = ethernet_phy_get(port_num);
1421 mp->mii.phy_id_mask = 0x3f;
1422 mp->mii.reg_num_mask = 0x1f;
1423
1424 err = ethernet_phy_detect(port_num);
1425 if (err) {
1426 pr_debug("MV643xx ethernet port %d: "
1427 "No PHY detected at addr %d\n",
1428 port_num, ethernet_phy_get(port_num));
1429 goto out;
1430 }
1431
1432 ethernet_phy_reset(port_num);
1433 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
1434 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1435 mv643xx_eth_update_pscr(dev, &cmd);
1436 mv643xx_set_settings(dev, &cmd);
1437
1438 SET_MODULE_OWNER(dev);
1439 SET_NETDEV_DEV(dev, &pdev->dev);
1440 err = register_netdev(dev);
1441 if (err)
1442 goto out;
1443
1444 p = dev->dev_addr;
1445 printk(KERN_NOTICE
1446 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1447 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1448
1449 if (dev->features & NETIF_F_SG)
1450 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1451
1452 if (dev->features & NETIF_F_IP_CSUM)
1453 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1454 dev->name);
1455
1456 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1457 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1458 #endif
1459
1460 #ifdef MV643XX_COAL
1461 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1462 dev->name);
1463 #endif
1464
1465 #ifdef MV643XX_NAPI
1466 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1467 #endif
1468
1469 if (mp->tx_sram_size > 0)
1470 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1471
1472 return 0;
1473
1474 out:
1475 free_netdev(dev);
1476
1477 return err;
1478 }
1479
1480 static int mv643xx_eth_remove(struct platform_device *pdev)
1481 {
1482 struct net_device *dev = platform_get_drvdata(pdev);
1483
1484 unregister_netdev(dev);
1485 flush_scheduled_work();
1486
1487 free_netdev(dev);
1488 platform_set_drvdata(pdev, NULL);
1489 return 0;
1490 }
1491
1492 static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1493 {
1494 struct resource *res;
1495
1496 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1497
1498 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1499 if (res == NULL)
1500 return -ENODEV;
1501
1502 mv643xx_eth_shared_base = ioremap(res->start,
1503 MV643XX_ETH_SHARED_REGS_SIZE);
1504 if (mv643xx_eth_shared_base == NULL)
1505 return -ENOMEM;
1506
1507 return 0;
1508
1509 }
1510
1511 static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1512 {
1513 iounmap(mv643xx_eth_shared_base);
1514 mv643xx_eth_shared_base = NULL;
1515
1516 return 0;
1517 }
1518
1519 static void mv643xx_eth_shutdown(struct platform_device *pdev)
1520 {
1521 struct net_device *dev = platform_get_drvdata(pdev);
1522 struct mv643xx_private *mp = netdev_priv(dev);
1523 unsigned int port_num = mp->port_num;
1524
1525 /* Mask all interrupts on ethernet port */
1526 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
1527 mv_read (MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1528
1529 eth_port_reset(port_num);
1530 }
1531
1532 static struct platform_driver mv643xx_eth_driver = {
1533 .probe = mv643xx_eth_probe,
1534 .remove = mv643xx_eth_remove,
1535 .shutdown = mv643xx_eth_shutdown,
1536 .driver = {
1537 .name = MV643XX_ETH_NAME,
1538 },
1539 };
1540
1541 static struct platform_driver mv643xx_eth_shared_driver = {
1542 .probe = mv643xx_eth_shared_probe,
1543 .remove = mv643xx_eth_shared_remove,
1544 .driver = {
1545 .name = MV643XX_ETH_SHARED_NAME,
1546 },
1547 };
1548
1549 /*
1550 * mv643xx_init_module
1551 *
1552 * Registers the network drivers into the Linux kernel
1553 *
1554 * Input : N/A
1555 *
1556 * Output : N/A
1557 */
1558 static int __init mv643xx_init_module(void)
1559 {
1560 int rc;
1561
1562 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1563 if (!rc) {
1564 rc = platform_driver_register(&mv643xx_eth_driver);
1565 if (rc)
1566 platform_driver_unregister(&mv643xx_eth_shared_driver);
1567 }
1568 return rc;
1569 }
1570
1571 /*
1572 * mv643xx_cleanup_module
1573 *
1574 * Registers the network drivers into the Linux kernel
1575 *
1576 * Input : N/A
1577 *
1578 * Output : N/A
1579 */
1580 static void __exit mv643xx_cleanup_module(void)
1581 {
1582 platform_driver_unregister(&mv643xx_eth_driver);
1583 platform_driver_unregister(&mv643xx_eth_shared_driver);
1584 }
1585
1586 module_init(mv643xx_init_module);
1587 module_exit(mv643xx_cleanup_module);
1588
1589 MODULE_LICENSE("GPL");
1590 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1591 " and Dale Farnsworth");
1592 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1593
1594 /*
1595 * The second part is the low level driver of the gigE ethernet ports.
1596 */
1597
1598 /*
1599 * Marvell's Gigabit Ethernet controller low level driver
1600 *
1601 * DESCRIPTION:
1602 * This file introduce low level API to Marvell's Gigabit Ethernet
1603 * controller. This Gigabit Ethernet Controller driver API controls
1604 * 1) Operations (i.e. port init, start, reset etc').
1605 * 2) Data flow (i.e. port send, receive etc').
1606 * Each Gigabit Ethernet port is controlled via
1607 * struct mv643xx_private.
1608 * This struct includes user configuration information as well as
1609 * driver internal data needed for its operations.
1610 *
1611 * Supported Features:
1612 * - This low level driver is OS independent. Allocating memory for
1613 * the descriptor rings and buffers are not within the scope of
1614 * this driver.
1615 * - The user is free from Rx/Tx queue managing.
1616 * - This low level driver introduce functionality API that enable
1617 * the to operate Marvell's Gigabit Ethernet Controller in a
1618 * convenient way.
1619 * - Simple Gigabit Ethernet port operation API.
1620 * - Simple Gigabit Ethernet port data flow API.
1621 * - Data flow and operation API support per queue functionality.
1622 * - Support cached descriptors for better performance.
1623 * - Enable access to all four DRAM banks and internal SRAM memory
1624 * spaces.
1625 * - PHY access and control API.
1626 * - Port control register configuration API.
1627 * - Full control over Unicast and Multicast MAC configurations.
1628 *
1629 * Operation flow:
1630 *
1631 * Initialization phase
1632 * This phase complete the initialization of the the
1633 * mv643xx_private struct.
1634 * User information regarding port configuration has to be set
1635 * prior to calling the port initialization routine.
1636 *
1637 * In this phase any port Tx/Rx activity is halted, MIB counters
1638 * are cleared, PHY address is set according to user parameter and
1639 * access to DRAM and internal SRAM memory spaces.
1640 *
1641 * Driver ring initialization
1642 * Allocating memory for the descriptor rings and buffers is not
1643 * within the scope of this driver. Thus, the user is required to
1644 * allocate memory for the descriptors ring and buffers. Those
1645 * memory parameters are used by the Rx and Tx ring initialization
1646 * routines in order to curve the descriptor linked list in a form
1647 * of a ring.
1648 * Note: Pay special attention to alignment issues when using
1649 * cached descriptors/buffers. In this phase the driver store
1650 * information in the mv643xx_private struct regarding each queue
1651 * ring.
1652 *
1653 * Driver start
1654 * This phase prepares the Ethernet port for Rx and Tx activity.
1655 * It uses the information stored in the mv643xx_private struct to
1656 * initialize the various port registers.
1657 *
1658 * Data flow:
1659 * All packet references to/from the driver are done using
1660 * struct pkt_info.
1661 * This struct is a unified struct used with Rx and Tx operations.
1662 * This way the user is not required to be familiar with neither
1663 * Tx nor Rx descriptors structures.
1664 * The driver's descriptors rings are management by indexes.
1665 * Those indexes controls the ring resources and used to indicate
1666 * a SW resource error:
1667 * 'current'
1668 * This index points to the current available resource for use. For
1669 * example in Rx process this index will point to the descriptor
1670 * that will be passed to the user upon calling the receive
1671 * routine. In Tx process, this index will point to the descriptor
1672 * that will be assigned with the user packet info and transmitted.
1673 * 'used'
1674 * This index points to the descriptor that need to restore its
1675 * resources. For example in Rx process, using the Rx buffer return
1676 * API will attach the buffer returned in packet info to the
1677 * descriptor pointed by 'used'. In Tx process, using the Tx
1678 * descriptor return will merely return the user packet info with
1679 * the command status of the transmitted buffer pointed by the
1680 * 'used' index. Nevertheless, it is essential to use this routine
1681 * to update the 'used' index.
1682 * 'first'
1683 * This index supports Tx Scatter-Gather. It points to the first
1684 * descriptor of a packet assembled of multiple buffers. For
1685 * example when in middle of Such packet we have a Tx resource
1686 * error the 'curr' index get the value of 'first' to indicate
1687 * that the ring returned to its state before trying to transmit
1688 * this packet.
1689 *
1690 * Receive operation:
1691 * The eth_port_receive API set the packet information struct,
1692 * passed by the caller, with received information from the
1693 * 'current' SDMA descriptor.
1694 * It is the user responsibility to return this resource back
1695 * to the Rx descriptor ring to enable the reuse of this source.
1696 * Return Rx resource is done using the eth_rx_return_buff API.
1697 *
1698 * Prior to calling the initialization routine eth_port_init() the user
1699 * must set the following fields under mv643xx_private struct:
1700 * port_num User Ethernet port number.
1701 * port_config User port configuration value.
1702 * port_config_extend User port config extend value.
1703 * port_sdma_config User port SDMA config value.
1704 * port_serial_control User port serial control value.
1705 *
1706 * This driver data flow is done using the struct pkt_info which
1707 * is a unified struct for Rx and Tx operations:
1708 *
1709 * byte_cnt Tx/Rx descriptor buffer byte count.
1710 * l4i_chk CPU provided TCP Checksum. For Tx operation
1711 * only.
1712 * cmd_sts Tx/Rx descriptor command status.
1713 * buf_ptr Tx/Rx descriptor buffer pointer.
1714 * return_info Tx/Rx user resource return information.
1715 */
1716
1717 /* PHY routines */
1718 static int ethernet_phy_get(unsigned int eth_port_num);
1719 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1720
1721 /* Ethernet Port routines */
1722 static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1723
1724 /*
1725 * eth_port_init - Initialize the Ethernet port driver
1726 *
1727 * DESCRIPTION:
1728 * This function prepares the ethernet port to start its activity:
1729 * 1) Completes the ethernet port driver struct initialization toward port
1730 * start routine.
1731 * 2) Resets the device to a quiescent state in case of warm reboot.
1732 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1733 * 4) Clean MAC tables. The reset status of those tables is unknown.
1734 * 5) Set PHY address.
1735 * Note: Call this routine prior to eth_port_start routine and after
1736 * setting user values in the user fields of Ethernet port control
1737 * struct.
1738 *
1739 * INPUT:
1740 * struct mv643xx_private *mp Ethernet port control struct
1741 *
1742 * OUTPUT:
1743 * See description.
1744 *
1745 * RETURN:
1746 * None.
1747 */
1748 static void eth_port_init(struct mv643xx_private *mp)
1749 {
1750 mp->rx_resource_err = 0;
1751
1752 eth_port_reset(mp->port_num);
1753
1754 eth_port_init_mac_tables(mp->port_num);
1755 }
1756
1757 /*
1758 * eth_port_start - Start the Ethernet port activity.
1759 *
1760 * DESCRIPTION:
1761 * This routine prepares the Ethernet port for Rx and Tx activity:
1762 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1763 * has been initialized a descriptor's ring (using
1764 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1765 * 2. Initialize and enable the Ethernet configuration port by writing to
1766 * the port's configuration and command registers.
1767 * 3. Initialize and enable the SDMA by writing to the SDMA's
1768 * configuration and command registers. After completing these steps,
1769 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1770 *
1771 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1772 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1773 * and ether_init_rx_desc_ring for Rx queues).
1774 *
1775 * INPUT:
1776 * dev - a pointer to the required interface
1777 *
1778 * OUTPUT:
1779 * Ethernet port is ready to receive and transmit.
1780 *
1781 * RETURN:
1782 * None.
1783 */
1784 static void eth_port_start(struct net_device *dev)
1785 {
1786 struct mv643xx_private *mp = netdev_priv(dev);
1787 unsigned int port_num = mp->port_num;
1788 int tx_curr_desc, rx_curr_desc;
1789 u32 pscr;
1790 struct ethtool_cmd ethtool_cmd;
1791
1792 /* Assignment of Tx CTRP of given queue */
1793 tx_curr_desc = mp->tx_curr_desc_q;
1794 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1795 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1796
1797 /* Assignment of Rx CRDP of given queue */
1798 rx_curr_desc = mp->rx_curr_desc_q;
1799 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1800 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1801
1802 /* Add the assigned Ethernet address to the port's address table */
1803 eth_port_uc_addr_set(port_num, dev->dev_addr);
1804
1805 /* Assign port configuration and command. */
1806 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num),
1807 MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE);
1808
1809 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1810 MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE);
1811
1812 pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
1813
1814 pscr &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE | MV643XX_ETH_FORCE_LINK_PASS);
1815 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1816
1817 pscr |= MV643XX_ETH_DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
1818 MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII |
1819 MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX |
1820 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
1821 MV643XX_ETH_SERIAL_PORT_CONTROL_RESERVED;
1822
1823 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1824
1825 pscr |= MV643XX_ETH_SERIAL_PORT_ENABLE;
1826 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1827
1828 /* Assign port SDMA configuration */
1829 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1830 MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE);
1831
1832 /* Enable port Rx. */
1833 mv643xx_eth_port_enable_rx(port_num, ETH_RX_QUEUES_ENABLED);
1834
1835 /* Disable port bandwidth limits by clearing MTU register */
1836 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1837
1838 /* save phy settings across reset */
1839 mv643xx_get_settings(dev, &ethtool_cmd);
1840 ethernet_phy_reset(mp->port_num);
1841 mv643xx_set_settings(dev, &ethtool_cmd);
1842 }
1843
1844 /*
1845 * eth_port_uc_addr_set - This function Set the port Unicast address.
1846 *
1847 * DESCRIPTION:
1848 * This function Set the port Ethernet MAC address.
1849 *
1850 * INPUT:
1851 * unsigned int eth_port_num Port number.
1852 * char * p_addr Address to be set
1853 *
1854 * OUTPUT:
1855 * Set MAC address low and high registers. also calls
1856 * eth_port_set_filter_table_entry() to set the unicast
1857 * table with the proper information.
1858 *
1859 * RETURN:
1860 * N/A.
1861 *
1862 */
1863 static void eth_port_uc_addr_set(unsigned int eth_port_num,
1864 unsigned char *p_addr)
1865 {
1866 unsigned int mac_h;
1867 unsigned int mac_l;
1868 int table;
1869
1870 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1871 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1872 (p_addr[3] << 0);
1873
1874 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1875 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1876
1877 /* Accept frames of this address */
1878 table = MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE(eth_port_num);
1879 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1880 }
1881
1882 /*
1883 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1884 * (MAC address) from the ethernet hw registers.
1885 *
1886 * DESCRIPTION:
1887 * This function retrieves the port Ethernet MAC address.
1888 *
1889 * INPUT:
1890 * unsigned int eth_port_num Port number.
1891 * char *MacAddr pointer where the MAC address is stored
1892 *
1893 * OUTPUT:
1894 * Copy the MAC address to the location pointed to by MacAddr
1895 *
1896 * RETURN:
1897 * N/A.
1898 *
1899 */
1900 static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1901 {
1902 struct mv643xx_private *mp = netdev_priv(dev);
1903 unsigned int mac_h;
1904 unsigned int mac_l;
1905
1906 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1907 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1908
1909 p_addr[0] = (mac_h >> 24) & 0xff;
1910 p_addr[1] = (mac_h >> 16) & 0xff;
1911 p_addr[2] = (mac_h >> 8) & 0xff;
1912 p_addr[3] = mac_h & 0xff;
1913 p_addr[4] = (mac_l >> 8) & 0xff;
1914 p_addr[5] = mac_l & 0xff;
1915 }
1916
1917 /*
1918 * The entries in each table are indexed by a hash of a packet's MAC
1919 * address. One bit in each entry determines whether the packet is
1920 * accepted. There are 4 entries (each 8 bits wide) in each register
1921 * of the table. The bits in each entry are defined as follows:
1922 * 0 Accept=1, Drop=0
1923 * 3-1 Queue (ETH_Q0=0)
1924 * 7-4 Reserved = 0;
1925 */
1926 static void eth_port_set_filter_table_entry(int table, unsigned char entry)
1927 {
1928 unsigned int table_reg;
1929 unsigned int tbl_offset;
1930 unsigned int reg_offset;
1931
1932 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
1933 reg_offset = entry % 4; /* Entry offset within the register */
1934
1935 /* Set "accepts frame bit" at specified table entry */
1936 table_reg = mv_read(table + tbl_offset);
1937 table_reg |= 0x01 << (8 * reg_offset);
1938 mv_write(table + tbl_offset, table_reg);
1939 }
1940
1941 /*
1942 * eth_port_mc_addr - Multicast address settings.
1943 *
1944 * The MV device supports multicast using two tables:
1945 * 1) Special Multicast Table for MAC addresses of the form
1946 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
1947 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1948 * Table entries in the DA-Filter table.
1949 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
1950 * is used as an index to the Other Multicast Table entries in the
1951 * DA-Filter table. This function calculates the CRC-8bit value.
1952 * In either case, eth_port_set_filter_table_entry() is then called
1953 * to set to set the actual table entry.
1954 */
1955 static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
1956 {
1957 unsigned int mac_h;
1958 unsigned int mac_l;
1959 unsigned char crc_result = 0;
1960 int table;
1961 int mac_array[48];
1962 int crc[8];
1963 int i;
1964
1965 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
1966 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
1967 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
1968 (eth_port_num);
1969 eth_port_set_filter_table_entry(table, p_addr[5]);
1970 return;
1971 }
1972
1973 /* Calculate CRC-8 out of the given address */
1974 mac_h = (p_addr[0] << 8) | (p_addr[1]);
1975 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
1976 (p_addr[4] << 8) | (p_addr[5] << 0);
1977
1978 for (i = 0; i < 32; i++)
1979 mac_array[i] = (mac_l >> i) & 0x1;
1980 for (i = 32; i < 48; i++)
1981 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
1982
1983 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
1984 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
1985 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
1986 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
1987 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
1988
1989 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1990 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
1991 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
1992 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
1993 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
1994 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
1995 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
1996
1997 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
1998 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
1999 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
2000 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
2001 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
2002 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
2003
2004 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2005 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
2006 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
2007 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
2008 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
2009 mac_array[3] ^ mac_array[2] ^ mac_array[1];
2010
2011 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
2012 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
2013 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
2014 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
2015 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
2016 mac_array[3] ^ mac_array[2];
2017
2018 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
2019 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
2020 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
2021 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
2022 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
2023 mac_array[4] ^ mac_array[3];
2024
2025 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
2026 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
2027 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
2028 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2029 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2030 mac_array[4];
2031
2032 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2033 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2034 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2035 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2036 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2037
2038 for (i = 0; i < 8; i++)
2039 crc_result = crc_result | (crc[i] << i);
2040
2041 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
2042 eth_port_set_filter_table_entry(table, crc_result);
2043 }
2044
2045 /*
2046 * Set the entire multicast list based on dev->mc_list.
2047 */
2048 static void eth_port_set_multicast_list(struct net_device *dev)
2049 {
2050
2051 struct dev_mc_list *mc_list;
2052 int i;
2053 int table_index;
2054 struct mv643xx_private *mp = netdev_priv(dev);
2055 unsigned int eth_port_num = mp->port_num;
2056
2057 /* If the device is in promiscuous mode or in all multicast mode,
2058 * we will fully populate both multicast tables with accept.
2059 * This is guaranteed to yield a match on all multicast addresses...
2060 */
2061 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2062 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2063 /* Set all entries in DA filter special multicast
2064 * table (Ex_dFSMT)
2065 * Set for ETH_Q0 for now
2066 * Bits
2067 * 0 Accept=1, Drop=0
2068 * 3-1 Queue ETH_Q0=0
2069 * 7-4 Reserved = 0;
2070 */
2071 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2072
2073 /* Set all entries in DA filter other multicast
2074 * table (Ex_dFOMT)
2075 * Set for ETH_Q0 for now
2076 * Bits
2077 * 0 Accept=1, Drop=0
2078 * 3-1 Queue ETH_Q0=0
2079 * 7-4 Reserved = 0;
2080 */
2081 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2082 }
2083 return;
2084 }
2085
2086 /* We will clear out multicast tables every time we get the list.
2087 * Then add the entire new list...
2088 */
2089 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2090 /* Clear DA filter special multicast table (Ex_dFSMT) */
2091 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2092 (eth_port_num) + table_index, 0);
2093
2094 /* Clear DA filter other multicast table (Ex_dFOMT) */
2095 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2096 (eth_port_num) + table_index, 0);
2097 }
2098
2099 /* Get pointer to net_device multicast list and add each one... */
2100 for (i = 0, mc_list = dev->mc_list;
2101 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2102 i++, mc_list = mc_list->next)
2103 if (mc_list->dmi_addrlen == 6)
2104 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2105 }
2106
2107 /*
2108 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2109 *
2110 * DESCRIPTION:
2111 * Go through all the DA filter tables (Unicast, Special Multicast &
2112 * Other Multicast) and set each entry to 0.
2113 *
2114 * INPUT:
2115 * unsigned int eth_port_num Ethernet Port number.
2116 *
2117 * OUTPUT:
2118 * Multicast and Unicast packets are rejected.
2119 *
2120 * RETURN:
2121 * None.
2122 */
2123 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2124 {
2125 int table_index;
2126
2127 /* Clear DA filter unicast table (Ex_dFUT) */
2128 for (table_index = 0; table_index <= 0xC; table_index += 4)
2129 mv_write(MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2130 (eth_port_num) + table_index, 0);
2131
2132 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2133 /* Clear DA filter special multicast table (Ex_dFSMT) */
2134 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2135 (eth_port_num) + table_index, 0);
2136 /* Clear DA filter other multicast table (Ex_dFOMT) */
2137 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2138 (eth_port_num) + table_index, 0);
2139 }
2140 }
2141
2142 /*
2143 * eth_clear_mib_counters - Clear all MIB counters
2144 *
2145 * DESCRIPTION:
2146 * This function clears all MIB counters of a specific ethernet port.
2147 * A read from the MIB counter will reset the counter.
2148 *
2149 * INPUT:
2150 * unsigned int eth_port_num Ethernet Port number.
2151 *
2152 * OUTPUT:
2153 * After reading all MIB counters, the counters resets.
2154 *
2155 * RETURN:
2156 * MIB counter value.
2157 *
2158 */
2159 static void eth_clear_mib_counters(unsigned int eth_port_num)
2160 {
2161 int i;
2162
2163 /* Perform dummy reads from MIB counters */
2164 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2165 i += 4)
2166 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2167 }
2168
2169 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2170 {
2171 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2172 }
2173
2174 static void eth_update_mib_counters(struct mv643xx_private *mp)
2175 {
2176 struct mv643xx_mib_counters *p = &mp->mib_counters;
2177 int offset;
2178
2179 p->good_octets_received +=
2180 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2181 p->good_octets_received +=
2182 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2183
2184 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2185 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2186 offset += 4)
2187 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2188
2189 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2190 p->good_octets_sent +=
2191 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2192
2193 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2194 offset <= ETH_MIB_LATE_COLLISION;
2195 offset += 4)
2196 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2197 }
2198
2199 /*
2200 * ethernet_phy_detect - Detect whether a phy is present
2201 *
2202 * DESCRIPTION:
2203 * This function tests whether there is a PHY present on
2204 * the specified port.
2205 *
2206 * INPUT:
2207 * unsigned int eth_port_num Ethernet Port number.
2208 *
2209 * OUTPUT:
2210 * None
2211 *
2212 * RETURN:
2213 * 0 on success
2214 * -ENODEV on failure
2215 *
2216 */
2217 static int ethernet_phy_detect(unsigned int port_num)
2218 {
2219 unsigned int phy_reg_data0;
2220 int auto_neg;
2221
2222 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2223 auto_neg = phy_reg_data0 & 0x1000;
2224 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2225 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2226
2227 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2228 if ((phy_reg_data0 & 0x1000) == auto_neg)
2229 return -ENODEV; /* change didn't take */
2230
2231 phy_reg_data0 ^= 0x1000;
2232 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2233 return 0;
2234 }
2235
2236 /*
2237 * ethernet_phy_get - Get the ethernet port PHY address.
2238 *
2239 * DESCRIPTION:
2240 * This routine returns the given ethernet port PHY address.
2241 *
2242 * INPUT:
2243 * unsigned int eth_port_num Ethernet Port number.
2244 *
2245 * OUTPUT:
2246 * None.
2247 *
2248 * RETURN:
2249 * PHY address.
2250 *
2251 */
2252 static int ethernet_phy_get(unsigned int eth_port_num)
2253 {
2254 unsigned int reg_data;
2255
2256 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2257
2258 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2259 }
2260
2261 /*
2262 * ethernet_phy_set - Set the ethernet port PHY address.
2263 *
2264 * DESCRIPTION:
2265 * This routine sets the given ethernet port PHY address.
2266 *
2267 * INPUT:
2268 * unsigned int eth_port_num Ethernet Port number.
2269 * int phy_addr PHY address.
2270 *
2271 * OUTPUT:
2272 * None.
2273 *
2274 * RETURN:
2275 * None.
2276 *
2277 */
2278 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2279 {
2280 u32 reg_data;
2281 int addr_shift = 5 * eth_port_num;
2282
2283 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2284 reg_data &= ~(0x1f << addr_shift);
2285 reg_data |= (phy_addr & 0x1f) << addr_shift;
2286 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2287 }
2288
2289 /*
2290 * ethernet_phy_reset - Reset Ethernet port PHY.
2291 *
2292 * DESCRIPTION:
2293 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2294 *
2295 * INPUT:
2296 * unsigned int eth_port_num Ethernet Port number.
2297 *
2298 * OUTPUT:
2299 * The PHY is reset.
2300 *
2301 * RETURN:
2302 * None.
2303 *
2304 */
2305 static void ethernet_phy_reset(unsigned int eth_port_num)
2306 {
2307 unsigned int phy_reg_data;
2308
2309 /* Reset the PHY */
2310 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2311 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2312 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2313
2314 /* wait for PHY to come out of reset */
2315 do {
2316 udelay(1);
2317 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2318 } while (phy_reg_data & 0x8000);
2319 }
2320
2321 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
2322 unsigned int queues)
2323 {
2324 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), queues);
2325 }
2326
2327 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
2328 unsigned int queues)
2329 {
2330 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), queues);
2331 }
2332
2333 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2334 {
2335 u32 queues;
2336
2337 /* Stop Tx port activity. Check port Tx activity. */
2338 queues = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2339 & 0xFF;
2340 if (queues) {
2341 /* Issue stop command for active queues only */
2342 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2343 (queues << 8));
2344
2345 /* Wait for all Tx activity to terminate. */
2346 /* Check port cause register that all Tx queues are stopped */
2347 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2348 & 0xFF)
2349 udelay(PHY_WAIT_MICRO_SECONDS);
2350
2351 /* Wait for Tx FIFO to empty */
2352 while (mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num)) &
2353 ETH_PORT_TX_FIFO_EMPTY)
2354 udelay(PHY_WAIT_MICRO_SECONDS);
2355 }
2356
2357 return queues;
2358 }
2359
2360 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2361 {
2362 u32 queues;
2363
2364 /* Stop Rx port activity. Check port Rx activity. */
2365 queues = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2366 & 0xFF;
2367 if (queues) {
2368 /* Issue stop command for active queues only */
2369 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2370 (queues << 8));
2371
2372 /* Wait for all Rx activity to terminate. */
2373 /* Check port cause register that all Rx queues are stopped */
2374 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2375 & 0xFF)
2376 udelay(PHY_WAIT_MICRO_SECONDS);
2377 }
2378
2379 return queues;
2380 }
2381
2382 /*
2383 * eth_port_reset - Reset Ethernet port
2384 *
2385 * DESCRIPTION:
2386 * This routine resets the chip by aborting any SDMA engine activity and
2387 * clearing the MIB counters. The Receiver and the Transmit unit are in
2388 * idle state after this command is performed and the port is disabled.
2389 *
2390 * INPUT:
2391 * unsigned int eth_port_num Ethernet Port number.
2392 *
2393 * OUTPUT:
2394 * Channel activity is halted.
2395 *
2396 * RETURN:
2397 * None.
2398 *
2399 */
2400 static void eth_port_reset(unsigned int port_num)
2401 {
2402 unsigned int reg_data;
2403
2404 mv643xx_eth_port_disable_tx(port_num);
2405 mv643xx_eth_port_disable_rx(port_num);
2406
2407 /* Clear all MIB counters */
2408 eth_clear_mib_counters(port_num);
2409
2410 /* Reset the Enable bit in the Configuration Register */
2411 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2412 reg_data &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE |
2413 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
2414 MV643XX_ETH_FORCE_LINK_PASS);
2415 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2416 }
2417
2418
2419 /*
2420 * eth_port_read_smi_reg - Read PHY registers
2421 *
2422 * DESCRIPTION:
2423 * This routine utilize the SMI interface to interact with the PHY in
2424 * order to perform PHY register read.
2425 *
2426 * INPUT:
2427 * unsigned int port_num Ethernet Port number.
2428 * unsigned int phy_reg PHY register address offset.
2429 * unsigned int *value Register value buffer.
2430 *
2431 * OUTPUT:
2432 * Write the value of a specified PHY register into given buffer.
2433 *
2434 * RETURN:
2435 * false if the PHY is busy or read data is not in valid state.
2436 * true otherwise.
2437 *
2438 */
2439 static void eth_port_read_smi_reg(unsigned int port_num,
2440 unsigned int phy_reg, unsigned int *value)
2441 {
2442 int phy_addr = ethernet_phy_get(port_num);
2443 unsigned long flags;
2444 int i;
2445
2446 /* the SMI register is a shared resource */
2447 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2448
2449 /* wait for the SMI register to become available */
2450 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2451 if (i == PHY_WAIT_ITERATIONS) {
2452 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2453 goto out;
2454 }
2455 udelay(PHY_WAIT_MICRO_SECONDS);
2456 }
2457
2458 mv_write(MV643XX_ETH_SMI_REG,
2459 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2460
2461 /* now wait for the data to be valid */
2462 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2463 if (i == PHY_WAIT_ITERATIONS) {
2464 printk("mv643xx PHY read timeout, port %d\n", port_num);
2465 goto out;
2466 }
2467 udelay(PHY_WAIT_MICRO_SECONDS);
2468 }
2469
2470 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2471 out:
2472 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2473 }
2474
2475 /*
2476 * eth_port_write_smi_reg - Write to PHY registers
2477 *
2478 * DESCRIPTION:
2479 * This routine utilize the SMI interface to interact with the PHY in
2480 * order to perform writes to PHY registers.
2481 *
2482 * INPUT:
2483 * unsigned int eth_port_num Ethernet Port number.
2484 * unsigned int phy_reg PHY register address offset.
2485 * unsigned int value Register value.
2486 *
2487 * OUTPUT:
2488 * Write the given value to the specified PHY register.
2489 *
2490 * RETURN:
2491 * false if the PHY is busy.
2492 * true otherwise.
2493 *
2494 */
2495 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2496 unsigned int phy_reg, unsigned int value)
2497 {
2498 int phy_addr;
2499 int i;
2500 unsigned long flags;
2501
2502 phy_addr = ethernet_phy_get(eth_port_num);
2503
2504 /* the SMI register is a shared resource */
2505 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2506
2507 /* wait for the SMI register to become available */
2508 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2509 if (i == PHY_WAIT_ITERATIONS) {
2510 printk("mv643xx PHY busy timeout, port %d\n",
2511 eth_port_num);
2512 goto out;
2513 }
2514 udelay(PHY_WAIT_MICRO_SECONDS);
2515 }
2516
2517 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2518 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2519 out:
2520 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2521 }
2522
2523 /*
2524 * Wrappers for MII support library.
2525 */
2526 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2527 {
2528 int val;
2529 struct mv643xx_private *mp = netdev_priv(dev);
2530
2531 eth_port_read_smi_reg(mp->port_num, location, &val);
2532 return val;
2533 }
2534
2535 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2536 {
2537 struct mv643xx_private *mp = netdev_priv(dev);
2538 eth_port_write_smi_reg(mp->port_num, location, val);
2539 }
2540
2541 /*
2542 * eth_port_receive - Get received information from Rx ring.
2543 *
2544 * DESCRIPTION:
2545 * This routine returns the received data to the caller. There is no
2546 * data copying during routine operation. All information is returned
2547 * using pointer to packet information struct passed from the caller.
2548 * If the routine exhausts Rx ring resources then the resource error flag
2549 * is set.
2550 *
2551 * INPUT:
2552 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2553 * struct pkt_info *p_pkt_info User packet buffer.
2554 *
2555 * OUTPUT:
2556 * Rx ring current and used indexes are updated.
2557 *
2558 * RETURN:
2559 * ETH_ERROR in case the routine can not access Rx desc ring.
2560 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2561 * ETH_END_OF_JOB if there is no received data.
2562 * ETH_OK otherwise.
2563 */
2564 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2565 struct pkt_info *p_pkt_info)
2566 {
2567 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2568 volatile struct eth_rx_desc *p_rx_desc;
2569 unsigned int command_status;
2570 unsigned long flags;
2571
2572 /* Do not process Rx ring in case of Rx ring resource error */
2573 if (mp->rx_resource_err)
2574 return ETH_QUEUE_FULL;
2575
2576 spin_lock_irqsave(&mp->lock, flags);
2577
2578 /* Get the Rx Desc ring 'curr and 'used' indexes */
2579 rx_curr_desc = mp->rx_curr_desc_q;
2580 rx_used_desc = mp->rx_used_desc_q;
2581
2582 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2583
2584 /* The following parameters are used to save readings from memory */
2585 command_status = p_rx_desc->cmd_sts;
2586 rmb();
2587
2588 /* Nothing to receive... */
2589 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2590 spin_unlock_irqrestore(&mp->lock, flags);
2591 return ETH_END_OF_JOB;
2592 }
2593
2594 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2595 p_pkt_info->cmd_sts = command_status;
2596 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2597 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2598 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2599
2600 /*
2601 * Clean the return info field to indicate that the
2602 * packet has been moved to the upper layers
2603 */
2604 mp->rx_skb[rx_curr_desc] = NULL;
2605
2606 /* Update current index in data structure */
2607 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2608 mp->rx_curr_desc_q = rx_next_curr_desc;
2609
2610 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2611 if (rx_next_curr_desc == rx_used_desc)
2612 mp->rx_resource_err = 1;
2613
2614 spin_unlock_irqrestore(&mp->lock, flags);
2615
2616 return ETH_OK;
2617 }
2618
2619 /*
2620 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2621 *
2622 * DESCRIPTION:
2623 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2624 * next 'used' descriptor and attached the returned buffer to it.
2625 * In case the Rx ring was in "resource error" condition, where there are
2626 * no available Rx resources, the function resets the resource error flag.
2627 *
2628 * INPUT:
2629 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2630 * struct pkt_info *p_pkt_info Information on returned buffer.
2631 *
2632 * OUTPUT:
2633 * New available Rx resource in Rx descriptor ring.
2634 *
2635 * RETURN:
2636 * ETH_ERROR in case the routine can not access Rx desc ring.
2637 * ETH_OK otherwise.
2638 */
2639 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2640 struct pkt_info *p_pkt_info)
2641 {
2642 int used_rx_desc; /* Where to return Rx resource */
2643 volatile struct eth_rx_desc *p_used_rx_desc;
2644 unsigned long flags;
2645
2646 spin_lock_irqsave(&mp->lock, flags);
2647
2648 /* Get 'used' Rx descriptor */
2649 used_rx_desc = mp->rx_used_desc_q;
2650 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2651
2652 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2653 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2654 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2655
2656 /* Flush the write pipe */
2657
2658 /* Return the descriptor to DMA ownership */
2659 wmb();
2660 p_used_rx_desc->cmd_sts =
2661 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2662 wmb();
2663
2664 /* Move the used descriptor pointer to the next descriptor */
2665 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2666
2667 /* Any Rx return cancels the Rx resource error status */
2668 mp->rx_resource_err = 0;
2669
2670 spin_unlock_irqrestore(&mp->lock, flags);
2671
2672 return ETH_OK;
2673 }
2674
2675 /************* Begin ethtool support *************************/
2676
2677 struct mv643xx_stats {
2678 char stat_string[ETH_GSTRING_LEN];
2679 int sizeof_stat;
2680 int stat_offset;
2681 };
2682
2683 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2684 offsetof(struct mv643xx_private, m)
2685
2686 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2687 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2688 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2689 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2690 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2691 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2692 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2693 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2694 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2695 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2696 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2697 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2698 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2699 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2700 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2701 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2702 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2703 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2704 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2705 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2706 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2707 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2708 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2709 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2710 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2711 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2712 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2713 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2714 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2715 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2716 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2717 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2718 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2719 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2720 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2721 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2722 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2723 { "collision", MV643XX_STAT(mib_counters.collision) },
2724 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2725 };
2726
2727 #define MV643XX_STATS_LEN \
2728 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2729
2730 static void mv643xx_get_drvinfo(struct net_device *netdev,
2731 struct ethtool_drvinfo *drvinfo)
2732 {
2733 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2734 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2735 strncpy(drvinfo->fw_version, "N/A", 32);
2736 strncpy(drvinfo->bus_info, "mv643xx", 32);
2737 drvinfo->n_stats = MV643XX_STATS_LEN;
2738 }
2739
2740 static int mv643xx_get_stats_count(struct net_device *netdev)
2741 {
2742 return MV643XX_STATS_LEN;
2743 }
2744
2745 static void mv643xx_get_ethtool_stats(struct net_device *netdev,
2746 struct ethtool_stats *stats, uint64_t *data)
2747 {
2748 struct mv643xx_private *mp = netdev->priv;
2749 int i;
2750
2751 eth_update_mib_counters(mp);
2752
2753 for (i = 0; i < MV643XX_STATS_LEN; i++) {
2754 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
2755 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
2756 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
2757 }
2758 }
2759
2760 static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
2761 uint8_t *data)
2762 {
2763 int i;
2764
2765 switch(stringset) {
2766 case ETH_SS_STATS:
2767 for (i=0; i < MV643XX_STATS_LEN; i++) {
2768 memcpy(data + i * ETH_GSTRING_LEN,
2769 mv643xx_gstrings_stats[i].stat_string,
2770 ETH_GSTRING_LEN);
2771 }
2772 break;
2773 }
2774 }
2775
2776 static u32 mv643xx_eth_get_link(struct net_device *dev)
2777 {
2778 struct mv643xx_private *mp = netdev_priv(dev);
2779
2780 return mii_link_ok(&mp->mii);
2781 }
2782
2783 static int mv643xx_eth_nway_restart(struct net_device *dev)
2784 {
2785 struct mv643xx_private *mp = netdev_priv(dev);
2786
2787 return mii_nway_restart(&mp->mii);
2788 }
2789
2790 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2791 {
2792 struct mv643xx_private *mp = netdev_priv(dev);
2793
2794 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
2795 }
2796
2797 static const struct ethtool_ops mv643xx_ethtool_ops = {
2798 .get_settings = mv643xx_get_settings,
2799 .set_settings = mv643xx_set_settings,
2800 .get_drvinfo = mv643xx_get_drvinfo,
2801 .get_link = mv643xx_eth_get_link,
2802 .get_sg = ethtool_op_get_sg,
2803 .set_sg = ethtool_op_set_sg,
2804 .get_stats_count = mv643xx_get_stats_count,
2805 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2806 .get_strings = mv643xx_get_strings,
2807 .get_stats_count = mv643xx_get_stats_count,
2808 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2809 .nway_reset = mv643xx_eth_nway_restart,
2810 };
2811
2812 /************* End ethtool support *************************/
This page took 0.08662 seconds and 6 git commands to generate.