mv643xx_eth: only print banner once
[deliverable/linux.git] / drivers / net / mv643xx_eth.c
1 /*
2 * Driver for Marvell Discovery (MV643XX) and Marvell Orion ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2006 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/in.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/etherdevice.h>
40
41 #include <linux/bitops.h>
42 #include <linux/delay.h>
43 #include <linux/ethtool.h>
44 #include <linux/platform_device.h>
45
46 #include <linux/module.h>
47 #include <linux/kernel.h>
48 #include <linux/spinlock.h>
49 #include <linux/workqueue.h>
50 #include <linux/mii.h>
51
52 #include <linux/mv643xx_eth.h>
53
54 #include <asm/io.h>
55 #include <asm/types.h>
56 #include <asm/pgtable.h>
57 #include <asm/system.h>
58 #include <asm/delay.h>
59 #include <asm/dma-mapping.h>
60
61 #define MV643XX_CHECKSUM_OFFLOAD_TX
62 #define MV643XX_NAPI
63 #define MV643XX_TX_FAST_REFILL
64 #undef MV643XX_COAL
65
66 #define MV643XX_TX_COAL 100
67 #ifdef MV643XX_COAL
68 #define MV643XX_RX_COAL 100
69 #endif
70
71 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
72 #define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
73 #else
74 #define MAX_DESCS_PER_SKB 1
75 #endif
76
77 #define ETH_VLAN_HLEN 4
78 #define ETH_FCS_LEN 4
79 #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
80 #define ETH_WRAPPER_LEN (ETH_HW_IP_ALIGN + ETH_HLEN + \
81 ETH_VLAN_HLEN + ETH_FCS_LEN)
82 #define ETH_RX_SKB_SIZE (dev->mtu + ETH_WRAPPER_LEN + \
83 dma_get_cache_alignment())
84
85 /*
86 * Registers shared between all ports.
87 */
88 #define PHY_ADDR_REG 0x0000
89 #define SMI_REG 0x0004
90
91 /*
92 * Per-port registers.
93 */
94 #define PORT_CONFIG_REG(p) (0x0400 + ((p) << 10))
95 #define PORT_CONFIG_EXTEND_REG(p) (0x0404 + ((p) << 10))
96 #define MAC_ADDR_LOW(p) (0x0414 + ((p) << 10))
97 #define MAC_ADDR_HIGH(p) (0x0418 + ((p) << 10))
98 #define SDMA_CONFIG_REG(p) (0x041c + ((p) << 10))
99 #define PORT_SERIAL_CONTROL_REG(p) (0x043c + ((p) << 10))
100 #define PORT_STATUS_REG(p) (0x0444 + ((p) << 10))
101 #define TRANSMIT_QUEUE_COMMAND_REG(p) (0x0448 + ((p) << 10))
102 #define MAXIMUM_TRANSMIT_UNIT(p) (0x0458 + ((p) << 10))
103 #define INTERRUPT_CAUSE_REG(p) (0x0460 + ((p) << 10))
104 #define INTERRUPT_CAUSE_EXTEND_REG(p) (0x0464 + ((p) << 10))
105 #define INTERRUPT_MASK_REG(p) (0x0468 + ((p) << 10))
106 #define INTERRUPT_EXTEND_MASK_REG(p) (0x046c + ((p) << 10))
107 #define TX_FIFO_URGENT_THRESHOLD_REG(p) (0x0474 + ((p) << 10))
108 #define RX_CURRENT_QUEUE_DESC_PTR_0(p) (0x060c + ((p) << 10))
109 #define RECEIVE_QUEUE_COMMAND_REG(p) (0x0680 + ((p) << 10))
110 #define TX_CURRENT_QUEUE_DESC_PTR_0(p) (0x06c0 + ((p) << 10))
111 #define MIB_COUNTERS_BASE(p) (0x1000 + ((p) << 7))
112 #define DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(p) (0x1400 + ((p) << 10))
113 #define DA_FILTER_OTHER_MULTICAST_TABLE_BASE(p) (0x1500 + ((p) << 10))
114 #define DA_FILTER_UNICAST_TABLE_BASE(p) (0x1600 + ((p) << 10))
115
116 /* These macros describe Ethernet Port configuration reg (Px_cR) bits */
117 #define UNICAST_NORMAL_MODE (0 << 0)
118 #define UNICAST_PROMISCUOUS_MODE (1 << 0)
119 #define DEFAULT_RX_QUEUE(queue) ((queue) << 1)
120 #define DEFAULT_RX_ARP_QUEUE(queue) ((queue) << 4)
121 #define RECEIVE_BC_IF_NOT_IP_OR_ARP (0 << 7)
122 #define REJECT_BC_IF_NOT_IP_OR_ARP (1 << 7)
123 #define RECEIVE_BC_IF_IP (0 << 8)
124 #define REJECT_BC_IF_IP (1 << 8)
125 #define RECEIVE_BC_IF_ARP (0 << 9)
126 #define REJECT_BC_IF_ARP (1 << 9)
127 #define TX_AM_NO_UPDATE_ERROR_SUMMARY (1 << 12)
128 #define CAPTURE_TCP_FRAMES_DIS (0 << 14)
129 #define CAPTURE_TCP_FRAMES_EN (1 << 14)
130 #define CAPTURE_UDP_FRAMES_DIS (0 << 15)
131 #define CAPTURE_UDP_FRAMES_EN (1 << 15)
132 #define DEFAULT_RX_TCP_QUEUE(queue) ((queue) << 16)
133 #define DEFAULT_RX_UDP_QUEUE(queue) ((queue) << 19)
134 #define DEFAULT_RX_BPDU_QUEUE(queue) ((queue) << 22)
135
136 #define PORT_CONFIG_DEFAULT_VALUE \
137 UNICAST_NORMAL_MODE | \
138 DEFAULT_RX_QUEUE(0) | \
139 DEFAULT_RX_ARP_QUEUE(0) | \
140 RECEIVE_BC_IF_NOT_IP_OR_ARP | \
141 RECEIVE_BC_IF_IP | \
142 RECEIVE_BC_IF_ARP | \
143 CAPTURE_TCP_FRAMES_DIS | \
144 CAPTURE_UDP_FRAMES_DIS | \
145 DEFAULT_RX_TCP_QUEUE(0) | \
146 DEFAULT_RX_UDP_QUEUE(0) | \
147 DEFAULT_RX_BPDU_QUEUE(0)
148
149 /* These macros describe Ethernet Port configuration extend reg (Px_cXR) bits*/
150 #define CLASSIFY_EN (1 << 0)
151 #define SPAN_BPDU_PACKETS_AS_NORMAL (0 << 1)
152 #define SPAN_BPDU_PACKETS_TO_RX_QUEUE_7 (1 << 1)
153 #define PARTITION_DISABLE (0 << 2)
154 #define PARTITION_ENABLE (1 << 2)
155
156 #define PORT_CONFIG_EXTEND_DEFAULT_VALUE \
157 SPAN_BPDU_PACKETS_AS_NORMAL | \
158 PARTITION_DISABLE
159
160 /* These macros describe Ethernet Port Sdma configuration reg (SDCR) bits */
161 #define RIFB (1 << 0)
162 #define RX_BURST_SIZE_1_64BIT (0 << 1)
163 #define RX_BURST_SIZE_2_64BIT (1 << 1)
164 #define RX_BURST_SIZE_4_64BIT (2 << 1)
165 #define RX_BURST_SIZE_8_64BIT (3 << 1)
166 #define RX_BURST_SIZE_16_64BIT (4 << 1)
167 #define BLM_RX_NO_SWAP (1 << 4)
168 #define BLM_RX_BYTE_SWAP (0 << 4)
169 #define BLM_TX_NO_SWAP (1 << 5)
170 #define BLM_TX_BYTE_SWAP (0 << 5)
171 #define DESCRIPTORS_BYTE_SWAP (1 << 6)
172 #define DESCRIPTORS_NO_SWAP (0 << 6)
173 #define IPG_INT_RX(value) (((value) & 0x3fff) << 8)
174 #define TX_BURST_SIZE_1_64BIT (0 << 22)
175 #define TX_BURST_SIZE_2_64BIT (1 << 22)
176 #define TX_BURST_SIZE_4_64BIT (2 << 22)
177 #define TX_BURST_SIZE_8_64BIT (3 << 22)
178 #define TX_BURST_SIZE_16_64BIT (4 << 22)
179
180 #if defined(__BIG_ENDIAN)
181 #define PORT_SDMA_CONFIG_DEFAULT_VALUE \
182 RX_BURST_SIZE_4_64BIT | \
183 IPG_INT_RX(0) | \
184 TX_BURST_SIZE_4_64BIT
185 #elif defined(__LITTLE_ENDIAN)
186 #define PORT_SDMA_CONFIG_DEFAULT_VALUE \
187 RX_BURST_SIZE_4_64BIT | \
188 BLM_RX_NO_SWAP | \
189 BLM_TX_NO_SWAP | \
190 IPG_INT_RX(0) | \
191 TX_BURST_SIZE_4_64BIT
192 #else
193 #error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined
194 #endif
195
196 /* These macros describe Ethernet Port serial control reg (PSCR) bits */
197 #define SERIAL_PORT_DISABLE (0 << 0)
198 #define SERIAL_PORT_ENABLE (1 << 0)
199 #define DO_NOT_FORCE_LINK_PASS (0 << 1)
200 #define FORCE_LINK_PASS (1 << 1)
201 #define ENABLE_AUTO_NEG_FOR_DUPLX (0 << 2)
202 #define DISABLE_AUTO_NEG_FOR_DUPLX (1 << 2)
203 #define ENABLE_AUTO_NEG_FOR_FLOW_CTRL (0 << 3)
204 #define DISABLE_AUTO_NEG_FOR_FLOW_CTRL (1 << 3)
205 #define ADV_NO_FLOW_CTRL (0 << 4)
206 #define ADV_SYMMETRIC_FLOW_CTRL (1 << 4)
207 #define FORCE_FC_MODE_NO_PAUSE_DIS_TX (0 << 5)
208 #define FORCE_FC_MODE_TX_PAUSE_DIS (1 << 5)
209 #define FORCE_BP_MODE_NO_JAM (0 << 7)
210 #define FORCE_BP_MODE_JAM_TX (1 << 7)
211 #define FORCE_BP_MODE_JAM_TX_ON_RX_ERR (2 << 7)
212 #define SERIAL_PORT_CONTROL_RESERVED (1 << 9)
213 #define FORCE_LINK_FAIL (0 << 10)
214 #define DO_NOT_FORCE_LINK_FAIL (1 << 10)
215 #define RETRANSMIT_16_ATTEMPTS (0 << 11)
216 #define RETRANSMIT_FOREVER (1 << 11)
217 #define ENABLE_AUTO_NEG_SPEED_GMII (0 << 13)
218 #define DISABLE_AUTO_NEG_SPEED_GMII (1 << 13)
219 #define DTE_ADV_0 (0 << 14)
220 #define DTE_ADV_1 (1 << 14)
221 #define DISABLE_AUTO_NEG_BYPASS (0 << 15)
222 #define ENABLE_AUTO_NEG_BYPASS (1 << 15)
223 #define AUTO_NEG_NO_CHANGE (0 << 16)
224 #define RESTART_AUTO_NEG (1 << 16)
225 #define MAX_RX_PACKET_1518BYTE (0 << 17)
226 #define MAX_RX_PACKET_1522BYTE (1 << 17)
227 #define MAX_RX_PACKET_1552BYTE (2 << 17)
228 #define MAX_RX_PACKET_9022BYTE (3 << 17)
229 #define MAX_RX_PACKET_9192BYTE (4 << 17)
230 #define MAX_RX_PACKET_9700BYTE (5 << 17)
231 #define MAX_RX_PACKET_MASK (7 << 17)
232 #define CLR_EXT_LOOPBACK (0 << 20)
233 #define SET_EXT_LOOPBACK (1 << 20)
234 #define SET_HALF_DUPLEX_MODE (0 << 21)
235 #define SET_FULL_DUPLEX_MODE (1 << 21)
236 #define DISABLE_FLOW_CTRL_TX_RX_IN_FULL_DUPLEX (0 << 22)
237 #define ENABLE_FLOW_CTRL_TX_RX_IN_FULL_DUPLEX (1 << 22)
238 #define SET_GMII_SPEED_TO_10_100 (0 << 23)
239 #define SET_GMII_SPEED_TO_1000 (1 << 23)
240 #define SET_MII_SPEED_TO_10 (0 << 24)
241 #define SET_MII_SPEED_TO_100 (1 << 24)
242
243 #define PORT_SERIAL_CONTROL_DEFAULT_VALUE \
244 DO_NOT_FORCE_LINK_PASS | \
245 ENABLE_AUTO_NEG_FOR_DUPLX | \
246 DISABLE_AUTO_NEG_FOR_FLOW_CTRL | \
247 ADV_SYMMETRIC_FLOW_CTRL | \
248 FORCE_FC_MODE_NO_PAUSE_DIS_TX | \
249 FORCE_BP_MODE_NO_JAM | \
250 (1 << 9) /* reserved */ | \
251 DO_NOT_FORCE_LINK_FAIL | \
252 RETRANSMIT_16_ATTEMPTS | \
253 ENABLE_AUTO_NEG_SPEED_GMII | \
254 DTE_ADV_0 | \
255 DISABLE_AUTO_NEG_BYPASS | \
256 AUTO_NEG_NO_CHANGE | \
257 MAX_RX_PACKET_9700BYTE | \
258 CLR_EXT_LOOPBACK | \
259 SET_FULL_DUPLEX_MODE | \
260 ENABLE_FLOW_CTRL_TX_RX_IN_FULL_DUPLEX
261
262 /* These macros describe Ethernet Serial Status reg (PSR) bits */
263 #define PORT_STATUS_MODE_10_BIT (1 << 0)
264 #define PORT_STATUS_LINK_UP (1 << 1)
265 #define PORT_STATUS_FULL_DUPLEX (1 << 2)
266 #define PORT_STATUS_FLOW_CONTROL (1 << 3)
267 #define PORT_STATUS_GMII_1000 (1 << 4)
268 #define PORT_STATUS_MII_100 (1 << 5)
269 /* PSR bit 6 is undocumented */
270 #define PORT_STATUS_TX_IN_PROGRESS (1 << 7)
271 #define PORT_STATUS_AUTONEG_BYPASSED (1 << 8)
272 #define PORT_STATUS_PARTITION (1 << 9)
273 #define PORT_STATUS_TX_FIFO_EMPTY (1 << 10)
274 /* PSR bits 11-31 are reserved */
275
276 #define PORT_DEFAULT_TRANSMIT_QUEUE_SIZE 800
277 #define PORT_DEFAULT_RECEIVE_QUEUE_SIZE 400
278
279 #define DESC_SIZE 64
280
281 #define ETH_RX_QUEUES_ENABLED (1 << 0) /* use only Q0 for receive */
282 #define ETH_TX_QUEUES_ENABLED (1 << 0) /* use only Q0 for transmit */
283
284 #define ETH_INT_CAUSE_RX_DONE (ETH_RX_QUEUES_ENABLED << 2)
285 #define ETH_INT_CAUSE_RX_ERROR (ETH_RX_QUEUES_ENABLED << 9)
286 #define ETH_INT_CAUSE_RX (ETH_INT_CAUSE_RX_DONE | ETH_INT_CAUSE_RX_ERROR)
287 #define ETH_INT_CAUSE_EXT 0x00000002
288 #define ETH_INT_UNMASK_ALL (ETH_INT_CAUSE_RX | ETH_INT_CAUSE_EXT)
289
290 #define ETH_INT_CAUSE_TX_DONE (ETH_TX_QUEUES_ENABLED << 0)
291 #define ETH_INT_CAUSE_TX_ERROR (ETH_TX_QUEUES_ENABLED << 8)
292 #define ETH_INT_CAUSE_TX (ETH_INT_CAUSE_TX_DONE | ETH_INT_CAUSE_TX_ERROR)
293 #define ETH_INT_CAUSE_PHY 0x00010000
294 #define ETH_INT_CAUSE_STATE 0x00100000
295 #define ETH_INT_UNMASK_ALL_EXT (ETH_INT_CAUSE_TX | ETH_INT_CAUSE_PHY | \
296 ETH_INT_CAUSE_STATE)
297
298 #define ETH_INT_MASK_ALL 0x00000000
299 #define ETH_INT_MASK_ALL_EXT 0x00000000
300
301 #define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
302 #define PHY_WAIT_MICRO_SECONDS 10
303
304 /* Buffer offset from buffer pointer */
305 #define RX_BUF_OFFSET 0x2
306
307 /* Gigabit Ethernet Unit Global Registers */
308
309 /* MIB Counters register definitions */
310 #define ETH_MIB_GOOD_OCTETS_RECEIVED_LOW 0x0
311 #define ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH 0x4
312 #define ETH_MIB_BAD_OCTETS_RECEIVED 0x8
313 #define ETH_MIB_INTERNAL_MAC_TRANSMIT_ERR 0xc
314 #define ETH_MIB_GOOD_FRAMES_RECEIVED 0x10
315 #define ETH_MIB_BAD_FRAMES_RECEIVED 0x14
316 #define ETH_MIB_BROADCAST_FRAMES_RECEIVED 0x18
317 #define ETH_MIB_MULTICAST_FRAMES_RECEIVED 0x1c
318 #define ETH_MIB_FRAMES_64_OCTETS 0x20
319 #define ETH_MIB_FRAMES_65_TO_127_OCTETS 0x24
320 #define ETH_MIB_FRAMES_128_TO_255_OCTETS 0x28
321 #define ETH_MIB_FRAMES_256_TO_511_OCTETS 0x2c
322 #define ETH_MIB_FRAMES_512_TO_1023_OCTETS 0x30
323 #define ETH_MIB_FRAMES_1024_TO_MAX_OCTETS 0x34
324 #define ETH_MIB_GOOD_OCTETS_SENT_LOW 0x38
325 #define ETH_MIB_GOOD_OCTETS_SENT_HIGH 0x3c
326 #define ETH_MIB_GOOD_FRAMES_SENT 0x40
327 #define ETH_MIB_EXCESSIVE_COLLISION 0x44
328 #define ETH_MIB_MULTICAST_FRAMES_SENT 0x48
329 #define ETH_MIB_BROADCAST_FRAMES_SENT 0x4c
330 #define ETH_MIB_UNREC_MAC_CONTROL_RECEIVED 0x50
331 #define ETH_MIB_FC_SENT 0x54
332 #define ETH_MIB_GOOD_FC_RECEIVED 0x58
333 #define ETH_MIB_BAD_FC_RECEIVED 0x5c
334 #define ETH_MIB_UNDERSIZE_RECEIVED 0x60
335 #define ETH_MIB_FRAGMENTS_RECEIVED 0x64
336 #define ETH_MIB_OVERSIZE_RECEIVED 0x68
337 #define ETH_MIB_JABBER_RECEIVED 0x6c
338 #define ETH_MIB_MAC_RECEIVE_ERROR 0x70
339 #define ETH_MIB_BAD_CRC_EVENT 0x74
340 #define ETH_MIB_COLLISION 0x78
341 #define ETH_MIB_LATE_COLLISION 0x7c
342
343 /* Port serial status reg (PSR) */
344 #define ETH_INTERFACE_PCM 0x00000001
345 #define ETH_LINK_IS_UP 0x00000002
346 #define ETH_PORT_AT_FULL_DUPLEX 0x00000004
347 #define ETH_RX_FLOW_CTRL_ENABLED 0x00000008
348 #define ETH_GMII_SPEED_1000 0x00000010
349 #define ETH_MII_SPEED_100 0x00000020
350 #define ETH_TX_IN_PROGRESS 0x00000080
351 #define ETH_BYPASS_ACTIVE 0x00000100
352 #define ETH_PORT_AT_PARTITION_STATE 0x00000200
353 #define ETH_PORT_TX_FIFO_EMPTY 0x00000400
354
355 /* SMI reg */
356 #define ETH_SMI_BUSY 0x10000000 /* 0 - Write, 1 - Read */
357 #define ETH_SMI_READ_VALID 0x08000000 /* 0 - Write, 1 - Read */
358 #define ETH_SMI_OPCODE_WRITE 0 /* Completion of Read */
359 #define ETH_SMI_OPCODE_READ 0x04000000 /* Operation is in progress */
360
361 /* Interrupt Cause Register Bit Definitions */
362
363 /* SDMA command status fields macros */
364
365 /* Tx & Rx descriptors status */
366 #define ETH_ERROR_SUMMARY 0x00000001
367
368 /* Tx & Rx descriptors command */
369 #define ETH_BUFFER_OWNED_BY_DMA 0x80000000
370
371 /* Tx descriptors status */
372 #define ETH_LC_ERROR 0
373 #define ETH_UR_ERROR 0x00000002
374 #define ETH_RL_ERROR 0x00000004
375 #define ETH_LLC_SNAP_FORMAT 0x00000200
376
377 /* Rx descriptors status */
378 #define ETH_OVERRUN_ERROR 0x00000002
379 #define ETH_MAX_FRAME_LENGTH_ERROR 0x00000004
380 #define ETH_RESOURCE_ERROR 0x00000006
381 #define ETH_VLAN_TAGGED 0x00080000
382 #define ETH_BPDU_FRAME 0x00100000
383 #define ETH_UDP_FRAME_OVER_IP_V_4 0x00200000
384 #define ETH_OTHER_FRAME_TYPE 0x00400000
385 #define ETH_LAYER_2_IS_ETH_V_2 0x00800000
386 #define ETH_FRAME_TYPE_IP_V_4 0x01000000
387 #define ETH_FRAME_HEADER_OK 0x02000000
388 #define ETH_RX_LAST_DESC 0x04000000
389 #define ETH_RX_FIRST_DESC 0x08000000
390 #define ETH_UNKNOWN_DESTINATION_ADDR 0x10000000
391 #define ETH_RX_ENABLE_INTERRUPT 0x20000000
392 #define ETH_LAYER_4_CHECKSUM_OK 0x40000000
393
394 /* Rx descriptors byte count */
395 #define ETH_FRAME_FRAGMENTED 0x00000004
396
397 /* Tx descriptors command */
398 #define ETH_LAYER_4_CHECKSUM_FIRST_DESC 0x00000400
399 #define ETH_FRAME_SET_TO_VLAN 0x00008000
400 #define ETH_UDP_FRAME 0x00010000
401 #define ETH_GEN_TCP_UDP_CHECKSUM 0x00020000
402 #define ETH_GEN_IP_V_4_CHECKSUM 0x00040000
403 #define ETH_ZERO_PADDING 0x00080000
404 #define ETH_TX_LAST_DESC 0x00100000
405 #define ETH_TX_FIRST_DESC 0x00200000
406 #define ETH_GEN_CRC 0x00400000
407 #define ETH_TX_ENABLE_INTERRUPT 0x00800000
408 #define ETH_AUTO_MODE 0x40000000
409
410 #define ETH_TX_IHL_SHIFT 11
411
412 /* typedefs */
413
414 typedef enum _eth_func_ret_status {
415 ETH_OK, /* Returned as expected. */
416 ETH_ERROR, /* Fundamental error. */
417 ETH_RETRY, /* Could not process request. Try later.*/
418 ETH_END_OF_JOB, /* Ring has nothing to process. */
419 ETH_QUEUE_FULL, /* Ring resource error. */
420 ETH_QUEUE_LAST_RESOURCE /* Ring resources about to exhaust. */
421 } ETH_FUNC_RET_STATUS;
422
423 /* These are for big-endian machines. Little endian needs different
424 * definitions.
425 */
426 #if defined(__BIG_ENDIAN)
427 struct eth_rx_desc {
428 u16 byte_cnt; /* Descriptor buffer byte count */
429 u16 buf_size; /* Buffer size */
430 u32 cmd_sts; /* Descriptor command status */
431 u32 next_desc_ptr; /* Next descriptor pointer */
432 u32 buf_ptr; /* Descriptor buffer pointer */
433 };
434
435 struct eth_tx_desc {
436 u16 byte_cnt; /* buffer byte count */
437 u16 l4i_chk; /* CPU provided TCP checksum */
438 u32 cmd_sts; /* Command/status field */
439 u32 next_desc_ptr; /* Pointer to next descriptor */
440 u32 buf_ptr; /* pointer to buffer for this descriptor*/
441 };
442 #elif defined(__LITTLE_ENDIAN)
443 struct eth_rx_desc {
444 u32 cmd_sts; /* Descriptor command status */
445 u16 buf_size; /* Buffer size */
446 u16 byte_cnt; /* Descriptor buffer byte count */
447 u32 buf_ptr; /* Descriptor buffer pointer */
448 u32 next_desc_ptr; /* Next descriptor pointer */
449 };
450
451 struct eth_tx_desc {
452 u32 cmd_sts; /* Command/status field */
453 u16 l4i_chk; /* CPU provided TCP checksum */
454 u16 byte_cnt; /* buffer byte count */
455 u32 buf_ptr; /* pointer to buffer for this descriptor*/
456 u32 next_desc_ptr; /* Pointer to next descriptor */
457 };
458 #else
459 #error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined
460 #endif
461
462 /* Unified struct for Rx and Tx operations. The user is not required to */
463 /* be familier with neither Tx nor Rx descriptors. */
464 struct pkt_info {
465 unsigned short byte_cnt; /* Descriptor buffer byte count */
466 unsigned short l4i_chk; /* Tx CPU provided TCP Checksum */
467 unsigned int cmd_sts; /* Descriptor command status */
468 dma_addr_t buf_ptr; /* Descriptor buffer pointer */
469 struct sk_buff *return_info; /* User resource return information */
470 };
471
472 /* Ethernet port specific information */
473 struct mv643xx_mib_counters {
474 u64 good_octets_received;
475 u32 bad_octets_received;
476 u32 internal_mac_transmit_err;
477 u32 good_frames_received;
478 u32 bad_frames_received;
479 u32 broadcast_frames_received;
480 u32 multicast_frames_received;
481 u32 frames_64_octets;
482 u32 frames_65_to_127_octets;
483 u32 frames_128_to_255_octets;
484 u32 frames_256_to_511_octets;
485 u32 frames_512_to_1023_octets;
486 u32 frames_1024_to_max_octets;
487 u64 good_octets_sent;
488 u32 good_frames_sent;
489 u32 excessive_collision;
490 u32 multicast_frames_sent;
491 u32 broadcast_frames_sent;
492 u32 unrec_mac_control_received;
493 u32 fc_sent;
494 u32 good_fc_received;
495 u32 bad_fc_received;
496 u32 undersize_received;
497 u32 fragments_received;
498 u32 oversize_received;
499 u32 jabber_received;
500 u32 mac_receive_error;
501 u32 bad_crc_event;
502 u32 collision;
503 u32 late_collision;
504 };
505
506 struct mv643xx_private {
507 int port_num; /* User Ethernet port number */
508
509 u32 rx_sram_addr; /* Base address of rx sram area */
510 u32 rx_sram_size; /* Size of rx sram area */
511 u32 tx_sram_addr; /* Base address of tx sram area */
512 u32 tx_sram_size; /* Size of tx sram area */
513
514 int rx_resource_err; /* Rx ring resource error flag */
515
516 /* Tx/Rx rings managment indexes fields. For driver use */
517
518 /* Next available and first returning Rx resource */
519 int rx_curr_desc_q, rx_used_desc_q;
520
521 /* Next available and first returning Tx resource */
522 int tx_curr_desc_q, tx_used_desc_q;
523
524 #ifdef MV643XX_TX_FAST_REFILL
525 u32 tx_clean_threshold;
526 #endif
527
528 struct eth_rx_desc *p_rx_desc_area;
529 dma_addr_t rx_desc_dma;
530 int rx_desc_area_size;
531 struct sk_buff **rx_skb;
532
533 struct eth_tx_desc *p_tx_desc_area;
534 dma_addr_t tx_desc_dma;
535 int tx_desc_area_size;
536 struct sk_buff **tx_skb;
537
538 struct work_struct tx_timeout_task;
539
540 struct net_device *dev;
541 struct napi_struct napi;
542 struct net_device_stats stats;
543 struct mv643xx_mib_counters mib_counters;
544 spinlock_t lock;
545 /* Size of Tx Ring per queue */
546 int tx_ring_size;
547 /* Number of tx descriptors in use */
548 int tx_desc_count;
549 /* Size of Rx Ring per queue */
550 int rx_ring_size;
551 /* Number of rx descriptors in use */
552 int rx_desc_count;
553
554 /*
555 * Used in case RX Ring is empty, which can be caused when
556 * system does not have resources (skb's)
557 */
558 struct timer_list timeout;
559
560 u32 rx_int_coal;
561 u32 tx_int_coal;
562 struct mii_if_info mii;
563 };
564
565 /* Static function declarations */
566 static void eth_port_init(struct mv643xx_private *mp);
567 static void eth_port_reset(struct mv643xx_private *mp);
568 static void eth_port_start(struct net_device *dev);
569
570 static void ethernet_phy_reset(struct mv643xx_private *mp);
571
572 static void eth_port_write_smi_reg(struct mv643xx_private *mp,
573 unsigned int phy_reg, unsigned int value);
574
575 static void eth_port_read_smi_reg(struct mv643xx_private *mp,
576 unsigned int phy_reg, unsigned int *value);
577
578 static void eth_clear_mib_counters(struct mv643xx_private *mp);
579
580 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
581 struct pkt_info *p_pkt_info);
582 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
583 struct pkt_info *p_pkt_info);
584
585 static void eth_port_uc_addr_get(struct mv643xx_private *mp,
586 unsigned char *p_addr);
587 static void eth_port_uc_addr_set(struct mv643xx_private *mp,
588 unsigned char *p_addr);
589 static void eth_port_set_multicast_list(struct net_device *);
590 static void mv643xx_eth_port_enable_tx(struct mv643xx_private *mp,
591 unsigned int queues);
592 static void mv643xx_eth_port_enable_rx(struct mv643xx_private *mp,
593 unsigned int queues);
594 static unsigned int mv643xx_eth_port_disable_tx(struct mv643xx_private *mp);
595 static unsigned int mv643xx_eth_port_disable_rx(struct mv643xx_private *mp);
596 static int mv643xx_eth_open(struct net_device *);
597 static int mv643xx_eth_stop(struct net_device *);
598 static void eth_port_init_mac_tables(struct mv643xx_private *mp);
599 #ifdef MV643XX_NAPI
600 static int mv643xx_poll(struct napi_struct *napi, int budget);
601 #endif
602 static int ethernet_phy_get(struct mv643xx_private *mp);
603 static void ethernet_phy_set(struct mv643xx_private *mp, int phy_addr);
604 static int ethernet_phy_detect(struct mv643xx_private *mp);
605 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
606 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
607 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
608 static const struct ethtool_ops mv643xx_ethtool_ops;
609
610 static char mv643xx_driver_name[] = "mv643xx_eth";
611 static char mv643xx_driver_version[] = "1.0";
612
613 static void __iomem *mv643xx_eth_base;
614
615 /* used to protect SMI_REG, which is shared across ports */
616 static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
617
618 static inline u32 rdl(struct mv643xx_private *mp, int offset)
619 {
620 return readl(mv643xx_eth_base + offset);
621 }
622
623 static inline void wrl(struct mv643xx_private *mp, int offset, u32 data)
624 {
625 writel(data, mv643xx_eth_base + offset);
626 }
627
628 /*
629 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
630 *
631 * Input : pointer to ethernet interface network device structure
632 * new mtu size
633 * Output : 0 upon success, -EINVAL upon failure
634 */
635 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
636 {
637 if ((new_mtu > 9500) || (new_mtu < 64))
638 return -EINVAL;
639
640 dev->mtu = new_mtu;
641 if (!netif_running(dev))
642 return 0;
643
644 /*
645 * Stop and then re-open the interface. This will allocate RX
646 * skbs of the new MTU.
647 * There is a possible danger that the open will not succeed,
648 * due to memory being full, which might fail the open function.
649 */
650 mv643xx_eth_stop(dev);
651 if (mv643xx_eth_open(dev)) {
652 printk(KERN_ERR "%s: Fatal error on opening device\n",
653 dev->name);
654 }
655
656 return 0;
657 }
658
659 /*
660 * mv643xx_eth_rx_refill_descs
661 *
662 * Fills / refills RX queue on a certain gigabit ethernet port
663 *
664 * Input : pointer to ethernet interface network device structure
665 * Output : N/A
666 */
667 static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
668 {
669 struct mv643xx_private *mp = netdev_priv(dev);
670 struct pkt_info pkt_info;
671 struct sk_buff *skb;
672 int unaligned;
673
674 while (mp->rx_desc_count < mp->rx_ring_size) {
675 skb = dev_alloc_skb(ETH_RX_SKB_SIZE + dma_get_cache_alignment());
676 if (!skb)
677 break;
678 mp->rx_desc_count++;
679 unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1);
680 if (unaligned)
681 skb_reserve(skb, dma_get_cache_alignment() - unaligned);
682 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
683 pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
684 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
685 ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
686 pkt_info.return_info = skb;
687 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
688 printk(KERN_ERR
689 "%s: Error allocating RX Ring\n", dev->name);
690 break;
691 }
692 skb_reserve(skb, ETH_HW_IP_ALIGN);
693 }
694 /*
695 * If RX ring is empty of SKB, set a timer to try allocating
696 * again at a later time.
697 */
698 if (mp->rx_desc_count == 0) {
699 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
700 mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
701 add_timer(&mp->timeout);
702 }
703 }
704
705 /*
706 * mv643xx_eth_rx_refill_descs_timer_wrapper
707 *
708 * Timer routine to wake up RX queue filling task. This function is
709 * used only in case the RX queue is empty, and all alloc_skb has
710 * failed (due to out of memory event).
711 *
712 * Input : pointer to ethernet interface network device structure
713 * Output : N/A
714 */
715 static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
716 {
717 mv643xx_eth_rx_refill_descs((struct net_device *)data);
718 }
719
720 /*
721 * mv643xx_eth_update_mac_address
722 *
723 * Update the MAC address of the port in the address table
724 *
725 * Input : pointer to ethernet interface network device structure
726 * Output : N/A
727 */
728 static void mv643xx_eth_update_mac_address(struct net_device *dev)
729 {
730 struct mv643xx_private *mp = netdev_priv(dev);
731
732 eth_port_init_mac_tables(mp);
733 eth_port_uc_addr_set(mp, dev->dev_addr);
734 }
735
736 /*
737 * mv643xx_eth_set_rx_mode
738 *
739 * Change from promiscuos to regular rx mode
740 *
741 * Input : pointer to ethernet interface network device structure
742 * Output : N/A
743 */
744 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
745 {
746 struct mv643xx_private *mp = netdev_priv(dev);
747 u32 config_reg;
748
749 config_reg = rdl(mp, PORT_CONFIG_REG(mp->port_num));
750 if (dev->flags & IFF_PROMISC)
751 config_reg |= (u32) UNICAST_PROMISCUOUS_MODE;
752 else
753 config_reg &= ~(u32) UNICAST_PROMISCUOUS_MODE;
754 wrl(mp, PORT_CONFIG_REG(mp->port_num), config_reg);
755
756 eth_port_set_multicast_list(dev);
757 }
758
759 /*
760 * mv643xx_eth_set_mac_address
761 *
762 * Change the interface's mac address.
763 * No special hardware thing should be done because interface is always
764 * put in promiscuous mode.
765 *
766 * Input : pointer to ethernet interface network device structure and
767 * a pointer to the designated entry to be added to the cache.
768 * Output : zero upon success, negative upon failure
769 */
770 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
771 {
772 int i;
773
774 for (i = 0; i < 6; i++)
775 /* +2 is for the offset of the HW addr type */
776 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
777 mv643xx_eth_update_mac_address(dev);
778 return 0;
779 }
780
781 /*
782 * mv643xx_eth_tx_timeout
783 *
784 * Called upon a timeout on transmitting a packet
785 *
786 * Input : pointer to ethernet interface network device structure.
787 * Output : N/A
788 */
789 static void mv643xx_eth_tx_timeout(struct net_device *dev)
790 {
791 struct mv643xx_private *mp = netdev_priv(dev);
792
793 printk(KERN_INFO "%s: TX timeout ", dev->name);
794
795 /* Do the reset outside of interrupt context */
796 schedule_work(&mp->tx_timeout_task);
797 }
798
799 /*
800 * mv643xx_eth_tx_timeout_task
801 *
802 * Actual routine to reset the adapter when a timeout on Tx has occurred
803 */
804 static void mv643xx_eth_tx_timeout_task(struct work_struct *ugly)
805 {
806 struct mv643xx_private *mp = container_of(ugly, struct mv643xx_private,
807 tx_timeout_task);
808 struct net_device *dev = mp->dev;
809
810 if (!netif_running(dev))
811 return;
812
813 netif_stop_queue(dev);
814
815 eth_port_reset(mp);
816 eth_port_start(dev);
817
818 if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
819 netif_wake_queue(dev);
820 }
821
822 /**
823 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
824 *
825 * If force is non-zero, frees uncompleted descriptors as well
826 */
827 static int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
828 {
829 struct mv643xx_private *mp = netdev_priv(dev);
830 struct eth_tx_desc *desc;
831 u32 cmd_sts;
832 struct sk_buff *skb;
833 unsigned long flags;
834 int tx_index;
835 dma_addr_t addr;
836 int count;
837 int released = 0;
838
839 while (mp->tx_desc_count > 0) {
840 spin_lock_irqsave(&mp->lock, flags);
841
842 /* tx_desc_count might have changed before acquiring the lock */
843 if (mp->tx_desc_count <= 0) {
844 spin_unlock_irqrestore(&mp->lock, flags);
845 return released;
846 }
847
848 tx_index = mp->tx_used_desc_q;
849 desc = &mp->p_tx_desc_area[tx_index];
850 cmd_sts = desc->cmd_sts;
851
852 if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
853 spin_unlock_irqrestore(&mp->lock, flags);
854 return released;
855 }
856
857 mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
858 mp->tx_desc_count--;
859
860 addr = desc->buf_ptr;
861 count = desc->byte_cnt;
862 skb = mp->tx_skb[tx_index];
863 if (skb)
864 mp->tx_skb[tx_index] = NULL;
865
866 if (cmd_sts & ETH_ERROR_SUMMARY) {
867 printk("%s: Error in TX\n", dev->name);
868 dev->stats.tx_errors++;
869 }
870
871 spin_unlock_irqrestore(&mp->lock, flags);
872
873 if (cmd_sts & ETH_TX_FIRST_DESC)
874 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
875 else
876 dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
877
878 if (skb)
879 dev_kfree_skb_irq(skb);
880
881 released = 1;
882 }
883
884 return released;
885 }
886
887 static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
888 {
889 struct mv643xx_private *mp = netdev_priv(dev);
890
891 if (mv643xx_eth_free_tx_descs(dev, 0) &&
892 mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
893 netif_wake_queue(dev);
894 }
895
896 static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
897 {
898 mv643xx_eth_free_tx_descs(dev, 1);
899 }
900
901 /*
902 * mv643xx_eth_receive
903 *
904 * This function is forward packets that are received from the port's
905 * queues toward kernel core or FastRoute them to another interface.
906 *
907 * Input : dev - a pointer to the required interface
908 * max - maximum number to receive (0 means unlimted)
909 *
910 * Output : number of served packets
911 */
912 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
913 {
914 struct mv643xx_private *mp = netdev_priv(dev);
915 struct net_device_stats *stats = &dev->stats;
916 unsigned int received_packets = 0;
917 struct sk_buff *skb;
918 struct pkt_info pkt_info;
919
920 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
921 dma_unmap_single(NULL, pkt_info.buf_ptr, ETH_RX_SKB_SIZE,
922 DMA_FROM_DEVICE);
923 mp->rx_desc_count--;
924 received_packets++;
925
926 /*
927 * Update statistics.
928 * Note byte count includes 4 byte CRC count
929 */
930 stats->rx_packets++;
931 stats->rx_bytes += pkt_info.byte_cnt;
932 skb = pkt_info.return_info;
933 /*
934 * In case received a packet without first / last bits on OR
935 * the error summary bit is on, the packets needs to be dropeed.
936 */
937 if (((pkt_info.cmd_sts
938 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
939 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
940 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
941 stats->rx_dropped++;
942 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
943 ETH_RX_LAST_DESC)) !=
944 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
945 if (net_ratelimit())
946 printk(KERN_ERR
947 "%s: Received packet spread "
948 "on multiple descriptors\n",
949 dev->name);
950 }
951 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
952 stats->rx_errors++;
953
954 dev_kfree_skb_irq(skb);
955 } else {
956 /*
957 * The -4 is for the CRC in the trailer of the
958 * received packet
959 */
960 skb_put(skb, pkt_info.byte_cnt - 4);
961
962 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
963 skb->ip_summed = CHECKSUM_UNNECESSARY;
964 skb->csum = htons(
965 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
966 }
967 skb->protocol = eth_type_trans(skb, dev);
968 #ifdef MV643XX_NAPI
969 netif_receive_skb(skb);
970 #else
971 netif_rx(skb);
972 #endif
973 }
974 dev->last_rx = jiffies;
975 }
976 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
977
978 return received_packets;
979 }
980
981 /* Set the mv643xx port configuration register for the speed/duplex mode. */
982 static void mv643xx_eth_update_pscr(struct net_device *dev,
983 struct ethtool_cmd *ecmd)
984 {
985 struct mv643xx_private *mp = netdev_priv(dev);
986 int port_num = mp->port_num;
987 u32 o_pscr, n_pscr;
988 unsigned int queues;
989
990 o_pscr = rdl(mp, PORT_SERIAL_CONTROL_REG(port_num));
991 n_pscr = o_pscr;
992
993 /* clear speed, duplex and rx buffer size fields */
994 n_pscr &= ~(SET_MII_SPEED_TO_100 |
995 SET_GMII_SPEED_TO_1000 |
996 SET_FULL_DUPLEX_MODE |
997 MAX_RX_PACKET_MASK);
998
999 if (ecmd->duplex == DUPLEX_FULL)
1000 n_pscr |= SET_FULL_DUPLEX_MODE;
1001
1002 if (ecmd->speed == SPEED_1000)
1003 n_pscr |= SET_GMII_SPEED_TO_1000 |
1004 MAX_RX_PACKET_9700BYTE;
1005 else {
1006 if (ecmd->speed == SPEED_100)
1007 n_pscr |= SET_MII_SPEED_TO_100;
1008 n_pscr |= MAX_RX_PACKET_1522BYTE;
1009 }
1010
1011 if (n_pscr != o_pscr) {
1012 if ((o_pscr & SERIAL_PORT_ENABLE) == 0)
1013 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), n_pscr);
1014 else {
1015 queues = mv643xx_eth_port_disable_tx(mp);
1016
1017 o_pscr &= ~SERIAL_PORT_ENABLE;
1018 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), o_pscr);
1019 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), n_pscr);
1020 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), n_pscr);
1021 if (queues)
1022 mv643xx_eth_port_enable_tx(mp, queues);
1023 }
1024 }
1025 }
1026
1027 /*
1028 * mv643xx_eth_int_handler
1029 *
1030 * Main interrupt handler for the gigbit ethernet ports
1031 *
1032 * Input : irq - irq number (not used)
1033 * dev_id - a pointer to the required interface's data structure
1034 * regs - not used
1035 * Output : N/A
1036 */
1037
1038 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id)
1039 {
1040 struct net_device *dev = (struct net_device *)dev_id;
1041 struct mv643xx_private *mp = netdev_priv(dev);
1042 u32 eth_int_cause, eth_int_cause_ext = 0;
1043 unsigned int port_num = mp->port_num;
1044
1045 /* Read interrupt cause registers */
1046 eth_int_cause = rdl(mp, INTERRUPT_CAUSE_REG(port_num)) &
1047 ETH_INT_UNMASK_ALL;
1048 if (eth_int_cause & ETH_INT_CAUSE_EXT) {
1049 eth_int_cause_ext = rdl(mp,
1050 INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
1051 ETH_INT_UNMASK_ALL_EXT;
1052 wrl(mp, INTERRUPT_CAUSE_EXTEND_REG(port_num),
1053 ~eth_int_cause_ext);
1054 }
1055
1056 /* PHY status changed */
1057 if (eth_int_cause_ext & (ETH_INT_CAUSE_PHY | ETH_INT_CAUSE_STATE)) {
1058 struct ethtool_cmd cmd;
1059
1060 if (mii_link_ok(&mp->mii)) {
1061 mii_ethtool_gset(&mp->mii, &cmd);
1062 mv643xx_eth_update_pscr(dev, &cmd);
1063 mv643xx_eth_port_enable_tx(mp, ETH_TX_QUEUES_ENABLED);
1064 if (!netif_carrier_ok(dev)) {
1065 netif_carrier_on(dev);
1066 if (mp->tx_ring_size - mp->tx_desc_count >=
1067 MAX_DESCS_PER_SKB)
1068 netif_wake_queue(dev);
1069 }
1070 } else if (netif_carrier_ok(dev)) {
1071 netif_stop_queue(dev);
1072 netif_carrier_off(dev);
1073 }
1074 }
1075
1076 #ifdef MV643XX_NAPI
1077 if (eth_int_cause & ETH_INT_CAUSE_RX) {
1078 /* schedule the NAPI poll routine to maintain port */
1079 wrl(mp, INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1080
1081 /* wait for previous write to complete */
1082 rdl(mp, INTERRUPT_MASK_REG(port_num));
1083
1084 netif_rx_schedule(dev, &mp->napi);
1085 }
1086 #else
1087 if (eth_int_cause & ETH_INT_CAUSE_RX)
1088 mv643xx_eth_receive_queue(dev, INT_MAX);
1089 #endif
1090 if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
1091 mv643xx_eth_free_completed_tx_descs(dev);
1092
1093 /*
1094 * If no real interrupt occured, exit.
1095 * This can happen when using gigE interrupt coalescing mechanism.
1096 */
1097 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
1098 return IRQ_NONE;
1099
1100 return IRQ_HANDLED;
1101 }
1102
1103 #ifdef MV643XX_COAL
1104
1105 /*
1106 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
1107 *
1108 * DESCRIPTION:
1109 * This routine sets the RX coalescing interrupt mechanism parameter.
1110 * This parameter is a timeout counter, that counts in 64 t_clk
1111 * chunks ; that when timeout event occurs a maskable interrupt
1112 * occurs.
1113 * The parameter is calculated using the tClk of the MV-643xx chip
1114 * , and the required delay of the interrupt in usec.
1115 *
1116 * INPUT:
1117 * struct mv643xx_private *mp Ethernet port
1118 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
1119 * unsigned int delay Delay in usec
1120 *
1121 * OUTPUT:
1122 * Interrupt coalescing mechanism value is set in MV-643xx chip.
1123 *
1124 * RETURN:
1125 * The interrupt coalescing value set in the gigE port.
1126 *
1127 */
1128 static unsigned int eth_port_set_rx_coal(struct mv643xx_private *mp,
1129 unsigned int t_clk, unsigned int delay)
1130 {
1131 unsigned int port_num = mp->port_num;
1132 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
1133
1134 /* Set RX Coalescing mechanism */
1135 wrl(mp, SDMA_CONFIG_REG(port_num),
1136 ((coal & 0x3fff) << 8) |
1137 (rdl(mp, SDMA_CONFIG_REG(port_num))
1138 & 0xffc000ff));
1139
1140 return coal;
1141 }
1142 #endif
1143
1144 /*
1145 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
1146 *
1147 * DESCRIPTION:
1148 * This routine sets the TX coalescing interrupt mechanism parameter.
1149 * This parameter is a timeout counter, that counts in 64 t_clk
1150 * chunks ; that when timeout event occurs a maskable interrupt
1151 * occurs.
1152 * The parameter is calculated using the t_cLK frequency of the
1153 * MV-643xx chip and the required delay in the interrupt in uSec
1154 *
1155 * INPUT:
1156 * struct mv643xx_private *mp Ethernet port
1157 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
1158 * unsigned int delay Delay in uSeconds
1159 *
1160 * OUTPUT:
1161 * Interrupt coalescing mechanism value is set in MV-643xx chip.
1162 *
1163 * RETURN:
1164 * The interrupt coalescing value set in the gigE port.
1165 *
1166 */
1167 static unsigned int eth_port_set_tx_coal(struct mv643xx_private *mp,
1168 unsigned int t_clk, unsigned int delay)
1169 {
1170 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
1171
1172 /* Set TX Coalescing mechanism */
1173 wrl(mp, TX_FIFO_URGENT_THRESHOLD_REG(mp->port_num), coal << 4);
1174
1175 return coal;
1176 }
1177
1178 /*
1179 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
1180 *
1181 * DESCRIPTION:
1182 * This function prepares a Rx chained list of descriptors and packet
1183 * buffers in a form of a ring. The routine must be called after port
1184 * initialization routine and before port start routine.
1185 * The Ethernet SDMA engine uses CPU bus addresses to access the various
1186 * devices in the system (i.e. DRAM). This function uses the ethernet
1187 * struct 'virtual to physical' routine (set by the user) to set the ring
1188 * with physical addresses.
1189 *
1190 * INPUT:
1191 * struct mv643xx_private *mp Ethernet Port Control srtuct.
1192 *
1193 * OUTPUT:
1194 * The routine updates the Ethernet port control struct with information
1195 * regarding the Rx descriptors and buffers.
1196 *
1197 * RETURN:
1198 * None.
1199 */
1200 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
1201 {
1202 volatile struct eth_rx_desc *p_rx_desc;
1203 int rx_desc_num = mp->rx_ring_size;
1204 int i;
1205
1206 /* initialize the next_desc_ptr links in the Rx descriptors ring */
1207 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
1208 for (i = 0; i < rx_desc_num; i++) {
1209 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
1210 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
1211 }
1212
1213 /* Save Rx desc pointer to driver struct. */
1214 mp->rx_curr_desc_q = 0;
1215 mp->rx_used_desc_q = 0;
1216
1217 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
1218 }
1219
1220 /*
1221 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
1222 *
1223 * DESCRIPTION:
1224 * This function prepares a Tx chained list of descriptors and packet
1225 * buffers in a form of a ring. The routine must be called after port
1226 * initialization routine and before port start routine.
1227 * The Ethernet SDMA engine uses CPU bus addresses to access the various
1228 * devices in the system (i.e. DRAM). This function uses the ethernet
1229 * struct 'virtual to physical' routine (set by the user) to set the ring
1230 * with physical addresses.
1231 *
1232 * INPUT:
1233 * struct mv643xx_private *mp Ethernet Port Control srtuct.
1234 *
1235 * OUTPUT:
1236 * The routine updates the Ethernet port control struct with information
1237 * regarding the Tx descriptors and buffers.
1238 *
1239 * RETURN:
1240 * None.
1241 */
1242 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
1243 {
1244 int tx_desc_num = mp->tx_ring_size;
1245 struct eth_tx_desc *p_tx_desc;
1246 int i;
1247
1248 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1249 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
1250 for (i = 0; i < tx_desc_num; i++) {
1251 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
1252 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
1253 }
1254
1255 mp->tx_curr_desc_q = 0;
1256 mp->tx_used_desc_q = 0;
1257
1258 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
1259 }
1260
1261 static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1262 {
1263 struct mv643xx_private *mp = netdev_priv(dev);
1264 int err;
1265
1266 spin_lock_irq(&mp->lock);
1267 err = mii_ethtool_sset(&mp->mii, cmd);
1268 spin_unlock_irq(&mp->lock);
1269
1270 return err;
1271 }
1272
1273 static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1274 {
1275 struct mv643xx_private *mp = netdev_priv(dev);
1276 int err;
1277
1278 spin_lock_irq(&mp->lock);
1279 err = mii_ethtool_gset(&mp->mii, cmd);
1280 spin_unlock_irq(&mp->lock);
1281
1282 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
1283 cmd->supported &= ~SUPPORTED_1000baseT_Half;
1284 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
1285
1286 return err;
1287 }
1288
1289 /*
1290 * mv643xx_eth_open
1291 *
1292 * This function is called when openning the network device. The function
1293 * should initialize all the hardware, initialize cyclic Rx/Tx
1294 * descriptors chain and buffers and allocate an IRQ to the network
1295 * device.
1296 *
1297 * Input : a pointer to the network device structure
1298 *
1299 * Output : zero of success , nonzero if fails.
1300 */
1301
1302 static int mv643xx_eth_open(struct net_device *dev)
1303 {
1304 struct mv643xx_private *mp = netdev_priv(dev);
1305 unsigned int port_num = mp->port_num;
1306 unsigned int size;
1307 int err;
1308
1309 /* Clear any pending ethernet port interrupts */
1310 wrl(mp, INTERRUPT_CAUSE_REG(port_num), 0);
1311 wrl(mp, INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1312 /* wait for previous write to complete */
1313 rdl(mp, INTERRUPT_CAUSE_EXTEND_REG(port_num));
1314
1315 err = request_irq(dev->irq, mv643xx_eth_int_handler,
1316 IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
1317 if (err) {
1318 printk(KERN_ERR "%s: Can not assign IRQ\n", dev->name);
1319 return -EAGAIN;
1320 }
1321
1322 eth_port_init(mp);
1323
1324 memset(&mp->timeout, 0, sizeof(struct timer_list));
1325 mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
1326 mp->timeout.data = (unsigned long)dev;
1327
1328 /* Allocate RX and TX skb rings */
1329 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
1330 GFP_KERNEL);
1331 if (!mp->rx_skb) {
1332 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
1333 err = -ENOMEM;
1334 goto out_free_irq;
1335 }
1336 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
1337 GFP_KERNEL);
1338 if (!mp->tx_skb) {
1339 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
1340 err = -ENOMEM;
1341 goto out_free_rx_skb;
1342 }
1343
1344 /* Allocate TX ring */
1345 mp->tx_desc_count = 0;
1346 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
1347 mp->tx_desc_area_size = size;
1348
1349 if (mp->tx_sram_size) {
1350 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
1351 mp->tx_sram_size);
1352 mp->tx_desc_dma = mp->tx_sram_addr;
1353 } else
1354 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
1355 &mp->tx_desc_dma,
1356 GFP_KERNEL);
1357
1358 if (!mp->p_tx_desc_area) {
1359 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
1360 dev->name, size);
1361 err = -ENOMEM;
1362 goto out_free_tx_skb;
1363 }
1364 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
1365 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
1366
1367 ether_init_tx_desc_ring(mp);
1368
1369 /* Allocate RX ring */
1370 mp->rx_desc_count = 0;
1371 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
1372 mp->rx_desc_area_size = size;
1373
1374 if (mp->rx_sram_size) {
1375 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
1376 mp->rx_sram_size);
1377 mp->rx_desc_dma = mp->rx_sram_addr;
1378 } else
1379 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
1380 &mp->rx_desc_dma,
1381 GFP_KERNEL);
1382
1383 if (!mp->p_rx_desc_area) {
1384 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
1385 dev->name, size);
1386 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
1387 dev->name);
1388 if (mp->rx_sram_size)
1389 iounmap(mp->p_tx_desc_area);
1390 else
1391 dma_free_coherent(NULL, mp->tx_desc_area_size,
1392 mp->p_tx_desc_area, mp->tx_desc_dma);
1393 err = -ENOMEM;
1394 goto out_free_tx_skb;
1395 }
1396 memset((void *)mp->p_rx_desc_area, 0, size);
1397
1398 ether_init_rx_desc_ring(mp);
1399
1400 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
1401
1402 #ifdef MV643XX_NAPI
1403 napi_enable(&mp->napi);
1404 #endif
1405
1406 eth_port_start(dev);
1407
1408 /* Interrupt Coalescing */
1409
1410 #ifdef MV643XX_COAL
1411 mp->rx_int_coal =
1412 eth_port_set_rx_coal(mp, 133000000, MV643XX_RX_COAL);
1413 #endif
1414
1415 mp->tx_int_coal =
1416 eth_port_set_tx_coal(mp, 133000000, MV643XX_TX_COAL);
1417
1418 /* Unmask phy and link status changes interrupts */
1419 wrl(mp, INTERRUPT_EXTEND_MASK_REG(port_num), ETH_INT_UNMASK_ALL_EXT);
1420
1421 /* Unmask RX buffer and TX end interrupt */
1422 wrl(mp, INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1423
1424 return 0;
1425
1426 out_free_tx_skb:
1427 kfree(mp->tx_skb);
1428 out_free_rx_skb:
1429 kfree(mp->rx_skb);
1430 out_free_irq:
1431 free_irq(dev->irq, dev);
1432
1433 return err;
1434 }
1435
1436 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
1437 {
1438 struct mv643xx_private *mp = netdev_priv(dev);
1439
1440 /* Stop Tx Queues */
1441 mv643xx_eth_port_disable_tx(mp);
1442
1443 /* Free outstanding skb's on TX ring */
1444 mv643xx_eth_free_all_tx_descs(dev);
1445
1446 BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
1447
1448 /* Free TX ring */
1449 if (mp->tx_sram_size)
1450 iounmap(mp->p_tx_desc_area);
1451 else
1452 dma_free_coherent(NULL, mp->tx_desc_area_size,
1453 mp->p_tx_desc_area, mp->tx_desc_dma);
1454 }
1455
1456 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
1457 {
1458 struct mv643xx_private *mp = netdev_priv(dev);
1459 int curr;
1460
1461 /* Stop RX Queues */
1462 mv643xx_eth_port_disable_rx(mp);
1463
1464 /* Free preallocated skb's on RX rings */
1465 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
1466 if (mp->rx_skb[curr]) {
1467 dev_kfree_skb(mp->rx_skb[curr]);
1468 mp->rx_desc_count--;
1469 }
1470 }
1471
1472 if (mp->rx_desc_count)
1473 printk(KERN_ERR
1474 "%s: Error in freeing Rx Ring. %d skb's still"
1475 " stuck in RX Ring - ignoring them\n", dev->name,
1476 mp->rx_desc_count);
1477 /* Free RX ring */
1478 if (mp->rx_sram_size)
1479 iounmap(mp->p_rx_desc_area);
1480 else
1481 dma_free_coherent(NULL, mp->rx_desc_area_size,
1482 mp->p_rx_desc_area, mp->rx_desc_dma);
1483 }
1484
1485 /*
1486 * mv643xx_eth_stop
1487 *
1488 * This function is used when closing the network device.
1489 * It updates the hardware,
1490 * release all memory that holds buffers and descriptors and release the IRQ.
1491 * Input : a pointer to the device structure
1492 * Output : zero if success , nonzero if fails
1493 */
1494
1495 static int mv643xx_eth_stop(struct net_device *dev)
1496 {
1497 struct mv643xx_private *mp = netdev_priv(dev);
1498 unsigned int port_num = mp->port_num;
1499
1500 /* Mask all interrupts on ethernet port */
1501 wrl(mp, INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1502 /* wait for previous write to complete */
1503 rdl(mp, INTERRUPT_MASK_REG(port_num));
1504
1505 #ifdef MV643XX_NAPI
1506 napi_disable(&mp->napi);
1507 #endif
1508 netif_carrier_off(dev);
1509 netif_stop_queue(dev);
1510
1511 eth_port_reset(mp);
1512
1513 mv643xx_eth_free_tx_rings(dev);
1514 mv643xx_eth_free_rx_rings(dev);
1515
1516 free_irq(dev->irq, dev);
1517
1518 return 0;
1519 }
1520
1521 #ifdef MV643XX_NAPI
1522 /*
1523 * mv643xx_poll
1524 *
1525 * This function is used in case of NAPI
1526 */
1527 static int mv643xx_poll(struct napi_struct *napi, int budget)
1528 {
1529 struct mv643xx_private *mp = container_of(napi, struct mv643xx_private, napi);
1530 struct net_device *dev = mp->dev;
1531 unsigned int port_num = mp->port_num;
1532 int work_done;
1533
1534 #ifdef MV643XX_TX_FAST_REFILL
1535 if (++mp->tx_clean_threshold > 5) {
1536 mv643xx_eth_free_completed_tx_descs(dev);
1537 mp->tx_clean_threshold = 0;
1538 }
1539 #endif
1540
1541 work_done = 0;
1542 if ((rdl(mp, RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1543 != (u32) mp->rx_used_desc_q)
1544 work_done = mv643xx_eth_receive_queue(dev, budget);
1545
1546 if (work_done < budget) {
1547 netif_rx_complete(dev, napi);
1548 wrl(mp, INTERRUPT_CAUSE_REG(port_num), 0);
1549 wrl(mp, INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1550 wrl(mp, INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1551 }
1552
1553 return work_done;
1554 }
1555 #endif
1556
1557 /**
1558 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1559 *
1560 * Hardware can't handle unaligned fragments smaller than 9 bytes.
1561 * This helper function detects that case.
1562 */
1563
1564 static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1565 {
1566 unsigned int frag;
1567 skb_frag_t *fragp;
1568
1569 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1570 fragp = &skb_shinfo(skb)->frags[frag];
1571 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1572 return 1;
1573 }
1574 return 0;
1575 }
1576
1577 /**
1578 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1579 */
1580 static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1581 {
1582 int tx_desc_curr;
1583
1584 BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
1585
1586 tx_desc_curr = mp->tx_curr_desc_q;
1587 mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1588
1589 BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1590
1591 return tx_desc_curr;
1592 }
1593
1594 /**
1595 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1596 *
1597 * Ensure the data for each fragment to be transmitted is mapped properly,
1598 * then fill in descriptors in the tx hw queue.
1599 */
1600 static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1601 struct sk_buff *skb)
1602 {
1603 int frag;
1604 int tx_index;
1605 struct eth_tx_desc *desc;
1606
1607 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1608 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1609
1610 tx_index = eth_alloc_tx_desc_index(mp);
1611 desc = &mp->p_tx_desc_area[tx_index];
1612
1613 desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1614 /* Last Frag enables interrupt and frees the skb */
1615 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1616 desc->cmd_sts |= ETH_ZERO_PADDING |
1617 ETH_TX_LAST_DESC |
1618 ETH_TX_ENABLE_INTERRUPT;
1619 mp->tx_skb[tx_index] = skb;
1620 } else
1621 mp->tx_skb[tx_index] = NULL;
1622
1623 desc = &mp->p_tx_desc_area[tx_index];
1624 desc->l4i_chk = 0;
1625 desc->byte_cnt = this_frag->size;
1626 desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1627 this_frag->page_offset,
1628 this_frag->size,
1629 DMA_TO_DEVICE);
1630 }
1631 }
1632
1633 static inline __be16 sum16_as_be(__sum16 sum)
1634 {
1635 return (__force __be16)sum;
1636 }
1637
1638 /**
1639 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1640 *
1641 * Ensure the data for an skb to be transmitted is mapped properly,
1642 * then fill in descriptors in the tx hw queue and start the hardware.
1643 */
1644 static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1645 struct sk_buff *skb)
1646 {
1647 int tx_index;
1648 struct eth_tx_desc *desc;
1649 u32 cmd_sts;
1650 int length;
1651 int nr_frags = skb_shinfo(skb)->nr_frags;
1652
1653 cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1654
1655 tx_index = eth_alloc_tx_desc_index(mp);
1656 desc = &mp->p_tx_desc_area[tx_index];
1657
1658 if (nr_frags) {
1659 eth_tx_fill_frag_descs(mp, skb);
1660
1661 length = skb_headlen(skb);
1662 mp->tx_skb[tx_index] = NULL;
1663 } else {
1664 cmd_sts |= ETH_ZERO_PADDING |
1665 ETH_TX_LAST_DESC |
1666 ETH_TX_ENABLE_INTERRUPT;
1667 length = skb->len;
1668 mp->tx_skb[tx_index] = skb;
1669 }
1670
1671 desc->byte_cnt = length;
1672 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1673
1674 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1675 BUG_ON(skb->protocol != htons(ETH_P_IP));
1676
1677 cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1678 ETH_GEN_IP_V_4_CHECKSUM |
1679 ip_hdr(skb)->ihl << ETH_TX_IHL_SHIFT;
1680
1681 switch (ip_hdr(skb)->protocol) {
1682 case IPPROTO_UDP:
1683 cmd_sts |= ETH_UDP_FRAME;
1684 desc->l4i_chk = ntohs(sum16_as_be(udp_hdr(skb)->check));
1685 break;
1686 case IPPROTO_TCP:
1687 desc->l4i_chk = ntohs(sum16_as_be(tcp_hdr(skb)->check));
1688 break;
1689 default:
1690 BUG();
1691 }
1692 } else {
1693 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1694 cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1695 desc->l4i_chk = 0;
1696 }
1697
1698 /* ensure all other descriptors are written before first cmd_sts */
1699 wmb();
1700 desc->cmd_sts = cmd_sts;
1701
1702 /* ensure all descriptors are written before poking hardware */
1703 wmb();
1704 mv643xx_eth_port_enable_tx(mp, ETH_TX_QUEUES_ENABLED);
1705
1706 mp->tx_desc_count += nr_frags + 1;
1707 }
1708
1709 /**
1710 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1711 *
1712 */
1713 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1714 {
1715 struct mv643xx_private *mp = netdev_priv(dev);
1716 struct net_device_stats *stats = &dev->stats;
1717 unsigned long flags;
1718
1719 BUG_ON(netif_queue_stopped(dev));
1720
1721 if (has_tiny_unaligned_frags(skb) && __skb_linearize(skb)) {
1722 stats->tx_dropped++;
1723 printk(KERN_DEBUG "%s: failed to linearize tiny "
1724 "unaligned fragment\n", dev->name);
1725 return NETDEV_TX_BUSY;
1726 }
1727
1728 spin_lock_irqsave(&mp->lock, flags);
1729
1730 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
1731 printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
1732 netif_stop_queue(dev);
1733 spin_unlock_irqrestore(&mp->lock, flags);
1734 return NETDEV_TX_BUSY;
1735 }
1736
1737 eth_tx_submit_descs_for_skb(mp, skb);
1738 stats->tx_bytes += skb->len;
1739 stats->tx_packets++;
1740 dev->trans_start = jiffies;
1741
1742 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1743 netif_stop_queue(dev);
1744
1745 spin_unlock_irqrestore(&mp->lock, flags);
1746
1747 return NETDEV_TX_OK;
1748 }
1749
1750 #ifdef CONFIG_NET_POLL_CONTROLLER
1751 static void mv643xx_netpoll(struct net_device *netdev)
1752 {
1753 struct mv643xx_private *mp = netdev_priv(netdev);
1754 int port_num = mp->port_num;
1755
1756 wrl(mp, INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1757 /* wait for previous write to complete */
1758 rdl(mp, INTERRUPT_MASK_REG(port_num));
1759
1760 mv643xx_eth_int_handler(netdev->irq, netdev);
1761
1762 wrl(mp, INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1763 }
1764 #endif
1765
1766 static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1767 int speed, int duplex,
1768 struct ethtool_cmd *cmd)
1769 {
1770 struct mv643xx_private *mp = netdev_priv(dev);
1771
1772 memset(cmd, 0, sizeof(*cmd));
1773
1774 cmd->port = PORT_MII;
1775 cmd->transceiver = XCVR_INTERNAL;
1776 cmd->phy_address = phy_address;
1777
1778 if (speed == 0) {
1779 cmd->autoneg = AUTONEG_ENABLE;
1780 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1781 cmd->speed = SPEED_100;
1782 cmd->advertising = ADVERTISED_10baseT_Half |
1783 ADVERTISED_10baseT_Full |
1784 ADVERTISED_100baseT_Half |
1785 ADVERTISED_100baseT_Full;
1786 if (mp->mii.supports_gmii)
1787 cmd->advertising |= ADVERTISED_1000baseT_Full;
1788 } else {
1789 cmd->autoneg = AUTONEG_DISABLE;
1790 cmd->speed = speed;
1791 cmd->duplex = duplex;
1792 }
1793 }
1794
1795 /*/
1796 * mv643xx_eth_probe
1797 *
1798 * First function called after registering the network device.
1799 * It's purpose is to initialize the device as an ethernet device,
1800 * fill the ethernet device structure with pointers * to functions,
1801 * and set the MAC address of the interface
1802 *
1803 * Input : struct device *
1804 * Output : -ENOMEM if failed , 0 if success
1805 */
1806 static int mv643xx_eth_probe(struct platform_device *pdev)
1807 {
1808 struct mv643xx_eth_platform_data *pd;
1809 int port_num;
1810 struct mv643xx_private *mp;
1811 struct net_device *dev;
1812 u8 *p;
1813 struct resource *res;
1814 int err;
1815 struct ethtool_cmd cmd;
1816 int duplex = DUPLEX_HALF;
1817 int speed = 0; /* default to auto-negotiation */
1818 DECLARE_MAC_BUF(mac);
1819
1820 pd = pdev->dev.platform_data;
1821 if (pd == NULL) {
1822 printk(KERN_ERR "No mv643xx_eth_platform_data\n");
1823 return -ENODEV;
1824 }
1825
1826 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1827 if (!dev)
1828 return -ENOMEM;
1829
1830 platform_set_drvdata(pdev, dev);
1831
1832 mp = netdev_priv(dev);
1833 mp->dev = dev;
1834 #ifdef MV643XX_NAPI
1835 netif_napi_add(dev, &mp->napi, mv643xx_poll, 64);
1836 #endif
1837
1838 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1839 BUG_ON(!res);
1840 dev->irq = res->start;
1841
1842 dev->open = mv643xx_eth_open;
1843 dev->stop = mv643xx_eth_stop;
1844 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1845 dev->set_mac_address = mv643xx_eth_set_mac_address;
1846 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1847
1848 /* No need to Tx Timeout */
1849 dev->tx_timeout = mv643xx_eth_tx_timeout;
1850
1851 #ifdef CONFIG_NET_POLL_CONTROLLER
1852 dev->poll_controller = mv643xx_netpoll;
1853 #endif
1854
1855 dev->watchdog_timeo = 2 * HZ;
1856 dev->base_addr = 0;
1857 dev->change_mtu = mv643xx_eth_change_mtu;
1858 dev->do_ioctl = mv643xx_eth_do_ioctl;
1859 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1860
1861 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1862 #ifdef MAX_SKB_FRAGS
1863 /*
1864 * Zero copy can only work if we use Discovery II memory. Else, we will
1865 * have to map the buffers to ISA memory which is only 16 MB
1866 */
1867 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1868 #endif
1869 #endif
1870
1871 /* Configure the timeout task */
1872 INIT_WORK(&mp->tx_timeout_task, mv643xx_eth_tx_timeout_task);
1873
1874 spin_lock_init(&mp->lock);
1875
1876 port_num = mp->port_num = pd->port_number;
1877
1878 /* set default config values */
1879 eth_port_uc_addr_get(mp, dev->dev_addr);
1880 mp->rx_ring_size = PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1881 mp->tx_ring_size = PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1882
1883 if (is_valid_ether_addr(pd->mac_addr))
1884 memcpy(dev->dev_addr, pd->mac_addr, 6);
1885
1886 if (pd->phy_addr || pd->force_phy_addr)
1887 ethernet_phy_set(mp, pd->phy_addr);
1888
1889 if (pd->rx_queue_size)
1890 mp->rx_ring_size = pd->rx_queue_size;
1891
1892 if (pd->tx_queue_size)
1893 mp->tx_ring_size = pd->tx_queue_size;
1894
1895 if (pd->tx_sram_size) {
1896 mp->tx_sram_size = pd->tx_sram_size;
1897 mp->tx_sram_addr = pd->tx_sram_addr;
1898 }
1899
1900 if (pd->rx_sram_size) {
1901 mp->rx_sram_size = pd->rx_sram_size;
1902 mp->rx_sram_addr = pd->rx_sram_addr;
1903 }
1904
1905 duplex = pd->duplex;
1906 speed = pd->speed;
1907
1908 /* Hook up MII support for ethtool */
1909 mp->mii.dev = dev;
1910 mp->mii.mdio_read = mv643xx_mdio_read;
1911 mp->mii.mdio_write = mv643xx_mdio_write;
1912 mp->mii.phy_id = ethernet_phy_get(mp);
1913 mp->mii.phy_id_mask = 0x3f;
1914 mp->mii.reg_num_mask = 0x1f;
1915
1916 err = ethernet_phy_detect(mp);
1917 if (err) {
1918 pr_debug("%s: No PHY detected at addr %d\n",
1919 dev->name, ethernet_phy_get(mp));
1920 goto out;
1921 }
1922
1923 ethernet_phy_reset(mp);
1924 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
1925 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1926 mv643xx_eth_update_pscr(dev, &cmd);
1927 mv643xx_set_settings(dev, &cmd);
1928
1929 SET_NETDEV_DEV(dev, &pdev->dev);
1930 err = register_netdev(dev);
1931 if (err)
1932 goto out;
1933
1934 p = dev->dev_addr;
1935 printk(KERN_NOTICE
1936 "%s: port %d with MAC address %s\n",
1937 dev->name, port_num, print_mac(mac, p));
1938
1939 if (dev->features & NETIF_F_SG)
1940 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1941
1942 if (dev->features & NETIF_F_IP_CSUM)
1943 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1944 dev->name);
1945
1946 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1947 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1948 #endif
1949
1950 #ifdef MV643XX_COAL
1951 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1952 dev->name);
1953 #endif
1954
1955 #ifdef MV643XX_NAPI
1956 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1957 #endif
1958
1959 if (mp->tx_sram_size > 0)
1960 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1961
1962 return 0;
1963
1964 out:
1965 free_netdev(dev);
1966
1967 return err;
1968 }
1969
1970 static int mv643xx_eth_remove(struct platform_device *pdev)
1971 {
1972 struct net_device *dev = platform_get_drvdata(pdev);
1973
1974 unregister_netdev(dev);
1975 flush_scheduled_work();
1976
1977 free_netdev(dev);
1978 platform_set_drvdata(pdev, NULL);
1979 return 0;
1980 }
1981
1982 static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1983 {
1984 static int mv643xx_version_printed = 0;
1985 struct resource *res;
1986
1987 if (!mv643xx_version_printed++)
1988 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1989
1990 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1991 if (res == NULL)
1992 return -ENODEV;
1993
1994 mv643xx_eth_base = ioremap(res->start, res->end - res->start + 1);
1995 if (mv643xx_eth_base == NULL)
1996 return -ENOMEM;
1997
1998 return 0;
1999
2000 }
2001
2002 static int mv643xx_eth_shared_remove(struct platform_device *pdev)
2003 {
2004 iounmap(mv643xx_eth_base);
2005 mv643xx_eth_base = NULL;
2006
2007 return 0;
2008 }
2009
2010 static void mv643xx_eth_shutdown(struct platform_device *pdev)
2011 {
2012 struct net_device *dev = platform_get_drvdata(pdev);
2013 struct mv643xx_private *mp = netdev_priv(dev);
2014 unsigned int port_num = mp->port_num;
2015
2016 /* Mask all interrupts on ethernet port */
2017 wrl(mp, INTERRUPT_MASK_REG(port_num), 0);
2018 rdl(mp, INTERRUPT_MASK_REG(port_num));
2019
2020 eth_port_reset(mp);
2021 }
2022
2023 static struct platform_driver mv643xx_eth_driver = {
2024 .probe = mv643xx_eth_probe,
2025 .remove = mv643xx_eth_remove,
2026 .shutdown = mv643xx_eth_shutdown,
2027 .driver = {
2028 .name = MV643XX_ETH_NAME,
2029 },
2030 };
2031
2032 static struct platform_driver mv643xx_eth_shared_driver = {
2033 .probe = mv643xx_eth_shared_probe,
2034 .remove = mv643xx_eth_shared_remove,
2035 .driver = {
2036 .name = MV643XX_ETH_SHARED_NAME,
2037 },
2038 };
2039
2040 /*
2041 * mv643xx_init_module
2042 *
2043 * Registers the network drivers into the Linux kernel
2044 *
2045 * Input : N/A
2046 *
2047 * Output : N/A
2048 */
2049 static int __init mv643xx_init_module(void)
2050 {
2051 int rc;
2052
2053 rc = platform_driver_register(&mv643xx_eth_shared_driver);
2054 if (!rc) {
2055 rc = platform_driver_register(&mv643xx_eth_driver);
2056 if (rc)
2057 platform_driver_unregister(&mv643xx_eth_shared_driver);
2058 }
2059 return rc;
2060 }
2061
2062 /*
2063 * mv643xx_cleanup_module
2064 *
2065 * Registers the network drivers into the Linux kernel
2066 *
2067 * Input : N/A
2068 *
2069 * Output : N/A
2070 */
2071 static void __exit mv643xx_cleanup_module(void)
2072 {
2073 platform_driver_unregister(&mv643xx_eth_driver);
2074 platform_driver_unregister(&mv643xx_eth_shared_driver);
2075 }
2076
2077 module_init(mv643xx_init_module);
2078 module_exit(mv643xx_cleanup_module);
2079
2080 MODULE_LICENSE("GPL");
2081 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
2082 " and Dale Farnsworth");
2083 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
2084 MODULE_ALIAS("platform:mv643xx_eth");
2085
2086 /*
2087 * The second part is the low level driver of the gigE ethernet ports.
2088 */
2089
2090 /*
2091 * Marvell's Gigabit Ethernet controller low level driver
2092 *
2093 * DESCRIPTION:
2094 * This file introduce low level API to Marvell's Gigabit Ethernet
2095 * controller. This Gigabit Ethernet Controller driver API controls
2096 * 1) Operations (i.e. port init, start, reset etc').
2097 * 2) Data flow (i.e. port send, receive etc').
2098 * Each Gigabit Ethernet port is controlled via
2099 * struct mv643xx_private.
2100 * This struct includes user configuration information as well as
2101 * driver internal data needed for its operations.
2102 *
2103 * Supported Features:
2104 * - This low level driver is OS independent. Allocating memory for
2105 * the descriptor rings and buffers are not within the scope of
2106 * this driver.
2107 * - The user is free from Rx/Tx queue managing.
2108 * - This low level driver introduce functionality API that enable
2109 * the to operate Marvell's Gigabit Ethernet Controller in a
2110 * convenient way.
2111 * - Simple Gigabit Ethernet port operation API.
2112 * - Simple Gigabit Ethernet port data flow API.
2113 * - Data flow and operation API support per queue functionality.
2114 * - Support cached descriptors for better performance.
2115 * - Enable access to all four DRAM banks and internal SRAM memory
2116 * spaces.
2117 * - PHY access and control API.
2118 * - Port control register configuration API.
2119 * - Full control over Unicast and Multicast MAC configurations.
2120 *
2121 * Operation flow:
2122 *
2123 * Initialization phase
2124 * This phase complete the initialization of the the
2125 * mv643xx_private struct.
2126 * User information regarding port configuration has to be set
2127 * prior to calling the port initialization routine.
2128 *
2129 * In this phase any port Tx/Rx activity is halted, MIB counters
2130 * are cleared, PHY address is set according to user parameter and
2131 * access to DRAM and internal SRAM memory spaces.
2132 *
2133 * Driver ring initialization
2134 * Allocating memory for the descriptor rings and buffers is not
2135 * within the scope of this driver. Thus, the user is required to
2136 * allocate memory for the descriptors ring and buffers. Those
2137 * memory parameters are used by the Rx and Tx ring initialization
2138 * routines in order to curve the descriptor linked list in a form
2139 * of a ring.
2140 * Note: Pay special attention to alignment issues when using
2141 * cached descriptors/buffers. In this phase the driver store
2142 * information in the mv643xx_private struct regarding each queue
2143 * ring.
2144 *
2145 * Driver start
2146 * This phase prepares the Ethernet port for Rx and Tx activity.
2147 * It uses the information stored in the mv643xx_private struct to
2148 * initialize the various port registers.
2149 *
2150 * Data flow:
2151 * All packet references to/from the driver are done using
2152 * struct pkt_info.
2153 * This struct is a unified struct used with Rx and Tx operations.
2154 * This way the user is not required to be familiar with neither
2155 * Tx nor Rx descriptors structures.
2156 * The driver's descriptors rings are management by indexes.
2157 * Those indexes controls the ring resources and used to indicate
2158 * a SW resource error:
2159 * 'current'
2160 * This index points to the current available resource for use. For
2161 * example in Rx process this index will point to the descriptor
2162 * that will be passed to the user upon calling the receive
2163 * routine. In Tx process, this index will point to the descriptor
2164 * that will be assigned with the user packet info and transmitted.
2165 * 'used'
2166 * This index points to the descriptor that need to restore its
2167 * resources. For example in Rx process, using the Rx buffer return
2168 * API will attach the buffer returned in packet info to the
2169 * descriptor pointed by 'used'. In Tx process, using the Tx
2170 * descriptor return will merely return the user packet info with
2171 * the command status of the transmitted buffer pointed by the
2172 * 'used' index. Nevertheless, it is essential to use this routine
2173 * to update the 'used' index.
2174 * 'first'
2175 * This index supports Tx Scatter-Gather. It points to the first
2176 * descriptor of a packet assembled of multiple buffers. For
2177 * example when in middle of Such packet we have a Tx resource
2178 * error the 'curr' index get the value of 'first' to indicate
2179 * that the ring returned to its state before trying to transmit
2180 * this packet.
2181 *
2182 * Receive operation:
2183 * The eth_port_receive API set the packet information struct,
2184 * passed by the caller, with received information from the
2185 * 'current' SDMA descriptor.
2186 * It is the user responsibility to return this resource back
2187 * to the Rx descriptor ring to enable the reuse of this source.
2188 * Return Rx resource is done using the eth_rx_return_buff API.
2189 *
2190 * Prior to calling the initialization routine eth_port_init() the user
2191 * must set the following fields under mv643xx_private struct:
2192 * port_num User Ethernet port number.
2193 * port_config User port configuration value.
2194 * port_config_extend User port config extend value.
2195 * port_sdma_config User port SDMA config value.
2196 * port_serial_control User port serial control value.
2197 *
2198 * This driver data flow is done using the struct pkt_info which
2199 * is a unified struct for Rx and Tx operations:
2200 *
2201 * byte_cnt Tx/Rx descriptor buffer byte count.
2202 * l4i_chk CPU provided TCP Checksum. For Tx operation
2203 * only.
2204 * cmd_sts Tx/Rx descriptor command status.
2205 * buf_ptr Tx/Rx descriptor buffer pointer.
2206 * return_info Tx/Rx user resource return information.
2207 */
2208
2209 /* Ethernet Port routines */
2210 static void eth_port_set_filter_table_entry(struct mv643xx_private *mp,
2211 int table, unsigned char entry);
2212
2213 /*
2214 * eth_port_init - Initialize the Ethernet port driver
2215 *
2216 * DESCRIPTION:
2217 * This function prepares the ethernet port to start its activity:
2218 * 1) Completes the ethernet port driver struct initialization toward port
2219 * start routine.
2220 * 2) Resets the device to a quiescent state in case of warm reboot.
2221 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
2222 * 4) Clean MAC tables. The reset status of those tables is unknown.
2223 * 5) Set PHY address.
2224 * Note: Call this routine prior to eth_port_start routine and after
2225 * setting user values in the user fields of Ethernet port control
2226 * struct.
2227 *
2228 * INPUT:
2229 * struct mv643xx_private *mp Ethernet port control struct
2230 *
2231 * OUTPUT:
2232 * See description.
2233 *
2234 * RETURN:
2235 * None.
2236 */
2237 static void eth_port_init(struct mv643xx_private *mp)
2238 {
2239 mp->rx_resource_err = 0;
2240
2241 eth_port_reset(mp);
2242
2243 eth_port_init_mac_tables(mp);
2244 }
2245
2246 /*
2247 * eth_port_start - Start the Ethernet port activity.
2248 *
2249 * DESCRIPTION:
2250 * This routine prepares the Ethernet port for Rx and Tx activity:
2251 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
2252 * has been initialized a descriptor's ring (using
2253 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
2254 * 2. Initialize and enable the Ethernet configuration port by writing to
2255 * the port's configuration and command registers.
2256 * 3. Initialize and enable the SDMA by writing to the SDMA's
2257 * configuration and command registers. After completing these steps,
2258 * the ethernet port SDMA can starts to perform Rx and Tx activities.
2259 *
2260 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
2261 * to calling this function (use ether_init_tx_desc_ring for Tx queues
2262 * and ether_init_rx_desc_ring for Rx queues).
2263 *
2264 * INPUT:
2265 * dev - a pointer to the required interface
2266 *
2267 * OUTPUT:
2268 * Ethernet port is ready to receive and transmit.
2269 *
2270 * RETURN:
2271 * None.
2272 */
2273 static void eth_port_start(struct net_device *dev)
2274 {
2275 struct mv643xx_private *mp = netdev_priv(dev);
2276 unsigned int port_num = mp->port_num;
2277 int tx_curr_desc, rx_curr_desc;
2278 u32 pscr;
2279 struct ethtool_cmd ethtool_cmd;
2280
2281 /* Assignment of Tx CTRP of given queue */
2282 tx_curr_desc = mp->tx_curr_desc_q;
2283 wrl(mp, TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
2284 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
2285
2286 /* Assignment of Rx CRDP of given queue */
2287 rx_curr_desc = mp->rx_curr_desc_q;
2288 wrl(mp, RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
2289 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
2290
2291 /* Add the assigned Ethernet address to the port's address table */
2292 eth_port_uc_addr_set(mp, dev->dev_addr);
2293
2294 /* Assign port configuration and command. */
2295 wrl(mp, PORT_CONFIG_REG(port_num),
2296 PORT_CONFIG_DEFAULT_VALUE);
2297
2298 wrl(mp, PORT_CONFIG_EXTEND_REG(port_num),
2299 PORT_CONFIG_EXTEND_DEFAULT_VALUE);
2300
2301 pscr = rdl(mp, PORT_SERIAL_CONTROL_REG(port_num));
2302
2303 pscr &= ~(SERIAL_PORT_ENABLE | FORCE_LINK_PASS);
2304 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), pscr);
2305
2306 pscr |= DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
2307 DISABLE_AUTO_NEG_SPEED_GMII |
2308 DISABLE_AUTO_NEG_FOR_DUPLX |
2309 DO_NOT_FORCE_LINK_FAIL |
2310 SERIAL_PORT_CONTROL_RESERVED;
2311
2312 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), pscr);
2313
2314 pscr |= SERIAL_PORT_ENABLE;
2315 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), pscr);
2316
2317 /* Assign port SDMA configuration */
2318 wrl(mp, SDMA_CONFIG_REG(port_num),
2319 PORT_SDMA_CONFIG_DEFAULT_VALUE);
2320
2321 /* Enable port Rx. */
2322 mv643xx_eth_port_enable_rx(mp, ETH_RX_QUEUES_ENABLED);
2323
2324 /* Disable port bandwidth limits by clearing MTU register */
2325 wrl(mp, MAXIMUM_TRANSMIT_UNIT(port_num), 0);
2326
2327 /* save phy settings across reset */
2328 mv643xx_get_settings(dev, &ethtool_cmd);
2329 ethernet_phy_reset(mp);
2330 mv643xx_set_settings(dev, &ethtool_cmd);
2331 }
2332
2333 /*
2334 * eth_port_uc_addr_set - Write a MAC address into the port's hw registers
2335 */
2336 static void eth_port_uc_addr_set(struct mv643xx_private *mp,
2337 unsigned char *p_addr)
2338 {
2339 unsigned int port_num = mp->port_num;
2340 unsigned int mac_h;
2341 unsigned int mac_l;
2342 int table;
2343
2344 mac_l = (p_addr[4] << 8) | (p_addr[5]);
2345 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
2346 (p_addr[3] << 0);
2347
2348 wrl(mp, MAC_ADDR_LOW(port_num), mac_l);
2349 wrl(mp, MAC_ADDR_HIGH(port_num), mac_h);
2350
2351 /* Accept frames with this address */
2352 table = DA_FILTER_UNICAST_TABLE_BASE(port_num);
2353 eth_port_set_filter_table_entry(mp, table, p_addr[5] & 0x0f);
2354 }
2355
2356 /*
2357 * eth_port_uc_addr_get - Read the MAC address from the port's hw registers
2358 */
2359 static void eth_port_uc_addr_get(struct mv643xx_private *mp,
2360 unsigned char *p_addr)
2361 {
2362 unsigned int port_num = mp->port_num;
2363 unsigned int mac_h;
2364 unsigned int mac_l;
2365
2366 mac_h = rdl(mp, MAC_ADDR_HIGH(port_num));
2367 mac_l = rdl(mp, MAC_ADDR_LOW(port_num));
2368
2369 p_addr[0] = (mac_h >> 24) & 0xff;
2370 p_addr[1] = (mac_h >> 16) & 0xff;
2371 p_addr[2] = (mac_h >> 8) & 0xff;
2372 p_addr[3] = mac_h & 0xff;
2373 p_addr[4] = (mac_l >> 8) & 0xff;
2374 p_addr[5] = mac_l & 0xff;
2375 }
2376
2377 /*
2378 * The entries in each table are indexed by a hash of a packet's MAC
2379 * address. One bit in each entry determines whether the packet is
2380 * accepted. There are 4 entries (each 8 bits wide) in each register
2381 * of the table. The bits in each entry are defined as follows:
2382 * 0 Accept=1, Drop=0
2383 * 3-1 Queue (ETH_Q0=0)
2384 * 7-4 Reserved = 0;
2385 */
2386 static void eth_port_set_filter_table_entry(struct mv643xx_private *mp,
2387 int table, unsigned char entry)
2388 {
2389 unsigned int table_reg;
2390 unsigned int tbl_offset;
2391 unsigned int reg_offset;
2392
2393 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
2394 reg_offset = entry % 4; /* Entry offset within the register */
2395
2396 /* Set "accepts frame bit" at specified table entry */
2397 table_reg = rdl(mp, table + tbl_offset);
2398 table_reg |= 0x01 << (8 * reg_offset);
2399 wrl(mp, table + tbl_offset, table_reg);
2400 }
2401
2402 /*
2403 * eth_port_mc_addr - Multicast address settings.
2404 *
2405 * The MV device supports multicast using two tables:
2406 * 1) Special Multicast Table for MAC addresses of the form
2407 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
2408 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2409 * Table entries in the DA-Filter table.
2410 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
2411 * is used as an index to the Other Multicast Table entries in the
2412 * DA-Filter table. This function calculates the CRC-8bit value.
2413 * In either case, eth_port_set_filter_table_entry() is then called
2414 * to set to set the actual table entry.
2415 */
2416 static void eth_port_mc_addr(struct mv643xx_private *mp, unsigned char *p_addr)
2417 {
2418 unsigned int port_num = mp->port_num;
2419 unsigned int mac_h;
2420 unsigned int mac_l;
2421 unsigned char crc_result = 0;
2422 int table;
2423 int mac_array[48];
2424 int crc[8];
2425 int i;
2426
2427 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
2428 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
2429 table = DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(port_num);
2430 eth_port_set_filter_table_entry(mp, table, p_addr[5]);
2431 return;
2432 }
2433
2434 /* Calculate CRC-8 out of the given address */
2435 mac_h = (p_addr[0] << 8) | (p_addr[1]);
2436 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
2437 (p_addr[4] << 8) | (p_addr[5] << 0);
2438
2439 for (i = 0; i < 32; i++)
2440 mac_array[i] = (mac_l >> i) & 0x1;
2441 for (i = 32; i < 48; i++)
2442 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
2443
2444 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
2445 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
2446 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
2447 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
2448 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
2449
2450 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2451 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
2452 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
2453 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
2454 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
2455 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
2456 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
2457
2458 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
2459 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
2460 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
2461 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
2462 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
2463 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
2464
2465 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2466 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
2467 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
2468 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
2469 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
2470 mac_array[3] ^ mac_array[2] ^ mac_array[1];
2471
2472 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
2473 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
2474 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
2475 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
2476 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
2477 mac_array[3] ^ mac_array[2];
2478
2479 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
2480 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
2481 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
2482 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
2483 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
2484 mac_array[4] ^ mac_array[3];
2485
2486 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
2487 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
2488 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
2489 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2490 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2491 mac_array[4];
2492
2493 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2494 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2495 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2496 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2497 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2498
2499 for (i = 0; i < 8; i++)
2500 crc_result = crc_result | (crc[i] << i);
2501
2502 table = DA_FILTER_OTHER_MULTICAST_TABLE_BASE(port_num);
2503 eth_port_set_filter_table_entry(mp, table, crc_result);
2504 }
2505
2506 /*
2507 * Set the entire multicast list based on dev->mc_list.
2508 */
2509 static void eth_port_set_multicast_list(struct net_device *dev)
2510 {
2511
2512 struct dev_mc_list *mc_list;
2513 int i;
2514 int table_index;
2515 struct mv643xx_private *mp = netdev_priv(dev);
2516 unsigned int eth_port_num = mp->port_num;
2517
2518 /* If the device is in promiscuous mode or in all multicast mode,
2519 * we will fully populate both multicast tables with accept.
2520 * This is guaranteed to yield a match on all multicast addresses...
2521 */
2522 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2523 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2524 /* Set all entries in DA filter special multicast
2525 * table (Ex_dFSMT)
2526 * Set for ETH_Q0 for now
2527 * Bits
2528 * 0 Accept=1, Drop=0
2529 * 3-1 Queue ETH_Q0=0
2530 * 7-4 Reserved = 0;
2531 */
2532 wrl(mp, DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2533
2534 /* Set all entries in DA filter other multicast
2535 * table (Ex_dFOMT)
2536 * Set for ETH_Q0 for now
2537 * Bits
2538 * 0 Accept=1, Drop=0
2539 * 3-1 Queue ETH_Q0=0
2540 * 7-4 Reserved = 0;
2541 */
2542 wrl(mp, DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2543 }
2544 return;
2545 }
2546
2547 /* We will clear out multicast tables every time we get the list.
2548 * Then add the entire new list...
2549 */
2550 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2551 /* Clear DA filter special multicast table (Ex_dFSMT) */
2552 wrl(mp, DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2553 (eth_port_num) + table_index, 0);
2554
2555 /* Clear DA filter other multicast table (Ex_dFOMT) */
2556 wrl(mp, DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2557 (eth_port_num) + table_index, 0);
2558 }
2559
2560 /* Get pointer to net_device multicast list and add each one... */
2561 for (i = 0, mc_list = dev->mc_list;
2562 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2563 i++, mc_list = mc_list->next)
2564 if (mc_list->dmi_addrlen == 6)
2565 eth_port_mc_addr(mp, mc_list->dmi_addr);
2566 }
2567
2568 /*
2569 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2570 *
2571 * DESCRIPTION:
2572 * Go through all the DA filter tables (Unicast, Special Multicast &
2573 * Other Multicast) and set each entry to 0.
2574 *
2575 * INPUT:
2576 * struct mv643xx_private *mp Ethernet Port.
2577 *
2578 * OUTPUT:
2579 * Multicast and Unicast packets are rejected.
2580 *
2581 * RETURN:
2582 * None.
2583 */
2584 static void eth_port_init_mac_tables(struct mv643xx_private *mp)
2585 {
2586 unsigned int port_num = mp->port_num;
2587 int table_index;
2588
2589 /* Clear DA filter unicast table (Ex_dFUT) */
2590 for (table_index = 0; table_index <= 0xC; table_index += 4)
2591 wrl(mp, DA_FILTER_UNICAST_TABLE_BASE(port_num) +
2592 table_index, 0);
2593
2594 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2595 /* Clear DA filter special multicast table (Ex_dFSMT) */
2596 wrl(mp, DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(port_num) +
2597 table_index, 0);
2598 /* Clear DA filter other multicast table (Ex_dFOMT) */
2599 wrl(mp, DA_FILTER_OTHER_MULTICAST_TABLE_BASE(port_num) +
2600 table_index, 0);
2601 }
2602 }
2603
2604 /*
2605 * eth_clear_mib_counters - Clear all MIB counters
2606 *
2607 * DESCRIPTION:
2608 * This function clears all MIB counters of a specific ethernet port.
2609 * A read from the MIB counter will reset the counter.
2610 *
2611 * INPUT:
2612 * struct mv643xx_private *mp Ethernet Port.
2613 *
2614 * OUTPUT:
2615 * After reading all MIB counters, the counters resets.
2616 *
2617 * RETURN:
2618 * MIB counter value.
2619 *
2620 */
2621 static void eth_clear_mib_counters(struct mv643xx_private *mp)
2622 {
2623 unsigned int port_num = mp->port_num;
2624 int i;
2625
2626 /* Perform dummy reads from MIB counters */
2627 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2628 i += 4)
2629 rdl(mp, MIB_COUNTERS_BASE(port_num) + i);
2630 }
2631
2632 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2633 {
2634 return rdl(mp, MIB_COUNTERS_BASE(mp->port_num) + offset);
2635 }
2636
2637 static void eth_update_mib_counters(struct mv643xx_private *mp)
2638 {
2639 struct mv643xx_mib_counters *p = &mp->mib_counters;
2640 int offset;
2641
2642 p->good_octets_received +=
2643 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2644 p->good_octets_received +=
2645 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2646
2647 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2648 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2649 offset += 4)
2650 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2651
2652 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2653 p->good_octets_sent +=
2654 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2655
2656 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2657 offset <= ETH_MIB_LATE_COLLISION;
2658 offset += 4)
2659 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2660 }
2661
2662 /*
2663 * ethernet_phy_detect - Detect whether a phy is present
2664 *
2665 * DESCRIPTION:
2666 * This function tests whether there is a PHY present on
2667 * the specified port.
2668 *
2669 * INPUT:
2670 * struct mv643xx_private *mp Ethernet Port.
2671 *
2672 * OUTPUT:
2673 * None
2674 *
2675 * RETURN:
2676 * 0 on success
2677 * -ENODEV on failure
2678 *
2679 */
2680 static int ethernet_phy_detect(struct mv643xx_private *mp)
2681 {
2682 unsigned int phy_reg_data0;
2683 int auto_neg;
2684
2685 eth_port_read_smi_reg(mp, 0, &phy_reg_data0);
2686 auto_neg = phy_reg_data0 & 0x1000;
2687 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2688 eth_port_write_smi_reg(mp, 0, phy_reg_data0);
2689
2690 eth_port_read_smi_reg(mp, 0, &phy_reg_data0);
2691 if ((phy_reg_data0 & 0x1000) == auto_neg)
2692 return -ENODEV; /* change didn't take */
2693
2694 phy_reg_data0 ^= 0x1000;
2695 eth_port_write_smi_reg(mp, 0, phy_reg_data0);
2696 return 0;
2697 }
2698
2699 /*
2700 * ethernet_phy_get - Get the ethernet port PHY address.
2701 *
2702 * DESCRIPTION:
2703 * This routine returns the given ethernet port PHY address.
2704 *
2705 * INPUT:
2706 * struct mv643xx_private *mp Ethernet Port.
2707 *
2708 * OUTPUT:
2709 * None.
2710 *
2711 * RETURN:
2712 * PHY address.
2713 *
2714 */
2715 static int ethernet_phy_get(struct mv643xx_private *mp)
2716 {
2717 unsigned int reg_data;
2718
2719 reg_data = rdl(mp, PHY_ADDR_REG);
2720
2721 return ((reg_data >> (5 * mp->port_num)) & 0x1f);
2722 }
2723
2724 /*
2725 * ethernet_phy_set - Set the ethernet port PHY address.
2726 *
2727 * DESCRIPTION:
2728 * This routine sets the given ethernet port PHY address.
2729 *
2730 * INPUT:
2731 * struct mv643xx_private *mp Ethernet Port.
2732 * int phy_addr PHY address.
2733 *
2734 * OUTPUT:
2735 * None.
2736 *
2737 * RETURN:
2738 * None.
2739 *
2740 */
2741 static void ethernet_phy_set(struct mv643xx_private *mp, int phy_addr)
2742 {
2743 u32 reg_data;
2744 int addr_shift = 5 * mp->port_num;
2745
2746 reg_data = rdl(mp, PHY_ADDR_REG);
2747 reg_data &= ~(0x1f << addr_shift);
2748 reg_data |= (phy_addr & 0x1f) << addr_shift;
2749 wrl(mp, PHY_ADDR_REG, reg_data);
2750 }
2751
2752 /*
2753 * ethernet_phy_reset - Reset Ethernet port PHY.
2754 *
2755 * DESCRIPTION:
2756 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2757 *
2758 * INPUT:
2759 * struct mv643xx_private *mp Ethernet Port.
2760 *
2761 * OUTPUT:
2762 * The PHY is reset.
2763 *
2764 * RETURN:
2765 * None.
2766 *
2767 */
2768 static void ethernet_phy_reset(struct mv643xx_private *mp)
2769 {
2770 unsigned int phy_reg_data;
2771
2772 /* Reset the PHY */
2773 eth_port_read_smi_reg(mp, 0, &phy_reg_data);
2774 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2775 eth_port_write_smi_reg(mp, 0, phy_reg_data);
2776
2777 /* wait for PHY to come out of reset */
2778 do {
2779 udelay(1);
2780 eth_port_read_smi_reg(mp, 0, &phy_reg_data);
2781 } while (phy_reg_data & 0x8000);
2782 }
2783
2784 static void mv643xx_eth_port_enable_tx(struct mv643xx_private *mp,
2785 unsigned int queues)
2786 {
2787 wrl(mp, TRANSMIT_QUEUE_COMMAND_REG(mp->port_num), queues);
2788 }
2789
2790 static void mv643xx_eth_port_enable_rx(struct mv643xx_private *mp,
2791 unsigned int queues)
2792 {
2793 wrl(mp, RECEIVE_QUEUE_COMMAND_REG(mp->port_num), queues);
2794 }
2795
2796 static unsigned int mv643xx_eth_port_disable_tx(struct mv643xx_private *mp)
2797 {
2798 unsigned int port_num = mp->port_num;
2799 u32 queues;
2800
2801 /* Stop Tx port activity. Check port Tx activity. */
2802 queues = rdl(mp, TRANSMIT_QUEUE_COMMAND_REG(port_num)) & 0xFF;
2803 if (queues) {
2804 /* Issue stop command for active queues only */
2805 wrl(mp, TRANSMIT_QUEUE_COMMAND_REG(port_num), (queues << 8));
2806
2807 /* Wait for all Tx activity to terminate. */
2808 /* Check port cause register that all Tx queues are stopped */
2809 while (rdl(mp, TRANSMIT_QUEUE_COMMAND_REG(port_num)) & 0xFF)
2810 udelay(PHY_WAIT_MICRO_SECONDS);
2811
2812 /* Wait for Tx FIFO to empty */
2813 while (rdl(mp, PORT_STATUS_REG(port_num)) &
2814 ETH_PORT_TX_FIFO_EMPTY)
2815 udelay(PHY_WAIT_MICRO_SECONDS);
2816 }
2817
2818 return queues;
2819 }
2820
2821 static unsigned int mv643xx_eth_port_disable_rx(struct mv643xx_private *mp)
2822 {
2823 unsigned int port_num = mp->port_num;
2824 u32 queues;
2825
2826 /* Stop Rx port activity. Check port Rx activity. */
2827 queues = rdl(mp, RECEIVE_QUEUE_COMMAND_REG(port_num)) & 0xFF;
2828 if (queues) {
2829 /* Issue stop command for active queues only */
2830 wrl(mp, RECEIVE_QUEUE_COMMAND_REG(port_num), (queues << 8));
2831
2832 /* Wait for all Rx activity to terminate. */
2833 /* Check port cause register that all Rx queues are stopped */
2834 while (rdl(mp, RECEIVE_QUEUE_COMMAND_REG(port_num)) & 0xFF)
2835 udelay(PHY_WAIT_MICRO_SECONDS);
2836 }
2837
2838 return queues;
2839 }
2840
2841 /*
2842 * eth_port_reset - Reset Ethernet port
2843 *
2844 * DESCRIPTION:
2845 * This routine resets the chip by aborting any SDMA engine activity and
2846 * clearing the MIB counters. The Receiver and the Transmit unit are in
2847 * idle state after this command is performed and the port is disabled.
2848 *
2849 * INPUT:
2850 * struct mv643xx_private *mp Ethernet Port.
2851 *
2852 * OUTPUT:
2853 * Channel activity is halted.
2854 *
2855 * RETURN:
2856 * None.
2857 *
2858 */
2859 static void eth_port_reset(struct mv643xx_private *mp)
2860 {
2861 unsigned int port_num = mp->port_num;
2862 unsigned int reg_data;
2863
2864 mv643xx_eth_port_disable_tx(mp);
2865 mv643xx_eth_port_disable_rx(mp);
2866
2867 /* Clear all MIB counters */
2868 eth_clear_mib_counters(mp);
2869
2870 /* Reset the Enable bit in the Configuration Register */
2871 reg_data = rdl(mp, PORT_SERIAL_CONTROL_REG(port_num));
2872 reg_data &= ~(SERIAL_PORT_ENABLE |
2873 DO_NOT_FORCE_LINK_FAIL |
2874 FORCE_LINK_PASS);
2875 wrl(mp, PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2876 }
2877
2878
2879 /*
2880 * eth_port_read_smi_reg - Read PHY registers
2881 *
2882 * DESCRIPTION:
2883 * This routine utilize the SMI interface to interact with the PHY in
2884 * order to perform PHY register read.
2885 *
2886 * INPUT:
2887 * struct mv643xx_private *mp Ethernet Port.
2888 * unsigned int phy_reg PHY register address offset.
2889 * unsigned int *value Register value buffer.
2890 *
2891 * OUTPUT:
2892 * Write the value of a specified PHY register into given buffer.
2893 *
2894 * RETURN:
2895 * false if the PHY is busy or read data is not in valid state.
2896 * true otherwise.
2897 *
2898 */
2899 static void eth_port_read_smi_reg(struct mv643xx_private *mp,
2900 unsigned int phy_reg, unsigned int *value)
2901 {
2902 int phy_addr = ethernet_phy_get(mp);
2903 unsigned long flags;
2904 int i;
2905
2906 /* the SMI register is a shared resource */
2907 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2908
2909 /* wait for the SMI register to become available */
2910 for (i = 0; rdl(mp, SMI_REG) & ETH_SMI_BUSY; i++) {
2911 if (i == PHY_WAIT_ITERATIONS) {
2912 printk("%s: PHY busy timeout\n", mp->dev->name);
2913 goto out;
2914 }
2915 udelay(PHY_WAIT_MICRO_SECONDS);
2916 }
2917
2918 wrl(mp, SMI_REG,
2919 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2920
2921 /* now wait for the data to be valid */
2922 for (i = 0; !(rdl(mp, SMI_REG) & ETH_SMI_READ_VALID); i++) {
2923 if (i == PHY_WAIT_ITERATIONS) {
2924 printk("%s: PHY read timeout\n", mp->dev->name);
2925 goto out;
2926 }
2927 udelay(PHY_WAIT_MICRO_SECONDS);
2928 }
2929
2930 *value = rdl(mp, SMI_REG) & 0xffff;
2931 out:
2932 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2933 }
2934
2935 /*
2936 * eth_port_write_smi_reg - Write to PHY registers
2937 *
2938 * DESCRIPTION:
2939 * This routine utilize the SMI interface to interact with the PHY in
2940 * order to perform writes to PHY registers.
2941 *
2942 * INPUT:
2943 * struct mv643xx_private *mp Ethernet Port.
2944 * unsigned int phy_reg PHY register address offset.
2945 * unsigned int value Register value.
2946 *
2947 * OUTPUT:
2948 * Write the given value to the specified PHY register.
2949 *
2950 * RETURN:
2951 * false if the PHY is busy.
2952 * true otherwise.
2953 *
2954 */
2955 static void eth_port_write_smi_reg(struct mv643xx_private *mp,
2956 unsigned int phy_reg, unsigned int value)
2957 {
2958 int phy_addr;
2959 int i;
2960 unsigned long flags;
2961
2962 phy_addr = ethernet_phy_get(mp);
2963
2964 /* the SMI register is a shared resource */
2965 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2966
2967 /* wait for the SMI register to become available */
2968 for (i = 0; rdl(mp, SMI_REG) & ETH_SMI_BUSY; i++) {
2969 if (i == PHY_WAIT_ITERATIONS) {
2970 printk("%s: PHY busy timeout\n", mp->dev->name);
2971 goto out;
2972 }
2973 udelay(PHY_WAIT_MICRO_SECONDS);
2974 }
2975
2976 wrl(mp, SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2977 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2978 out:
2979 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2980 }
2981
2982 /*
2983 * Wrappers for MII support library.
2984 */
2985 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2986 {
2987 struct mv643xx_private *mp = netdev_priv(dev);
2988 int val;
2989
2990 eth_port_read_smi_reg(mp, location, &val);
2991 return val;
2992 }
2993
2994 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2995 {
2996 struct mv643xx_private *mp = netdev_priv(dev);
2997 eth_port_write_smi_reg(mp, location, val);
2998 }
2999
3000 /*
3001 * eth_port_receive - Get received information from Rx ring.
3002 *
3003 * DESCRIPTION:
3004 * This routine returns the received data to the caller. There is no
3005 * data copying during routine operation. All information is returned
3006 * using pointer to packet information struct passed from the caller.
3007 * If the routine exhausts Rx ring resources then the resource error flag
3008 * is set.
3009 *
3010 * INPUT:
3011 * struct mv643xx_private *mp Ethernet Port Control srtuct.
3012 * struct pkt_info *p_pkt_info User packet buffer.
3013 *
3014 * OUTPUT:
3015 * Rx ring current and used indexes are updated.
3016 *
3017 * RETURN:
3018 * ETH_ERROR in case the routine can not access Rx desc ring.
3019 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
3020 * ETH_END_OF_JOB if there is no received data.
3021 * ETH_OK otherwise.
3022 */
3023 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
3024 struct pkt_info *p_pkt_info)
3025 {
3026 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
3027 volatile struct eth_rx_desc *p_rx_desc;
3028 unsigned int command_status;
3029 unsigned long flags;
3030
3031 /* Do not process Rx ring in case of Rx ring resource error */
3032 if (mp->rx_resource_err)
3033 return ETH_QUEUE_FULL;
3034
3035 spin_lock_irqsave(&mp->lock, flags);
3036
3037 /* Get the Rx Desc ring 'curr and 'used' indexes */
3038 rx_curr_desc = mp->rx_curr_desc_q;
3039 rx_used_desc = mp->rx_used_desc_q;
3040
3041 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
3042
3043 /* The following parameters are used to save readings from memory */
3044 command_status = p_rx_desc->cmd_sts;
3045 rmb();
3046
3047 /* Nothing to receive... */
3048 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
3049 spin_unlock_irqrestore(&mp->lock, flags);
3050 return ETH_END_OF_JOB;
3051 }
3052
3053 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
3054 p_pkt_info->cmd_sts = command_status;
3055 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
3056 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
3057 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
3058
3059 /*
3060 * Clean the return info field to indicate that the
3061 * packet has been moved to the upper layers
3062 */
3063 mp->rx_skb[rx_curr_desc] = NULL;
3064
3065 /* Update current index in data structure */
3066 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
3067 mp->rx_curr_desc_q = rx_next_curr_desc;
3068
3069 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
3070 if (rx_next_curr_desc == rx_used_desc)
3071 mp->rx_resource_err = 1;
3072
3073 spin_unlock_irqrestore(&mp->lock, flags);
3074
3075 return ETH_OK;
3076 }
3077
3078 /*
3079 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
3080 *
3081 * DESCRIPTION:
3082 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
3083 * next 'used' descriptor and attached the returned buffer to it.
3084 * In case the Rx ring was in "resource error" condition, where there are
3085 * no available Rx resources, the function resets the resource error flag.
3086 *
3087 * INPUT:
3088 * struct mv643xx_private *mp Ethernet Port Control srtuct.
3089 * struct pkt_info *p_pkt_info Information on returned buffer.
3090 *
3091 * OUTPUT:
3092 * New available Rx resource in Rx descriptor ring.
3093 *
3094 * RETURN:
3095 * ETH_ERROR in case the routine can not access Rx desc ring.
3096 * ETH_OK otherwise.
3097 */
3098 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
3099 struct pkt_info *p_pkt_info)
3100 {
3101 int used_rx_desc; /* Where to return Rx resource */
3102 volatile struct eth_rx_desc *p_used_rx_desc;
3103 unsigned long flags;
3104
3105 spin_lock_irqsave(&mp->lock, flags);
3106
3107 /* Get 'used' Rx descriptor */
3108 used_rx_desc = mp->rx_used_desc_q;
3109 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
3110
3111 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
3112 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
3113 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
3114
3115 /* Flush the write pipe */
3116
3117 /* Return the descriptor to DMA ownership */
3118 wmb();
3119 p_used_rx_desc->cmd_sts =
3120 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
3121 wmb();
3122
3123 /* Move the used descriptor pointer to the next descriptor */
3124 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
3125
3126 /* Any Rx return cancels the Rx resource error status */
3127 mp->rx_resource_err = 0;
3128
3129 spin_unlock_irqrestore(&mp->lock, flags);
3130
3131 return ETH_OK;
3132 }
3133
3134 /************* Begin ethtool support *************************/
3135
3136 struct mv643xx_stats {
3137 char stat_string[ETH_GSTRING_LEN];
3138 int sizeof_stat;
3139 int stat_offset;
3140 };
3141
3142 #define MV643XX_STAT(m) FIELD_SIZEOF(struct mv643xx_private, m), \
3143 offsetof(struct mv643xx_private, m)
3144
3145 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
3146 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
3147 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
3148 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
3149 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
3150 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
3151 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
3152 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
3153 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
3154 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
3155 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
3156 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
3157 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
3158 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
3159 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
3160 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
3161 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
3162 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
3163 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
3164 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
3165 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
3166 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
3167 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
3168 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
3169 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
3170 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
3171 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
3172 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
3173 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
3174 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
3175 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
3176 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
3177 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
3178 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
3179 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
3180 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
3181 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
3182 { "collision", MV643XX_STAT(mib_counters.collision) },
3183 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
3184 };
3185
3186 #define MV643XX_STATS_LEN ARRAY_SIZE(mv643xx_gstrings_stats)
3187
3188 static void mv643xx_get_drvinfo(struct net_device *netdev,
3189 struct ethtool_drvinfo *drvinfo)
3190 {
3191 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
3192 strncpy(drvinfo->version, mv643xx_driver_version, 32);
3193 strncpy(drvinfo->fw_version, "N/A", 32);
3194 strncpy(drvinfo->bus_info, "mv643xx", 32);
3195 drvinfo->n_stats = MV643XX_STATS_LEN;
3196 }
3197
3198 static int mv643xx_get_sset_count(struct net_device *netdev, int sset)
3199 {
3200 switch (sset) {
3201 case ETH_SS_STATS:
3202 return MV643XX_STATS_LEN;
3203 default:
3204 return -EOPNOTSUPP;
3205 }
3206 }
3207
3208 static void mv643xx_get_ethtool_stats(struct net_device *netdev,
3209 struct ethtool_stats *stats, uint64_t *data)
3210 {
3211 struct mv643xx_private *mp = netdev->priv;
3212 int i;
3213
3214 eth_update_mib_counters(mp);
3215
3216 for (i = 0; i < MV643XX_STATS_LEN; i++) {
3217 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
3218 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
3219 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3220 }
3221 }
3222
3223 static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
3224 uint8_t *data)
3225 {
3226 int i;
3227
3228 switch(stringset) {
3229 case ETH_SS_STATS:
3230 for (i=0; i < MV643XX_STATS_LEN; i++) {
3231 memcpy(data + i * ETH_GSTRING_LEN,
3232 mv643xx_gstrings_stats[i].stat_string,
3233 ETH_GSTRING_LEN);
3234 }
3235 break;
3236 }
3237 }
3238
3239 static u32 mv643xx_eth_get_link(struct net_device *dev)
3240 {
3241 struct mv643xx_private *mp = netdev_priv(dev);
3242
3243 return mii_link_ok(&mp->mii);
3244 }
3245
3246 static int mv643xx_eth_nway_restart(struct net_device *dev)
3247 {
3248 struct mv643xx_private *mp = netdev_priv(dev);
3249
3250 return mii_nway_restart(&mp->mii);
3251 }
3252
3253 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3254 {
3255 struct mv643xx_private *mp = netdev_priv(dev);
3256
3257 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
3258 }
3259
3260 static const struct ethtool_ops mv643xx_ethtool_ops = {
3261 .get_settings = mv643xx_get_settings,
3262 .set_settings = mv643xx_set_settings,
3263 .get_drvinfo = mv643xx_get_drvinfo,
3264 .get_link = mv643xx_eth_get_link,
3265 .set_sg = ethtool_op_set_sg,
3266 .get_sset_count = mv643xx_get_sset_count,
3267 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3268 .get_strings = mv643xx_get_strings,
3269 .nway_reset = mv643xx_eth_nway_restart,
3270 };
3271
3272 /************* End ethtool support *************************/
This page took 0.098356 seconds and 6 git commands to generate.