net: phy: consolidate PHY reset in phy_init_hw()
[deliverable/linux.git] / drivers / net / phy / phy.c
1 /*
2 * drivers/net/phy/phy.c
3 *
4 * Framework for configuring and reading PHY devices
5 * Based on code in sungem_phy.c and gianfar_phy.c
6 *
7 * Author: Andy Fleming
8 *
9 * Copyright (c) 2004 Freescale Semiconductor, Inc.
10 * Copyright (c) 2006, 2007 Maciej W. Rozycki
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 *
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/string.h>
23 #include <linux/errno.h>
24 #include <linux/unistd.h>
25 #include <linux/interrupt.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/phy.h>
36 #include <linux/timer.h>
37 #include <linux/workqueue.h>
38 #include <linux/mdio.h>
39
40 #include <linux/atomic.h>
41 #include <asm/io.h>
42 #include <asm/irq.h>
43 #include <asm/uaccess.h>
44
45 /**
46 * phy_print_status - Convenience function to print out the current phy status
47 * @phydev: the phy_device struct
48 */
49 void phy_print_status(struct phy_device *phydev)
50 {
51 if (phydev->link)
52 pr_info("%s - Link is Up - %d/%s\n",
53 dev_name(&phydev->dev),
54 phydev->speed,
55 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
56 else
57 pr_info("%s - Link is Down\n", dev_name(&phydev->dev));
58 }
59 EXPORT_SYMBOL(phy_print_status);
60
61 /**
62 * phy_clear_interrupt - Ack the phy device's interrupt
63 * @phydev: the phy_device struct
64 *
65 * If the @phydev driver has an ack_interrupt function, call it to
66 * ack and clear the phy device's interrupt.
67 *
68 * Returns 0 on success on < 0 on error.
69 */
70 static int phy_clear_interrupt(struct phy_device *phydev)
71 {
72 int err = 0;
73
74 if (phydev->drv->ack_interrupt)
75 err = phydev->drv->ack_interrupt(phydev);
76
77 return err;
78 }
79
80 /**
81 * phy_config_interrupt - configure the PHY device for the requested interrupts
82 * @phydev: the phy_device struct
83 * @interrupts: interrupt flags to configure for this @phydev
84 *
85 * Returns 0 on success on < 0 on error.
86 */
87 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
88 {
89 int err = 0;
90
91 phydev->interrupts = interrupts;
92 if (phydev->drv->config_intr)
93 err = phydev->drv->config_intr(phydev);
94
95 return err;
96 }
97
98
99 /**
100 * phy_aneg_done - return auto-negotiation status
101 * @phydev: target phy_device struct
102 *
103 * Description: Reads the status register and returns 0 either if
104 * auto-negotiation is incomplete, or if there was an error.
105 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
106 */
107 static inline int phy_aneg_done(struct phy_device *phydev)
108 {
109 int retval;
110
111 retval = phy_read(phydev, MII_BMSR);
112
113 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
114 }
115
116 /* A structure for mapping a particular speed and duplex
117 * combination to a particular SUPPORTED and ADVERTISED value */
118 struct phy_setting {
119 int speed;
120 int duplex;
121 u32 setting;
122 };
123
124 /* A mapping of all SUPPORTED settings to speed/duplex */
125 static const struct phy_setting settings[] = {
126 {
127 .speed = 10000,
128 .duplex = DUPLEX_FULL,
129 .setting = SUPPORTED_10000baseT_Full,
130 },
131 {
132 .speed = SPEED_1000,
133 .duplex = DUPLEX_FULL,
134 .setting = SUPPORTED_1000baseT_Full,
135 },
136 {
137 .speed = SPEED_1000,
138 .duplex = DUPLEX_HALF,
139 .setting = SUPPORTED_1000baseT_Half,
140 },
141 {
142 .speed = SPEED_100,
143 .duplex = DUPLEX_FULL,
144 .setting = SUPPORTED_100baseT_Full,
145 },
146 {
147 .speed = SPEED_100,
148 .duplex = DUPLEX_HALF,
149 .setting = SUPPORTED_100baseT_Half,
150 },
151 {
152 .speed = SPEED_10,
153 .duplex = DUPLEX_FULL,
154 .setting = SUPPORTED_10baseT_Full,
155 },
156 {
157 .speed = SPEED_10,
158 .duplex = DUPLEX_HALF,
159 .setting = SUPPORTED_10baseT_Half,
160 },
161 };
162
163 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
164
165 /**
166 * phy_find_setting - find a PHY settings array entry that matches speed & duplex
167 * @speed: speed to match
168 * @duplex: duplex to match
169 *
170 * Description: Searches the settings array for the setting which
171 * matches the desired speed and duplex, and returns the index
172 * of that setting. Returns the index of the last setting if
173 * none of the others match.
174 */
175 static inline int phy_find_setting(int speed, int duplex)
176 {
177 int idx = 0;
178
179 while (idx < ARRAY_SIZE(settings) &&
180 (settings[idx].speed != speed ||
181 settings[idx].duplex != duplex))
182 idx++;
183
184 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
185 }
186
187 /**
188 * phy_find_valid - find a PHY setting that matches the requested features mask
189 * @idx: The first index in settings[] to search
190 * @features: A mask of the valid settings
191 *
192 * Description: Returns the index of the first valid setting less
193 * than or equal to the one pointed to by idx, as determined by
194 * the mask in features. Returns the index of the last setting
195 * if nothing else matches.
196 */
197 static inline int phy_find_valid(int idx, u32 features)
198 {
199 while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
200 idx++;
201
202 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
203 }
204
205 /**
206 * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
207 * @phydev: the target phy_device struct
208 *
209 * Description: Make sure the PHY is set to supported speeds and
210 * duplexes. Drop down by one in this order: 1000/FULL,
211 * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
212 */
213 static void phy_sanitize_settings(struct phy_device *phydev)
214 {
215 u32 features = phydev->supported;
216 int idx;
217
218 /* Sanitize settings based on PHY capabilities */
219 if ((features & SUPPORTED_Autoneg) == 0)
220 phydev->autoneg = AUTONEG_DISABLE;
221
222 idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
223 features);
224
225 phydev->speed = settings[idx].speed;
226 phydev->duplex = settings[idx].duplex;
227 }
228
229 /**
230 * phy_ethtool_sset - generic ethtool sset function, handles all the details
231 * @phydev: target phy_device struct
232 * @cmd: ethtool_cmd
233 *
234 * A few notes about parameter checking:
235 * - We don't set port or transceiver, so we don't care what they
236 * were set to.
237 * - phy_start_aneg() will make sure forced settings are sane, and
238 * choose the next best ones from the ones selected, so we don't
239 * care if ethtool tries to give us bad values.
240 */
241 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
242 {
243 u32 speed = ethtool_cmd_speed(cmd);
244
245 if (cmd->phy_address != phydev->addr)
246 return -EINVAL;
247
248 /* We make sure that we don't pass unsupported
249 * values in to the PHY */
250 cmd->advertising &= phydev->supported;
251
252 /* Verify the settings we care about. */
253 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
254 return -EINVAL;
255
256 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
257 return -EINVAL;
258
259 if (cmd->autoneg == AUTONEG_DISABLE &&
260 ((speed != SPEED_1000 &&
261 speed != SPEED_100 &&
262 speed != SPEED_10) ||
263 (cmd->duplex != DUPLEX_HALF &&
264 cmd->duplex != DUPLEX_FULL)))
265 return -EINVAL;
266
267 phydev->autoneg = cmd->autoneg;
268
269 phydev->speed = speed;
270
271 phydev->advertising = cmd->advertising;
272
273 if (AUTONEG_ENABLE == cmd->autoneg)
274 phydev->advertising |= ADVERTISED_Autoneg;
275 else
276 phydev->advertising &= ~ADVERTISED_Autoneg;
277
278 phydev->duplex = cmd->duplex;
279
280 /* Restart the PHY */
281 phy_start_aneg(phydev);
282
283 return 0;
284 }
285 EXPORT_SYMBOL(phy_ethtool_sset);
286
287 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
288 {
289 cmd->supported = phydev->supported;
290
291 cmd->advertising = phydev->advertising;
292 cmd->lp_advertising = phydev->lp_advertising;
293
294 ethtool_cmd_speed_set(cmd, phydev->speed);
295 cmd->duplex = phydev->duplex;
296 cmd->port = PORT_MII;
297 cmd->phy_address = phydev->addr;
298 cmd->transceiver = phy_is_internal(phydev) ?
299 XCVR_INTERNAL : XCVR_EXTERNAL;
300 cmd->autoneg = phydev->autoneg;
301
302 return 0;
303 }
304 EXPORT_SYMBOL(phy_ethtool_gset);
305
306 /**
307 * phy_mii_ioctl - generic PHY MII ioctl interface
308 * @phydev: the phy_device struct
309 * @ifr: &struct ifreq for socket ioctl's
310 * @cmd: ioctl cmd to execute
311 *
312 * Note that this function is currently incompatible with the
313 * PHYCONTROL layer. It changes registers without regard to
314 * current state. Use at own risk.
315 */
316 int phy_mii_ioctl(struct phy_device *phydev,
317 struct ifreq *ifr, int cmd)
318 {
319 struct mii_ioctl_data *mii_data = if_mii(ifr);
320 u16 val = mii_data->val_in;
321 int ret = 0;
322
323 switch (cmd) {
324 case SIOCGMIIPHY:
325 mii_data->phy_id = phydev->addr;
326 /* fall through */
327
328 case SIOCGMIIREG:
329 mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id,
330 mii_data->reg_num);
331 break;
332
333 case SIOCSMIIREG:
334 if (mii_data->phy_id == phydev->addr) {
335 switch(mii_data->reg_num) {
336 case MII_BMCR:
337 if ((val & (BMCR_RESET|BMCR_ANENABLE)) == 0)
338 phydev->autoneg = AUTONEG_DISABLE;
339 else
340 phydev->autoneg = AUTONEG_ENABLE;
341 if ((!phydev->autoneg) && (val & BMCR_FULLDPLX))
342 phydev->duplex = DUPLEX_FULL;
343 else
344 phydev->duplex = DUPLEX_HALF;
345 if ((!phydev->autoneg) &&
346 (val & BMCR_SPEED1000))
347 phydev->speed = SPEED_1000;
348 else if ((!phydev->autoneg) &&
349 (val & BMCR_SPEED100))
350 phydev->speed = SPEED_100;
351 break;
352 case MII_ADVERTISE:
353 phydev->advertising = val;
354 break;
355 default:
356 /* do nothing */
357 break;
358 }
359 }
360
361 mdiobus_write(phydev->bus, mii_data->phy_id,
362 mii_data->reg_num, val);
363
364 if (mii_data->reg_num == MII_BMCR &&
365 val & BMCR_RESET)
366 ret = phy_init_hw(phydev);
367 break;
368
369 case SIOCSHWTSTAMP:
370 if (phydev->drv->hwtstamp)
371 return phydev->drv->hwtstamp(phydev, ifr);
372 /* fall through */
373
374 default:
375 return -EOPNOTSUPP;
376 }
377
378 return ret;
379 }
380 EXPORT_SYMBOL(phy_mii_ioctl);
381
382 /**
383 * phy_start_aneg - start auto-negotiation for this PHY device
384 * @phydev: the phy_device struct
385 *
386 * Description: Sanitizes the settings (if we're not autonegotiating
387 * them), and then calls the driver's config_aneg function.
388 * If the PHYCONTROL Layer is operating, we change the state to
389 * reflect the beginning of Auto-negotiation or forcing.
390 */
391 int phy_start_aneg(struct phy_device *phydev)
392 {
393 int err;
394
395 mutex_lock(&phydev->lock);
396
397 if (AUTONEG_DISABLE == phydev->autoneg)
398 phy_sanitize_settings(phydev);
399
400 err = phydev->drv->config_aneg(phydev);
401
402 if (err < 0)
403 goto out_unlock;
404
405 if (phydev->state != PHY_HALTED) {
406 if (AUTONEG_ENABLE == phydev->autoneg) {
407 phydev->state = PHY_AN;
408 phydev->link_timeout = PHY_AN_TIMEOUT;
409 } else {
410 phydev->state = PHY_FORCING;
411 phydev->link_timeout = PHY_FORCE_TIMEOUT;
412 }
413 }
414
415 out_unlock:
416 mutex_unlock(&phydev->lock);
417 return err;
418 }
419 EXPORT_SYMBOL(phy_start_aneg);
420
421
422 /**
423 * phy_start_machine - start PHY state machine tracking
424 * @phydev: the phy_device struct
425 * @handler: callback function for state change notifications
426 *
427 * Description: The PHY infrastructure can run a state machine
428 * which tracks whether the PHY is starting up, negotiating,
429 * etc. This function starts the timer which tracks the state
430 * of the PHY. If you want to be notified when the state changes,
431 * pass in the callback @handler, otherwise, pass NULL. If you
432 * want to maintain your own state machine, do not call this
433 * function.
434 */
435 void phy_start_machine(struct phy_device *phydev,
436 void (*handler)(struct net_device *))
437 {
438 phydev->adjust_state = handler;
439
440 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
441 }
442
443 /**
444 * phy_stop_machine - stop the PHY state machine tracking
445 * @phydev: target phy_device struct
446 *
447 * Description: Stops the state machine timer, sets the state to UP
448 * (unless it wasn't up yet). This function must be called BEFORE
449 * phy_detach.
450 */
451 void phy_stop_machine(struct phy_device *phydev)
452 {
453 cancel_delayed_work_sync(&phydev->state_queue);
454
455 mutex_lock(&phydev->lock);
456 if (phydev->state > PHY_UP)
457 phydev->state = PHY_UP;
458 mutex_unlock(&phydev->lock);
459
460 phydev->adjust_state = NULL;
461 }
462
463 /**
464 * phy_error - enter HALTED state for this PHY device
465 * @phydev: target phy_device struct
466 *
467 * Moves the PHY to the HALTED state in response to a read
468 * or write error, and tells the controller the link is down.
469 * Must not be called from interrupt context, or while the
470 * phydev->lock is held.
471 */
472 static void phy_error(struct phy_device *phydev)
473 {
474 mutex_lock(&phydev->lock);
475 phydev->state = PHY_HALTED;
476 mutex_unlock(&phydev->lock);
477 }
478
479 /**
480 * phy_interrupt - PHY interrupt handler
481 * @irq: interrupt line
482 * @phy_dat: phy_device pointer
483 *
484 * Description: When a PHY interrupt occurs, the handler disables
485 * interrupts, and schedules a work task to clear the interrupt.
486 */
487 static irqreturn_t phy_interrupt(int irq, void *phy_dat)
488 {
489 struct phy_device *phydev = phy_dat;
490
491 if (PHY_HALTED == phydev->state)
492 return IRQ_NONE; /* It can't be ours. */
493
494 /* The MDIO bus is not allowed to be written in interrupt
495 * context, so we need to disable the irq here. A work
496 * queue will write the PHY to disable and clear the
497 * interrupt, and then reenable the irq line. */
498 disable_irq_nosync(irq);
499 atomic_inc(&phydev->irq_disable);
500
501 queue_work(system_power_efficient_wq, &phydev->phy_queue);
502
503 return IRQ_HANDLED;
504 }
505
506 /**
507 * phy_enable_interrupts - Enable the interrupts from the PHY side
508 * @phydev: target phy_device struct
509 */
510 static int phy_enable_interrupts(struct phy_device *phydev)
511 {
512 int err;
513
514 err = phy_clear_interrupt(phydev);
515
516 if (err < 0)
517 return err;
518
519 err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
520
521 return err;
522 }
523
524 /**
525 * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
526 * @phydev: target phy_device struct
527 */
528 static int phy_disable_interrupts(struct phy_device *phydev)
529 {
530 int err;
531
532 /* Disable PHY interrupts */
533 err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
534
535 if (err)
536 goto phy_err;
537
538 /* Clear the interrupt */
539 err = phy_clear_interrupt(phydev);
540
541 if (err)
542 goto phy_err;
543
544 return 0;
545
546 phy_err:
547 phy_error(phydev);
548
549 return err;
550 }
551
552 /**
553 * phy_start_interrupts - request and enable interrupts for a PHY device
554 * @phydev: target phy_device struct
555 *
556 * Description: Request the interrupt for the given PHY.
557 * If this fails, then we set irq to PHY_POLL.
558 * Otherwise, we enable the interrupts in the PHY.
559 * This should only be called with a valid IRQ number.
560 * Returns 0 on success or < 0 on error.
561 */
562 int phy_start_interrupts(struct phy_device *phydev)
563 {
564 int err = 0;
565
566 atomic_set(&phydev->irq_disable, 0);
567 if (request_irq(phydev->irq, phy_interrupt,
568 IRQF_SHARED,
569 "phy_interrupt",
570 phydev) < 0) {
571 pr_warn("%s: Can't get IRQ %d (PHY)\n",
572 phydev->bus->name, phydev->irq);
573 phydev->irq = PHY_POLL;
574 return 0;
575 }
576
577 err = phy_enable_interrupts(phydev);
578
579 return err;
580 }
581 EXPORT_SYMBOL(phy_start_interrupts);
582
583 /**
584 * phy_stop_interrupts - disable interrupts from a PHY device
585 * @phydev: target phy_device struct
586 */
587 int phy_stop_interrupts(struct phy_device *phydev)
588 {
589 int err;
590
591 err = phy_disable_interrupts(phydev);
592
593 if (err)
594 phy_error(phydev);
595
596 free_irq(phydev->irq, phydev);
597
598 /*
599 * Cannot call flush_scheduled_work() here as desired because
600 * of rtnl_lock(), but we do not really care about what would
601 * be done, except from enable_irq(), so cancel any work
602 * possibly pending and take care of the matter below.
603 */
604 cancel_work_sync(&phydev->phy_queue);
605 /*
606 * If work indeed has been cancelled, disable_irq() will have
607 * been left unbalanced from phy_interrupt() and enable_irq()
608 * has to be called so that other devices on the line work.
609 */
610 while (atomic_dec_return(&phydev->irq_disable) >= 0)
611 enable_irq(phydev->irq);
612
613 return err;
614 }
615 EXPORT_SYMBOL(phy_stop_interrupts);
616
617
618 /**
619 * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
620 * @work: work_struct that describes the work to be done
621 */
622 void phy_change(struct work_struct *work)
623 {
624 int err;
625 struct phy_device *phydev =
626 container_of(work, struct phy_device, phy_queue);
627
628 if (phydev->drv->did_interrupt &&
629 !phydev->drv->did_interrupt(phydev))
630 goto ignore;
631
632 err = phy_disable_interrupts(phydev);
633
634 if (err)
635 goto phy_err;
636
637 mutex_lock(&phydev->lock);
638 if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
639 phydev->state = PHY_CHANGELINK;
640 mutex_unlock(&phydev->lock);
641
642 atomic_dec(&phydev->irq_disable);
643 enable_irq(phydev->irq);
644
645 /* Reenable interrupts */
646 if (PHY_HALTED != phydev->state)
647 err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
648
649 if (err)
650 goto irq_enable_err;
651
652 /* reschedule state queue work to run as soon as possible */
653 cancel_delayed_work_sync(&phydev->state_queue);
654 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
655
656 return;
657
658 ignore:
659 atomic_dec(&phydev->irq_disable);
660 enable_irq(phydev->irq);
661 return;
662
663 irq_enable_err:
664 disable_irq(phydev->irq);
665 atomic_inc(&phydev->irq_disable);
666 phy_err:
667 phy_error(phydev);
668 }
669
670 /**
671 * phy_stop - Bring down the PHY link, and stop checking the status
672 * @phydev: target phy_device struct
673 */
674 void phy_stop(struct phy_device *phydev)
675 {
676 mutex_lock(&phydev->lock);
677
678 if (PHY_HALTED == phydev->state)
679 goto out_unlock;
680
681 if (phy_interrupt_is_valid(phydev)) {
682 /* Disable PHY Interrupts */
683 phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
684
685 /* Clear any pending interrupts */
686 phy_clear_interrupt(phydev);
687 }
688
689 phydev->state = PHY_HALTED;
690
691 out_unlock:
692 mutex_unlock(&phydev->lock);
693
694 /*
695 * Cannot call flush_scheduled_work() here as desired because
696 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
697 * will not reenable interrupts.
698 */
699 }
700
701
702 /**
703 * phy_start - start or restart a PHY device
704 * @phydev: target phy_device struct
705 *
706 * Description: Indicates the attached device's readiness to
707 * handle PHY-related work. Used during startup to start the
708 * PHY, and after a call to phy_stop() to resume operation.
709 * Also used to indicate the MDIO bus has cleared an error
710 * condition.
711 */
712 void phy_start(struct phy_device *phydev)
713 {
714 mutex_lock(&phydev->lock);
715
716 switch (phydev->state) {
717 case PHY_STARTING:
718 phydev->state = PHY_PENDING;
719 break;
720 case PHY_READY:
721 phydev->state = PHY_UP;
722 break;
723 case PHY_HALTED:
724 phydev->state = PHY_RESUMING;
725 default:
726 break;
727 }
728 mutex_unlock(&phydev->lock);
729 }
730 EXPORT_SYMBOL(phy_stop);
731 EXPORT_SYMBOL(phy_start);
732
733 /**
734 * phy_state_machine - Handle the state machine
735 * @work: work_struct that describes the work to be done
736 */
737 void phy_state_machine(struct work_struct *work)
738 {
739 struct delayed_work *dwork = to_delayed_work(work);
740 struct phy_device *phydev =
741 container_of(dwork, struct phy_device, state_queue);
742 int needs_aneg = 0;
743 int err = 0;
744
745 mutex_lock(&phydev->lock);
746
747 if (phydev->adjust_state)
748 phydev->adjust_state(phydev->attached_dev);
749
750 switch(phydev->state) {
751 case PHY_DOWN:
752 case PHY_STARTING:
753 case PHY_READY:
754 case PHY_PENDING:
755 break;
756 case PHY_UP:
757 needs_aneg = 1;
758
759 phydev->link_timeout = PHY_AN_TIMEOUT;
760
761 break;
762 case PHY_AN:
763 err = phy_read_status(phydev);
764
765 if (err < 0)
766 break;
767
768 /* If the link is down, give up on
769 * negotiation for now */
770 if (!phydev->link) {
771 phydev->state = PHY_NOLINK;
772 netif_carrier_off(phydev->attached_dev);
773 phydev->adjust_link(phydev->attached_dev);
774 break;
775 }
776
777 /* Check if negotiation is done. Break
778 * if there's an error */
779 err = phy_aneg_done(phydev);
780 if (err < 0)
781 break;
782
783 /* If AN is done, we're running */
784 if (err > 0) {
785 phydev->state = PHY_RUNNING;
786 netif_carrier_on(phydev->attached_dev);
787 phydev->adjust_link(phydev->attached_dev);
788
789 } else if (0 == phydev->link_timeout--) {
790 needs_aneg = 1;
791 /* If we have the magic_aneg bit,
792 * we try again */
793 if (phydev->drv->flags & PHY_HAS_MAGICANEG)
794 break;
795 }
796 break;
797 case PHY_NOLINK:
798 err = phy_read_status(phydev);
799
800 if (err)
801 break;
802
803 if (phydev->link) {
804 phydev->state = PHY_RUNNING;
805 netif_carrier_on(phydev->attached_dev);
806 phydev->adjust_link(phydev->attached_dev);
807 }
808 break;
809 case PHY_FORCING:
810 err = genphy_update_link(phydev);
811
812 if (err)
813 break;
814
815 if (phydev->link) {
816 phydev->state = PHY_RUNNING;
817 netif_carrier_on(phydev->attached_dev);
818 } else {
819 if (0 == phydev->link_timeout--)
820 needs_aneg = 1;
821 }
822
823 phydev->adjust_link(phydev->attached_dev);
824 break;
825 case PHY_RUNNING:
826 /* Only register a CHANGE if we are
827 * polling or ignoring interrupts
828 */
829 if (!phy_interrupt_is_valid(phydev))
830 phydev->state = PHY_CHANGELINK;
831 break;
832 case PHY_CHANGELINK:
833 err = phy_read_status(phydev);
834
835 if (err)
836 break;
837
838 if (phydev->link) {
839 phydev->state = PHY_RUNNING;
840 netif_carrier_on(phydev->attached_dev);
841 } else {
842 phydev->state = PHY_NOLINK;
843 netif_carrier_off(phydev->attached_dev);
844 }
845
846 phydev->adjust_link(phydev->attached_dev);
847
848 if (phy_interrupt_is_valid(phydev))
849 err = phy_config_interrupt(phydev,
850 PHY_INTERRUPT_ENABLED);
851 break;
852 case PHY_HALTED:
853 if (phydev->link) {
854 phydev->link = 0;
855 netif_carrier_off(phydev->attached_dev);
856 phydev->adjust_link(phydev->attached_dev);
857 }
858 break;
859 case PHY_RESUMING:
860
861 err = phy_clear_interrupt(phydev);
862
863 if (err)
864 break;
865
866 err = phy_config_interrupt(phydev,
867 PHY_INTERRUPT_ENABLED);
868
869 if (err)
870 break;
871
872 if (AUTONEG_ENABLE == phydev->autoneg) {
873 err = phy_aneg_done(phydev);
874 if (err < 0)
875 break;
876
877 /* err > 0 if AN is done.
878 * Otherwise, it's 0, and we're
879 * still waiting for AN */
880 if (err > 0) {
881 err = phy_read_status(phydev);
882 if (err)
883 break;
884
885 if (phydev->link) {
886 phydev->state = PHY_RUNNING;
887 netif_carrier_on(phydev->attached_dev);
888 } else
889 phydev->state = PHY_NOLINK;
890 phydev->adjust_link(phydev->attached_dev);
891 } else {
892 phydev->state = PHY_AN;
893 phydev->link_timeout = PHY_AN_TIMEOUT;
894 }
895 } else {
896 err = phy_read_status(phydev);
897 if (err)
898 break;
899
900 if (phydev->link) {
901 phydev->state = PHY_RUNNING;
902 netif_carrier_on(phydev->attached_dev);
903 } else
904 phydev->state = PHY_NOLINK;
905 phydev->adjust_link(phydev->attached_dev);
906 }
907 break;
908 }
909
910 mutex_unlock(&phydev->lock);
911
912 if (needs_aneg)
913 err = phy_start_aneg(phydev);
914
915 if (err < 0)
916 phy_error(phydev);
917
918 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
919 PHY_STATE_TIME * HZ);
920 }
921
922 void phy_mac_interrupt(struct phy_device *phydev, int new_link)
923 {
924 cancel_work_sync(&phydev->phy_queue);
925 phydev->link = new_link;
926 schedule_work(&phydev->phy_queue);
927 }
928 EXPORT_SYMBOL(phy_mac_interrupt);
929
930 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
931 int addr)
932 {
933 /* Write the desired MMD Devad */
934 bus->write(bus, addr, MII_MMD_CTRL, devad);
935
936 /* Write the desired MMD register address */
937 bus->write(bus, addr, MII_MMD_DATA, prtad);
938
939 /* Select the Function : DATA with no post increment */
940 bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
941 }
942
943 /**
944 * phy_read_mmd_indirect - reads data from the MMD registers
945 * @bus: the target MII bus
946 * @prtad: MMD Address
947 * @devad: MMD DEVAD
948 * @addr: PHY address on the MII bus
949 *
950 * Description: it reads data from the MMD registers (clause 22 to access to
951 * clause 45) of the specified phy address.
952 * To read these register we have:
953 * 1) Write reg 13 // DEVAD
954 * 2) Write reg 14 // MMD Address
955 * 3) Write reg 13 // MMD Data Command for MMD DEVAD
956 * 3) Read reg 14 // Read MMD data
957 */
958 static int phy_read_mmd_indirect(struct mii_bus *bus, int prtad, int devad,
959 int addr)
960 {
961 u32 ret;
962
963 mmd_phy_indirect(bus, prtad, devad, addr);
964
965 /* Read the content of the MMD's selected register */
966 ret = bus->read(bus, addr, MII_MMD_DATA);
967
968 return ret;
969 }
970
971 /**
972 * phy_write_mmd_indirect - writes data to the MMD registers
973 * @bus: the target MII bus
974 * @prtad: MMD Address
975 * @devad: MMD DEVAD
976 * @addr: PHY address on the MII bus
977 * @data: data to write in the MMD register
978 *
979 * Description: Write data from the MMD registers of the specified
980 * phy address.
981 * To write these register we have:
982 * 1) Write reg 13 // DEVAD
983 * 2) Write reg 14 // MMD Address
984 * 3) Write reg 13 // MMD Data Command for MMD DEVAD
985 * 3) Write reg 14 // Write MMD data
986 */
987 static void phy_write_mmd_indirect(struct mii_bus *bus, int prtad, int devad,
988 int addr, u32 data)
989 {
990 mmd_phy_indirect(bus, prtad, devad, addr);
991
992 /* Write the data into MMD's selected register */
993 bus->write(bus, addr, MII_MMD_DATA, data);
994 }
995
996 /**
997 * phy_init_eee - init and check the EEE feature
998 * @phydev: target phy_device struct
999 * @clk_stop_enable: PHY may stop the clock during LPI
1000 *
1001 * Description: it checks if the Energy-Efficient Ethernet (EEE)
1002 * is supported by looking at the MMD registers 3.20 and 7.60/61
1003 * and it programs the MMD register 3.0 setting the "Clock stop enable"
1004 * bit if required.
1005 */
1006 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
1007 {
1008 int ret = -EPROTONOSUPPORT;
1009
1010 /* According to 802.3az,the EEE is supported only in full duplex-mode.
1011 * Also EEE feature is active when core is operating with MII, GMII
1012 * or RGMII.
1013 */
1014 if ((phydev->duplex == DUPLEX_FULL) &&
1015 ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
1016 (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
1017 (phydev->interface == PHY_INTERFACE_MODE_RGMII))) {
1018 int eee_lp, eee_cap, eee_adv;
1019 u32 lp, cap, adv;
1020 int idx, status;
1021
1022 /* Read phy status to properly get the right settings */
1023 status = phy_read_status(phydev);
1024 if (status)
1025 return status;
1026
1027 /* First check if the EEE ability is supported */
1028 eee_cap = phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_ABLE,
1029 MDIO_MMD_PCS, phydev->addr);
1030 if (eee_cap < 0)
1031 return eee_cap;
1032
1033 cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
1034 if (!cap)
1035 goto eee_exit;
1036
1037 /* Check which link settings negotiated and verify it in
1038 * the EEE advertising registers.
1039 */
1040 eee_lp = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_LPABLE,
1041 MDIO_MMD_AN, phydev->addr);
1042 if (eee_lp < 0)
1043 return eee_lp;
1044
1045 eee_adv = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV,
1046 MDIO_MMD_AN, phydev->addr);
1047 if (eee_adv < 0)
1048 return eee_adv;
1049
1050 adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1051 lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1052 idx = phy_find_setting(phydev->speed, phydev->duplex);
1053 if (!(lp & adv & settings[idx].setting))
1054 goto eee_exit;
1055
1056 if (clk_stop_enable) {
1057 /* Configure the PHY to stop receiving xMII
1058 * clock while it is signaling LPI.
1059 */
1060 int val = phy_read_mmd_indirect(phydev->bus, MDIO_CTRL1,
1061 MDIO_MMD_PCS,
1062 phydev->addr);
1063 if (val < 0)
1064 return val;
1065
1066 val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1067 phy_write_mmd_indirect(phydev->bus, MDIO_CTRL1,
1068 MDIO_MMD_PCS, phydev->addr, val);
1069 }
1070
1071 ret = 0; /* EEE supported */
1072 }
1073
1074 eee_exit:
1075 return ret;
1076 }
1077 EXPORT_SYMBOL(phy_init_eee);
1078
1079 /**
1080 * phy_get_eee_err - report the EEE wake error count
1081 * @phydev: target phy_device struct
1082 *
1083 * Description: it is to report the number of time where the PHY
1084 * failed to complete its normal wake sequence.
1085 */
1086 int phy_get_eee_err(struct phy_device *phydev)
1087 {
1088 return phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_WK_ERR,
1089 MDIO_MMD_PCS, phydev->addr);
1090
1091 }
1092 EXPORT_SYMBOL(phy_get_eee_err);
1093
1094 /**
1095 * phy_ethtool_get_eee - get EEE supported and status
1096 * @phydev: target phy_device struct
1097 * @data: ethtool_eee data
1098 *
1099 * Description: it reportes the Supported/Advertisement/LP Advertisement
1100 * capabilities.
1101 */
1102 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1103 {
1104 int val;
1105
1106 /* Get Supported EEE */
1107 val = phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_ABLE,
1108 MDIO_MMD_PCS, phydev->addr);
1109 if (val < 0)
1110 return val;
1111 data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1112
1113 /* Get advertisement EEE */
1114 val = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV,
1115 MDIO_MMD_AN, phydev->addr);
1116 if (val < 0)
1117 return val;
1118 data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1119
1120 /* Get LP advertisement EEE */
1121 val = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_LPABLE,
1122 MDIO_MMD_AN, phydev->addr);
1123 if (val < 0)
1124 return val;
1125 data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1126
1127 return 0;
1128 }
1129 EXPORT_SYMBOL(phy_ethtool_get_eee);
1130
1131 /**
1132 * phy_ethtool_set_eee - set EEE supported and status
1133 * @phydev: target phy_device struct
1134 * @data: ethtool_eee data
1135 *
1136 * Description: it is to program the Advertisement EEE register.
1137 */
1138 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1139 {
1140 int val;
1141
1142 val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1143 phy_write_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV, MDIO_MMD_AN,
1144 phydev->addr, val);
1145
1146 return 0;
1147 }
1148 EXPORT_SYMBOL(phy_ethtool_set_eee);
1149
1150 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1151 {
1152 if (phydev->drv->set_wol)
1153 return phydev->drv->set_wol(phydev, wol);
1154
1155 return -EOPNOTSUPP;
1156 }
1157 EXPORT_SYMBOL(phy_ethtool_set_wol);
1158
1159 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1160 {
1161 if (phydev->drv->get_wol)
1162 phydev->drv->get_wol(phydev, wol);
1163 }
1164 EXPORT_SYMBOL(phy_ethtool_get_wol);
This page took 0.056766 seconds and 5 git commands to generate.